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Abstract. A decentralized multi-authority anonymous authentication scheme that is suitable for IoT
and blockchains is proposed, in which a prover and a verifier are non-interactive. The proposed scheme
can treat dynamically increasing/decreasing independent attribute authorities. When an entity wants
the authorities to issue attribute credentials, the authorities only have to generate digital signatures on
her global identity. Two security definitions are given; resistance against eavesdrop-and-collude attacks
that cause misauthentication, and anonymity for privacy protection. Then a construction of our scheme
is described under a principle of “commit-to-ID” to attain resistance against the collusion attacks. There
are two building blocks; the structure-preserving signature scheme and the Groth-Sahai non-interactive
proof system, the both of which are in the setting of bilinear groups. The proposed scheme is proved
to be secure in the standard model.
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1 Introduction

Email addresses that are issued by a reliable organization can be identification data on the internet. Also,
universally unique identifiers (UUID) that are in accordance with the standard ISO/IEC 11578:1996 are
global identifiers for devices having MAC addresses. Those data can be called global identities on the internet
of things (IoT). In the trend that human beings, machines and computer programs are connected to IoT with
the global identities, each entity is likely to have plural attribute credentials issued by authorities that are
also on IoT. Due to the trend, there arises possibility that some combinations of those attribute credentials
enable the entity to enjoy services of smarter strategies. The reason why the possibility is expected to be
realized is that those strategies are basically not only for individuals but also for ecology and economy
towards global optimization. Note here that the global identities would be actually useful because possibly
independent flat authorities which we call decentralized multi-authorities can refer the identity data.

On the other hand, privacy protection is rapidly growing demand on IoT because most of entities’
activities on IoT will not need identity information. Suppose that a person buys some goods in a convenience
store using bitcoins [1] with her smartphone. In the case the record should not be linked to the UUID or
the phone number; only the data of paying bitcoins and having the right should be sent to the server of the



store. Here the data will contain transaction data of bitcoins and a proof of having attribute credentials that
are issued legitimately.

Thus, we need anonymous attribute authentication scheme on IoT where decentralized multi-authorities
issue attribute credentials to entities on IoT. Then, in the scheme, when an entity wants to prove the
possession of the attribute credentials to a verifier, it generates a proof of the credentials in a zero-knowledge
or witness-indistinguishable way [2]. However, one technical obstacle in realizing such a scheme is collusion
attacks. Adversaries having different identities might bring together their credentials of different attributes.
Then they send a proof of those merged credentials to a verifier and try to get accepted.

1.1 Our Contribution and Related Work

In this paper, we propose a decentralized multi-authority anonymous authentication scheme a-auth that is
secure against the collusion attacks, and in which a prover and a verifier are non-interactive. Our a-auth
scheme can treat dynamically increasing/decreasing decentralized multi-authorities of attributes. Here the
idea to attain collusion resistance is to “commit-to-ID”. Intuitively, when a prover having attribute credentials
for her identity generates a proof, she first generates a commitment to her identity string. The commitment
works as a confirmation that the owner of the plural credentials is certainly a single person (see the technical
explanation below for detail). Another feature of our a-auth is that, when a prover wants the authorities to
issue private secret keys as attribute credentials, the authorities only have to generate digital signatures on
her identity. The feature is useful when her identity data are easy to be validated by the authorities in the
registration phase, which is actually the case for a legitimately issued global identity.

Camenisch et al. [3, 4] proposed a scheme which is similar to our a-auth in its construction. One of the
strong points of their scheme is its universal composability with other cryptographic primitives [3]. However,
the case of decentralized multi-authorities and the property of collusion resistance were not discussed in [3, 4],
which is our prime target in this paper. Anada-Arita [5, 6] shares the above features of our a-auth. However,
in their authentication scheme a prover and a verifier is interactive, while our a-auth is non-interactive. As
for performance, we note that our a-auth does not have a mechanism of accumulators (see, for example, [7]).
Therefore, it is a drawback of our a-auth that the length of a proof grows linearly to number of attributes
which a prover wants to prove. Also, the computational overhead of a verifier grows linearly to the number
of attributes.

1.2 Remark on Replay Attack and Application to Blockchain

In compensation of the merit of non-interactiveness, naive use of our a-auth is vulnerable to the replay attack
[8]. That is, if an adversary captures a proof of the credentials which a prover sends to a verifier on the
internet, then the adversary possibly forces the verifier accept him by sending the same proof. (The attack
works even when the communication between the prover and the verifier is encrypted.) Since a proof in our
a-auth is generated with randomness, we can avoid the attack by making verifiers stateful to detect replays.
But we cannot avoid the attack if the adversary sends the same proof to other verifiers.

Recently, the replay attack has been studied with use of a blockchain [1]. For example, IBM [9] proposed
a mechanism to avoid the replay attack on a permissioned and privacy-preserving blockchain network. Since
our a-auth scheme contains decentralized multi-authorities and anonymous provers, the mechanism fits to
our a-auth. Roughly speaking, a hash value of a proof in our a-auth is took in to the related transaction, and
the transaction is involved in a blockchain. Then the verifiers in our a-auth are able to detect replay attacks
by examining the blockchain. Development in this direction is still under construction in the research com-
munity (for example, [10]). Thus, we hope that our decentralized multi-authority anonymous authentication
scheme a-auth serves as a privacy-protecting authentication framework which is non-interactive and which
has resistance against the replay attack on future blockchain networks.

1.3 Overview of Our Technical Construction and Security Proofs

After giving the syntax of our a-auth scheme, we give two security definitions in Section 3. One is resistance
against eavesdrop-and-collude attacks that cause misauthentication, and the other is anonymity for privacy
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protection. Then a construction of our a-auth is described. There are two building blocks; the structure-
preserving signature scheme [11, 12] and the Groth-Sahai non-interactive proof system [2, 13], the both of
which are in the setting of bilinear groups. (We note that other types of the structure-preserving signatures
such as [14] can be employed instead of [11, 12].) In Section 4, security proofs for the above construction are
given in the standard model. The resistance against eavesdrop-and-collude is due to knowledge extraction
property of the Groth-Sahai proof system and existential unforgeability of the structure-preserving signature
scheme. Besides, our design principle “commit-to-ID” works to exclude the collusion attacks because a
commitment to an identity string cannot be opened in two ways. The anonymity is due to perfectly hiding
property of commitments and perfectly witness indistinguishable property of proofs generated in the Groth-
Sahai proof system, where the both properties hold in the simulation mode of the dual mode commitment.

2 Preliminaries

We survey here the building blocks of our a-auth scheme. N and Z means the set of natural numbers and
integers, respectively. p means a prime number. Zp means the ring Z/pZ. λ means the security parameter,
where λ ∈ N. A probability P is said to be negligible in λ if for any given positive polynomial poly(λ)
P < 1/poly(λ) for sufficiently large λ ∈ N. Two probabilities P and Q are said to be computationally
indistinguishable if |P − Q| is negligible in λ, which is denoted as P ≈c Q. A uniform random sampling of
an element a from a set S is denoted as a ∈R S. When a probabilistic algorithm A with an input a and a
randomness r on a random tape returns z, we denote it as z ← A(a; r). St is the inner state of the concerned
algorithm.

2.1 Bilinear Groups [15, 13]

Let p be a prime number of bit-length λ and Ĝ, Ȟ and T be cyclic groups of order p, Ĝ and Ȟ be generators
of Ĝ and Ȟ, respectively. We denote operations in the groups multiplicatively. Let e be a map e : Ĝ× Ȟ→ T
with:

• Non-degeneracy : e(Ĝ, Ȟ) 6= 1T,

• Bilinearity : e(X̂a, Y̌ a) = e(X̂, Y̌ )ab for a, b ∈ Zp, X̂ ∈ Ĝ, Y̌ ∈ Ȟ.

Let G be a bilinear-groups generation algorithm: G(1λ) → (p, Ĝ, Ȟ,T, e, Ĝ, Ȟ). Ĝ and Ȟ are called source

groups and T is called a target group. We denote an element in Ĝ and Ȟ with hat ‘ ˆ ’ and check ‘ ˇ ’ ,
respectively.

2.2 Structure-Preserving Signature Scheme [11, 12]

The structure-preserving signature scheme Sig is a digital signature scheme which is based on bilinear groups.
A message is a vector with its entries being in Ĝ and Ȟ. A signature is a vector with its entries being in Ĝ
and Ȟ. Sig consists of four ppt algorithms (Sig.Setup, Sig.KGpp, Sig.Signpp, Sig.Vrfpp). The description below
is in accordance with [12].

Sig.Setup(1λ) → pp. On input the security parameter 1λ, this ppt algorithm executes the bilinear-groups

generation algorithm. It puts the output as a set of public parameters: G(1λ) → (p, Ĝ, Ȟ,T, e, Ĝ, Ȟ) =: pp.
It returns pp.

Sig.KGpp()→ (PK,SK). Based on the set of public parameters pp, this ppt algorithm generates a signing key

SK and the corresponding public key PK as follows: Ĝu ∈R Ĝ, γ1, δ1 ∈R Z∗p, Ĝ1 := Ĝγ1 , Ĝu,1 := Ĝδ1u . γz, δz ∈R
Z∗p, Ĝz := Ĝγz , Ĝu,z := Ĝδzu . α, β ∈R Z∗p, (Âi, Ǎi)

1
i=0 ← Extend(Ĝ, Ȟα), (B̂i, B̌i)

1
i=0 ← Extend(Ĝu, Ȟ

β) (for

the description of the algorithm Extend, see [12]). It puts PK := (Ĝz, Ĝu,z, Ĝu, Ĝ1, Ĝu,1, (Âi, Ǎi, B̂i, B̌i)
1
i=0)

and SK := (α, β, γz, δz, γ1, δ1). It returns (PK,SK).
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Sig.Signpp(PK,SK,m)→ σ. On input the public key PK, the secret key SK and a message m = M̌ ∈ Ȟ, this
ppt algorithm generates a signature σ as follows.

ζ, ρ, τ, φ, ω ∈R Zp,

Ž := Ȟζ , Ř := Ȟα−ρτ−γzζM̌−γ1 , Ŝ := Ĝρ, Ť := Ȟτ ,

Ǔ := Ȟβ−φω−δzζM̌−δ1 , V̂ := Ĝφu, W̌ := Ȟω.

It returns σ := (Ž, Ř, Ŝ, Ť , Ǔ , V̂ , W̌ ).
Sig.Vrfpp(PK,m, σ) → d. On input the public key PK, a message m = M̌ ∈ Ȟ and a signature σ =

(Ž, Ř, Ŝ, Ť , Ǔ , V̂ , W̌ ), this deterministic algorithm checks whether the following verification equations hold
or not.

e(Ĝz, Ž)e(Ĝ, Ř)e(Ŝ, Ť )e(Ĝ1, M̌)e(Â0, Ǎ0)−1e(Â1, Ǎ1)−1 = 1T, and (1)

e(Ĝu,z, Ž)e(Ĝu, Ǔ)e(V̂ , W̌ )e(Ĝu,1, M̌)e(B̂0, B̌0)−1e(B̂1, B̌1)−1 = 1T. (2)

It returns a boolean decision d.
The correctness should hold for the scheme Sig: For any security parameter 1λ, any set of public pa-

rameters pp ← Sig.Setup(1λ) and any message m = M̌ ∈ Ȟ, Pr[d = 1 | (PK,SK) ← Sig.KGpp();σ ←
Sig.Signpp(PK,SK,m); d← Sig.Vrfpp(PK,m, σ)] = 1.

An adaptive chosen-message attack by which a forger algorithm F generates an existential forgery on the
scheme Sig is defined by the following algorithm of experiment.

Expeuf-cma
Sig,F (1λ) :

pp← Sig.Setup(1λ), (PK,SK)← Sig.KGpp()

(m∗, σ∗)← FSignOpp(PK,SK,·)(pp,PK)

If m∗ /∈ {mj}1≤j≤qs and Sig.Vrfpp(PK,m∗, σ∗) = 1,

then Return Win else Return Lose

In the experiment, F issues a signing query to its signing oracle SignOpp(PK,SK, ·) by sending a message
mj at most qs times (1 ≤ j ≤ qs). As a reply, F receives a valid signature σj on mj . After receiving replies,
F returns a pair of a message and a signature (m∗, σ∗). A restriction is imposed on the algorithm F: The set
of queried messages {mj}1≤j≤qs should not contain the message m∗. The advantage of F over Sig is defined

as Adveuf-cma
Sig,F (λ) := Pr[Expeuf-cma

Sig,F (1λ) returns Win]. The scheme Sig is said to be existentially unforgeable
against adaptive chosen-message attacks (EUF-CMA) if for any ppt algorithm F and any qs bounded by a
polynomial in λ, the advantage Adveuf-cma

Sig,F (λ) is negligible in λ. The structure-preserving signature scheme
[11, 12] is known to be EUF-CMA under the q-SFP assumption [12].

3 Decentralized Multi-authority Anonymous Authentication with
Non-interactive Proofs

In this section, we give a syntax and security definitions of our decentralized multi-authority non-interactive
anonymous authentication scheme a-auth. Then we introduce two security definitions. One is resistance
against eavesdrop-and-collude attacks that cause misauthentication. The other is anonymity for privacy
protection.

3.1 Syntax

Our a-auth consists of five ppt algorithms, (Setup, AuthKGpp, PrivKGpp, Proverpp, Verifierpp).
• Setup(1λ) → pp. This ppt algorithm is needed to generate a set of public parameters pp. On input the
security parameter 1λ, it generates the set pp. It returns pp.
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• AuthKGpp(a) → (PKa,MSKa). This ppt algorithm is executed by a key-issuing authority indexed by a.
On input the authority index a, it generates the a-th public key PKa of the authority and the corresponding
a-th master secret key MSKa. It returns (PKa,MSKa).
• PrivKGpp(PKa,MSKa, i) → skai . This ppt algorithm is executed by the a-th key-issuing authority. On
input the a-th public and master secret keys (PKa,MSKa) and an element i ∈ Ȟ (that is an identifier of a
prover), it generates a private secret key skai of a prover. It returns skai .
• Proverpp((PKa, skai)a∈A

′
) → π. This ppt algorithm is executed by a prover who is to be authenticated,

where A′ denotes a subset of the set A of all the authority indices. On input the public keys (PKa)a∈A
′

and
the corresponding private secret keys (skai)a∈A

′
, it returns a proof π.

• Verifierpp((PKa)a∈A
′
, π) → d. This deterministic polynomial-time algorithm is executed by a verifier who

confirms that the prover certainly knows the secret keys for indices a ∈ A′. On input the public keys
(PKa)a∈A

′
and the proof π, it returns d := 1 (“accept”) or d := 0 (“reject”).

3.2 Security Definitions

Resistance against Eavesdrop-and-Collude Attack of Misauthentication We define an algorithm
of experiment of eavesdrop-and-collude attack on a-auth and an adversary algorithm A, as follows.

Expeaves-coll
a-auth,A (1λ) :

pp← Setup(1λ), A := {1, . . . , µ}
For a ∈ A : (PKa,MSKa)← AuthKGpp(a)

(qI , St)← A(pp, (PKa)a∈A), I := {1, . . . , qI}
For i ∈ I : ii ∈R Ȟ

For a ∈ A : skaii ← PrivKGpp(PKa,MSKa, ii)

(Ã, St)← A(St), ¯̃A := A\Ã

(π∗, A∗)← AProverpp((PKa,ska
ii

)a∈
¯̃
A)|i∈I ,PrivKGOpp(PK·,MSK·,·)(St, (MSKa)a∈Ã)

Verifierpp((PKa)a∈A
∗
, π∗)→ d

If d = 1 then return Win else return Lose

Intuitively, the attack described in the above experiment has the following meaning. On input the set of
public parameters pp and the public keys (PKa)a∈A, A outputs the number qI of provers. Then A outputs
a set of indices of corrupted authorities Ã. A eavesdrops and intercepts proofs from provers Proverpp with

ii, i = 1, . . . , qI and a ∈ ¯̃A := A\Ã. In addition, A collects at most qsk private secret keys by issuing queries

to the private secret key oracle PrivKGOpp(PK·,MSK·, ·) with an authority index a ∈ ¯̃A and an identifier
element ij ∈ Ȟ for j ∈ J := {qI + 1, . . . , qI + qsk}. We denote by Aj the set of authority indices for which
the private secret key queries were issued with ij :

Aj := {a ∈ A | A is given skaij} ⊂
¯̃A.

Note that the maximum number of private secret key queries is µqsk. We require that the numbers µ, qI and
qsk are bounded by a polynomial in λ. At the end A returns a forgery proof π∗ together with the target set

of authority indices A∗ that is a subset of ¯̃A:

A∗ ⊂ ¯̃A. (3)

If the decision d on π∗ by Verifierpp is 1 under (PKa)a∈A
∗
, then the experiment returns Win; otherwise it

returns Lose.
Two types of restrictions are imposed on the adversary A. One type is that mere replay of proofs is ruled

out1. The other type is that the queried ijs are pairwise different, and any Aj is a proper subset of the

1 As is mentioned in Section 1, detecting replay attacks is currently studied by researchers and developers [9, 10].
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target set A∗:

ij1 6= ij2 for j1, j2 ∈ J, j1 6= j2, (4)

Aj ( A∗, j ∈ J. (5)

These restrictions are because, otherwise, A can trivially succeed in causing misauthentication.
The advantage of an adversary A over an anonymous authentication scheme a-auth in the experiment

is defined as: Adveaves-coll
a-auth,A (λ)

def
= Pr[Expeaves-coll

a-auth,A (1λ) = Win]. A scheme a-auth is called secure against
eavesdrop-and-collude attacks that cause misauthentication. if, for any ppt algorithm A, the advantage
Adveaves-coll

a-auth,A (λ) is negligible in λ.

Anonymity We define an algorithm of experiment of anonymity game on a-auth and an adversary algorithm
A, as follows.

Expano
a-auth,A(1λ) :

pp← Setup(1λ), A := {1, . . . , µ}
For a ∈ A : (PKa,MSKa)← AuthKGpp(a)

(i0, i1, St)← A(pp, (PKa)a∈A)

For a ∈ A : For i = 0, 1 : skaii ← PrivKGpp(PKa,MSKa, ii)

b ∈R {0, 1}, b′ ← AProverpp((PKa,ska
ib

)a∈A)(St, (skai0
, skai1

)a∈A)

If b = b′, then return Win, else return Lose

Intuitively, the game described in the above experiment has the following meaning. On input the set of public
parameters pp and the issued public keys (PKa)a∈A, A designates two identity elements i0 and i1, and A
is given private secret keys (skai0

, skai1
) for all a ∈ A. Next, for randomly chosen b that is hidden from A, A

does oracle-access to a prover Proverpp that is with input the private secret keys (skaib)a∈A. If the decision b′

of A is equal to b, then the experiment returns Win; otherwise it returns Lose.
The advantage of an adversary A over an anonymous authentication scheme a-auth in the experiment

is defined as: Advano
a-auth,A(λ)

def
= |Pr[Expano

a-auth,A(1λ) = Win]− (1/2)|. An anonymous authentication scheme
a-auth is called to have anonymity if, for any ppt algorithm A, the advantage Advano

a-auth,A(λ) is negligible
in λ.

4 Construction and Security Proofs

In this section, we give a construction of an a-auth scheme. Each decentralized authority indexed by ‘a’ issues
a private secret key skai for an identity element i by generating a structure-preserving signature on i. Next,
in the committing-phase a prover generates commitments to the identity element i and the components of
the structure-preserving signatures (σa)a∈A

′
= (σa1 , . . . , σ

a
7 )a∈A

′
. In the proving-phase the prover generates

a proof π of the “bundled” witness [5]. Here the bundled witness means that the identity element i = M̌ is
common for all a ∈ A′, and, for each a ∈ A′ i and the elements (σa1 , . . . , σ

a
7 ) satisfy the verification equation

system ”(1) and (2)”.

4.1 Construction

The scheme a-auth = (Setup, AuthKGpp, PrivKGpp, Proverpp, Verifierpp) is described as follows.
• Setup(1λ)→ pp. On input the security parameter 1λ, this ppt algorithm runs the bilinear-groups generation

algorithm. It puts the output as a set of public parameters: G(1λ)→ (p, Ĝ, Ȟ,T, e, Ĝ, Ȟ) =: pp. Note that pp
is common for both the structure-preserving signature scheme Sig and the commit-and-prove scheme CmtPrv.
Besides, it runs the generation algorithm of commitment key: Cmt.KGpp(nor)→ ck. It returns pp := (pp, ck).
• AuthKGpp(a) → (PKa,MSKa). On input an authority index a, this ppt algorithm executes the key-
generation algorithm Sig.KGpp() to obtain (PK,SK). It puts PKa := PK and MSKa := SK. It returns
(PKa,MSKa).
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• PrivKGpp(PKa,MSKa, i) → skai . On input PKa, MSKa and an element i ∈ Ȟ, this ppt algorithm puts
PKa := PKa and SKa := MSKa and m = M̌ := i. It executes the signing algorithm Sig.Signpp(PKa,SKa,m)
to obtain a signature σa. It puts skai := (i, σa). It returns skai .
• Proverpp((PKa, skai)a∈A

′
)→ π. On input (PKa, skai)a∈A

′
, first, this ppt algorithm commits to i:

c0 ← Cmt.Compp(i; r0).

Second, for each a ∈ A′, it commits to the components σa1 , . . . , σ
a
7 of the signature σa in the componentwise

way.

(ca1 , . . . , c
a
7)← Cmt.Compp((σa1 , . . . , σ

a
7 ); (ra1 , . . . , r

a
7)).

Then, for each a ∈ A′, it puts xa := (Ĝaz , Ĝ
a
u,z, Ĝ

a
u, Ĝ

a
1 , Ĝ

a
u,1, (Âai , (Ǎ

a
i )−1, B̂ai , (B̌

a
i )−1)1

i=0) by using PKa.
It also puts ca := (c0, c

a
1 , . . . , c

a
7), wa := (w0, w

a
1 , . . . , w

a
7) := (i, σa1 , . . . , σ

a
7 ) and ra := (r0, r

a
1 , . . . , r

a
7). It

executes the proof generation algorithm Ppp to obtain a proof:

πa ← Ppp(xa, ca, wa, ra), a ∈ A′.

It puts π̄a := ((ca1 , . . . , c
a
7), πa) for each a ∈ A′, and it merges all the π̄as and the single commitment c0 into

a proof π. That is, π := (c0, (π̄
a)a∈A

′
). It returns π.

• Verifierpp((PKa)a∈A
′
, π)→ d. On input ((PKa)a∈A

′
, π), this deterministic polynomial-time algorithm con-

verts PKa into xa and it puts ca := (c0, c
a
1 , . . . , c

a
7) for each a ∈ A′. Then it executes the verification algorithm

Vpp for each a ∈ A′ to obtain the decisions:

da ← Vpp(xa, ca, πa), a ∈ A′.

If all the decisions das are 1, then it returns d := 1; otherwise it returns d := 0.

4.2 Security Proofs

Theorem 1 (Security against Eavesdrop-and-Collude Attacks) For any ppt algorithm A that is in
accordance with the experiment Expeaves-colla-auth,A (1λ), there exists a ppt algorithm F that is in accordance with

the experiment Expeuf-cma
Sig,F (1λ) and the following inequality holds.

Adveaves-coll
a-auth,A (λ) =

p

p− 1
· µ ·Adveuf-cma

Sig,F (λ).

The meaning of this theorem is that, if the structure-preserving signature scheme Sig is EUF-CMA, then
our a-auth is secure against eavesdrop-and-collude attacks.
Proof. Given any ppt algorithm A that is in accordance with the experiment Expeaves-coll

a-auth,A (1λ), we construct

a ppt algorithm F that generates an existential forgery of Sig according to the experiment Expeuf-cma
Sig,F (1λ). F

is given as input the set of public parameters pp and a public key PKSig. F is also given an auxiliary input µ.
F executes Cmt.KGpp(ext) to obtain a pair (ck, xk). F puts pp := (pp, ck). F chooses a target index a† from
the set A := {1, . . . , µ} uniformly at random. F executes the authority key generation algorithm honestly for
a ∈ A except the target index a†. As for a†, F uses the input public key:

For a ∈ A, a 6= a† : (PKa,MSKa)← AuthKGpp(a),

For a = a† : PKa† := PKSig.

F inputs pp and the public keys (PKa)a∈A into A to obtain the number qI . F sets I as I := {1, . . . , qI}. F

inputs St into A. Then F obtains a set of corrupted authority indices Ã from A. F puts ¯̃A := A\Ã. If a† ∈ ¯̃A

(the case TgtIdx), then a† is not in Ã and F is able to input (St, (MSKa)a∈Ã) into A. Otherwise F aborts.

Simulation of Provers. When A tries to intercept proofs from qI provers Proverpp((PKa, skaii)
a∈ ¯̃A)|i∈I , F

chooses i† ∈R Ȟ. F executes the private secret key generation algorithm with input i† honestly for a ∈ ¯̃A
where a 6= a†. As for a = a†, F issues a signing query to its oracle with i†:

For a ∈ ¯̃A s.t. a 6= a† : skai† ← PrivKGpp(PKa,MSKa, i†),

For a = a†, ska
†

i† ← SignOpp(PK,SK, i†).
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In the simulation of provers Proverpp((PKa, skaii)
a∈ ¯̃A)|i∈I , F uses the single private secret key (skai†)

a∈ ¯̃A.
This is perfect simulation due to the perfect witness-indistinguishability of the Groth-Sahai proof system
(see Definition 8 in Appendix).

Simulation of Private Secret Key Oracle. When A issues a private secret key query with a ∈ Aj ( ¯̃A and

ij ∈ Zp(j ∈ J), F executes the private secret key generation algorithm with ij honestly for a ∈ ¯̃A such that
a 6= a†. As for a = a†, F issues a signing query to its oracle with ij :

For a ∈ ¯̃A s.t. a 6= a† : skaij ← PrivKGpp(PKa,MSKa, ij),

For a = a†, ska
†

ij
← SignOpp(PK,SK, ij).

F replies to A with the secret key skaij . This is also a perfect simulation.

At the end A returns a forgery proof and the target set of authority indices (π∗, A∗). Note that A∗ ⊂ ¯̃A
as in the definition (3).
Generating Existential Forgery. Next, F runs a verifier Verifierpp with an input ((PKa)a∈A

∗
, π∗). If the

decision d of Verifierpp is 1, then F executes for each a ∈ A∗ the extraction algorithm Cmt.Extpp(xk, ca) to
obtain a committed message (wa)∗ = ((wa0)∗, ((wak)∗)k) (see Definition 7 in Appendix). Note here that, for
all a ∈ A∗, (wa0)∗ is equal to a single element (w0)∗ in Ȟ. This is because of the perfectly binding property
of Cmtpp. Then F puts i∗ := (w0)∗. Here the restriction (4)(5) assures that, if qsk > 0, then there exists at
least one â ∈ A∗\Aj for some j ∈ J . If qsk = 0, then there exists at least one â ∈ A∗. F chooses such an
â and puts σ∗ := (σâ)∗ := ((wâk)∗)k. F returns a forgery pair of a message and a signature (i∗, σ∗). This
completes the description of F.
Probability Evaluation. The probability that the returned value (i∗, σ∗) is actually an existential forgery is
evaluated as follows. We name the events in the above F as:

Acc : d = 1,

Ext : Cmt.Extpp returns a witness (wa)∗,

TgtIdx : â = a†,

NewID : i∗ 6= i†,

Forge : (i∗, σ∗) is an existential forgery on Sig.

We have the following equalities.

Adveaves-coll
a-auth,A (λ) = Pr[Acc], (6)

Pr[Acc,Ext,TgtIdx,NewID] = Pr[Forge], (7)

Pr[Forge] = Adveuf-cma
Sig,F (λ). (8)

The left-hand side of the equality (7) is expanded as follows.

Pr[Acc,Ext,TgtIdx,NewID]

= Pr[TgtIdx] · Pr[Acc,Ext,NewID]

= Pr[TgtIdx] · Pr[Acc,Ext] · Pr[NewID | Acc,Ext]

= Pr[TgtIdx] · Pr[Acc] · Pr[Ext | Acc] · Pr[NewID | Acc,Ext]. (9)

Claim 1

Pr[TgtIdx] = 1/|A| = 1/µ. (10)

Proof. â coincides with a† with probability 1/|A| because a† is chosen uniformly at random from A by F and
no information of a† is leaked to A. �

Claim 2

Pr[NewID | Acc,Ext] =
p− 1

p
. (11)
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Proof. i∗ is not i† with probability p−1
p . This is because i† is chosen uniformly at random from Ȟ by F. Note

here that, though the information of the whole witness space might leak to A, the information that identify
a witness including i† does not leak due to the perfect witness-indistinguishability of the Groth-Sahai proof
system (see Definition 8 in Appendix). �

Claim 3 If TgtIdx and NewID occurs, then i∗ is not queried by F to its oracle SignOpp.

Proof. This is because of the restriction (4)(5). �

Claim 4

Pr[Ext | Acc] = 1. (12)

Proof. This is because of the perfect knowledge extraction of Πpp (see Definition 7 in Appendix). �
Combining (6), (7), (8), (9), (10), (11) and (12) we have:

Adveaves-coll
a-auth,A (λ) =

p

p− 1
· µ ·Adveuf-cma

Sig,F (λ).

�

Theorem 2 (Anonymity) Assume the computational indistinguishability between commitment keys {ck}
of the mode nor and commitment keys {ck} of the mode sim. For any ppt algorithm A that is in accordance
with the experiment Expanoa-auth,A(1λ), there exists a ppt algorithm D and the following equality holds.

Advano
a-auth,A(λ) ≤ Advind-dual

Cmtpp,D(λ).

(For the definition of Advind-dual
Cmtpp,D(λ), see Definition 2 in Appendix.)

The meaning of this theorem is that, if the dual-mode commitment keys are indistinguishable, then our
a-auth has anonymity.
Proof. Suppose that any ppt algorithm A that is in accordance with the experiment Expano

a-auth,A(1λ) is given.

We set a sequence of games, Game0 and Game1, as follows. Game0 is exactly the same as Expano
a-auth,A(1λ).

Note that when a set of public parameters pp = (pp′, ck) is given to A where pp′ is for bilinear groups, the
commitment key ck is chosen as a commitment key ck of the mode nor. We denote the probability that
Game0 returns Win as Pr[Win0].

Game1 is the same as Game0 except that, when a set of public parameters pp = (pp′, ck) is given to A,
the commitment key ck is chosen as a commitment key ck of the mode sim. We denote the probability that
Game1 returns Win as Pr[Win1]. The values in Game1 distribute identically for both i0 and i1 due to the
perfectly hiding property (18) and the witness-indistinguishability (28). Therefore, Pr[Win1] = 1/2.

Employing A as a subroutine, we construct a ppt distinguisher algorithm D as follows. Given input
pp, ck and an auxiliary input µ D reads out the security parameter. D simulates the environment of A in
Game0 or Game1 honestly except that D puts pp := (pp, ck) instead of executing Setup(1λ). If b = b′, then D
returns 1, and otherwise, 0. By the definition of (16), Pr[D(pp, ck) = 1 | ck ← Cmt.KGpp(nor)] = Pr[Win0]
and Pr[D(pp, ck) = 1 | (ck, tk)← Cmt.KGpp(sim)] = Pr[Win1], and

Advind-dual
Cmtpp,D(λ) = |Pr[Win0]− Pr[Win1]|.

Therefore,

Advano
a-auth,A(λ) = |Pr[Win0]− (1/2)|

≤ |Pr[Win0]− Pr[Win1]|+ |Pr[Win1]− (1/2)|
= Advind-dual

Cmtpp,D(λ) + 0 = Advind-dual
Cmtpp,D(λ).

�
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5 Conclusion and Future Work

In our future IoT, a decentralized multi-authority anonymous authentication scheme a-auth would be needed.
In this paper, we gave a construction of a-auth that attains the collusion resistance; a prover is able to convince
a verifier that a single anonymous prover has the knowledge of attribute credentials related to public keys.
Another feature is that, when a prover wants the authorities to issue attribute credentials, the authorities
only have to generate digital signatures on her identity i. In the case of legitimately issued global identities,
the second feature is useful.

Technically, under the mode ck = nor or ext, perfectly binding property of the commitment to i works
as a proof of simultaneous satisfiability of the verification equations of structure-preserving signatures, and
hence, the collusion attacks are prevented. On the other hand, under the mode ck = sim, perfectly hiding
property of commitments and perfectly witness-indistinguishable property of proofs yield anonymity.

In naive use, our a-auth is vulnerable to the replay attack. However, as was explained in Section 1, the
replay attack will be avoided when our decentralized scheme a-auth is used as an authentication framework
on a peer-to-peer network with a blockchain. This direction of research should be pursued.

Our future work should be to resolve the drawback that the length of a proof grows linearly to the number
of attributes which a prover wants to prove. Developing a cryptographic accumulator would be a candidate
direction.
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Appendix

A Non-interactive Commit-and-Prove Scheme for Structure-Preserving
Signatures

In this appendix, using the fine-tuned Groth-Sahai proof system [13], we describe the non-interactive
commit-and-prove scheme CmtPrv that is adapted to the case of our specific language of the verifica-
tion equation system of the structure-preserving signatures [11, 12]. CmtPrv consists of six ppt algorithms
(CmtPrv.Setup,Cmtpp = (Cmt.KGpp,Cmt.Compp,Cmt.Vrfpp), Πpp = (Ppp,Vpp)).

A.1 Commitment-Part

The commitment-part (CmtPrv.Setup,Cmtpp) is described as follows.
• CmtPrv.Setup(1λ)→ pp. On input the security parameter 1λ, this ppt algorithm executes a bilinear-groups

generation algorithm, and it puts the output as a set of public parameters: G(1λ)→ (p, Ĝ, Ȟ,T, e, Ĝ, Ȟ) =: pp.
It returns pp.
• Cmt.KGpp(mode) → key. On input a string mode, this ppt algorithm generates a key. If mode = nor, then
key = ck which is a commitment key. If mode = ext, then key = (ck, xk) which is a pair of ck and an extraction
key xk. If mode = sim, then key = (ck, tk) which is a pair of ck and a trapdoor key tk. It returns key.

We put pp := (pp, ck) because the commitment key ck is treated as a public parameter.
• Cmt.Compp(w; r) → (c, r). On input a message w which may be a vector, this ppt algorithm generates
a commitment c with a randomness r. It returns (c, r). If w is a vector w = (w0, . . . , wn−1) (for some
n ∈ N bounded by a polynomial in λ), then c and r are also vectors of the same number of components:
c = (c0, . . . , cn−1) and (r0, . . . , rn−1), respectively. Note also that computation is executed in componentwise
way ; ci is generated from wi and ri, i = 0, . . . , n− 1.
• Cmt.Vrfpp(c, w, r)→ d. On input a commitment c, a message w and a verification key r, this deterministic
algorithm generates a boolean decision d. It returns d.

The commitment-part (CmtPrv.Setup,Cmtpp) of the Groth-Sahai proof system has the following four
properties.

Definition 1 (Correctness [2]) A commitment scheme Cmtpp is said to be correct if it satisfies the fol-
lowing condition: For any security parameter 1λ, any set of public parameters pp← CmtPrv.Setup(1λ), any
commitment key ck← Cmt.KGpp(mode) where mode = nor or ext or sim, and any message w,

Pr[d = 1 | (c, r)← Cmt.Compp(w), d← Cmt.Vrfpp(c, w, r)] = 1. (13)

Definition 2 (Dual Mode [2]) A commitment scheme Cmtpp is said to be dual mode if it satisfies the
following condition: For any security parameter 1λ, any set of public parameters pp ← CmtPrv.Setup(1λ)
and any ppt algorithm A,

Pr[A(pp, ck) = 1 | ck← Cmt.KGpp(nor)]

= Pr[A(pp, ck) = 1 | (ck, xk)← Cmt.KGpp(ext)], (14)

Pr[A(pp, ck) = 1 | ck← Cmt.KGpp(nor)]

≈c Pr[A(pp, ck) = 1 | (ck, tk)← Cmt.KGpp(sim)]. (15)
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The computational indistinguishability (15) is equivalent to the following: For any security parameter 1λ, for
any set of public parameters pp← CmtPrv.Setup(1λ) and any ppt algorithm A, the advantage Advind-dual

Cmtpp,A(λ)
of A over Cmtpp defined by the difference below is negligible in λ:

Advind-dual
Cmtpp,A(λ)

def
= |Pr[A(pp, ck) = 1 |ck← Cmt.KGpp(nor)]

−Pr[A(pp, ck) = 1 |(ck, tk)← Cmt.KGpp(sim)]|. (16)

The indistinguishability holds, for example, for an instance of the Groth-Sahai proof system under the SXDH
assumption [2, 13].

Definition 3 (Perfectly Binding [2]) A commitment scheme Cmtpp is said to be perfectly binding if it
satisfies the following condition for some unbounded algorithm Cmt.Openpp: For any security parameter 1λ,

any set of public parameters pp ← CmtPrv.Setup(1λ), any commitment key ck ← Cmt.KGpp(nor) and any
message w,

Pr[w = w′ | (c, r)← Cmt.Compp(w; r), w′ ← Cmt.Openpp(c)] = 1. (17)

Definition 4 (Perfectly Hiding [2]) A commitment scheme Cmtpp is said to be perfectly hiding if it
satisfies the following condition: For any security parameter 1λ, any set of public parameters pp ←
CmtPrv.Setup(1λ), any commitment key ck s.t. (ck, tk)← Cmt.KGpp(sim) and any ppt algorithm A,

Pr[A(St, c) = 1 |(w,w′, St)← A(pp, ck, tk);

(c, r)← Cmt.Compp(w)]

= Pr[A(St, c′) = 1 |(w,w′, St)← A(pp, ck, tk);

(c′, r′)← Cmt.Compp(w′)]. (18)

A.2 Proof-Part

The proof-part (CmtPrv.Setup, Πpp) is described as follows. Let CKpp denote the set of commitment keys,
Xpp denote the set of coefficients of the verification equation system (1) and (2), and Wpp denote the set of
the pairs of messages and signatures for some x ∈ Xpp:

CKpp = {ck | ck← Cmt.KGpp(mode) for mode = nor, ext, sim}, (19)

Xpp = {x | (PK,SK)← Sig.KGpp(), x = PK}, (20)

Wpp = {w | w = (w0, w1, . . . , w7) ∈ Ȟ3 × Ĝ× Ȟ2 × Ĝ× Ȟ
s.t. (1) and (2) hold for ∃x ∈ Xpp,

w0 = m = M̌, (w1, . . . , w7) = σ = (Ž, Ř, Ŝ, Ť , Ǔ , V̂ , W̌ )}. (21)

Then we define the following ternary relation Rpp.

Rpp
def
= {(ck, x, w) ∈ CKpp ×Xpp ×Wpp |

w can be committed by Cmt.Compp under ck

and (1) and (2) hold for (x,w)}. (22)

A group-dependent language Lpp,ck parametrized by ck ∈ CK is defined as follows.

Lpp,ck
def
= {x ∈ Xpp | ∃w ∈ Wpp s.t. (ck, x, w) ∈ Rpp}. (23)

We put pp := (pp, ck) because the commitment key ck is treated as a public parameter.
• Ppp(x, c, w, r) → π. On input a statement x, a commitment c, a witness w and a randomness r which
was used to generate a commitment c, this ppt algorithm executes the proof-generation algorithm of the
Groth-Sahai proof system to obtain a proof π (see [13] for the details). It returns π.
• Vpp(x, c, π) → d. On input a statement x, a commitment c and a proof π, this deterministic algorithm
executes the verification algorithm of the Groth-Sahai proof system to obtain a boolean decision d (see [13]
for the details). It returns d.

The proof-part (CmtPrv.Setup, Πpp) of the Groth-Sahai proof system have the following four properties.
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Definition 5 (Perfect Correctness [2]) A commit-and-prove scheme CmtPrv is said to be perfectly cor-
rect if it satisfies the following condition: For any security parameter 1λ, any set of public parameters
pp ← CmtPrv.Setup(1λ), any commitment key ck ← Cmt.KGpp(mode) where mode = nor or ext or sim,
and any ppt algorithm A,

Pr[Vpp(x, c, π) = 1 if (ck, x, w) ∈ Rpp |
(x,w)← A(pp), (c, r)← Cmt.Compp(w),

π ← Ppp(x, c, w, r)] = 1. (24)

Definition 6 (Perfect Soundness [2]) A commit-and-prove scheme CmtPrv is said to be perfectly sound
if it satisfies the following condition for some unbounded algorithm Cmt.Openpp: For any security parameter

1λ, any set of public parameters pp ← CmtPrv.Setup(1λ), any commitment key ck ← Cmt.KGpp(nor) and
any ppt algorithm A,

Pr[Vpp(x, c, π) = 0 or (ck, x, w) ∈ Rpp |
(x, c, π)← A(pp);w ← Cmt.Openpp(c)] = 1. (25)

Let Cck be the set of commitments under ck to some message w.

Definition 7 (Perfect Knowledge Extraction [2]) A commit-and-prove scheme CmtPrv is said to be
perfectly knowledge extractable if it satisfies the following condition for some ppt algorithm Cmt.Extpp: For
any security parameter 1λ, any set of public parameters pp ← CmtPrv.Setup(1λ), any commitment key
(ck, xk)← Cmt.KGpp(ext) and any ppt algorithm A,

Pr[c /∈ Cck or Cmt.Extpp(xk, c) = Cmt.Openpp(c) |
c← A(pp, ck, xk)] = 1. (26)

Definition 8 (Composable Witness-Indistinguishability [2]) A commit-and-prove scheme CmtPrv is
said to be composably witness-indistinguishable if it satisfies the following condition: For any security param-
eter 1λ, any set of public parameters pp← CmtPrv.Setup(1λ) and any ppt algorithm A,

Pr[A(pp, ck) = 1 | ck← Cmt.KGpp(nor)]

≈c Pr[A(pp, ck) = 1 | (ck, tk)← Cmt.KGpp(sim)], (27)

Pr[(ck, x, w), (ck, x, w′) ∈ Rpp and A(St, π) = 1 |
(ck, tk)← Cmt.KGpp(sim); pp := (pp, ck);

(x,w,w′, St)← ACmt.Compp(·)(pp, ck, tk);

(c, r)← Cmt.Compp(w);π ← Ppp(x, c, w, r)]

= Pr[(ck, x, w), (ck, x, w′) ∈ Rpp and A(St, π′) = 1 |
(ck, tk)← Cmt.KGpp(sim); pp := (pp, ck);

(x,w,w′, St)← ACmt.Compp(·)(pp, ck, tk);

(c′, r′)← Cmt.Compp(w′);π′ ← Ppp(x, c′, w′, r′)]. (28)
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