
Efficient Attribute-Based Signatures for Unbounded Arithmetic
Branching Programs

Pratish Datta1, Tatsuaki Okamoto1, and Katsuyuki Takashima2

1 NTT Secure Platform Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan

pratish.datta.yg@hco.ntt.co.jp, tatsuaki.okamoto@gmail.com
2 Mitsubishi Electric

5-1-1 Ofuna, Kamakura, Kanagawa, 247-8501 Japan
Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

April 4, 2019

Abstract

This paper presents the first attribute-based signature (ABS) scheme in which the correspondence between
signers and signatures is captured in an arithmetic model of computation. Specifically, we design a fully
secure, i.e., adaptively unforgeable and perfectly signer-private ABS scheme for signing policies realizable
by arithmetic branching programs (ABP), which are a quite expressive model of arithmetic computations.
On a more positive note, the proposed scheme places no bound on the size and input length of the
supported signing policy ABP’s, and at the same time, supports the use of an input attribute for an
arbitrary number of times inside a signing policy ABP, i.e., the so called unbounded multi-use of attributes.
The size of our public parameters is constant with respect to the sizes of the signing attribute vectors
and signing policies available in the system. The construction is built in (asymmetric) bilinear groups
of prime order, and its unforgeability is derived in the standard model under (asymmetric version of)
the well-studied decisional linear (DLIN) assumption coupled with the existence of standard collision
resistant hash functions. Due to the use of the arithmetic model as opposed to the boolean one, our ABS
scheme not only excels significantly over the existing state-of-the-art constructions in terms of concrete
efficiency, but also achieves improved applicability in various practical scenarios. Our principal technical
contributions are (a) extending the techniques of Okamoto and Takashima [PKC 2011, PKC 2013], which
were originally developed in the context of boolean span programs, to the arithmetic setting; and (b)
innovating new ideas to allow unbounded multi-use of attributes inside ABP’s, which themselves are of
unbounded size and input length.

Keywords: attribute-based signatures, arithmetic branching programs, arithmetic span programs, con-
crete efficiency, unbounded multi-use of attributes, bilinear groups

1 Introduction

Attribute-based signatures (ABS), introduced in the seminal work of Maji et al. [MPR08], is an
ambitious variant of digital signatures [DH76] that simultaneously enforce fine-grained control
over authentication rights and conceal the identity of signers. An ABS scheme is associated with
a predicate family ℛ = {𝑅(𝑌, ·) : 𝒳 → {0, 1} | 𝑌 ∈ 𝒴}, where 𝒳 is a universe of possible signing
attributes and 𝒴 is a collection of admissible signing policies over the attributes of 𝒳 . A central
authority holds a master signing key and publishes system public parameters. Using its master
signing key, the authority can issue restricted signing keys to individual signers corresponding to
the attributes 𝑋 ∈ 𝒳 possessed by them. Such a constrained signing key associated with some
attribute 𝑋 ∈ 𝒳 allows a signer to sign messages under only those signing policies 𝑌 ∈ 𝒴 which
are satisfied by 𝑋, i.e., for which 𝑅(𝑌,𝑋) = 1. The signatures can be verified by any one using
solely the public parameters.

In an ABS scheme, by verifying a signature on some message with respect to some claimed
signing policy, a verifier gets convinced that the signature is indeed generated by someone holding
some attributes satisfying the policy. In particular, generating a valid signature on any message

* This is the full version of an extended abstract that will appear in the proceedings of PKC 2019.
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under any signing policy is (computationally) infeasible for any group of colluding signers, none
of whom individually possesses a signing attribute that satisfies the signing policy, by pooling
their attributes together. This is the so called unforgeability property of an ABS scheme. The
second property of an ABS scheme, which ensures that given a signature, it is impossible to trace
the exact signer or signing attributes used to create it, is known as signer privacy.

We refer the above notion of ABS as signature-policy ABS in recognition of the fact that in
this notion of ABS signing policies are associated with signatures. Another flavor of this notion
that interchanges the roles of signing attributes and signing policies, i.e., where signing policies
are attached to signing keys and signatures are produced with respect to signing attributes, is
usually termed as key-policy ABS. In addition to being an exciting cryptographic primitive in its
own right, ABS has found countless important practical applications ranging from attribute-based
messaging and attribute-based authentication to anonymous credential systems, trust negotia-
tions, and leaking secrets (see [MPR08,MPR11,MPR10,SSN09] for more details). In this paper,
we will deal with the signature-policy variant since this variant is more natural and better suited
in most of the aforementioned real-life applications of ABS.

Since their inception, ABS have been intensively studied in a long sequence of interesting
works, and just like any other access-control primitive, a central theme of research in those
works has been to expand the expressiveness of the allowable class of signing policies in view
of implementing this delicate signature paradigm in scenarios where the relationship between
the signing attributes and policies is more and more sophisticated. Starting with the early works
[MPR08,SSN09,LK08,LAS+10,HLLR12], which can handle threshold signing policies, the class of
admissible signing policies has been progressively enlarged to boolean formulas or span programs
by Maji et al. [MPR11], Okamoto and Takashima [OT11a, OT13] as well as El Kaafarani et
al. [EKGK14, EKEB16], and further to general circuits by Tang et al. [TLL14], Sakai et al.
[SAH16], Tsabary [Tsa17], as well as El Kaafarani and Katsumata [EKK18], based on various
computational assumptions on bilinear groups and lattices, as well as in different security models
such as random oracle model, generic group model, and standard model. Very recently, Datta et
al. [DDM17] and Sakai et al. [SKAH18] have constructed ABS schemes which can even realize
Turing machines as signing policies. On the other hand, Bellare and Fuchsbauer [BF14] have
put forward a versatile signature primitive termed as policy-based signatures (PBS) and have
presented a generic construction of an ABS scheme from a PBS scheme. This generic construction,
when instantiated with their proposed PBS scheme for general NP languages, results in an ABS
scheme which can realize any NP relation as signing policy.

Two other important parameters determining the quality and applicability of ABS schemes are
(a) supporting signing policies of unbounded polynomial size and input length, and (b) allowing
the use of a signing attribute for a unbounded polynomial number of times inside a signing
policy, i.e., the so called unbounded multi-use of attributes. Here, the term “unbounded" means
not fixed by the public parameters. Out of the existing ABS schemes mentioned above, the only
schemes which achieves both these parameters simultaneously and are somewhat practicable are
the constructions due to Sakai et al. [SAH16,SKAH18]. While Okamoto and Takashima were able
to realize unbounded multi-use of attributes in an updated version of their ABS scheme [OT11a],
namely, [OT11b], their scheme cannot handle signing policies of unbounded size and input length.
On the other hand, the ABS scheme of Datta et al. [DDM17] features both the above properties,
but are based on heavy-duty cryptographic tools such as indistinguishability obfuscation.

From the above review of the available ABS schemes, it is evident that research in the field of
ABS has already reached the pinnacle in terms of expressiveness and unboundedness of the sup-
ported signing policies, as well as in terms of accommodating unbounded multi-use of attributes.
Despite of this massive progress, one significant limitation that still persists in the current state
of the art in this area is that all the existing ABS constructions consider the relationship between
the signing attributes and policies only in some boolean model of computation, i.e., in those
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schemes the signing attributes are treated as bit strings and the policies are defined by sets of
boolean operations. This raises the following natural question:
Can we construct an ABS scheme which captures the relationship between the signing attributes
and policies in some arithmetic model of computation, while at the same time, supports signing
policies having unbounded size and input length, as well as unbounded multi-use of attributes?
In an arithmetic-model-based ABS scheme, signing attributes are considered to be elements of
some finite field 𝔽𝑞, and signing policies are represented by collections of field operations, i.e.,
additions and multiplications over the field 𝔽𝑞. The above question is not only intriguing from
a theoretical perspective as the arithmetic model is a more structured one compared to its
boolean counter part, it is also of a high significance from several practical view points. Most
importantly, since arithmetic computations arise in many real-life scenarios, this question has
a natural motivation when the concrete efficiency of most of the applications of ABS discussed
above is considered. For instance, note that it is possible to capture any arithmetic relationships
between the signing attributes and policies by employing the state-of-the-art ABS schemes of
Sakai et al. for general circuits and Turing machines [SAH16,SKAH18] by representing an arith-
metic computation by an equivalent boolean computation that replaces each field operation by a
corresponding boolean sub-computation. Given the bit representation of the signing attributes,
this approach can be used to simulate any arithmetic relation with an overhead which depends on
the boolean complexity of the field operations. While providing reasonable asymptotic efficiency
in theory (e.g., via fast integer multiplication techniques [Für09]), the concrete overhead of this
approach is enormous. Moreover, scenarios may arise where one does not have access to the bits
of the signing attributes and must treat them as atomic field elements. Note that in view of sim-
ilar efficiency and applicability issues with boolean computations, arithmetic variants of various
important cryptographic primitives have already been considered in the last few years. Exam-
ples include arithmetic garbled circuits [AIK14], arithmetic multi-party computations [KOS16],
verifiable arithmetic computations [PHGR16], and so on. An even more fascinating aspect of the
above question is to simultaneously support unbounded signing policies and unbounded multi-use
of attributes in the arithmetic setting. These properties are especially significant for making the
scheme resilient to potential usage situations which may arise after the scheme is setup. It can be
readily inferred from the scarcity of existing ABS schemes supporting unbounded signing policies
and unbounded multi-use of attributes simultaneously, even in the boolean setting, that achiev-
ing both these properties at the same time is a rather challenging task in any computational
model.

Our Contribution

In this paper, we provide an affirmative answer to the above important question. For the first time
in the literature, we design an ABS scheme where the relationship between the signing attributes
and policies are considered in an arithmetic model of computation. More specifically, we construct
an ABS scheme in which signing attributes are represented as elements of a finite field 𝔽𝑞 and the
signing policies are expressed as arithmetic branching programs (ABP) [IK97,IK02] of unbounded
polynomial size and input length over 𝔽𝑞. While not capable of capturing most general relations
like arbitrary circuits or Turing machines, ABP’s are a quite powerful model for realizing a
wide range of relations that arise in practice, namely, the relations which can be expressed as
polynomials over some finite field. In particular, note that there is a linear-time algorithm that
can convert any Boolean formula, Boolean branching program, or arithmetic formula to an ABP
only with a constant blow-up in the representation size. Thus, in terms of expressiveness of
supported signing policies, our ABS scheme subsumes all the existing ABS schemes except those
for general circuits or Turing machines. On a more positive note, we place no restriction on the
number of times an attribute can be used inside the description of a signing policy ABP.
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The proposed scheme enjoys perfect signer privacy and unforgeability against adversaries
which are allowed to make an arbitrary polynomial number of signing key and signature queries
adaptively. Our scheme is built in asymmetric bilinear groups of prime order, and its unforgeabil-
ity is derived under the simultaneous external decisional linear (SXDLIN) assumption [ACD+12],
which is the asymmetric version of and in fact equivalent to the well-studied decisional linear
(DLIN) assumption, coupled with the existence of standard collision resistant hash functions.
Observe that asymmetric bilinear groups of prime order are now considered to be both faster
and more secure in the cryptographic community following the recent progress of analysing bi-
linear groups of composite order [Fre10,Gui13] and symmetric bilinear groups instantiated with
elliptic curves of small characteristics [BGJT14,GGMZ13,Jou13a,Jou13b].

While our ABS construction is less expressive compared to the state-of-the-art schemes of
Sakai et al. [SAH16,SKAH18], due to the use of the arithmetic model as opposed to the boolean
one, our scheme outperforms those constructions by a large margin in terms of concrete efficiency.
In fact, as we demonstrate in Table 1 and explain in Remark 3.1, even for a very simple signing
policy such as an equality test over some finite field 𝔽𝑞, where 𝑞 is a 128-bit prime integer, our
scheme can give more than 136 times better results compared to the one of [SAH16], which is
also built in asymmetric prime-order bilinear group setting under the symmetric external Diffie-
Hellman (SXDH) assumption. Hence, it is evident that our scheme is a far more advantageous
choice in most real-life applications of ABS, which often do not require the most general forms
of signing policies but do require high performance.

Our ABS construction is developed directly from the scratch. On the technical side, our con-
tribution is two fold: Firstly, we extend the ABS construction techniques devised by Okamoto and
Takashima [OT11a,OT13] in the context of boolean formulas to the arithmetic setting. Secondly
and more interestingly, we develop new ideas to support unbounded multi-use of attributes inside
arithmetic signing policies, which themselves can be of an arbitrary size and input length.

Table 1. Comparison of Concrete Efficiency for 128-Bit Prime 𝑞

Schemes Computational
Assumptions Signature Size Pairings Needed

in Verification

[SAH16] SXDH At least 4102 |𝑔| At least 4102

Ours SXDLIN 26 |𝑔| 30

The values presented in this table is for the signing policy ABP 𝑓 : 𝔽𝑞 → 𝔽𝑞
defined by 𝑓(𝑥1) = 𝑥1 − 𝑎1, where 𝑎1 is a constant belonging to 𝔽𝑞.
In this table, |𝑔| represents the size of a group element.

Overview of Our Techniques

In order to design our ABS scheme for ABP’s, we start with the high level approach adopted by
Okamoto and Takashima [OT11a, OT13]. At the top level of strategy, this approach considers
an extension of the Naor’s paradigm, which was originally proposed for converting an identity-
based encryption (IBE) scheme to a digital signature scheme. The idea is to build a signature-
policy ABS scheme by augmenting a ciphertext-policy attribute-based encryption (ABE) scheme
[OT10,Wat11].

Just like a signature-policy ABS scheme, a ciphertext-policy ABE scheme has an associated
predicate family ℛ = {𝑅(𝑌, ·) : 𝒳 → {0, 1} | 𝑌 ∈ 𝒴}, where 𝒳 and 𝒴 comprise respectively of
the admissible decryption attributes and policies. A central authority holds a master secret key
and publishes public system parameters. Anyone can encrypt a message, which is also referred
to as a payload, with respect to any decryption policy 𝑌 ∈ 𝒴 using solely the public parameters.
A decrypter may obtain a restricted decryption key from the authority corresponding to the
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attributes 𝑋 ∈ 𝒳 it possesses. Using such a restricted decryption key for 𝑋 ∈ 𝒳 the decrypter
can recover the payload from only those ciphertexts which are generated with respect to a policy
𝑌 ∈ 𝒴 such that 𝑅(𝑌,𝑋) = 1. In particular, it is (computationally) infeasible to decrypt a
ciphertext generated with respect to some decryption policy 𝑌 ∈ 𝒴 for any collection of colluding
decrypters, none of whom individually possesses an attribute that satisfies 𝑌 , by pooling their
attributes together. An ABE ciphertext contains the associated decryption policy in the clear,
and hence this security property of an ABE scheme is referred to as payload hiding.

Roughly speaking, in the approach of Okamoto and Takashima [OT11a, OT13], a signing
key for some signing attribute 𝑋 ∈ 𝒳 in the ABS scheme corresponds to a decryption key for
𝑋 in the underlying ABE scheme. On the other hand, a signature on some message msg under
some claimed signing policy 𝑌 ∈ 𝒴 is verified by generating a verification-text that corresponds
to a ciphertext of msg under 𝑌 in the underlying ABE scheme. The most challenging part of
this approach is that no straightforward counter part of a signature in ABS exists in ABE, and
moreover, the privacy property of signatures, which is a vital requirement of an ABS scheme
has no corresponding notion in ABE. In order to tackle these issues, Okamoto and Takashima
[OT11a,OT13] devised a novel technique, which they termed as “rerandomization with specialized
delegation", where a signature in the ABS scheme generated with respect to some signing policy
𝑌 using a signing key for some attribute 𝑋 can be interpreted to be a random ABE decryption
key specialized to decrypt only those ABE ciphertexts which have 𝑌 as the associated decryption
policy. As for the security of the resulting ABS scheme, the idea is to reduce the unforgeability
of the ABS scheme to the payload-hiding security of the underlying ABE scheme. On the other
hand, the signer privacy is ensured by the careful rerandomized delegation procedure employed
in the generation of signatures. While this high level description of the approach may sound
quite simple, the actual realization, however, is quite delicate and involves many subtle aspects.
Okamoto and Takashima [OT11a, OT13] addressed those technical huddles in the context of
boolean span programs using various additional ideas.

We first explain how we adopt the above high level construction methodology to the context of
ABP’s, which is a rather non-trivial task. In order to design our scheme,we utilize the machineries
of the dual pairing vector spaces (DPVS) [OT09,OT10]. A highly powerful feature of DPVS is that
one can completely or partially hide a linear subspace of the whole vector space by concealing the
basis of that subspace or the basis of its dual subspace respectively from the public parameters.
In DPVS-based constructions, a collection of pairs of mutually dual vector spaces {𝕍𝚤,𝕍*

𝚤 }𝚤∈[𝑁 ]

along with a bilinear pairing 𝑒 : 𝕍𝚤×𝕍*
𝚤 → 𝔾𝑇 for all 𝚤 ∈ [𝑁 ], constructed from a standard bilinear

group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) of prime order 𝑞 is used. Typically, for all 𝚤 ∈ [𝑁 ], a
pair of dual orthonormal bases (𝔹𝚤,𝔹*

𝚤 ) of (𝕍𝚤,𝕍*
𝚤 ) is generated using a secret random invertible

linear transformation 𝑩(𝚤) over 𝔽𝑞 during setup, and portions of (𝔹𝚤,𝔹*
𝚤 ), say (̂︀𝔹𝚤, ̂︀𝔹*

𝚤 ) for 𝚤 ∈ [𝑁 ]

is used as the public parameters. Thus, the remaining portions of the bases (𝔹𝚤∖̂︀𝔹𝚤,𝔹*
𝚤 ∖̂︀𝔹*

𝚤 ) for
𝚤 ∈ [𝑁 ] remain hidden from the outside world. This provides a strong framework for various kinds
of information-theoretic tricks in the public-key setting by exploiting various nice properties of
linear transformations.

In order to extend the techniques of Okamoto and Takashima [OT11a,OT13] to the setting of
ABP’s, we first look for a representation of ABP’s using some span program like structure, which
supports “linear reconstruction". The linear reconstruction property is important for our scheme
since we need to reconstruct some secrets in the exponents of group elements. We observe that
Ishai and Wee [IW14] have devised a polynomial-time algorithm that given an ABP 𝑓 , outputs an
arithmetic span program (ASP) 𝕊 = (𝕌, 𝜌) such that for any 𝑥⃗ ∈ 𝔽𝑛

𝑞 , 𝑓(𝑥⃗) = 0 ⇐⇒ 𝕊 accepts 𝑥⃗.
ASP’s are the arithmetic counter part of boolean span programs. An ASP 𝕊 is described as a pair
𝕊 = (𝕌, 𝜌), where 𝕌 is a set of pairs of vectors 𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ

𝑞)
2 for some ℓ,𝑚 ∈ ℕ

and 𝜌 is a mapping 𝜌 : [𝑚]→ [𝑛]. 𝕊 accepts 𝑥⃗ ∈ 𝔽𝑛
𝑞 ⇐⇒ 𝑒⃗(ℓ,ℓ) ∈ span⟨𝑥𝜌(𝑗)𝑦⃗(𝑗) + 𝑧⃗(𝑗) | 𝑗 ∈ [𝑚]⟩,

where 𝑒⃗(ℓ,ℓ) = (

ℓ−1⏞  ⏟  
0, . . . , 0, 1) and span refers to the standard linear span of vectors. With this
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representation at hand, we proceed to extending the ABS scheme of Okamoto and Takashima
[OT11a,OT13] to the ABP setting.

The most important difficulty we face here is with the application of the rerandomization
with special delegation technique to generate the signatures due to a fundamental difference in
the structures of the boolean and arithmetic span programs. Recall that a boolean span program
over 𝑛 boolean variables is represented as ℙ = (𝑷 ∈ 𝔽𝑚×ℓ

𝑞 , 𝜌 : [𝑚]→ [𝑛]), and ℙ accepts a boolean
string 𝑥⃗ ∈ 𝔽𝑛

2 ⇐⇒ 𝑒⃗(ℓ,ℓ) ∈ span⟨𝑝(𝑗) | 𝑗 ∈ [𝑚] ∧ 𝑥𝜌(𝑗) = 1⟩, where 𝑝(𝑗) ∈ 𝔽ℓ
𝑞 is the 𝑗th row

vector of 𝑷 . This means while evaluating a boolean span program on some input, the input only
determines which vectors are to be included in the linear span and does not affect the description
of the included vectors as such. Roughly speaking, in the ABS construction of [OT11a,OT13],
the randomized special delegation is applied by masking the actual coefficients (𝛺𝑗)𝑗∈[𝑚] ∈ 𝔽𝑚

𝑞

of the linear span of the vectors {𝑝(𝑗)}𝑗∈[𝑚] of a signing policy ℙ = (𝑷 ∈ 𝔽𝑚×ℓ
𝑞 , 𝜌) resulting in the

vector 𝑒⃗(ℓ,ℓ) when ℙ accepts some boolean signing attribute string 𝑥⃗ ∈ 𝔽𝑛
2 , with the coefficients

(𝛺′
𝑗)𝑗∈[𝑚] ∈ 𝔽𝑚

𝑞 of some random linear combination of the vectors {𝑝(𝑗)}𝑗∈[𝑚] that results in the
zero vector 0⃗ℓ. More precisely, while generating a signature under ℙ = (𝑷 , 𝜌) using a secret key
for 𝑥⃗ ∈ 𝔽𝑛

2 , one computes 𝛺𝑗+𝛺′
𝑗 for all 𝑗 ∈ [𝑚]. This rerandomization works for ensuring signer

privacy, i.e., for erasing the information of the specific signing attribute string 𝑥⃗ ∈ 𝔽𝑛
2 from the

signature for boolean span programs because seeing the rerandomized coefficients (𝛺𝑗+𝛺′
𝑗)𝑗∈[𝑚],

one cannot decide which 𝛺𝑗 ’s were 0 in the real linear span, and hence the information of the
actual boolean attribute string 𝑥⃗ ∈ 𝔽𝑛

2 is completely erased via this rerandomization.
This rerandomization technique is, however, no longer sufficient in case of ASP’s. This is

because, while evaluating an ASP 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) on some
input vector 𝑥⃗ ∈ 𝔽𝑛

𝑞 , the description of the vectors, whose linear span needs to be considered,
namely, the vectors {𝑥𝜌(𝑗)𝑦⃗(𝑗) + 𝑧⃗(𝑗)}𝑗∈[𝑚] itself depends on the specific input vector 𝑥⃗ ∈ 𝔽𝑛

𝑞

used. Therefore, even if the above randomized masking is applied, the result would still leak
information of the specific vector 𝑥⃗ used.

In order to overcome this issue, we apply a more clever rerandomization. Roughly speaking,
we randomize not only the linear-combination-coefficients, but also the input values {𝑥𝜌(𝑗)}𝑗∈[𝑚].
We consider a random linear combination of the vectors {𝑦⃗(𝑗), 𝑧⃗(𝑗)}𝑗∈[𝑚] that leads to the zero
vector 0⃗ℓ, i.e., we compute random ((𝛺′

𝑗)𝑗∈[𝑚], (𝛺
′′
𝑗 )𝑗∈[𝑚]) such that

∑︀
𝑗∈[𝑚]

(𝛺′
𝑗 𝑦⃗

(𝑗) +𝛺′′
𝑗 𝑧⃗

(𝑗)) = 0⃗ℓ.

Then, we use the scalars (𝛺′
𝑗)𝑗∈[𝑚] to mask (𝛺𝑗𝑥𝜌(𝑗))𝑗∈[𝑚] and (𝛺′′

𝑗 )𝑗∈[𝑚] to mask (𝛺𝑗)𝑗∈[𝑚],
where (𝛺𝑗)𝑗∈[𝑚] are the coefficients of the vectors {𝑥𝜌(𝑗)𝑦⃗(𝑗)+ 𝑧⃗(𝑗)}𝑗∈[𝑚] in the linear combination
resulting in 𝑒⃗(ℓ,ℓ). More precisely, while generating a signature under some ASP 𝕊 using a signing
key for 𝑥⃗ ∈ 𝔽𝑛

𝑞 , we compute 𝛺𝑗𝑥𝜌(𝑗) + 𝛺′
𝑗 and 𝛺𝑗 + 𝛺′′

𝑗 for all 𝑗 ∈ [𝑚]. Observe that this
rerandomization not only erases the actual values of the linear combination coefficients (𝛺𝑗)𝑗∈[𝑚]

but also the information of the actual input 𝑥⃗ for which the linear combination is evaluated.
Now, note that unlike the schemes of [OT11a,OT13], in which the size and input length of the

supported span programs are bounded by the public parameters, our goal is to support ABP’s,
and hence ASP’s by the above discussion, of unbounded size and input length. For this, we start by
extending the techniques called “indexing" and “consistent randomness amplification", developed
by Okamoto and Takashima in [OT12a] in the context of ABE for boolean span programs, to
our setting of ASP’s. Roughly speaking, in the ABS constructions of [OT11a,OT13], once parts
of a set of pairs of dual orthonormal bases {̂︀𝔹𝚤, ̂︀𝔹*

𝚤 }𝚤∈[𝑛] are published as the public parameters,
the input length of the signing policy span programs becomes fixed to 𝑛. The proof of adaptive
unforgeability of the scheme follows the so called “dual system encryption" methodology [Wat09,
LW10], and crucially makes use of certain information-theoretic arguments. The randomness of
the secret linear transformations {𝑩(𝚤)}𝚤∈[𝑛] used to generate the bases {𝔹𝚤,𝔹*

𝚤 }𝚤∈[𝑛], whose parts
are included in the public parameters, acts as the source of entropy for those information-theoretic
arguments.
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In contrast, in the unbounded setting, the input length of the signing policy span programs
are not fixed by the public parameters. In particular, in our unbounded ABS scheme, the public
parameters would only consist of a constant number of pairs of dual orthonormal bases. Thus,
the randomness contained in the public parameters (which is just a constant amount with re-
spect to the length of the input attribute vectors 𝑛) is clearly insufficient for the dual system
encryption arguments on adaptive security. To supply the additional randomness required for the
security reduction, we adopt the indexing technique of [OT12a], and for all 𝜄 ∈ [𝑛], embed two
dimensional prefix vectors 𝜎𝜄(1, 𝜄) and 𝜇𝑗(𝜄,−1) within the components corresponding to the 𝜄th

attribute in signing keys and verification-texts respectively, where 𝜎𝜄 and 𝜇𝑗 are freshly sampled
random elements of 𝔽𝑞. However, this method of supplying linear-in-𝑛 amount of additional ran-
domness is still not sufficient. This is because, for the application of the dual system encryption
methodology, such randomness introduced by the indexing technique needs to be expanded to
the hidden subspaces of signing keys and verification-texts, and the distribution of the expanded
randomness should also be adjusted to the conditions imposed on the queries of the adversary
in the unforgeability experiment. To resolve the problem, we attempt to employ the consistent
randomness amplification technique similar to [OT12a].

However, recall that our objective is not limited to only supporting signing policies of un-
bounded size and input length. We additionally want to allow unbounded multi-use of attributes
inside the signing policies. As we explain below, the consistent randomness amplification tech-
nique of Okamoto and Takashima [OT12a] does not suffice for achieving both these goals simul-
taneously. Therefore, we need to innovate new technical ideas to accomplish our target. In terms
of technicality, this is the most sophisticated part of this paper. In fact, the techniques we devise
in this segment are pretty much general, and we strongly believe they will find more applications
in various other DPVS-based construction in the future.

Roughly speaking, the single use restriction in DPVS-based adaptively secure constructions
of attribute-based primitives arise from the use of a crucial information-theoretic lemma, the so
called “pairwise independence lemma" (Lemma 3 in [OT10]), while employing the dual system
encryption paradigm in the security proofs. This technique requires a one-to-one correspondence
between a pair of a key part and a verification-text or ciphertext part through the map 𝜌 of the
policy span program considered. However, in the multi-use scenario, one key part corresponds
to multiple verification-text or ciphertext parts. Even when a generalized version of the pairwise
independence lemma [OT10] is used, the maximum number of times an attribute can be used
inside a policy span program remains bounded by the public parameters. While some attempts
were made to mitigate the issue in the context of ABE [Tak17,KLMM18], those were only partially
successful.

On the other hand, Okamoto and Takashima successfully resolved the multi-use issue in
the context of ABS in an updated version of [OT11a], namely, [OT11b] by introducing a new
technique, which they termed as “one-dimensional localization of inner product values". The main
idea of this technique is to embed a specific inner product value for an unbounded (with respect
to the public parameters) number of times in a certain one-dimension of the hidden subspace of
a signing key or verification-text, while erasing all informations of the inner product value from
all the remaining dimensions of the hidden subspace. This technique is applied in two steps. First
a “special linear transformation" step is applied over the hidden segments of a signing key and
a verification-text. This step localizes the inner product values in certain one-dimension of the
hidden subspace. But, some informations of the inner product values still remain in the other
dimensions of the hidden subspace. To completely remove those informations, random values
are “injected" into those dimensions of the hidden subspace. This second step is executed via
a computational transition based on the underlying computational assumption, and thus is not
problematic to directly extend to the unbounded setting. However, the first step, i.e., the special
linear transformation step is information theoretic, and crucially relies on the secret randomness
used to generate the public parameters. Since the public parameters only uses a constant amount
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of secret randomness in the unbounded setting, such an information-theoretic transition cannot
be applied.

The most intuitive way-out to the above issue is to use the indexing and consistent random-
ness amplification techniques of [OT12a] to supply the additional randomness required for the
transition just as it is used to resolve similar issues in extending the dual system encryption
proof technique to the unbounded setting. Unfortunately, the consistent randomness amplifica-
tion technique of [OT12a] is only capable of computationally simulating the application of a
random linear transformation to the hidden segment of a key component and the corresponding
segment of a verification-text component. Such a random linear transformation suffices for the
application of the pairwise independence lemma to complete a security proof based on the dual
system encryption paradigm. However, the one-dimensional localization technique requires the
application of certain specific linear transformations over the hidden segments of a signing key
and a verification-text that crucially depend on the associated signing attribute vector of the
signing key being considered.

To resolve this issue, we devise a more sophisticated technique. Very roughly, we first compu-
tationally simulate the effect of random linear transformations over the hidden subspaces on the
verification-text side. This step corresponds to the transition between the hybrid experiments
Hyb0′ and Hyb1 in the proof of unforgeability of our ABS construction (proof of Theorem 4.2).
Next, we computationally amplify the randomness provided by the two-dimensional prefix vec-
tors to the hidden subspaces on the signing key side. This is the transition from Hyb2-(𝜒−1)-9 to
Hyb2-𝜒-1 in the unforgeability proof. After this step, we computationally alter the random linear
transformations to specific ones on the verification-text side. This step is executed while moving
from Hyb2-𝜒-1 to Hyb2-𝜒-2 in the proof of unforgeability. Finally, we computationally adjust the
randomness expanded to the hidden segments on the signing key side to match the specific linear
transformations to be applied on that side. This transformation is achieved via the transition
between Hyb2-𝜒-2 and Hyb2-𝜒-3 in our unforgeability proof. We stress that the above explanation
of our highly involved techniques is merely a bird’s eye-view. For a comprehensive understanding
of our techniques refer to our detail security proof presented in Section 4.

2 Preliminaries

In this section we present the backgrounds required for the rest of this paper.

2.1 Notations

Let 𝜆 ∈ ℕ denotes the security parameter and 1𝜆 be its unary encoding. Let 𝔽𝑞 for any prime
𝑞 ∈ ℕ denotes the finite field of integers modulo 𝑞. For 𝑑 ∈ ℕ and 𝑐 ∈ ℕ ∪ {0} (with 𝑐 < 𝑑),
we let [𝑑] = {1, . . . , 𝑑} and [𝑐, 𝑑] = {𝑐, . . . , 𝑑}. For any set 𝑍, 𝑧 U←− 𝑍 represents the process of
uniformly sampling an element 𝑧 from the set 𝑍, and ♯𝑍 signifies the size or cardinality of the
set 𝑍. For a probabilistic algorithm 𝒫, we denote by 𝛱

R←− 𝒫(𝛩) the process of sampling 𝛱
from the output distribution of 𝒫 with a uniform random tape on input 𝛩. Similarly, for any
deterministic algorithm 𝒟, we write 𝛱 = 𝒟(𝛩) to denote the output of 𝒟 on input 𝛩. We use
the abbreviation 𝖯𝖯𝖳 to mean probabilistic polynomial-time. We assume that all the algorithms
are given the unary representation 1𝜆 of the security parameter 𝜆 as input, and will not write 1𝜆

explicitly as input of the algorithms when it is clear from the context. For any finite field 𝔽𝑞 and
𝑑 ∈ ℕ, let 𝑣⃗ denote the (row) vector (𝑣1, . . . , 𝑣𝑑) ∈ 𝔽𝑑

𝑞 , where 𝑣𝑖 ∈ 𝔽𝑞 for all 𝑖 ∈ [𝑑]. The all zero
vector in 𝔽𝑑

𝑞 will be denoted by 0⃗𝑑, while the canonical basis vectors in 𝔽𝑑
𝑞 will be represented by

𝑒⃗(𝑑,𝑖) = (

𝑖−1⏞  ⏟  
0, . . . , 0, 1,

𝑑−𝑖⏞  ⏟  
0, . . . , 0) for 𝑖 ∈ [𝑑]. For any two vectors 𝑣⃗, 𝑤⃗ ∈ 𝔽𝑑

𝑞 , 𝑣⃗ · 𝑤⃗ stands for the inner
product of the vectors 𝑣⃗ and 𝑤⃗, i.e., 𝑣⃗ · 𝑤⃗ =

∑︀
𝑖∈[𝑑]

𝑣𝑖𝑤𝑖 ∈ 𝔽𝑞. For any 𝑠 ∈ ℕ and any collection
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of 𝑠 vectors {𝑣⃗(𝑖)}𝑖∈[𝑠] ⊂ 𝔽𝑑
𝑞 , we denote by span⟨𝑣⃗(𝑖) | 𝑖 ∈ [𝑠]⟩ the subspace of 𝔽𝑑

𝑞 spanned by
{𝑣⃗(𝑖)}𝑖∈[𝑠]. For any multiplicative group 𝔾, let 𝒗 represents a 𝑑-dimensional (row) vector of group
elements, i.e., 𝒗 = (𝑔𝑣1 , . . . , 𝑔𝑣𝑑) ∈ 𝔾𝑑 for some 𝑑 ∈ ℕ, where 𝑣⃗ = (𝑣1, . . . , 𝑣𝑑) ∈ 𝔽𝑑

𝑞 . We use
𝑴 =

(︀
𝑚𝑘,𝑖

)︀
to represent a 𝑑 × 𝑟 matrix for some 𝑑, 𝑟 ∈ ℕ with entries 𝑚𝑘,𝑖 ∈ 𝔽𝑞. By 𝑴⊤ we

will signify the transpose of the matrix 𝑴 and by det(𝑴) the determinant of the matrix 𝑴 .
Let GL(𝑑,𝔽𝑞) denote the set of all 𝑑 × 𝑑 invertible matrices over 𝔽𝑞. A function 𝗇𝖾𝗀𝗅 : ℕ → ℝ+

is said to be negligible if for every 𝑐 ∈ ℕ, there exists 𝑇 ∈ ℕ such that for all 𝜆 ∈ ℕ with 𝜆 > 𝑇 ,
|𝗇𝖾𝗀𝗅(𝜆)| < 1/𝜆𝑐.

2.2 Arithmetic Branching Programs and Arithmetic Span Programs

Here we formally define the notions of arithmetic branching programs (ABP) and arithmetic span
programs (ASP), and explain the connection between them. These computational models will be
used to represent the signing policies in our ABS construction.

Definition 2.1 (Arithmetic Branching Programs: ABP [IK97,IK02]): A branching pro-
gram (BP) 𝛤 is defined by a 5-tuple 𝛤 = (𝑉,𝐸,v0,v1, 𝜑), where (𝑉,𝐸) is a directed acyclic
graph, v0,v1 ∈ 𝑉 are two special vertices called the source and the sink respectively, and 𝜑 is
a labeling function for the edges in 𝐸. An arithmetic branching program (ABP) 𝛤 over a finite
field 𝔽𝑞 computes a function 𝑓 : 𝔽𝑛

𝑞 → 𝔽𝑞 for some 𝑛 ∈ ℕ. In this case, the labeling function 𝜑
assigns to each edge in 𝐸 either a degree one polynomial function in one of the input variables
with coefficients in 𝔽𝑞 or a constant in 𝔽𝑞. Let ℘ be the set of all v0-v1 paths in 𝛤 . The output
of the function 𝑓 computed by the ABP 𝛤 on some input 𝑥⃗ = (𝑥1, . . . , 𝑥𝑛) ∈ 𝔽𝑛

𝑞 is defined as

𝑓(𝑥⃗) =
∑︀
𝑃∈℘

[︂ ∏︀
e∈𝑃

𝜑(e)|𝑥⃗
]︂
, where for any e ∈ 𝐸, 𝜑(e)|𝑥⃗ represents the evaluation of the function

𝜑(e) at 𝑥⃗. We refer to ♯𝑉 + ♯𝐸 as the size of the ABP 𝛤 .

Ishai and Kushilevitz [IK97, IK02] showed how to relate the computation performed by an ABP
to the computation of the determinant of a matrix.

Lemma 2.1 ( [IK02]): Given an ABP 𝛤 = (𝑉,𝐸,v0,v1, 𝜑) computing a function 𝑓 : 𝔽𝑛
𝑞 → 𝔽𝑞,

we can efficiently and deterministically compute a function 𝑳 mapping an input 𝑥⃗ ∈ 𝔽𝑛
𝑞 to a

(♯𝑉 − 1)× (♯𝑉 − 1) matrix 𝑳(𝑥⃗) over 𝔽𝑞 such that the following holds:

– det(𝑳(𝑥⃗)) = 𝑓(𝑥⃗).
– Each entry of 𝑳(𝑥⃗) is either a degree one polynomial in a single input variable 𝑥𝑖 (𝑖 ∈ [𝑛])

with coefficients in 𝔽𝑞 or a constant in 𝔽𝑞.
– 𝑳(𝑥⃗) contains only −1’s in the second diagonal, i.e., the diagonal just below the main diagonal,

and 0’s below the second diagonal.

Specifically, 𝑳 is obtained by removing the column corresponding to v0 and the row corresponding
to v1 in the matrix 𝑨𝛤 −𝑰, where 𝑨𝛤 is the adjacency matrix for 𝛤 and 𝑰 is the identity matrix
of the same size as 𝑨𝛤 .

Note that there is a linear-time algorithm that converts any Boolean formula, Boolean branch-
ing program, or arithmetic formula to an ABP with a constant blow-up in the representation size.
Thus, ABP’s can be viewed as a stronger computational model than all the others mentioned
above.

Definition 2.2 (Arithmetic Span Programs: ASP [KW93, IW14]): An arithmetic span
program (ASP) 𝕊 = (𝕌, 𝜌) over 𝑛 variables is a collection of pairs of vectors 𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚]

for some 𝑚 ∈ ℕ, where for all 𝑗 ∈ [𝑚], (𝑦⃗(𝑗), 𝑧⃗(𝑗)) ∈ (𝔽ℓ
𝑞)

2 for some ℓ ∈ ℕ, and a function
𝜌 : [𝑚]→ [𝑛]. We say that 𝑥⃗ ∈ 𝔽𝑛

𝑞 satisfies 𝕊 if and only if 𝑒⃗(ℓ,ℓ) ∈ span⟨𝑥𝜌(𝑗)𝑦⃗(𝑗)+ 𝑧⃗(𝑗) | 𝑗 ∈ [𝑚]⟩.
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The following lemma shows a connection between the two arithmetic computational models
defined above.

Lemma 2.2 ( [IW14]): There exists an efficient algorithm that given an ABP 𝛤 = (𝑉,𝐸,v0,v1,
𝜑) of size 𝑚 + 1 computing some function 𝑓 : 𝔽𝑛

𝑞 → 𝔽𝑞 for some 𝑛,𝑚 ∈ ℕ, constructs an ASP

𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽(𝑚+1)
𝑞 )2, 𝜌 : [𝑚]→ [𝑛]) such that for all 𝑥⃗ ∈ 𝔽𝑛

𝑞 , 𝑓(𝑥⃗) = 0 ⇐⇒ 𝕊
accepts 𝑥⃗.

Proof: The algorithm starts with constructing a modified ABP 𝛤 ′ for 𝑓 from the input ABP 𝛤 ,
by first replacing each edge e ∈ 𝐸 with a pair of edges labeled 𝜑(e) and 1, and then adding an
edge labeled 1 connecting the sink in 𝛤 to a newly created sink node. Clearly, the modified ABP
𝛤 ′ has 𝑚+2 vertices, where every vertex has at most one incoming edge having a lable of degree
1. Next, it applies the transformation of Lemma 2.1 to 𝛤 ′ to obtain the (𝑚+1)× (𝑚+1) matrix
representation 𝑳 of 𝛤 ′. By Lemma 2.1, we clearly have det(𝑳(𝑥⃗)) = 𝑓(𝑥⃗) for all 𝑥⃗ ∈ 𝔽𝑛

𝑞 , and 𝑳
is of the following form:

𝑳 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

★ ★ ★ . . . ★ ★ 0
−1 ★ ★ . . . ★ ★ 0
0 −1 ★ . . . ★ ★ 0
...

...
...

. . .
...

...
...

0 0 0 . . . −1 ★ 0
0 0 0 . . . 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where the ★’s indicates polynomial functions of degree at most 1 in some input variable 𝑥𝑖
(𝑖 ∈ [𝑛]). Also, observe that since each vertex in 𝛤 ′ has at most one incoming edge having a label
of degree one, for all 𝑗 ∈ [𝑚], each entry of the 𝑗th column of the matrix 𝑳 depends on one and the
same input variable 𝑥𝑖 (𝑖 ∈ [𝑛]) and hence can be expressed as 𝑥𝑖𝑦⃗(𝑗)+𝑧⃗(𝑗) for some pair of vectors
(𝑦⃗(𝑗), 𝑧⃗(𝑗)) ∈ (𝔽(𝑚+1)

𝑞 )2. Further, it is immediate from the structure of 𝑳 that the first 𝑚 columns
of 𝑳 are linearly independent. Now, observe that 𝑓(𝑥⃗) = 0 ⇐⇒ det(𝑳(𝑥⃗)) = 0 ⇐⇒ 𝑒⃗(𝑚+1,𝑚+1),
which is the (𝑚 + 1)th column of 𝑳, lies in the linear span of the first 𝑚 columns of 𝑳, i.e.,
𝑒⃗(𝑚+1,𝑚+1) ∈ span⟨𝑥𝑖𝑦⃗(𝑗) + 𝑧⃗(𝑗) | 𝑗 ∈ [𝑚] ∧ the 𝑗th column of 𝑳 depends on 𝑥𝑖 (𝑖 ∈ [𝑛])⟩. The
algorithm outputs the ASP 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽(𝑚+1)

𝑞 )2, 𝜌 : [𝑚] → [𝑛]), where
𝜌 : [𝑚]→ [𝑛] is defined by 𝜌(𝑗) = 𝑖 if the 𝑗th column of 𝑳 depends on 𝑥𝑖. This ASP 𝕊 is clearly
the desired one by the above explanation. This completes the proof of Lemma 2.2. ⊓⊔

2.3 Bilinear Groups and Dual Pairing Vector Spaces

In this section, we will provide the necessary backgrounds on bilinear groups and dual pairing
vector spaces, which are the primary building blocks of our ABS construction.

Definition 2.3 (Bilinear Group): A bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) is a tu-
ple of a prime 𝑞 ∈ ℕ; cyclic multiplicative groups 𝔾1,𝔾2,𝔾𝑇 of order 𝑞 each with polynomial-time
computable group operations; generators 𝑔1 ∈ 𝔾1, 𝑔2 ∈ 𝔾2; and a polynomial-time computable
non-degenerate bilinear map 𝑒 : 𝔾1 ×𝔾2 → 𝔾𝑇 , i.e., 𝑒 satisfies the following two properties:

– Bilinearity : 𝑒(𝑔𝛶1 , 𝑔𝛶2 ) = 𝑒(𝑔1, 𝑔2)
𝛶𝛶 for all 𝛶, 𝛶 ∈ 𝔽𝑞.

– Non-degeneracy : 𝑒(𝑔1, 𝑔2) ̸= 1𝔾𝑇 , where 1𝔾𝑇 denotes the identity element of the group 𝔾𝑇 .

A bilinear group is said to be asymmetric if no efficiently computable isomorphism exists between
𝔾1 and 𝔾2. Let 𝒢bpg be an algorithm that on input the unary encoded security parameter 1𝜆,
outputs a description params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) of a bilinear group.

Definition 2.4 (Dual Pairing Vector Spaces: DPVS [OT09,OT10]): A dual pairing vector
space (DPVS) params𝕍 = (𝑞,𝕍,𝕍*,𝔾𝑇 ,𝔸,𝔸*, 𝑒) formed by the direct product of a bilinear group
params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) is a tuple of a prime 𝑞 ∈ ℕ; 𝑑-dimensional vector spaces 𝕍 =



Efficient ABS for Unbounded Arithmetic Branching Programs 11

𝔾𝑑
1, 𝕍* = 𝔾𝑑

2 over 𝔽𝑞 for some 𝑑 ∈ ℕ, under vector addition and scalar multiplication defined com-

ponentwise in the usual manner; canonical bases 𝔸 = {𝒂(𝑖) = (

𝑖−1⏞  ⏟  
1𝔾1 , . . . , 1𝔾1 , 𝑔1,

𝑑−𝑖⏞  ⏟  
1𝔾1 , . . . , 1𝔾1)}𝑖∈[𝑑]

and 𝔸* = {𝒂*(𝑖) = (

𝑖−1⏞  ⏟  
1𝔾2 , . . . , 1𝔾2 , 𝑔2,

𝑑−𝑖⏞  ⏟  
1𝔾2 , . . . , 1𝔾2)}𝑖∈[𝑑] of 𝕍 and 𝕍* respectively, where 1𝔾1 and

1𝔾2 are the identity elements of the groups 𝔾1 and 𝔾2 respectively; and a pairing 𝑒 : 𝕍×𝕍* → 𝔾𝑇

defined by 𝑒(𝒗,𝒘) =
∏︀
𝑖∈[𝑑]

𝑒(𝑔𝑣𝑖1 , 𝑔𝑤𝑖2 ) ∈ 𝔾𝑇 for all 𝒗 = (𝑔𝑣11 , . . . , 𝑔𝑣𝑑1 ) ∈ 𝕍, 𝒘 = (𝑔𝑤1
2 , . . . , 𝑔𝑤𝑑2 ) ∈ 𝕍*.

Observe that the newly defined map 𝑒 is also non-degenerate bilinear, i.e., 𝑒 also satisfies the
following two properties:

– Bilinearity : 𝑒(𝛶𝒗, ̂︀𝛶𝒘) = 𝑒(𝒗,𝒘)𝛶𝛶 for all 𝛶, ̂︀𝛶 ∈ 𝔽𝑞, 𝒗 ∈ 𝕍, and 𝒘 ∈ 𝕍*.

– Non-degeneracy : If 𝑒(𝒗,𝒘) = 1𝔾𝑇 for all 𝒘 ∈ 𝕍*, then 𝒗 = (

𝑑⏞  ⏟  
1𝔾1 , . . . , 1𝔾1). Similar statement

also holds with the vectors 𝒗 and 𝒘 interchanged.

For any ordered basis 𝕎 = {𝒘(1), . . . ,𝒘(𝑑)} of 𝕍 (or 𝕍*), and any vector 𝑣⃗ ∈ 𝔽𝑑
𝑞 , let (𝑣⃗)𝕎

represent the vector in 𝕍 (or 𝕍* accordingly) formed by the linear combination of the members
of 𝕎 with the components of 𝑣⃗ as the coefficients, i.e., (𝑣⃗)𝕎 =

∑︀
𝑖∈[𝑑]

𝑣𝑖𝒘
(𝑖) ∈ 𝕍 (or 𝕍* accordingly).

Also, for any 𝑠 ∈ ℕ and any collection of 𝑠 vectors {𝒗(𝑖)}𝑖∈[𝑠] of 𝕍 (or 𝕍*), we will denote by
span⟨𝒗(𝑖) | 𝑖 ∈ [𝑠]⟩ the subspace of 𝕍 (or 𝕍* accordingly) spanned by the set of vectors {𝒗(𝑖)}𝑖∈[𝑠].
The DPVS generation algorithm 𝒢dpvs takes as input the unary encoded security parameter 1𝜆, a
dimension value 𝑑 ∈ ℕ, along with a bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)

R←− 𝒢bpg(),
and outputs a description params𝕍 = (𝑞,𝕍,𝕍*, 𝔾𝑇 ,𝔸,𝔸*, 𝑒) of DPVS with 𝑑-dimensional 𝕍 and
𝕍*.

We now describe random dual orthonormal basis generator 𝒢ob [OT09,OT10] in Fig. 2.1. This
algorithm will be utilized as a sub-routine in our ABS construction.

𝒢ob(𝑁, (𝑑0, . . . , 𝑑𝑁 )): This algorithm takes as input the unary encoded security parameter 1𝜆, a number
𝑁 ∈ ℕ, and the respective dimensions 𝑑0, . . . , 𝑑𝑁 ∈ ℕ of the 𝑁 +1 pairs of bases to be generated. It executes
the following operations:

1. It first generates params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg().

2. Next, it samples 𝜓 U←− 𝔽𝑞∖{0} and computes 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)
𝜓.

3. Then, for 𝚤 ∈ [0, 𝑁 ], it performs the following:
(a) It constructs params𝕍𝚤

= (𝑞,𝕍𝚤,𝕍*
𝚤 ,𝔾𝑇 ,𝔸𝚤,𝔸*

𝚤 , 𝑒)
R←− 𝒢dpvs(𝑑𝚤, params𝔾).

(b) It samples 𝑩(𝚤) =
(︁
𝑏
(𝚤)
𝑘,𝑖

)︁
U←− GL(𝑑𝚤,𝔽𝑞).

(c) It computes 𝑩*(𝚤) =
(︁
𝑏
*(𝚤)
𝑘,𝑖

)︁
= 𝜓((𝑩(𝚤))−1)⊤.

(d) For all 𝑘 ∈ [𝑑𝚤], let 𝑏⃗(𝚤,𝑘) and 𝑏⃗*(𝚤,𝑘) represent the 𝑘th rows of 𝑩(𝚤) and 𝑩*(𝚤) respectively. It computes
𝒃(𝚤,𝑘) = (⃗𝑏(𝚤,𝑘))𝔸𝚤 , 𝒃

*(𝚤,𝑘) = (⃗𝑏*(𝚤,𝑘))𝔸*
𝚤

for 𝑘 ∈ [𝑑𝚤], and sets

𝔹𝚤 = {𝒃(𝚤,1), . . . , 𝒃(𝚤,𝑑𝚤)},𝔹*
𝚤 = {𝒃*(𝚤,1), . . . , 𝒃*(𝚤,𝑑𝚤)}.

Clearly 𝔹𝚤 and 𝔹*
𝚤 form bases of the vector spaces 𝕍𝚤 and 𝕍*

𝚤 respectively. Also, note that 𝔹𝚤 and 𝔹*
𝚤

are dual orthonormal in the sense that for all 𝑘, 𝑘′ ∈ [𝑑𝚤],

𝑒(𝒃(𝚤,𝑘), 𝒃*(𝚤,𝑘
′)) =

{︂
𝑔𝑇 if 𝑘 = 𝑘′,
1𝔾𝑇 otherwise.

4. Next, it sets params = ({params𝕍𝚤
}𝚤∈[0,𝑁 ], 𝑔𝑇 ).

5. It returns (params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑁 ]).

Fig. 2.1: Dual Orthonormal Basis Generator 𝒢ob
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2.4 Complexity Assumption

For realizing our ABS construction in asymmetric bilinear groups, we rely on the natural extension
of the well-studied decisional linear (DLIN) assumption to the asymmetric bilinear group setting,
called the external decisional linear (XDLIN) assumption.

Assumption 1 (External Decisional Linear: XDLIN [ACD+12,TAO16]): For 𝚥 ∈ [2], the
XDLIN𝚥 problem is to guess the bit ̂︀𝛽 U←− {0, 1} given 𝜚

xdlin𝚥̂︀𝛽 = (params𝔾, 𝑔𝜛1 , 𝑔𝛶1 , 𝑔
ℵ𝜛
1 , 𝑔𝜍𝛶1 , 𝑔𝜛2 , 𝑔𝛶2 ,

𝑔ℵ𝜛2 , 𝑔𝜍𝛶2 ,ℜ
𝚥,̂︀𝛽), where

params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg();

𝜛,𝛶,ℵ, 𝜍, 𝜀 U←− 𝔽𝑞;

ℜ𝚥,0 = 𝑔(ℵ+𝜍)
𝚥 ,ℜ𝚥,1 = 𝑔(ℵ+𝜍)+𝜀

𝚥 .

The XDLIN𝚥 assumption states that for any 𝖯𝖯𝖳 algorithm 𝒮, for any security parameter 𝜆, the
advantage of 𝒮 in deciding the XDLIN𝚥 problem, defined as

𝖠𝖽𝗏
XDLIN𝚥
𝒮 (𝜆) =

⃒⃒⃒
𝖯𝗋

[︁
1

R←− 𝒮(𝜚XDLIN𝚥
0 )

]︁
− 𝖯𝗋

[︁
1

R←− 𝒮(𝜚XDLIN𝚥
1 )

]︁⃒⃒⃒
is negligible in 𝜆, i.e., 𝖠𝖽𝗏

XDLIN𝚥
𝒮 (𝜆) ≤ 𝗇𝖾𝗀𝗅(𝜆), where 𝗇𝖾𝗀𝗅 is some negligible function. The

simultaneous XDLIN (SXDLIN) assumption states that both XDLIN1 and XDLIN2 assumptions
hold at the same time. For any security parameter 𝜆, we denote the advantage of any probabilistic
algorithm 𝒮 against SXDLIN as 𝖠𝖽𝗏SXDLIN

𝒮 (𝜆).

Indeed as noted in [ACD+12], for all 𝚥 ∈ [2], the XDLIN𝚥 assumption is equivalent to the DLIN
assumption in the group 𝔾𝚥 in the generic bilinear group model [Sho97]. We now define some
decisional problems. We will rely on the hardness of these decisional problems for deriving the
unforgeability property of our ABS construction. The hardness of these decisional problems can
be reduced to that of the SXDLIN problem, as shown in Lemmas 2.3–2.8 below.

Definition 2.5 (Problem 1): Problem 1 is to guess the bit ̂︀𝛽 ∈ {0, 1} given 𝜚P1̂︀𝛽 = (params,

{𝔹𝚤, ̃︀𝔹*
𝚤 }𝚤∈[0,2], {𝒆(𝛼,𝜈,

̂︀𝛽)}𝛼∈[2],𝜈∈[2],𝒇 (0,̂︀𝛽), {𝒇 (1,𝜈,̂︀𝛽)}𝜈∈[2]), where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8));̃︀𝔹*
0 = {𝒃*(0,1), 𝒃*(0,3), 𝒃*(0,4)};̃︀𝔹*
1 = {𝒃*(1,1), . . . , 𝒃*(1,4), 𝒃*(1,7), 𝒃*(1,8), 𝒃*(1,11), . . . , 𝒃*(1,14)};̃︀𝔹*
2 = {𝒃*(2,1), 𝒃*(2,2), 𝒃*(2,5), . . . , 𝒃*(2,8)};

𝛿, 𝜏, {𝜃𝜈 , 𝜃′𝜈}𝜈∈[2], 𝛾0
U←− 𝔽𝑞, {𝛾⃗(𝜈), 𝛾⃗′(𝜈), 𝛾⃗′′(𝜈)}𝜈∈[2] U←− 𝔽2

𝑞 ;

𝒆(1,𝜈,0) = (⃗04, 0⃗6, 0⃗2, 𝛾⃗(𝜈))𝔹1

𝒆(1,𝜈,1) = (⃗04, 0⃗4, 𝜃𝜈 𝑒⃗
(2,𝜈), 0⃗2, 𝛾⃗(𝜈))𝔹1

𝒆(2,𝜈,0) = (⃗02, 0⃗2, 0⃗2, 𝛾⃗′(𝜈))𝔹2

𝒆(2,𝜈,1) = (⃗02, 𝜃′𝜈 𝑒⃗
(2,𝜈), 0⃗2, 𝛾⃗′(𝜈))𝔹2

⎫⎪⎪⎬⎪⎪⎭ for 𝜈 ∈ [2];

𝒇 (0,0) = (𝛿, 0, 0, 𝛾0)𝔹0 ,𝒇
(0,1) = (𝛿, 𝜏, 0, 𝛾0)𝔹0 ;

𝒇 (1,𝜈,0) = (⃗02, 𝛿𝑒⃗(2,𝜈), 0⃗6, 0⃗2, 𝛾⃗′′(𝜈))𝔹1

𝒇 (1,𝜈,1) = (⃗02, 𝛿𝑒⃗(2,𝜈), 𝜏 𝑒⃗(2,𝜈), 0⃗4, 0⃗2, 𝛾⃗′′(𝜈))𝔹1

}︂
for 𝜈 ∈ [2].

For any security parameter 𝜆, the advantage of any probabilistic adversary ℬ in deciding Problem
1 is defined as

𝖠𝖽𝗏P1
ℬ (𝜆) =

⃒⃒⃒
𝖯𝗋

[︁
1

R←− ℬ(𝜚P1
0 )

]︁
− 𝖯𝗋

[︁
1

R←− ℬ(𝜚P1
1 )

]︁⃒⃒⃒
.
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Lemma 2.3: For any probabilistic algorithm ℬ, there exist probabilistic algorithms 𝒮1 and 𝒮2,
whose running times are essentially the same as that of ℬ, such that for any security parameter
𝜆, 𝖠𝖽𝗏P1

ℬ (𝜆) ≤ ∑︀
𝜈∈[2]

𝖠𝖽𝗏SXDLIN
𝒮𝜈 (𝜆) + 𝗇𝖾𝗀𝗅(𝜆), where 𝗇𝖾𝗀𝗅 is some negligible function.

Proof: Observe that Problem 1 is analogous to Problem 1 in [OT11a,OT11b]. Thus, the proof
of Lemma 2.3 is analogous to that of Lemma 1 in [OT11b]. ⊓⊔

Definition 2.6 (Problem 2): Problem 2 is to guess the bit ̂︀𝛽 ∈ {0, 1} given 𝜚P2̂︀𝛽 = (params,

{̃︀𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,1],𝔹2,𝔹*

2,𝒉
*(0,̂︀𝛽),𝒇 (0), {𝒉*(1,𝜈,̂︀𝛽),𝒇 (1,𝜈)}𝜈∈[2], {𝒉*(2,𝜈)}𝜈∈[2]), where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8));̃︀𝔹0 = {𝒃(0,1), 𝒃(0,3), 𝒃(0,4)};̃︀𝔹1 = {𝒃(1,1), . . . , 𝒃(1,4), 𝒃(1,7), . . . , 𝒃(1,14)};
𝜗,𝜘, 𝛿, 𝜏, 𝜉0

U←− 𝔽𝑞, {𝜉(𝜈)}𝜈∈[2] U←− 𝔽2
𝑞 ;

𝒉*(0,0) = (𝜗, 0, 𝜉0, 0)𝔹*
0
,𝒉*(0,1) = (𝜗,𝜘, 𝜉0, 0)𝔹*

0
;

𝒇 (0) = (𝛿, 𝜏, 0, 0)𝔹0 ;

𝒉*(1,𝜈,0) = (⃗02, 𝜗𝑒⃗(2,𝜈), 0⃗6, 𝜉(𝜈), 0⃗2)𝔹*
1

𝒉*(1,𝜈,1) = (⃗02, 𝜗𝑒⃗(2,𝜈), 𝜘𝑒⃗(2,𝜈), 0⃗4, 𝜉(𝜈), 0⃗2)𝔹*
1

𝒇 (1,𝜈) = (⃗02, 𝛿𝑒⃗(2,𝜈), 𝜏 𝑒⃗(2,𝜈), 0⃗4, 0⃗2, 0⃗2)𝔹1

⎫⎪⎬⎪⎭ for 𝜈 ∈ [2];

𝒉*(2,𝜈) = 𝜗𝒃*(2,𝜈) for 𝜈 ∈ [2].

For any security parameter 𝜆, the advantage of any probabilistic adversary ℬ in deciding Problem
2 is defined as

𝖠𝖽𝗏P2
ℬ (𝜆) =

⃒⃒⃒
𝖯𝗋

[︁
1

R←− ℬ(𝜚P2
0 )

]︁
− 𝖯𝗋

[︁
1

R←− ℬ(𝜚P2
1 )

]︁⃒⃒⃒
.

Lemma 2.4: For any probabilistic algorithm ℬ, there exists a probabilistic algorithm 𝒮, whose
running time is essentially the same as that of ℬ, such that for any security parameter 𝜆,
𝖠𝖽𝗏P2

ℬ (𝜆) ≤ 𝖠𝖽𝗏SXDLIN
𝒮 (𝜆) + 𝗇𝖾𝗀𝗅(𝜆), where 𝗇𝖾𝗀𝗅 is some negligible function.

Proof: Observe that Problem 2 is essentially the same as Basic Problem 2 in [OT12a,OT12b].
Hence, Lemma 2.4 can be proven in the same way as Lemma 35 in [OT12b]. ⊓⊔

Definition 2.7 (Problem 3): Problem 3 is to guess the bit ̂︀𝛽 ∈ {0, 1} given 𝜚P3̂︀𝛽 = (params,

{𝔹𝚤,𝔹*
𝚤 }𝚤∈{0,2},𝔹1, ̃︀𝔹*

1, {𝒆(1,𝜈,
̂︀𝛽)}𝜈∈[2]), where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8));̃︀𝔹*
1 = {𝒃*(1,1), . . . , 𝒃*(1,8), 𝒃*(1,11), . . . , 𝒃*(1,14)};
{𝜃𝜈}𝜈∈[2] U←− 𝔽𝑞, {𝛾⃗(𝜈)}𝜈∈[2] U←− 𝔽2

𝑞 ;

𝒆(1,𝜈,0) = (⃗04, 0⃗6, 0⃗2, 𝛾⃗(𝜈))𝔹1

𝒆(1,𝜈,1) = (⃗04, 0⃗4, 𝜃𝜈 𝑒⃗
(2,𝜈), 0⃗2, 𝛾⃗(𝜈))𝔹1

}︂
for 𝜈 ∈ [2].

For any security parameter 𝜆, the advantage of any probabilistic adversary ℬ in deciding Problem
3 is defined as

𝖠𝖽𝗏P3
ℬ (𝜆) =

⃒⃒⃒
𝖯𝗋

[︁
1

R←− ℬ(𝜚P3
0 )

]︁
− 𝖯𝗋

[︁
1

R←− ℬ(𝜚P3
1 )

]︁⃒⃒⃒
.

Lemma 2.5: For any probabilistic algorithm ℬ, there exist probabilistic algorithms 𝒮1 and 𝒮2,
whose running times are essentially the same as that of ℬ, such that for any security parameter
𝜆, 𝖠𝖽𝗏P3

ℬ (𝜆) ≤ ∑︀
𝜈∈[2]

𝖠𝖽𝗏SXDLIN
𝒮𝜈 (𝜆) + 𝗇𝖾𝗀𝗅(𝜆), where 𝗇𝖾𝗀𝗅 is some negligible function.
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Proof: Observe that Problem 3 is similar to Problem 1 in [OT11a,OT11b]. Thus, the proof of
Lemma 2.5 is analogous to that of Lemma 1 in [OT11b]. ⊓⊔

Definition 2.8 (Problem 4-𝜶 (𝜶 ∈ [𝒏 = 𝗽(𝝀)])): Problem 4-𝛼 is to guess the bit ̂︀𝛽 ∈ {0, 1}
given 𝜚P4-𝛼̂︀𝛽 = (params, {𝔹𝚤,𝔹*

𝚤 }𝚤∈{0,2}, ̃︀𝔹1,𝔹*
1,𝒇

(0), {𝒉*(1,𝛼,𝜈,̂︀𝛽),𝒇 (1,𝜈), 𝒈(1,𝜈)}𝜈∈[2]), where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8));̃︀𝔹1 = {𝒃(1,1), . . . , 𝒃(1,6), 𝒃(1,11), . . . , 𝒃(1,14)};
𝜏, {𝜎̆𝛼,𝜈}𝜈∈[2], {𝜃𝛼,𝜈}𝜈∈[2] U←− 𝔽𝑞, {𝜉(𝛼,𝜈)}𝜈∈[2] U←− 𝔽2

𝑞 ;

𝒇 (0) = (0, 𝜏, 0, 0)𝔹0 ;

𝒉*(1,𝛼,𝜈,0) = (𝜎̆𝛼,𝜈(1, 𝛼), 0⃗
2, 0⃗6, 𝜉(𝛼,𝜈), 0⃗2)𝔹*

1

𝒉*(1,𝛼,𝜈,1) = (𝜎̆𝛼,𝜈(1, 𝛼), 0⃗
2, −𝜃𝛼,𝜈 𝑒⃗(2,𝜈), 𝜃𝛼,𝜈 𝑒⃗(2,𝜈), 0⃗2, 𝜉(𝛼,𝜈), 0⃗2)𝔹*

1

𝒇 (1,𝜈) = (⃗04, 𝜏 𝑒⃗(2,𝜈), 𝜏 𝑒⃗(2,𝜈), 0⃗2, 0⃗2, 0⃗2)𝔹1

𝒈(1,𝜈) = (⃗04, 0⃗4, 𝜏 𝑒⃗(2,𝜈), 0⃗2, 0⃗2)𝔹1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ for 𝜈 ∈ [2].

For any security parameter 𝜆, for any 𝑛 = 𝗉(𝜆), where 𝗉 is an arbitrary polynomial, for any
𝛼 ∈ [𝑛], the advantage of any probabilistic adversary ℬ in deciding Problem 4-𝛼 is defined as

𝖠𝖽𝗏P4-𝛼
ℬ (𝜆) =

⃒⃒⃒
𝖯𝗋

[︁
1

R←− ℬ(𝜚P4-𝛼
0 )

]︁
− 𝖯𝗋

[︁
1

R←− ℬ(𝜚P4-𝛼
1 )

]︁⃒⃒⃒
.

Lemma 2.6: For any probabilistic algorithm ℬ, there exists a probabilistic algorithm 𝒮, whose
running time is essentially the same as that of ℬ, such that for any security parameter 𝜆 and any
𝑛 = 𝗉(𝜆), 𝖠𝖽𝗏P4-𝛼

ℬ (𝜆) ≤ ∑︀
𝜈∈[2]

𝖠𝖽𝗏SXDLIN
𝒮𝛼-𝜈

(𝜆) + 𝗇𝖾𝗀𝗅(𝜆) for all 𝛼 ∈ [𝑛], where 𝒮𝛼-𝜈(·) = 𝒮(𝛼, 𝜈, ·)

for any 𝛼, 𝜈 ∈ ℕ, and 𝗇𝖾𝗀𝗅 is some negligible function.

Proof: Observe that Problem 4-𝛼 is essentially the same as Basic Problem 3-𝑝 in [OT12a,OT12b].
Hence, the proof of Lemma 2.6 is analogous to that of Lemma 36 in [OT12b]. ⊓⊔

Definition 2.9 (Problem 5-𝜶 (𝜶 ∈ [𝒏 = 𝗽(𝝀)])): Problem 5-𝛼 is to guess the bit ̂︀𝛽 ∈
{0, 1} given 𝜚P5-𝛼̂︀𝛽 = (params, {𝔹𝚤,𝔹*

𝚤 }𝚤∈{0,2},𝔹1, ̃︀𝔹*
1,𝒉

*(0), {𝒉*(1,𝛼,𝜈)}𝜈∈[2], {𝒇 (1,𝜄,𝜈,̂︀𝛽)}𝜄∈[𝑛]∖{𝛼},𝜈∈[2],
{𝒉̆*(𝜈)}𝜈∈{5,6,9,10}), where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8));̃︀𝔹*
1 = {𝒃*(1,1), . . . , 𝒃*(1,6), 𝒃*(1,9), . . . , 𝒃*(1,14)};

𝜘, {𝜎̆𝛼,𝜈}𝜈∈[2], {𝜇̆𝜄,𝜈}𝜄∈[𝑛]∖{𝛼},𝜈∈[2] U←− 𝔽𝑞,

{𝜉(𝛼,𝜈)}𝜈∈[2], {𝜃(𝜄,𝜈}𝜄∈[𝑛]∖{𝛼},𝜈∈[2], {𝛾⃗(𝜄,𝜈)}𝜄∈[𝑛]∖{𝛼},𝜈∈[2] U←− 𝔽2
𝑞 ;

𝒉*(0) = 𝜘𝒃*(0,2);

𝒉*(1,𝛼,𝜈) = (𝜎̆𝛼,𝜈(1, 𝛼), 0⃗
2, 0⃗2,𝜘𝑒⃗(2,𝜈), 0⃗2, 𝜉(𝛼,𝜈), 0⃗2)𝔹*

1
for 𝜈 ∈ [2];

𝒇 (1,𝜄,𝜈,0) = (𝜇̆𝜄,𝜈(𝜄,−1), 0⃗2, 0⃗6, 0⃗2, 𝛾⃗(𝜄,𝜈))𝔹1

𝒇 (1,𝜄,𝜈,1) = (𝜇̆𝜄,𝜈(𝜄,−1), 0⃗2, 0⃗2, 𝜃(𝜄,𝜈), 0⃗2, 0⃗2, 𝛾⃗(𝜄,𝜈))𝔹1

}︂
for 𝜄 ∈ [𝑛]∖{𝛼}, 𝜈 ∈ [2];

𝒉̆*(𝜈) = 𝜘𝒃*(1,𝜈) for 𝜈 ∈ {5, 6, 9, 10}.

For any security parameter 𝜆, for any 𝑛 = 𝗉(𝜆), where 𝗉 is an arbitrary polynomial, for any
𝛼 ∈ [𝑛], the advantage of any probabilistic adversary ℬ in deciding Problem 5-𝛼 is defined as

𝖠𝖽𝗏P5-𝛼
ℬ (𝜆) =

⃒⃒⃒
𝖯𝗋

[︁
1

R←− ℬ(𝜚P5-𝛼
0 )

]︁
− 𝖯𝗋

[︁
1

R←− ℬ(𝜚P5-𝛼
1 )

]︁⃒⃒⃒
.
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Lemma 2.7: For any probabilistic algorithm ℬ, there is a probabilistic algorithm 𝒮, whose
running time is essentially the same as that of ℬ, such that for any security parameter 𝜆
and any 𝑛 = 𝗉(𝜆), 𝖠𝖽𝗏P5-𝛼

ℬ (𝜆) ≤ ∑︀
𝜄∈[𝑛]∖{𝛼},𝜈∈[2]

𝖠𝖽𝗏SXDLIN
𝒮𝛼-𝜄-𝜈

(𝜆) + 𝗇𝖾𝗀𝗅(𝜆) for all 𝛼 ∈ [𝑛], where

𝒮𝛼-𝜄-𝜈(·) = 𝒮(𝛼, 𝜄, 𝜈, ·) for any 𝛼, 𝜄, 𝜈 ∈ ℕ and 𝗇𝖾𝗀𝗅 is some negligible function.

Proof: Observe that Problem 5-𝛼 is essentially the same as Basic Problem 5-𝑝 in [OT12a,OT12b].
Hence, Lemma 2.4 can be proven in the same way as Lemma 39 in [OT12b]. ⊓⊔

Definition 2.10 (Problem 6-𝜶 (𝜶 ∈ [𝒏 = 𝗽(𝝀)])): Problem 6-𝛼 is to guess the bit ̂︀𝛽 ∈ {0, 1}
given 𝜚P6-𝛼̂︀𝛽 = (params, {𝔹𝚤,𝔹*

𝚤 }𝚤∈{0,2}, ̃︀𝔹1,𝔹*
1, {𝒉*(1,𝛼,𝜈,̂︀𝛽)}𝜈∈[2]), where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8));̃︀𝔹1 = {𝒃(1,1), . . . , 𝒃(1,6), 𝒃(1,9), . . . , 𝒃(1,14)};
{𝜎̆𝛼,𝜈}𝜈∈[2], {𝜃𝛼,𝜈}𝜈∈[2] U←− 𝔽𝑞, {𝜉(𝛼,𝜈)}𝜈∈[2] U←− 𝔽2

𝑞 ;

𝒉*(1,𝛼,𝜈,0) = (𝜎̆𝛼,𝜈(1, 𝛼), 0⃗
2, 0⃗6, 𝜉(𝛼,𝜈), 0⃗2)𝔹*

1

𝒉*(1,𝛼,𝜈,1) = (𝜎̆𝛼,𝜈(1, 𝛼), 0⃗
2, 0⃗2, 𝜃𝛼,𝜈 𝑒⃗

(2,𝜈), 0⃗2, 𝜉(𝛼,𝜈), 0⃗2)𝔹*
1

}︃
for 𝜈 ∈ [2].

For any security parameter 𝜆, for any 𝑛 = 𝗉(𝜆), where 𝗉 is an arbitrary polynomial, for any
𝛼 ∈ [𝑛], the advantage of any probabilistic adversary ℬ in deciding Problem 6-𝛼 is defined as

𝖠𝖽𝗏P6-𝛼
ℬ (𝜆) =

⃒⃒⃒
𝖯𝗋

[︁
1

R←− ℬ(𝜚P6-𝛼
0 )

]︁
− 𝖯𝗋

[︁
1

R←− ℬ(𝜚P6-𝛼
1 )

]︁⃒⃒⃒
.

Lemma 2.8: For any probabilistic algorithm ℬ, there exists a probabilistic algorithm 𝒮, whose
running time is essentially the same as that of ℬ, such that for any security parameter 𝜆 and any
𝑛 = 𝗉(𝜆), 𝖠𝖽𝗏P6-𝛼

ℬ (𝜆) ≤ ∑︀
𝜈∈[2]

𝖠𝖽𝗏SXDLIN
𝒮𝛼-𝜈

(𝜆) + 𝗇𝖾𝗀𝗅(𝜆) for all 𝛼 ∈ [𝑛], where 𝒮𝛼-𝜈(·) = 𝒮(𝛼, 𝜈, ·)

for any 𝛼, 𝜈 ∈ ℕ, and 𝗇𝖾𝗀𝗅 is some negligible function.

Proof: Observe that Problem 6-𝛼 is essentially the same as Basic Problem 4-𝑝 in [OT12a,OT12b].
Hence, the proof of Lemma 2.8 is similar to that of Lemma 38 in [OT12b]. ⊓⊔

Definition 2.11 (Problem 7): Problem 7 is to guess the bit ̂︀𝛽 ∈ {0, 1} given 𝜚P7̂︀𝛽 = (params,

{𝔹𝚤,𝔹*
𝚤 }𝚤∈{0,2},𝔹1, ̃︀𝔹*

1, {𝒆(1,𝜈,
̂︀𝛽)}𝜈∈[3]), where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8));̃︀𝔹*
1 = {𝒃*(1,1), . . . , 𝒃*(1,4), 𝒃*(1,7), 𝒃*(1,8), 𝒃*(1,10), . . . , 𝒃*(1,14)};
{𝜃𝜈}𝜈∈[3] U←− 𝔽𝑞, {𝛾⃗(𝜈)}𝜈∈[3] U←− 𝔽2

𝑞 ;

𝒆(1,𝜈,0) = (⃗04, 0⃗6, 0⃗2, 𝛾⃗(𝜈))𝔹1

𝒆(1,𝜈,1) = (⃗04, 𝜃𝜈 𝑒⃗
(2,𝜈), 0⃗4, 0⃗2, 𝛾⃗(𝜈))𝔹1

}︂
for 𝜈 ∈ [2];

𝒆(1,3,0) = (⃗04, 0⃗6, 0⃗2, 𝛾⃗(3))𝔹1 ,

𝒆(1,3,1) = (⃗04, 0⃗4, 𝜃3𝑒⃗
(2,1), 0⃗2, 𝛾⃗(3))𝔹1 .

For any security parameter 𝜆, the advantage of any probabilistic adversary ℬ in deciding Problem
7 is defined as

𝖠𝖽𝗏P7
ℬ (𝜆) =

⃒⃒⃒
𝖯𝗋

[︁
1

R←− ℬ(𝜚P7
0 )

]︁
− 𝖯𝗋

[︁
1

R←− ℬ(𝜚P7
1 )

]︁⃒⃒⃒
.

Lemma 2.9: For any probabilistic algorithm ℬ, there exist probabilistic algorithms 𝒮1, 𝒮2, and
𝒮3, whose running times are essentially the same as that of ℬ, such that for any security parameter
𝜆, 𝖠𝖽𝗏P7

ℬ (𝜆) ≤ ∑︀
𝜈∈[3]

𝖠𝖽𝗏SXDLIN
𝒮𝜈 (𝜆) + 𝗇𝖾𝗀𝗅(𝜆), where 𝗇𝖾𝗀𝗅 is some negligible function.
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Proof: Observe that Problem 7 is similar to Problem 1 in [OT11a,OT11b]. Thus, the proof of
Lemma 2.9 is analogous to that of Lemma 1 in [OT11b]. ⊓⊔

Definition 2.12 (Problem 8): Problem 8 is to guess the bit ̂︀𝛽 ∈ {0, 1} given 𝜚P8̂︀𝛽 = (params,

{̃︀𝔹𝚤,𝔹*
𝚤 }𝚤∈{0,2},𝔹1,𝔹*

1,𝒉
*(0,̂︀𝛽),𝒇 (0), {𝒉*(2,𝜈,̂︀𝛽),𝒇 (2,𝜈)}𝜈∈[2]), where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8));̃︀𝔹0 = {𝒃(0,1), 𝒃(0,3), 𝒃(0,4)};̃︀𝔹2 = {𝒃(2,1), 𝒃(2,2), 𝒃(2,5), . . . , 𝒃(2,8)};
𝜗,𝜘, 𝛿, 𝜏, 𝜉0

U←− 𝔽𝑞, {𝜉(𝜈)}𝜈∈[2] U←− 𝔽2
𝑞 ,𝑿

U←− GL(2,𝔽𝑞),𝒀 = (𝑿−1)⊤;

𝒉*(0,0) = (𝜗, 0, 𝜉0, 0)𝔹*
0
,𝒉*(0,1) = (𝜗,𝜘, 𝜉0, 0)𝔹*

0
;

𝒇 (0) = (𝛿, 𝜏, 0, 0)𝔹0 ;

𝒉*(2,𝜈,0) = (𝜗𝑒⃗(2,𝜈), 0⃗2, 𝜉(𝜈), 0⃗2)𝔹*
2

𝒉*(2,𝜈,1) = (𝜗𝑒⃗(2,𝜈), 𝜘𝑒⃗(2,𝜈)𝑿, 𝜉(𝜈), 0⃗2)𝔹*
2

𝒇 (2,𝜈) = (𝛿𝑒⃗(2,𝜈), 𝜏 𝑒⃗(2,𝜈)𝒀 , 0⃗2, 0⃗2)𝔹2

⎫⎪⎬⎪⎭ for 𝜈 ∈ [2].

For any security parameter 𝜆, the advantage of any probabilistic adversary ℬ in deciding Problem
8 is defined as

𝖠𝖽𝗏P8
ℬ (𝜆) =

⃒⃒⃒
𝖯𝗋

[︁
1

R←− ℬ(𝜚P8
0 )

]︁
− 𝖯𝗋

[︁
1

R←− ℬ(𝜚P8
1 )

]︁⃒⃒⃒
.

Lemma 2.10: For any probabilistic algorithm ℬ, there exists a probabilistic algorithm 𝒮, whose
running time is essentially the same as that of ℬ, such that for any security parameter 𝜆,
𝖠𝖽𝗏P8

ℬ (𝜆) ≤ 𝖠𝖽𝗏SXDLIN
𝒮 (𝜆) + 𝗇𝖾𝗀𝗅(𝜆), where 𝗇𝖾𝗀𝗅 is some negligible function.

Proof: Observe that Problem 8 is essentially the same as Problem 3 in [OT11a,OT11b]. Thus,
the proof of Lemma 2.10 is similar to that of Lemma 3 in [OT11b]. ⊓⊔

2.5 Collision-Resistant Hash Functions

Here we will formally describe the notion of collision-resistant hash functions which will be used
as an ingredient of our ABS construction.

� Syntax: A hash function family ℍ associated with a bilinear group generator 𝒢bpg and a
polynomial 𝗉𝗈𝗅𝗒(·) consists of the following two polynomial-time algorithms:

𝖪𝖦𝖾𝗇(): The hashing key generation algorithm is a probabilistic algorithm that takes as input
the unary encoded security parameter 1𝜆, and samples a hashing key 𝗁𝗄 from the key space
ℍ𝕂𝜆, which is a probability space over bit strings parameterized by 𝜆.

𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 : 𝔻 = {0, 1}𝗉𝗈𝗅𝗒(𝜆) → 𝔽𝑞∖{0}: A deterministic function that maps an element of 𝔻 =
{0, 1}𝗉𝗈𝗅𝗒(𝜆) to an element of 𝔽𝑞∖{0} with 𝑞 being the first element of the output params𝔾 =
(𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) of 𝒢bpg on input 1𝜆.

� Collision Resistance: A hash function family ℍ associated with 𝒢bpg and 𝗉𝗈𝗅𝗒(·) is said
to be collision resistant if for any 𝖯𝖯𝖳 adversary ℳ, for any security parameter 𝜆 and any
𝗁𝗄

R←− 𝖪𝖦𝖾𝗇(), the advantage ofℳ in finding a collision, defined as

𝖠𝖽𝗏𝖧,CR
ℳ (𝜆) = 𝖯𝗋[𝛶1, 𝛶2 ∈ 𝔻 = {0, 1}𝗉𝗈𝗅𝗒(𝜆) ∧ 𝛶1 ̸= 𝛶2∧

𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (𝛶1) = 𝖧

(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (𝛶2) | (𝛶1, 𝛶2)

R←−ℳ(𝗁𝗄,𝔻)]

is negligible, i.e., 𝖠𝖽𝗏𝖧,CR
ℳ (𝜆) ≤ 𝗇𝖾𝗀𝗅(𝜆), where 𝗇𝖾𝗀𝗅 is some negligible function.
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2.6 The Notion of Attribute-Based Signatures for Arithmetic Branching Pro-
grams

Let for some prime 𝑞 ∈ ℕ, ℱ (𝑞)
abp denote the class of all functions 𝑓 : 𝔽𝑛

𝑞 → 𝔽𝑞 for any 𝑛 = 𝗉(𝜆) ∈ ℕ,
where 𝗉 is an arbitrary polynomial, realizable by some ABP of polynomial size over 𝔽𝑞. In this
section, we will formally define the notion of an attribute-based signature (ABS) scheme for the
predicate family ℛ(𝑞)

z-abp defined as ℛ(𝑞)
z-abp = {𝑅(𝑞)

z-abp(𝑓, ·) : 𝔽𝑛
𝑞 → {0, 1} | 𝑓 : 𝔽𝑛

𝑞 → 𝔽𝑞 ∈ ℱ (𝑞)
abp},

where 𝑅
(𝑞)
z-abp(𝑓, 𝑥⃗) = 1 if 𝑓(𝑥⃗) = 0, and 𝑅

(𝑞)
z-abp(𝑓, 𝑥⃗) = 0 otherwise for all 𝑓 : 𝔽𝑛

𝑞 → 𝔽𝑞 ∈ ℱ (𝑞)
abp

and 𝑥⃗ ∈ 𝔽𝑛
𝑞 . As stated in Lemma 2.2, there exists a polynomial-time algorithm that on input

any 𝑓 : 𝔽𝑛
𝑞 → 𝔽𝑞 ∈ ℱ (𝑞)

abp, constructs an ASP 𝕊 = (𝕌, 𝜌) such that for any 𝑥⃗ ∈ 𝔽𝑛
𝑞 , it holds that

𝑅
(𝑞)
z-abp(𝑓, 𝑥⃗) = 1 ⇐⇒ 𝑓(𝑥⃗) = 0 ⇐⇒ 𝕊 accepts 𝑥⃗. Therefore, for the rest of this paper, we will

identify predicates 𝑅
(𝑞)
z-abp(𝑓, ·) ∈ ℛ(𝑞)

z-abp by their corresponding ASP-representations 𝕊 = (𝕌, 𝜌)
computed using the algorithm of Lemma 2.2.

� Syntax: An attribute-based signature (ABS) scheme for some predicate familyℛ(𝑞)
z-abp consists

of an associated message space 𝕄 ⊆ {0, 1}*, a signature space 𝛴, along with the following 𝖯𝖯𝖳
algorithms:

ABS.Setup(): The setup algorithm takes as input the unary encoded security parameter 1𝜆. It
outputs the public parameters mpk and the master signing key msk.

ABS.KeyGen(mpk,msk, 𝑥⃗): The signing key generation algorithm takes as input the public pa-
rameters mpk, the master signing key msk, along with a signing attribute vector 𝑥⃗ ∈ 𝔽𝑛

𝑞 for
some 𝑛 = 𝗉(𝜆) ∈ ℕ. It outputs a signing key sk(𝑥⃗).

ABS.Sign(mpk, 𝑥⃗, sk(𝑥⃗), 𝕊,msg): The signing algorithm takes as input the public parameters
mpk, a signing attribute string 𝑥⃗ ∈ 𝔽𝑛

𝑞 for some 𝑛 = 𝗉(𝜆) ∈ ℕ, a signing key sk(𝑥⃗) for 𝑥⃗,
a signing policy 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp represented as an ASP 𝕊 = (𝕌, 𝜌), and

a message msg ∈ 𝕄. It outputs either a signature sig ∈ 𝛴 or the distinguished symbol ⊥
indicating failure.

ABS.Verify(mpk,𝕊, (msg, sig)): The verification algorithm takes as input the public parameters
mpk, a signing policy 𝑅

(𝑞)
z-abp(𝑓, ·) ∈ ℛ(𝑞)

z-abp represented as an ASP 𝕊 = (𝕌, 𝜌), and a message-
signature pair (msg, sig) ∈𝕄×𝛴. It outputs either 1 or 0.

� Correctness: An ABS scheme for some predicate family ℛ(𝑞)
z-abp is said to be correct if for

any security parameter 𝜆, any 𝑛 = 𝗉(𝜆) ∈ ℕ, any signing policy predicate 𝑅
(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 →
{0, 1} ∈ ℛ(𝑞)

z-abp represented as an ASP 𝕊 = (𝕌, 𝜌), any signing attribute vector 𝑥⃗ ∈ 𝔽𝑛
𝑞 , any

(mpk,msk) R←− ABS.Setup(), and any sk(𝑥⃗) R←− ABS.KeyGen(mpk, msk, 𝑥⃗), if 𝕊 accepts 𝑥⃗, then

𝖯𝗋[1
R←− ABS.Verify(mpk, 𝕊, (msg, sig)) | sig R←− ABS.Sign(mpk, 𝑥⃗, sk(𝑥⃗),𝕊,msg)] ≥ 1− 𝗇𝖾𝗀𝗅(𝜆) ,

where 𝗇𝖾𝗀𝗅 is some negligible function, and the probability is taken over the random coins of
ABS.Sign and ABS.Verify.

� Signer Privacy: An ABS scheme for some predicate family ℛ(𝑞)
z-abp is said to achieve perfect

signer privacy if for any security parameter 𝜆, any 𝑛 = 𝗉(𝜆) ∈ ℕ, any message msg ∈ 𝕄, any
(mpk,msk) R←− ABS.Setup(), any signing policy 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP

representation 𝕊 = (𝕌, 𝜌), any two signing attribute vectors 𝑥⃗, 𝑥⃗′ ∈ 𝔽𝑛
𝑞 such that 𝕊 accepts both

𝑥⃗ and 𝑥⃗′, any signing keys sk(𝑥⃗) R←− ABS.KeyGen(mpk,msk, 𝑥⃗), sk(𝑥⃗′) R←− ABS.KeyGen(mpk,
msk, 𝑥⃗′), the distributions of the signatures outputted by ABS.Sign(mpk, 𝑥⃗, sk(𝑥⃗), 𝕊,msg) and
ABS.Sign(mpk, 𝑥⃗′, sk(𝑥⃗′),𝕊,msg) are equivalent.
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� Existential unforgeability: Existential unforgeability of an ABS scheme for some pred-
icate class ℛ(𝑞)

z-abp against adaptive-predicate-adaptive-message attack is defined through the
following experiment between a stateful probabilistic adversary 𝒜 and a stateful probabilistic
challenger ℬ:

∙ ℬ generates (mpk,msk) R←− ABS.Setup() and sends mpk to 𝒜.
∙ 𝒜 may adaptively make any polynomial number of queries of the following types to ℬ:

– Signing Key Generation Query : When 𝒜 requests the generation of a signing key for some
signing attribute vector 𝑥⃗ ∈ 𝔽𝑛

𝑞 for some 𝑛 = 𝗉(𝜆) ∈ ℕ, ℬ generates a signing key sk(𝑥⃗) R←−
ABS.KeyGen(mpk,msk, 𝑥⃗) and stores the signing key sk(𝑥⃗).

– Signature Generation Query : When 𝒜 specifies a signing key for some signing attribute
vector 𝑥⃗ ∈ 𝔽𝑛

𝑞 for some 𝑛 = 𝗉(𝜆) ∈ ℕ that it has already requested ℬ to generate, and
requests the generation of a signature using that signing key on some message msg ∈ 𝕄
under some signing policy 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp represented as an ASP 𝕊 =

(𝕌, 𝜌) such that 𝕊 accepts 𝑥⃗, ℬ creates a signature sig R←− ABS.Sign(mpk, 𝑥⃗, sk(𝑥⃗),𝕊,msg)
and stores it.

– Signing key/Signature Reveal Query : When 𝒜 requests ℬ to reveal an already created
signing key corresponding to some signing attribute vector 𝑥⃗ ∈ 𝔽𝑛

𝑞 for some 𝑛 = 𝗉(𝜆) ∈ ℕ
or an already created signature on some message msg ∈ 𝕄 under some signing policy
𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp for some 𝑛 = 𝗉(𝜆) ∈ ℕ represented by an ASP 𝕊 =

(𝕌, 𝜌), ℬ provides 𝒜 with the respective queried item.
We would like to emphasize that when a signing key or signature generation query is made,
𝒜 does not receives the signing key or signature that ℬ creates. 𝒜 receives it only when it
makes a reveal query for that signing key or signature.
∙ At the end of interaction 𝒜 outputs a triplet (𝕊,msg, sig), where 𝕊 is the ASP-representation

of a signing policy 𝑅
(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp for some 𝑛 = 𝗉(𝜆) ∈ ℕ, msg ∈ 𝕄, and

sig ∈ 𝛴. 𝒜 wins if the following conditions hold simultaneously:
(a) 1 = ABS.Verify(mpk,𝕊, (msg, sig)).
(b) 𝒜 has not made a signature reveal query on msg under 𝕊.
(c) 𝕊 does not accept any signing attribute string 𝑥⃗ ∈ 𝔽𝑛

𝑞 for which 𝒜 has requested to reveal
a signing key.

An ABS scheme for some predicate family ℛ(𝑞)
z-abp is said to be existentially unforgeable against

adaptive-predicate-adaptive-message attack if for any 𝖯𝖯𝖳 adversary 𝒜, for any security param-
eter 𝜆, the advantage of 𝒜 in the above experiment, defined as

𝖠𝖽𝗏ABS,UF
𝒜 (𝜆) = 𝖯𝗋 [𝒜 wins in the unforgeability experiment ]

is negligible in 𝜆, i.e., 𝖠𝖽𝗏ABS,UF
𝒜 (𝜆) ≤ 𝗇𝖾𝗀𝗅(𝜆), where 𝗇𝖾𝗀𝗅 is some negligible function.

3 The Proposed ABS Scheme

In this section, we will present our ABS scheme for a predicate family ℛ(𝑞)
z-abp parameterized by

some prime 𝑞 ∈ ℕ as defined in Section 2.6. Let 𝕄 ⊂ {0, 1}* be the message space associated
with our ABS scheme. We emphasize that in our construction the functions 𝜌 included within the
description of ASP’s are not necessarily injective, and thus our ABS scheme supports unbounded
multi-use of attributes within the signing policies. In our scheme description and in the proof of
security 𝑛 = 𝗉(𝜆) ∈ ℕ for an arbitrary polynomial 𝗉.

ABS.Setup(): The setup algorithm takes as input the unary encoded security parameter 1𝜆. It
proceeds as follows:
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1. It first generates (params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8)).
2. Then, it sets the following:

̂︀𝔹0 = {𝒃(0,1), 𝒃(0,4)},̂︀𝔹*
0 = {𝒃*(0,3)},̂︀𝔹1 = {𝒃(1,1), . . . , 𝒃(1,4), 𝒃(1,13), 𝒃(1,14)},̂︀𝔹*
1 = {𝒃*(1,1), . . . , 𝒃*(1,4), 𝒃*(1,11), 𝒃*(1,12)},̂︀𝔹2 = {𝒃(2,1), 𝒃(2,2), 𝒃(2,7), 𝒃(2,8)},̂︀𝔹*
2 = {𝒃*(2,1), 𝒃*(2,2), 𝒃*(2,5), 𝒃*(2,6)}.

3. Next, it samples a hashing key 𝗁𝗄
R←− 𝖪𝖦𝖾𝗇() for a hash function family ℍ associated with

the bilinear group generator 𝒢bpg used as a subroutine of 𝒢ob and a polynomial 𝗉𝗈𝗅𝗒(·),
where 𝗉𝗈𝗅𝗒(𝜆) represents the length of the bit string formed by concatenating a message
belonging to 𝕄 and the binary representation of an ASP representing a signing policy
predicate in ℛ(𝑞)

z-abp.
4. It outputs the public parameters mpk = (𝗁𝗄, params, {̂︀𝔹𝚤, ̂︀𝔹*

𝚤 }𝚤∈[0,2]) and the master signing
key msk = 𝒃*(0,1).

ABS.KeyGen(mpk,msk, 𝑥⃗): The signing key generation algorithm takes as input the public pa-
rameters mpk, the master signing key msk, and a signing attribute vector 𝑥⃗ ∈ 𝔽𝑛

𝑞 . It executes
the following steps:
1. First, it samples 𝜔

U←− 𝔽𝑞∖{0}, 𝜙0
U←− 𝔽𝑞, and computes

𝒌*(0) = (𝜔, 0, 𝜙0, 0)𝔹*
0
.

2. Next, for 𝜄 ∈ [𝑛], it samples 𝜎𝜄
U←− 𝔽𝑞, 𝜙⃗(𝜄) U←− 𝔽2

𝑞 , and computes

𝒌*(𝜄) = (𝜎𝜄(1, 𝜄), 𝜔(1, 𝑥𝜄), 0⃗
6, 𝜙⃗(𝜄), 0⃗2)𝔹*

1
.

3. Then, it samples 𝜙⃗(𝑛+1,1), 𝜙⃗(𝑛+1,2) U←− 𝔽2
𝑞 , and computes

𝒌*(𝑛+1,1) = (𝜔(1, 0), 0⃗2, 𝜙⃗(𝑛+1,1), 0⃗2)𝔹*
2
,

𝒌*(𝑛+1,2) = (𝜔(0, 1), 0⃗2, 𝜙⃗(𝑛+1,2), 0⃗2)𝔹*
2
.

4. It outputs the signing key sk(𝑥⃗) = (𝒌*(0), . . . ,𝒌*(𝑛),𝒌*(𝑛+1,1),𝒌*(𝑛+1,2)).

ABS.Sign(mpk, 𝑥⃗, sk(𝑥⃗), 𝕊,msg): The signing algorithm takes in the public parameters mpk, a
signing attribute string 𝑥⃗ ∈ 𝔽𝑛

𝑞 , a signing key sk(𝑥⃗) = (𝒌*(0), . . . ,𝒌*(𝑛),𝒌*(𝑛+1,1),𝒌*(𝑛+1,2))

for 𝑥⃗, a signing policy predicate 𝑅
(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp with ASP representation

𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚]→ [𝑛]), along with a message msg ∈𝕄. If 𝕊 does
not accept 𝑥⃗, it outputs ⊥. Otherwise, i.e., if 𝕊 accepts 𝑥⃗, it operates as follows:
1. It first computes (𝛺𝑗)𝑗∈[𝑚] ∈ 𝔽𝑚

𝑞 such that 𝑒⃗(ℓ,ℓ) =
∑︀

𝑗∈[𝑚]

𝛺𝑗(𝑥𝜌(𝑗)𝑦⃗
(𝑗) + 𝑧⃗(𝑗)).

2. Next, it samples 𝜉
U←− 𝔽𝑞∖{0}, and ((𝛺′

𝑗)𝑗∈[𝑚], (𝛺
′′
𝑗 )𝑗∈[𝑚])

U←− (𝔽𝑚
𝑞 )2 such that

∑︀
𝑗∈[𝑚]

(𝛺′
𝑗 𝑦⃗

(𝑗) +

𝛺′′
𝑗 𝑧⃗

(𝑗)) = 0⃗ℓ.

3. After that, it samples 𝒓*(0)
U←− span⟨𝒃*(0,3)⟩ and computes

𝒔*(0) = 𝜉𝒌*(0) + 𝒓*(0).
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4. Then, for 𝑗 ∈ [𝑚], it samples 𝜎′
𝑗

U←− 𝔽𝑞, 𝒓*(𝑗)
U←− span⟨𝒃*(1,11), 𝒃*(1,12)⟩, and computes

𝒔*(𝑗) = 𝜉𝛺𝑗𝒌
*(𝜌(𝑗)) + 𝜎′

𝑗(𝒃
*(1,1) + 𝜌(𝑗)𝒃*(1,2)) +𝛺′′

𝑗 𝒃
*(1,3) +𝛺′

𝑗𝒃
*(1,4) + 𝒓*(𝑗).

5. Next, it samples 𝒓*(𝑚+1) U←− span⟨𝒃*(2,5), 𝒃*(2,6)⟩ and computes

𝒔*(𝑚+1) = 𝜉(𝒌*(𝑛+1,1) + 𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊)𝒌*(𝑛+1,2)) + 𝒓*(𝑚+1).

6. It outputs the signature sig = (𝒔*(0), . . . , 𝒔*(𝑚+1)).
ABS.Verify(mpk,𝕊, (msg, sig)): The verification algorithm takes as input the public parameters

mpk, a signing policy predicate 𝑅(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP-representation

𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚]→ [𝑛]), a message-signature pair (msg ∈𝕄, sig =

(𝒔*(0), . . . , 𝒔*(𝑚+1))). It proceeds as follows:
1. It generates a verification-text (𝒄(0), . . . , 𝒄(𝑚+1)) as follows:

(a) It first samples 𝑢⃗ = (𝑢1, . . . , 𝑢ℓ)
U←− 𝔽ℓ

𝑞, and computes 𝑠𝑗 = 𝑢⃗ · 𝑦⃗(𝑗), 𝑠′𝑗 = 𝑢⃗ · 𝑧⃗(𝑗) for
𝑗 ∈ [𝑚].

(b) Next, it samples 𝑢, 𝜂0
U←− 𝔽𝑞, and computes

𝒄(0) = (−𝑢− 𝑢ℓ, 0, 0, 𝜂0)𝔹0 .

(c) Then, for 𝑗 ∈ [𝑚], if 𝒔*(𝑗) /∈ 𝕍*
1, then it outputs 0. Otherwise, it samples 𝜇𝑗

U←− 𝔽𝑞,
𝜂⃗(𝑗)

U←− 𝔽2
𝑞 , and computes

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), 0⃗6, 0⃗2, 𝜂⃗(𝑗))𝔹1 .

(d) Then, it samples 𝜅
U←− 𝔽𝑞, 𝜂⃗(𝑚+1) U←− 𝔽2

𝑞 , and computes

𝒄(𝑚+1) = ((𝑢− 𝜅𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊), 𝜅), 0⃗2, 0⃗2, 𝜂⃗(𝑚+1))𝔹2 .

2. It outputs 0 if 𝑒(𝒃(0,1), 𝒔*(0)) = 1𝔾𝑇 .
3. It outputs 1 if

∏︀
𝑗∈[0,𝑚+1]

𝑒(𝒄(𝑗), 𝒔*(𝑗)) = 1𝔾𝑇 . It outputs 0 otherwise. Here, 1𝔾𝑇 is the identity

element of the group 𝔾𝑇 .

� Correctness: The correctness of the proposed ABS construction can be verified as follows:
For any signature sig = (𝒔*(0), . . . , 𝒔*(𝑚+1)) on a message msg ∈𝕄 under a signing policy predi-
cate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP representation 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂

(𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) generated using a signing key sk(𝑥⃗) = (𝒌*(0), . . . ,𝒌*(𝑛),𝒌*(𝑛+1,1),𝒌*(𝑛+1,2))

for a signing attribute vector 𝑥⃗ ∈ 𝔽𝑛
𝑞 such that 𝕊 accepts 𝑥⃗, and any verification-text (𝒄(0), . . . ,

𝒄(𝑚+1)) generated while executing ABS.Verify, we have∏︁
𝑗∈[0,𝑚+1]

𝑒(𝒄(𝑗), 𝒔*(𝑗))

= 𝑒(𝒄(0),𝒌*(0))𝜉
∏︁
𝑗∈[𝑚]

𝑒(𝒄(𝑗),𝒌*(𝜌(𝑗)))𝜉𝛺𝑗
∏︁
𝑗∈[𝑚]

[𝑒(𝒄(𝑗), 𝒃*(1,3))𝛺
′′
𝑗 𝑒(𝒄(𝑗), 𝒃*(1,4))𝛺

′
𝑗 ]·

[𝑒(𝒄(𝑚+1),𝒌*(𝑛+1,1))𝑒(𝒄(𝑚+1),𝒌*(𝑛+1,2))𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊)]𝜉

= 𝑔
𝜉𝜔(−𝑢−𝑢ℓ)
𝑇

∏︁
𝑗∈[𝑚]

𝑔
𝜉𝜔𝛺𝑗(𝑥𝜌(𝑗)𝑠𝑗+𝑠′𝑗)

𝑇

∏︁
𝑗∈[𝑚]

𝑔
(𝛺′

𝑗𝑠𝑗+𝛺′′
𝑗 𝑠

′
𝑗)

𝑇 𝑔𝜉𝜔𝑢𝑇

= 𝑔
𝜉𝜔(−𝑢−𝑢ℓ)
𝑇 𝑔

𝜉𝜔(𝑢⃗·
∑︀
𝑗∈[𝑚] 𝛺𝑗(𝑥𝜌(𝑗)𝑦⃗

(𝑗)+𝑧⃗(𝑗)))

𝑇 𝑔
𝑢⃗·
∑︀
𝑗∈[𝑚](𝛺

′
𝑗 𝑦⃗

(𝑗)+𝛺′′
𝑗 𝑧⃗

(𝑗))

𝑇 𝑔𝜉𝜔𝑢𝑇

= 𝑔
𝜉𝜔(−𝑢−𝑢ℓ)
𝑇 𝑔

𝜉𝜔(𝑢⃗·𝑒⃗(ℓ,ℓ))
𝑇 𝑔𝑢⃗·⃗0

ℓ

𝑇 𝑔𝜉𝜔𝑢𝑇 = 𝑔
𝜉𝜔(−𝑢−𝑢ℓ)
𝑇 𝑔𝜉𝜔𝑢ℓ𝑇 1𝔾𝑇 𝑔

𝜉𝜔𝑢
𝑇

= 1𝔾𝑇 .
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The above follows from the expressions of (𝒄(0), . . . , 𝒄(𝑚+1)), (𝒔*(0), . . . , 𝒔*(𝑚+1)), (𝒌*(0), . . . ,𝒌*(𝑛),
𝒌*(𝑛+1,1),𝒌*(𝑛+1,2)), and the dual orthonormality property of {𝔹𝚤,𝔹*

𝚤 }𝚤∈[0,2]; in conjunction with
the facts that

∑︀
𝑗∈[𝑚]

𝛺𝑗(𝑥𝜌(𝑗)𝑦⃗
(𝑗)+ 𝑧⃗(𝑗)) = 𝑒⃗(ℓ,ℓ) (since 𝕊 accepts 𝑥⃗), and

∑︀
𝑗∈[𝑚]

(𝛺′
𝑗 𝑦⃗

(𝑗)+𝛺′′
𝑗 𝑧⃗

(𝑗)) = 0⃗ℓ

(by selection).

Remark 3.1 (Discussion on the Concrete Efficiency of the Proposed ABS Scheme):
In order to understand the concrete efficiency gains of our ABS scheme over the state-of-the-art
scheme of [SAH16], let us consider the performance of both the schemes for a simple signing
policy ABP 𝑓 : 𝔽𝑞 → 𝔽𝑞 defined by 𝑓(𝑥1) = 𝑥1 − 𝑎1 for all 𝑥1 ∈ 𝔽𝑞, where 𝑞 is a 128-bit
prime integer and 𝑎1 is a constant belonging to 𝔽𝑞. We have already presented the summary of
this efficiency analysis in Table 1 in the Introduction section. For the considered ABP, we have
𝑅

(𝑞)
z-abp(𝑓, 𝑥1) = 1 ⇐⇒ 𝑓(𝑥1) = 0 ⇐⇒ 𝑥1 = 𝑎1. By applying the algorithm of [IW14], we

can represent the ABP 𝑓 by the ASP 𝕊 = (𝕌 = {(𝑦⃗(1) = (1, 0), 𝑧⃗(1) = (−𝑎,−1))}, 𝜌 | 1 ↦→ 1).
Hence, it can be readily verified from the description of the proposed ABS scheme above that in
this scheme, a signature sig = (𝒔*(0), 𝒔*(1), 𝒔*(2)) on some message msg ∈ 𝕄 under 𝑅

(𝑞)
z-abp(𝑓, ·)

would consist of only 26 group elements, namely, 4 group elements for 𝒔*(0), 14 group elements
for 𝒔*(1), while 8 group elements for 𝒔*(2). On the other hand, to verify the signature, a verifier
would have to compute 30 pairing operations, namely, 4 pairing operations to verify whether
𝑒(𝒃(0,1), 𝒔*(0)) = 1𝔾𝑇 and 26 pairing operations to verify whether

∏︀
𝑗∈[0,2]

𝑒(𝒄(𝑗), 𝒔*(𝑗)) = 1𝔾𝑇 ,

where (𝒄(0), 𝒄(1), 𝒄(2)) is the verification-text computed during the verification procedure.
Now, let us look into the size of a signature computed for the same signing policy using the

ABS scheme of Sakai et al. [SAH16]. Observe that in this scheme, signing policies are considered as
boolean circuits. So, we must express 𝑅(𝑞)

z-abp(𝑓, ·) as a boolean circuit. Clearly, the boolean circuit
that simulates 𝑅

(𝑞)
z-abp(𝑓, ·) would have 128 input gates to take as input the bit representation of

𝑥1. Moreover, in order to simulate the equality test 𝑥1 = 𝑎1 over 𝔽𝑞 using boolean operations,
the circuit would need to implement 127 boolean AND gates, where the first boolean AND gate
would connect the first and second bits of 𝑥1, the second one would connect the earlier AND
gate with the third bit of 𝑥1, and so on. Also, for all 𝑖 ∈ [128], the wire connecting the 𝑖th bit of
𝑥1 to an AND gate must pass through a NOT gate if the 𝑖th bit of 𝑎1 is 0. For instance, if we
represent the 𝑖th bit of an element 𝑏 ∈ 𝔽𝑞 by 𝑏[𝑖] for all 𝑖 ∈ [128], and some 𝑎1 ∈ 𝔽𝑞 has binary
representation 110 . . . 01, then the boolean circuit simulating 𝑅

(𝑞)
z-abp(𝑓, ·) with this 𝑎1 would be

(((. . . ((𝑥1[1] AND𝑥1[2]) AND (NOT𝑥1[3])) . . .)AND (NOT𝑥1[127]))AND𝑥1[128]).

Hence, it follows that the boolean circuit that realizes 𝑅
(𝑞)
z-abp(𝑓, ·) would have 128 input gates,

127 AND gates along with some additional NOT gates. Further, note that the ABS scheme
of [SAH16] considers representing signing policies using boolean circuits consisting of 𝖭𝖠𝖭𝖣
gates only. Since 3 𝖭𝖠𝖭𝖣 gates are required to simulate each AND gate, and 1 𝖭𝖠𝖭𝖣 gate is
needed to simulate each NOT gate, it follows that the boolean circuit simulating 𝑅

(𝑞)
z-abp(𝑓, ·)

using only 𝖭𝖠𝖭𝖣 gates would consist of at least 128 input gates and at least 127 𝖭𝖠𝖭𝖣 gates.
Now, notice that a signature in the scheme of [SAH16] consists of Groth-Sahai commitments
and proofs [GS08] for each wire of the signing policy circuit for which it is being generated, and
verification requires checking all those proofs. Therefore, it is immediate from the performance
figures presented in Tables 1 and 2 of [SAH16] that a signature on some message with respect
to the boolean circuit simulating 𝑅

(𝑞)
z-abp(𝑓, ·) in this scheme would include at least 4102 group

elements, and verification of the signature would require at least 4102 pairing operations.
Thus, it is clear that in terms of concrete efficiency, even for a very simple signing policy such

as an equality test over 𝔽𝑞, our ABS scheme gives more than 136 times better results compared
to the one of [SAH16].
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4 Security

Theorem 4.1 (Signer Privacy): The proposed ABS scheme achieves perfect signer privacy
(as per the security model described in Section 2.6).

Proof: In order to prove Theorem 4.1, we introduce the following signing algorithm, we call
ABS.AltSign, that generates signatures on messages using the master signing key msk and do
not use any attribute-specific signing key sk(𝑥⃗).

ABS.AltSign(mpk,msk, 𝕊,msg): This algorithm takes in the public parameters mpk, the master
signing key msk, a signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP-

representation 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]), and a message msg ∈ 𝕄.
It proceeds as follows:
1. If 𝑆 = {(( ̂︀𝛺𝑗)𝑗∈[𝑚], ( ̂︀𝛺′

𝑗)𝑗∈[𝑚]) ∈ (𝔽𝑚
𝑞 )2 | ∑︀

𝑗∈[𝑚]

( ̂︀𝛺𝑗 𝑦⃗
(𝑗)+ ̂︀𝛺′

𝑗 𝑧⃗
(𝑗)) = 𝑒⃗(ℓ,ℓ)} = ∅, then it outputs

⊥ indicating failure. Otherwise, it samples (( ̂︀𝛺𝑗)𝑗∈[𝑚], ( ̂︀𝛺′
𝑗)𝑗∈[𝑚])

U←− 𝑆.

2. Next, it samples ̂︀𝜔 U←− 𝔽𝑞∖{0}, ̂︀𝜐0 U←− 𝔽𝑞, and computes

𝒔*(0) = (̂︀𝜔, 0, ̂︀𝜐0, 0)𝔹*
0
.

3. For 𝑗 ∈ [𝑚], it samples ̂︀𝜎𝑗 U←− 𝔽𝑞, ̂⃗︀𝜐𝑗 U←− 𝔽2
𝑞 , and computes

𝒔*(𝑗) = (̂︀𝜎𝑗(1, 𝜌(𝑗)), ( ̂︀𝛺′
𝑗 , ̂︀𝛺𝑗), 0⃗

6, ̂⃗︀𝜐(𝑗), 0⃗2)𝔹*
1
.

4. Then, it samples ̂⃗︀𝜐(𝑚+1) U←− 𝔽2
𝑞 and computes

𝒔*(𝑚+1) = (̂︀𝜔(1,𝖧(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊)), 0⃗2, ̂⃗︀𝜐(𝑚+1)

, 0⃗2)𝔹*
2
.

5. It outputs the signature sig = (𝒔*(0), . . . , 𝒔*(𝑚+1)).

Remark 4.1: Note that using the ABS.AltSign algorithm, one can generate a correctly verifiable
signature on any message msg ∈ 𝕄 under any signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 →
{0, 1} ∈ ℛ(𝑞)

z-abp having ASP-representation 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛])
even without knowing any signing attribute string 𝑥⃗ ∈ 𝔽𝑛

𝑞 accepted by 𝕊. However, in order
to execute this algorithm, one should have access to the master signing key msk – something
which a signer does not have access to in the real world (and an adversary in the unforgeability
experiment). Hence, the above algorithm should only be viewed as a virtual one used in the
security proof. Also, note that if the set 𝑆 defined in the ABS.AltSign algorithm above is empty,
then it is impossible that there exists some signing attribute string 𝑥⃗ ∈ 𝔽𝑛

𝑞 accepted by 𝕊, and
hence no signature can ever be generated under 𝕊, even in the real world.

Clearly, in order to prove Theorem 4.1 it is enough to show that the following statement is
true:
For any security parameter 𝜆 ∈ ℕ, any message msg ∈ 𝕄, any signing attribute string 𝑥⃗ ∈ 𝔽𝑛

𝑞 ,
any signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP-representation

𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) such that 𝕊 accepts 𝑥⃗, any (mpk,msk) R←−
ABS.Setup(𝟣𝑛), and any sk(𝑥⃗) R←− ABS.KeyGen(mpk,msk, 𝑥⃗), the distributions of the signa-
tures outputted by ABS.Sign(mpk, 𝑥⃗, sk(𝑥⃗), 𝕊,msg) and those outputted by ABS.AltSign(mpk,
msk,𝕊,msg) are equivalent.
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In the proposed ABS scheme, sig = (𝒔*(0), . . . , 𝒔*(𝑚+1))
R←− ABS.Sig(mpk, 𝑥⃗, sk(𝑥⃗),𝕊,msg) is

computed as

𝒔*(0) = (𝑝0, 0, 0, 𝜐0)𝔹*
0
,

𝒔*(𝑗) = (𝜎̄𝑗(1, 𝜌(𝑗)), 𝑝
(𝑗), 0⃗6, 𝜐⃗(𝑗), 0⃗2)𝔹*

1
for 𝑗 ∈ [𝑚],

𝒔*(𝑚+1) = (𝑝(𝑚+1), 0⃗2, 𝜐⃗(𝑚+1), 0⃗2)𝔹*
2
,

such that 𝑝0 = 𝜉𝜔, 𝜎̄𝑗 = 𝜉𝜎𝜌(𝑗)𝛺𝑗 + 𝜎′
𝑗 , 𝑝(𝑗) = (𝜉𝜔𝛺𝑗 + 𝛺′′

𝑗 , 𝜉𝜔𝑥𝜌(𝑗)𝛺𝑗 + 𝛺′
𝑗) for 𝑗 ∈ [𝑚],

and 𝑝(𝑚+1) = 𝜉𝜔(1,𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊)), where 𝜔, 𝜉

U←− 𝔽𝑞∖{0}, {𝜎𝜄}𝜄∈[𝑛], {𝜎′
𝑗}𝑗∈[𝑚], 𝜐0

U←− 𝔽𝑞,

{𝜐⃗(𝑗)}𝑗∈[𝑚+1]
U←− 𝔽2

𝑞 , (𝛺𝑗)𝑗∈[𝑚] ∈ 𝔽ℓ
𝑞 with

∑︀
𝑗∈[𝑚]

𝛺𝑗(𝑥𝜌(𝑗)𝑦⃗
(𝑗)+𝑧⃗(𝑗)) = 𝑒⃗(ℓ,ℓ), and ((𝛺′

𝑗)𝑗∈[𝑚], (𝛺
′′
𝑗 )𝑗∈[𝑚])

U←− (𝔽𝑚
𝑞 )2 with

∑︀
𝑗∈[𝑚]

(𝛺′
𝑗 𝑦⃗

(𝑗) +𝛺′′
𝑗 𝑧⃗

(𝑗)) = 0⃗ℓ.

On the other hand sig = (𝒔*(0), . . . , 𝒔*(𝑚+1))
R←− ABS.AltSign(mpk,msk, 𝕊, msg) is computed

as

𝒔*(0) = (̂︀𝑝0, 0, ̂︀𝜐0, 0)𝔹*
0
,

𝒔*(𝑗) = (̂︀𝜎𝑗(1, 𝜌(𝑗)), ̂⃗︀𝑝(𝑗), 0⃗6, ̂⃗︀𝜐(𝑗), 0⃗2)𝔹*
1

for 𝑗 ∈ [𝑚],

𝒔*(𝑚+1) = (⃗̂︀𝑝(𝑚+1)
, 0⃗2, ̂⃗︀𝜐(𝑚+1)

, 0⃗2)𝔹*
2
,

such that ̂︀𝑝0 = ̂︀𝜔, ̂⃗︀𝑝(𝑗) = ( ̂︀𝛺′
𝑗 ,

̂︀𝛺𝑗) for 𝑗 ∈ [𝑚], and ̂⃗︀𝑝(𝑚+1)
= ̂︀𝜔(1,𝖧(𝜆,𝗉𝗈𝗅𝗒)

𝗁𝗄 (msg‖𝕊)), wherê︀𝜔 U←− 𝔽𝑞∖{0}, {̂︀𝜎𝑗}𝑗∈[𝑚], ̂︀𝜐0 U←− 𝔽𝑞, {̂⃗︀𝜐(𝑗)}𝑗∈[𝑚+1]
U←− 𝔽2

𝑞 , and (( ̂︀𝛺𝑗)𝑗∈[𝑚], ( ̂︀𝛺′
𝑗)𝑗∈[𝑚])

U←− 𝑆 =

{(( ̂︀𝛺𝑗)𝑗∈[𝑚], ( ̂︀𝛺′
𝑗)𝑗∈[𝑚]) ∈ (𝔽𝑚

𝑞 )2 | ∑︀
𝑗∈[𝑚]

( ̂︀𝛺𝑗 𝑦⃗
(𝑗) + ̂︀𝛺′

𝑗 𝑧⃗
(𝑗)) = 𝑒⃗(ℓ,ℓ)}.

Observe that the distributions {(𝜉𝜔, (𝜉𝜔𝑥𝜌(𝑗)𝛺𝑗 + 𝛺′
𝑗)𝑗∈[𝑚], (𝜉𝜔𝛺𝑗 + 𝛺′′

𝑗 )𝑗∈[𝑚]) | 𝜔, 𝜉
U←−

𝔽𝑞∖{0}, ((𝛺′
𝑗)𝑗∈[𝑚], (𝛺

′′
𝑗 )𝑗∈[𝑚])

U←− (𝔽𝑚
𝑞 )2 with

∑︀
𝑗∈[𝑚]

(𝛺′
𝑗 𝑦⃗

(𝑗) + 𝛺′′
𝑗 𝑧⃗

(𝑗)) = 0⃗ℓ, (𝛺𝑗)𝑗∈[𝑚] ∈

𝔽𝑚
𝑞 with

∑︀
𝑗∈[𝑚]

𝛺𝑗(𝑥𝜌(𝑗)𝑦⃗
(𝑗)+𝑧⃗(𝑗)) = 𝑒⃗(ℓ,ℓ)} and {(̂︀𝜔, ( ̂︀𝛺𝑗)𝑗∈[𝑚], ( ̂︀𝛺′

𝑗)𝑗∈[𝑚]) | ̂︀𝜔 U←− 𝔽𝑞∖{0}, (( ̂︀𝛺𝑗)𝑗∈[𝑚],

( ̂︀𝛺′
𝑗)𝑗∈[𝑚])

U←− 𝑆} are equivalent. Also, the distributions {(𝜎̄𝑗 = 𝜉𝛺𝑗𝜎𝜌(𝑗) + 𝜎′
𝑗)𝑗∈[𝑚] | 𝜉 U←−

𝔽𝑞∖{0}, {𝜎𝜄}𝜄∈[𝑛], {𝜎′
𝑗}𝑗∈[𝑚]

U←− 𝔽𝑞, (𝛺𝑗)𝑗∈[𝑚] ∈ 𝔽𝑚
𝑞 with

∑︀
𝑗∈[𝑚]

𝛺𝑗(𝑥𝜌(𝑗)𝑦⃗
(𝑗) + 𝑧⃗(𝑗)) = 𝑒⃗(ℓ,ℓ)} and

{(̂︀𝜎𝑗)𝑗∈[𝑚] | {̂︀𝜎𝑗}𝑗∈[𝑚]
U←− 𝔽𝑞} are equivalent. Thus, the distributions of sig R←− ABS.Sign(mpk,

𝑥⃗, sk(𝑥⃗),𝕊,msg) and that of sig R←− ABS.AltSign(mpk,msk,𝕊,msg) are equivalent. This com-
pletes the proof of Theorem 4.1. ⊓⊔

Theorem 4.2 (Existential Unforgeability): The proposed ABS scheme is existentially un-
forgeable against adaptive-predicate-adaptive-message attack (as per the security model described
in Section 2.6) under the SXDLIN assumption.

Proof: In order to prove Theorem 4.2, we consider a sequence of hybrid experiments which differ
from one another in the construction of the signing keys/signatures queried by the adversary
𝒜 and/or the verification-text used by the challenger ℬ to verify the validity of the forged
signature outputted by 𝒜 at the end of the experiment. The first hybrid corresponds to the real
unforgeability experiment described in Section 2.6, while the last hybrid corresponds to one in
which the probability that a forged signature outputted by 𝒜 passes the verification is negligible.
We argue that 𝒜’s winning probability changes only by a negligible amount in each successive
hybrid experiment, thereby establishing Theorem 4.2. The overall structure of our reduction is
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demonstrated in Fig. 4.1. Let 𝑞key and 𝑞sig be the total number of signing keys and signatures 𝒜
requests ℬ to reveal during the experiment. The sequence of hybrid experiments are described
below. In the description of the hybrids a part framed by a box indicates coefficients which are
altered in a transition from its previous hybrid.

Hyb0 Hyb0′ Hyb1 Hyb2-1-1
b b b Hyb2-(χ−1)-9

= c≈ c≈

Hyb2-χ-1 Hyb2-χ-2 Hyb2-χ-3 Hyb2-χ-4 Hyb2-χ-5 Hyb2-χ-6 Hyb2-χ-7 Hyb2-χ-8 Hyb2-χ-9

=c≈ c≈ c≈ c≈ c≈
c≈ c≈ c≈

Problem 3 Problem 7

Problem 1 Problem 2

SXDLIN

Hyb2-0-9
≡

SXDLIN

Hyb2-(χ+1)-1 Hyb2-qkey-9 Hyb3

Hyb4-0
≡

b b b Hyb4-1
b b b Hyb4-π

b b b Hyb4-qsig Hyb5

c≈ c≈ = c≈ c≈ c≈ =

Problem 2 Problem 8

SXDLIN

b bb b bb b b b

c≈

{Problem 4-α, 5-α, 6-α}α∈[n]

Fig. 4.1: Structure of the Hybrid Reduction for the Proof of Theorem 4.2

■ Sequence of Hybrid Experiments

Hyb0: This is the real unforgeability experiment described in Section 2.6.

Hyb0′ : This experiment is the same as Hyb0 except the following:

1. When 𝒜 makes a signing key generation query for some signing attribute string 𝑥⃗ ∈ 𝔽𝑛
𝑞 , ℬ

only records 𝑥⃗, but creates no actual signing key.
2. When a signature query is made by 𝒜 on some message msg ∈𝕄 under some signing policy

predicate 𝑅
(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP-representation 𝕊 = (𝕌, 𝜌) to be

created using a signing key for some signing attribute string 𝑥⃗ ∈ 𝔽𝑛
𝑞 for which it has already

made a signing key generation query, ℬ simply records the triple (msg, 𝕊, 𝑥⃗), but creates no
actual signature.

3. When 𝒜 issues a signing key reveal query for some signing attribute string 𝑥⃗ ∈ 𝔽𝑛
𝑞 which has

been already recorded, ℬ creates the queried signing key as sk(𝑥⃗) R←− ABS.KeyGen(mpk,msk, 𝑥⃗),
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and returns it to 𝒜. On the other hand, when 𝒜 issues a signature reveal query for some triple
(msg,𝕊, 𝑥⃗) ∈𝕄×ℛ(𝑞)

z-abp × 𝔽𝑛
𝑞 which has been already recorded, ℬ creates the queried signa-

ture as sig R←− ABS.AltSign(mpk,msk,𝕊,msg), where the ABS.AltSign algorithm is described
in the proof of Theorem 4.1, and hands sig to 𝒜.

Thus, in this experiment for 𝑕 ∈ [𝑞key], the 𝑕th signing key for signing attribute string 𝑥⃗(𝑕) ∈ 𝔽𝑛
𝑞

requested by 𝒜 to reveal is generated as sk(𝑥⃗(𝑕)) = (𝒌*(𝑕,0), . . . ,𝒌*(𝑕,𝑛),𝒌*(𝑕,𝑛+1,1),𝒌*(𝑕,𝑛+1,2))
such that

𝒌*(𝑕,0) = (𝜔𝑕, 0, 𝜙𝑕,0, 0)𝔹*
0
,

𝒌*(𝑕,𝜄) = (𝜎𝑕,𝜄(1, 𝜄), 𝜔𝑕(1, 𝑥
(𝑕)
𝜄 ), 0⃗6, 𝜙⃗(𝑕,𝜄), 0⃗2)𝔹*

1
for 𝜄 ∈ [𝑛],

𝒌*(𝑕,𝑛+1,1) = (𝜔𝑕(1, 0), 0⃗
2, 𝜙⃗(𝑕,𝑛+1,1), 0⃗2)𝔹*

2
,

𝒌*(𝑕,𝑛+1,2) = (𝜔𝑕(0, 1), 0⃗
2, 𝜙⃗(𝑕,𝑛+1,2), 0⃗2)𝔹*

2
,

(4.1)

where 𝜔𝑕
U←− 𝔽𝑞∖{0}, {𝜎𝑕,𝜄}𝜄∈[𝑛], 𝜙𝑕,0

U←− 𝔽𝑞, {𝜙⃗(𝑕,𝜄)}𝜄∈[𝑛], 𝜙⃗(𝑕,𝑛+1,1), 𝜙⃗(𝑕,𝑛+1,2) U←− 𝔽2
𝑞 .

On the other hand, for 𝑡 ∈ [𝑞sig], the 𝑡th signature associated with the triple (msg𝑡,𝕊𝑡, 𝑥⃗(𝑡)) ∈
𝕄×ℛ(𝑞)

z-abp × 𝔽𝑛
𝑞 that 𝒜 requests to reveal, where 𝕊𝑡 = (𝕌𝑡 = {(𝑦⃗(𝑡,𝑗), 𝑧⃗(𝑡,𝑗))}𝑗∈[𝑚𝑡] ⊂ (𝔽ℓ𝑡

𝑞 )
2, 𝜌𝑡 :

[𝑚𝑡]→ [𝑛]), is created as sig𝑡 = (𝒔*(𝑡,0), . . . , 𝒔*(𝑡,𝑚𝑡+1)) such that

𝒔*(𝑡,0) = (̂︀𝜔𝑡, 0, ̂︀𝜐𝑡,0, 0)𝔹*
0
,

𝒔*(𝑡,𝑗) = (̂︀𝜎𝑡,𝑗(1, 𝜌𝑡(𝑗)), ( ̂︀𝛺′
𝑡,𝑗 ,

̂︀𝛺𝑡,𝑗), 0⃗
6, ̂⃗︀𝜐(𝑡,𝑗), 0⃗2)𝔹*

1
for 𝑗 ∈ [𝑚𝑡],

𝒔*(𝑡,𝑚𝑡+1) = (̂︀𝜔(1,𝖧(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg𝑡‖𝕊𝑡)), 0⃗2, ̂⃗︀𝜐(𝑡,𝑚𝑡+1)

, 0⃗2)𝔹*
2
,

(4.2)

where ̂︀𝜔𝑡
U←− 𝔽𝑞∖{0}, {̂︀𝜎𝑡,𝑗}𝑗∈[𝑚𝑡], ̂︀𝜐𝑡,0 U←− 𝔽𝑞, {̂⃗︀𝜐(𝑡,𝑗)}𝑗∈[𝑚𝑡+1]

U←− 𝔽2
𝑞 , and (( ̂︀𝛺𝑡,𝑗)𝑗∈[𝑚𝑡], (

̂︀𝛺′
𝑡,𝑗)𝑗∈[𝑚𝑡])

U←− 𝑆𝑡 = {(( ̂︀𝛺𝑡,𝑗)𝑗∈[𝑚𝑡], (
̂︀𝛺′
𝑡,𝑗)𝑗∈[𝑚𝑡]) ∈ (𝔽𝑚𝑡

𝑞 )2 | ∑︀
𝑗∈[𝑚𝑡]

( ̂︀𝛺𝑡,𝑗 𝑦⃗
(𝑡,𝑗) + ̂︀𝛺′

𝑡,𝑗 𝑧⃗
(𝑡,𝑗)) = 𝑒⃗(ℓ𝑡,ℓ𝑡)}.

Finally, in this experiment, the verification-text used to verify the forged signature outputted
by 𝒜 on some message msg ∈ 𝕄 under some signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 →
{0, 1} ∈ ℛ(𝑞)

z-abp having ASP-representation 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚]→ [𝑛]) is
generated as (𝒄(0), . . . , 𝒄(𝑚+1)) such that

𝒄(0) = (−𝑢− 𝑢ℓ, 0, 0, 𝜂0)𝔹0 ,

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), 0⃗6, 0⃗2, 𝜂⃗(𝑗))𝔹1 for 𝑗 ∈ [𝑚],

𝒄(𝑚+1) = ((𝑢− 𝜅𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊), 𝜅), 0⃗2, 0⃗2, 𝜂⃗(𝑚+1))𝔹2 ,

(4.3)

where 𝑢⃗ = (𝑢1, . . . , 𝑢ℓ)
U←− 𝔽ℓ

𝑞, 𝑠𝑗 = 𝑢⃗ · 𝑦⃗(𝑗), 𝑠′𝑗 = 𝑢⃗ · 𝑧⃗(𝑗) for 𝑗 ∈ [𝑚], 𝑢, {𝜇𝑗}𝑗∈[𝑚], 𝜅, 𝜂0
U←− 𝔽𝑞, and

{𝜂⃗(𝑗)}𝑗∈[𝑚+1]
U←− 𝔽2

𝑞 .
Here {𝔹𝚤,𝔹*

𝚤 }𝚤∈[0,2] is the collection of dual orthonormal bases generated by ℬ during the
setup phase of the experiment.

Hyb1: This experiment is analogous to Hyb0′ except that in this experiment, the verification-
text used to verify the forged signature outputted by 𝒜 on some message msg ∈ 𝕄 under
some signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP-representation

𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚]→ [𝑛]) is generated as (𝒄(0), . . . , 𝒄(𝑚+1)) such that

𝒄(0) = (−𝑢− 𝑢ℓ, −̃︀𝑢ℓ , 0, 𝜂0)𝔹0 ,

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), (̃︀𝑠′𝑗 , ̃︀𝑠𝑗) , 0⃗2, 𝑟⃗(𝑗) , 0⃗2, 𝜂⃗(𝑗))𝔹1 for 𝑗 ∈ [𝑚],

𝒄(𝑚+1) = ((𝑢− 𝜅𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊), 𝜅), 𝑟⃗(𝑚+1) , 0⃗2, 𝜂⃗(𝑚+1))𝔹2 ,

(4.4)
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where ̃⃗︀𝑢 = (̃︀𝑢1, . . . , ̃︀𝑢ℓ) U←− 𝔽ℓ
𝑞, ̃︀𝑠𝑗 = ̃⃗︀𝑢 · 𝑦⃗(𝑗), ̃︀𝑠′𝑗 = ̃⃗︀𝑢 · 𝑧⃗(𝑗) for 𝑗 ∈ [𝑚], {𝑟⃗(𝑗)}𝑗∈[𝑚+1]

U←− 𝔽2
𝑞 , and all

the other variables are generated as in Hyb0′ .

Hyb2-𝝌-1 (𝝌 ∈ [𝒒key]): Hyb2-0-9 coincides with Hyb1. This experiment is the same as Hyb2-(𝜒−1)-9
with the only exception that in this experiment, the 𝜒th signing key for signing attribute string
𝑥⃗(𝜒) ∈ 𝔽𝑛

𝑞 requested by 𝒜 to reveal is generated as sk(𝑥⃗(𝜒)) = (𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),

𝒌*(𝜒,𝑛+1,2)) such that 𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2) are given by Eq. (4.1), and

𝒌*(𝜒,0) = (𝜔𝜒, ̃︀𝜔𝜒 , 𝜙𝜒,0, 0)𝔹*
0
,

𝒌*(𝜒,𝜄) = (𝜎𝜒,𝜄(1, 𝜄), 𝜔𝜒(1, 𝑥
(𝜒)
𝜄 ), ̃︀𝜔𝜒(1, 𝑥

(𝜒)
𝜄 ) , 0⃗4, 𝜙⃗(𝜒,𝜄), 0⃗2)𝔹*

1
for 𝜄 ∈ [𝑛],

(4.5)

where ̃︀𝜔𝜒
U←− 𝔽𝑞∖{0} and all the other variables are generated as in Hyb2-(𝜒−1)-9.

Hyb2-𝝌-2 (𝝌 ∈ [𝒒key]): This experiment is analogous to Hyb2-𝜒-1 except that in this exper-
iment, the verification-text used to verify the forged signature outputted by 𝒜 on some mes-
sage msg ∈ 𝕄 under some signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp hav-

ing ASP-representation 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) is generated as
(𝒄(0), . . . , 𝒄(𝑚+1)) such that 𝒄(0), 𝒄(𝑚+1) have the same form as in Eq. (4.4) and

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), (̃︀𝑠′𝑗 , ̃︀𝑠𝑗), 0⃗2, (̃︀𝑠′𝑗 , ̃︀𝑠𝑗)𝒁(𝜌(𝑗)) , 0⃗2, 𝜂⃗(𝑗))𝔹1 for 𝑗 ∈ [𝑚], (4.6)

where 𝒁(𝜄) ∈ {𝒁 ∈ GL(2,𝔽𝑞) | 𝑒⃗(2,2) = (1, 𝑥
(𝜒)
𝜄 )(𝒁−1)⊤} for 𝜄 ∈ [𝑛], and all the other variables

are generated as in Hyb2-𝜒-1.

Hyb2-𝝌-3 (𝝌 ∈ [𝒒key]): This experiment is the same as Hyb2-𝜒-2 with the only exception that
in this experiment, the 𝜒th signing key for signing attribute string 𝑥⃗(𝜒) ∈ 𝔽𝑛

𝑞 requested by 𝒜 to
reveal is generated as sk(𝑥⃗(𝜒)) = (𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2)) such that 𝒌*(𝜒,0) is
given by Eq. (4.5), 𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2) are given by Eq. (4.1), and

𝒌*(𝜒,𝜄) = (𝜎𝜒,𝜄(1, 𝜄), 𝜔𝜒(1, 𝑥
(𝜒)
𝜄 ), 0⃗2 , 0⃗2, (0, ̃︀𝜔𝜒) , 𝜙⃗

(𝜒,𝜄), 0⃗2)𝔹*
1

for 𝜄 ∈ [𝑛], (4.7)

where all the variables are generated as in Hyb2-𝜒-2.

Hyb2-𝝌-4 (𝝌 ∈ [𝒒key]): This experiment is identical to Hyb2-𝜒-3 except that in this experi-
ment, the verification-text used to verify the forged signature outputted by 𝒜 on some mes-
sage msg ∈ 𝕄 under some signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp hav-

ing ASP-representation 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) is generated as
(𝒄(0), . . . , 𝒄(𝑚+1)) such that 𝒄(0), 𝒄(𝑚+1) have the same form as in Eq. (4.4) and

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), 𝑎⃗(𝑗) , 0⃗2, ( ̃︀𝑎𝑗 , ̃⃗︀𝑢 · (𝑥(𝜒)𝜌(𝑗)𝑦⃗
(𝑗) + 𝑧⃗(𝑗))), 0⃗2, 𝜂⃗(𝑗))𝔹1 for 𝑗 ∈ [𝑚], (4.8)

where {̃︀𝑎𝑗}𝑗∈[𝑚]
U←− 𝔽𝑞, {𝑎⃗(𝑗)}𝑗∈[𝑚]

U←− 𝔽2
𝑞 , and all the other variables are generated as in Hyb2-𝜒-3.

Hyb2-𝝌-5 (𝝌 ∈ [𝒒key]): This experiment is the same as Hyb2-𝜒-4 with the only exception that in
this experiment, the 𝜒th signing key for signing attribute string 𝑥⃗(𝜒) ∈ 𝔽𝑛

𝑞 requested by𝒜 to reveal
is generated as sk(𝑥⃗(𝜒)) = (𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2)) such that {𝒌*(𝜒,𝜄)}𝜄∈[𝑛] are
given by Eq. (4.7), 𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2) are given by Eq. (4.1), and

𝒌*(𝜒,0) = (𝜔𝜒, ℑ𝜒 , 𝜙𝜒,0, 0)𝔹*
0
, (4.9)

where ℑ𝜒
U←− 𝔽𝑞, and all the other variables are generated as in Hyb2-𝜒-4.
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Hyb2-𝝌-6 (𝝌 ∈ [𝒒key]): This experiment is analogous to Hyb2-𝜒-5 except that in this exper-
iment, the verification-text used to verify the forged signature outputted by 𝒜 on some mes-
sage msg ∈ 𝕄 under some signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp hav-

ing ASP-representation 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) is generated as
(𝒄(0), . . . , 𝒄(𝑚+1)) such that 𝒄(0), 𝒄(𝑚+1) have the same form as in Eq. (4.4) and {𝒄(𝑗)}𝑗∈[𝑚] are
given by Eq. (4.6) where ̃︀𝑠𝑗 = ̃⃗︀𝑢 · 𝑦⃗(𝑗), ̃︀𝑠′𝑗 = ̃⃗︀𝑢 · 𝑧⃗(𝑗) for 𝑗 ∈ [𝑚], 𝒁(𝜄) ∈ {𝒁 ∈ GL(2,𝔽𝑞) | 𝑒⃗(2,2) =
(1, 𝑥

(𝜒)
𝜄 )(𝒁−1)⊤} for 𝜄 ∈ [𝑛], and all the other variables are generated as in Hyb2-𝜒-5.

Hyb2-𝝌-7 (𝝌 ∈ [𝒒key]): This experiment is analogous to Hyb2-𝜒-6 with the only exception that
in this experiment, the 𝜒th signing key for signing attribute string 𝑥⃗(𝜒) ∈ 𝔽𝑛

𝑞 requested by 𝒜 to
reveal is generated as sk(𝑥⃗(𝜒)) = (𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2)) such that 𝒌*(0) is
given by Eq. (4.9), {𝒌*(𝜒,𝜄)}𝜄∈[𝑛] are given by Eq. (4.5), and 𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2) are given by
Eq. (4.1), where all the variables are generated as in Hyb2-𝜒-6.

Hyb2-𝝌-8 (𝝌 ∈ [𝒒key]): This experiment is analogous to Hyb2-𝜒-7 except that in this ex-
periment, the verification-text used to verify the forged signature outputted by 𝒜 on some
message msg ∈ 𝕄 under some signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp

having ASP-representation 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) is gener-
ated as (𝒄(0), . . . , 𝒄(𝑚+1)) such that {𝒄(𝑗)}𝑗∈[0,𝑚+1] have the same form as in Eq. (4.4), where

{𝑟⃗(𝑗)}𝑗∈[𝑚]
U←− 𝔽2

𝑞 , and all the other variables are generated as in Hyb2-𝜒-7.

Hyb2-𝝌-9 (𝝌 ∈ [𝒒key]): This experiment is analogous to Hyb2-𝜒-8 with the only exception that
in this experiment, the 𝜒th signing key for signing attribute string 𝑥⃗(𝜒) ∈ 𝔽𝑛

𝑞 requested by 𝒜 to
reveal is generated as sk(𝑥⃗(𝜒)) = (𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2)) such that 𝒌*(0) is
given by Eq. (4.9), and {𝒌*(𝜒,𝜄)}𝜄∈[𝑛], 𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2) are given by Eq. (4.1), where all the
variables are generated as in Hyb2-𝜒-8.

Hyb3: This experiment is identical to Hyb2-𝑞key-9 except that in this experiment, the verification-
text used to verify the forged signature outputted by 𝒜 on some message msg ∈ 𝕄 under
some signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP-representation

𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) is generated as (𝒄(0), . . . , 𝒄(𝑚+1)) such that
{𝒄(𝑗)}𝑗∈[𝑚+1] have the same form as in Eq. (4.4), and

𝒄(0) = (−𝑢− 𝑢ℓ, 𝑣 , 0, 𝜂0)𝔹0 , (4.10)

where 𝑣
U←− 𝔽𝑞, and all the other variables are generated as in Hyb2-𝑞key-9.

Hyb4-𝝅 (𝝅 ∈ [𝒒sig]): Hyb4-0 coincides with Hyb3. This experiment is the same as Hyb4-(𝜋−1)

except that in this experiment, the 𝜋th signature associated with the triple (msg𝜋,𝕊𝜋, 𝑥⃗(𝜋)) ∈
𝕄×ℛ(𝑞,𝑛)

z- abp×𝔽𝑛
𝑞 that 𝒜 requests to reveal, where 𝕊𝜋 = (𝕌𝜋 = {(𝑦⃗(𝜋,𝑗), 𝑧⃗(𝜋,𝑗))}𝑗∈[𝑚𝜋 ] ⊂ (𝔽ℓ𝜋

𝑞 )2, 𝜌𝜋 :

[𝑚𝜋]→ [𝑛]), is created as sig𝜋 = (𝒔*(𝜋,0), . . . , 𝒔*(𝜋,𝑚𝜋+1)) such that {𝒔*(𝜋,𝑗)}𝑗∈[𝑚𝜋 ] have the same
form as in Eq. (4.2), and

𝒔*(𝜋,0) = (̂︀𝜔𝜋, 𝜁𝜋,0 , ̂︀𝜐𝜋,0, 0)𝔹*
0
,

𝒔*(𝜋,𝑚𝜋+1) = (̂︀𝜔𝜋(1,𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg𝜋‖𝕊𝜋)), 𝜁(𝜋,𝑚𝜋+1) , ̂⃗︀𝜐(𝜋,𝑚𝜋+1)

, 0⃗2)𝔹*
2
,

(4.11)

where 𝜁𝜋,0
U←− 𝔽𝑞, 𝜁(𝜋,𝑚𝜋+1) U←− 𝔽2

𝑞 , and all the other variables are generated as in Hyb4-(𝜋−1).
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Hyb5: This experiment is identical to Hyb4-𝑞sig except that in this experiment, the verification-
text used to verify the forged signature outputted by 𝒜 on some message msg ∈ 𝕄 under
some signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP-representation

𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) is generated as (𝒄(0), . . . , 𝒄(𝑚+1)) such that
{𝒄(𝑗)}𝑗∈[𝑚+1] have the same form as in Eq. (4.4), and

𝒄(0) = ( 𝑤 , 𝑣, 0, 𝜂0)𝔹0 , (4.12)

where 𝑤
U←− 𝔽𝑞, and all the other variables are generated as in Hyb5-𝑞sig .

■ Analysis

Let us now denote by 𝖠𝖽𝗏
(𝑖)
𝒜 (𝜆) the probability that 𝒜 wins in Hyb𝑖 for 𝑖 ∈ {0, 0′, 1,

{2-𝜒-𝑘}𝜒∈[𝑞key],𝑘∈[9], 3, {4-𝜋}𝜋∈[𝑞sig], 5}. By definition, we clearly have 𝖠𝖽𝗏ABS,UF
𝒜 (𝜆) ≡ 𝖠𝖽𝗏

(0)
𝒜 (𝜆),

𝖠𝖽𝗏
(1)
𝒜 (𝜆) ≡ 𝖠𝖽𝗏

(2-0-9)
𝒜 (𝜆), and 𝖠𝖽𝗏

(3)
𝒜 (𝜆) ≡ 𝖠𝖽𝗏

(4-0)
𝒜 (𝜆). Hence, we have

𝖠𝖽𝗏ABS,UF
𝒜 (𝜆) ≤

⃒⃒⃒
𝖠𝖽𝗏

(0)
𝒜 (𝜆)− 𝖠𝖽𝗏

(0′)
𝒜 (𝜆)

⃒⃒⃒
+
⃒⃒⃒
𝖠𝖽𝗏

(0′)
𝒜 (𝜆)− 𝖠𝖽𝗏

(1)
𝒜 (𝜆)

⃒⃒⃒
+∑︁

𝜒∈[𝑞key]

[︁ ⃒⃒⃒
𝖠𝖽𝗏

(2-(𝜒−1)-9)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-1)
𝒜 (𝜆)

⃒⃒⃒
+

∑︁
𝑘∈[8]

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-𝑘)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-(𝑘+1))
𝒜 (𝜆)

⃒⃒⃒ ]︁
+

⃒⃒⃒
𝖠𝖽𝗏

(2-𝑞key-9)
𝒜 (𝜆)− 𝖠𝖽𝗏

(3)
𝒜 (𝜆)

⃒⃒⃒
+∑︁

𝜋∈[𝑞sig]

⃒⃒⃒
𝖠𝖽𝗏

(4-(𝜋−1)
𝒜 (𝜆)− 𝖠𝖽𝗏

(4,𝜋)
𝒜 (𝜆)

⃒⃒⃒
+

⃒⃒⃒
𝖠𝖽𝗏

(4-𝑞sig)
𝒜 (𝜆)− 𝖠𝖽𝗏

(5)
𝒜 (𝜆)

⃒⃒⃒
+ 𝖠𝖽𝗏

(5)
𝒜 (𝜆).

(4.13)

Then Theorem 4.2 follows from Lemmas 4.1–4.16 presented below, in conjunction with Lem-
mas 2.3–2.10 of Section 2.4. ⊓⊔

Lemma 4.1: For any stateful probabilistic adversary 𝒜, for any security parameter 𝜆,
𝖠𝖽𝗏

(0)
𝒜 (𝜆) = 𝖠𝖽𝗏

(0′)
𝒜 (𝜆).

Proof: Lemma 4.1 follows directly from Theorem 4.1. ⊓⊔

Lemma 4.2: For any stateful probabilistic adversary 𝒜, there exists a probabilistic algorithm ℬ1,
whose running time is essentially the same as that of 𝒜, such that for any security parameter 𝜆,⃒⃒⃒
𝖠𝖽𝗏

(0′)
𝒜 (𝜆)− 𝖠𝖽𝗏

(1)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝖠𝖽𝗏P1

ℬ1
(𝜆) + 5/𝑞.

Proof: In order to prove Lemma 4.2, we construct below a probabilistic algorithm ℬ1 against
Problem 1 using as a blackbox sub-routine a stateful probabilistic adversary 𝒜 that distinguishes
between Hyb0′ and Hyb1. Suppose ℬ1 is given an instance of Problem 1

𝜚P1̂︀𝛽 = (params, {𝔹𝚤, ̃︀𝔹*
𝚤 }𝚤∈[0,2], {𝒆(𝛼,𝜈,

̂︀𝛽)}𝛼∈[2],𝜈∈[2],𝒇 (0,̂︀𝛽), {𝒇 (1,𝜈,̂︀𝛽)}𝜈∈[2]),
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where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8));̃︀𝔹*
0 = {𝒃*(0,1), 𝒃*(0,3), 𝒃*(0,4)};̃︀𝔹*
1 = {𝒃*(1,1), . . . , 𝒃*(1,4), 𝒃*(1,7), 𝒃*(1,8), 𝒃*(1,11), . . . , 𝒃*(1,14)};̃︀𝔹*
2 = {𝒃*(2,1), 𝒃*(2,2), 𝒃*(2,5), . . . , 𝒃*(2,8)};

𝛿, 𝜏, {𝜃𝜈 , 𝜃′𝜈}𝜈∈[2], 𝛾0
U←− 𝔽𝑞, {𝛾⃗(𝜈), 𝛾⃗′(𝜈), 𝛾⃗′′(𝜈)}𝜈∈[2] U←− 𝔽2

𝑞 ;

𝒆(1,𝜈,0) = (⃗04, 0⃗6, 0⃗2, 𝛾⃗(𝜈))𝔹1

𝒆(1,𝜈,1) = (⃗04, 0⃗4, 𝜃𝜈 𝑒⃗
(2,𝜈), 0⃗2, 𝛾⃗(𝜈))𝔹1

𝒆(2,𝜈,0) = (⃗02, 0⃗2, 0⃗2, 𝛾⃗′(𝜈))𝔹2

𝒆(2,𝜈,1) = (⃗02, 𝜃′𝜈 𝑒⃗
(2,𝜈), 0⃗2, 𝛾⃗′(𝜈))𝔹2

⎫⎪⎪⎬⎪⎪⎭ for 𝜈 ∈ [2];

𝒇 (0,0) = (𝛿, 0, 0, 𝛾0)𝔹0 ,𝒇
(0,1) = (𝛿, 𝜏, 0, 𝛾0)𝔹0 ;

𝒇 (1,𝜈,0) = (⃗02, 𝛿𝑒⃗(2,𝜈), 0⃗6, 0⃗2, 𝛾⃗′′(𝜈))𝔹1

𝒇 (1,𝜈,1) = (⃗02, 𝛿𝑒⃗(2,𝜈), 𝜏 𝑒⃗(2,𝜈), 0⃗4, 0⃗2, 𝛾⃗′′(𝜈))𝔹1

}︂
for 𝜈 ∈ [2].

ℬ1 interacts with 𝒜 as follows:

1. At first, ℬ1 sets

̂︀𝔹0 = {𝒃(0,1), 𝒃(0,4)},̂︀𝔹*
0 = {𝒃*(0,3)},̂︀𝔹1 = {𝒃(1,1), . . . , 𝒃(1,4), 𝒃(1,13), 𝒃(1,14)},̂︀𝔹*
1 = {𝒃*(1,1), . . . , 𝒃*(1,4), 𝒃*(1,11), 𝒃*(1,12)},̂︀𝔹2 = {𝒃(2,1), 𝒃(2,2), 𝒃(2,7), 𝒃(2,8)},̂︀𝔹*
2 = {𝒃*(2,1), 𝒃*(2,2), 𝒃*(2,5), 𝒃*(2,6)},

using {𝔹𝚤, ̃︀𝔹*
𝚤 }𝚤∈[0,2], which are part of the given Problem 1 instance. It also samples a hash-

ing key 𝗁𝗄
R←− 𝖪𝖦𝖾𝗇() for a hash function family ℍ associated with 𝒢bpg and the poly-

nomial 𝗉𝗈𝗅𝗒 (·), where 𝗉𝗈𝗅𝗒 (𝜆) represents the length of the bit string formed by concate-
nating a message belonging to 𝕄 and the binary representation of an ASP representing
a signing policy predicate in ℛ(𝑞)

z-abp. It provides 𝒜 with the public parameters mpk =
(𝗁𝗄, params, {̂︀𝔹𝚤, ̂︀𝔹*

𝚤 }𝚤∈[0,2]).
2. For all 𝑕 ∈ [𝑞key], in response to the 𝑕th signing key reveal query of 𝒜 for some 𝑥⃗(𝑕) ∈

𝔽𝑛
𝑞 , ℬ1 gives 𝒜 a signing key sk(𝑥⃗(𝑕)) = (𝒌*(𝑕,0), . . . ,𝒌*(𝑕,𝑛),𝒌*(𝑕,𝑛+1,1), 𝒌*(𝑕,𝑛+1,2)) whose

components are generated as in Eq. (4.1) using {̃︀𝔹*
𝚤 }𝚤∈[0,2] included within the given Problem

1 instance.

3. Similarly, for all 𝑡 ∈ [𝑞sig], in response to the 𝑡th signature reveal query of 𝒜 for some triple
(msg𝑡, 𝕊𝑡, 𝑥⃗(𝑡)) ∈𝕄×ℛ(𝑞)

z-abp×𝔽𝑛
𝑞 , ℬ1 hands 𝒜 a signature sig𝑡 = (𝒔*(𝑡,0), . . . , 𝒔*(𝑡,𝑚𝑡+1)) whose

components are computed as in Eq. (4.2) using {̃︀𝔹*
𝚤 }𝚤∈[0,2] of the given Problem 1 instance.

4. When 𝒜 outputs a forgery sig on some message msg under some signing policy ASP 𝕊 =

(𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) ∈ ℛ(𝑞)
z-abp, ℬ1 computes the verification-text
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(𝒄(0), . . . , 𝒄(𝑚+1)) as

𝒄(0) = −𝑢†ℓ𝒇 (0,̂︀𝛽) + (−𝑢‡ℓ − 𝑢)𝒃(0,1),

𝒄(𝑗) = 𝜇𝑗(𝜌(𝑗)𝒃
(1,1) − 𝒃(1,2)) + 𝑠′†𝑗 𝒇

(1,1,̂︀𝛽) + 𝑠†𝑗𝒇
(1,2,̂︀𝛽) + 𝑠′‡𝑗 𝒃

(1,3) + 𝑠‡𝑗𝒃
(1,4)+∑︁

𝜈∈[2]

𝑟†(𝑗)𝜈 𝒆(1,𝜈,
̂︀𝛽) + ∑︁

𝜈∈[2]

𝜂†(𝑗)𝜈 𝒃(1,12+𝜈) for 𝑗 ∈ [𝑚],

𝒄(𝑚+1) = 𝑢𝒃(2,1) + 𝜅(−𝖧(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊)𝒃(2,1) + 𝒃(2,2)) +

∑︁
𝜈∈[2]

𝒆(2,𝜈,
̂︀𝛽),

where 𝑢⃗† = (𝑢†1, . . . , 𝑢
†
ℓ), 𝑢⃗

‡ = (𝑢‡1, . . . , 𝑢
‡
ℓ)

U←− 𝔽ℓ
𝑞, 𝑠

†
𝑗 = 𝑢⃗† ·𝑦⃗(𝑗), 𝑠′†𝑗 = 𝑢⃗† ·𝑧⃗(𝑗), 𝑠‡𝑗 = 𝑢⃗‡ ·𝑦⃗(𝑗), 𝑠′‡𝑗 =

𝑢⃗‡·𝑧⃗(𝑗) for 𝑗 ∈ [𝑚], 𝑢, 𝜅, {𝜇𝑗}𝑗∈[𝑚]
U←− 𝔽𝑞, {𝑟⃗†(𝑗), 𝜂⃗†(𝑗)}𝑗∈[𝑚]

U←− 𝔽2
𝑞 , and {𝔹𝚤}𝚤∈[0,2], {𝒆(1,𝜈,̂︀𝛽)}𝜈∈[2],

{𝒆(2,𝜈,̂︀𝛽)}𝜈∈[2], 𝒇 (0,̂︀𝛽), {𝒇 (1,𝜈,̂︀𝛽)}𝜈∈[2] are taken from the given Problem 1 instance. ℬ1 then
verifies the validity of the forged signature outputted by 𝒜 using the above verification-text,
and outputs 1 if the verification succeeds, and 0 otherwise.

It is straightforward to verify that the distribution of 𝒜’s view simulated by ℬ1 given a
Problem 1 instance 𝜚P1̂︀𝛽 for ̂︀𝛽 ∈ {0, 1} coincides with that in Hyb0′ if ̂︀𝛽 = 0. Similarly, the view

of 𝒜 simulated by ℬ1 given a Problem 1 instance 𝜚P1̂︀𝛽 for ̂︀𝛽 ∈ {0, 1} coincides with that in Hyb1
in case ̂︀𝛽 = 1 except when any one of 𝜏, {𝜃𝜈 , 𝜃′𝜈}𝜈∈[2] is 0, i.e., except with probability 5/𝑞. This
completes the proof of Lemma 4.2. ⊓⊔

Lemma 4.3: For any stateful probabilistic adversary 𝒜, there exists a probabilistic algorithm
ℬ2-1, whose running time is essentially the same as that of 𝒜, such that for any security parameter
𝜆,

⃒⃒⃒
𝖠𝖽𝗏

(2-(𝜒−1)-9)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-1)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝖠𝖽𝗏P2

ℬ2-𝜒-1
(𝜆) + 3/𝑞 for all 𝜒 ∈ [𝑞key], where ℬ2-𝜒-1(·) =

ℬ2-1(𝜒, ·) for any 𝜒 ∈ ℕ.

Proof: In order to prove Lemma 4.3, we construct below a probabilistic algorithm ℬ2-1 against
Problem 2 using as a blackbox sub-routine a stateful probabilistic adversary 𝒜 that distinguishes
between Hyb2-(𝜒−1)-9 and Hyb2-𝜒-1. Suppose ℬ2-1 is given 𝜒 ∈ [𝑞key] together with an instance of
Problem 2

𝜚P2̂︀𝛽 = (params, {̃︀𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,1],𝔹2,𝔹*

2,𝒉
*(0,̂︀𝛽),𝒇 (0), {𝒉*(1,𝜈,̂︀𝛽),𝒇 (1,𝜈)}𝜈∈[2], {𝒉*(2,𝜈)}𝜈∈[2]),

where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8));̃︀𝔹0 = {𝒃(0,1), 𝒃(0,3), 𝒃(0,4)};̃︀𝔹1 = {𝒃(1,1), . . . , 𝒃(1,4), 𝒃(1,7), . . . , 𝒃(1,14)};
𝜗,𝜘, 𝛿, 𝜏, 𝜉0

U←− 𝔽𝑞, {𝜉(𝜈)}𝜈∈[2] U←− 𝔽2
𝑞 ;

𝒉*(0,0) = (𝜗, 0, 𝜉0, 0)𝔹*
0
,𝒉*(0,1) = (𝜗,𝜘, 𝜉0, 0)𝔹*

0
;

𝒇 (0) = (𝛿, 𝜏, 0, 0)𝔹0 ;

𝒉*(1,𝜈,0) = (⃗02, 𝜗𝑒⃗(2,𝜈), 0⃗6, 𝜉(𝜈), 0⃗2)𝔹*
1

𝒉*(1,𝜈,1) = (⃗02, 𝜗𝑒⃗(2,𝜈), 𝜘𝑒⃗(2,𝜈), 0⃗4, 𝜉(𝜈), 0⃗2)𝔹*
1

𝒇 (1,𝜈) = (⃗02, 𝛿𝑒⃗(2,𝜈), 𝜏 𝑒⃗(2,𝜈), 0⃗4, 0⃗2, 0⃗2)𝔹1

⎫⎪⎬⎪⎭ for 𝜈 ∈ [2];

𝒉*(2,𝜈) = 𝜗𝒃*(2,𝜈) for 𝜈 ∈ [2].

ℬ2-1 interacts with 𝒜 as follows:



Efficient ABS for Unbounded Arithmetic Branching Programs 31

1. At first, ℬ2-1 sets

̂︀𝔹0 = {𝒃(0,1), 𝒃(0,4)},̂︀𝔹*
0 = {𝒃*(0,3)},̂︀𝔹1 = {𝒃(1,1), . . . , 𝒃(1,4), 𝒃(1,13), 𝒃(1,14)},̂︀𝔹*
1 = {𝒃*(1,1), . . . , 𝒃*(1,4), 𝒃*(1,11), 𝒃*(1,12)},̂︀𝔹2 = {𝒃(2,1), 𝒃(2,2), 𝒃(2,7), 𝒃(2,8)},̂︀𝔹*
2 = {𝒃*(2,1), 𝒃*(2,2), 𝒃*(2,5), 𝒃*(2,6)},

using {̃︀𝔹𝚤,𝔹*
𝚤 }𝚤∈{0,1}, 𝔹2, and 𝔹*

2, which are part of the given Problem 2 instance. It also

samples a hashing key 𝗁𝗄
R←− 𝖪𝖦𝖾𝗇() for a hash function family ℍ associated with 𝒢bpg

and the polynomial 𝗉𝗈𝗅𝗒 (·), where 𝗉𝗈𝗅𝗒 (𝜆) represents the length of the bit string formed
by concatenating a message belonging to 𝕄 and the binary representation of an ASP rep-
resenting a signing policy predicate in ℛ(𝑞)

z-abp. It provides 𝒜 with the public parameters
mpk = (𝗁𝗄, params, {̂︀𝔹𝚤, ̂︀𝔹*

𝚤 }𝚤∈[0,2]).
2. For 𝑕 ∈ [𝑞key], in response to the 𝑕th signing key reveal query of𝒜 for some 𝑥⃗(𝑕) ∈ 𝔽𝑛

𝑞 , ℬ2-1 gives
𝒜 a signing key sk(𝑥⃗(𝑕)) = (𝒌*(𝑕,0), . . . ,𝒌*(𝑕,𝑛),𝒌*(𝑕,𝑛+1,1), 𝒌*(𝑕,𝑛+1,2)) whose components are
generated as follows:

(a) (𝑕 < 𝜒) ℬ2-1 computes 𝒌*(𝑕,0) as in Eq. (4.9), while 𝒌*(𝑕,1), . . . ,𝒌*(𝑕,𝑛), 𝒌*(𝑕,𝑛+1,1),𝒌*(𝑕,𝑛+1,2)

as in Eq. (4.1) using {𝔹*
𝚤 }𝚤∈[0,2] included within the given Problem 2 instance.

(b) (𝑕 = 𝜒) ℬ2-1 computes 𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2) as follows:

𝒌*(𝜒,0) = 𝒉*(0,̂︀𝛽),
𝒌*(𝜒,𝜄) = 𝜎𝜒,𝜄(𝒃

*(1,1) + 𝜄𝒃*(1,2)) + 𝒉*(1,1,̂︀𝛽) + 𝑥(𝜒)𝜄 𝒉*(1,2,̂︀𝛽)+∑︁
𝜈∈[2]

𝜙†(𝜒,𝜄)
𝜈 𝒃*(1,10+𝜈) for 𝜄 ∈ [𝑛],

𝒌*(𝜒,𝑛+1,𝜈) = 𝒉*(2,𝜈) +
∑︁
𝛼∈[2]

𝜙(𝜒,𝑛+1,𝜈)
𝛼 𝒃*(2,4+𝛼) for 𝜈 ∈ [2],

where {𝜎𝜒,𝜄}𝜄∈[𝑛] U←− 𝔽𝑞, {𝜙⃗†(𝜒,𝜄)}𝜄∈[𝑛], {𝜙⃗(𝜒,𝑛+1,𝜈)}𝜈∈[2] U←− 𝔽2
𝑞 , and {𝔹*

𝚤 }𝚤∈[0,2],𝒉*(0,̂︀𝛽),
{𝒉*(1,𝜈,̂︀𝛽)}𝜈∈[2], {𝒉*(2,𝜈)}𝜈∈[2] are taken from the given Problem 2 instance.

(c) (𝑕 > 𝜒) ℬ2-1 computes 𝒌*(𝑕,0), . . . ,𝒌*(𝑕,𝑛),𝒌*(𝑕,𝑛+1,1),𝒌*(𝑕,𝑛+1,2) as in Eq. (4.1) using
{𝔹*

𝚤 }𝚤∈[0,2] of the given Problem 2 instance.

3. For all 𝑡 ∈ [𝑞sig], in reply to the 𝑡th signature reveal query of 𝒜 for some triple (msg𝑡, 𝕊𝑡, 𝑥⃗(𝑡)) ∈
𝕄 ×ℛ(𝑞)

z-abp × 𝔽𝑛
𝑞 , ℬ2-1 hands 𝒜 a signature sig𝑡 = (𝒔*(𝑡,0), . . . , 𝒔*(𝑡,𝑚𝑡+1)) whose components

are computed as in Eq. (4.2) using {𝔹*
𝚤 }𝚤∈[0,2] of the given Problem 2 instance.

4. When 𝒜 outputs a forgery sig on some message msg ∈ 𝕄 under some signing policy ASP
𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ

𝑞)
2, 𝜌 : [𝑚] → [𝑛]) ∈ ℛ(𝑞)

z-abp, ℬ2-1 computes the verification-
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text (𝒄(0), . . . , 𝒄(𝑚+1)) as

𝒄(0) = −𝑢†ℓ𝒇 (0) + (−𝑢‡ℓ − 𝑢)𝒃(0,1) + 𝜂0𝒃
(0,4),

𝒄(𝑗) = 𝜇𝑗(𝜌(𝑗)𝒃
(1,1) − 𝒃(1,2)) + 𝑠′†𝑗 𝒇

(1,1) + 𝑠†𝑗𝒇
(1,2) + 𝑠′‡𝑗 𝒃

(1,3) + 𝑠‡𝑗𝒃
(1,4)+∑︁

𝜈∈[2]

𝑟(𝑗)𝜈 𝒃(1,8+𝜈) +
∑︁
𝜈∈[2]

𝜂(𝑗)𝜈 𝒃(1,12+𝜈) for 𝑗 ∈ [𝑚],

𝒄(𝑚+1) = 𝑢𝒃(2,1) + 𝜅(−𝖧(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊)𝒃(2,1) + 𝒃(2,2)) +

∑︁
𝜈∈[2]

𝑟(𝑚+1)
𝜈 𝒃(2,2+𝜈)+

∑︁
𝜈∈[2]

𝜂(𝑚+1)
𝜈 𝒃(2,6+𝜈),

where 𝑢⃗† = (𝑢†1, . . . , 𝑢
†
ℓ), 𝑢⃗

‡ = (𝑢‡1, . . . , 𝑢
‡
ℓ)

U←− 𝔽ℓ
𝑞, 𝑠

†
𝑗 = 𝑢⃗† ·𝑦⃗(𝑗), 𝑠′†𝑗 = 𝑢⃗† ·𝑧⃗(𝑗), 𝑠‡𝑗 = 𝑢⃗‡ ·𝑦⃗(𝑗), 𝑠′‡𝑗 =

𝑢⃗‡ · 𝑧⃗(𝑗) for 𝑗 ∈ [𝑚], 𝑢, 𝜅, {𝜇𝑗}𝑗∈[𝑚], 𝜂0
U←− 𝔽𝑞, {𝑟⃗(𝑗), 𝜂⃗(𝑗)}𝑗∈[𝑚+1]

U←− 𝔽2
𝑞 , and 𝒇 (0), {𝒇 (1,𝜈)}𝜈∈[2]

are taken from the given Problem 2 instance. ℬ2-1 then verifies the validity of the forged
signature outputted by 𝒜 using the above verification-text, and outputs 1 if the verification
succeeds, and 0 otherwise.

It is straightforward to verify that the distribution of 𝒜’s view simulated by ℬ2-1 given
𝜒 ∈ [𝑞key] and a Problem 2 instance 𝜚P2̂︀𝛽 for ̂︀𝛽 ∈ {0, 1} coincides with that in Hyb2-(𝜒−1)-9 if ̂︀𝛽 = 0

except when 𝜏 = 0, i.e., except with probability 1/𝑞. Similarly, the view of 𝒜 simulated by ℬ2-1
given 𝜒 ∈ [𝑞key] and a Problem 2 instance 𝜚P2̂︀𝛽 for ̂︀𝛽 ∈ {0, 1} coincides with that in Hyb2-𝜒-1 in

case ̂︀𝛽 = 1 except when any one of 𝜘, 𝜏 is 0, i.e., except with probability 2/𝑞. This completes
the proof of Lemma 4.3. ⊓⊔

Lemma 4.4: For any stateful probabilistic adversary 𝒜, there exists a probabilistic algorithm
ℬ2-2, whose running time is essentially the same as that of 𝒜, such that for any security param-
eter 𝜆,

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-1)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-2)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝖠𝖽𝗏P3

ℬ2-𝜒-2
(𝜆) + 2/𝑞 for all 𝜒 ∈ [𝑞key], where ℬ2-𝜒-2(·) =

ℬ2-2(𝜒, ·) for any 𝜒 ∈ ℕ.

Proof: In order to prove Lemma 4.4, we construct below a probabilistic algorithm ℬ2-2 against
Problem 3 using as a blackbox sub-routine a stateful probabilistic adversary 𝒜 that distinguishes
between Hyb2-𝜒-1 and Hyb2-𝜒-2. Suppose ℬ2-2 is given 𝜒 ∈ [𝑞key] together with an instance of
Problem 3

𝜚P3̂︀𝛽 = (params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈{0,2},𝔹1, ̃︀𝔹*

1, {𝒆(1,𝜈,
̂︀𝛽)}𝜈∈[2]),

where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8));̃︀𝔹*
1 = {𝒃*(1,1), . . . , 𝒃*(1,8), 𝒃*(1,11), . . . , 𝒃*(1,14)};
{𝜃𝜈}𝜈∈[2] U←− 𝔽𝑞, {𝛾⃗(𝜈)}𝜈∈[2] U←− 𝔽2

𝑞 ;

𝒆(1,𝜈,0) = (⃗04, 0⃗6, 0⃗2, 𝛾⃗(𝜈))𝔹1

𝒆(1,𝜈,1) = (⃗04, 0⃗4, 𝜃𝜈 𝑒⃗
(2,𝜈), 0⃗2, 𝛾⃗(𝜈))𝔹1

}︂
for 𝜈 ∈ [2].

ℬ2-2 interacts with 𝒜 as follows:
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1. At first, ℬ2-2 sets

̂︀𝔹0 = {𝒃(0,1), 𝒃(0,4)},̂︀𝔹*
0 = {𝒃*(0,3)},̂︀𝔹1 = {𝒃(1,1), . . . , 𝒃(1,4), 𝒃(1,13), 𝒃(1,14)},̂︀𝔹*
1 = {𝒃*(1,1), . . . , 𝒃*(1,4), 𝒃*(1,11), 𝒃*(1,12)},̂︀𝔹2 = {𝒃(2,1), 𝒃(2,2), 𝒃(2,7), 𝒃(2,8)},̂︀𝔹*
2 = {𝒃*(2,1), 𝒃*(2,2), 𝒃*(2,5), 𝒃*(2,6)},

using {𝔹𝚤,𝔹*
𝚤 }𝚤∈{0,2}, 𝔹1, and ̃︀𝔹*

1, which are part of the given Problem 3 instance. It also

samples a hashing key 𝗁𝗄
R←− 𝖪𝖦𝖾𝗇() for a hash function family ℍ associated with 𝒢bpg

and the polynomial 𝗉𝗈𝗅𝗒 (·), where 𝗉𝗈𝗅𝗒 (𝜆) represents the length of the bit string formed
by concatenating a message belonging to 𝕄 and the binary representation of an ASP rep-
resenting a signing policy predicate in ℛ(𝑞)

z-abp. It provides 𝒜 with the public parameters
mpk = (𝗁𝗄, params, {̂︀𝔹𝚤, ̂︀𝔹*

𝚤 }𝚤∈[0,2]).
2. For 𝑕 ∈ [𝑞key], in response to the 𝑕th signing key reveal query of𝒜 for some 𝑥⃗(𝑕) ∈ 𝔽𝑛

𝑞 , ℬ2-2 gives
𝒜 a signing key sk(𝑥⃗(𝑕)) = (𝒌*(𝑕,0), . . . ,𝒌*(𝑕,𝑛),𝒌*(𝑕,𝑛+1,1), 𝒌*(𝑕,𝑛+1,2)) whose components are
generated as follows:

(a) (𝑕 < 𝜒) ℬ2-2 computes 𝒌*(𝑕,0) as in Eq. (4.9), while 𝒌*(𝑕,1), . . . ,𝒌*(𝑕,𝑛), 𝒌*(𝑕,𝑛+1,1),𝒌(𝑕,𝑛+1,2)

as in Eq. (4.1).
(b) (𝑕 = 𝜒) ℬ2-2 computes 𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛) as in Eq. (4.5), whereas 𝒌*(𝜒,𝑛+1,1), 𝒌*(𝜒,𝑛+1,2)

as in Eq. (4.1)
(c) (𝑕 > 𝜒) ℬ2-2 computes 𝒌*(𝑕,0), . . . ,𝒌*(𝑕,𝑛),𝒌*(𝑕,𝑛+1,1),𝒌*(𝑕,𝑛+1,2) as in Eq. (4.1).
In these computations ℬ2-2 uses {𝔹*

𝚤 }𝚤∈{0,2} and ̃︀𝔹*
1 included within the given Problem 3

instance.
3. For all 𝑡 ∈ [𝑞sig], in reply to the 𝑡th signature reveal query of 𝒜 for some triple (msg𝑡,𝕊𝑡, 𝑥⃗(𝑡)) ∈

𝕄×ℛ(𝑞)
z-abp × 𝔽𝑛

𝑞 , ℬ2-2 hands 𝒜 a signature sig𝑡 = (𝒔*(𝑡,0), . . . , 𝒔*(𝑡,𝑚𝑡+1)) whose components
are computed as in Eq. (4.2) using {𝔹*

𝚤 }𝚤∈{0,2} and ̃︀𝔹*
1 of the given Problem 3 instance.

4. When 𝒜 outputs a forgery sig on some message msg ∈ 𝕄 under some signing policy ASP
𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ

𝑞)
2, 𝜌 : [𝑚] → [𝑛]) ∈ ℛ(𝑞)

z-abp, ℬ2-2 computes the verification-
text (𝒄(0), . . . , 𝒄(𝑚+1)) as

𝒄(0) = (−𝑢− 𝑢ℓ,−̃︀𝑢ℓ, 0, 𝜂0)𝔹0 ,

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), (̃︀𝑠′𝑗 , ̃︀𝑠𝑗), 0⃗2, (̃︀𝑠′𝑗 , ̃︀𝑠𝑗)𝒁(𝜌(𝑗)), 0⃗2, 𝜂⃗†(𝑗))𝔹1+∑︁
𝜈∈[2]

𝑟†(𝑗)𝜈 𝒆(1,𝜈,
̂︀𝛽) for 𝑗 ∈ [𝑚],

𝒄(𝑚+1) = ((𝑢− 𝜅𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊), 𝜅), 𝑟⃗(𝑚+1), 0⃗2, 𝜂⃗(𝑚+1))𝔹2 ,

where 𝑢⃗ = (𝑢1, . . . , 𝑢ℓ), ̃⃗︀𝑢 = (̃︀𝑢1, . . . , ̃︀𝑢ℓ) U←− 𝔽ℓ
𝑞, 𝑠𝑗 = 𝑢⃗ · 𝑦⃗(𝑗), 𝑠′𝑗 = 𝑢⃗ · 𝑧⃗(𝑗), ̃︀𝑠𝑗 = ̃⃗︀𝑢 · 𝑦⃗(𝑗), ̃︀𝑠′𝑗 =̃⃗︀𝑢 · 𝑧⃗(𝑗) for 𝑗 ∈ [𝑚], 𝑢, 𝜅, {𝜇𝑗}𝑗∈[𝑚], 𝜂0

U←− 𝔽𝑞, {𝑟⃗†(𝑗)}𝑗∈[𝑚], 𝑟⃗
(𝑚+1), {𝜂⃗†(𝑗)}𝑗∈[𝑚], 𝜂⃗

(𝑚+1) U←− 𝔽2
𝑞 ,

𝒁(𝜄) ∈ {𝒁 ∈ GL(2,𝔽𝑞) | 𝑒⃗(2,2) = (1, 𝑥
(𝜒)
𝜄 )(𝒁−1)⊤} for 𝜄 ∈ [𝑛], and {𝔹𝚤}𝚤∈[0,2], {𝒆(1,𝜈,̂︀𝛽)}𝜈∈[2] are

taken from the given Problem 3 instance. ℬ2-2 then verifies the validity of the forged signature
outputted by 𝒜 using the above verification-text, and outputs 1 if the verification succeeds,
and 0 otherwise.

It is straightforward to verify that the distribution of 𝒜’s view simulated by ℬ2-2 given
𝜒 ∈ [𝑞key] and a Problem 3 instance 𝜚P3̂︀𝛽 for ̂︀𝛽 ∈ {0, 1} coincides with that in Hyb2-𝜒-1 if ̂︀𝛽 = 1
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except when any one of {𝜃𝜈}𝜈∈[2] is 0, i.e., except with probability 2/𝑞. Similarly, the view of 𝒜
simulated by ℬ2-2 given 𝜒 ∈ [𝑞key] and a Problem 3 instance 𝜚P3̂︀𝛽 for ̂︀𝛽 ∈ {0, 1} coincides with

that in Hyb2-𝜒-2 in case ̂︀𝛽 = 0. This completes the proof of Lemma 4.4. ⊓⊔

Lemma 4.5: Under the SXDLIN assumption, we have for any 𝖯𝖯𝖳 adversary 𝒜, for any security
parameter 𝜆,

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-2)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-3)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝗇𝖾𝗀𝗅(𝜆) for all 𝜒 ∈ [𝑞key], where 𝗇𝖾𝗀𝗅 is some

negligible function.

Proof: In order to prove Lemma 4.5, we consider a sequence of intermediate hybrid experiments,
which differ from one another in the construction of the 𝜒th signing key requested by 𝒜 to reveal
and/or the verification-text used by the challenger ℬ to verify the validity of the forged signature
outputted by 𝒜 at the end of the experiment. The first hybrid corresponds to Hyb2-𝜒-2, while
the last one corresponds to Hyb2-𝜒-3. As usual, we argue that 𝒜’s winning probability changes
only by a negligible amount in each successive hybrid experiment, thereby proving Lemma 4.5.
The overall structure of the reduction is demonstrated in Fig. 4.2. The sequence of intermediate
hybrid experiments are described below. As earlier, in the description of these hybrids as well
a part framed by a box indicates coefficients which are altered in a transition from its previous
hybrid.

Hyb2-χ-2 Hyb2-χ-2-1-1 b b b Hyb2-χ-2-(α−1)-8

=

Hyb2-χ-2-α-1 Hyb2-χ-2-α-2 Hyb2-χ-2-α-3 Hyb2-χ-2-α-4 Hyb2-χ-2-α-5 Hyb2-χ-2-α-6 Hyb2-χ-2-α-7 Hyb2-χ-2-α-8

c≈ c≈ c≈ c≈

Problem 5-α Problem 6-α

Problem 6-(α− 1)

Problem 4-α

SXDLIN

Hyb2-χ-2-0-8
≡

SXDLIN

Hyb2-χ-2-(α+1)-1 Hyb2-χ-2-n-8

Hyb2-χ-3
≡

= c≈

Problem 6-n

SXDLIN

b bb

c≈

c≈= = =

Fig. 4.2: Structure of the Hybrid Reduction for the Proof of Lemma 4.5
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■ Sequence of Intermediate Hybrid Experiments between Hyb2-𝝌-2 and Hyb2-𝝌-3 (𝝌 ∈
[𝒒key])

Hyb2-𝝌-2-𝜶-1 (𝝌 ∈ [𝒒key], 𝜶 ∈ [𝒏]): Hyb2-𝜒-2-0-8 coincides with Hyb2-𝜒-2. This experiment is
analogous to Hyb2-𝜒-2-(𝛼−1)-8 except that in this experiment, the verification-text used to verify the
forged signature outputted by 𝒜 on some message msg ∈𝕄 under some signing policy predicate
𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP-representation 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂

(𝔽ℓ
𝑞)

2, 𝜌 : [𝑚]→ [𝑛]) is generated as (𝒄(0), . . . , 𝒄(𝑚+1)) such that 𝒄(0), 𝒄(𝑚+1) have the same form
as in Eq. (4.4) and

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), (̃︀𝑠′𝑗 , ̃︀𝑠𝑗), (̃︀𝑠′𝑗 , ̃︀𝑠𝑗) , (̃︀𝑠′𝑗 , ̃︀𝑠𝑗)𝒁(𝜌(𝑗)), 0⃗2, 𝜂⃗(𝑗))𝔹1 for 𝑗 ∈ [𝑚], (4.14)

where all the variables are generated as in Hyb2-𝜒-2-(𝛼−1)-8.

Hyb2-𝝌-2-𝜶-2 (𝝌 ∈ [𝒒key], 𝜶 ∈ [𝒏]): This experiment is similar to Hyb2-𝜒-2-𝛼-1 with the only
exception that in this experiment, the 𝜒th signing key for signing attribute string 𝑥⃗(𝜒) ∈ 𝔽𝑛

𝑞

requested by 𝒜 to reveal is generated as sk(𝑥⃗(𝜒)) = (𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2))
such that 𝒌*(𝜒,0),𝒌*(𝜒,𝛼+1), . . . , 𝒌*(𝜒,𝑛) are given by Eq. (4.5), 𝒌*(𝜒,1), . . . ,𝒌*(𝜒,𝛼−1) are given
by Eq. (4.7), 𝒌*(𝜒,𝑛+1,1), 𝒌*(𝜒,𝑛+1,2) are given by Eq. (4.1), and

𝒌*(𝜒,𝛼) = (𝜎𝜒,𝛼(1, 𝛼), 𝜔𝜒(1, 𝑥
(𝜒)
𝛼 ),

(̃︀𝜔𝜒 −ℑ𝜒,𝛼,1), (̃︀𝜔𝜒 −ℑ𝜒,𝛼,2)𝑥
(𝜒)
𝛼 ,ℑ𝜒,𝛼,1,ℑ𝜒,𝛼,2𝑥

(𝜒)
𝛼 , 0⃗2, 𝜙⃗(𝜒,𝛼), 0⃗2)𝔹*

1
,

(4.15)

where {ℑ𝜒,𝛼,𝜈}𝜈∈[2] U←− 𝔽𝑞 and all the other variables are formed as in Hyb2-𝜒-2-𝛼-1.

Hyb2-𝝌-2-𝜶-3 (𝝌 ∈ [𝒒key], 𝜶 ∈ [𝒏]): This experiment is similar to Hyb2-𝜒-2-𝛼-2 with the only
exception that in this experiment, the 𝜒th signing key for signing attribute string 𝑥⃗(𝜒) ∈ 𝔽𝑛

𝑞

requested by 𝒜 to reveal is generated as sk(𝑥⃗(𝜒)) = (𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2))
such that 𝒌*(𝜒,0),𝒌*(𝜒,𝛼+1), . . . , 𝒌*(𝜒,𝑛) are given by Eq. (4.5), 𝒌*(𝜒,1), . . . ,𝒌*(𝜒,𝛼−1) are given
by Eq. (4.7), 𝒌*(𝜒,𝑛+1,1), 𝒌*(𝜒,𝑛+1,2) are given by Eq. (4.1), and

𝒌*(𝜒,𝛼) = (𝜎𝜒,𝛼(1, 𝛼), 𝜔𝜒(1, 𝑥
(𝜒)
𝛼 ),

ℑ𝜒,𝛼,1,ℑ𝜒,𝛼,2𝑥
(𝜒)
𝛼 , (̃︀𝜔𝜒 −ℑ𝜒,𝛼,1), (̃︀𝜔𝜒 −ℑ𝜒,𝛼,2)𝑥

(𝜒)
𝛼 , 0⃗2, 𝜙⃗(𝜒,𝛼), 0⃗2)𝔹*

1
,

(4.16)

where all the variables are generated as in Hyb2-𝜒-2-𝛼-2.

Hyb2-𝝌-2-𝜶-4 (𝝌 ∈ [𝒒key], 𝜶 ∈ [𝒏]): This experiment is similar to Hyb2-𝜒-2-𝛼-3 with the only
exception that in this experiment, the 𝜒th signing key for signing attribute string 𝑥⃗(𝜒) ∈ 𝔽𝑛

𝑞

requested by 𝒜 to reveal is generated as sk(𝑥⃗(𝜒)) = (𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2))
such that 𝒌*(𝜒,0),𝒌*(𝜒,𝛼+1), . . . , 𝒌*(𝜒,𝑛) are given by Eq. (4.5), 𝒌*(𝜒,1), . . . ,𝒌*(𝜒,𝛼−1) are given by
Eq. (4.7), 𝒌*(𝜒,𝑛+1,1), 𝒌*(𝜒,𝑛+1,2) are given by Eq. (4.1), and

𝒌*(𝜒,𝛼) = (𝜎𝜒,𝛼(1, 𝛼), 𝜔𝜒(1, 𝑥
(𝜒)
𝛼 ), 0⃗2, ̃︀𝜔𝜒(1, 𝑥

(𝜒)
𝛼 ) , 0⃗2, 𝜙⃗(𝜒,𝛼), 0⃗2)𝔹*

1
, (4.17)

where all the variables are generated as in Hyb2-𝜒-2-𝛼-3.
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Hyb2-𝝌-2-𝜶-5 (𝝌 ∈ [𝒒key], 𝜶 ∈ [𝒏]: This experiment is similar to Hyb2-𝜒-2-𝛼-4 except that
in this experiment, the verification-text used to verify the forged signature outputted by 𝒜 on
some message msg ∈ 𝕄 under some signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp

having ASP-representation 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) is generated as
(𝒄(0), . . . , 𝒄(𝑚+1)) such that 𝒄(0), 𝒄(𝑚+1) have the same form as in Eq. (4.4), {𝒄(𝑗) | 𝑗 ∈ [𝑚]∧𝜌(𝑗) =
𝛼} are given by Eq. (4.14), and

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), (̃︀𝑠′𝑗 , ̃︀𝑠𝑗), 𝛶 (𝑗) , (̃︀𝑠′𝑗 , ̃︀𝑠𝑗)𝒁(𝜌(𝑗)), 0⃗2, 𝜂⃗(𝑗))𝔹1 for 𝑗 ∈ [𝑚] ∧ 𝜌(𝑗) ̸= 𝛼,

(4.18)

where {𝛶 (𝑗) | 𝑗 ∈ [𝑚]∧𝜌(𝑗) ̸= 𝛼} U←− 𝔽2
𝑞 and all the other variables are generated as in Hyb2-𝜒-2-𝛼-4.

Hyb2-𝝌-2-𝜶-6 (𝝌 ∈ [𝒒key], 𝜶 ∈ [𝒏]): This experiment is similar to Hyb2-𝜒-2-𝛼-5 with the only
exception that in this experiment, the 𝜒th signing key for signing attribute string 𝑥⃗(𝜒) ∈ 𝔽𝑛

𝑞

requested by 𝒜 to reveal is generated as sk(𝑥⃗(𝜒)) = (𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2))
such that 𝒌*(𝜒,0),𝒌*(𝜒,𝛼+1), . . . , 𝒌*(𝜒,𝑛) are given by Eq. (4.5), 𝒌*(𝜒,1), . . . ,𝒌*(𝜒,𝛼−1) are given
by Eq. (4.7), 𝒌*(𝜒,𝑛+1,1), 𝒌*(𝜒,𝑛+1,2) are given by Eq. (4.1), and

𝒌*(𝜒,𝛼) = (𝜎𝜒,𝛼(1, 𝛼), 𝜔𝜒(1, 𝑥
(𝜒)
𝛼 ), 0⃗2, 𝜔𝜒(1, 𝑥

(𝜒)
𝛼 ), (0, ̃︀𝜔𝜒) , 𝜙⃗

(𝜒,𝛼), 0⃗2)𝔹*
1
, (4.19)

while the verification-text used to verify the forged signature outputted by 𝒜 on some mes-
sage msg ∈ 𝕄 under some signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp hav-

ing ASP-representation 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) is generated as
(𝒄(0), . . . , 𝒄(𝑚+1)) such that 𝒄(0), 𝒄(𝑚+1) have the same form as in Eq. (4.4), {𝒄(𝑗) | 𝑗 ∈ [𝑚]∧𝜌(𝑗) ̸=
𝛼} are given by Eq. (4.18), and {𝒄(𝑗) | 𝑗 ∈ [𝑚]∧𝜌(𝑗) = 𝛼} are given by Eq. (4.6), where 𝜔𝜒

U←− 𝔽𝑞

and all the other variables are generated as in Hyb2-𝜒-2-𝛼-5.

Hyb2-𝝌-2-𝜶-7 (𝝌 ∈ [𝒒key], 𝜶 ∈ [𝒏]): This experiment is similar to Hyb2-𝜒-2-𝛼-6 except that
in this experiment, the verification-text used to verify the forged signature outputted by 𝒜 on
some message msg ∈ 𝕄 under some signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp

having ASP-representation 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) is generated as
(𝒄(0), . . . , 𝒄(𝑚+1)) such that 𝒄(0), 𝒄(𝑚+1) have the same form as in Eq. (4.4), and 𝒄(1), . . . , 𝒄(𝑚)

are given by Eq. (4.6), where all the variables are generated as in Hyb2-𝜒-2-𝛼-6.

Hyb2-𝝌-2-𝜶-8 (𝝌 ∈ [𝒒key], 𝜶 ∈ [𝒏]): This experiment is similar to Hyb2-𝜒-2-𝛼-7 with the only
exception that in this experiment, the 𝜒th signing key for signing attribute string 𝑥⃗(𝜒) ∈ 𝔽𝑛

𝑞

requested by 𝒜 to reveal is generated as sk(𝑥⃗(𝜒)) = (𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2))
such that 𝒌*(𝜒,0),𝒌*(𝜒,𝛼+1), . . . , 𝒌*(𝜒,𝑛) are given by Eq. (4.5), 𝒌*(𝜒,1), . . . ,𝒌*(𝜒,𝛼) are given by
Eq. (4.7), and 𝒌*(𝜒,𝑛+1,1), 𝒌*(𝜒,𝑛+1,2) are given by Eq. (4.1), where all the variables are generated
as in Hyb2-𝜒-2-𝛼-7. Observe that Hyb2-𝜒-2-𝑛-8 coincides with Hyb2-𝜒-3.

■ Analysis

As earlier, let us denote by 𝖠𝖽𝗏
(𝑖)
𝒜 (𝜆) the probability that 𝒜 wins in Hyb𝑖 for

𝑖 ∈ {2-𝜒-2-𝛼-𝑘}𝜒∈[𝑞key],𝛼∈[𝑛],𝑘∈[8]. By definition of these hybrids, we clearly have 𝖠𝖽𝗏
(2-𝜒-2)
𝒜 (𝜆) ≡
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𝖠𝖽𝗏
(2-𝜒-2-0-8)
𝒜 (𝜆) and 𝖠𝖽𝗏

(2-𝜒-3)
𝒜 (𝜆) ≡ 𝖠𝖽𝗏

(2-𝜒-2-𝑛-8)
𝒜 (𝜆) for all 𝜒 ∈ [𝑞key]. Hence, we have⃒⃒⃒

𝖠𝖽𝗏
(2-𝜒-2)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-3)
𝒜 (𝜆)

⃒⃒⃒
≤

∑︁
𝛼∈[𝑛]

[︁ ⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-2-(𝛼−1)-8)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-2-𝛼-1)
𝒜 (𝜆)

⃒⃒⃒
+

∑︁
𝑘∈[7]

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-2-𝛼-𝑘)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-2-𝛼-(𝑘+1))
𝒜 (𝜆)

⃒⃒⃒ ]︁
for all 𝜒 ∈ [𝑞key].

(4.20)

Then Lemma 4.5 follows from Claims 4.1–4.8 presented below, the proofs of which are essentially
analogous to those of Lemmas 49–56 in [OT12b] respectively, in conjunction with Lemmas 2.6–
2.8 of Section 2.4. ⊓⊔

Claim 4.1: For any stateful probabilistic adversary 𝒜, for any security parameter 𝜆,
𝖠𝖽𝗏

(2-𝜒-2-(𝛼−1)-8)
𝒜 (𝜆) = 𝖠𝖽𝗏

(2-𝜒-2-𝛼-1)
𝒜 (𝜆) for all 𝜒 ∈ [𝑞key], 𝛼 ∈ [𝑛].

Claim 4.2: For any stateful probabilistic adversary 𝒜, there exists a probabilistic algorithm
ℬ2-3-1, whose running time is essentially the same as that of 𝒜, such that for any security param-
eter 𝜆,

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-2-𝛼-1)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-2-𝛼-2)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝖠𝖽𝗏P4-𝛼

ℬ2-𝜒-3-𝛼-1
(𝜆) for all 𝜒 ∈ [𝑞key], 𝛼 ∈ [𝑛], where

ℬ2-𝜒-3-𝛼-1(·) = ℬ2-3-1(𝜒, 𝛼, ·) for any 𝜒, 𝛼 ∈ ℕ.

Claim 4.3: For any stateful probabilistic adversary 𝒜, for any security parameter 𝜆,
𝖠𝖽𝗏

(2-𝜒-2-𝛼-2)
𝒜 (𝜆) = 𝖠𝖽𝗏

(2-𝜒-2-𝛼-3)
𝒜 (𝜆) for all 𝜒 ∈ [𝑞key], 𝛼 ∈ [𝑛].

Claim 4.4: For any stateful probabilistic adversary 𝒜, there exists a probabilistic algorithm
ℬ2-3-2, whose running time is essentially the same as that of 𝒜, such that for any security param-
eter 𝜆,

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-2-𝛼-3)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-2-𝛼-4)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝖠𝖽𝗏P4-𝛼

ℬ2-𝜒-3-𝛼-2
(𝜆) for all 𝜒 ∈ [𝑞key], 𝛼 ∈ [𝑛], where

ℬ2-𝜒-3-𝛼-2(·) = ℬ2-3-2(𝜒, 𝛼, ·) for any 𝜒, 𝛼 ∈ ℕ.

Claim 4.5: For any stateful probabilistic adversary 𝒜, there exists a probabilistic algorithm
ℬ2-3-3, whose running time is essentially the same as that of 𝒜, such that for any security param-
eter 𝜆,

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-2-𝛼-4)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-2-𝛼-5)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝖠𝖽𝗏P5-𝛼

ℬ2-𝜒-3-𝛼-3
(𝜆) for all 𝜒 ∈ [𝑞key], 𝛼 ∈ [𝑛], where

ℬ2-𝜒-3-𝛼-3(·) = ℬ2-3-3(𝜒, 𝛼, ·) for any 𝜒, 𝛼 ∈ ℕ.

Claim 4.6: For any stateful probabilistic adversary 𝒜, for any security parameter 𝜆,
𝖠𝖽𝗏

(2-𝜒-2-𝛼-5)
𝒜 (𝜆) = 𝖠𝖽𝗏

(2-𝜒-2-𝛼-6)
𝒜 (𝜆) for all 𝜒 ∈ [𝑞key], 𝛼 ∈ [𝑛].

Claim 4.7: For any stateful probabilistic adversary 𝒜, there exists a probabilistic algorithm
ℬ2-3-4, whose running time is essentially the same as that of 𝒜, such that for any security param-
eter 𝜆,

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-2-𝛼-6)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-2-𝛼-7)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝖠𝖽𝗏P5-𝛼

ℬ2-𝜒-3-𝛼-4
(𝜆) for all 𝜒 ∈ [𝑞key], 𝛼 ∈ [𝑛], where

ℬ2-𝜒-4-𝛼-3(·) = ℬ2-3-4(𝜒, 𝛼, ·) for any 𝜒, 𝛼 ∈ ℕ.

Claim 4.8: For any stateful probabilistic adversary 𝒜, there exists a probabilistic algorithm
ℬ2-3-5, whose running time is essentially the same as that of 𝒜, such that for any security param-
eter 𝜆,

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-2-𝛼-7)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-2-𝛼-8)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝖠𝖽𝗏P6-𝛼

ℬ2-𝜒-3-𝛼-5
(𝜆) for all 𝜒 ∈ [𝑞key], 𝛼 ∈ [𝑛], where

ℬ2-𝜒-3-𝛼-5(·) = ℬ2-3-5(𝜒, 𝛼, ·) for any 𝜒, 𝛼 ∈ ℕ.

Lemma 4.6: For any stateful probabilistic adversary 𝒜, there exists a probabilistic algorithm
ℬ2-4, whose running time is essentially the same as that of 𝒜, such that for any security param-
eter 𝜆,

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-3)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-4)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝖠𝖽𝗏P7

ℬ2-𝜒-4
(𝜆) + 3/𝑞 for all 𝜒 ∈ [𝑞key], where ℬ2-𝜒-4(·) =

ℬ2-4(𝜒, ·) for any 𝜒 ∈ ℕ.
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Proof: In order to prove Lemma 4.6, we construct below a probabilistic algorithm ℬ2-4 against
Problem 7 using as a blackbox sub-routine a stateful probabilistic adversary 𝒜 that distinguishes
between Hyb2-𝜒-3 and Hyb2-𝜒-4. Suppose ℬ2-4 is given 𝜒 ∈ [𝑞key] together with an instance of
Problem 7

𝜚P7̂︀𝛽 = (params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈{0,2},𝔹1, ̃︀𝔹*

1, {𝒆(1,𝜈,
̂︀𝛽)}𝜈∈[3]),

where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8));̃︀𝔹*
1 = {𝒃*(1,1), . . . , 𝒃*(1,4), 𝒃*(1,7), 𝒃*(1,8), 𝒃*(1,10), . . . , 𝒃*(1,14)};
{𝜃𝜈}𝜈∈[3] U←− 𝔽𝑞, {𝛾⃗(𝜈)}𝜈∈[3] U←− 𝔽2

𝑞 ;

𝒆(1,𝜈,0) = (⃗04, 0⃗6, 0⃗2, 𝛾⃗(𝜈))𝔹1

𝒆(1,𝜈,1) = (⃗04, 𝜃𝜈 𝑒⃗
(2,𝜈), 0⃗4, 0⃗2, 𝛾⃗(𝜈))𝔹1

}︂
for 𝜈 ∈ [2];

𝒆(1,3,0) = (⃗04, 0⃗6, 0⃗2, 𝛾⃗(3))𝔹1 ,

𝒆(1,3,1) = (⃗04, 0⃗4, 𝜃3𝑒⃗
(2,1), 0⃗2, 𝛾⃗(3))𝔹1 .

ℬ2-4 interacts with 𝒜 as follows:

1. At first, ℬ2-4 sets

̂︀𝔹0 = {𝒃(0,1), 𝒃(0,4)},̂︀𝔹*
0 = {𝒃*(0,3)},̂︀𝔹1 = {𝒃(1,1), . . . , 𝒃(1,4), 𝒃(1,13), 𝒃(1,14)},̂︀𝔹*
1 = {𝒃*(1,1), . . . , 𝒃*(1,4), 𝒃*(1,11), 𝒃*(1,12)},̂︀𝔹2 = {𝒃(2,1), 𝒃(2,2), 𝒃(2,7), 𝒃(2,8)},̂︀𝔹*
2 = {𝒃*(2,1), 𝒃*(2,2), 𝒃*(2,5), 𝒃*(2,6)},

using {𝔹𝚤,𝔹*
𝚤 }𝚤∈{0,2}, 𝔹1, and ̃︀𝔹*

1, which are part of the given Problem 7 instance. It also

samples a hashing key 𝗁𝗄
R←− 𝖪𝖦𝖾𝗇() for a hash function family ℍ associated with 𝒢bpg

and the polynomial 𝗉𝗈𝗅𝗒 (·), where 𝗉𝗈𝗅𝗒 (𝜆) represents the length of the bit string formed
by concatenating a message belonging to 𝕄 and the binary representation of an ASP rep-
resenting a signing policy predicate in ℛ(𝑞)

z-abp. It provides 𝒜 with the public parameters
mpk = (𝗁𝗄, params, {̂︀𝔹𝚤, ̂︀𝔹*

𝚤 }𝚤∈[0,2]).
2. For 𝑕 ∈ [𝑞key], in response to the 𝑕th signing key reveal query of𝒜 for some 𝑥⃗(𝑕) ∈ 𝔽𝑛

𝑞 , ℬ2-4 gives
𝒜 a signing key sk(𝑥⃗(𝑕)) = (𝒌*(𝑕,0), . . . ,𝒌*(𝑕,𝑛),𝒌*(𝑕,𝑛+1,1), 𝒌*(𝑕,𝑛+1,2)) whose components are
generated as follows:

(a) (𝑕 < 𝜒) ℬ2-4 computes 𝒌*(𝑕,0) as in Eq. (4.9), while 𝒌*(𝑕,1), . . . ,𝒌*(𝑕,𝑛), 𝒌*(𝑕,𝑛+1,1),𝒌(𝑕,𝑛+1,2)

as in Eq. (4.1).
(b) (𝑕 = 𝜒) ℬ2-4 computes 𝒌*(𝜒,0) as in Eq. (4.5), 𝒌*(𝜒,1), . . . ,𝒌*(𝜒,𝑛) as in Eq. (4.7), whereas

𝒌*(𝜒,𝑛+1,1), 𝒌*(𝜒,𝑛+1,2) as in Eq. (4.1)
(c) (𝑕 > 𝜒) ℬ2-4 computes 𝒌*(𝑕,0), . . . ,𝒌*(𝑕,𝑛),𝒌*(𝑕,𝑛+1,1),𝒌*(𝑕,𝑛+1,2) as in Eq. (4.1).
In these computations ℬ2-4 uses {𝔹*

𝚤 }𝚤∈{0,2} and ̃︀𝔹*
1 included within the given Problem 7

instance.
3. For all 𝑡 ∈ [𝑞sig], in response to a signature reveal query of 𝒜 for some triple (msg𝑡, 𝕊𝑡, 𝑥⃗(𝑡)) ∈

𝕄×ℛ(𝑞)
z-abp × 𝔽𝑛

𝑞 , ℬ2-4 hands 𝒜 a signature sig𝑡 = (𝒔*(𝑡,0), . . . , 𝒔*(𝑡,𝑚𝑡+1)) whose components
are computed as in Eq. (4.2) using {𝔹*

𝚤 }𝚤∈{0,2} and ̃︀𝔹*
1 of the given Problem 7 instance.
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4. When 𝒜 outputs a forgery sig on some message msg ∈ 𝕄 under some signing policy 𝕊 =

(𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) ∈ ℛ(𝑞)
z-abp, ℬ2-4 computes the verification-text

(𝒄(0), . . . , 𝒄(𝑚+1)) as

𝒄(0) = (−𝑢− 𝑢ℓ,−̃︀𝑢ℓ, 0, 𝜂0)𝔹0 ,

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), (̃︀𝑠′𝑗 , ̃︀𝑠𝑗), 0⃗2, (̃︀𝑠′𝑗 , ̃︀𝑠𝑗)𝒁(𝜌(𝑗)), 0⃗2, 𝜂⃗†(𝑗))𝔹1+∑︁
𝜈∈[2]

𝑎†(𝑗)𝜈 𝒆(1,𝜈,
̂︀𝛽) + ̃︀𝑎†𝑗𝒆(1,3,̂︀𝛽) for 𝑗 ∈ [𝑚],

𝒄(𝑚+1) = ((𝑢− 𝜅𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊), 𝜅), 𝑟⃗(𝑚+1), 0⃗2, 𝜂⃗(𝑚+1))𝔹2 ,

where 𝑢⃗ = (𝑢1, . . . , 𝑢ℓ), ̃⃗︀𝑢 = (̃︀𝑢1, . . . , ̃︀𝑢ℓ) U←− 𝔽ℓ
𝑞, 𝑠𝑗 = 𝑢⃗·𝑦⃗(𝑗), 𝑠′𝑗 = 𝑢⃗·𝑧⃗(𝑗), ̃︀𝑠𝑗 = ̃⃗︀𝑢·𝑦⃗(𝑗), ̃︀𝑠′𝑗 = ̃⃗︀𝑢·𝑧⃗(𝑗)

for 𝑗 ∈ [𝑚], 𝑢, 𝜅, {𝜇𝑗}𝑗∈[𝑚], {̃︀𝑎†𝑗}𝑗∈[𝑚], 𝜂0
U←− 𝔽𝑞, {𝑎⃗†(𝑗)}𝑗∈[𝑚], 𝑟⃗

(𝑚+1), {𝜂⃗†(𝑗)}𝑗∈[𝑚], 𝜂⃗
(𝑚+1) U←− 𝔽2

𝑞 ,

𝒁(𝜄) ∈ {𝒁 ∈ GL(2,𝔽𝑞) | 𝑒⃗(2,2) = (1, 𝑥
(𝜒)
𝜄 )(𝒁−1)⊤} for 𝜄 ∈ [𝑛], and {𝔹𝚤}𝚤∈[0,2], {𝒆(1,𝜈,̂︀𝛽)}𝜈∈[3] are

taken from the given Problem 7 instance. ℬ2-4 then verifies the validity of the forged signature
outputted by 𝒜 using the above verification-text, and outputs 1 if the verification succeeds,
and 0 otherwise.

It is straightforward to verify that the distribution of 𝒜’s view simulated by ℬ2-4 given
𝜒 ∈ [𝑞key] and a Problem 7 instance 𝜚P7̂︀𝛽 for ̂︀𝛽 ∈ {0, 1} coincides with that in Hyb2-𝜒-3 if ̂︀𝛽 = 0.

Similarly, the view of 𝒜 simulated by ℬ2-4 given 𝜒 ∈ [𝑞key] and a Problem 7 instance 𝜚P7̂︀𝛽 for̂︀𝛽 ∈ {0, 1} coincides with that in Hyb2-𝜒-4 in case ̂︀𝛽 = 1 except when any one of {𝜃𝜈}𝜈∈[3] is 0,
i.e., except with probability 3/𝑞. This completes the proof of Lemma 4.6. ⊓⊔
Lemma 4.7: For any stateful probabilistic adversary 𝒜, for any security parameter 𝜆,
𝖠𝖽𝗏

(2-𝜒-4)
𝒜 (𝜆) = 𝖠𝖽𝗏

(2-𝜒-5)
𝒜 (𝜆) for all 𝜒 ∈ [𝑞key].

Proof: In order to prove Lemma 4.7, we show that the distribution (mpk, {sk(𝑥⃗(𝑕))}𝑕∈[𝑞key],
{sig𝑡}𝑡∈[𝑞sig], (𝒄(0), . . . , 𝒄(𝑚+1))) in Hyb2-𝜒-4 and that in Hyb2-𝜒-5 are equivalent, where mpk =

(𝗁𝗄, params, {̂︀𝔹𝚤, ̂︀𝔹*
𝚤 }𝚤∈[0,2]) is the public parameters given to 𝒜, sk(𝑥⃗(𝑕)) = (𝒌*(𝑕,0), . . . ,𝒌*(𝑕,𝑛),

𝒌*(𝑕,𝑛+1,1),𝒌*(𝑕,𝑛+1,2)) is the answer to the 𝑕th signing key reveal query of 𝒜, sig𝑡 = (𝒔*(𝑡,0), . . . ,
𝒔*(𝑡,𝑚𝑡+1)) is the answer to the 𝑡th signature reveal query of 𝒜, and (𝒄(0), . . . , 𝒄(𝑚+1)) is the
verification-text used to check the forged signature outputted by 𝒜 at the end of the experiment.
By the definition of these hybrids, it is clear that we only need to consider the joint distribution
of sk(𝑥⃗(𝜒)) and (𝒄(0), . . . , 𝒄(𝑚+1)).

The components 𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2) of the signing key sk(𝑥⃗(𝜒)) in
Hyb2-𝜒-4 can be expressed as

𝒌*(𝜒,0) = (𝜔𝜒, ̃︀𝑝𝜒,0, 𝜙𝜒,0, 0)𝔹*
0
,

𝒌*(𝜒,𝜄) = (𝜎𝜒,𝜄(1, 𝜄), 𝜔𝜒(1, 𝑥
(𝜒)
𝜄 ), 0⃗4, (0, ̃︀𝑝𝜒,𝜄), 𝜙⃗(𝜒,𝜄), 0⃗2)𝔹*

1
for 𝜄 ∈ [𝑛],

𝒌*(𝜒,𝑛+1,1) = (𝜔𝜒(1, 0), 0⃗
2, 𝜙⃗(𝜒,𝑛+1,1), 0⃗2)𝔹*

2
,

𝒌*(𝜒,𝑛+1,2) = (𝜔𝜒(0, 1), 0⃗
2, 𝜙⃗(𝜒,𝑛+1,2), 0⃗2)𝔹*

2
,

where ̃︀𝑝𝜒,0 = · · · = ̃︀𝑝𝜒,𝑛 = ̃︀𝜔𝜒, 𝜔𝜒
U←− 𝔽𝑞∖{0}, {𝜎𝜒,𝜄}𝜄∈[𝑛], 𝜙𝜒,0

U←− 𝔽𝑞, and {𝜙⃗(𝜒,𝜄)}𝜄∈[𝑛], 𝜙⃗(𝜒,𝑛+1,1),

𝜙⃗(𝜒,𝑛+1,2) U←− 𝔽2
𝑞 . On the other hand, the components 𝒄(0), . . . , 𝒄(𝑚+1) of the verification-text are

computed in Hyb2-𝜒-4 as

𝒄(0) = (−𝑢− 𝑢ℓ, ̃︀𝑞0, 0, 𝜂0)𝔹0 ,

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), 𝑎⃗(𝑗), 0⃗2, (̃︀𝑎𝑗 , ̃︀𝑞𝑗), 0⃗2, 𝜂⃗(𝑗))𝔹1 for 𝑗 ∈ [𝑚],

𝒄(𝑚+1) = (𝑢− 𝜅𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊), 𝜅, 𝑟⃗(𝑚+1), 0⃗2, 𝜂⃗(𝑚+1))𝔹2 ,
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where ̃⃗︀𝑢 = (̃︀𝑢1, . . . , ̃︀𝑢ℓ) U←− 𝔽ℓ
𝑞, ̃︀𝑞0 = −̃︀𝑢ℓ, ̃︀𝑞𝑗 = ̃⃗︀𝑢 · (𝑥(𝜒)𝜌(𝑗)𝑦⃗

(𝑗) + 𝑧⃗(𝑗)) for 𝑗 ∈ [𝑚], 𝑢⃗ = (𝑢1, . . . , 𝑢ℓ)
U←−

𝔽ℓ
𝑞, 𝑠𝑗 = 𝑢⃗ · 𝑦⃗(𝑗), 𝑠′𝑗 = 𝑢⃗ · 𝑧⃗(𝑗) for 𝑗 ∈ [𝑚], 𝑢, 𝜅, {𝜇𝑗}𝑗∈[𝑚], {̃︀𝑎𝑗}𝑗∈[𝑚], 𝜂0

U←− 𝔽𝑞, 𝑟⃗(𝑚+1), {𝑎⃗(𝑗)}𝑗∈[𝑚],

{𝜂⃗(𝑗)}𝑗∈[𝑚+1]
U←− 𝔽2

𝑞 , and 𝕊 = (𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚]→ [𝑛]) is the ASP represen-
tation of the signing policy in ℛ(𝑞)

z-abp under which 𝒜 has outputted the forged signature.
Observe that the only change that occurs in the joint distribution of sk(𝑥⃗(𝜒)) and (𝒄(0), . . . ,

𝒄(𝑚+1)) in the transition from Hyb2-𝜒-4 to Hyb2-𝜒-5 is that in Hyb2-𝜒-5, ̃︀𝑝𝜒,0 in the expression of
𝒌*(𝜒,0) transforms to a uniformly and independently (from all the other variables) distributed
element of 𝔽𝑞. Clearly, in the joint distribution of sk(𝑥⃗(𝜒)) and (𝒄(0), . . . , 𝒄(𝑚+1)) in Hyb2-𝜒-4, the
only variables with which ̃︀𝑝𝜒,0 is related are {̃︀𝑝𝜒,𝜄}𝜄∈[𝑛] and {̃︀𝑞𝑗}𝑗∈[0,𝑚]. Hence, it is enough to
consider the joint distribution of these variables. First, we observe the joint distribution of the
variables ̃︀𝑝𝜒,0̃︀𝑞0 = −̃︀𝜔𝜒̃︀𝑢ℓ and ̃︀𝑝𝜒,𝜌(𝑗)̃︀𝑞𝑗 = ̃︀𝜔𝜒(̃⃗︀𝑢 · (𝑥(𝜒)𝜌(𝑗)𝑦⃗

(𝑗) + 𝑧⃗(𝑗))) for 𝑗 ∈ [𝑚]. By the restriction
on the signing key reveal queries imposed on 𝒜, the ASP 𝕊 does not accept the signing attribute
vector 𝑥⃗(𝜒). Therefore, we must have 𝑒⃗(ℓ,ℓ) /∈ span⟨𝑥(𝜒)𝜌(𝑗)𝑦⃗

(𝑗) + 𝑧⃗(𝑗) | 𝑗 ∈ [𝑚]⟩. Hence, there must

exist a vector 𝑢⃗+ = (𝑢+1 , . . . , 𝑢
+
ℓ ) ∈ 𝔽ℓ

𝑞 such that 𝑢⃗+ · 𝑒⃗(ℓ,ℓ) = 𝑢+ℓ ̸= 0 and 𝑢⃗+ · (𝑥(𝜒)𝜌(𝑗)𝑦⃗
(𝑗)+ 𝑧⃗(𝑗)) = 0

for all 𝑗 ∈ [𝑚]. Now, any vector ̃⃗︀𝑢 U←− 𝔽ℓ
𝑞 can be expressed as ̃⃗︀𝑢 = 𝛬𝑢⃗+ + 𝑢⃗++ for some 𝛬

U←− 𝔽𝑞

and 𝑢⃗++ U←− 𝔽ℓ
𝑞. Thus, ̃︀𝑝𝜒,0̃︀𝑞0 and {̃︀𝑝𝜒,𝜌(𝑗)̃︀𝑞𝑗}𝑗∈[𝑚] can be expressed as ̃︀𝑝𝜒,0̃︀𝑞0 = −̃︀𝜔𝜒(𝛬𝑢

+
ℓ + 𝑢++

ℓ )

and ̃︀𝑝𝜒,𝜌(𝑗)̃︀𝑞𝑗 = ̃︀𝜔𝜒(𝑢⃗
++ · (𝑥𝜌(𝑗)𝑦⃗(𝑗) + 𝑧⃗(𝑗))) for 𝑗 ∈ [𝑚]. From this representation, it is clear that̃︀𝑝𝜒,0̃︀𝑞0 is uniformly and independently distributed from {̃︀𝑝𝜒,𝜌(𝑗)̃︀𝑞𝑗}𝑗∈[𝑚] since 𝛬

U←− 𝔽𝑞. Given this
fact, it readily follows that ̃︀𝑝𝜒,0 is uniformly and independently distributed from {̃︀𝑝𝜒,𝜄}𝜄∈[𝑛] and
{̃︀𝑞𝑗}𝑗∈[0,𝑚]. This completes the proof of Lemma 4.7. ⊓⊔

Lemma 4.8: For any stateful probabilistic adversary 𝒜, there exists a probabilistic algorithm
ℬ2-5, whose running time is essentially the same as that of 𝒜, such that for any security param-
eter 𝜆,

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-5)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-6)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝖠𝖽𝗏P7

ℬ2-𝜒-5
(𝜆) + 3/𝑞 for all 𝜒 ∈ [𝑞key], where ℬ2-𝜒-5(·) =

ℬ2-5(𝜒, ·) for any 𝜒 ∈ ℕ.

Proof: Lemma 4.8 can be proven in a manner similar to that of Lemma 4.6. ⊓⊔

Lemma 4.9: Under the SXDLIN assumption, we have for any 𝖯𝖯𝖳 adversary 𝒜, for any security
parameter 𝜆,

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-6)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-7)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝗇𝖾𝗀𝗅(𝜆) for all 𝜒 ∈ [𝑞key], where 𝗇𝖾𝗀𝗅 is some

negligible function.

Proof: The proof of Lemma 4.9 is similar to that of Lemma 4.5. ⊓⊔

Lemma 4.10: For any stateful probabilistic adversary 𝒜, there exists a probabilistic algorithm
ℬ2-7, whose running time is essentially the same as that of 𝒜, such that for any security param-
eter 𝜆,

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-7)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-8)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝖠𝖽𝗏P3

ℬ2-𝜒-7
(𝜆) + 2/𝑞 for all 𝜒 ∈ [𝑞key], where ℬ2-𝜒-7(·) =

ℬ2-7(𝜒, ·) for any 𝜒 ∈ ℕ.

Proof: Lemma 4.10 can be proven in a manner analogous to that of Lemma 4.4. ⊓⊔

Lemma 4.11: For any stateful probabilistic adversary 𝒜, there exists a probabilistic algorithm
ℬ2-8, whose running time is essentially the same as that of 𝒜, such that for any security param-
eter 𝜆,

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-8)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-9)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝖠𝖽𝗏P2

ℬ2-𝜒-8
(𝜆) + 3/𝑞 for all 𝜒 ∈ [𝑞key], where ℬ2-𝜒-8(·) =

ℬ2-8(𝜒, ·) for any 𝜒 ∈ ℕ.

Proof: Lemma 4.11 can be proven in a manner analogous to that of Lemma 4.3. ⊓⊔

Lemma 4.12: For any stateful probabilistic adversary 𝒜, for any security parameter 𝜆,⃒⃒⃒
𝖠𝖽𝗏

(2-𝑞key-9)
𝒜 (𝜆)− 𝖠𝖽𝗏

(3)
𝒜 (𝜆)

⃒⃒⃒
≤ 1/𝑞.
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Proof: In order to prove Lemma 4.12, we show that the distribution (mpk, {sk(𝑥⃗(𝑕))}𝑕∈[𝑞key],
{sig𝑡}𝑡∈[𝑞sig], (𝒄(0), . . . , 𝒄(𝑚+1))) in Hyb2-𝑞key-9 and that in Hyb3 are equivalent, where mpk =

(𝗁𝗄, params, {̂︀𝔹𝚤, ̂︀𝔹*
𝚤 }𝚤∈[0,2]) is the public parameters given to 𝒜, sk(𝑥⃗(𝑕)) = (𝒌*(𝑕,0), . . . ,𝒌*(𝑕,𝑛),

𝒌*(𝑕,𝑛+1,1),𝒌*(𝑕,𝑛+1,2)) is the answer to 𝒜’s 𝑕th signing key reveal query for 𝑕 ∈ [𝑞key], sig𝑡 =
(𝒔*(𝑡,0), . . . , 𝒔*(𝑡,𝑚𝑡+1)) is the answer to the 𝑡th signature reveal query of 𝒜 for 𝑡 ∈ [𝑞sig], and
(𝒄(0), . . . , 𝒄(𝑚+1)) is the verification-text used to check the forged signature outputted by 𝒜 at
the end of the experiment. By the definition of these hybrids, it is clear that we only need to
consider the joint distribution of the components {𝒌*(𝑕,0)}𝑕∈[𝑞key], {𝒔*(𝑡,0)}𝑡∈[𝑞sig], and 𝒄(0). Let us
start with the joint distribution of these components in Hyb2-𝑞key-9. Define new dual orthonormal
bases (𝔻0,𝔻*

0) of (𝕍0,𝕍*
0) from the original bases (𝔹0,𝔹*

0) used in Hyb2-𝑞key-9 as follows: Generate

𝛬
U←− 𝔽𝑞∖{0}, compute

𝒅(0,2) = 𝛬𝒃(0,2),𝒅*(0,2) = 𝛬−1𝒃*(0,2),

and set

𝔻0 = {𝒃(0,1),𝒅(0,2), 𝒃(0,3), 𝒃(0,4)},𝔻*
0 = {𝒃*(0,1),𝒅*(0,2), 𝒃*(0,3), 𝒃*(0,4)}.

It can be readily observed that the new bases (𝔻0,𝔻*
0) are indeed dual orthonormal, and are

distributed the same as the original bases (𝔹0,𝔹*
0).

First, notice that for all 𝑡 ∈ [𝑞sig], the forms of 𝒔*(𝑡,0) in Hyb2-𝑞key-9 and in Hyb3 are identical,
and since the coefficient of 𝒃*(0,2) in the expression of 𝒔*(𝑡,0) generated in Hyb2-𝑞key-9 is 0, its
form remains unaltered under this change of bases. Now, observe that the components 𝒄(0) and
{𝒌*(𝑕,0)}𝑕∈[𝑞key] in Hyb2-𝑞key-9 can be expressed over the new bases (𝔻0,𝔻*

0) as follows:

𝒄(0) = (−𝑢− 𝑢ℓ,−̃︀𝑢ℓ, 0, 𝜂0)𝔹0

= (−𝑢− 𝑢ℓ,−̃︀𝑢ℓ𝛬−1, 0, 𝜂0)𝔻0

= (−𝑢− 𝑢ℓ, 𝑣, 0, 𝜂0)𝔻0 ,

𝒌*(𝑕,0) = (𝜔𝑕,ℑ𝑕, 𝜙𝑕,0, 0)𝔹*
0

= (𝜔𝑕,ℑ𝑕𝛬,𝜙𝑕,0, 0)𝔻*
0

= (𝜔𝑕,ℑ′
𝑕, 𝜙𝑕,0, 0)𝔻*

0
for 𝑕 ∈ [𝑞key],

where 𝑣 = −̃︀𝑢ℓ𝛬−1 and ℑ′
𝑕 = ℑ𝑕𝛬 for 𝑕 ∈ [𝑞key]. Clearly, for all 𝑕 ∈ [𝑞key], ℑ′

𝑕 is uniformly and
independently (from all the other variables) distributed since ℑ𝑕

U←− 𝔽𝑞. Further, 𝑣 is uniformly
and independently (from all the other variables) distributed except when ̃︀𝑢ℓ = 0 since 𝛬

U←−
𝔽𝑞∖{0}. Thus, it follows that 𝒄(0) and {𝒌*(𝑕,0)}𝑕∈[𝑞key] generated in Hyb2-𝑞key-9 take the form as
in Hyb3 when expressed over the transformed bases (𝔻0,𝔻*

0).
Clearly, in the view of 𝒜, both the original bases (𝔹0,𝔹*

0) and the transformed bases (𝔻0,𝔻*
0)

are consistent with the public parameters mpk. Therefore, Hyb2-𝑞key-9 can be conceptually changed
to Hyb3 except when ̃︀𝑢ℓ = 0, i.e., except with probability 1/𝑞. This completes the proof of
Lemma 4.12. ⊓⊔

Lemma 4.13: For any stateful probabilistic adversary 𝒜, there exists probabilistic algorithms ℬ3
and ℳ, whose running times are essentially the same as that of 𝒜, such that for any security
parameter 𝜆,

⃒⃒⃒
𝖠𝖽𝗏

(4-(𝜋−1))
𝒜 (𝜆)− 𝖠𝖽𝗏

(4-𝜋)
𝒜 (𝜆)

⃒⃒⃒
≤ 𝖠𝖽𝗏P8

ℬ3-𝜋
(𝜆) + 𝖠𝖽𝗏𝖧,CR

ℳ𝜋
(𝜆) + 5/𝑞 for all 𝜋 ∈ [𝑞sig],

where ℬ3-𝜋(·) = ℬ3(𝜋, ·) and ℳ𝜋(·) =ℳ(𝜋, ·) for any 𝜋 ∈ ℕ.

Proof: The proof of Lemma 4.13 utilizes the following well-known result:
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Lemma 4.14 (Lemma 3 in [OT10]): For any 𝑏 ∈ 𝔽𝑞 and 𝑑 ∈ ℕ, let ℂ𝑏 = {(𝑣⃗, 𝑤⃗) ∈ (𝔽𝑑
𝑞∖{⃗0𝑑})2 |

𝑣⃗ · 𝑤⃗ = 𝑏}. For all (𝑣⃗, 𝑤⃗) ∈ ℂ𝑏, for all (𝑐⃗, 𝑘⃗) ∈ ℂ𝑏, we have

𝖯𝗋
[︁
𝑣⃗𝑭 = 𝑐⃗ ∧ 𝑤⃗(𝑭−1)⊤ = 𝑘⃗

]︁
= 𝖯𝗋

[︁
𝑣⃗(𝑭−1)⊤ = 𝑐⃗ ∧ 𝑤⃗𝑭 = 𝑘⃗

]︁
= 1/♯ℂ𝑏,

where 𝑭
U←− GL(𝑑,𝔽𝑞).

In order to prove Lemma 4.13, we construct below a probabilistic algorithm ℬ3 against
Problem 8 using as a blackbox sub-routine a stateful probabilistic adversary 𝒜 that distinguishes
between Hyb4-(𝜋−1) and Hyb4-𝜋. Suppose ℬ3 is given 𝜋 ∈ [𝑞sig] together with an instance of
Problem 8

𝜚P8̂︀𝛽 = (params, {̃︀𝔹𝚤,𝔹*
𝚤 }𝚤∈{0,2},𝔹1,𝔹*

1,𝒉
*(0,̂︀𝛽),𝒇 (0), {𝒉*(2,𝜈,̂︀𝛽),𝒇 (2,𝜈)}𝜈∈[2]),

where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8));̃︀𝔹0 = {𝒃(0,1), 𝒃(0,3), 𝒃(0,4)};̃︀𝔹2 = {𝒃(2,1), 𝒃(2,2), 𝒃(2,5), . . . , 𝒃(2,8)};
𝜗,𝜘, 𝛿, 𝜏, 𝜉0

U←− 𝔽𝑞, {𝜉(𝜈)}𝜈∈[2] U←− 𝔽2
𝑞 ,𝑿

U←− GL(2,𝔽𝑞),𝒀 = (𝑿−1)⊤;

𝒉*(0,0) = (𝜗, 0, 𝜉0, 0)𝔹*
0
,𝒉*(0,1) = (𝜗,𝜘, 𝜉0, 0)𝔹*

0
;

𝒇 (0) = (𝛿, 𝜏, 0, 0)𝔹0 ;

𝒉*(2,𝜈,0) = (𝜗𝑒⃗(2,𝜈), 0⃗2, 𝜉(𝜈), 0⃗2)𝔹*
2

𝒉*(2,𝜈,1) = (𝜗𝑒⃗(2,𝜈), 𝜘𝑒⃗(2,𝜈)𝑿, 𝜉(𝜈), 0⃗2)𝔹*
2

𝒇 (2,𝜈) = (𝛿𝑒⃗(2,𝜈), 𝜏 𝑒⃗(2,𝜈)𝒀 , 0⃗2, 0⃗2)𝔹2

⎫⎪⎬⎪⎭ for 𝜈 ∈ [2].

ℬ3 interacts with 𝒜 as follows:

1. At first, ℬ3 sets

̂︀𝔹0 = {𝒃(0,1), 𝒃(0,4)},̂︀𝔹*
0 = {𝒃*(0,3)},̂︀𝔹1 = {𝒃(1,1), . . . , 𝒃(1,4), 𝒃(1,13), 𝒃(1,14)},̂︀𝔹*
1 = {𝒃*(1,1), . . . , 𝒃*(1,4), 𝒃*(1,11), 𝒃*(1,12)},̂︀𝔹2 = {𝒃(2,1), 𝒃(2,2), 𝒃(2,7), 𝒃(2,8)},̂︀𝔹*
2 = {𝒃*(2,1), 𝒃*(2,2), 𝒃*(2,5), 𝒃*(2,6)},

using {̃︀𝔹𝚤,𝔹*
𝚤 }𝚤∈{0,2}, 𝔹1, and 𝔹*

1, which are part of the given Problem 8 instance. It also

samples a hashing key 𝗁𝗄
R←− 𝖪𝖦𝖾𝗇() for a hash function family ℍ associated with 𝒢bpg

and the polynomial 𝗉𝗈𝗅𝗒 (·), where 𝗉𝗈𝗅𝗒 (𝜆) represents the length of the bit string formed
by concatenating a message belonging to 𝕄 and the binary representation of an ASP rep-
resenting a signing policy predicate in ℛ(𝑞)

z-abp. It provides 𝒜 with the public parameters
mpk = (𝗁𝗄, params, {̂︀𝔹𝚤, ̂︀𝔹*

𝚤 }𝚤∈[0,2]).
2. For all 𝑕 ∈ [𝑞key], in response to the 𝑕th signing key reveal query of 𝒜 for some 𝑥⃗(𝑕) ∈ 𝔽𝑛

𝑞 ,
ℬ3 gives 𝒜 a signing key sk(𝑥⃗(𝑕)) = (𝒌*(𝑕,0), . . . ,𝒌*(𝑕,𝑛), 𝒌*(𝑕,𝑛+1,1), 𝒌*(𝑕,𝑛+1,2)), where it
generates 𝒌*(𝑕,0) as in Eq. (4.9), while 𝒌*(𝑕,1), . . . ,𝒌*(𝑕,𝑛),𝒌*(𝑕,𝑛+1,1),𝒌*(𝑕,𝑛+1,2) as in Eq. (4.1)
using {𝔹*

𝚤 }𝚤∈[0,2] of the given Problem 8 instance.
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3. For 𝑡 ∈ [𝑞sig], in response to the 𝑡th signature reveal query of 𝒜 for some triple (msg𝑡,𝕊𝑡, 𝑥⃗(𝑡)) ∈
𝕄 × ℛ(𝑞)

z-abp × 𝔽𝑛
𝑞 , ℬ3 hands 𝒜 a signature sig𝑡 = (𝒔*(𝑡,0), . . . , 𝒔*(𝑡,𝑚𝑡+1)) whose components

are computed as follows:

(a) (𝑡 < 𝜋) ℬ3 computes 𝒔*(𝑡,0), 𝒔*(𝑡,𝑚𝑡+1) as in Eq. (4.11), while 𝒔*(𝑡,1), . . . , 𝒔*(𝑡,𝑚𝑡) as in
Eq. (4.2) using {𝔹*

𝚤 }𝚤∈[0,2] included within the given Problem 8 instance.

(b) (𝑡 = 𝜋) ℬ3 computes 𝒔*(𝜋,1), . . . , 𝒔*(𝜋,𝑀𝜋) as in Eq. (4.2), while it computes

𝒔*(𝜋,0) = 𝒉*(0,̂︀𝛽),
𝒔*(𝜋,𝑚𝜋+1) = 𝒉*(2,1,̂︀𝛽) + 𝖧

(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg𝜋‖𝕊𝜋)𝒉*(2,2,̂︀𝛽),

where 𝒉*(0,̂︀𝛽), {𝒉*(2,𝜈,̂︀𝛽)}𝜈∈[2] are taken from the given Problem 8 instance.

(c) (𝑡 > 𝜋) ℬ3 computes 𝒔*(𝑡,0), . . . , 𝒔*(𝑡,𝑚𝑡+1) as in Eq. (4.2) using {𝔹*
𝚤 }𝚤∈[0,2] of the given

Problem 8 instance.

4. When 𝒜 outputs a forgery sig on some message msg ∈ 𝕄 under some signing policy 𝕊 =

(𝕌 = {(𝑦⃗(𝑗), 𝑧⃗(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) ∈ ℛ(𝑞)
z-abp, ℬ3 computes the verification-text

(𝒄(0), . . . , 𝒄(𝑚+1)) as

𝒄(0) = −𝑢ℓ𝒃(0,1) − (𝜃†1𝒇
(0) + 𝜃†2𝒃

(0,1)) + 𝜂0𝒃
(0,4),

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), (̃︀𝑠′𝑗 , ̃︀𝑠𝑗), 0⃗2, 𝑟⃗(𝑗), 0⃗2, 𝜂⃗(𝑗))𝔹1 for 𝑗 ∈ [𝑚],

𝒄(𝑚+1) = (𝜃†1𝒇
(2,1) + 𝜃†2𝒃

(2,1))− 𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊)(𝜃‡1𝒇 (2,1) + 𝜃‡2𝒃

(2,1))+

(𝜃‡1𝒇
(2,2) + 𝜃‡2𝒃

(2,2)) +
∑︁
𝜈∈[2]

𝜂(𝑚+1)
𝜈 𝒃(2,6+𝜈),

where 𝑢⃗ = (𝑢1, . . . , 𝑢ℓ), ̃⃗︀𝑢 = (̃︀𝑢1, . . . , ̃︀𝑢ℓ) U←− 𝔽ℓ
𝑞, 𝑠𝑗 = 𝑢⃗ · 𝑦⃗(𝑗), 𝑠′𝑗 = 𝑢⃗ · 𝑧⃗(𝑗), ̃︀𝑠𝑗 = ̃⃗︀𝑢 · 𝑦⃗(𝑗),̃︀𝑠′𝑗 = ̃⃗︀𝑢 · 𝑧⃗(𝑗) for 𝑗 ∈ [𝑚], {𝜃†𝜈 , 𝜃‡𝜈}𝜈∈[2], {𝜇𝑗}𝑗∈[𝑚], 𝜂0

U←− 𝔽𝑞, {𝑟⃗(𝑗)}𝑗∈[𝑚], {𝜂⃗(𝑗)}𝑗∈[𝑚+1]
U←− 𝔽2

𝑞 ,
and {̃︀𝔹𝚤}𝚤∈{0,2},𝔹1,𝒇

(0), {𝒇 (2,𝜈)}𝜈∈[2] are taken from the given Problem 8 instance. ℬ3 then
verifies the validity of the forged signature outputted by 𝒜 using the above verification-text,
and outputs 1 if the verification succeeds, and 0 otherwise.

We now argue that the above simulation of 𝒜’s view by ℬ3 given 𝜋 ∈ [𝑞key] and a Problem 8
instance 𝜚P8̂︀𝛽 for ̂︀𝛽 ∈ {0, 1} is coincides with that in Hyb4-(𝜋−1) or Hyb4-𝜋 according as ̂︀𝛽 = 0 or
1. It is immediate that in order to argue this, it is enough to consider the joint distribution of
(𝒄(0), . . . , 𝒄(𝑚+1)) and sig𝜋, where (𝒄(0), . . . , 𝒄(𝑚+1)) is the verification-text generated by ℬ3 to
verify the forged signature outputted by 𝒜 and sig𝜋 = (𝒔*(𝜋,0), . . . , 𝒔*(𝜋,𝑚𝜋+1)) is ℬ3’s response to
the 𝜋th signature reveal query of 𝒜. Also, a part of the verification-text, namely, (𝒄(1), . . . , 𝒄(𝑚))
and a part of the signature sig𝜋, namely, (𝒔*(𝜋,1), . . . , 𝒔*(𝜋,𝑚𝜋)) are clearly identically distributed
to those in Hyb4-(𝜋−1) and in Hyb4-𝜋. Therefore, we only need to consider the joint distribution
of 𝒄(0), 𝒄(𝑚+1), 𝒔*(𝜋,0), and 𝒔*(𝜋,𝑚𝜋+1).

When ̂︀𝛽 = 0, it is straightforward to verify that the joint distribution of 𝒄(0), 𝒄(𝑚+1), 𝒔*(𝜋,0),
and 𝒔*(𝜋,𝑚𝜋+1) coincides with that in Hyb4-(𝜋−1) except when 𝜗 or 𝜏 used in the given Problem
8 instance is 0, i.e., except with probability 2/𝑞.
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When ̂︀𝛽 = 1, 𝒄(0), 𝒄(𝑚+1), 𝒔*(𝜋,0), and 𝒔*(𝜋,𝑚𝜋+1) simulated by ℬ3 take the form

𝒄(0) = (−𝑢ℓ − (𝛿𝜃†1 + 𝜃†2),−𝜏𝜃†1, 0, 𝜂0)𝔹0 = (−𝑢ℓ − 𝑢, 𝑣, 0, 𝜂0)𝔹0 ,

𝒄(𝑚+1) = ((𝛿𝜃†1 + 𝜃†2)− (𝛿𝜃‡1 + 𝜃‡2)𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊), 𝛿𝜃‡1 + 𝜃‡2,

(𝜏𝜃†1 − 𝜏𝜃‡1𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊), 𝜏𝜃‡1)𝒀 , 0⃗2, 𝜂⃗(𝑚+1))𝔹2

= (𝑢− 𝜅𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊), 𝜅, 𝑟⃗(𝑚+1), 0⃗2, 𝜂⃗(𝑚+1))𝔹2 ,

𝒔*(𝜋,0) = (𝜗,𝜘, 𝜉0, 0)𝔹*
0

= (̂︀𝜔𝜋, 𝜁𝜋,0, ̂︀𝜐𝜋,0, 0)𝔹*
0
,

𝒔*(𝜋,𝑚𝜋+1) = (𝜗(1,𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg𝜋‖𝕊𝜋)),𝜘(1,𝖧(𝜆,𝗉𝗈𝗅𝗒)

𝗁𝗄 (msg𝜋‖𝕊𝜋))𝑿, 𝜉(1)+

𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg𝜋‖𝕊𝜋)𝜉(2), 0⃗2)𝔹*

2

= (̂︀𝜔𝜋(1,𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg𝜋‖𝕊𝜋)), 𝜁(𝜋,𝑚𝜋+1), ̂⃗︀𝜐(𝜋,𝑚𝜋+1)

, 0⃗2)𝔹*
2
,

where 𝑢 = 𝛿𝜃†1 + 𝜃†2, 𝑣 = 𝜏𝜃†1, 𝜅 = 𝛿𝜃‡1 + 𝜃‡2, 𝑟⃗(𝑀+1) = (𝜏𝜃†1 − 𝜏𝜃‡1𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊), 𝜏𝜃‡1)𝒀 ,̂︀𝜔𝜋 = 𝜗, 𝜁0 = 𝜘, 𝜁(𝜋,𝑚𝜋+1) = 𝜘(1,𝖧(𝜆,𝗉𝗈𝗅𝗒)

𝗁𝗄 (msg‖𝕊))𝑿, ̂︀𝜐𝜋,0 = 𝜉0, and ̂⃗︀𝜐(𝜋,𝑚𝜋+1)
= 𝜉(1) +

𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg𝜋‖𝕊𝜋)𝛾⃗(2).

Clearly, ̂︀𝜔𝜋 is uniformly and independently (from all the other variables) distributed in 𝔽𝑞∖{0}
except with probability 1/𝑞 since 𝜗

U←− 𝔽𝑞. Similarly, 𝑢, 𝜅, 𝑣, and 𝜁𝜋,0 are uniformly and indepen-
dently (from all the other variables) distributed in 𝔽𝑞 except when 𝜏 = 0, i.e., except with prob-
ability 1/𝑞 respectively since 𝜃†2, 𝜃

‡
2, 𝜃

†
1,𝜘

U←− 𝔽𝑞. Now, observe that since (msg, 𝕊) ̸= (msg𝜋, 𝕊𝜋)
by the restriction imposed on 𝒜 in the experiment, 𝑟⃗(𝑚+1) · 𝜁(𝜋,𝑚𝜋+1) = 𝛬𝜘𝜏𝜃‡1 +𝜘𝜏𝜃†1 with 𝛬 =

𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg𝜋‖𝕊𝜋) − 𝖧

(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊) ̸= 0 except with probability 𝖠𝖽𝗏𝖧,CR

ℳ (𝜆) for some proba-
bilistic algorithmℳ with essentially the same running time as that of 𝒜. Hence, 𝑟⃗(𝑚+1) ·𝜁(𝜋,𝑚𝜋+1)

is uniformly and independently (from all the other variables) distributed in 𝔽𝑞 except with prob-
ability 𝖠𝖽𝗏𝖧,CR

ℳ (𝜆) when 𝜏 and 𝜘 is non-zero since 𝜃‡1
U←− 𝔽𝑞. Moreover, from Lemma 4.14, the

pair of vectors (𝑟⃗(𝑚+1), 𝜁(𝜋,𝑚𝜋+1)) is uniformly distributed in ℂ
𝛬𝜘𝜏𝜃‡1+𝜘𝜏𝜃†1

. Hence, it follows that

𝑟⃗(𝑚+1) and 𝜁(𝜋,𝑚𝜋+1) are uniformly and independently (from all the other variables) distributed
in 𝔽2

𝑞 except with probability 𝖠𝖽𝗏𝖧,CR
ℳ (𝜆) provided 𝜏 and 𝜘 is non-zero.

Therefore, it follows that the joint distribution of 𝒄(0), 𝒄(𝑚+1), 𝒔*(𝜋,0), and 𝒔*(𝜋,𝑚𝜋+1) is the
same as that in Hyb4-𝜋 except with probability 𝖠𝖽𝗏𝖧,CR

ℳ (𝜆)+3/𝑞 in this case. This completes the
proof of Lemma 4.13 ⊓⊔

Lemma 4.15: For any stateful probabilistic adversary 𝒜, for any security parameter 𝜆,⃒⃒⃒
𝖠𝖽𝗏

(4-𝑞sig)
𝒜 (𝜆)− 𝖠𝖽𝗏

(5)
𝒜 (𝜆)

⃒⃒⃒
≤ 1/𝑞.

Proof: In order to prove Lemma 4.15, we show that the distribution (mpk, {sk(𝑥⃗(𝑕))}𝑕∈[𝑞key],
{sig𝑡}𝑡∈[𝑞sig], (𝒄(0), . . . , 𝒄(𝑚+1))) in Hyb4-𝑞sig and that in Hyb5 are equivalent, where mpk = (𝗁𝗄,

params, {̂︀𝔹𝚤, ̂︀𝔹*
𝚤 }𝚤∈[0,2]) is the public parameters given to 𝒜, sk(𝑥⃗(𝑕)) = (𝒌*(𝑕,0), . . . ,𝒌*(𝑕,𝑛),

𝒌*(𝑕,𝑛+1,1),𝒌*(𝑕,𝑛+1,2)) is the answer to the 𝑕th signing key reveal query of 𝒜, sig𝑡 = (𝒔*(𝑡,0), . . . ,
𝒔*(𝑡,𝑚𝑡+1)) is the answer to the 𝑡th signature reveal query of 𝒜, and (𝒄(0), . . . , 𝒄(𝑚+1)) is the
verification-text used to check the forged signature outputted by 𝒜 at the end of the experiment.
By the definition of these hybrids, it is clear that we only need to consider the components
{𝒌*(𝑕,0)}𝑕∈[𝑞key], {𝒔*(𝑡,0)}𝑡∈[𝑞sig], and 𝒄(0). Let us start with the joint distribution of these com-
ponents in Hyb4-𝑞sig . Define new dual orthonormal bases (𝔻0,𝔻*

0) of (𝕍0,𝕍*
0) from the original
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bases (𝔹0,𝔹*
0) used in Hyb4-𝑞sig as follows: Generate 𝛬

U←− 𝔽𝑞, compute

𝒅(0,2) = 𝒃(0,2) + 𝛬𝒃(0,1),𝒅*(0,1) = 𝒃*(0,1) − 𝛬𝒃*(0,2),

and set

𝔻0 = {𝒃(0,1),𝒅(0,2), 𝒃(0,3), 𝒃(0,4)},𝔻*
0 = {𝒅*(0,1), 𝒃*(0,2), 𝒃*(0,3), 𝒃*(0,4)}.

It can be readily observed that the new bases (𝔻0,𝔻*
0) are indeed dual orthonormal, and are

distributed the same as the original bases (𝔹0,𝔹*
0).

Now, observe that the components 𝒄(0), {𝑣𝑒𝑐𝑘*(𝑕,0)}𝑕∈[𝑞key], and {𝒔*(𝑡,0)}𝑡∈[𝑞sig] in Hyb4-𝑞sig can
be expressed over the new bases (𝔻0,𝔻*

0) as follows:

𝒄(0) = (−𝑢− 𝑢ℓ, 𝑣, 0, 𝜂0)𝔹0

= (−𝑢− 𝑢ℓ − 𝑣𝛬, 𝑣, 0, 𝜂0)𝔻0

= (𝑤, 𝑣, 0, 𝜂0)𝔻0 ,

𝒌*(𝑕,0) = (𝜔𝑕,ℑ𝑕, 𝜙𝑕,0, 0)𝔹*
0

= (𝜔𝑕,ℑ𝑕 + 𝜔𝑕𝛬,𝜙𝑕,0, 0)𝔻*
0

= (𝜔𝑕,ℑ′
𝑕, 𝜙𝑕,0, 0)𝔻*

0
for 𝑕 ∈ [𝑞key],

𝒔*(𝑡,0) = (̂︀𝜔𝑡, 𝜁𝑡,0, ̂︀𝜐𝑡,0, 0)𝔹*
0

= (̂︀𝜔𝑡, 𝜁𝑡,0 + ̂︀𝜔𝑡𝛬, ̂︀𝜐𝑡,0, 0)𝔻*
0

= (̂︀𝜔𝑡, 𝜁
′
𝑡,0, ̂︀𝜐𝑡,0, 0)𝔻*

0
for 𝑡 ∈ [𝑞sig],

where 𝑤 = −𝑢−𝑢ℓ−𝑣𝛬, ℑ′
𝑕 = ℑ𝑕+𝜔𝑕𝛬 for 𝑕 ∈ [𝑞key], and 𝜁 ′𝑡,0 = 𝜁𝑡,0+̂︀𝜔𝑡𝛬 for 𝑡 ∈ [𝑞sig]. Clearly,

for all 𝑕 ∈ [𝑞key], ℑ′
𝑕 is uniformly and independently (from all the other variables) distributed

since ℑ𝑕
U←− 𝔽𝑞. Similarly, for all 𝑡 ∈ [𝑞sig], 𝜁 ′𝑡,0 is uniformly and independently (from all the other

variables) distributed since 𝜁𝑡,0
U←− 𝔽𝑞. Finally, 𝑤 is uniformly and independently (of all the other

variables) distributed except when 𝑣 = 0, i.e., except with probability 1/𝑞 since 𝛬
U←− 𝔽𝑞. Thus,

it follows that 𝒄(0), {𝒌*(𝑕,0)}𝑕∈[𝑞key], and {𝒔*(𝑡,0)}𝑡∈[𝑞sig] generated in Hyb4-𝑞sig take the form as in
Hyb5 when expressed over the transformed bases (𝔻0,𝔻*

0) except with probability 1/𝑞.
Clearly, in the view of 𝒜, both the original bases (𝔹0,𝔹*

0) and the transformed bases (𝔻0,𝔻*
0)

are consistent with the public parameters mpk. Therefore, Hyb4-𝑞sig can be conceptually changed
to Hyb5 except with probability 1/𝑞. This completes the proof of Lemma 4.15. ⊓⊔

Lemma 4.16: For any stateful probabilistic adversary 𝒜, for any security parameter 𝜆,
𝖠𝖽𝗏

(5)
𝒜 (𝜆) = 1/𝑞.

Proof: Let the forged signature outputted by 𝒜 in Hyb5 be sig = (𝒔*(0), . . . , 𝒔*(𝑚+1)). If the
coefficient of 𝒃*(0,1) in the expression of 𝒔*(0) is 0, then 𝑒(𝒃(0,1), 𝒔*(0)) = 1𝔾𝑇 holds, and the
verification fails by the specification of the algorithm ABS.Verify. On the other hand, if the
coefficient of 𝒃*(0,1) in the expression of 𝒔*(0) is non-zero, then due to the fact that in Hyb5 the
coefficient 𝑤 of 𝒃(0,1) in the expression of the component 𝒄(0) of the verification-text used to
verify the forgery is uniformly and independently distributed from all the other variables, the
verification also fails except with probability 1/𝑞. Hence, it follows that 𝖠𝖽𝗏

(5)
𝒜 (𝜆) = 1/𝑞. This

completes the proof of Lemma 4.16. ⊓⊔
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