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Abstract. We present the first attribute-based encryption (ABE) scheme for deterministic finite automaton (DFA)
based on static assumptions in bilinear groups; this resolves an open problem posed by Waters (CRYPTO 2012). Our
main construction achieves selective security against unbounded collusions under the standard k-linear assump-
tion in prime-order bilinear groups, whereas previous constructions all rely on g-type assumptions.

1 Introduction

Attribute-based encryption (ABE) [19,11] is a generalization of public-key encryption to support fine-grained access
control for encrypted data. Here, ciphertexts are associated with a description value x and keys with a policy f, and
decryption is possible when f(x) = 1. In many prior ABE schemes, the policy f is specified using a boolean formula,
but there are many applications where we want the policy f to operate over arbitrary sized input data. For example,
we could imagine a network logging application where x represents an arbitrary number of events logged. Another
example is where x is a database of patient data that includes disease history paired with gene sequences where the
number of participants is not apriori bounded or known.

Following the work of Waters in 2012 [21], we consider ABE for regular languages, where the policies f are spec-
ified using deterministic finite automata (DFA). This allows us to capture applications such as tax returns and virus
scanners. In spite of the substantial progress made in the design and analysis of ABE schemes over the past decade, all
known constructions of ABE for DFA rely on g-type assumptions in bilinear groups [21,2,3,1], where the complexity
of the assumption grows with the length of the string x. In this work, we address the following open problem posed in
the original work of Waters [21]:

Can we build an ABE for DFA based on static assumptions in bilinear groups, notably the k-linear
assumption in prime-order bilinear groups?

From both a practical and theoretical stand-point, we would like to base cryptography on weaker and better under-
stood assumptions, as is the case with the k-linear assumption. This is also an intriguing problem from a conceptual
stand-point because prior approaches exploit g-type assumptions in a fairly inherent manner. Waters’ ABE for DFA
was based on an “embedding paradigm” where the arbitrary-length challenge string was programmed into the public
parameters, and embedding an arbitrary length string into fixed-size parameters seems to require a g-type assump-
tion. The dual system encryption methodology developed in the context of ABE for boolean formula [20,15,16,18,6]
allows us to overcome the latter limitation, provided the ciphertext or key size is allowed to grow with the size of the
formula; this does not work in the DFA setting, since formula size roughly corresponds to ¢ - Q, where ¢ is the length of
the string x and Q is the number of states in the DFA. Indeed, a key challenge that distinguishes ABE for DFA from ABE
for boolean formula is that both the size of public parameters and the secret keys are independent of ¢, which means
that we cannot afford to unroll and embed the entire DFA computation path into the secret key.
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This work. We present the first ABE for DFA based on static assumptions in bilinear groups, thereby providing an
affirmative answer to the above open problem. Our main construction achieves selective security against unbounded
collusions under the standard k-linear assumption in prime-order bilinear groups. Our proof strategy departs signifi-
cantly from prior ABEs for DFA in that we design a series of hybrids that traces through the computation. Our proof of
security carefully combines a “nested, two-slot” dual system argument [20,15,16,18,12,6] along with a novel combina-
torial mechanism for propagating entropy along the computation path of a DFA.

We note that our high-level approach of tracing the computation path across hybrids is similar to that used in
the recent ABE for boolean formula from static assumptions in [14], but we have to deal with the afore-mentioned
challenge specific to DFAs. In a bit more detail, in our ABE for DFA, the secret keys contain random shares “in the
exponent” corresponding to each state of the DFA; this is analogous to ABE for boolean formula where the random
shares correspond to wires in a formula. Roughly speaking, in the i’th hybrid, we modify the distribution of the share
corresponding to the state u; reached upon reading the first i bits of the input string. In a DFA, a state could be
reached many times throughout the DFA computation on a fixed input, which means that we need to modify the
share corresponding to u; (along with the challenge ciphertext) in such a way that it does not affect the functionality
of the DFA. This difficulty does not arise in ABE for boolean formula, because each wire is only used once during the
computation.

1.1 Technical overview — warm-up

We present an overview of our ABE scheme for DFAs. Recall that a DFA is specified by a tuple (Q,Z,§, F) where the
state space is [Q] :={1,2,...,Q}; 1 is the unique start state; F < [Q] is the set of accept states, and § : [Q] x £ — [Q] is the
state transition function.

Warm-up construction. The starting point of our construction is Waters’ ABE scheme for DFA [21] over asymmetric
composite-order bilinear groups (Gn, Hy, GT, e) whose order N is the product of three primes p1, p2, p3. (The original
scheme is instantiated over prime-order bilinear groups, but relies on g-type assumptions.) Let g;, h; denote genera-
tors of order p; in Gy and Hy;, for i =1,2,3, and let & be a generator for Hy. The scheme is as follows:

msk = (h, @, Wstarty Wend» Z» {wO'}U'EZ) (1)
mpk = (81,8, 8", 87,18, oex, (g1, W)
gi‘O’ ng wstart,
_ Si Si—12+S; wxi
Cty = {81 & Yierens

S¢ Wend

s
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Decryption proceeds as follows:

(i) compute e(gf“,hdl);
(i) fori=1,...,¢, compute e(gls", B ), where u; denotes the state reached upon reading xi, ..., x;.
(iii) compute e(gy, h)%* and thus m.

To go from e(gfi“  h%ui-1) to e(gfi, h%:i) in step (ii), we rely on the identity: for all u € [Q],0 € %,
Sid§(u,0) —si1dy=s;- (d(S(u,a) + Wory) +Si—1- (=dy+2zry) — (Si—12+SjWg) - Ty

We note that our scheme differs from Waters’ scheme in that we reuse r, for all the transitions starting from u in-
stead of a fresh r,, , for each (u, o). This modification yields a smaller secret key (roughly Q- |Z| +2Q vs 3Q - |Z| group
elements), and also simplifies the notation.



Proof strategy. At a very high level, the proof follows Waters’ dual system encryption methodology [20,15]. This means
that throughout the proof, we modify the ciphertext and key distributions but not mpk, and only in the p,-subgroup
generated by g, hy (which we also refer to as the p,-components). In fact, we will rely on the “nested two-slot” variant
of dual system encryption introduced in [16,18,12,6] for settings where the ciphertext uses independent randomness
S0, S1,--- as is the case for our DFA scheme. Here, “nested” refers to the fact that the security proof interweaves a
computational argument over ciphertexts with another over secret keys, whereas “two-slot” refers to the use of the
p3-subgroup to carry out this delicate interweaving. In contrast, the basic dual system encryption framework [2,22]
applies a single computational argument over ciphertexts at the beginning and can be instantiated in asymmetric
composite-order groups whose order is the product of fwo primes.

Proof - first idea. For this proof overview, we will focus on the selective setting where the adversary first picks a
challenge x* before seeing mpk and making secret key queries. In addition, we consider a further simplification where
the adversary only makes a single key query for some DFA f where f(x*) = 0 (i.e. rejecting). Let ug = 1 denote the start
state, and let uy, ..., uy denote the state in f reached upon reading xy,..., x,. In particular, uy ¢ F.

Recall that decryption computes e(glsi, h%:) foreach i =0,...,¢. Anatural proof strategy would be design a series of
games Gy, ..., Gy such that in G;, the quantity e(gfi, hdu) is pseudorandom for each u # u;. In particular, since u, ¢ F,
this means that e(gls[ , hd“) is pseudorandom for all u € F, which should imply that e(gf[ , h%) is pseudorandom.

Towards carrying out this strategy, we pick A — Zy and define:

A ifu#u;

iu= .
0 otherwise

In G;, we switch the ciphertext-key distributions from (cty+, sk r)to (cti* ,sk}) where

- ctfc* is the same as cty+ except we replace gls" with (g1 82)%;
i A
- sk} is the same as sk except we add a i, "" term to hdv*WoTu for every u,o.

Roughly speaking, this means that in G;, the quantity e(gls i hd") would be masked by e( gs", hzA by = g gsi, hZA) whenever
u # u;. In particular, the quantity e(g;’, h%) would be masked by e(g,’, h3).

Proof - second idea. As it turns out, we cannot hope to show that the quantity e(gfi, hdu) is pseudorandom for each
u # u;. Consider a DFA with Q = 3,Z = {0} and §(1,0) = 2,6(3,0) = 2. Then, given an encryption of x = 0, an adversary
can compute

e(gy, h)

by first computing e(g;", h“%) using the transition 1 5 2, and then “back-tracking” along the transition 3 S 2; these are
so-called “back-tracking attacks” in [21].

Instead, we will only argue that e(glsi , h@) is pseudorandom, for u € F; .+ for some family of sets F; .« < [Q]. (Our
first attempt corresponds to setting F; »+ = [Q] \ {1;}.) In order to argue that e(gf[ ,h?) is pseudorandom, we want
Fpx~=F.Fori=0,...,¢ -1, we will define

Fix :={u€[Ql:6(u,x;,,,...,x;) € F}.
Here, we use 6 to also denote the “extended transition” function, namely
0(u,01,02,...,0p)=6(0(0(u,01),02),...,0¢).
*

i+1°
particular, if f(x*) = 0, then 1 ¢ Fy + (recall that 1 denotes the start state) and more generally, u; ¢ F; v+ (recall that

That is, F; x+ is the set of states that are reachable from the accept states in F by back-tracking along x;, e X In

u; =6(1,xy,...,x;)). Finally, we modify A; ,, to be

A ifue Fi,x*
Ajy =

0 otherwise



Intuitively, the proof starts by introducing a unit of entropy captured by A to each state in Fy x+ in Gy, and then propa-
gates that entropy to the states in Fj x~ in Gj, then F, s+ in Gy, and finally to Fy y« = F in G,. We can then use A to mask
a, upon which we can argue that the plaintext is perfectly hidden via an information-theoretic argument. Looking
ahead, (5) captures precisely how we computationally propagate entropy from F;_; x+ in G;_; to F; x+ in G;. The key
insight here is that these sets F; y« are the states that are reachable by back-tracking from the accept states, and not
the ones that are reachable from the start state.

Proof - interlude. Now, we are ready to describe how to carry out the hybrid argument from Gg to G,. As mentioned
earlier, we focus on the setting with a single key query f. This means that we need to show that foreachi=1,...,¢, we
have:

Gi_1 = (mpk,ctﬁgl,sk}_l) =~ (mpk, ct;*,sk’f) =G;
To prove this, we will introduce an additional ciphertext distribution ctiil’i , where:

- ct;l'i is the same as cty+ except we replace gls"‘1 ,gfi with (g182)%1,(g182)"
and move from G;_; to G; via the following hybrid arguments:
Gio1 = (mpk, ctiz!, skih)

= (mpk, cti:l'i A skj@_l)

2

x* ’
~¢ (mpk, cti*, sk}) =G;

Note that the proof interweaves a computational argument over ciphertexts with another over secret keys. In the proof,

= (mpk, cti b sk}

we will rely on the following computational assumptions in composite-order bilinear groups:

- SDg{V_, p1p Subgroup assumption in Gy, which says that g; = (g182)%;

- DDHgZN in Hy (w.r.t. w), which implies that (h}, h}'") = (h}, hZA”‘”) given (hy, hy’) for all A.

Later on, we will describe how to instantiate the scheme and these assumptions using the k-linear assumption in
prime-order bilinear groups.

Proof - third idea. We begin with the first computational transition in (2), namely:

(mpk, ctiil,sk}_l ~c (mpk,,sk}_l)

The only difference between ct ;11 and ctiil‘i is that we have g;" in the former, and (g1 g2)* in the latter. Unfortunately,

we cannot directly invoke the SD,C,"{V_, p1p, @ssumption to carry out this transition, because we need h to simulate
Ao . - e .
the extra h, " terms in sk’f ! and the SDgf’H p1p, assumption is trivially broken in the presence of h. Instead, we

crucially rely on the fact that the hzA """ terms appear in skj[l as:
Ai‘ v oTu u
h2 Lv hw T, , hr
where A;_; , € {0,A}. In particular, we will prove a statement of the form:
g ~c(g182)° given g1,8Y, g, 8%, h,h" hy-h"", h" 3)

where s, w, r, A — Zx. We refer to this as the (s, w)-switching lemma. Note the presence of the term gzw , which we need
1w i-1,i
x*

dom. We will prove the (s, w)-switching lemma by exploiting the third p3-subgroup, using a “two slot” dual system

i : : Sim1 Wt . . wex T, .
in the reduction to simulate the g, -1 term in ct , and which means that (hzA -h %1 k™) is not pseudoran-



argument:

LHS = g}, h"" - hY, h'
PR g gs] hereng, h'
o g-g h“”-hZA-, n @
PR g [gs) neromdomd,
e giegs, RYT-RY, W =RHS

We now clarify that there is in fact a catch here, namely that the (s, w)-switching lemma breaks down if the adversary
SjW . *

is also given g;", which could indeed be the case due to the g, " term in ct’;

- We will circumvent this issue by
modifying scheme (1) in the next section.
Looking ahead, we note that the same argument (once we fix the catch) would allow us to handle the third com-

putational transition in (2), namely
(mpk, ctiz !, ki) = (mpk, ,sk}).

Proof - fourth idea. Next, we handle the remaining computational transition in (2), namely

i-1,i i
* ’ Skf )

X

(mpk,cti}l'i,sk}_l) ~¢ (mpk,ct

By a standard argument based on the Chinese Remainder Theorem, it suffices to prove the statement for the p;-
components of the above expression, and since mpk has no p,-components, this leaves us with:

x*

(cty "'121, sk [2D) = (et 121, sk 121

where xx[2] denotes the p,-components of xx. That is, we will need to prove a statement of the form:

{hidu+zru thJrerUru hru
2 > 2

T2 }u,a,vzé(u,o)
~ {h_du+zrlt th++w”ru hru}
~c 2 > T2 ’ 2

u,o,v=0(u,o)

i—1,i

given ct . [2]. Instead, we will sketch a proof that
{h_du++zru hdv+wurtt hru}
2 T2 ’ 2 u,o,v=0(u,0) 5)
~ {h_du+ert hdu++w‘7ru hru}
¢ 2 ’ 2 * 2 u,o,v=0(u,0)

i-1,i

given (s;_1,5;,Si—12+ S; Wy ). The latter will be useful for simulating the terms in ct o 121 which is given by:

§$i—12+S; W *

Si SiZ
'8 8,8 )

. . Si—_1 W, *

i-1,i _ Xio1 o Si-1
ct. 2] = (g, 8
We can interpret (5) as the key computational step that “propagates” the entropy from the states in F;_; x+ to those in
F; . We will explain the connection between (5) and the statement skj{l = sk} we need later on in the overview.

The proof of (5) relies on the following three observations:

1. bythe DDH;IZN assumption w.r.t. w,+» mod p,, we have

w T Wy T+Si-1Y

Wy} -3 i
(h3" h, " R e (B, ,h}) ®)

given (s;_1, S;, Si—12 + S; W+ ); this extends readily to the setting with many triplets corresponding to the r;,’s. Note
1
Si—12+S; W, *

that the above triplets (X, Y, Z) satisfies a consistency check X%-1.Y5i = Z



2. whenever o # x;‘, we can again invoke the DDH;IZN assumption, now w.r.t. wy mod p», to replace h;“ 774 with

hZA""ﬁw"r” forall ue [Ql,0 # x},v=5(u,0).

3. forall x* and i € [¢], u € [Q], we have
U€F;_ < 6(u,x]) € Fjy

This is one of two steps where we crucially relies on the definition of F; ,+.

We note that the analogue of (6) given also gzsi “in ctf{l‘i [2] is false due to the consistency check e(g,’, h3") = e( gzsi ‘ h3).
Again, we will circumvent this issue by modifying scheme (1) in the next section.

Proof - fifth idea. To make use of (5) in the proof, we introduce an additional key distribution sk}_l’i:

i A -
— ski; " is the same as sk ¢ except we add a ," " term to h~%«*?"u for every u.

Instead of

i-1,i

(mpk,ct’, k} D =, (mpk, ctl Li k}_“

) ~¢ (mpk, et KD

(%]

we will show:

(mpk,ctill,sk}_l):C(mpk,ctiil, sk;_l'i) and (mpk, ct’ Li sk}_“)~c (mpk, ct’ Li sk})

i-1

That s, we will switch from sk to sk’ L7in the presence of ct'>! instead of ct’ Li

and employ the following strategy:

Gi-1 = (mpk, ctizl, skj:l )
=¢ (mpk, ctiil, sk}_l’l )
= (mpk, ‘ i 1", sk}_l’i ) similar to 1st transition in (2) )
=, (mpk, ct’ LE sk} ) using (5)

~¢ (mpk, ct;* , sk; ) =G; identical to 3rd transition in (2)

Here, the last three computational transitions can be handled as before. This leaves us with the first transition,
namely to show that

(mpk,ct’> ,sk"1 ~c (mpk,ct’Z?, sk}*l'i ).

Roughly, we focus on the p,-components and prove it via the following hybrid arguments:
dy + Wstart T T
hzl tart/'1 , hzl ,

i-1 = —dy+zr d'/++w”r” T
Skf [2] {hz " uyhz ;hzu}u,o,vzﬁ(u,a),

a—dy+Wengr
{hz u end u’ h;u}ueF

h SR,

2

= h_du++zru hdv+wuru hru
{ 2 ) » Feo }u,a v=06(u,0)»

2 » oo }LLEF
dy —Di=TT+ Wstart T
h 1 A—t/l,/l start 7'l hrl

—dy+A; +
~, {h utRi-1,utzly hdv+wgru hru}ugv 5 (0)» —Skl 11[2]
{ha du'*'M+wendru hru} ueF

in the presence of cti}l [2], which is given by:

i ~ gSO Wstart g gZSOZ ifi=1
Ctx* 2] = Si— lw S s 1z
8 g hg T if2sist



The first statistical step simply relies on the change of variable
dy—dy—Ai-1,, YuelQ].
Then we handle the second computational step by arguing
py SiTiIsarl o plantgpg et WendTu  plend’n e

This is implied by DDHZN assumption W.r.t. Wggart, Wenq Mmod p» with an exception:

- when i = 1, the ciphertext ctg* leaks wsiart mod p» via g;" Wstart gnd DDH’I;IZN assumption w.r.t. Wseare mod p2 does
not hold. In this case, we use the fact that Ag; = 0 which is implied by 1 ¢ Fy x+.

This is the second step where we crucially rely on the definition of F; ,+.

1.2 Our construction

Here is our final “alternating” construction, where we introduce two copies of (z, {wy}), and we alternate between the
two copies in the ciphertext depending on the parity of i:

msk = (R, @, Wstart, Wend, 20, 21, {Wa.,0, Wo,1}oex ) 8)

_ w; Wend Z0 zZ1 Wq,0 Wg,1 a
mpk - (gl;gl start’gl en vgl )gl r{gl 7 )gl 7 }0‘€Z’e(glrh) )

S So W:
glo’ glo start

_ Si $i-1Z2i mod 2t Si Wx; i mod 2

Cty = {gll)gl ! }i€[[])
Se S¢ Wend
gl ’gl en )e(gl)h)sia‘m

dy + Wstart T T
h 1 start 1,h1,

sk = | {h=dutanru, pdvt WobTu Rrutp o) ue(0loes, v=6(u,0),

{ha_du"'wendru’ hru}uEF

Note the additional i mod 2 subscript in ct, and the additional quantifier b € {0, 1} in sk . Decryption proceeds essen-
tially as before by computing e(gls", h%i)fori=0,...,¢ and finally e(g, h)*¢® and thus m.

Updating auxiliary distributions. The proof for the “alternating” construction still follows the strategy in (7). The

distributions ct’, and ctibi

o are defined analogously; we update sk; [2] and ski~bi [2] for the “alternating” construction

f
as follows:

1+ wet;
hzl Wstdrtrl’hgl’

dqu+ Wg,i mod2Tu

—dy+z; T T
{hz uT<imod 2 u, hz , hgu}u,a,vzé(u,a)v

sk} [2] =

—du+zi-1 mod2Tu 1,9+ Wgi-1mod2Tu 7.1
{hz ursimimo u;hz ;hgu}u,a,vzﬁ(u,a),

a—dy+Wengr
{hz ut Wend u’ h;l}ueF

dy + Wstart T
h21 start 1’ hzl,

_d“++zi mod 27u dv+wo,i mod2Tu 1.1y
ki—l,i _ {hg rhz rhz Yu,o,0=6(u,0)
sk (2] =

—dy+2zi_1 mod 2T dy+Wg i1 mod2Tu 11
{h2 ut2Zi-1 mo u!hz ,i—1 mo ,hzu}u,o,vzé(u,o)r

—dy+
{hg u Wendru,hgu}ueF

As an example, we illustrate a complete game sequence for 3-bit input in Fig. 1.



Game sk r(2] cty[2]
0 ldu — dvl 25,05, ldu — dvlz),w,, [dy — = Olupe,q,0 -
1 ldy — dv]]zo,wg_o ldy — dv]]zl,wg_l ldy—a— 0l Wend,0 [ S0 Wstart [,,[ $021 [
2.1.0 [[dquﬁ]]Zo oo ldy — dvlz),w,, [du — a— 01,40 |
211 [du— dv) 2,1, [[du_’_’ d,,]]Z] o [dy—a— 0l 40 l

»Wao,
2.1.2 [dy — dV]]Zoywa,o ldu—Do,u— L‘ly]]zl’wg'1 ldy—a— Olwg,4,0 S0 Wstart, S0, S021 +/| §1 Wyr 1 ,, $120
2.1.3 ldu — dvlzg,w, ldy — dv"']]zl We 1 [du = a = Olwgyq,0 l

"o,
2.1.4 (=2.2.0) IIdu»—>dl,]]Z(],wU,0 [[du»—»d,,+A1,,,]]Zhwm1 ldy — & — 0] yq,0 SQIUSTATT, 5655621 + S1 Wyr 1551, S120
2.2.1 [[du —’_’ dy]]z(] Wo o ldy— dl/]]zl,wg_l ldy—a—0] Wend,0 l
2292 [du=Aru = dyly oo 1du— dulzyw,, [du—a— 0,40 S1Wis 1,51, 8120 +[S2Wys o [ [S2}[$221
223 ldy — dy + ]]Z0 oo ldy = dvlz),w,, [du — a— 01,40 !
2.2.4(=2.3.0) ldy—dy+ Az,y]lz()ywalo ldu— dvlz),w,, ldu—a— 0lenq,0 Sl/wﬁlffv}'l/rﬁ—kzo"" $2 Wy 0052, 5221
23.1 Ldy — Ayl 2o, ldy - — dy]]ZI ot [du—a— 0luw,,4,0 |
232 ldu— dvlzg,w,, ldy— 22— dv]]z],wavl ldu— a— 0lugnq,0 S2Wyx 0082, 5221 | S3 Wy 1 vr $3 Wend
233 [du— dvl 2w, [du—dy+[A30]l  1du= @ Olugy0 l
2.34 ldu— dvlzg,w,, ldy—dp+83,0] 5 4, [du—a—0lw,y0 S Wy S7,522T + S3 Wyt 1, 3, 53 Wend
3 [[du — d'/]]zo,wa.o [[du land d]/]]zl,wo.‘l lldu__a'_’()]] Wend,0 1

Fig. 1. Summary of game sequence for ¢ = 3. We only describe the p,-components here. Recall the notational short-hand [dy —
dylzw = (hz_d””r”, hg”wr", h;”). Here, secret key elements in the second and third columns are quantified over u € [Q],0 €
2, v =0(u,0) while those in the fourth column are over u € F; we omit [0 — d1]o, - For the ciphertext elements, we omitted the
terms e(g§3, h%) in games 2.3.x and 3. Throughout, a | means “same as preceding row”.

How alternation helps. We briefly describe how the alternating structure circumvents two of the issues in the earlier
proof overview:

i-1,i

— To switch from cti:l toct,. " given skjc_l'i, we will rely on (s;, 2; mod 2)-switching lemma. The earlier issue with the
N

terms (gf i glfzi+1 mod 2y jpy ct;“ simply goes away because z; mod 2 # Zi+1 mod 2, thanks to the alternation. A similar

trick works for switching from etV

"
— To switch from sk}_l’l to sk, given ct

toctl,.
i—1,i . . .
;* ' we will rely on the analogue of (6) with (z; mod 2, Wy, i mod 2) in place of
i-1,i
x*

no longer applicable simply because z; mod 2 # Zi+1 mod 2, thanks again to the alternation.

(z, wyr). The extra term in ct that enables the earlier attack now corresponds to gzsi “ivimod2 o the attack is
1

Handling many secret keys. The proof extends to selective security for many keys, with fresh {dy, r,} (g per key
and the same A used across all the keys. Roughly speaking, the fresh r,, allows us to carry out the computational steps
involving the DDH,I;ZN assumption, and in the final step, we rely on the fact that all the secret keys only leak a + A and
not « itself.

1.3 Prime-order groups

To complete the overview, we sketch our final ABE scheme which is secure under the k-Linear assumption in prime-
order bilinear groups.4 Here, we rely on the previous framework of Chen et al. [5,10,4,6] for simulating composite-order
groups in prime-order ones. Let (G, G2, GT, e) be a bilinear group of prime order p. We start with our ABE scheme in

4 e.g: k =1 corresponds to the Symmetric External Diffie-Hellman Assumption (SXDH), and k = 2 corresponds to the Decisional
Linear Assumption (DLIN).



composite-order groups (8) and carry out the following substitutions:

du» a — du,k Zpy Wg b = Zb!wo',b
g — [s]AT]y R’ — [rul
i Si Wy
g, g s STATZ, [SJATWo 1y W7, 0T [Zyeyly, Wo prula

where
A — Z;Zkﬂ)xk and Zb;wa,b — ngﬂ)xk, dy k — Z}ng+1, Si, Ty — leg

and [-];, [-]2 correspond respectively to exponentiations in the prime-order groups Gj, G». Note that A; has height
2k+1:we will use k-dimensional random subspaces to simulate each of the p; and p3 subgroups, and a 1-dimensional

subspace to simulate the p, subgroup; these are sufficient to simulate the SDSN and SDSY

Gn
p1—p1p2’ SDleplgs p3—p3pz 48°
sumptions (we would need to modify the proof of the (s, w)-switching lemma in (4) to avoid SD !, ,,, assumption). It

Hy

v ,DDH;‘;N assumptions.

is sufficient to use Z,, W, ;, of width k since we only rely on the DDH
This yields the following prime-order ABE scheme for DFA:

msk = (k, Wstart, Wend, Zo, Z1, {Wo,0, W, 1} gex )
mpk = ([A], Al Wygart, Al Wend, Al Zo, A1 Z;1, {A] W, 0,A] Wy 1} pes ], [ATK 1)
[s{AT]1, [S{A] Wstar]1
cty = | {[s]A]]1,[8]_ AT Z; mod 2 + S;A] Wy, i mod 21} ie(]
(s, A1, [, A] Wenal, [, Akl - m

[dy + Warer1]2, [r1]2,

skp = [{[=dy +Zpryl2, [dy + Wo prula, [tul2} beio,1), ue(Qloes, v=6(u,0)
{[(k—dy +Wenarylz, [rul2}uer

Decryption proceeds as before by first computing
[s;Aldylr Vi=0,...,¢

via the associativity relations A]Z-r,, = A] - Zr,, (ditto War;, Wy, p, Wend) [7]; and finally recovers [s}A{k] 7 and thus m.

1.4 Discussion

The main open problem arising in this work is to obtain an adaptively secure ABE scheme for DFA under the k-Lin
assumption. One natural approach is to combine our techniques with the piecewise guessing framework in [14,13]
to obtain an adaptively secure ABE scheme for DFA under the k-Lin assumption. The main obstacle here is that in
the intermediate hybrids, we need to know the sets F; -+, for which there can be up to 29 possibilities, where Q is the
maximal number of states in a DFA provided by the adversary in the secret key queries. As such, naively applying the
piecewise guessing framework would incur a 29 security loss. Another potential approach is to appeal to the doubly
selective framework in [2,17], which reduces the problem to building a selectively secure ciphertext-policy ABE for DFA
(alternatively, a co-selectively secure key-policy ABE for DFA) under the k-Lin assumption, in the single-key setting;
again, naively applying the techniques in this work would incur a 29 security loss. To conclude, achieving adaptive
security under the k-Lin assumption with only a polynomial loss appears to require new ideas that go beyond the
state of the art.

Organization. The next section gives some background knowledge. We prove selective security of the composite-
order scheme in the one-key setting in Section 3, as well as that of the prime-order scheme in the many-key setting in
Section 4.



2 Preliminaries

Notation. We denote by s < S the fact that s is picked uniformly at random from a finite set S. By PPT, we denote a
probabilistic polynomial-time algorithm. Throughout this paper, we use 1* as the security parameter. We use lower
case boldface to denote (column) vectors and upper case boldcase to denote matrices. We use = to denote two distri-
butions being statistically indistinguishable, and =, to denote two distributions being computationally indistinguish-
able.

Deterministic Finite Automaton (DFA). A deterministic finite automaton (DFA) f is defined by (Q,Z,d, F) where

Q is the number of states and we take [Q] as the state space;
2 is the alphabet;

6 :[Q] x £ — [Q] is a transition function;

— F < [Q] s the set of accept states.

Here the (unique) start state is always state 1. We use f(x) = 1 to denote that an input x = (x1,..., x,) € =¥ is accepted
by DFA f, which means that there exists a sequence of states ug, uy,..., Uy € [Q] satisfying:

- u=1,
- foralli=1,...,¢,wehave 6 (u;_1, x;) = u;,
- up€kF.

If input x is not accepted by DFA f, we write f(x) =0.

2.1 Attribute-based encryption for Deterministic Finite Automaton
Syntax. An attribute-based encryption (ABE) scheme for DFA consists of four algorithms (Setup, Enc, KeyGen, Dec):

Setup(14,Z) — (mpk, msk). The setup algorithm gets as input the security parameter 1* and the alphabet X. It outputs
the public parameter mpk and the master key msk. We assume mpk defines the message space M.

Enc(mpk, x, m) — cty. The encryption algorithm gets as input mpk, an input x € £* and a message m € M. It outputs
a ciphertext cty. Note that x is public given cty.

KeyGen(mpk, msk, f) — sky. The key generation algorithm gets as input mpk, msk and a description of DFA f. It
outputs a secret key sk . Note that f is public given sk .

Dec(mpk,sks,cty) — m. The decryption algorithm gets as input sk and ct, such that f(x) = 1 along with mpk. It
outputs a message m.

Correctness. For all input x and DFA f with f(x) =1 and all m € M, we require

(mpk, msk) — Setup(1%, %);
Pr Dec(mpk,skf,ctx) =m: skf — KeyGen(mpk, msk, f); | =1.

cty — Enc(mpk, x, m)

Security definition. For a stateful adversary A, we define the advantage function

(mpk, msk) — Setup(lA,Z);
A s= pr | g g, 57 M0 < ARSGERMRRT mplo; | 1
A ’ "B —1{0,1}; Ctyr — Enc(mpk, x*, mp); 2
,6/ (_AKeyGen(mpk,msk,-) (Cty+)
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with the restriction that all queries f that A makes to KeyGen(mpk, msk,-) satisfy f(x*) = 0. An ABE scheme is adap-
tively secure if for all PPT adversaries A, the advantage Advny(it) is a negligible function in A. The selective security is

defined analogously except that the adversary A selects x* before seeing mpk.

2.2 Composite-order Groups

A generator G takes as input a security parameter 1* and outputs group description G := (N, Gy, Hy, Gr, €), where N
is product of three primes p1, p2, p3 of ©(1) bits, Gy, Hy and Gr are cyclic groups of order N and e: Gy x Hy — Gt
is a non-degenerate bilinear map. We require that the group operations in Gy, Hy and Gt as well the bilinear map e
are computable in deterministic polynomial time with respect to 1. We assume that a random generator g (resp. h) of
Gy (resp. Hy) is always contained in the description of bilinear groups. For every divisor n of N, we denote by G,, the
subgroup of Gy of order n. We use g1, g2, g3 to denote random generators of subgroups G, , Gp,, Gp, respectively and
define hy, hy, h3 random generators of subgroups Hy,, Hy,, Hy, analogously.

Computational assumptions. We review two static computational assumptions in the composite-order group, used
e.g. in [15,8]. By symmetry, one may permute the indices for subgroups.

Assumption 1 (SDgfL pip2) Wesay that (py — p1p2)-subgroup decision assumption, denoted by SDg{V_, p1pe holds if for

all PPT adversaries A, the following advantage function is negligible in A.

GNn
AV’ PP () = | PrLAGG, D, To) = 11 - PrlA(G, D, Ty) = 11|

where
D:= (glngy 83, hlr h3’ hlZ)r hlz - Hp1p2

To ‘_R‘Gm " b} ‘_‘ Gpip» ‘

Assumption 2 (DDH?IN ) Wesay that p; -subgroup Diffie-Hellman assumption, denoted by DDH,Ile , holds if for all PPT

adversaries A, the following advantage function is negligible in A.

DDHAN

Adv, 7 (A):= |PrlA(G, D, Tp) = 1] - PriA(G, D, T1) = 11|

where
D:= (gl)gZ)gS) hl) h2y hg))

Tp:= (hf,h{’), Ty := by |7 ), %,z — 2.

3 ABE for DFA in Composite-Order Groups

In this section, we present our ABE for DFA in composite-order groups, as a warm-up to our prime-order scheme in
Section 4. Here, we focus on selective security in the one-key setting under static assumptions.

3.1 Scheme
Our ABE for DFA in composite-order groups is described as follows:

- Setup(l’l,Z) :RunG = (N = p1p2ps3,Gn, Hy, G, €) — 51 and pick generators g1 < Gp,, h — Hy.Sample a, Wstart,
Wend> 20, 21, Wg,0, Wg,1 — Zy for all o € Z. Choose a pairwise-independent hash function H. Output

mpk = (81,8, g,"", g, 87,18,"", 8, "' }oes, e(g1, W% H) and

msk = (h, @, Wstart» Wend» 20, 21, {WU,O» wa,l}oez)

The message space M is the image space of H.

11



- Enc(mpk, x, m) : Let x = (x1,...,X¢) € ¢, Pick S0,81,...,S¢ — Z and output

So S0 Wstart
8181 )
_ s; _Si-1Zimod 2+ Si Wyx;,i mod 2
Ctx— {gllrgl ! }ie[é]; .

g g ", Hie(g1, h)*)-m
- KeyGen(mpk, msk, f) : Pick dy, r, — Z for all u € [Q] and output

dy+ Wstart T r
h% startl’hl’

Skf = {h_du"'Zbru, hdv‘f‘lﬂo,bru’ hr"}be{O,1},u€[Q],U€Z,v:6(u,U)’ X

(h*~dutWendTu pruy, o
- Dec(mpk,skp,cty) : Parse ciphertext for input x = (xy,..., x¢) as
ctx = (Co,1,Co,2,{Ci,1, Ci2}iele)) Cend,1) Cend,2, C)
and key for f =(Q,Z%,6,F) as
sk = (Ko,1, Ko,2) {Kp,u» Kb,u,00 Kt b,u,00 {Kend,u» KubueF)-

If f(x) =1, compute (up = 1,uy,...,Up) € [Q][Jrl such that 6(u;_1,x;) = u; for i € [¢] and u, € F, and proceed as
follows:

1. Compute By = e(Cy1,Ko1) - e(Co2,Ko2)~%;

2. Foralli=1,...,¢, compute

-1
Bi =e(Ci-1,1,Ki mod 2,u;_1) - €(Ci 1, Ki mod 2,u;_;,x;) - €(Ci 2, Ky;_,)

3. Compute Beng = €(Cend,1, Kend,u,) * €(Cend,2, Ku[)_l and
4
B=Byp- nBi'Bend
i=1

4. Output the message m' — C-H(B)™ L.

Correctness. For x = (x1,...,x7) and f = (Q,X,6, F) such that f(x) = 1, we have:

By = e(g1, ™™ €)
B; = e(gy, )i M5 (10)
Bend = e(gl,h)sux—s/du[ (11)
B = e(g1, %" (12)

This follows from the following equalities in the exponent:

(9) sod1
(10) sidy, —si—1Ay;_, = Si—1-(=dy;,_, + Zi mod 2Tu;_,) + Si * (dy; + Wy; i mod 27u;_1) — (Si—1Zi mod 2 *+ Si Wx;,i mod 2) * Tu;_,

sp-(a— du[ + wendrug) —S¢Wend * Tu,

So - (d1 + Wstart 7o) — So Wstart * 10

(11) spa—sedy,

and finally
l
(12) spa=sodi+ Y (sidu;, — Si—1du; )+ (s —spdy,).
i=1

Correctness follows readily.
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Security. We will prove the following theorem for the one-key setting where the adversary asks for at most one secret
key. We explain how to handle many keys in Section 3.10 and the proof for the prime-order scheme in Section 4 is for
the many-key setting.

Theorem 1 (composite-order ABE for DFA). The ABE scheme for DFA in composite-order bilinear groups described
above is selectively secure (cf. Section 2.1) in the one-key setting under the following static assumptions: SD

G GN H, H,
SDSN. ) er SDSN ., DDHLN and DDH),Y.

pP1—p1p2’

3.2 Game sequence

Let x* € ¢ denote the selective challenge and let ¢ = ¢ mod 2. We focus on the case ¢ > 1 and defer ¢ = 0,1 to Sec-
tion 3.9. Recall that g», h> denote random generators for G,, Hj,, respectively.

Auxiliary distributions. We describe the auxiliary ciphertext and secret key distributions that we use in the proof of
security. Throughout, the distributions are the same as the original distributions except for the p»-components. For
notational simplicity, we will only write down the p,-components and use xx[2] to denote p»-components of xx.

Ciphertext distributions.

- fori=0,1,...,¢: cti is the same as cty+ except we replace gfi with (g1 82)%;

- fori=1,2,...,¢: ctl L is the same as ct,+ except we replace gs’ l,glsi with (g1 82)%1,(g182)%.

That is, we have: writing 7 = i mod 2,

gS(lwstart g gS()Zl ifi=0
ctl,[2] = ¢ i Sifl-r ifo<i<?
x* - gz )gz )gz 1 l
wa * 7

gz ! vgz ygS[Wend'e(gzi’ha) lfl :[

S0Z21+S81 wxi« 1

S0 Wstart S1 45120 7 —
g rgZ)gz !gz;gz ifi=1
i-Lirgy _ SimlWer a1t gy SiEVEHSiWEg SiZ1-1 . .
. 21=4g, ,g2 '8, 8,8, ifl<i<?¢
Se—1 Wy _ Sp-127+Sg W % 7
N N Sy W, N
g2 o 1 ’ng l’g2 Yo ’ng’gé end’e(girha’) ifi=¢

The A-distributions. Fixa DFA f.Let Fp x+ = F;fori =0,...,¢ — 1, we will define

Fiy ={uelQl:8(u,x},,,...,x;) € F}.

i+1°

Here, we use § to also denote the “extended transition” function, namely
0(u,01,02,...,0p)=600(u,01),02),...,0).

That is, F; x+ is the set of states that are reachable from the accept states by back-tracking along x,..., In par-

t+1
ticular, if f(x*) = 0, then 1 ¢ Fy+ (recall that 1 denotes the start state) and more generally, u; ¢ F; .+ (recall that

u; =6(1,xy,...,x;)). Finally, we pick A — Z and define A; ;, to be

A ifue Fi,x*
Ajy =

0 otherwise
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Secret key distributions.

- fori=0,1,...,¢: sk} is the same as sk s except we add th"'” to h+Woimod2Tu for every u € [Q],0 € = and v = (1, 7).

. i—1,1 . Aj_ — .
- fori=1,2,...,0:sk’- " is the same as sk except we add h, " to h~%u*Zimed2"u for every u € [Q].

!
. Dpy _
- sk; is the same as sk s except we add h, 1 to h®~dutWena"u for every u € F.

That is, we have: writing 7 = i mod 2,
dy + Wstart I r
hzl start 1, hzl ,

{h—du+eru hdy++wg'Tru hru}
) ) 1y » Iy sue(Ql,oex,v=06(u,0)»

f —dy+z1-1T dy+wg1—1T T
{h2 urHT u,hzl/ > u;hzu}ue[Q],UEZ,l)Zé(u,U)y

a—dy+Wengr T
{hz " en u)hzu}u€F

hd1+Wstart”1 hrl
2 [
A h_d“++zfr“ hdv+wo.rr14 hlu
Sk}_l»l[z] — { 2 y Iy » o }u€[Q],U€Z,U:5(u,0'))

—dy+z1-r1ry 3, dv+tWei-1Tu 1
{hz urHT u)hzy o u,hzu}ue[Q],gez,v:é(u,U)’

a—dy+WendT T
{hz " o u)hzu}ueF

dy + Wstart T
h21 start l,hgl,

—du+zpry 3 AvtWoplu 71
{hy ™ by T My Y be 0,13, ue Q) 0 €%, =6 (1,00

{ha—dquJr WendTu

r
2 ) hzu } ueF

Game sequence. We prove Theorem 1 via a series of games described below and summarized in Fig 2.

- Go: Identical to the real game.
- Gj:Identical to Gy except that the challenge ciphertext is ctg*.
- Ga.jo, 1 =1,...,¢: In this game, the challenge ciphertext is cti:l and the secret key is sk}‘l. Note that Gy 1 is

identical to G; except that the secret key is sk(} andwe have Gy ;0 =Gy ;14 forall2<i</.

- Gyj1,i=1,...,¢: 1dentical to G, ; o except that the secret key is sk;fl”'.
i-1,i
x*

- Ggj2,i=1,...,¢: 1dentical to G, ; ; except that the challenge ciphertext is ct
i

- Ggi3,i=1,...,¢: 1dentical to G, ; » except that the secret key is skf
- Gg.ja4,1=1,...,¢: 1dentical to G, ; 3 except that the challenge ciphertext is ct;*.

*

- Gs: Identical to Gy ¢ 4 except that secret key is sk 7

We use Adv’;*(A) to denote the advantage of adversary A in Gxxx with parameter 11,

3.3 Useful lemmas

We begin with a few useful lemmas which will be used throughout the proof of security.

Basic facts. We first state several facts which we will use in the proof.
Lemma 1. Forany x* € £¢ and f such that f(x*) = 0, we have:

1. AO,I =0;
2. forallie[f],uc[Q], wehave
U€F; 1y = 6(u,x;)€Fjy.

Proof. The first statement follows from the fact 1 ¢ Fy »+. The second one can be proved as follows: For direction =,

we know 6 (u, xl’.",xl?‘ﬂ,...,x;) € Ffor all u € F;_; x+. This means 6(6(u,x;‘),xl’f+l,...,x;) € F and thus 6(u,x;‘) € F; x+ by
the definition. The direction <= can be proved analogously. O
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Game ct,* p2-components of sk f Remark

0 ldu = dvlzg,wg, o ldu— dvlz),w, ldu~a— 01w, 40 Real game

1 [[dquV]IZO'WU,O ﬂdu’—'dv]lzl,wg‘l ﬂdu*a’—’oﬂwend,o SD

2.1.0 [dy — dy + ﬂzovwn,o [du = dvlzy wy ldu —a~ 0lw,, 4,0 DDH

2.i.0 ldy — dv) 2y, wg,; ldy — dy +n21_pwgv1_1 ldu - a— 01y, 4.0 Gpi0=Gpj1aV2<ist

2.1 (du=[ D]~ ol M il g, ldy = a = 0lg 4,0 “dy—dy—A;_1," +DDH (+Lem 1-1)
2.i.2 ldu=Aiyu=dvl, o ldu=dvlz_wgp_y ldy—a— 0y, 4.0 Lem 2

2.3 [dy — dy + HzT,wU,r ldu = dvlzy w1 ldy—a— 0y, 4.0 Lem 3 + DDH + Lem 1-2

2.i4 ldu— dy+ 8,0, 0 ldu = dvlzy w1 ldy—a— 0y, 4.0 Lem 2 + DDH

3 ﬂdu*"dvﬂzo,w(,yo ﬂdu*—’dvﬂzl,wml Hdu**a*—’oﬂwend,o “dy— dy—N0g," +DDH

Fig.2. Game sequence for composite-order ABE for DFA with i = 1,...,#. Recall that 7 = i mod 2. We only describe the p»-
components for keys with the notational short-hand [dy — dylz,w = (hz_ d“+zr”, hg ”+wr”, h;“). All secret key elements in the
fourth and fifth columns are quantified over u € [Q],0 € Z,v = 0(u,0) while those in the sixth column are over u € F; we omit
[0 — d110,way - In the “Remark” column, “SD” and “DDH” mean SDg{V_, p1Lp2
cf. Section 2.2; all lemmas will be described in Section 3.3; “Lem 1-1” and “Lem 1-2” indicate the two statements in Lemma 1,

assumption and DDH?ZN assumption, respectively,

respectively. Note that we use Lemma 1 for “G, ; g — Gy ;.1 ” only when i = 1 which is indicating by brackets.

Ciphertext switching. We use (s, w)-switching lemma (Lemma 2) when switching ciphertext distributions in Sec-
tion 3.6. This extends the statement described in (3) by considering many tuples of form (h*" - th, k") each with fresh
G . G

pa—psp, instead of SD ;. )
assumption once more. Looking ahead, this allows us to derive a prime-order

r. To prove Lemma 2, we follow hybrid arguments described in (4) except that (i) we use SD
Gn

assumption and (ii) we apply SD ;L. ,, ,,,

scheme with better parameters.

Lemma2 ((s, w)-switching lemma). For all Q € N, we have

aux, g, LRYTe R, BT g
= aux, gf', { hWTu -th, R bueio)
SWITCH(A)

where aux = (g1, &, h, h", g{”, ng“) and w, s,A, i, —Zn for all u € [Q]. Concretely, the advantage function Ade
is bounded by

Gn Hy Gy
2 Advyy " Q)+ 4-Advy) () + Advgy " ()
1 2 3
with Time(B1), Time(B,), Time(B3) = Time(B).

Proof. We prove the lemma via the following hybrid arguments:

LHS = aux, g, { htTu.
~, aux, gf-, { hTe. using SD,C;‘fL,,,I,,3
~¢ aux, g1 g3, { hWTu. using DDH%N
~¢ aux, gf--gef, { hWru. using SDS;‘LPWZ
~caux, g-85- 83 { h*v- using DDH;IE;N
~caux g g g {h using SDSY. .

We proceed as follows:

Gn

— The first and the last = rely on the SD [\, ,,,

assumption stating that:

81 =c8 -8 givengi, g, hhy

where s — Zy. All reductions are straight-forward.
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- The second and the fourth = rely on the following statement implied by DDH assumption w.r.t. w mod ps: for
all A € Z;, we have )
TRy g buetq) ~e 1Ry ™8, B buerg)
given g1, 82, g3, h1, h2, h3, hiY where w, 7y — Zy for all u € [Q]. All reductions are straight-forward.
- The third =, relies on the SD ps—ps p, dssumption stating that:
83%c8 8 givengy, g, h hy (13)

where s < Z and hy3 is a random generator for Hy, »,. The reduction works as follows: On input (S, g1, g2, h, h23)
where either S = g3 or S = gJ - g3, we sample w, A, 7y, § — Zy for all u € [Q]. First, we can trivially compute aux
and challenge term g; - S. Second, we simulate hA hA with hZA3 by the fact: hA hA ~¢ hb, for all hy, hs, hos when
A — Z; this is sufficient for simulating all remaining terms.

Combining all five steps proves the lemma. O

Remark 1. Observe that the distributions in the lemma are easily distinguishable if the view also contains g;"
(8182)°" (on the LHS and RHS respectively).

Key switching. We use (z, w)-transition lemma (Lemma 3) for switching key distributions (see Section 3.7), which
captures the core argument in the statement (5) in the Introduction.

Lemma 3 ((z, w)-transition lemma). ForallQeN, s;_1,5; #0 and A € Zy, we have

aux, §i—12+S; w, { h , hwﬁ‘ h;" }ue[Q]

hzru h+wr"

where aux = (g1, g2, M1, ha, h3, h3, hy’) and z, w, 7, — Zy for all u € [Q]. Concretely, the advantage function Advg*™* ()

) DDH,Y
is bounded by 2 - Adv%1 (A) with Time(B1) = Time(B).

= aux, S;_12+ S; W, { hy" tuerqy

Proof. We prove the lemma with the following hybrid arguments:

iA+zF F P
LHS = aux, si_1z2+s;w, { h;’ e hy'™, hy by

’ hz ’ hz }u
=SiYu+zfy +si’1Y"+wﬁ‘ Tu
hz i hz ’ h2 }u

— Sy ar Si—1A+s; Wi F . H,
R aux, sic1z+siw, { b, R ST hy"},=RHS using DDH,"

X aux, Sji_12+ S; W, { h using DDHS[ZN

g aux, Si—12+ S;j W, { statistical argument (14)
where y,, — Zy for all u € [Q]. We proceed as follows:

— The first and third =, follow from the statement: for all s;_1, s; # 0, we have
{hqu, hW’_‘u, hfu }ME[Q] ~¢ {h_SiYu"‘qu’ hsi—IYu‘*'qu, hfu }LLE[Q]

given gl,gz,hl,hg,hg,h h2 ,Si—1Z2 + s;w where z,w, 7y, vy, — Zy for all u € [Q]. This is implied by DDH as-
sumption w.r.t. w mod p»: On input
ho, by, {hy", Tubueql

where either T,, = h;’f“ orT, = h;”f"ﬂ"’”“ and w, 7,7y, — Zy for all u € [Q], we sample Z — Z and implicitly set
s -1
Z=Z—s Siw

Then, we can simulate h5 = hz (h)~ i and Si—1z+s;w = s;_1zusing hy, hy’, Z,s;_1, s; (without knowing w) and
output the challenge terms

{ (hru)Z Sl 15i Tu, ;u }ME[Q]'

Observe that, when T, = h;’ f“, the output distribution is identical to that on the left-hand side; when T, =

h;’ TutSilu e output distribution is identical to that on the right-hand side. This proves the statement.
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- The second =; relies on the statistical statement for all A € Z:

{A_Yu;Yu}ue[Q] :s{_'}/u»A"‘Yu}ue[Q] (14)
when y, — Zy forall u € [Q].

This readily proves the lemma. O

3.4 Initialization: Go — G1,G; — G2.1.0
The first two transitions are straight-forward; we prove the following two lemmas for them, respectively.

Lemma4 (Gy =, G;). There exists B with Time(B) = Time(A) such that

GN

AV, (1) — Advly (D] < Advey ™77 (M)

Proof. This relies on SDSV assumption stating that

P1—p1p2
(glr h’ gfo =c (gly h’ gfo : )
where sy — Z. In the reduction,

- we sample @, Wstart, Wend, 20, 21, We,0, Wg,1 — Zy for all o € Z and create (msk, mpk) honestly using g; and k;

— with msk, we can generate the secret key for f honestly; i.e., we run sk s — KeyGen(mpk, msk, f);

- the challenge ciphertext can be created using terms given out in the statement above and sy, sy,..., S¢ chosen by
ourselves. O

Lemma5 (G; =. Go1g). There exists B with Time(B) ~ Time(A) such that
Hy
AdvY, () - AdVE O (I <212 Adva ™ ().

Proof. This roughly means that

(mpk, ctg*, skf) =~¢ (mpk, ctg*, sk(} ).

By the Chinese Reminder Theorem, it suffices to focus on the p,-components; concretely, we prove that

hd1+wslartr1 hrl hd1+wstartrl hrl
2 IR I ’
h dytzory hd')++w”0r”
—dy+z1r, dy

{hz u u h

—dy+zory 73, dvtWeoly 31
k(] {hz uT=0 ",hzy o0t hzu}ue[Q],JEZ,vzé(u,o)v o B
S f[ ]_ h—du+zlru hdu+wa,1ru hru ~c
{ 2 » Iy » Iy }uE[Q],UEZ,U:5(u,U)Y

a—dy+WendT
{hz ut Wend uyh;u}ue

hr }ue[Q] o€, v=6(u,0) | — Sko 2]
tWg,1Tu hru}
uelQl,oeZ,v=>6(u,0)>

a—dy+Wendr T
{hz “ end u!hzu}ueF

given g1, hy, hs and
Ct0 2] _( SOWstart,g gzsm)'

Here terms g1, h1, h3 allow us to simulate the p; - and p3-components of ctO,, and sk (or sk? ) as well as mpk, which is
sufficient for proving the lemma. Furthermore, this statement immediately follows from the statement below which
are implied by DDH;IZN assumption w.r.t. wyp mod po with o € Z: forall o0 € Z and A € Zy, we have

{hru WUOru A+wgoly

}ue[Q] =c {hru’ }u€[Q]

given g1, g2, h1, hy, hs and h;j 7% where wy ¢, 1y, < Z for u € [Q]. Here we crucially rely on the fact the ciphertext ctg* (2]
does not leak w,, ¢ mod p, with o € . |
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3.5 SwitchingsecretkeysI: Go ;o — G2.i.1
In this section, we prove the following lemma.

Lemma6 (Gy;o~cGy;1). Foralli=1,...,¢0, thereexists B with Time(B) = Time(A) such that

20009y _ A 201 DDH,,"
IAAVE O (1) - AdvE ()] < 2(121+3) - Advg, 7 (),

Proof organization. We need two auxiliary games G, ; 1 4 and G, ; 1., and prove that:

Lemma 7 Lemma 8 Lemma 9
Gaio =s Goita =c Goirp =c¢ Gaia

where the p»-components of the secret key in these games are recalled/defined as below

dy + Wstart T
h21 start l, h21’

—dy+z;ry 3 dvtWorlu 31
{hy T b, T iy e Q) 0€s, =8 (u,0)»

Goio: ,
2.i.0 (a1 hdv++wu,1—rru By
2 L) » Mo SuelQl,o€X,v=6(u,0)»
a—-dy+ T
{hz ut Wend u’h;u}ueF

dx _+ Wstart'1
. r
h h!

yTbo

2
hdu —+ Wa,rTu
2

kil
= skf [2]

{h

» hgu}ue[Q],UEZ,yzﬁ(u,g) ’

Goita:| ° ’
o {h_du++zl_7r” hdlﬂLwa,l—'rru hru}
y » Ny » My suelQl,0eX,v=56(u,0)»
{ha_du++wmdru hru}
) » oo ueF
Ay — D=1 T+ Wstart T
h21 AT T+ Wstart l,hgl,
—duy+Diutzery o dy=DNi_1ptWorTu o1
G ) {h2 e ,h2 S ,hzu}ue[Q],aelv:é(u.a)’
2.i.1.b - h—d,,+A,-,1,u+z1_7r,, hdy"'wn,l—rru hru
{ ) » 1y ) Iy }ue[Q],aez,v:B(u,a)’
{hg—du+Ai—l,rt+wendru’ h;u}ueF
hd1+wslarlr1 hrl
) 2 )
—dy+Ni g y+zery o dy=Di=tTH Wo Ty Tu
Gy {h2 ’hz »hg }ue[Q],an,v:é(u,a)y _ ki_l'i[Z]
241" ot T A T o1 =Sy
{ A 1y ) 1y }ue[Q],aez,vz(S(u,a)’
a—dy+ D=1+ Wend "
{hz ut D=7+ Wend u,h;u}uEF

and the p,-components of ciphertext are recalled as follows

S0 Wstart 50 5021 CF
-1 g 185 8> ifi=1
ct L [2] = Sic1Wyr 1 ) )
x Yot sicl Sic1Zr s ;
g 18 8, if2<i</?¢

The p;- and p3-components of secret key and ciphertext as well as mpk remain unchanged among all the four games.

Lemmas and Proofs. We describe and prove the following lemmas. Combining them together proves Lemma 6.
Lemma7 (Go;o=;Go;14). Foralli=1,...,¢, we have

AdvZ 0 (1) = Advy Q).
Proof. This immediately follows from the change of variables: d,, — d,, — A;_1,,, mod p, for all u € [Q]. O

Lemma8 (Go;14=cGyi1p) Foralli=1,...,¢, there exists B with Time(B) = Time(A) such that

DDHAN

IAdVE14A) - AdvE P () = 2- Advg - 7 (D).
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Proof. We prove the lemma via a case analysis for i:

- Case i = 1: The two games are exactly identical due to the fact that Ay ; =0, see Lemma 1.
— Case i > 1: The lemma follows from the statement below implied by DDHS[ZN assumption w.r.t. Wgiare mod py: for
all A € Zy, we have
{hrl Jp WstartT1 } e {hrl h—A+wstanr1 }
2012 )

given g1, g2, 1, ho, hg and h;’ st where wsiart, '1 — Zn. Here we crucially rely on the fact the ciphertext ctiil 2]
with i > 1 does not leak wgar¢ mod po. |

Lemma9 (Gs;1p~cGoji1). Foralli=1,...,¢, there exists B with Time(B) = Time(A) such that

IAdVZ 1P (1) — AdvE T () < 2(12] +2) .AdvDDHZV )
A A = B .

Proof. This follows from statements below implied by DDHZN assumption w.r.t Wy ¢, 21—7, Wend Mmod po with o € X:
— For all A € Zp, we have
{hzru’ hgl—rru, hé‘/endru }ME[Q] =, {hzru’ th"'Zl—T ru, h2A+ WendTu }ME[Q]

given g1, 82, h1, hy, hs and h3' ™™, h,*™ where zi_r, Wend, r' — Z for all u € [Q].

— Forallo € X and A € Zp, we have

A+wg Ty

{hgur h;/a,r Tu }uE[Q] ~, {h;u, h; }ME[Q]
given g1, 82, h1, ho, hs and h;j‘” where we 1,1, — Zy for u e [Q].
Here we use the fact that cti:l [2] with 1 =i < ¢ does not leak wg,7, 21—7, Wenqg Mmod pp with o € . m|

3.6 Switching ciphertexts: Gy.;.; — G2.;.2,G2.;3— G2.;.4

In this section, we prove the following two lemmas for G, ;1 — Gz 2 and Gy ;3 — Gy ; 4, respectively. The proofs are
similar, we give the details for the first proof and only sketch the differences in the second proof.

Lemmal0 (Gy;1~.Gy;2). Fori=1,...,¢, thereexists B with Time(B) = Time(A) such that
IAdVZ () — AdvE 2 ()] < Advi ™M (1),
Proof. This roughly means that
(mpk, , skj?l'i) ~¢ (mpk, , sk}’l‘i).
Recall that 7 = i mod 2. We prove the lemma using (s;, z;)-switching lemma (see Lemma 2). On input
aux, S;, {h% . hZA, hfu}ue[Q]

with aux = (g1, &2, h, hzf,glz’,gzzr) and
Si=g or Si=g,-8,

where z;, s;, A, 7y, — Zy for all u € [Q], the reduction proceeds as follows:

(Simulating mpk) We sample a, Wsiart, Wend, Z21-1) Wo,1, Wo,1-r — Zn for all o € X; then we can trivially simulate mpk
with terms g1, h, glz T given out in aux.
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(Simulating key for f) We want to simulate sk;_l'i in the form

hd1+wstanr1 hh,

D e Al a
ki~bi = { h,,itzir,u;fl,l, 7" hvtWorlu J}J}ue[Q] o€, v=6(u,0)>
{h-dut2i-eru pdvtWoltlu pluyy oo ces b s(u0))

{ha_du"'wendru, hr”}ueF

On input f, we build F;_; x+ < [Q] from f, then sample d,, — Zy for all u € [Q] and r,, — Zy for all u ¢ F;_; x+. We
implicitly set

A=A and r,=7, forall ueF;_j
and simulate sk}_l’i as follows:

- By the definition of {A;_; ,}, and our implicit setting, we can rewrite all terms in the dashed boxes as:

K, h—Qutzcru ifug¢ Fi1,x

hiu, p=dutzru, th if ue Fj_y

Terms for u ¢ F;—1 x» can be computed honestly from {ry, dy}u¢r, e WE sampled and h, h** given in aux; terms
for u € F;_j x+ can be computed from {d,} yeF,_, .. we sampled and {h* - k%', h™}ep, | . given outin the input.

— All remaining terms can be trivially 51mulated usmg {rutuer, and {h'™ = K’ u}ueFi-1,x* as well as a, {dy}ucqr,

X

Wstarty Z21-7, {Wo 1) Wo,1-1}oes, Wend We sampled.

(Simulating ciphertext for x*) We want to generate a ciphertext for x* which is distributed as either cti, or ct’ Li,

& 18518,

i*l,@ Si-1Wy* 11 Si- IZT+ S0 SiZ1- : ;
cty. TRI=4g T gl g =g e if1<i<t

Sp-1 Wy 7 Se-125H S W 7 o
& M lee, ] 18 & \e(ng,h“)\ ifi=¢

sowsan g0 o ] - BET ¢
star . .
’ g2 ’ if:=1

S¢ Wend
u

On input (mg, m1) € M x M, we sample  — {0,1} and s; — Z for all j # i, and output the challenge ciphertext

$2 wx; ,0

MJ)C*y Qe
((gng)sowsmrtr(gng)SOy (g1g2)5021 N Sl ! leI)STO 'gl )) lfl =1

. Wyx ¢ Sit1Wy* -1 . .
(g™ (g182) (81825, (g182) %S, 1,8, 8] gy ) ifl<i<?
B . R W 7
( --.,g;£7221_£ . (glgz)S[_l wx[_l,l—[, (g1g2)5[71r (g1g2)”*1217 . S[ v f, Se, S;Uend, H(e(S[, h%)). mﬁ) ifi=¢

Si-1Wyx
i-1

Here we use the fact that the ciphertext contains no term with s;z; in the exponent (cf. Remark 1). All omitted terms
can be honestly computed from aux and exponents {s;} jx; sampled by ourselves. Clearly, when S; gf i the output is
identical to ct;*l, when §; = g1 g2 , the output is identical to ctl LT This completes the proof. O

Lemmall (Gy;3~;Gy;4). Fori=1,...,¢, there exists By, B, with Time(B;), Time(B,) = Time(A) such that

Hn
IAdVZ 3 (1) — AdvZi4 ()] < Advy T () +4(Z] - 1) AdvDDH”Z ).

(mpk, , ski-) =¢ (mpk, , sk’)

We prove the lemma using (s;_1, wy* ;)-transition lemma (see Lemma 2). Recall that 7 = i mod 2. The reduction is
1

Proof. This roughly means that

analogous to that for Lemma 10: On input

w * Ty

aux, Sj_1,{h N7 hZA, hfu}ue[Q]
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Wyx ¢

" Wyr ¢
withaux=(g1,g2,h,hwxi'rygl "8 ' )and

Si-1

"8

Si-1

Sisi=g"" or Si-1=g]

where w,~ 7, si_1,A\, 7y — Zy for all u € [Q], we sample @, Wstart, Wend, 20, 21, Wg1-1 —2Znforallo € X, wy; — Zy for
1

allo # x; and s; — Zy for all j # i — 1; then we can simulate mpk and the challenge ciphertext analogously. The main

difference locates at the simulation of secret key.

(Simulating key for f) We want to simulate sk} in the form:

dy + Wstart T r
h* start l,hl,

r--~"T-"T~-" "~~~ - TS ST T T T == 1
h-Autziry hdé(u\: ¥ W rTu hAiv5(“*)
{ Wt 7 72 7777777 ‘}ue[Q]»
skl = dy+
{pvTiorlu. p }uEIQ],a;éxi*,v:t?(u,a)

{h=dutar=cTu pdvtWo—cTu Rluy, oo ces e suo),

{ha_du"'wendru’ hru}uEF

On input f, we sample d,, — Z for all u € [Q] and implicitly set A = A as before but we set {r;} (¢ as follows:

- Webuild F; x+ < [Q], sample r, — Zy for all u such that §(u, x;‘) ¢ F; x+ and implicitly set r,, = 7, for all u such that
6(u,x;.k) € Fj x+.

Then we simulate sk} as follows:

- By the definition of {A; ,,},, and our implicit setting, we can rewrite all terms in the dashed box as below

Aoy, x*) T Wyt o Tu
1 1

hru, h
hi’uy h

it 6(u, x7) & Fi x
‘R if6(u,x}) € Fipe

sy, x%) T Wyt o Tu
1 1

and simulate them from either {ru}é‘(u,x;)gpi ori{h Wa T hA hf”}g(u'x;f)epi - with the help of {d}.c[q) and aux.
This is similar to the simulation of terms in the dashed boxes in the proof for Lemma 10.
- The terms in the gray box are computationally simulated in the following form

dy o,7'u Al'
{pAvTWorT -ﬂ{{}ue[Q],U#x;’)V:é(”"’)

using {dy}ue(Q) {Wo,rlo2 X we sampled and {h"“},¢[q) we have simulated. This follows from DDH?ZN assumption
W.I.t Wy, mod p with o # x;‘ which implies that: for all o # x;.k and A € Zy, we have

{hru wcrrru A+warru

}uE[Q] ¢ {hru }u€[Q]

given g1, g2, h1, ho, hs and h Wor where We,r, Ty — Zy for all u € [Q]. Here we use the fact that both ct’ Liand ct;*
does not leak w,; ; mod p; w1th o# xi .
- Allremaining terms can be easily handled as in the proof of Lemma 10.

This completes the proof. O

3.7 SwitchingkeyIl: G2 ;2 — Gg2.;.3
In this section we prove the following lemma.

Lemmal2 (Gy ;o ~.Gy;3). Foralli=1,...,¢, there exists B1, B, with Time(B;), Time(B,) = Time(A) such that

Hy
IAdVZ 2 (1) - AdvZ 3 (V)] <AdvTRANS(/1)+2(|2|—1)-Ad\,1;312)Hm (A).
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Proof. Recall T =i mod 2. By the Chinese Reminder Theorem, it suffices to focus on the p,-components; concretely
we prove

di+Wstart' 7,7
h 1 start l’hzl’

{h*dqu*ZT Ty hdﬁ(u,x;)"' wx;‘ aTu

r
2 » Fy )hzu}UE[Q];

i-1,i _ dy+wg T
Skf 21 = thy" " et otxr v=6 (1,000

—dy+z1_171 dy+We1-1T T
{hz " T u)hzu o u»hgu}ue[Q],UGZ,v:z?(u,a);

a—dy+WendTu 1,7
{hz " en u)hz}uEF

dy+ Wsart T T
h21 start/1 , h21 ,

2 » 12

=5 {hgv"'wu,rru

T
’ hz”}uE[Q]v
}uE[Q],U¢x;‘,v:6(u,a)v
—dy+z1-71y 3, AvtWe1-tTu 1T
{hy STy T By Y e 101 0e s, v=61,0)
{hg_du‘*‘wendru,h;u}uEF
]’ld1+w51ar‘r1,h£1,

Sty T 5ty F W r T

d
—dy+z;T, T
{hz uTt u’hz ,hzu}ue[Q],
~c dy+{ Bi [t wosr = ski.[2]
{h, YuelQloxr ,v=6(1,0)» !
—dy+z1-7T du+wa,1—1rl¢ T
{hz " ! u»hg rhgu}uE[Q],UGZ,U:Mu,U);
a—dy+Weng? T
{hz " en uvhzu}MGF
given g1, h1, hg and
02181 Wy |
So W, S b s s1z o
g20 start,gZO,gz 1 ’gzl ,gzl 0 lfl — 1
. . Si—1 W, * Si—127+S; W *
i-1,i _ i-1 Xt s i=12r Wyt e g SiZ1-1 . .
ct. " 21=1g, ! 8 18 88 ifl<i<?¢
Se-1Wyx 1 4 Sg,lz[;+8g Wy §
-1 Se-1 0" ;S0 5S¢ Wend S pay e
8 8 8 1 8518, ve(gy'  hy) ifi=¢

Here terms g1, b, h3 allow us to simulate the p;- and p3-components of ctiil‘i and skjfl‘i (or sk}) as well as mpk,
which is sufficient for proving the lemma. We then proceed as follows:

- The first =, relies on (z;, wy* ;)-transition lemma (see Lemma 3). On input
1

wx’.k,r Tu
i

~ - A1+ -
No+2z; T T
aux, Si—12r + i Wy, {hy" ", 1y Y uerq)

Wy o
with aux:(gl,gz,hl,hg,hg,si_l,si,h?,hz ") where zr,wx;gr,fuhZN for all u € [Q] and
(Ao, A1) € {(5iA,0),(0,5i-1A)}  with A—2Zy,

we simulate p,-components of the ciphertext and keys as follows:

(Simulating ciphertext) We sample @, Wstart, Wend, Z21-1, Wo,1-1 < Zn forall o € £, and wy,; < Zy for o # x} . Itis
straight-forward to simulate ct;_*l" (2] from g, s;-1, Si, Si—12r + S; Wy* ;. This relies on the fact that neither z; mod
1
p2 nor wyx » mod p, appear elsewhere in ct;_*l’l [2].
1

(Simulating key for f) We want to generate a challenge key which is either sk}_l'i (2] on the LHS or the key on

the RHS depending on (Ag,A}). On input f, we build F;_; ,« < [Q] from f and sample d,, — Z for all u € [Q] and
ry — Zy for all u ¢ F;_; »~. We implicitly set

siA for the LHS _
A= _ and r, =7, forall ueF;_j 4
si_1A  for the RHS

and proceed as follows:
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o We rewrite all terms in the second row of keys on the two sides in terms of s;_1, 5;, A, 7y

—du+-SiA +zr Ty d&(u,x’f‘)'*—wx*,rfu 7 .
h h ! Yoy ifue Fiog i

,
—dy+zrry oluxp) T Py T Tu
h, , A y By ifug Fiopxe

h,dquZr u hdﬁ(u,x;)++ wxl’f.r T
2 » T2

d sy W * T,
—d, + O(u,x7) xi,rhu .
h2 u Zﬂ’u’ hz i i , hzru 1f6(u’ x;k) ¢ Fi,x*

Y h i, xT) € Fype

RHsrow 2

and generate the second row of the challenge key as

—du++eru dﬁ(lt,x?‘]++wxf‘,rfu
h h i i

, by if u€ Fioy pr

2 ’ %i
—diizr Slux) T W o Tu _—
h, ", 5 o, hyt ifu¢ Fiq

wxi*yrru

a - Al+ -
where, with {dy} e[, all terms for u € F;_1 x+ can be built from terms {h2A°+z’ ", h, v hy"Yuer,_, .« pTO-

w ., .*
vided in the input; all terms for u ¢ F;_; x~ can be built from hy, h;’, h, %" in aux and {rutuer, | . we sampled.

o We can trivially generate all remaining terms in the challenge key which are identical to skjc_l’l [2] (and also the
. and {h)" = h)"}yer,

key on the RHS) using {ru}uer, « aswell as @, Wstart, 21-1, {(Wo tlozxr, (Wo,1-1}0es,

1,x 1,x

Wend-
Observe that,
o when (A, A1) = (s;A,0), the output distribution is identical to the LHS;
o when (AO,AI) =(0,s;_17), the output distribution is identical to the RHS; here we rely on the fact that u €
Fi_1,x» <= 6(u,x;) € Fj x~ forall u € [Q], see Lemma 1.
This is sufficient for the proof of the first =,.
— The second =~ follows from DDngN assumption w.r.t. wy; mod p with o # x;‘, which implies that: for all o # x;.k
and A € Zp, we have
{ny", h;)g'rru}ue[Q] ~c {hy", hzmww ru}ue[Q]

given g1, g2, h1, ho, hs and h;” 7" where wg, ¢, 'y — Zp for all u € [Q]. This relies on the fact that ctiil’i [2] does not
leak wy,; mod pp with o # x;.

Combining the two steps proves the lemma. O

3.8 Finalize: Gy ¢4 — G3
We first describe the following lemma.

Lemma 13 (G, ¢4 ~ G3). There exists B with Time(B) = Time(A) such that
Hy
IAdVEL 4 () = Adv3 (D] < 2021 +3) - Advy 7 (A).
The proof is analogous to the proof for Lemma 6. Let £ = £ mod 2, we need an auxiliary game Gz, and prove

Gora=s5G3.4=:Gs

where the p,-components of the secret key in these games are recalled/defined as below

dy + Wstart T T
hzl start/1 , hzl ,

{h—du+z[;ru thJrAnyernjru
. 2 ]
GZ‘[‘4 : {h*dquzl—Zru

2 ’

» h;u}ue[Q],aei,yzé(u,a)y _ kg
dV+wU 1-7Tu Ty =s f[2]
h2 ’ ,hz }ue[Q],nez,v:é(uﬂ);
{hg—du"'wendru’ hgu}uEF
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dy _+ Wstart 1 "
h, v hy'

{h—du++z,;r,, hdy+wg',;ru hr”}
» Py » Mo SuelQl,o€X,v=6(u,0)»

{h’dlﬁ*zl—i"u hd,,—Jr T

r
9 ) yhzu}ue[Q],aez,vzﬁ(u,o)’

a—du++ WendTu

{hz hru}MGF
dl erwstartrl hr1

—dy+ +z;Tu dv+w oTu ru
Ga : {h i h - h }uEIQ],UEZ'v:tS(u,U)’
3 - th —0lu+9(/-¢—z1 g dy A¢/+wm1 [ru W
2 ’ 2 ’

2 }uE[Q],UEZ,l}—6(u,0)’
a—d +A[‘ +Wend"u T
{h u u en ’h u} F

Gg.a .

= sk;‘c [2]

and the p,-components of ciphertext are recalled as follows

Se wx* 7

Cti* = (g2 0’ ’ggl’gszwendye(gzl, h‘Z))

The p; - and p3-components of secret key and ciphertext as well as mpk remain unchanged among all the three games.
Analogous to Lemma 7 and 9, we have the following two lemmas which imply Lemma 13. We omit the proofs.

Lemma 14 (G p4 =5 G3.4). We have Adv2 L4 = Adv3; “(/1)

Lemma 15 (Gs 4 =, G3). There exists B with Time(B) = Time(A) such that

HN
A3 (D) - Adv3, ()] < 2(121+3) - Advgy 7 (),

Finally we prove the last lemma evaluating adversary’s advantage in G3. Combining this lemma with Lemma 2,3
and Lemma 4,5,6,10,11,12,13 proves Theorem 1.

Lemma 16 (Advantage in G3). For all A, we have AdviL ) =

Proof. The definition of {Ay ,},er and Fy .+ = F imply that sk; only leak a + A mod p,. This means that secret keys
perfectly hide @ mod p,. Therefore, the term e(g2, h)*¢® in cti* is independently and uniformly distributed and mes-
sage mg is statistically hidden by H(e(g1, h)*¢“e(g2, h)**®) by the leftover hash lemma. Hence, Advil (A) =0. ]

3.9 Handling¢=0and ¢=1

In fact, we may assume ¢ > 1 WLOG by pre-processing the DFA and padding the input at the beginning. Here, we
briefly describe how we can also handle ¢ = 0 and ¢ = 1 with our scheme “as is”.

Case ¢ = 0. Recall the real ciphertext distributions and define the auxiliary distribution ctg* [2]:

Ctyr = (gs() Wstart g gis() wend, e(gl h) N ) and Ctg* 2] = (gSO Wstart g ggo Wend, e(gz h)soa )

we can prove the selective security via the following game sequence:
Go =¢ G1 =¢ Ga.1.0 =c Gs.

The proofs for the first two =, are analogous to those for Lemma 4, 5; the proof of the last = follows that for Lemma 13
via a similar game sequence but with the following difference:

— To prove Gz 4 = Gz (cf. the proof of Lemma 13), we do not use assumption Wi.r.t. W mod p; since

To prove G Gs (cf. the proof of L 13), we do not use DDH ¥ pti t d p; si
ct?, [2] leaks wsiare mod p2; however, we use the argument that hd1 fo, 1+w5‘a“rl hg”w“a”” due to the fact that
Ap,1 =0, see Lemma 1.

Finally, we have Adv? ¥l (1) = 0 by Lemma 16.
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Case ¢ = 1. Recall the real ciphertext distributions and define the auxiliary distribution ct?c;1 (2]:

S0 Wstart 50 5021 +41 wxl* 1 S1 &S1Wend s1a
Ctx* = (gl ygl ygl )gl )gl )e(glyh) ) and
S021+S1 W, *
0,1 — [ &S0 Wstart 50 Yol s S1Wend sia
ctn 2 = (g, 85", 8, 188 M, e(g2, )T Y)

we can prove the selective security via the original game sequence:
Go =¢ G1 = Ga.1.0 e G211 = G212 ®c G213 =c G214 = Gs.

and all proofs are also analogous to those for Lemma 4,5,6,10,11,12,13,16.

3.10 Towards Many-key Setting

Our proof for the one-key setting can be extended to the many-key setting in a straight-forward way. Without loss of
generality, we assume that all key queries fi, ..., f; share the same state space [Q] and alphabet Z, and extend notations
6,F and F; x+, dy, ry, A; , for fi with an additional subscript x. Then we sketch the changes that are needed to handle
the many-key setting:

Game sequence. We still employ the game sequence described in Section 3.2 except

- secret keysin Gy.;.9, G2.i.1, G2.;.3 and Gg are sk};l, skj{l”', sk}x and sk;K, respectively, for all x € [q];
- ineach game, {A; ;, «}ue(q) for all k € [g] are defined using the same A — Z.

Useful lemmas. Alllemmas in Section 3.3 can be trivially extended to the many-key setting; in fact, the (s, w)-switching
lemma (Lemma 2) and (z, w)-transition lemma (Lemma 3) hold when we replace index u € [Q] with (u,x) € [Q] x [g].

Lemmas and Proofs. Lemma 4,5,6,10,11,12,13,16 all hold in the many-key setting:

The proof for Lemma 4 can be trivially extended to the many-key setting.
The proofs for Lemma 5,6,13 can work in the many-key setting due to the fact that
o {dyx}uelo) are fresh for each « € [g]; this ensures that all changes of variables still hold with multiple keys;

o {ryxtuelq) are fresh for each « € [q]; this ensures that all DDH-based arguments still hold with multiple keys.
The proofs for Lemma 10,11,12 can be extended using the many-key version of (s, w)-switching lemma or (z, w)-

transition lemma; here we also need the fact that {r, «} e[ are fresh for each x € [q].

To prove Lemma 16 with many keys, we argue that all secret keys sk;1 yeeer sk;q only leak a + A mod p».

4 ABE for DFA in Prime-Order Groups

In this section, we present our ABE for DFA in prime-order groups. The scheme achieves selective security under the
k-Linear assumption.

4.1 Prime-order Groups

A generator G takes as input a security parameter 1* and outputs a description G := (p, Gy, Go, G, e), where p is a
prime of ©(A) bits, G, G2 and Gy are cyclic groups of order p, and e: G; x G, — Gr is a non-degenerate bilinear map.
We require that the group operations in G;, G» and Gr as well the bilinear map e are computable in deterministic
polynomial time with respect to A. Let g1 € G1, g2 € G and gr = e(g1, 82) € G be the respective generators. We employ
the implicit representation of group elements: for a matrix M over Z,,, we define [M]; := g\, [M], := g}, Ml 7 := gY,
where exponentiation is carried out component-wise. Also, given [A];, [B], we let e([A]1, [B]2) = [AB] .

We define the matrix Diffie-Hellman (MDDH) assumption on Gy [9]:
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Assumption 3 (MDDH/’ ,, Assumption) Let kK'>k=1andnz=1. Wesay that the MDDH] ., assumption holds if for all
PPT adversaries A, the following advantage function is negligible in A.

MDDH?

Adv, " (1):=|PrlAG, Ml1, IMSl) = 1] - PrA(G, M]3, [Ul) = 1] |

K'xk kxn kK'xn
whereM — Zp ,S — Zp andU — Zp .
The MDDH assumption on G; can be defined in an analogous way. Escala et al. [9] showed that
k-Lin = MDDH; ,,, = MDDH} , VK’ > k,n =1

with a tight security reduction. Henceforth, we will use MDDH} to denote MDDH}C 1

4.2 Basis Structure and Lemmas
We want to simulate composite-order groups whose order is the product of three primes, cf. Section 2.2. Pick random
2k+1 2k+1 2k+1
A1<_Z(pk+ )Xk,azthk*' ,AS‘_Z;]C-F )Xk.

Let (A} | a} | A})" denote the inverse of (A, | a2 | Ag), so that ATA! =1 (known as non-degeneracy) and A;A"j =0ifi#j
(known as orthogonality).

We review the following lemmas from [6] parameterized by the above basis. By symmetry, we may permute the
indices for A;,ay,As. We use span(A) to denote the column span of A and use basis(A) to denote a basis of span(A).

Lemma 17 (MDDHj »; = SDKIIH ALAs [6]). Under the MDDHy, 5. assumption in G, there exists an efficient sampler
outputting random ([A111, [a2]1, [As]1) along with base basis(A)), basis(a,), basis(A,A}) (of arbitrary choice) such that
the following advantage function is negligible in A.

G

SD,!
AdV.A Aj—A1 Az (/1) = |Pr[.A(D, [to]l) = 1] —Pr[‘A(D, [tl]l) — 1] |

where
D:=([A1]}, [a]1, [As]y, basis(A!), basis(a)), basis(A} ,A}) ),
to —span(Ajp), t; —span(Aj,As).

Lemma 18 (MDDH’]Z 0= DDHgZ [6]). Under the MDDHz ,, assumption in G, the following advantage function is neg-
ligible in A

DDHy?
Adv, ™ (A):= |PrlA(D, To) = 1] = PrlA(D, Ty) = 1]|
where
D:= (Ay,a, A3, Al ), Al ATW, a)W, [WD, D], ), W — Z2F+ DXk p o 7kxk;
To:= (IWRl, [Rl2), T1:= (WR+ALUly, [Rl2), R—Zp"U—2Zp "
4.3 Scheme

Our ABE for DFA in prime-order groups is described as follows:
- Setup(1*,2) : Run G = (p, Gy, Go, G, €) — G(11). Sample
Ay = ZZF D = 25, Witart, Wend, Z0, 21, Wo,0,Wo,1 = Z3 ¥ forall o € 2.

Output
mpk = ( [AI»AIWstartrA{wend»A{ZO;AIZIy {A—{WU,O!A—{WU,I}UGZ]D [AIk] T) and
msk = (k; Wistart, Wend> Zo, Z1, {WO',OvWU,l}UGZ)

The message space is Gr.
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- Enc(mpk, x, m) : Let x = (x1,...,X¢) € s, Pick sg,s1,...,8; — z,’; and output

[soA]11, [8A] Wstart]1
cty = [ {[sjA]]1,(8]_,A]Z; mod 2 +S;A] Wy, i mod 211} icie]
[SEAU b [STgA-Il—Wend]ly [S;A-{k] T-m

— KeyGen(mpk, msk, f) : Pick d,, — Z3¥*! and r,, — Z for all u € [Q]. Output
[d; + Wetarer'112, [r1]2,

sky = | {[=dy +Zprylo, [dy + Wo pTyl2, [Tu2} beio,1),uelQloes, v=6(w,0) |-
{lk—dy +Wenarylo, [ryl2}uer

— Dec(mpk,skpr,cty) : Parse ciphertext for string x = (x1,..., x¢) as
cty = ([eg 111, [eg o1, L] 1 11, (€] 511 biere), [Cgng 111 [€opg 2115 C)
and key for f =(Q,X,6,F) as
sk = (lkolz, [r1]2, { [kp,yl2, (Kp,u,gl2, (Ful2 b0 {Kend,ul2, (Tul2}uer)

If f(x) =1, compute (up = 1,uy,...,Up) € [Q][Jrl such that 6(u;-1,x;) = u; for i € [¢] and u, € F, and proceed as
follows:

1. Compute By = e((c) 11, [kol2) - e(lcg 11, [r1]2) 7

2. Foralli=1,...,¢, compute

Bi= e([c-;_l,l]l’ (Ki mod 2u;12) e([c;Jh, (Ki mod 2,ui1,x;12) e([c-;,z]l; [rui,llz)_l
3. Compute Bend = e(lc], o 11, Kend,u,J2) - €(l€} 4 )1, [Fy,]2) ™" and
4
B=By- nBi'Bend
i=1

4. Output the message m' — C-B™L.

Correctness. For x = (x1,...,x7) and f = (Q,X,§, F) such that f(x) = 1, we have:

By = [spAjdi] 7 (15)
B; = [sjA]dy, —s;_;Ajdy, |17 (16)
Bend = [s;Ak—s,Ajdy, 17 (17)
B = [s)A[K] 7 (18)

This follows from the following equalities in the exponent:

(15) sjAld,
(16) sjAldy, —s]_,Ald,,_,

TAT TAT
oA - (dy + Wigarero) — SpA] Wistare - To

. T T AT
si—lAl : (_dul;l +Zi mod 2rui71) + sl‘Al . (dul +Wxi,i mod 2rui71)

T AT TAT
_(si_lAlzi mod 2+ S,-Alwx,-,i mod 2) " Yu;_,
s,A] - (k—dy, + Wengry,) —8,A|Weng - Ty,

(17) s,Alk—s,A(dy,
and finally
4
(18) s,Ajk=s;A(d; + ) (sjAjd,, —s;_ A[dy, )+ (s,Alk—s,A[d,,).
i=1

Correctness follows readily.

27



Security. We will prove the following theorem for the many-key setting.

Theorem 2 (prime-order ABE for DFA). The ABE scheme for DFA in prime-order bilinear groups described above is
selectively secure (cf. Section 2.1) under the k-Linear assumption.

4.4 Game sequence

Auxiliary distributions. We describe the auxiliary ciphertext and secret key distributions that we use in the proof of
security, which are analogous to those defined in Section 3.2. For notational simplicity, we use xx[2] to denote the
a,-components of xx.

Ciphertext distributions.

- fori=0,1,...,¢: ct;_* is.the same as ct,+ except we replace s;AI with s;AI +s;a, where s; — Z;
—fori=1,2,...,0: ct';V

; T T TAT i T AT . al &TAT al
L+ lis the same as cty+ except we replace s, _A},s:A; withs; A +s;-1a,,5;A] +5;a, where
Si-1,8i — Zp.

That is, we have: writing 7 = i mod 2,

[s0a)Wstart]1, [Soay]1, [Soa5Z1]1 ifi=0
cti. [21 = { [sia)Woe o1y, [siag]y, [sia)Zi-c ) ifo<i</?

[sea,W e g1, eyl [scayWendl, [seapkl s ifi=¢

[s0a,Witart]1, [So@5]11, [S0@yZ1 + 12, Wor 111, [s185]1, [s185Z0]1 ifi=1

'71" . .
ctin (2] = { [sic1yWoer 17l [si-1@)n, [Sic1ayZq + siasWoee 111, [siagh, [siayZi—o ]y ifl<i<?

1

[se-12,Woe gl [Se-18g)1, [se-125Z + seayWoe g1, [seayh, [sea;Wendlt, [seapklr ifi=¢

Secret key distributions.

- fori=0,1,...,¢: sk} is the same as sk except we add a”zA,-,U to [dy + Wg,; mod 2¥u]2 for every u € [Q],0 € Z and
v=206(u,0). Here {A; ,}4e(q) in all keys share the same A — Z,,. (cf. Section 3.2 and Section 3.10).
- fori=1,2,...,¢: sk’ 1" is the same as sk s except we add a”zA,-_Lu to [—dy +Z; mod 2¥u]2 for every u € [Q].

f
~ sk is the same as sk except we add a, Ay to [k—dy + Wengry], for every u € F.

That is, we have: writing 7 = i mod 2,

[dy + Wgtarer12, [r1]2,

i | du Zerala, [y +[a, 800 [+ Woetula, [Eul2huet0loes,v=0001

{[=dy +Zy1yl2, [dy + Wo 111y l2, [Ty]2}tue[Ql ez, v=61,0)
{lk—dy, + Wengrylz, [ryl2}uer

[d; + Wstartr112, (1112,

it _ [t [@ A+ Zerula, [y + Woerula, [l ety o, v=o0)

{[—dy +Z1—sryl2, [dy + Wo 1T yl2, [Ful2}tueq)oes, v=6u0)
{lk—dy +Wenarulz, [tul2}uer

[d; + Wgartr1]2, [r1]2,
{[=dy +Z;xyl2, [dy + Wo rxyl2, [Fy]2} ue(0,0e3, v=6,0)
{[=dy +Zy—ryl2, [dy + Wg 1 o1y]2, [y] 2} ue[Q),0e3, v=5(1,0)
{k—dy +|a, A,y |+ WendTulz, [Ful2}ucr

sk’ =
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Game sequence. We prove Theorem 2 via a game sequence analogous to that described in Section 3.2 with the
changes (to handle many keys) in Section 3.10 (summarized in Fig 3). We emphasize that (1) in Gz ; 0, G2.7.1, G2.i.3
and Gs, we change all secret keys to the forms sk}_l, sk}_l’l, sk} and sk;i, respectively; (2) {A; u}uerq) for all keys are

defined using the same A — Z ;.

Game ct,x skf Remark
0 Ctyox Skf [0— OHZOvWU,O [0~ 01z, W1 [dy —k— Ol]wend'() Real game
1 cl | sky 10— 0lzgw,, 10~ 0z, w, [y ~k—0lw, 0 SD
0 0 . I - ke
210 o, Idy —dy+ ﬂZo.Wu,o ldy —dvlz) W, ldy —k—0lw, ;.0 DDH

200 ettt sk}’l [dy — dylz; Wy Ildu'—~dy+J|Z w [dy —k—0lw, ;.0 Goi0=Gyi 14 V2=ist
1-7:Wo,1-1

201 ctiy! sk}_l‘i [y | aba;_y —dol o dumdulzy wg ldu—k—Olw__ ;0 “dy —dy —alA;_y ;" + DDH (+Lem 1-1)
7 Wao,T

, i-1,i

2.i.2 ski M 1dy —aba 1, —duly, o, e dolzy wy [dy —k—0lw,_ 0 Lem 19

2.i.3 sk’f [dy —dy +]IZT Wor [dy Hdvﬂzl—rvwa,l—r “du‘k“"ﬂwend,o Lem 20 + DDH + Lem 1-2
204 |ctl, sk, Idy »—»d,,+agAiy,,]erng . [y —dulzy Wy, [dy —k—0lw, .0 Lem 19 + DDH

3 Cti* ldy — dvlzyw, o ldy —dylz) W, , Idy - —k—=0lw, 40 “dy—dy— a"zAi,u" +DDH

Fig. 3. Game sequence for prime-order ABE for DFA with i = 1,...,¢. Recall that 7 = i mod 2. We describe keys with the notational
short-hand [dy, — dylzw := ([-dy +Zryl2, [dy +Wryl2, [ry]2). All secret key elements in the fourth and fifth columns are quantified
over u € [Ql,0 € Z, v = o(u,0) while those in the sixth column are over u € F; we omit [0 — d;low,,,. In the “Remark” column,

“SD” and “DDH” indicate SDY!

. Gy . . . .
Aj—A; 2, ASSUMPtion and DDHg,> assumption described in Section 4.2.

4.5 Usefullemmas

In this subsection, we describe (s, W)-switching lemma (Lemma 19) and (Z, W)-transition lemma (Lemma 20) which
are the prime-order analogues of (s, w)-switching lemma (Lemma 2) and (z, w)-transition lemma (Lemma 3) in Sec-
tion 3.3. Note that we will present them for the many-key setting where an additional subscript x € [g] is applied (cf.
Section 3.10).

Lemma 19 ((s, W)-switching lemma). For all Q, g € N, we have

aux, [s'A]]q, { [WEy + @y Alo, [Fuxl2 Jue(Qlxelq)
~ aux, [sTA] +|sa} 1, { [WEyx +a)Alz, [Funla bueiqlxelg)

where aux = ([A],a}, A]|W,a;W]1,[WD,Dl,) and W — 235, D — 765k g 5, — 7k A, s — 7,,. Concretely, the ad-
vantage function Advy'"'“" (1) is bounded by

SDY' a1, DDH{? SDY pvan
2-Adv31 1) +4-Adv%2 @) +Adv933 A

with Time(B1), Time(B,), Time(B3) =~ Time(B).

Proof. We prove the lemma via the following hybrid argument:

LHS = aux, [s'A]1, { [WEy,x +ayAl, [Fuxl2 Yux
~c aux, [s"A] +[§7AL [l { Wiy i +abAl, [Fuxl2 bux using SDY'_, .
~c aux, [s'A] +8"Aj]y, { Wy +a,A + ]2, [Fuxl2 bux using DDH§32
~¢ aux, [sTA] + +8TALL, { (Wi +ay A+ ASuly,  [Fua2 bux using sngsg Ao
~c aux, [$TA] +say +8TAL]L, { Wiy +ayA+A8%M0o, [Fuxl2 bux using DDHf;';
~c aux, [$TA] + sa) +SLAG], | Wiy, +a,Aly, [Fuxl2 }ux = RHS using sngf‘;H AuAs
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where §,u — z,’;. We proceed as follows:

- The first and the last =, follow from SD IH A1A, ASSUMption stating that
[s'A[]1 = [s'A] +§A}];  givenA;,ap,a,

where s, 8§ — Zk All reductions are straight-forward.
- Thesecond and the fourth =, rely on the following statement implied by DDH®? A, assumption w.r.t. W forallue z¥,
we have

{[Wi'u,K]Z; [i'u,K]Z }ue[Q],Ke[q] =c { [qu,K + ]2; [i'u,K]Z }ue[Q],Ke[q]

given (Apazv az,ATW a2W [WD, D],) where W — ngﬂ)xk, D~ Z’;,Xk andu,fyx — Z’;, forall u € [Q] and x € [qg].
All reductions are stralght -forward.
— The third =, relies on spé!

As—Ag,a; assumption stating that:
[8'A%l1 = [say +8"ALl;  given A, ap,basis(a),A})

where § — z;g and s < Z,. The reduction works as follows: On input ([c"11,A1, a2, baS|s(a2, Al 3)) where either c =
§'A} or ¢’ = sa) +8'A}, we sample W — Z;,Zk“)xk, D — Z’;,Xk, S, Ty — Z’;, for all u € [Q] and « € [g]. First, we can
trivially compute aux and the challenge term [s TAT c']1.Second, we sample @i — Z;*! and simulate a, A+A}u with
basis(a,, A%)u. This follows from the fact that a,A + Ayu = basis(a,,, A%)t for all aZ,A‘I basis(a,, A}) when A — 7,
u— Zf, and u — Z’;”. This is sufficient for snnulatlng all remaining terms.

Combining all five steps proves the lemma. |

Lemma 20 ((Z,W)-transition lemma). For allQ,g €N, s;_1,s; #0 and A € Zp, we have

aux, si—1Z+ s;W, { [+Zi'u,1<]2; [Wry ]2, [Fyxl2 buelQlxelq)
= aux, si1Z+sW, { ZE )2, e sim1A |+ Wiyla, [l Huetanela
where aux = (A1, a,,a, A]Z, AW, [ZD,WD, Dlp) and Z,W — Z**V**, D — 76k g, — 7K forall u € [Q) and x € [q).
Concretely, the advantage function Advi;“~* (1) is bounded by 2 - Adv e (A) with Time(B1) = Time(B).

Proof. We prove the lemma via the following hybrid arguments: given aux, s;—1Z+ s;W,

LHS = { (a,5; A+ ZF ]2, [WE 2, [Ful2 b

et [azsz —+Z1'u xl2, [+Wi'u,1<]2; [Fuxlo bux using DDHE;

~ | [—a,siYux + ZFul2, [ +aly Si_1Yux + WEial2, [Fual2 statistical statement (19)
= | (~asrrin + Ziuxlz, [a)sio1A+absierTig + Wiuxlz, [Fuxl2 Jux = RHS  using DDHS?

where y,x — Z), for all u € [Q] and « € [g]. We proceed as follows:

— The first and third =, follow from the statement: for all s;_1, s; # 0, we have

{1ZE )2, WE 2, [Fu ) 2bueiQuretq) ®e l=ay $i¥up + ZEu a2, (8 i1 un + W2, [Fuacd2bueiQrreiq)

given Ay, ap,a,,A]Z,A]W, [ZD,WD,Dl,, 5, 1Z+ s;W where Z, W — 2"V p — 7&K ¢\ — 7Ky, — 7, forall
u € [Q] and « € [g]. This is implied by DDHgZ2 assumption w.r.t W: On input

[Dl2, WDz, { [Fyxl2, [tyx]2 ueorxelq)

andAl,az,aZ,ATthere either t, , = Wi, OF ty, , = Wi, +a! 5Si-1Yux and W — Z(2k+1)Xk D~ ka’c ux — 2K

Z(Zk‘ 1) k ,
+1)x

Yux — Zp for all u € [Q] and x € [g], we sample Z— and implicitly set

Z=7Z-s"s;W.
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Then, we can simulate
AlZ=A\Z- ;' s;A|W, [ZD],=[ZD-s;',s;WD], and s;1Z+s;W=s;,Z
using Z, A}, A]W, [WD, D]y, s;_1, s; (without knowing W) and output the challenge term

{ [qu,K - sg_llsitu,K]Z’ [tu,K]Zy [fu,K]Z}ue[Q],Ke[q]-

Observe that, when t, , = WF, ,, the output distribution is identical to that on the left-hand side; when t, , =
Wi, + a"2 Si—1Yux, the output distribution is identical to that on the right-hand side. This proves the statement.
— The second = follows from the statistical statement by the linearity: forall A € Z p» We have

{A- Yuio Yux uelQlxelgl =s {I=Yux A+ Y ux YuelQlxelq] (19)
when yy,x < Zp for all u € [Q] and x € [g]. This is a variant of (14) over Z, in the many-key setting.

This readily proves the lemma. O

4.6 Initialization: Go — G1,G; — Gz.1.0
In this subsection, we prove the following lemmas analogous to Lemma 4 and Lemma 5 in Section 3.4.

Lemma 21 (Gg = Gy). There exists B with Time(B) = Time(A) such that

Gy

|AdvY (1) = Adv, ()] < Adv;DAl”Al ().

Proof. This relies on SDgllH A, 2, ASSUMPtiON which implies

(A]11, [sHA]11) ~c (IA]]1, [sHA] +| soa3|ln)
where sy — Z’;, and so — Z,. In the reduction,

- we sample k, Wstart, Wend, Zo, Z1, Wg,0, Wy,1 for all 0 € X and create (mpk, msk) honestly using [A{];.

- with msk, we honestly run sk s — KeyGen(mpk, msk, fi) for each key query fi;

— the challenge ciphertext can be created using the term given out in the statement above and sy,sy,...,8¢ chosen
by ourselves. O

Lemma 22 (Gy = Go.10). There exists B with Time(B) = Time(A) such that

Gy
AdvY, (1)~ Adv ()] < 2(Z]- Advy T (A).

Proof. This roughly means that

(mpk, ct?c*, {skf k) =¢ (mpk, ct?c*, {skOfK}K

—

Concretely, we prove

[dl,K + Witartr1,112, X142,
sk = {[_du,K +Zory il2, [dv,x + Wy oryxl2,
N {[_du,x +Z1ryxl2, [d-l},K +Wq 1ryxl2

[ru,K]Z}ue[Q],UEZ,v:&((u,U)
) [ru,K]Z}uE[Q],UEZ,U:(ﬁK(u'U)
{lk— du,K +Wenarul2, [FuxlotueF,

[dl,K + WitartX1,x12, X142,

- {[_du,K +ZOru,K]Zy [dl},K ++w0-’0ru,1<]2, [rM,K]Z}uE[Q],O’EZ,U=5K(u,0) _ sko

{[—dyx +Ziry 2, [dyx +Wo 1X4]2, [l'u,K]z}ue[Q],aEZ,v:éK(u,U) fe

{k— du,K + wendru,K]Z’ [ru,K]Z} ueFy
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in the presence of mpk and ctg* with ay-components recalled as follows:
ct%. (2] := ([soayWistartl1, [Soa3]1, [So@3Z1]1).

This immediately follows from the following statements implied by DDH;;Z2 assumption w.r.t. W, ¢ with o € X: for all
oe€Xand A€ Zy, we have

{Wg orusle, [Fuxl2 }ue[Q],Ke[q] ~¢{ [aHZA + Wy oryil2, Xyl }ue[Q],Ke[q]

given (Ay,az, )y, AJWg 0, WD, D]2) where Wy o — Z3 5, D — 7Kk r, , — 7K for all u € [Q] and x € [q]. Here we
use the fact that ctg’c* does not leak a, W, o with o € X. This completes the proof. O

4.7 Switching secretkeysI: Go ;.0 — G2.i.1
In this section, we prove the following lemma analogous to Lemma 6 in Section 3.5.

Lemma 23 (Gy;o~;Gy;1). Foralli=1,...,¢, there exists B with Time(B) = Time(A) such that

20009y _ 2.i.1 DDHg?
|AdvS" " (1) = Advy" (D] = 2(1Z] +3) - Adv, (A).

Proof organization. We need two auxiliary games Gy ; 1 4 and G ; 1 ;, and prove that:

Lemma 24 Lemma 25 Lemma 26
Gaio ®s Goita =c¢ Gaitp =c  Goin

where the x-th secret key for fi in these games are recalled/defined as below

[d1x + Wstartr1,x12, [114]2,

{[_du,x +Z:xy ]2, [dl},K + Wy Tyl [ru,K]Z}ue[Q],UEZ,v:zSK(u,U)

i—1
Ga.io: u = sk
{[—du,x +Z1-1Yy 2, [dU,K + + Wy 1-r¥yil2, [Fyxlo} uelQl,o€Z,v=06x(u,0)

{lk—dyx +WengTy«l2, [ruil2}uer,

i
[d1x —|ayAi-1,1,x |+ WstartT1,x]2, [T1,4]2,

Goita:

Il
{lk—dyx + azAi—l,u,K + Wendryxl2, [Fuxlotuek,
Il
[dy,« _M"‘ Witartr'1xl2, [F14]2,

(] ]
{[_du,x + azAifl,u,K +Z:vy ]2, [dl},K - agAi—l,v,K + Wy 1 ryxlo, [ru,K]Z}ue[Q],UEZ,u:(SK(u,a)

Gaitp:
{[—du,x + aHZAi—l,u,K +Z1 1Tyl [dv,K +Wg 11Ty il2, [ru,K]Z}ue[Q],Uez,U:(SK(u,U)

{lk— du,K + anzAifl,u,K +WendXuxl2, Fuxlotuer,

[d1 x + WseartI1,i]2, [11,¢]2,

(] I
{[_du,x + azAi—l,u,K +Z:ry ]2, [dv,K _M"' We i rylo, [ru,K]Z}ME[Q],UEZ,U=5K(14,O') i-1,i
K

Goin: =sk

{[—dy« +M+ Zy iy, [dyx +Wo 1—7Tyil2, [ru,K]Z}ue[Q],er,y:ﬁK(u,a) f
{lk— du,K +M+ WendXuxle, [Fuxl2}uer,

in the presence of mpk and cti:l with ay-components recalled as follows:

i [2] = [s0a)Wstar]1, [Soay]1, [Soa5Z1]1 ifi=1
x* - . .
[sic@aWyr 1701, [sic1ap]y, [simayZe]y if2s<is<?
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Lemmas and Proofs. We describe and prove the following lemmas. Combining them together proves Lemma 23.
Lemma24 (Gy;o0~;Goi1.4)-Foralli=1,...,¢, we have

AdvZ 0 (1) = Advy Q).
Proof. This immediately follows from the change of variables: d;, x — d, x — a”ZA i-1,ux forall ue [Q] and x € [g]. m|

Lemma25 (Gy;1.4~:Gs;1p). Foralli=1,...,7, there exists B with Time(B) = Time(A) such that

Gy
};DHaz ).

IAdVE 14 (A) = Advy P ()] < 2- Adv
Proof. We prove the lemma via a case analysis for i:

- Case i = 1: The two games are exactly identical due to the fact that Ag 1, =0 for all x € [g], see Lemma 1.
- Case i > 1: The lemma follows from the statement below implied by DDHgZ2 assumption w.r.t. Wyeare: forall A € 7,
we have

{ Wistartr1,x]2, (X112 }KE[q] ~c [_auzA + Witartr1,xcl2, [F1,¢]2 }Ke[q]

given (Al,ag,a"z,AIWSmt, [WstartD, D]2) where Wit < ng“)xk,D — Z;‘,Xk,rl,,( — Z’;, for all x € [g]. Here we use
the fact that cti;1 with i > 1 does not leak a;wstm. |

Lemma26 (G, ;1 p=~¢cGo;1). Foralli=1,...,7, there exists B with Time(B) = Time(A) such that

DDHS?

IAdVE P () = AdvE (D) <2021 +2) - Advg - (A).

Proof. This follows from statements below implied by DDH% assumption w.r.t Wy 7, Z; 7, Wepg with o € Z:
- Forall A€ Z,, we have
{1Z1—7T ]2, WendFuu2 [Funl2 buei@iielq) me A +Zi_rry o, [@)A + WendTu 2 [Fux]2 buelqxelq)

given (A1, a, d,, A1Z1,A]Weng, [Z1-rD, WenaD, Dl2) where Zi—r, Weng — Zjy 7K, D — 785K,y p — Zf forall u e

[Q] and x € [g].
- Forallo € 2 and A € Z, we have

{Wg truaclo [Fuxl2 }ue[Q],xe[q] ~c{ [—aHZA + Wy Xyl [Fuxl2 }ME[Q],KE[q]
given (Ay,az,a), A] Wy, 1, Wy - D, D) where W, — 225K p ZKK x, — 2k forall ue [Qland x € [q].

Here we use the fact that ct;:1 with 1 < i < ¢ does notleak a,W, ;,a5Z;_;,a,Weng with o € Z. O

4.8 Switching ciphertexts: Gy.;.; — G2.;.2,G2.;3— G2.;.4
In this section we prove the following two lemmas analogous to Lemma 10 and Lemma 11 in Section 3.6.
Lemma27 (Gy;1~=:Gy;2). Fori=1,...,¢, thereexists B with Time(B) = Time(A) such that
IAdV%" ! () = AdvZ 2 ()] < Adviy " (L),
Proof. This roughly means that
(mpk, et 15k~ 1) = (mpk, et "] ki o).
Recall that 7 = i mod 2. We prove the lemma using (s;, Z;)-switching lemma (see Lemma 19). On input
aux, [CU 11 [aLA +Z:T ]2, Byl tue(oxelq)
with aux = ((A],a},A]Z;,a}Z];, [Z, D, D],) and
c; =s/A] or ¢, =s;A] +s;a)

where Z; — ng“)Xk, D~ Z’;,Xk, Si,Fyx — Z’;,, A, s; — Z, for all u € [Q] and x € [g], the reduction proceeds as follows:
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(Simulating mpk) We sample k — Z2*1 Wyart, Wend, Z1 -1, Wy 1, Wy 1—7 — ZZK* %k for all o € =, and then we can
g mp p 2 o Wo, @
trivially simulate mpk with [A],A]Z;]; given out in aux.

(Simulating secret keys) For each x = 1,..., g, we want to simulate secret key for f in the form

[d1,x + Wetart1 x]2, [r1,4]2,
Fm-—-m T -—-—- - A -
_ | X I A
Ski_l’i _ {L[, flfl'f j—,a,z,Ai_,lLuLK:t%T,ry’f]}g" [dU,K +w¢7,rru,1<]2; ‘L[}'lf,l(]gj}ue[Q],an,l/:&((u,o)

{[_du,K +Z1_¢Tyuxl2, [dl},K + Wy 1-rFuil2, [ru,K]Z}ue[Q],an,v:éK(u,U]
{[k—dyx + WenaTuxl2, [Yuxl2}ueF,

Oninput f;, we build F;_y x* x S [Q] from f;, then sample d,,  — Z5*! forall u € [Q] and ¥, — Z} forall u ¢ F; 1+ .
We implicitly set

) Dr! forall u¢ Fj_q
A=A and ry,= wr e
Fux forall ue Fj_j x «

and simulate sk}_l’i as follows:
LY

- By the definition of {A;_; ;, «}, and our implicit setting, we can rewrite all terms in the dashed boxes as:

[Dl',u,K]Z; [—dyx+ ZTDr,u,K]Z ifug Fi 1% x
Fuxle, [—dyx +a”2A+ZTfu,K]2 ifue Fi_q x* x

Terms for u ¢ F;_) x+ x can be computed honestly from {l'lu,x» duyxtuer; we sampled and [Z; D, D], given in aux;

—1,x*x

terms for u € F;_j y+ x can be computed from {dyx}uer, , .., We sampled and {[a,A + Z;Fy 2, [Fuxloduer, , .«

given out in the input.
- All remaining terms can be trivially simulated using {[r; ]2 = [Dr}, ]2} u¢r,
well as k, {dy, i} ueq), Wstart, Z1-7, (We 1, W 1-7}ges, Wend we sampled.

and {[ryxl2 = [i'u,K]Z}ueFi,Lx*yK as

—1,x*x

(Simulating ciphertext for x*) We want to generate a ciphertext for x* which is distributed as either cti:l or ctijl’i:
[s0a) Wecard]1, [Soa]1, [s0a3Z1 +| s1apWae,1 [, [s1a 11 | [ [s125Zols | ifi=1
i—1) . ,
ct;* E][2] = [sic1a,Wyr 1711, [Sic1@], [Si-1ayZr + SiaEWx;,r ]1,‘ [sia3] \,\[siagll-rh\ ifl<i<?

[se1@yWe 1l I3, [se-1abZg + | seay W [l seazli || [scayWenalu ) | [seapki | ifi=¢

On input (mg, m1) € M x M, we sample  — {0,1} and s; — Z’;,, sj < Zp forall j # i and output the challenge ciphertext

T AT . T AT . T AT T T . T T AT 7 —
([(SOAI + SOaz)wstart]l; [SOAI + SOaz]ly [(SOAI + SOaz)Zl + clwxi‘,l]ly [cllly [c1Z0 +s2A1Wx;,0]ly- .. ) ifi=1
18] A Z1—r + (8] AT +sic1@) Wy 1y, [s] A+ si-1a;]1,

. T T T T T T T
< [(si—lAl + Si—laz)zr +ciwx;,r]1r [Ci]l; [cizlfr + si+1A1Wx;‘+1,l—T]1»---

ifl<i<?

o8y ,ATZy_;+(s,_ Al + Sg_la;)Wx; 1,1_,;]1, [s,_,A] +se-1a3]1, il g
. ifi=

[(s)_, A} + Se-123)Z; + C;Wx;,gh, [c)]1, [€;Wendl1, [c kI T

Here we use the fact that the ciphertext contains no term with s]A]Z; in the exponent. All omitted terms can be
computed from aux and exponents {s;};x; sampled by ourselves. Clearly, when c; = s;A], the output is identical to
cti:l; when ¢} =s}A] + s;a), the output is identical to ct;:“. This completes the proof. O

Lemma 28 (Gy;3~;Gy;4). Fori=1,...,¢, thereexists By, B, with Time(B;), Time(B,) = Time(A) such that

. . Ga
IAdV% (1) = AdvE ™ ()] < AdvE TN (1) + 40— 1) Advy ™ (A).
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Proof. This roughly means that

We prove the lemma using (si,l,Wx;',)-switching lemma (see Lemma 19). Recall that 7 = i mod 2. The reduction is
analogous to that for Lemma 27: On input

aux, [cj_y11, {[ayA + Wy Fuxl2, [Fuxl2uciqlxelq)
with aux = ([A], a5, AfWyr 7, @ Wy 111, Wy : D, Dl2) and

T ol T T —al T . T
C;_1=8;_1A] Or ¢;_; =8; ;A; +5i-13,

where W, ; — Z(,,Zk“)xk, D — Z’;Xk, Si—1,Tux — Z’;, A,si-1 — Zp, for all u € [Q] and « € [g], we sample k — Z%k“,
1

Witart Wend, Z0,Z1, Wy, 1-7 — Zf’”“xk foralloe X, Wy ; — Z(,,Zk“)xk forall o # x;‘ ands; — Zf,, sj—Zpforall j#i-1;
then we can simulate mpk and the challenge ciphertext analogously. The main difference locates at the simulation of
secret key.

(Simulating secret keys) For each x = 1,..., g, we want to simulate secret key for f in the form

[dl,K + Wstartrl,K]2r [rl,K]Z;

Sk}K = {[dyx + agAi,v,K +Wq o Ty il2 }ue[Q],a;éx;,',y:ﬁK(u,x;f)

{[_du,K +Z1 1Tyqlo, [dU,K + Wy 17Ty xl2, [ru,K]Z}uE[Q],UEZ,V=5K(u,O')

{lk—dyx + WengTyl2, [ryxl2} ueF,
Oninput fi, we sample d,, x — Zf,k” for all u € [Q] and implicitly set A = A as before but we set {ruxtueiq as follows:

- We build F; ,+ x € [Q] from fi, sampler] , — Z’; for all u such that 6 (u, x7) ¢ F; x+ x and implicitly set

Dr’/

u,x

if 0x(u, X;k) & Fj x* x

Fyx =

Ty x if 6« (u, x;k) € Fi x x

Then we simulate sk}K as follows:

- By the definition of {A; ,, «}, and our implicit setting, we can rewrite all terms in the dashed boxes as:

Dry, i )2, [=ds uxi)x + Wer 7D, 2 if Ox (u, x7) € Fio1,x% x
[Fuxle, (=g, i x + A0 +Wye cFunla i 80c(u,x]) € Fiop xo i

given out in the input

i-1,x% x

with the help of {d; «}ue[g) and {rlu,x}d,((u,x;)e r, . . This is similar to the simulation of terms in the dashed boxes

ix*,x

and simulate them from either [W: ;D, D], or {{@)A + W+ - Fyxla, [Fualals, uxteF,

in the proof for Lemma 27.
- The terms in the gray box are computationally simulated in the following form

{ [dv,K +%+ Wy iFuil2 }ue[Q],a#x;‘,v=5k(u,x;‘)

using {dy «}ue(Q), (Wo,rloz X we sampled and {[r, ]2} 4[] We have simulated. This follows from DDHfZ2 assump-
tion w.r.t. Wy ; with o # x; which implies that: for all o # x; and A € Z),, we have

{Wq rryxlo, [ty xl2tue(Qrxelq) =c [a“le +Wo rryl2, Fuxl2tuelorxelq)

given (A1, az,ay, A]Wo.1, WD, Dl2) where Wy — ZZ*" 0K D 7kxk 7 for all u € [Q] and k € [q]. Here

i-1,i

we use the fact that both ct x and cti* does not leak a;Wg_T with o # x;‘.

- Allremaining terms can be easily handled as in the proof of Lemma 27.
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4.9 SwitchingsecretkeysII: G, ;.2 — Ga.;.3
In this section we prove the following lemma which is analogous to Lemma 12 in Section 3.7.

Lemma 29 (Gy ;o ~.Gy;3). Foralli=1,...,¢, there exists By, B, with Time(B;), Time(B,) =~ Time(A) such that

2.i.2 2.i.3 DDHg;
IAdvy" () = Advi ™ (V)] = Advg ™ (D) +2(1Z1 = 1) - Advg ™ (A).

Proof. Recall 7 =i mod 2. We prove

[dl,K + Wstartrl,K]Z» [rl,K]Z!

{[_du,K + auzAi—l,u,K +eru,1<]2: [dﬁ,((u,xf‘),x +wxf,1ru,K]2r [ru,K]Z}ME[Q]
. 1 . 1 1
Ki-Li

S i = {[dU,K +wa,rru,K]Z}ue[Q],a#x;‘,uzéK(u,a)
{[_du,K +Z1 1yl [dv,K +Wy1-rTuxl2, [ru,K]Z}ue[Q],an,v:&((u,U)

{[k—dyx + WenaTuxl2, [XuilolucF,

[d1,x + Wstartr'1 x 12, [F1,]2,
(=l + ZeFucl2, (o, ) + Ay gy |+ Wt Pz, et
=c {[dv,x +WU,Tru,K]Z}uE[Q],U#x;‘,v=5K(u,a)
{[=dux +Z1—+Tyil2, [y + Wo 11Ty al2, [Puxl2tue()oes, v=6, (w,0)
{[k—dyx + Wena¥uxl2, [Fuil2}ueF,
[d1,x + Wstartr'1 ]2, [F1,]2,
{(=dux +Z:ryxl2, [ds, (x5 + a"gAi,éK(u,x;’),K + W T2, [Puil2bueiqr
~c {(dyx + +Wo e ul2duciQlose v=s,(u0) =ski,
{[_du,x +Z1-1Yyuxl2, [dv,K +Wg 11Ty il2, [ru,K]Z}ue[Q],an,vz&K(u,o)
{lk— du,K +Wendru«l2, [Fuxl2tuck,

in the presence of mpk and ct;u with ap-components recalled as follows:

T T s
[s0a,Wstartl1, [So@3]1, [SoayZ1 + 512, Wor 111, [s183]1, [s135Z0]h ifi=1
i-Liroy _ T . ,
ct. 2] = [Si—lagwx;fil,lfr]h [si-1a)]1, [si—1a3Z; + siaEWx;,rh, [s;aj]1, [siayZ1 ]y ifl<i</?

[S[—lagwx;ilyl_fh, [se—1a)]1, [Sp—1a5Z; + Seagwx;,,zh, [seaj]y, [scayWendli, [seayklr ifi=¢
We proceed as follows:

— The first =, relies on (Z;, W+ ;)-transition lemma (see Lemma 20). On input
1
aux, si-1Zr + $iWie o, {8y A0 + ZeFulz, (@)A1 +Woer o Fulz, [Fuxl2buerqixelq)

where aux = (A1, az, a5, A{Z;, A{W,: 1, 5i-1,5;, [Z:D,Wy: ;D,Dlp) and Z;, W,:  — A R A
forall u € [Q], x € [q] and
(Ao, A)) € {(5iA,0),(0,5i1A)}  with A —Z),

the reduction works as follows:

(Simulating mpk) We sample k— Z%k*—lvwstart’wend’zlfﬁ Wi 1-7 < Z;,Zk+l)xk forallo € Z and Wy — Zglﬁl)xk
for all o # x;; then we can simulate mpk using [A{,AIZT,A{WX;,T]l provided in aux.

(Simulating ciphertext) We sample s, ...,8y — Z’; and simulate ctiil’i

Wstartrwa,l—r, Zl—r;wend-

uSing mpk» a, Si—l’si»si—lZT + Siwx;f‘,r;
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(Simulating secret keys) On input f;, we want to generate a challenge key which is either sk;_l‘i on the LHS or
the key on the RHS depending on (Ag,A1). For each x € [q], we build F;_; x+ x« € [Q] and sample d;, x — Zf,k“ for
allue[Qlandr) , — Z’; for all u ¢ F;_1 ¢ ». We implicitly set

siA for the LHS Dr,,, ifu¢Fi_1xx
A= B and ry,= '
si-1A  for the RHS Tux if ueFi_1xx

and proceed as follows:
o We rewrite all terms in the second row of keys on the two sides in terms of s;_1, s;, A, Ty

oA . . . .
{ [—dy ++eru,1<]2y [déx(u,x;‘),K +Wx;‘,rl'u,1<]2, [Fuxl2 ifueFj_1x x

LHS;ow2 = ; / / :
[_du,K +ZTDru'1(]2) [dﬁk(u,x;‘),K +Wx;‘,TDru,K]21 [Dl‘uyK]g ifug Fi 1,50 x
—— { (~du 2oz, o, ++wx;,ffu,K12, Furle 065 Fix
[_du,K +ZrD1'u,1<]2’ [déK(u,x;‘),K +leff,-[Dl‘uyK]2, [Dl‘uy,(]z lf(SK(u, xl. )¢ Fl',x*,K

and generate the second row of the challenge key as

{ [—dy« + aLAo +Z:Ty 2, [db‘,((u,x;‘),K ++Wx;.*,1i'u,1<]2v [P xl2 ifue Fi_q x* x
[_du,K +ZTDr’u,K]2’ [d(gk(u’x;)',( +wx?,TDr,u,K]2' [Dl‘,u,,(]z ifue Fifl,x*,K

where all terms for u € F;_; x+ , can be built from {[a"ZAO +Z:Tyxl2, [a”2A1 + Wy Furl2, [Fuxlo}ueF, pro-
1

i-1,x%x
vided in the input; all terms for u ¢ F;_; x+ x can be built from [ZTD,WX;_«,TD,D]Z in aux and {r’u,K}uéFi-l,x*,x we
sampled.

o We can trivially generate all remaining terms in the challenge key which are identical to sk’ffl” (and also the

and {[ryxl2 = Fuxlotuer,

i-1,x% x

key on the RHS) using {[ru.l2 = [Dry, , Jo}uer, , .« as well as {:iu,K}ue[Q], Witart,
VAN {WU,T}(T#x;‘ ,{Ws 1-7}oes, Weng we sampled.
Observe that,
o when (AO, Al) =(s;A,0), the output distribution is identical to the LHS;
o when (Ag,A;) = (0,s;_1A), the output distribution is identical to the RHS; here we rely on the fact that u €
Fi_1,x* x < 0x(u, x}) € Fj x»  forall u € [Q], see Lemma 1.
This is sufficient for the proof of the first =..
- The second =, follows from DDHEZ2 assumption w.r.t. Wy ; with o # x; which implies that: for all o # x; and
A€ Zy, we have

{Wo,rruxl2, [Yuxl2}ueiqlxelq =c {[21"2A + W Ty l2, Xy xl2 b uelorxelq)

given (A1, az,a,, AWy, 1, W, 1D, Dlz) where Wy ; — ZZ* 0K, D 765k 7K for all u € [Q] and k € [q). Here
we use the fact that ct;l’l does not leak ajW,, ; with o # x}.

Combining the two steps completes the proof. O

4.10 Finalize: G, ¢4 — G3
In this section we prove the following two lemmas analogous to Lemma 13 and Lemma 16 in Section 3.8.

Lemma 30 (G, /4 ~ G3). There exists B with Time(B) = Time(A) such that

DDHY

IAdVE A (1) — AdvE (V)] <2021 +3)-Advg * (A).

The proof is analogous to the proof for Lemma 23. Let £ = £ mod 2, we need an auxiliary game Gs , and prove

Gora=sG3.4=:G3
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where the x-th secret key for f; in these games are recalled/defined as below

[d1,x + Wstartr1,x 12, [F1,x]2,
Gova: {[_du,K + Z[ru,K]Z» [dU,K + aHZAf,u,K +ngru,1<]2» [ru,K]Z}uE[Q],UEZ,U=5K(u,0') _ Sk[
{[_du,K + Zl_[ru,K]Zr [dv,K +Wg,1_iru,1<]2r [ru,K]Z}ue[Q],an,v:(SK(u,U) fe
{k— du,K +Wenarule, [Xuxlotuer,
[y —| @) Ar 1k |+ WstartE1,x 2, 1,62,
Gan {[_du,x + angAZ,u,K +Z[7ru,1<]2» [dU,K +ngru,1<]2, [ru,K]Z}ue[Q],an,v:&K(u,U)
' {[_du,K + + Zl_[ru,K]Z! (dyx — + Wg'l_éru,K]Z’ [ru,K]Z}uE[Q],UGZ,u:(SK(u,a)
{(k—dy«+ +Wenarul2, [FuxlotueF,
[dl,K _BM“' WitartX1,x12, [X1,x]2,
Gs : {[—dux +3”2W+ Z;ry ]2, [dyx +ngru,1<]2» [ryuxl2tuel0l,oes, v=6,(u,0) —sk*
{[—dux +M+ Z,_iTuxl2, (dyx _M"‘ Wo'vl_[_ru,'K]z’ [ryxl2tue(Qn,oes, v=6x (u,0) *
{k—dyx+ aHZAZ,u,K +WendXuxl2, [Fuxlotuck,

in the presence of mpk and cti* with ay-components recalled as follows:

ctf 21 = (IscayW - 711, sea3]y, [seayWendl, [seapkl ).

Analogous to Lemma 24 and 26, we have the following two lemmas which imply Lemma 30. We omit the proofs.

Lemma31 (Gy /4 ~5Gs.q). We have Adv4 (1) = Adv3(A).

Lemma 32 (Gs 4 = G3). There exists B with Time(B) =~ Time(A) such that
Gy
IAdV3A (D) — Adv3, (D) < 2(1Z1+3) - Advy ™ (A).
Lemma 33 (Advantage in Gs). Adqu A1) =0.

Proof. Asin the proof of Lemma 16, we argue that all keys {sk;K }x only leak k + agA and thus perfectly hide ajk. There-
fore, when s, # 0 which occurs with overwhelming probability, the term [s;AIk+ s[agk] T in cti* is independently and
uniformly distributed and perfectly hide message m. Hence, Advil 1) =0. O
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