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Abstract

In this work, we define and construct fully homomorphic non-interactive zero knowledge (FH-NIZK)
and non-interactive witness-indistinguishable (FH-NIWI) proof systems.

We focus on the NP complete language L, where, for a boolean circuit C and a bit b, the
pair (C, b) ∈ L if there exists an input w such that C(w) = b. For this language, we call a non-
interactive proof system fully homomorphic if, given instances (Ci, bi) ∈ L along with their proofs Πi,
for i ∈ {1, . . . , k}, and given any circuit D : {0, 1}k → {0, 1}, one can efficiently compute a proof Π for
(C∗, b) ∈ L, where C∗(w(1), . . . ,w(k)) = D(C1(w(1)), . . . , Ck(w(k))) and D(b1, . . . , bk) = b. The key
security property is unlinkability : the resulting proof Π is indistinguishable from a fresh proof of the
same statement.

Our first result, under the Decision Linear Assumption (DLIN), is an FH-NIZK proof system
for L in the common random string model. Our more surprising second result (under a new decisional
assumption on groups with bilinear maps) is an FH-NIWI proof system that requires no setup.
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1 Introduction

Homomorphism is a desirable feature that enhances the capabilities of many cryptographic systems. Most
notably, the concept of fully homomorphic encryption [RAD78, Gen09, BV14] has revolutionized the area of
cryptography. Other primitives such as homomorphic signatures [BF11, GVW15] and homomorphic secret
sharing [BGI+18] have also found useful cryptographic applications [KW18, BCG+17]. In this work, we
study homomorphism in the context of non-interactive proof systems. Our goal is to design homomorphic
proof systems with secrecy guarantees; specifically, we focus on the most common secrecy guarantees
studied in the literature, namely zero-knowledge [BDMP91] and witness indistinguishability [BOV05,
DN00].

Our Work: Fully-Homomorphic NIZK and NIWI Proofs. We introduce the notion of fully-
homomorphic non-interactive zero-knowledge (FH-NIZK) and witness-indistinguishable (FH-NIWI) proof
systems. In the simplest setting, this proof system allows for combining proofs for the instances A and B
into a proof for the instance A ∧ B. In the more general setting, this proof system allows for combining
proofs for multiple instances A1, . . . , An using a function f into a single proof for f(A1, . . . , An).

A naïve attempt to combine proofs for the instances (A1, . . . , An) using a function f is to simply
output the concatenation of the individual proofs on each of the instances A1, . . . , An together with the
function f . However, this combined proof does not resemble an honestly generated proof for the instance
f(A1, . . . , An). Our goal is to combine proofs in a way that is indistinguishable from an honestly generated
proof for the instance f(A1, . . . , An). We call this property unlinkability.

There are several reasons why unlinkability is an interesting feature: Firstly, it is often desirable to
hide the fact that a proof was obtained by combining multiple proofs. Unlinkability also preserves the
privacy of the underlying proof; namely, it ensures that homomorphic evaluation of multiple NIZK (resp.,
NIWI) proofs still results in a NIZK (resp., NIWI) proof. Moreover, it guarantees that the homomorphic
evaluation can be multi-hop, meaning that the proofs can be evaluated upon multiple times. We describe
the homomorphic evaluation procedure and unlinkability property below.

We define the notion of a fully-homomorphic proof system for the NP-complete language LU which
consists of instances (C, b), where C is a boolean circuit with single-bit output and b is a bit, such that
there exists a witness w (a vector of bits) for which C(w) = b. A non-interactive proof system for proving
membership in this language consists of the algorithms Prove and Verify. A fully homomorphic proof
system additionally has the algorithm Eval defined as follows:

Homomorphic Evaluation (Eval): On input k instances {zi = (Ci, bi)}i∈[k] accompanied with proofs
{Πi}i∈[k] for the statements {zi ∈ LU}i∈[k], and a circuit D : {0, 1}k → {0, 1}, Eval outputs a proof
Π∗ for the statement z∗ = (C∗, D(b1, . . . , bk)) ∈ LU , where C∗ is defined to be the circuit that on input
(w1, . . . ,wk) outputs D(C1(w1), . . . , Ck(wk)).

We define unlinkability as follows: A proof Π∗ output by Eval on input {zi ∈ LU}i∈[k] accompanied
with proofs {Πi}i∈[k], where Πi is output by Prove on input zi and a valid witness wi, should be indis-
tinguishable from the output of Prove on input the instance (C∗, D(b1, . . . , bk)) and witness (w1, . . . ,wk).
As mentioned above, unlinkability guarantees that the evaluation property preserves zero-knowledge (ZK)
or witness-indistinguishability (WI) of an evaluated proof, depending on whether the fresh proof is ZK or
WI respectively. We refer the reader to Figure 1 for an illustrative description of unlinkability, and refer
the reader to Section 4 for our definition of fully homomorphic proofs.

Our Results. We construct both a NIZK and a NIWI fully homomorphic proof system.

Theorem 1 (Informal). Assuming Decisional Linear Assumption (DLIN), there exists a fully-homomorphic
non-interactive zero-knowledge proof system in the common random string model.
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Figure 1: Unlinkability property of Fully Homomorphic Proofs: Let Π∗ be the output of Eval on input
{(Ci, bi) ∈ LU}i∈[k] accompanied with proofs {Πi}i∈[k], where Πi is output by Prove on input (Ci, bi) and a
valid witness wi. Let C∗ be the circuit that on input (w1, . . . ,wk), outputsD(C1(w1), . . . , Ck(wk)) and let
ΠF be an honestly generated proof for the instance (C∗, b∗) ∈ LU . We require that Π∗ is computationally
indistinguishable from ΠF .

For constructing FH NIWI proofs, we rely on a new decisional assumption on groups with bilinear maps
called DLIN with leakage, defined in Figure 2 (below).

Let f, h, g be three random generators in a group G. The assumption states that D0(1λ) ≈c
D1(1λ), where:

− D0(1λ) : Choose R,S, t← Z∗p and output (f, h, g) along with the following matrix:

 fR hS gR+S

fR
2

hRS−t gR(R+S+1)−t

fRS+t hS
2

gS(R+S+1)+t


− D1(1λ) : Choose R,S, t← Z∗p and output (f, h, g) along with the following matrix:

 fR hS gR+S−1

fR
2

hRS−t gR(R+S−1)−t

fRS+t hS
2

gS(R+S−1)+t



Figure 2: Description of the DLIN with leakage, with respect to a group G of prime order p with a bilinear
map e : G × G → GT . We refer to this as DLIN with leakage assumption since the first row in both
the distributions are indistinguishable assuming DLIN, and the second and third rows can be viewed as
leakage.
For a more detailed description of the assumption, we refer the reader to Section 5.3. We prove that our
assumption holds in the bilinear generic group model in Appendix A.1.

Theorem 2 (Informal). Assuming DLIN with Leakage, there exists a fully-homomorphic non-interactive
witness-indistinguishable proof system in the plain model (i.e. without setup).

RelatedWorks. Most relevant to our work is the work on malleable proof systems [CKLM12, CKLM13b],
who studied unary transformations, i.e., when Eval receives a single instance-proof pair and outputs a
mauled instance along with the corresponding proof. The work of [CKLM12] studied malleable proof sys-
tems for specific relations, and [CKLM13b] studied malleability for general relations albeit under knowledge
assumptions. Moreover, these works consider NIZK proof systems and thus require trusted setup. We note
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that [CKLM12] satisfies a stronger proof of knowledge property (called controlled-malleable simulation-
sound extractability) that we don’t achieve in this work.

The notion of malleability, although seemingly limited due to its unary nature, has found many appli-
cations, such as verifiable shuffles [CKLM12], delegatable anonymous credentials [BCC+09a, CKLM13a]
and leakage-resilient proof systems [AGP14]. Re-randomizability [BCC+09a], a special case of malleabil-
ity, has also been studied in the literature. Following [CKLM12, CKLM13b], [ACJ17] construct privately
malleable NIZK proof systems, and the works of [AN11, AGM18] study homomorphic proof systems for
specific relations.

It is important to stress that all the prior works, even in the case of unary transformations studied in
the context of malleable proofs [CKLM12, CKLM13b], assume trusted setup. Thus, in the context of WI
proof systems, our results are especially surprising since it allows for combining proofs that were created
completely independently, with no shared setup.

We now describe some applications of fully-homomorphic proofs.

Private Incremental Proofs. Incremental proofs, introduced by Valiant [Val08], allow for merging
many computationally sound proofs [Mic00] into one proof which is as short and easily verifiable as
the original proofs. Incremental proofs have been applied in several contexts such as proof-carrying
data [BCCT13] and cryptographic image authentication mechanisms [NT16]. It is useful in two types of
settings: one where the computation dynamically evolves over a period of time, hence a proof of correctness
of the entire computation cannot be computed all at once, and the other where different entities wish to
compute a proof for the correctness of computation in a distributed setting.

The focus of prior works on incremental proofs was on succinctness whereas the focus of our work is
on privacy. While our work does not achieve succinctness, as we will see later achieving privacy alone
turns out to be quite challenging (especially, in the context of fully-homomorphic NIWIs). We hope that
our tools can be combined with succinct incremental proofs to yield incremental proofs that enjoy both
succinctness and privacy guarantees.

Commit-and-Compute Paradigm. Another application of fully-homomorphic proofs is the commit-
and-compute paradigm. At a high level, the commit-and-compute paradigm allows a prover to commit to
its sensitive data, and later on, prove statements about the committed data. Proofs from different provers
can then be combined to infer arbitrary statements about the committed data. We give two examples that
illustrate the applicability of this paradigm: (i) Regulation of cryptocurrency activities and, (ii) Verifiable
data analysis.

Regulation of Cryptocurrency Activities. New regulation laws regarding cryptocurrency activities are
being formulated and some of them require that financial transactions involving cryptocurrencies be re-
ported [oSBS15]. The regulators can then infer different conclusions about the state of the digital economy;
for instance, they can conclude the debt of different entities, and publish the findings for the public. The
involved entities may have motives to lie about their finances and this would in turn lead the regulators to
arrive at false conclusions. We can address this problem using fully homomorphic NIZK or NIWI proofs:
Each entity can now commit to their financial transactions (to maintain privacy) and submit a proof that
the financial transactions reported to the regulators are valid. The regulators can collect the data and the
proofs from all the entities, publish its conclusions along with a proof that is obtained by homomorphically
computing on the individual proofs.

Verifiable Data Analysis. Consulting firms often collect data from different research groups, perform
analysis on the joint dataset and then share the analyzed results with different organizations. For instance,
there are firms that collect medical data from different research groups and share the analysis on the
medical data to pharmaceutical companies. This raises concerns about trusting the research groups and the
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consulting firms to not lie about their conclusions. We can tackle this concern by using fully homomorphic
NIZK or NIWI proofs. The research groups can publish their (committed) data along with a proof that it
was collected from valid sources, without revealing the identity of the sources. The consulting firms can
then perform analysis on the joint data sets and homomorphically compute a proof that the analysis was
performed correctly. Moreover, the homomorphically computed proof will also hide the identities of the
research groups involved in sharing the data to the firms.

Commit-and-compute paradigm is formalized by defining the NP language LCOM, a modification of
LU so that the instance includes a vector of commitments along with (C, b). The language LCOM is as
follows:

LCOM =
{

(C, (com1, . . . , comn), b) | ∃{wi, ri} such that C(w1, . . . , wn) = b ∧ {comi = Commit(wi, ri)}
}

The evaluation is defined similarly to that of homomorphic Eval for LU . We show how to instantiate the
commit-and-compute paradigm using fully-homomorphic proofs in Section 8.

Roadmap for Rest of the Sections. In Section 2, we give an overview of our techniques. In Section 3,
we describe some notation and definitions. In Section 4, we present our definition of fully homomorphic
NIZK and NIWI proof systems. In Section 5, we define and instantiate the building blocks for our
constructions, and describe our DLIN with Leakage assumption (in Section 5.3). In Section 6, we construct
fully homomorphic NIZK proofs for NP from DLIN. In Section 7, we construct fully homomorphic NIWI
proofs from the DLIN with Leakage assumption. Finally in Section 8, we define and instantiate the
Commit-and-Compute paradigm.

2 Technical Overview

Let us start with some intuition. Suppose we want to generate a proof for the satisfiability of C1 ∧C2 for
some circuits C1, C2. Given a proof Π1 for the satisfiability of C1 and a proof Π2 for the satisfiability of
C2, clearly Π = (Π1,Π2) is a proof for the satisfiability of C1 ∧C2. However, such a proof does not satisfy
unlinkability. Moreover, the structure of the proof Π = (Π1,Π2) may be different from that of a fresh
proof computed for the satisfiability of C1 ∧ C2.

To achieve homomorphism and unlinkability, a natural candidate is a proof system that works gate-
by-gate as follows: Commit to all the wire values of the circuit and prove that each gate is consistent
with the committed values. Such a proof structure is a good candidate because structurally, a proof of
the composed instance C1 ∧ C2 will be similar to a fresh proof.

Indeed the beautiful work of Groth, Ostrovsky and Sahai [GOS06a] (henceforth referred to as GOS)
has this proof structure and it is the starting point for our FH NIZK construction as well as our FH NIWI
construction. GOS constructed NIZK and NIWI proofs under the decisional linear (DLIN) assumption.
First in Section 2.1, we describe our FH NIZK construction which builds on the GOS NIZK. Then in
Section 2.2, we describe our FH NIWI construction which contains the bulk of the technical difficulty in
this work.

2.1 Overview: Fully Homomorphic NIZK

Recall that an LU instance is of the form (C, out) where C : {0, 1}t → {0, 1} and out ∈ {0, 1}. Let
w = (w1, . . . , wt) be a witness such that C(w) = out. Let us first recall the GOS NIZK proof for LU .

GOS NIZK. The GOS NIZK proof system is associated with a commitment scheme with public parameters
(as we elaborate on later). The CRS consists of the parameters pp for the commitment scheme. The prover
on input (C, out) along with witness w does the following:
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1. Let w1, . . . , wn be the values induced by witness w = (w1, . . . , wt) on all the wires of the circuit C.
Commit to all the wire values with respect to pp, except the output wire. For every i ∈ [n − 1],
denote by ci the commitment to wire value wi. Denote by cn = wn.

2. For each i ∈ [n], prove that the commitment ci is a commitment to a boolean value. We refer to
such proofs by Bit Proofs.

3. For each gate in C, prove that the commitments to the input and the output wires of the gate are
consistent with the gate functionality. We refer to such proofs by Gate Proofs.

In their construction, GOS use a commitment scheme which has two indistinguishable modes of public
parameters: perfectly binding and perfectly hiding. Loosely speaking, the perfectly binding mode is used
to argue perfect soundness, and the perfectly hiding mode is used to argue zero-knowledge. In addition,
they require the commitment scheme to be additively homomorphic and the additive homomorphism is
used in the Gate Proofs.

GOS constructed NIWI proof systems for Bit Proofs and Gate Proofs, and proved that this is sufficient
for their NIZK construction. Both Bit and Gate Proofs are computed using the openings of the commit-
ments as the witness. Our FH NIZK construction follows a similar template (our NIZK construction is
identical to the GOS NIZK) but in order to achieve unlinkability, we need additional properties from the
commitment scheme as well as from the Bit Proofs and Gate Proofs, as we explain below.

Homomorphic Evaluation. Homomorphic evaluation works as follows: On input k instances {zi =
(Ci, bi)}i∈[k] along with proofs {Πi}i∈[k] where each Πi is a proof that zi ∈ LU , and a circuit D, we
want to output a proof that (C∗, b∗) ∈ LU where C∗ is the composed circuit and b∗ = D(b1, . . . , bk). First,
compute a fresh proof for the circuit D with witness (b1, . . . , bk). Note that the fresh proof for (D, b∗)
together with the proofs {Πi}i∈[k], forms a verifying proof with respect to (C∗, b∗). This follows from
the fact that in each proof Πi, the output wire bi is given in the clear. However this combined proof is
distinguishable from a fresh proof (given the individual proofs {Πi}i∈[k]). Thus, to achieve unlinkability,
we randomize this entire proof.

Randomizing the NIZK Proof. A proof system is said to be randomizable [BCC+09b] if given a proof
Π for an instance x, it is possible to randomize the proof Π to obtain a proof Π′ for x, such that Π′ is
indistinguishable from a fresh proof for x. Randomizability of a proof system is sufficient for achieving
unlinkability in our construction, as explained above.

At a high level, we randomize the proof Π as follows: Randomize all the commitments in the proof,
and then “update” the existing proofs to be with respect to the randomized commitments. Thus, given
the original Bit Proofs and Gate Proofs, we need to be able to “maul” them to be with respect to the new
randomized commitments in such a way that the updated proofs are distributed as fresh Bit Proofs and
Gate Proofs. We refer to such proofs as malleable proofs.

Ingredients for our FH NIZK. In summary, for constructing FH NIZK, we use a commitment scheme from
GOS, which is also randomizable (we describe the corresponding scheme (C.Setup,C.Commit,C.Rand) in
Definition 9, Section 5.1). We also need malleable proof systems for Bit proofs and for Gate proofs (we
describe the corresponding proof systems (Bit.Prove,Bit.Verify,Bit.Maul) and (N.Prove,N.Verify,N.Maul)
in Section 6.2).

As shown in GOS, both Bit Proofs and Gate Proofs can be reduced to proofs of linearity with respect
to the NP language LLin. The language LLin is parameterized by three random group elements (f, h, g) in
some underlying group G of prime order (which has a bilinear map), and whose instances consists of pairs
(A,B), where A = (fa1 , ha2 , ga3) and B = (f b1 , hb2 , gb3), such that a1 + a2 = a3 or b1 + b2 = b3

1.
1If a1 + a2 = a3 then A is said to be a linear tuple.
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GOS constructed a NIWI proof for LLin. Recall that for our purposes, we need malleable proof systems
for Bit Proofs and Gate Proofs, and as a result we need the underlying NIWI proof for LLin to be malleable
with respect to randomization. Namely given a pair (A,B) ∈ LLin with a NIWI proof Π, it should be
possible to maul the proof Π for (A,B) into a proof Π′ for a randomization (A′,B′) of (A,B). We show
that the GOS proof for LLin has the desired malleability property, and we refer the reader to Section 5.2
for the description of the malleable proof system.

2.2 Overview: Fully Homomorphic NIWI

We now focus on our construction of a FH NIWI proof system for LU . As we will see, this is a signifi-
cantly harder task compared to the FH NIZK, since NIWI is constructed in the plain model without a CRS.

The GOS NIWI Construction. We will first describe the GOS NIWI proof system. Recall that in the
GOS NIZK construction, the CRS consists of the parameters pp of the commitment scheme. In a NIWI
construction, there is no CRS. In the GOS NIWI, the prover chooses two parameters (pp0, pp1) such that
it is possible to publicly verify that one of them is binding. The NIWI proof for (C, out) ∈ LU is of the
form (pp0,Π0, pp1,Π1) where Πb is the NIZK proof with respect to ppb for each b ∈ {0, 1}.

Towards Homomorphic Evaluation and Unlinkability. It is not clear how to use the GOS NIWI construction
to construct an FH NIWI. In particular, achieving unlinkability here is significantly harder. Intuitively,
the difficulty stems from the fact that even though the GOS NIWI appears to be gate-by-gate, there is
an over-arching pair of parameters associated with the entire proof, and this pair is different for different
proofs.

In more detail, a fresh GOS NIWI proof as described above has two parameters (pp0, pp1) associated
with it. Thus, if we use an approach similar to the FH NIZK construction for composing proofs, namely
if we prove that (D(C1, . . . , Ck), b

∗) ∈ LU , given k instances {zi = (Ci, bi)}i∈[k] along with corresponding
proofs {Πi}i∈[k], where b∗ = D(b1, . . . , bk), then the resulting composed proof will have 2k parameters
associated with it. It is unclear how to randomize such a composed proof to look like a fresh proof which
has only two parameters associated with it.

In order to achieve unlinkability in our construction, we diverge from the GOS construction. Rather
than choosing a pair of parameters per proof, we choose a fresh pair of parameters (pp0

j , pp
1
j ) for each gate

of the circuit. As in the GOS construction, the honest prover chooses one of them to be binding and the
other hiding such that one can publicly verify that indeed one of the parameters is binding. Recall that
in the GOS NIWI construction, the prover committed to each wire value with respect to two parameters
(pp0, pp1). Now that we are choosing fresh parameters per gate, the question is which parameters do we
use to commit to a wire value?

We associate four parameters pp0
i , pp

1
i , pp

0
j , pp

1
j with an internal wire between the ith and the jth gate

in the circuit. In our construction, we commit to the wire value with respect to all of these parameters and
thus, have four commitments c0

i , c
1
i , c

0
j , c

1
j per wire. We compute Bit Proofs with respect to each of the

four commitments, and compute Gate Proofs for every gate with respect to both parameters associated
with that gate.

Ensuring Soundness. Recall that the GOS NIWI consists of two independent NIZK proofs Π0,Π1 with
respect to parameters pp0, pp1 respectively. Thus, the commitments, Bit Proofs and Gate Proofs with
respect to both the parameters are independent of each other, and Π0,Π1 are verified separately. This is
not the case in our setting.

Our proof contains a pair of parameters per gate, and has four commitments per wire. Thus, we need
to prove that the multiple commitments per wire commit to the same value. In particular for soundness,
it is sufficient to prove that among the four commitments per wire, the two commitments corresponding
to the two binding parameters commit to the same value.
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However the verifier does not know which of the four parameters pp0
i , pp

1
i , pp

0
j , pp

1
j are binding. All

we are guaranteed is that for every gate j, one of (pp0
j , pp

1
j ) is binding. So in our construction, we give

four pairwise proofs that each commitment with respect to gate i commits to the same value as each
commitment with respect to gate j. Namely, for all b1, b2 ∈ {0, 1}, the commitments (cb1i , c

b2
j ) with

respect to ppb1i , pp
b2
j commit to the same value. This ensures consistency with respect to the two binding

commitments across gates i, j. This, along with the Bit and Gate proofs will ensure that there is a
consistent boolean assignment w1, . . . , wn induced by the witness w across all the wires of the circuit, such
that C(w) = out.

We emphasize that we do not provide consistency proofs between the two commitments (c0
i , c

1
i ) for a

gate i, and in fact this is crucial for achieving witness indistinguishability, as we explain later. Towards
constructing such pairwise proofs, we define the language LTC

2 which consists of instances of the form
(ci, cj , ppi, ppj) where commitment ci with respect to parameters ppi and cj with respect to ppj commit
to the same bit. See Section 7.1 for a detailed description of the language.

2.2.1 Arguing Witness Indistinguishability

The main challenge is to prove that the final construction is witness indistinguishable even given the
additional LTC proofs for instances of the form (ci, cj , ppi, ppj). We note that even if the proof system
for LTC satisfies WI, we do not know how to argue that the final construction is WI. Intuitively, the issue
is that an LTC statement may have a unique witness, in which case WI offers no secrecy. As we explain
below, we need our LTC proof system to have a secrecy guarantee of the flavor of strong NIWI (with
respect to specific distributions).

To argue WI of our final FH NIWI construction, we prove that a proof Π0 for (C, out) ∈ LU with
respect to witness wit0 is indistinguishable from a proof Π1 with respect to witness wit1. Let us zoom
in on a wire k between gates i, j whose value changes from 0 (for wit0) to 1 (for wit1). Both Π0,Π1 will
contain four commitments to the wire k with respect to parameters pp0

i , pp
1
i , pp

0
j , pp

1
j , along with the four

LTC proofs (see Figure 3).
Denote by PP = (pp0

i , pp
1
i , pp

0
j , pp

1
j ). Denote by W(b) the four commitments to bit b on wire k,

that is W(b) = (c0
i , c

1
i , c

0
j , c

1
j ) where all the four commitments are to the bit b. Denote by Π(b) =

(π00, π01, π10, π11) where for all b1, b2 ∈ {0, 1}, πb1b2 is a proof for (cb1i , c
b2
j , pp

b1
i , pp

b2
j ) ∈ LTC.

pp0
i pp1

i

pp0
j pp1

j

c0
i c1

i

c0
j c1

j

π00

π01

π10

π11

Figure 3: Zooming in on wire k of circuit C with parameters PP = (pp0
i , pp

1
i , pp

0
j , pp

1
j ), commitments

W = (c0
i , c

1
i , c

0
j , c

1
j ) and LTC proofs Π = (π00, π01, π10, π11).

To prove WI of the final construction, in particular the following should hold:(
PP,W(0),Π(0)

)
≈
(
PP,W(1),Π(1)

)
(1)

2TC stands for the language of Two Commitments.
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This indistinguishability requirement already implies a strong NIWI for LTC, with respect to distributions
D0 and D1, where Db samples LTC instances (ci, cj , ppi, ppj) such that ci, cj commit to the bit b.

For our analysis, Equation (1) is insufficient since we need Equation (1) to hold even given the rest of
the proof for (C, out) ∈ LU . In other words, we need Equation (1) to hold given some auxiliary information
aux, where given aux it should be possible to efficiently compute the rest of the proof from it. One possible
aux is the openings of all the four commitments so that it is then possible to compute Bit and Gate Proofs
for the rest of the proof. But if we give the openings with respect to 0 and 1 respectively, then the two
distributions in Equation (1) are clearly distinguishable.

So the question is, what aux can we give? Our key insight is that we can give equivocated openings
for the commitments with respect to the two hiding parameters and honest openings with respect to the
binding parameters, so that in both the distributions in Equation (1), two of the openings are to 0 and two
of them are to 1. Without loss of generality, we think of pp0

i , pp
0
j as the binding parameters and pp1

i , pp
1
j

as the hiding parameters. We strengthen the requirement in Equation (1) as follows:(
PP(0),W(0),Π(0),O(0)) ≈ (PP(1),W(1),Π(1),O(1)

)
(2)

where PP(b) = (ppbi , pp
1−b
i , ppbj , pp

1−b
j ), and W(b),Π(b) are as before, and where in both the distributions,

O(b) contains openings for the commitments W(b) to (0, 1, 0, 1) respectively. This is the case since in the
left-hand-side parameters PP(0), the second and fourth parameters are hiding, and we equivocate c1

i , c
1
j

to open to 1, whereas in the right-hand-side parameters PP(1), the first and third parameters are hiding,
and we equivocate c1

i , c
1
j to open to 0. Note that the LTC proofs in Π(b) are still computed using the

(honest) openings to b.
This is still not sufficient for our WI analysis. In order to argue WI of the final construction, we need

to invoke Equation (2) for every wire k in the circuit for which the value of wit0 on wire k is different from
value of wit1 on wire k. These invocations are not completely independent since two different wires may
be associated with the same gate, and in particular the two wires may be associated with an overlapping
set of parameters. Thus, we need to further strengthen Equation (2) to as follows:(

PP(0),W(0),Π(0),O(0),W(1),Π(1),O(1)
)
≈
(
PP(1),W(1),Π(1),O(1),W(0),Π(0),O(0)

)
(3)

where PP(b),W(b),Π(b) and O(b) are as described above. We note that in the left-hand-side, W(1) are
four commitments to 1 with respect to PP(0), Π(1) are the corresponding LTC proofs computed using the
honest openings to 1, and O(1) are the openings to (1, 0, 1, 0) respectively. Similarly, in the right-hand-
side, W(0) are four commitments to 0 with respect to PP(1), Π(0) are the corresponding LTC proofs,
and again O(0) are the openings to (1, 0, 1, 0) respectively. We refer to the property from Equation (3)
as Strong Secrecy of LTC and describe it in detail in Section 7.1. The Strong Secrecy requirement of LTC

as in Equation (3) is sufficient for our WI analysis. Before explaining our WI analysis, we describe the
ingredients for our FH NIWI Construction.

Recall that our NIWI proof for (C, out) ∈ LU is computed as follows: Choose a fresh pair of parameters
per gate, commit to all the wire values with respect to all the associated parameters (2 commitments per
input wire, 4 commitments per connecting wire), compute Bit Proofs (one per commitment), compute
Gate Proofs (two per gate) and compute LTC proofs (four per connecting wire). In order to randomize
our NIWI proof, we randomize all the parameters, correspondingly update the commitments and update
the proofs to be with respect to the randomized parameters and commitments. Specifically, we need the
following ingredients for our final FH NIWI Construction.

Ingredients for our FH NIWI.

− A Commitment Scheme as required in the FH NIZK construction, but with the additional feature
that allows for randomizing the parameters and updating the commitments to be with respect to
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the randomized parameters, so that the randomized parameters and commitments are distributed
like fresh commitments.

− Bit Proofs and Gate Proofs as required in the FH NIZK construction, but with the following (mod-
ified) malleability property: Given a proof for commitments with respect to some pp, it is possible
to efficiently randomize the parameters, correspondingly update the commitments and update the
proofs to be with respect to the new parameters and commitments, such that they are all distributed
like fresh ones. As in the FH NIZK, we require the Bit and Gate Proofs to satisfy WI.

− A proof system for LTC with the same malleability property as Bit and Gate Proofs, and with the
Strong Secrecy property as described in Equation (3).

We show (in Section 5.1) that the GOS commitment scheme (C.Setup,C.Commit,C.Rand) satisfies the
additional feature that we require. The malleability of Bit Proofs and Gate Proofs can be reduced to the
malleability of the NP language LLin described previously (similar to the FH NIZK construction). We de-
scribe the corresponding proof systems (Bit.Prove,Bit.Verify,Bit.GenMaul) and (N.Prove,N.Verify,N.GenMaul)
in Section 7.1.

Jumping ahead, we construct the proof system for LTC also using the proof system for LLin, and the
malleability of LTC follows from the malleability of LLin. We then argue that the Strong Secrecy follows
from our new DLIN with Leakage assumption (see Section 2.2.2 for an overview and Section 7.3.2 for the
details).

WI Analysis. To explain our WI analysis, we describe an algorithm ProofGen that on input a sample from
the left-hand-side distribution in Equation (3), generates an entire proof Π for (C, out) ∈ LU which is
indistinguishable from an honest proof generated using wit0, and on input a sample from the right-hand-
side distribution, ProofGen generates a proof Π which is indistinguishable from an honest proof generated
using wit1.

ProofGen Algorithm. Without loss of generality, we assume that every circuit is layered; that is, all the
gates of the circuit can be arranged in t layers so that for all i ∈ [t], all the output wires of gates from
layer i are input wires to gates in layer i+ 1. Fix any two witnesses wit0 and wit1 for (C, out) ∈ LU .

On input
(
PP(b),W(b),Π(b),O(b),W(1− b),Π(1− b),O(1− b)

)
, ProofGen does the following:

1. Recall that PP(b) = (ppbi , pp
1−b
i , ppbj , pp

1−b
j ). Assign parameters (ppbi , pp

1−b
i ) to all the odd layer gates

of the circuit and (ppbj , pp
1−b
j ) to all the even layer gates of the circuit. We will refer to {ppbi , ppbj}

as the Left Parameters and {pp1−b
i , pp1−b

j } as the Right Parameters.

2. For all the input wires of the circuit C, commit to wit0 with respect to ppbi (Left Parameter) and
commit to wit1 with respect to pp1−b

i (Right Parameter).

3. For every wire k, produce the 4 commitments and 4 LTC proofs for the wire as follows: Denote by
wk,0 the value induced by wit0 on wire k, and denote by wk,1 the value induced by wit1 on wire k in
the circuit.

− If wk,0 = wk,1 then compute the commitments and LTC proofs honestly.

− If wk,0 = 0 and wk,1 = 1 then use W(b) as the commitments and Π(b) as the LTC proofs.

− If wk,0 = 1 and wk,1 = 0 then use W(1−b) as the commitments and Π(1−b) as the LTC proofs.

4. Compute the Bit Proofs and Gate Proofs honestly: We have the openings for all the commitments
to the input bits (from Step 2). We also have the openings for the commitments to every non-input
wire k, namely O(b) for W(b) when wk,0 = 0 and wk,1 = 1, or O(1−b) for W(1−b) when wk,0 = 1 and
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wk,1 = 0, or since we generated the commitments honestly when wk,0 = wk,1. Note that the openings
with respect to the Left Parameters always correspond to wit0 and the openings with respect to the
Right Parameters always correspond to wit1.

− Bit Proofs can be computed honestly since all the openings are to 0 or 1.

− Gate Proofs can be computed honestly since all the openings with respect to the Left Parameters
are consistent with wit0 and all the openings with respect to the Right Parameters are consistent
with wit1.

5. Randomize the entire proof as follows:

− For every gate, randomize the pair of parameters for that gate.

− Update all the commitments (2 commitments per input wire, 4 commitments per connecting
wire) to be with respect to the randomized parameters.

− Maul all the Bit Proofs (one per commitment), all the Gate Proofs (two per gate) and all the
LTC proofs (four for every connecting wire) to be with respect to the updated parameters and
commitments.

Finally output this randomized proof.

So far, we described the ProofGen algorithm that given a sample from the distributions in Equation (3),
generates an entire proof for (C, out) ∈ LU . Let Π0

Gen be a proof output by ProofGen on input a sample
from the left-hand-side of Equation (3) and let Π1

Gen be a proof output by ProofGen on input a sample
from the right-hand-side of Equation (3).

From Equation (3), it follows that Π0
Gen ≈ Π1

Gen. All that remains is to argue that Π0 ≈ Π0
Gen and

Π1 ≈ Π1
Gen, where Πb is an honestly computed proof for (C, out) ∈ LU using witness witb. Note that Π0 and

Π0
Gen are identical except that Π0

Gen uses equivocated openings to wit1 on the Right Parameters to compute
the Bit and Gate Proofs. Hence, Π0 ≈ Π0

Gen follows from WI of the Bit and Gate Proofs, and in addition
follows by the randomizability of the commitment scheme and the malleability of the underlying proofs. By
a similar argument, Π1 ≈ Π1

Gen. Thus, WI of the final construction follows form the Strong Secrecy of LTC.

2.2.2 Constructing the LTC Proof System

We construct a proof system for LTC with the following properties:

1. Strong Secrecy: As defined in Equation (3).

2. Malleability: Given a proof π for (c1, c2, pp1, pp2) ∈ LTC, one can efficiently randomize the parame-
ters to obtain pp′1, pp

′
2, update the commitments to obtain c′1, c

′
2 which are with respect to pp′1, pp

′
2,

and then maul π to a proof π′ for (c′1, c
′
2, pp

′
1, pp

′
2) ∈ LTC such that (c′1, c

′
2, pp

′
1, pp

′
2) looks like a

fresh instance and π′ is distributed like a fresh proof.

3. Soundness: We require that soundness holds for all instances (c1, c2, pp1, pp2) where both pp1, pp2

are binding. As noted above, this is sufficient for the soundness of the final construction.

We construct such a proof system using the malleable NIWI proof system for LLin described before.
Recall that LLin is a parameterized language with parameters pp = (f, h, g) where f, h, g are generators of
a group G, and it consists of a pair of tuples (A,B) such that one of them is of the form (fa1 , ha2 , ga3)
where a3 = a1 + a2.

We reduce proving that (c1, c2, pp1, pp2) ∈ LTC to proving that (A,B) ∈ LLin for some (A,B). How-
ever, we only know how to do this reduction for LTC instances (c1, c2, pp1, pp2) for which pp1 = pp2.
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Therefore, we consider an NP-relation for LTC with an additional witness which lets us convert an in-
stance (c1, c2, pp1, pp2) into an instance (c∗, c2, pp2, pp2). The additional witness for (c1, c2, pp1, pp2) is a
hard-to-compute function of the parameters pp1, pp2, and we refer to it as an “intermediate parameter”
pp∗ of pp1, pp2. Using the intermediate parameter pp∗ we can convert the commitment c1 with respect to
pp1 into a commitment c∗ with respect to pp2.

More specifically in our proof, pp∗ helps in converting the commitment c1 with respect to parameters
pp1, into a commitment c∗ (to the same value) with respect to pp2. Then, we can reduce the instance
(c∗, c2, pp2, pp2) ∈ LTC to a pair of tuples (A,B) ∈ LLin. The soundness and malleability of the LTC proof
system follows from the corresponding properties of LLin proof system. We refer to Section 7.3.1 for a
detailed description of the construction.

Strong Secrecy from DLIN with Leakage. All that remains is to show that the strong secrecy of LTC follows
from our new assumption of DLIN with Leakage. We first prove that Strong Secrecy of LTC follows from
the fact that the NIWI for LLin is strong WI with respect to the following distributions D0 and D1.

− D0 generates (A,B) where A = (fa1 , ha2 , ga3) for random a1, a2, a3 such that a1 + a2 = a3, and
B = (fa1 , ha2 , ga3+1).

− D1 generates (A,B) where A = (fa1 , ha2 , ga3−1) for random a1, a2, a3 such that a1 + a2 = a3, and
B = (fa1 , ha2 , ga3).

We then prove that the proof system for LLin is strong WI with respect to D0 and D1 under DLIN
with Leakage assumption. We refer to Section 7.3.2 for a detailed description of the reduction.

3 Preliminaries

We denote the security parameter by λ. We use PPT to denote that an algorithm is probabilistic poly-
nomial time. We denote by y ← A(x) if y is the output of a single execution of A on input x. We denote
by y = A(x; r) to explicitly mention the randomness used in the execution. We denote y ∈ A(x) if there
exists randomness r such that y = A(x; r).

We use [n] to represent the set {1, . . . , n}. Vectors are denoted by a where a = (a1, . . . , an) and ai is
the i th element of a. |a| denotes the size of a. a◦b denotes concatenation of the vectors a,b. {X}λ∈N ≈c
{Y}λ∈N will denote that distributions {X}λ∈N and {Y }λ∈N are computationally indistinguishable.

3.1 Definition of Proof Systems

Definition 1 (Non-interactive Zero-knowledge Proofs [BDMP91]). Let L ∈ NP and let RL be the corre-
sponding NP relation. A triplet of PPT algorithms (Setup,Prove,Verify) is called a non interactive zero
knowledge (NIZK) proof system for L if it satisfies:

− Perfect Completeness: For all security parameters λ ∈ N and for all (x,w) ∈ RL,

Pr[CRS← Setup(1λ) ; π ← Prove(CRS, x, w) : Verify(CRS, x, π) = 1] = 1

− Adaptive Soundness: For any all-powerful prover P ∗, there exists a negligible function µ such
that for all λ,

Pr[CRS← Setup(1λ) ; (x, π) = P ∗(CRS) : Verify(CRS, x, π) = 1 ∧ x /∈ L] ≤ µ(λ)

When this probability is 0, we say it is perfectly sound.
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− Adaptive Zero Knowledge: There exists a PPT simulator S = (S1, S2) where S1(1λ) outputs
(CRSS , τ) and S2(CRSS , τ, x) outputs πs such that for all non-uniform PPT adversaries A,

{CRS← Setup(1λ) : AO1(CRS,·,·)(CRS)} ≈c
{(CRSS , τ)←S1(1λ) : AO2(CRSS ,τ,·,·)(CRSS)}

where O1,O2 on input (x,w) first check that (x,w) ∈ RL, else output ⊥. Otherwise O1 outputs
Prove(CRS, x, w) and O2 outputs S2(CRSS , τ, x).

Definition 2 (Non interactive Witness Indistinguishable Proofs [BOV05, DN00]). A pair of PPT algo-
rithms (Prove,Verify) is called a non interactive witness indistinguishable (NIWI) proof for an NP language
L with NP relation RL if it satisfies:

− Completeness: For all security parameters λ and for all (x,w) ∈ RL,

Pr[π ← Prove(1λ, x, w) : Verify(1λ, x, π) = 1] = 1

− Soundness: For any all-powerful prover P ∗, if P ∗(1λ) = (x, π) and x /∈ L, then Verify(1λ, x, π) = 0.

− Witness Indistinguishability: For all non-uniform PPT adversaries A, there exists a negligible
function ν such that for every λ ∈ N, probability that b′ = b in the following game is at most
1/2 + ν(λ):

1. (state, x, w0, w1)← A(1λ).
2. Choose b $← {0, 1}. If RL(x,w0) 6= 1 or RL(x,w1) 6= 1 then output ⊥. Else, if b = 0 then
π ← Prove(1λ, x, w0), and if b = 1 then π ← Prove(1λ, x, w1).

3. b′ ← A(state, π).

We say that a pair of PPT algorithms (Prove,Verify) is called a non interactive proof system for an NP
language L if it satisfies completeness and adaptive soundness.

For our purposes, we will be using NIWI proofs with respect to parameterized languages of the form
L[pp] where pp denotes some global parameters.

Definition 3 (Non interactive Witness Indistinguishability proofs for Parameterized Languages). Let
Setup be a PPT algorithm that takes as input the security parameter and outputs a set of parameters pp.
A pair of PPT algorithms (Prove,Verify) is called a NIWI proof for a parameterized NP language L[pp],
with NP relation RL[pp] if it satisfies:

− Completeness: For all security parameters λ, for all pp ∈ Setup(1λ) and for all (x,w) ∈ RL[pp],
Pr[π ← Prove(pp, x, w) : Verify(pp, x, π) = 1] = 1.

− Adaptive Soundness: For any all-powerful prover P ∗, there exists a negligible function µ such
that for all λ,

Pr[pp← Setup(1λ) : (x, π)← P ∗(pp) : Verify(pp, x, π) = 1 ∧ x /∈ L] ≤ µ(λ)

− Witness Indistinguishability: For all non-uniform PPT adversaries A, there exists a negligible
function ν such that for every λ ∈ N, probability that b′ = b in the following game is at most
1/2 + ν(λ):
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1. pp← Setup(1λ).
2. (state, x, w0, w1)← A(pp).
3. Choose b $← {0, 1}. If RL[pp](x,w0) 6= 1 or RL[pp](x,w1) 6= 1 then output ⊥. Else if b = 0 then
π ← Prove(pp, x, w0), else if b = 1 then π ← Prove(pp, x, w1). Send π to A.

4. b′ ← A(state, π).

Definition 4 (Randomizable NIZK and NIWI Proofs [BCC+09b]). A NIZK proof system for an NP
language L with NP relation RL with algorithms (Setup,Prove,Verify) is said to be a randomizable proof
system if there exists a PPT algorithm Rand which on input a CRS, an instance x and a proof π, outputs
a “randomized” proof π′ for x such that for all non-uniform PPT adversaries A, there exists a negligible
function ν such that for every λ ∈ N, the probability that b′ = b in the following game is at most 1/2+ν(λ):

1. CRS← Setup(1λ).
2. (state, x, w, π)← A(CRS).
3. Choose b $← {0, 1}. If Verify(CRS, x, π) 6= 1 or RL(x,w) 6= 1 then output ⊥.
4. Else if b = 0 then π′ ← Prove(CRS, x, w), else if b = 1 then π′ ← Rand(CRS, x, π).
5. b′ ← A(state, π′).

More generally, a (WI) proof system (Prove,Verify) is said to be randomizable if there exists a PPT
algorithm Rand with the same description and properties as above and where CRS = 1λ.

Definition 5 (Malleable NIWI Proofs for Parameterized Languages [?]). Let (Prove,Verify) be a NIWI
proof system for a parameterized NP language L[pp] with NP relation RL[pp] where pp ← Setup(1λ) (as
per Definition 3). Let T = (Tinst, Twit) be a pair PPT transformations such that for every (x,w) ∈ RL and
for every randomness σ ∈ {0, 1}poly(λ),

(
Tinst(pp, x;σ), Twit(pp, x, w, σ)

)
∈ RL.

Such a proof system is said to be malleable with respect to T , if there exists a randomized PPT
algorithm Maul which on input parameters pp, an instance x, randomness σ and proof π, outputs a
“mauled” proof π′ for T (pp, x;σ) such that the following properties hold:

Malleability For all non-uniform PPT A, for all pp ∈ Setup(1λ), for all λ ∈ N,

Pr
[
(x, π)← A(pp) ; (σ,R)← {0, 1}poly(λ) ; π′ = Maul(pp, x, σ, π;R) :(

Verify(pp, x, π) = 0
)
∨
(
Verify(pp, T (pp, x;σ), π′) = 1

)]
= 1

Perfect Randomizability There exists a poly-time function fT such that for all pp ∈ Setup(1λ) and
every (x,w) ∈ RL[pp], for every R, σ ∈ {0, 1}poly(λ),

Maul(pp, x, σ,Prove(pp, x, w;R);R′) = Prove(pp, Tinst(pp, x;σ), Twit(pp, x, w, σ);S)

where S = fT (pp, w,R,R′, σ). Moreover, if R′, σ are uniform, then fT (w,R,R′, σ) is uniformly
distributed.

Definition 6 (Strong Non-interactive Witness Indistinguishability [Gol00]). Let Setup be a PPT algorithm
that takes as input the security parameter and outputs a set of parameters pp. Let D0 = {D0,λ}λ∈N,D1 =
{D1,λ}λ∈N be distribution ensembles in the support of RL[pp] ∩ {0, 1}λ such that for every b ∈ {0, 1},
(xb, wb)← Db such that (xb, wb) ∈ RL[pp].

A NIWI proof system (Prove,Verify) for a parameterized NP language L[pp] is a strong non interactive
witness indistinguishable (Strong NIWI) proof with respect to distributions D0,D1, if the following holds:

If {pp, x0} ≈ {pp, x1} then E0 ≈ E1

where Eb(1λ) does the following: Sample (xb, wb)← Db(pp) and compute πb ← Prove(pp, xb, wb). Output
(pp, xb, πb).

15



3.2 Bilinear Maps

We will be working with abelian groups G,GT of prime order p equipped with a symmetric bilinear map
e : G×G 7→ GT . We let G be a deterministic polynomial time algorithm that takes as input the security
parameter 1λ and outputs (p,G,GT , e, gp) such that p is a prime, G,GT are descriptions of groups of order
p, gp is a fixed generator of G and e : G×G 7→ GT is a bilinear map with the following properties:

− (Non-degenerate) For any generator g of G, gT = e(g, g) has order p in GT

− (Bilinear) For all a, b ∈ G, for all x, y ∈ Zp, e(ax, by) = e(a, b)xy

We require that the group operations and the bilinear operations are computable in polynomial time with
respect to security parameter.

Assumption 1 (Decisional Linear Assumption). We say that the Decisional Linear (DLIN) Assumption
holds for a bilinear group generator G if the following distributions are computationally indistinguishable:

{(p,G,GT , e, g)← G(1λ) ; (x, y)
$← Z∗p : (r, s)

$← Zp : (p,G,GT , e, g, g
x, gy, gxr, gys, gr+s)} and

{(p,G,GT , e, g)← G(1λ) ; (x, y)
$← Z∗p : (r, s, d)

$← Zp : (p,G,GT , e, g, g
x, gy, gxr, gys, gd)}

4 Fully Homomorphic Proofs: Definition

In this section we define fully homomorphic NIZK and NIWI proofs for the NP-complete language LU
consisting of instances of the form (C, b) where C : {0, 1}k → {0, 1} is a boolean circuit and b ∈ {0, 1}.
Formally, LU is defined as:

LU = {(C, b) | ∃ w such that C(w) = b}

Let RU be the corresponding NP-relation. We first define the notion of composing multiple instances of
LU to get a new instance in LU :

Composing LU Instances: On input k instances {(Ci, bi)}ki=1 where Ci : {0, 1}ti → {0, 1} and C ′ :
{0, 1}k → {0, 1},

Compose({(Ci, bi)}ki=1, C
′) = (C, b)

where C : {0, 1}T → {0, 1} and T =
∑k

i=1 ti and for all (w1, . . . ,wk) ∈ {0, 1}t1 × · · · × {0, 1}tk ,

C(w1, . . . ,wk) = C ′
(
C1(w1), . . . , Ck(wk)

)
∧ b = C ′(b1, . . . , bk).

4.1 Definition: Fully Homomorphic NIZK and NIWI Proofs

We now define fully homomorphic NIZK and NIWI proofs for the language LU defined above.

Definition 7 (Fully Homomorphic NIZK Proofs). A randomizable NIZK proof system (Setup,Prove,Verify,
Rand) is a fully homomorphic proof system if there exists a PPT algorithm Eval with the following input-
output behavior:

((C, b),Π) ← Eval(CRS, {(Ci, bi),Πi}ki=1, C
′): The Eval algorithm takes as input the CRS, k instances

{(Ci, bi)}ki=1 along with their proofs {Πi}ki=1, and a circuit C ′ : {0, 1}k → {0, 1}. It outputs the composed
instance (C, b) = Compose({(Ci, bi)}ki=1, C

′) and a corresponding proof Π such that the following properties
hold:
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Completeness of Eval: We require that evaluating on valid proofs (proofs that verify), should result in
a proof that verifies. More concretely, we require that for all non-uniform PPT A and for all λ ∈ N,

Pr


CRS←Setup(1λ) ; ({(Ci,bi,Πi)}ki=1,C

′)←A(CRS) ;

((C,b),Π)←Eval(CRS,{(Ci,bi),Πi}ki=1,C
′) :(

Valid(C′)=0
)
∨
(
∃ i∈[k] s.t.Verify(CRS,(Ci,bi),Πi)=0

)
∨(

(Verify(CRS,(C,b),Π)=1) ∧ (C,b)=Compose({(Ci,bi)}ki=1,C
′)
)
 = 1

where Valid(C ′) = 1 if and only if C ′ : {0, 1}k → {0, 1}.

Unlinkability: We require that a proof for (C, b) ∈ LU obtained by Eval should be indistinguishable
from a fresh proof for the same instance. Namely, for any non-uniform PPT adversary A, there exists a
negligible function ν such that for every λ the probability that bit = bit′ in the following game is at most
1/2 + ν(λ):
GAMEEval:

1. CRS← Setup(1λ).

2. (state, {((Ci, bi),wi,Πi)}ki=1, C
′)← A(CRS)

3. Choose bit
$← {0, 1}. If for any i ∈ [k], Verify(CRS, (Ci, bi),Πi) 6= 1 or ((Ci, bi),wi) /∈ RU , output ⊥.

4. Else if bit = 0 then ((C, b),Π) ← Eval(CRS, {(Ci, bi),Πi}ki=1, C
′). Else if bit = 1 then compute

(C, b) = Compose({(Ci, bi)}ki=1, C
′) and

Π← Prove(CRS, (C, b),w) where w = w1 ◦ · · · ◦wk. Send (C, b,Π) to A.

5. bit′ ← A(state, (C, b,Π)).

Definition 8 (Fully Homomorphic NIWI Proofs). A randomizable NIWI proof system (Prove,Verify,Rand)
is a fully homomorphic NIWI proof system if there exists a PPT algorithm Eval with the same description
and properties as in Definition 7 and where CRS = 1λ.

5 Building Blocks for Fully Homomorphic Proofs

In this section we describe the building blocks for our fully homomorphic (FH) NIZK and NIWI construc-
tions. In Section 5.1, we define a commitment scheme with additional properties, which we will use in our
FH NIZK and NIWI constructions, and we then instantiate it from DLIN.

In Section 5.2, we describe a NIWI proof system for the NP language LLin (defined in Definition 12)
based on DLIN. This proof system is the main ingredient in constructing FH NIZK and FH NIWI proofs.

For our FH NIWI construction, we need the NIWI proof for LLin to have additional properties of
malleability and strong WI with respect to specific distributions. We prove that the proof system is
malleable and we prove that strong WI holds under a new assumption on bilinear groups: DLIN with
Leakage. We describe the corresponding bilinear assumption in Section 5.3.

5.1 Randomizable Commitment Scheme

Definition 9 (Randomizable Commitment Scheme). A Randomizable commitment scheme for message
spaceM consists of PPT algorithms COM = (C.Setup,C.Commit,C.Rand) with the following descriptions
and properties:

pp← C.Setup(1λ): On input the security parameter, the setup algorithm outputs public parameters pp.
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com = C.Commit(pp, b; o): Using the public parameters pp, the commit algorithm produces commitment
com to message b ∈ {0, 1} using randomness o← {0, 1}p(λ) for some polynomial p. We will refer to
o as “opening” for the commitment com.

com′ = C.Rand(pp, com; o′): On input parameters pp, commitment com, randomness o′, C.Rand outputs
a randomized commitment com′ to the same value.

We require the following properties from the commitment scheme:

Perfectly Binding: For all (m0,m1) ∈M such that m0 6= m1 and for all o0, o1 ∈ {0, 1}poly(λ)

Pr[pp← C.Setup(1λ) : C.Commit(pp,m0; o0) = C.Commit(pp,m1; o1)] = 0

Computationally Hiding: Let pp← C.Setup(1λ). For all (m0,m1) ∈M and o0, o1 ← {0, 1}poly(λ),(
C.Commit(pp,m0; o0)

)
≈c
(
C.Commit(pp,m1; o1)

)
Perfect Randomizability: Let pp ← C.Setup(1λ). There exists an efficient function fcom such that for

any randomness o, the following holds:

− For every o′ ∈ {0, 1}poly(λ), C.Rand(pp,C.Commit(pp,m; o); o′) = C.Commit(pp,m; s) where
s = fcom(o, o′).

− If o′ is chosen uniformly at random, then fcom(o, o′) is uniformly distributed.

We now describe additional properties that we require from our commitment scheme for our FH NIZK
construction:

− Additive Homomorphism: We require that if c1 and c2 are commitments to m1 and m2 respec-
tively, then there exists an efficient function fadd such that c = fadd(c1, c2) is a commitment to
(m1 +m2).

− Perfect Equivocation: There exists a PPT algorithm C.Setup′ and a polynomial time algorithm
C.Equivocate such that

– C.Setup′ on input the security parameter, outputs pp′, such that

{pp← C.Setup(1λ) : pp} ≈c {pp′ ← C.Setup′(1λ) : pp′}.

– Fix any rpp ∈ {0, 1}poly(λ), any m,m′ ∈ M and any randomness o ∈ {0, 1}poly(λ). Let pp′ =
C.Setup′(1λ; rpp) and c = C.Commit(pp′,m; o). Algorithm C.Equivocate on input (pp′, rpp, c, o,m

′)
outputs o′ such that c = C.Commit(pp′,m′; o′). Also, for truly random o, (c, o′) is distributed
identically to (c′′, o′′) where o′′ is chosen at random and c′′ = C.Commit(pp′,m′; o′′).

Note that the parameters output by C.Setup(1λ) are binding and the parameters output by C.Setup′(1λ)
are hiding.

We will denote a randomizable commitment which is also additively homomorphic (aH) and equivocable
(E) as described above, by a RaHE-commitment scheme.

Remark 1. We will denote by 1 and 0 the canonical commitments to 1, 0 respectively, namely the com-
mitments computed with randomness o = 0. Given such a commitment it is possible to verify, that the
commitment is indeed to 0 or 1.
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Additional Functionalities for FH NIWI. In our FH NIWI construction, we use a RaHE-commitment
scheme which has additional functionalities (OutParam,ValidParam,RParam,ChangeCom) with properties
described below:

− Outputting hiding parameters: The deterministic algorithm OutParam takes as input parameters
pp0 and outputs pp1 such that for all rpp, if pp0 = C.Setup(1λ; rpp), then pp1 = C.Setup′(1λ; rpp).

− Verifying if two parameters are valid: The algorithm ValidParam is an efficient predicate that
outputs 1 if pp0 ∈ C.Setup(1λ) and pp1 = OutParam(pp0). It outputs 0 if both parameters are hiding,
namely if pp0, pp1 ∈ C.Setup′(1λ).

− Randomization of parameters: The RParam algorithm takes as input parameters pp, randomness
r′pp, and outputs new parameters pp′ such that for all rpp and for pp = C.Setup(1λ; rpp), the following
properties hold:

– There exists an efficient function fpp: fpp(rpp, r
′
pp) = σ and pp′ = RParam(pp; r′pp) = C.Setup(1λ;σ).

– RParam(OutParam(pp); r′pp) = OutParam(RParam(pp; r′pp)).

− Transformation of commitments with respect to new parameters: The ChangeCom algo-
rithm takes in parameters pp, randomness r′pp, commitment c, and outputs commitment c′ to the
same value, with respect to the parameters pp′ = RParam(pp; r′pp).

5.1.1 Instantiation from DLIN

We will be using the additively homomorphic commitment scheme used in GOS [GOS06a]. We show that
the scheme is randomizable. The scheme is as follows:

C.Setup(1λ; rpp): Compute G(1λ) = (p,G,GT , e, gp) (as defined in Section 3.2). Parse rpp = (x, y, z, R, S)
for x, y, z, R, S ∈ Z∗p. Compute f = gxp , h = gyp , g = gzp; (u, v, w) = (fR, hS , gR+S+1). Output

pp = [p,G,GT , e, gp, f, h, g, u, v, w]3

C.Commit(pp,m): Choose r, s← Z∗p and let opening o = (r, s). Output

c = (c1, c2, c3) = (umf r, vmhs, wmgr+s).

C.Rand(pp, c): Parse c = (c1, c2, c3). Choose r′, s′ ← Z∗p and output

c′ = (c1f
r′ , c2h

s′ , c3g
r′+s′) = (umf r+r

′
, vmhs+s

′
, wmg(r+s)+r′+s′).

Proposition 1. Assuming DLIN, the commitment scheme described above is an additively homomorphic
randomizable commitment scheme as per Definition 9.

Proof. The fact that this commitment scheme is perfectly binding and computationally hiding was proven
in GOS [GOS06a]. Their commitment scheme is also additively homomorphic: Let c = (c1, c2, c3)
and c′ = (c′1, c

′
2, c
′
3) be commitments to (m,m′) respectively. Then, (c1c

′
1, c2c

′
2, c3c

′
3) is a commitment to

(m+m′).
We now prove perfect randomizability: Define fcom(o, o′) = (r + r′, s + s′), where o = (r, s) and

o′ = (r′, s′). We have that if c = (umf r, vmhs, wmgr+s) and c′ = C.Rand(pp, c; o′), then c′ = (c′1, c
′
2, c
′
3) =

(umf r+r
′
, vmhs+s

′
, wmgr+r

′+s+s′). Also for o, o′ ← (Z∗p)2, fcom(o, o′) is uniformly distributed.

3We sometimes write pp = [f, h, g, u, v, w] and omit (p,G,GT , e, gp) when it is obvious from the context.
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We now prove perfect equivocation: C.Setup′(1λ) is defined exactly as C.Setup(1λ) except that it
outputs w = gR+S , as opposed to gR+S+1. By DLIN, (f, h, g, fR, hS , gR+S+1) ≈c (f, h, g, fR, hS , gR+S).
Also C.Equivocate(pp, rpp, c, (r, s),m

′) for rpp = (x, y, z, R, S), outputs o′ = (r−Rm′+Rm, s−Sm′+Sm)
which is distributed as fresh o.

We now instantiate the additional functionalities and observe that they satisfy the desired properties:

− OutParam(pp0): Parse pp0 = [f, h, g, u, v, w]. Output pp1 = [f, h, g, u, v, w/g]. Note that if pp0 ∈
C.Setup(1λ) then pp1 ∈ C.Setup′(1λ).

− ValidParam(pp0, pp1) : Parse ppb = [f, h, g, u, v, wb] for all b ∈ {0, 1}. Output 1 if and only if
w0 = w1 · g .

− RParam(pp, rpp) : Parse rpp = (x′, y′, z′, R′, S′) and parse pp = [f, h, g, u, v, w] for all b ∈ {0, 1}.
Compute f ′ = fx

′
, h′ = hy

′
, g′ = gz

′ , (u′, v′, w′) =
(
(ufR

′
)x
′
, (vhS

′
)y
′
, (wbg

R′+S′)z
′). Output pp

′
=

[f ′, h′, g′, u′, v′, w′].

We now show the function fpp as required by RParam. Let σ = (x, y, z, R, S) such that pp =
C.Setup(1λ;σ). Define

fpp((x, y, z, R, S), (x′, y′, z′, R′, S′)) = (xx′, yy′, zz′, R+R′, S + S′).

Note that pp′ = C.Setup(1λ;σ′) where σ′ = (xx′, yy′, zz′, R+R′, S + S′).

− ChangeCom(pp, c, rpp): Parse rpp = (x′, y′, z′, R′, S′) and parse c = (c1, c2, c3). Output c
′

=(
(c1)x

′
, (c2)y

′
, (c3)z

′).
5.1.2 Dual Tuples and More Functionalities for FH NIWI

We now define the notion of Dual Tuples and Intermediate Parameter over a group G. We then describe ef-
ficient algorithms (ValidInter, InterParam) that we will be using in our FH NIWI construction. Specifically,
these algorithms are used in the construction of proof system for LTC, to prove that two commitments
with respect to two different parameters commit to the same value.

Let (p,G,GT , e, gp) = G(1λ) and let f1, h1, g1, f2, h2, g2 ∈ G.

Definition 10 (Dual Tuples). Tuples (f1, h1, g1, f
a1
1 , ha21 , g

a3
1 ) and (f2, h2, g2, f

b1
2 , h

b2
2 , g

b3
2 ) are said to be

Dual Tuples if ai = bi for all i ∈ [3].

Let pp1, pp2, pp
∗ ∈ G6 and denote ppi = (fi, hi, gi, ui, vi, wi) for all i ∈ [2].

Definition 11 (Intermediate Parameter). A tuple pp∗ is said to be an Intermediate Parameter between
(pp1, pp2) if pp∗ = (fj , hj , gj , u

∗, v∗, w∗) for some j ∈ [2] and (pp∗, pp3−j) are dual tuples.

Remark 2. If pp1, pp2 are such that (f1, h1, g1) = (f2, h2, g2), then pp1 is an intermediate parameter
between (pp1, pp2) since each tuple is trivially a dual tuple of itself. This is the case for pp1 ← C.Setup(1λ)
and pp2 = OutParam(pp1) as instantiated in Section 5.1.1.

We now define efficient algorithms (ValidInter, InterParam) which we will use in conjunction with the
RaHE-commitment scheme:

bit = ValidInter(pp1, pp2, pp
∗): The ValidInter is a efficient predicate which on input (pp1, pp2, pp

∗) outputs
1 if and only if pp∗ is an intermediate parameter between pp1, pp2.
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Note that ValidInter can be efficiently checked using the bilinear map: Check that for some i ∈ [2],
e(u∗, fi) = e(ui, f

∗), e(v∗, hi) = e(vi, h
∗) and e(w∗, gi) = e(wi, g

∗).

Similarly, we define the following algorithm that given pp1, pp2, and randomness rpp = (x, y, z, R, S)
that generates pp1, outputs the intermediate parameter pp∗.

pp∗ = InterParam(pp1, pp2, rpp): InterParam is an efficient function which takes as input (pp1, pp2, rpp)
which could be of the following forms:

− For all i ∈ [2], ppi ∈ C.Setup(1λ) or ppi ∈ C.Setup′(1λ).

− ppi ∈ C.Setup(1λ) or ppi ∈ C.Setup′(1λ) for some i ∈ [2] and where pp3−i = RParam(ppi; rpp).

In both cases, it outputs pp∗ such that ValidInter(pp1, pp2, pp
∗) = 1.

InterParam(pp1, pp2, rpp) can be instantiated as follows: Parse ppi = [fi, hi, gi, ui, vi, wi] for all i ∈ [2]
and parse rpp = (x, y, z, R, S). Suppose that pp1 = C.Setup(1λ; rpp) (binding case) or pp1 = C.Setup′(1λ; rpp)
(hiding case). Compute (u∗, v∗, w∗) = (fR2 , h

S
2 , g

T
2 ) where T = R + S + 1 for the binding case and

T = R+S for the hiding case. Output pp∗ = [f2, h2, g2, u
∗, v∗, w∗]. The case where pp2 = C.Setup(1λ; rpp)

or pp2 = C.Setup′(1λ; rpp) is analogous.
Alternatively, if pp3−j = RParam(ppj ; rpp) for some j ∈ [2], first parse ppi = [fi, hi, gi, ui, vi, wi] for all

i ∈ [2] and parse rpp = (x, y, z, R, S). Output pp∗ = [fxi , h
y
i , g

z
i , u

x
i , v

y
i , w

z
i ].

5.2 Proofs of Linearity.

In this section we describe the main ingredient for our fully homomorphic proofs, which is a NIWI proof
system with additional properties for the parameterized language LLin[pp].

Definition 12 (Linear Tuples). Let (p,G,GT , e, gp) = G(1λ) and let f, h, g be any three generators of G.
A tuple A = (fa1 , ha2 , ga3) is said to be linear with respect to (f, h, g) if a1 + a2 = a3.

Before describing the parameterized language LLin[pp], we describe the corresponding setup algorithm
for the parameters of the language, given by Lin.Setup.

Lin.Setup(1λ): Compute G(1λ) = (p,G,GT , e, gp). Choose at random x, y, z ← Z∗p. Compute f = gxp , h =
gyp , g = gzp. Output pp = [p,G,GT , e, gp, f, h, g].

We abuse notation and let pp denote the output of Lin.Setup as well as the output of C.Setup. Note
that pp← Lin.Setup(1λ) is a subset of pp← C.Setup(1λ).

We now define the language LLin[pp] where pp← Lin.Setup(1λ). LLin[pp] is the language consisting of
a pair of tuples such that one of them is linear. It is defined as follows:

LLin[pp] =
{(

A,B
)
| ∃ (w1, w2, w3)

(
(w1 + w2 = w3

)
∧
(
A = (fw1 , hw2 , gw3) ∨ B = (fw1 , hw2 , gw3)

)}

5.2.1 NIWI Proof from GOS

We first describe the NIWI proof (Lin.Prove, Lin.Verify) for LLin[pp] from GOS [GOS06a]:

Lin.Prove(pp, (A1, A2, A3), (B1, B2, B3), (a1, a2, a3)): Without loss of generality, let (a1, a2, a3) be such
that (A1, A2, A3) = (fa1 , ha2 , ga3) and a1 + a2 = a3. Choose t $← Z∗p and output proof Π which
consists of the following matrix:
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[
π11 = Ba1

1 π12 = Ba1
2 h−t π13 = Ba1

3 g−t

π21 = Ba2
1 f t π22 = Ba2

2 π23 = Ba2
3 gt

]

Lin.Verify(pp, (A1, A2, A3), (B1, B2, B3),Π):

− Compute π31 = π11π21 and π32 = π12π22 and π33 = π13π23.

− Check e(A1, B1) = e(f, π11), e(A2, B2) = e(h, π22), e(A3, B3) = e(g, π33).

− Finally check e(A1, B2)e(A2, B1) = e(f, π12)e(h, π21), e(A2, B3)e(A3, B2) = e(h, π23)e(g, π32)
and e(A1, B3)e(A3, B1) = e(f, π13)e(g, π31).

Proposition 2 ( [GOS06a]). Assuming DLIN, the proof system described above is a perfectly sound witness
indistinguishable proof system for the language LLin[pp] (as per Definition 3).

Remark 3. If Π = [π11, . . . , π33] is a valid proof for ((A1, A2, A3), (B1, B2, B3)) ∈ LLin[pp], then Π−1 =
[π−1

11 , . . . , π
−1
33 ] is a valid proof for ((A−1

1 , A−1
2 , A−1

3 ), (B1, B2, B3)) ∈ LLin[pp] and for ((A1, A2, A3),
(B−1

1 , B−1
2 , B−1

3 )) ∈ LLin[pp].

GOS [GOS06a] provided a NIWI proof for LLin[pp] as described above. In our work, we need the NIWI
proof system to satisfy two additional properties: The first is malleability with respect to randomization,
namely given a tuple (A,B) ∈ LLin[pp] with NIWI proof Π, it is possible to randomize (A,B) to a new
tuple (A′,B′) ∈ LLin[pp] and maul the proof Π to be proof Π′ with respect to (A′,B′). As a second
property, we require that the proof system satisfies strong witness indistinguishability with respect to
specific distributions (which we describe later in the section).

5.2.2 Malleable Proofs for LLin

We now show that (Lin.Prove, Lin.Verify) is malleable with respect to the transformation
Lin.T = (Lin.Transform, Lin.WitTrans) defined as follows:

Lin.Transform(pp,A,B; (r1, r2, s1, s2)) ,
(
(A1f

r1 , A2h
r2 , A3g

r1+r2), (B1f
s1 , B2h

s2 , B3g
s1+s2)

)
where pp = [p,G,GT , e, gp, f, h, g], A = (A1, A2, A3) and B = (B1, B2, B3).

Lin.WitTrans(pp, (A,B), (w1, w2, w3); (r1, r2, s1, s2)) , (w1 + z1, w2 + z2, w3 + z1 + z2) where
(z1, z2) = (r1, r2) if A = (fw1 , hw2 , gw3) else (z1, z2) = (s1, s2) if B = (fw1 , hw2 , gw3)

Mauled proof for Lin.Transform(pp,A,B, (r1, r2, s1, s2)) = (A1f
r1 , A2h

r2 , A3g
r3), (B1f

s1 , B2h
s2 , B3g

s3) is
given by Lin.Maul(pp, (A,B), (r1, r2, s1, s2),Π): Choose t ← Z∗p, and output a proof Π′ consisting of the
following matrix:[

π′11 = π11A
s1
1 B

r1
1 f

r1s1 π′12 = π12A
s1
2 B

r1
2 h

r1s2−t π′13 = π13A
s1
3 B

r1
3 g

r1s3−t

π′21 = π21A
s2
1 B

r2
1 f

r2s1+t π′22 = π22A
s2
2 B

r2
2 h

r2s2 π′23 = π23A
s2
3 B

r2
3 g

r2s3+t

]
Proposition 3. Assuming DLIN, the proof system (Lin.Prove, Lin.Verify, Lin.Maul) is a malleable NIWI
for LLin[pp] as per Definition 5, with respect to transformation Lin.T = (Lin.Transform, Lin.WitTrans).

Proof. Malleability: Fix any PPT adversary A and fix any pp ∈ Lin.Setup(1λ). Let (A,B,Π) ← A(pp).
Let Π′ = Lin.Maul(pp, (A,B), (r1, r2, s1, s2),Π; t′) for randomly chosen r1, r2, s1, s2, t

′.
We prove that Lin.Verify(pp, (A′,B′),Π′) = 1 if and only if Lin.Verify(pp, (A,B),Π) = 1. Let g1 =

f, g2 = h and g3 = g. For i ∈ {1, 2, 3},

e(Aig
ri
i , Big

si
i ) = e(Ai, Bi)e(Ai, g

si
i )e(grii , Bi)e(g

ri
i , g

si
i ) = e(gi, πi,i)e(A

ri
i B

si
i g

risi
i , gi) = e(gi, π

′
i,i)
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if and only if e(Ai, Bi) = e(gi, πi,i) which are the first three verification check for Π.
For i 6= j and i, j ∈ {1, 2, 3},

e(Aig
ri
i , Bjg

sj
j ).e(Ajg

rj
j , Big

si
i )

=e(Ai, Bj)e(Aj , Bi)e(Ai, g
sj
j )e(grii , Bj)e(Aj , g

si
i )e(g

rj
j , Bi)e(gi, gj)

risj+rjsi

=e(gj , πi,j)e(gi, πj,i)e(A
sj
i B

rj
i g

risj+t
′

i , gj)e(B
ri
j A

si
j g

rjsi−t′
j , gi) for t′ = (birj − bjri)

=e(gj , π
′
i,j)e(gi, π

′
j,i)

if and only if e(Ai, Bj) = e(gj , πi,j)e(gi, πj,i), which are the verification checks for Π.

Perfect Randomizability: Fix any pp ∈ Lin.Setup(1λ) and (A,B) ∈ LLin[pp] with witness a = (a1, a2, a3).
Fix r1, r2, s1, s2, t, t

′ such that Π = Lin.Prove(pp,A,B,a; t), (A′,B′) = Transform(pp, (A,B), (r1, r2, s1, s2))
and Π′ = Lin.Maul(pp, (A,B), (r1, r2, s1, s2),Π; t′). Let r3 = r1 + r2 and s3 = s1 + s2.

Function fLin is given by: fLin(pp,a, t, t′, (r1, r2, s1, s2)) = t+t′+σ where σ = a1s2−a2s1 = a1s3−s3a1 =
a3s2 − a2s3. Also if t′ is uniform, t′′ = fLin(pp,a, t, t′, (r1, r2, s1, s2)) is distributed as uniform.

Remark 4. We denote by Lin.Transform(pp, (A,B), (r1, r2)) the transformation given by
Lin.Transform(pp, (A,B), (r1, r2, r1, r2)).

5.2.3 Strong NIWI for LLin.

For our FH NIWI construction, we require that the NIWI proofs for (A,B) ∈ LLin[pp] satisfy strong wit-
ness indistinguishability with respect to distributions D0(pp),D1(pp) for pp ← Lin.Setup(1λ). For every
b ∈ {0, 1}, distribution Db(pp) is defined as follows:

Parse pp = [p,G,GT , e, gp, f, h, g]. Choose a1, a2 ← Z∗p, let a3 = a1 + a2. Let Ab = (fa1 , ha2 , ga3−b) and
let Bb = (fa1 , ha2 , ga3−b+1). Output (Ab,Bb).

Recall that (Lin.Prove, Lin.Verify, Lin.Maul) is said to be strong NIWI with respect to distributions D0(pp),
D1(pp) (as per Definition 6), if the following holds:

{pp, (A0,B0), π0} ≈ {pp, (A1,B1), π1}

where (Ab,Bb)← Db(pp) and where πb ← Lin.Prove(pp,Ab,Bb, (a1, a2, a3)).

5.3 Assumption: DLIN with Leakage

In this subsection, we state our new assumption on bilinear maps: DLIN with Leakage.
Let pp← Lin.Setup(1λ) and parse pp = [p,G,GT , e, f, h, g]. DLIN with Leakage states that
D′0(1λ) ≈c D′1(1λ) where D′b(1λ) is as follows:

− D′0(1λ) : Choose R,S, t← Z∗p and output pp along with the following matrix: fR hS gR+S

fR
2

hRS−t gR(R+S+1)−t

fRS+t hS
2

gS(R+S+1)+t


− D′1(1λ) : Choose R,S, t← Z∗p and output pp along with the following matrix: fR hS gR+S−1

fR
2

hRS−t gR(R+S−1)−t

fRS+t hS
2

gS(R+S−1)+t


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Proposition 4. The DLIN with Leakage assumption is secure in the generic group model.

Proof. We defer the proof to Appendix A.1.

Proposition 5. Assuming DLIN with Leakage, (Lin.Prove, Lin.Verify) is strong NIWI for LLin[pp] with
respect to D0,D1 (as described in Section 5.2.3).

6 Fully Homomorphic NIZK Proofs

In this section, we construct fully homomorphic NIZK proofs for NP from DLIN. Our construction uses
certain NIWI proof systems as ingredients; we describe them in Section 6.1. In Section 6.2, we present our
FH NIZK construction from these ingredients. In Section 6.3, we instantiate the ingredients from DLIN.

6.1 Ingredients for the FH NIZK Construction

Recall that the generic template for NIZK proofs for LU from GOS [GOS06b, GOS06a] is as follows:

GOS Template. An LU instance is of the form (C, out) where C : {0, 1}t → {0, 1} and out ∈ {0, 1}.
Denote by n the number of wires in C (including t input wires and excluding the output wire) and denote
by m the number of gates. The NIZK proof is computed as follows:

1. Let w1, . . . , wn be the values induced by witness w ∈ {0, 1}t on all the wires of the circuit C (except
the output wire). Commit to all wire values in the circuit C using an additively homomorphic
commitment scheme. Let ci denote the commitment to wire i for i ∈ [n].

2. For each commitment ci to wire i in C, give a NIWI proof that ci is a commitment to a boolen
value. We denote such a proof by πibit for i ∈ [n].

3. For each gate in C, give a NIWI proof that the input and the output values to the gate are consistent
with the gate functionality. We denote such a proof by πjgate for j ∈ [m].

4. Give a canonical commitment to the output value out, denoted by cout.

A NIZK proof for (C, out) is of the form:

Π =
[
{ci}ni=1, {πibit}ni=1, {π

j
gate}mj=1, cout

]
.

Our FH NIZK construction follows a similar template and will use three ingredients: A RaHE-
commitment scheme (C.Setup,C.Commit,C.Rand) as per Definition 9, a NIWI proof system to prove that
committed bit is boolean (denoted by Bit Proofs), a NIWI proof system to prove that committed bits are
consistent with the gate functionality (denoted by Gate Proofs).

We note that GOS [GOS06a] defined and constructed NIWI proof systems (Bit.Prove,Bit.Verify) and
(N.Prove,N.Verify) for bit proofs and gate consistency proofs respectively. This was sufficient for their
NIZK construction. However, to achieve full homomorphism, we require the NIWI proof systems to be
malleable. At a high level, we need to be able to randomize the commitments in the proofs and maul the
bit proofs and gate consistency proofs with respect to the new commitments. In what follows, we describe
the concrete transformations for which malleability is needed.
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Malleability of Bit Proofs. Let (C.Setup,C.Commit,C.Rand) be RaHE-commitment scheme as per
Definition 9. For Bit Proofs, we consider the following language parameterized by pp← C.Setup(1λ).

Lcom[pp] = {c | ∃ (b, o) s.t. c = C.Commit(pp, b; o) ∧ b ∈ {0, 1}}

We require a malleable NIWI proof system (Bit.Prove,Bit.Verify,Bit.Maul) for Lcom[pp] (as per Defini-
tion 5), with respect to the transformation: Bit.T = (Bit.Transform,Bit.WitTrans) given by

Bit.Transform(pp, c, o′) = C.Rand(pp, c; o′) and Bit.WitTrans(pp, c, (b, o), o′) = fcom(pp, o, o′)

where o′ is fresh randomness.

Malleability of Gate Consistency Proofs. Without loss of generality, we assume that the circuit
is made up of NAND gates. Boolean values b1, b2, b3 satisfy NAND relation that is, b3 = b1 ∧̄ b2 if and
only if b1 + b2 + 2b3 − 2 ∈ {0, 1}. For Gate Proofs, we consider the following language parameterized by
pp← C.Setup(1λ).

LN[pp] =
{
{ci}i∈[3] | ∃ {bi, oi}i∈[3] s.t. ci = C.Commit(bi; oi) ∧ (b3 = b1 ∧̄ b2) ∧ {bi ∈ {0, 1}}i∈[3]

}
We require a malleable NIWI proof system (N.Prove,N.Verify,N.Maul) for LN[pp] (as per Definition 5),

with respect to the transformation: N.T = (N.Transform,N.WitTrans) given by

N.Transform(pp, {ci}i∈[3], {o′i}i∈[3]) = {c′i}i∈[3] and N.WitTrans(pp, {ci, bi, oi, o′i}i∈[3]) = fcom(pp, o, o′)

where c′i = C.Rand(pp, ci, o
′
i) for fresh randomness (o′1, o

′
2, o
′
3) and where o = o1 + o2 + 2o3 − 2 and

o′ = o′1 + o′2 + 2o′3 − 2.

6.2 FH NIZK Construction

We use the following ingredients for our FH NIZK construction:

− Randomizable commitment scheme as per Definition 9, which is additively homomorphic and equiv-
ocable, denoted by

(C.Setup,C.Commit,C.Rand)

− Malleable NIWI proof system for Lcom[pp] with respect to transformation Bit.Transform from Sec-
tion 6.1, denoted by

(Bit.Prove,Bit.Verify,Bit.Maul).

− Malleable NIWI proof system for LN[pp] with respect to transformation N.Transform as described in
Section 6.1, denoted by

(N.Prove,N.Verify,N.Maul).

We now describe our construction:

NIZK.Setup(1k): Output pp← C.Setup(1λ).

NIZK.Prove(CRS, (C, out),w): Let C : {0, 1}t → {0, 1} consist of n wires (including input wires and
excluding output wire), one output wire andm NAND gates. Let w1, . . . , wn, wout be the boolean
values induced by w ∈ {0, 1}t on all (input and internal) the wires of circuit C and where wout

is the output wire (wout = out).
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1. For wire i, commit to the value wi as follows: Choose oi at random and compute

ci = C.Commit(wi; oi).

For the output wire wout, use canonical commitments so that cout = 1 if out = 1 and
cout = 0 if out = 0.

2. For each wire i (except output), generate a proof that commitment ci commits to a bit.
Namely, compute

πibit = Bit.Prove(pp, ci, oi)

where oi is the opening for commitment ci.

3. For each NAND gate j, let j1, j2 be the input wires and j3 be the output wire with corre-
sponding commitments cji for i ∈ [3]. Compute

πjgate = N.Prove(pp, {cji}i∈[3], {oji}i∈[3]).

Finally output
Π =

[
{ci}ni=1, {πibit}ni=1, {π

j
gate}mj=1, cout

]
NIZK.Verify(CRS, (C, out),Π): Parse Π =

[
{ci}ni=1, {πibit}ni=1, {π

j
gate}mj=1, cout

]
.

1. For each wire i ∈ [n], check whether Bit.Verify(pp, ci, π
i
bit) = 1. Else output 0.

2. For each NAND gate j ∈ [m], with input wires j1, j2 and output wire j3 and with corre-
sponding commitments cji , for i = 1, 2, 3. Check that N.Verify(CRS, {cji}3i=1, π

j
gate) = 1.

Else output 0.

3. Finally check that πout = 1 for out = 1 and πout = 0 for out = 0.

NIZK.Rand(CRS, (C, out),Π)): Parse Π = [{ci}ni=1, {πibit}ni=1, {π
j
gate}mj=1, cout].

1. For each wire i, choose o′i at random and compute c′i = C.Rand(pp, ci, o
′
i).

2. Compute πi′bit ← Bit.Maul
(
pp, ci, o

′
i, π

i
bit

)
.

3. For each NAND gate j, with input wires j1, j2 and output wire j3, compute πj
′

gate ←
N.Maul(pp, {{cji , o′ji}i∈[3], π

j
gate).

4. Finally keep the output proof cout same as before. Output

Π′ =
[
{c′i}ni=1, {πi

′
bit}ni=1, {π

j′

gate}mj=1, cout

]
NIZK.Eval(CRS, {(Ci, bi,Πi)}ki=1, C

′):

1. Compute (C, out∗) = Compose({(Ci, bi,Πi)}ki=1, C
′).

2. Let πiout ∈ Π′i be the gate consistency proof for the output gate outi of circuit Ci for i ∈ [k].
Compute Π̂i as the proof Π′i without the proof πiout, namely Π̂i = Π′i \ πiout.

3. Compute a proof for C ′ with witness (b1, . . . , bk) by computing: Π∗ ←
NIZK.Prove(CRS, (C ′, out∗), (b1, . . . , bk)) where out∗ = C ′(b1, . . . , bk).
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4. For each output gate outi for Ci, i ∈ [k], let i1, i2 be the input wires to the gate and i3 be
the output wire (with value bi). Let o′i3 be the randomness used in step 2 such that c′i3 ∈ Π′

and c′i3 = C.Commit(pp, bi, o
′
i3

). Compute (πiout)
′ = N.Maul(pp, {{c′ji , o

′
ji
}i∈[3], π

i
out) where

o′ik = 0 for k ∈ [2].

5. Let Π =
[
Π̂1, . . . , Π̂k,Π

∗, (π1
out)
′, . . . , (πkout)

′]. Compute Π′ ←
NIZK.Rand(CRS, (C, out∗),Π). Finally output (C, out∗,Π′).

Theorem 3. The construction as described above is a fully homomorphic NIZK proof system for LU as
per Definition 7.

Proof. The algorithms (NIZK.Setup,NIZK.Prove,NIZK.Verify) are identical to the NIZK construction in
Groth-Ostrovsky-Sahai [GOS06a]. Hence completeness, statistical soundness4 and perfect zero-knowledge
follows. It is left to prove the following claims.

Claim 1. ΠFHNIZK satisfies completeness of evaluation.

Proof. Completeness of evaluation follows from completeness of randomizability and malleability of Bit
proofs and Gate consistency proofs.

Claim 2. ΠFHNIZK satisfies randomizability.

Proof. We show that for any instance (C, b) with witness w and any proof Π such that NIZK.Verify(CRS, (C, b),
Π) = 1, the following distributions are identical:{

(C, b), w,Π,R,Πf

}
and

{
(C, b), w,Π,R,Π′

}
where Πf is a fresh proof obtained as Πf ← NIZK.Prove(CRS, (C, b), w), Π′ is a randomized proof obtained
as Π′ ← NIZK.Rand(CRS, (C, b),Π) and R is such that Π = NIZK.Prove(CRS, (C, b), w; R). Parse

Π = [{ci}ni=1, {πibit}ni=1, {π
j
gate}mj=1, cout].

We will parse
R = [o1, . . . , on, t1, . . . , tn, s1, . . . , sm]

where oi is such that ci = C.Commit(pp, wi, oi) where wi is the value on wire i, ti is such that πibit =
Bit.Prove(pp, ci, oi; ti) for i ∈ [n]. Finally sj is such that
πjgate = N.Prove(pp, {cji , oji}i∈[3]; sj).

Similarly, let Π′ = NIZK.Rand(CRS, (C, b),Π; R′) and parse

R′ = [o′1, . . . , o
′
n, t
′
1, . . . , t

′
n, s
′
1, . . . , s

′
m]

where o′i is such that c′i = C.Rand(pp, c, o′i) for i ∈ [n], t′i is such that πi′bit = Bit.Maul(pp, ci, o
′
i, π

i
bit; t

′
i) for

i ∈ [n]. Finally s′j is such that πj
′

gate = N.Maul(pp, {cji , o′ji}i∈[3], s
′
j , π

j
N).

By perfect randomizability of the commitment scheme, there exists fcom such that o′′i = fcom(oi, o
′
i)

and c′i = C.Commit(pp, wi; o
′′
i ) and o′′i is uniformly distributed. By perfect randomizability of bit proofs,

there exists fbit such that fbit(ti, oi, o′i, t
′
i) = t′′i such that πi′bit = Bit.Prove(pp, c′i, o

′′
i ; t
′′
i ) and t′′i is uniformly

distributed.
Similarly, perfect randomizability of gate consistency proofs, there exists fgate such that fgate(sj , s′′j ,

{oji , o′ji}i∈[3]) = s′′j and πj
′

gate = N.Prove(pp, {cji , o′′ji}i∈[3]; s
′′
j ) where s′′j is distributed as uniform.

4The GOS NIZK construction achieves statistical soundness in the common random string model.
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We can now identify R′′ such that Π′ = NIZK.Prove(CRS, (C, b), w; R′′) as follows:

R′′ = [o′′1, . . . , o
′′
n, t
′′
1, . . . , t

′′
n, s
′′
1, . . . , s

′′
m]

which is distributed as uniform. It follows that
{

(C, b), w,Π,R,Πf

}
,
{

(C, b), w,Π,R,Π′
}
are identical,

where Πf = NIZK.Prove(CRS, (C, b), w; S) and Π′ = NIZK.Prove(CRS, (C, b), w; R′′) for truly random
S,R′′.

Claim 3. ΠFHNIZK satisfies unlinkability.

Proof. Follows from completeness of underlying primitives and randomizability of the NIZK.

6.3 Instantiating the Ingredients

We now give concrete instantiations of the two malleable NIWI proof systems described in Section 6.1: bit
proofs (Bit.Prove,Bit.Verify,Bit.Maul) and gate consistency proofs (N.Prove,N.Verify,N.Maul) from DLIN.

Bit Proofs. Let (C.Setup,C.Commit,C.Rand) be the RaHE-commitment scheme from Section 5.1. Recall
the language,

Lcom[pp] = {(c1, c2, c3) | ∃ (b, r, s) s.t. ((c1, c2, c3) = (ubf r, vbhs, wbgr+s)) ∧ b ∈ {0, 1}}

Let c = (c1, c2, c3), define δpp(c) , (c1/u, c2/v, (c3/w)). We drop pp when it is obvious from the context.
Observe that if c ∈ Lcom[pp] then c or δ(c) is linear. In particular, c is linear if c commits to 0 and δ(c)
is linear if c commits to 1.
Let (Lin.Prove, Lin.Verify, Lin.Maul) be the malleable NIWI proof system for LLin[pp] with respect to trans-
formation Lin.Transform. (Bit.Prove,Bit.Verify,Bit.Maul) is as follows:

Bit.Prove(pp, c, o) : Let pp = [p,G,GT , e, g, f, h, u, v, w]. Parse c = (c1, c2, c3) and o = (r, s). Com-
pute δpp(c) = (c1/u, c2/v, (c3/w)−1). Output πbit ← Lin.Prove

(
pp,
(
c, δ(c)

)
, (r, s, (r + s))

)
.

Bit.Verify(pp, c, πbit) : Output Lin.Verify
(
pp,
(
c, δ(c)

)
, πbit)

)
.

Bit.Maul(pp, c, o′, πbit) : Parse o′ = (r′, s′). Output Lin.Maul
(
pp,
(
c, δ(c)

)
, (r′, s′), πbit

)
.

Gate Proofs. Recall that boolean values b1, b2, b3 satisfy NAND relation that is, b3 = b1 ∧̄ b2 if and
only if b1 + b2 + 2b3 − 2 ∈ {0, 1}. We use this observation along with the homomorphic properties of the
underlying commitment to prove gate consistency for every NAND gate. This approach was also used in
GOS [GOS06a].

Definition 13 (NAND Function). Function fN takes as input three commitments {ci}3i=1 where ci =
(ci1, c

i
2, c

i
3) along with (f, h, g), and outputs a homomorphically computed commitment as follows:

fN
(
{ci}3i=1, f, h, g

)
, (c1

1c
2
1(c3

1)2f−2, c1
2c

2
2(c3

2)2h−2, c1
3c

2
3(c3

3)2g−2)
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We also define function RN which on input randomness to commitments {ci}3i=1, outputs the randomness
corresponding to the commitment fN

(
{ci}3i=1, f, h, g

)
.

RN({(ri, si)}3i=1) , (r1 + r2 + 2r3 − 2, s1 + s2 + 2s3 − 2)

Recall the language, parameterized by pp = [p,G,GT , e, g, f, h, u, v, w]:

LN[pp] =
{
{ci}3i=1 | ∃ (b1, b2, b3) and {(ri, si)}3i=1 s.t.

((ci1, c
i
2, c

i
3) = (ubif ri , vbihsi , wbigri+si)) ∧ (b3 = b1 ∧̄ b2)

}
The NIWI proof construction for LN[pp] is as follows:

N.Prove(pp, {ci}3i=1, {bi, oi}3i=1): Compute a commitment to b = (b1 + b2 + 2b3−2) homomorphically.
Namely, compute d = fN

(
{(ci1, ci2, ci3)}3i=1, f, h, g

)
. Note that (d1, d2, d3) ∈ Lcom with witness

b = (b1 +b2 +2b3−2) and (r, s) = RN({(ri, si)}3i=1) where oi = (ri, si). Output Lcom proof given
by:

ΠN = Bit.Prove
(
pp,d, δ(d), (r, s, (r + s))

)
.

N.Verify(pp, {ci}3i=1,ΠN): Compute d = fN({ci}3i=1, f, h, g) and d′ = δ(d). Output
Bit.Verify(pp,d,d′,ΠN).

N.Maul(pp, {ci, oi}3i=1, πN) : Parse o′i = (r′i, s
′
i) for i ∈ [3] and compute (r′, s′) = RN({(r′i, s′i)}3i=1).

Output Lin.Maul
(
pp, (d,d′), (r′, s′), πN)

)
.

We again note that (Bit.Prove,Bit.Verify) and (N.Prove,N.Verify) are taken verbatim from GOS [GOS06a].
In this work, we show that both the proof systems are malleable with respect to Bit.T and N.T respectively.
For both the proof systems, malleability follows from malleability of LLin[pp] as per Proposition 3.

7 Fully Homomorphic NIWI Proofs

In this section, we construct a fully homomorphic (FH) NIWI proof system. In Section 7.1, we describe our
main ingredient: a malleable proof system (with additional properties) for proving that two commitments
with respect to different parameters commit to the same value. We defer the construction of this malleable
proof system to Section 7.3. In Section 7.2, we describe our construction for FH NIWI and prove security.

7.1 Ingredients for the FH NIWI Construction

Our first ingredient is (C.Setup,C.Commit,C.Rand), a RaHE-commitment scheme with the additional
functionalities (OutParam,ValidParam,RParam,ChangeCom,ValidInter, InterParam) as defined in Section 5.1.

Our second ingredient is a malleable proof system (TC.Prove,TC.Verify,TC.Maul) for the language
LTC defined as follows:

LTC =
{

(c1, c2, pp1, pp2) | ∃ (b, pp∗, o1, o2) s.t.

{ci = C.Commit(ppi, b; oi)}i∈[2] ∧
(
ValidInter(pp1, pp2, pp∗) = 1

)}
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Recall that pp∗ is the intermediate parameter between pp1, pp2. It is a hard-to-compute function of the
parameters which we require as an additional witness for the language.

The malleability is with respect to the transformation TC.T = (TC.Transform,TC.WitTrans). TC.Transform
takes as input an instance (c1, c2, pp1, pp2), randomness (r1

pp, r
2
pp, o1, o2) and outputs transformed instance

(c′1, c
′
2, pp

′
1, pp

′
2).

In detail, TC.Transform on input (c1, c2, pp1, pp2), does the following:

− Randomize the parameters as follows: For all i ∈ [2], compute pp′i = RParam(ppi; r
i
pp).

− Change the commitment ci to be with respect to the new parameters pp′i, by computing zi =
ChangeCom(ppi, ci; r

i
pp) for all i ∈ [2].

− Randomize the commitments as follows: For all i ∈ [2], compute c′i = C.Rand(pp′i, zi; oi). Output
(c′1, c

′
2, pp

′
1, pp

′
2).

Correspondingly,

TC.WitTrans
(
(c1, c2, pp1, pp2), (b, pp∗, o1, o2), (r1

pp, r
2
pp, o

′
1, o
′
2)
)

= (b, p̂p, r1, r2)

where p̂p = InterParam(pp1, pp2, r
1
pp) and where for every i ∈ [2], ri = fcom(oi, o

′
i). Recall that InterParam

and fcom are as per the definition of the RaHE-commitment scheme described in Section 5.1.

Let us look at the soundness and secrecy requirements from this proof system. We weaken the soundness
requirement of our NIWI proof system and require a stronger secrecy property from the proof system. We
now describe both of these properties:

1. Weak Soundness: Rather than requiring soundness to hold for every (c1, c2, pp1, pp2) ∈ LTC, we only
require soundness to hold for all instances for which pp1, pp2 ∈ C.Setup(1λ) (when both parameters
are binding).

Note that our construction for NIWI proof of LTC achieves standard soundness, however for the FH
NIWI construction it suffices for the proof system to have weak soundness.

2. Strong Secrecy: We require that the distributions DBind and DHide (described below) are computa-
tionally indistinguishable. Both the distributions output two parameters pp, pp′, four commitments
c0, c

′
0, c1, c

′
1 where c0, c1 are with respect to pp and c′0, c

′
1 are with respect to pp′. The distributions

also output openings to the four commitments and two LTC proofs. We now explain in detail.

In the output of DBind, pp is the binding parameter and pp′ is hiding. The commitments c0, c
′
0

commit to 0 and c1, c
′
1 commit to 1. Honest LTC proofs Π0

TC,Π
1
TC are computed with respect to

(c0, c
′
0, pp, pp

′) and (c1, c
′
1, pp, pp

′) respectively. Finally, the commitments c′0, c
′
1 (with respect to the

hiding parameter pp′) are equivocated to obtain openings to the compliment bit and DBind outputs
honest openings o0, o1 for c0, c1 (openings to 0, 1 respectively) along with equivocated openings
o′0, o

′
1 for c′0, c

′
1 (openings to 1, 0 respectively).

In the output of DHide, pp is the hiding parameter and pp′ is binding. The commitments c0, c
′
0 now

commit to 1 and c1, c
′
1 commit to 0. Honest LTC proofs Π0

TC,Π
1
TC are computed with respect to

(c0, c
′
0, pp, pp

′) and (c1, c
′
1, pp, pp

′) respectively. Finally, the commitments c0, c1 (with respect to the
hiding parameter pp) are equivocated to obtain openings to the compliment bit and DHide outputs
equivocated openings o0, o1 for c0, c1 (openings to 0, 1 respectively) and honest openings o′0, o′1 for
c′0, c

′
1 (openings to 1, 0 respectively).

Note that in both the distributions, the openings o0, o
′
0, o1, o

′
1 are with respect to the values 0, 1, 1, 0

respectively. Formally, the distributions are as follows:
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− DBind(1λ) : Choose rpp at random and compute pp = C.Setup(1λ; rpp). Compute pp′ =
OutParam(pp). For every d ∈ {0, 1}, do the following:
– Choose od, o′′d at random and compute cd = C.Commit(pp, d ; od), c′d = C.Commit(pp′, d; o′′d).
– Compute Πd

TC ← TC.Prove((cd, c
′
d, pp, pp

′), (d, pp, od, o
′′
d)).

5

– Compute o′d = C.Equivocate(pp′, rpp, c
′
d, o
′′
d, 1− d).

Output
(
pp, pp′, c0, c

′
0, c1, c

′
1, o0, o

′
0, o1, o

′
1,Π

0
TC,Π

1
TC

)
.

− DHide(1
λ) : Choose rpp at random and compute pp = C.Setup′(1λ; rpp). Compute pp′ =

OutParam(pp). For every d ∈ {0, 1}, do the following:
– Choose o′d, o

′′
d at random. Compute cd = C.Commit(pp, 1 − d ; o′′d) and compute c′d =

C.Commit(pp′, 1− d; o′d).
– Compute Πd

TC ← TC.Prove((cd, c
′
d, pp, pp

′), (1− d, pp, o′′d, o′d)).
– Compute od = C.Equivocate(pp, rpp, cd, o

′′
d, d).

Output
(
pp, pp′, c0, c

′
0, c1, c

′
1, o0, o

′
0, o1, o

′
1,Π

0
TC,Π

1
TC

)
.

Remark 5. Note that strong secrecy implies plain witness indistinguishability for LTC instances with more
than one witnesses. In particular, it implies that the following two distributions are indistinguishable for
any d ∈ {0, 1}:

− Ed0 : Choose r1, r2 at random and for all i ∈ [2], compute ppi = C.Setup′(1λ; ri). Compute pp∗ =
InterParam(pp1, pp2, r1). Choose o1, o2 at random and for all i ∈ [2], compute ci = C.Commit(ppi, d; oi).
Finally compute π0 ← TC.Prove

(
(c1, c2, pp1, pp2), (d, pp∗, o1, o2)

)
. Output

(
pp1, pp2, c1, c2, π

0
)
.

− Ed1 : Choose r1, r2 at random and for all i ∈ [2], compute ppi = C.Setup′(1λ; ri). Compute pp∗ =
InterParam(pp1, pp2, r1). Choose o1, o2 at random and for all i ∈ [2], compute ci = C.Commit(ppi, d; oi).
For all i ∈ [2], compute si = C.Equivocate(ppi, ri, ci, oi, 1−d). Finally compute π1 ← TC.Prove

(
(c1, c2,

pp1, pp2), (1− d, pp∗, s1, s2)
)
. Output

(
pp1, pp2, c1, c2, π

1
)
.

Additional Procedures. We now describe procedures (OutCom,VerCom,RCom) that will help describe
the FH NIWI construction succinctly. These procedures use the RaHE-commitment scheme and the algo-
rithms (TC.Prove,TC.Verify,TC.Maul) as subroutines.

Notation: We denote by (pp0
j , pp

1
j ) the public parameters associated with gate j where pp0

j denotes the
binding parameters and pp1

j are the hiding parameters. For any b ∈ {0, 1}, we denote by (ppbj)
′ the

randomized parameters corresponding to ppbj .(
σc, σπ, st) ← OutCom(pp0

1, pp
0
2, r

1
pp, b): The OutCom algorithm takes as input two pairs of parameters

pp0
1, pp

0
2 ∈ C.Setup(1λ), randomness r1

pp such that pp0
1 = C.Setup(1λ; r1

pp) and a bit b, and does the
following:

− For all i ∈ [2], compute pp1
i = OutParam(pp0

i ). For all i ∈ [2], d ∈ {0, 1}, choose at random odi
and compute cdi = C.Commit(ppdi , b; o

d
i ). Denote by σc = (c0

1, c
0
2, c

1
1, c

1
2) and st = (o0

1, o
0
2, o

1
1, o

1
2).

− Compute pp0
∗ = InterParam(pp0

1, pp
0
2, r

1
pp) and pp1

∗ = InterParam(pp1
1, pp

1
2, r

1
pp). For all b1, b2 ∈

{0, 1}, compute

πb1b2 ← TC.Prove
(
(cb11 , c

b2
2 , pp

b1
1 , pp

b2
2 ), (b, ppb1∗ , o

b1
1 , o

b2
2 )
)
.

Denote by σπ = (π00, π01, π10, π11). Output (σc, σπ, st).

5Recall that for parameters pp, pp′ such that pp′ = OutParam(pp), pp itself is an intermediate parameter between pp, pp′;
see Remark 2 (Section 5.1.2).
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{0, 1} ← VerCom
(
pp0

1, pp
0
2, σc, σπ): The verification algorithm takes as input two pairs of parameters,

four commitments σc and four proofs σπ, and outputs 1 if and only if all the following checks are
successful:

For every i ∈ [2], compute pp1
i = OutParam(pp0

i ). Parse σc = (c0
1, c

0
2, c

1
1, c

1
2) and σπ = (π00, π01, π10, π11).

For all b1, b2 ∈ {0, 1}, check that

TC.Verify
(
(cb11 , c

b2
2 , pp

b1
1 , pp

b2
2 ), πb1b2

)
= 1.(

σ′c, σ
′
π, st

′) ← RCom
(
{pp0

i , (pp
0
i )
′, ripp}i∈[2], σc, σπ

)
: The RCom algorithm takes as input two parameters

pp0
1, pp

0
2, randomized parameters (pp0

1)′, (pp0
2)′, randomness r1

pp, r
2
pp used in randomizing the param-

eters pp0
1, pp

0
2, commitments σc and proofs σπ, and does the following:

− For all i ∈ [2], check that (pp0
i )
′

= RParam(pp0
i ; r

i
pp) and compute (pp1

i )
′ = OutParam( (pp0

i )
′ ).

− Parse σc = (c0
1, c

0
2, c

1
1, c

1
2). For all i ∈ [2] and d ∈ {0, 1}, compute zdi = ChangeCom(ppdi , c

d
i , r

i
pp),

choose randomness odi and compute (cdi )
′ = C.Rand(ppd

′
i , z

d
i ; odi ). Denote by σ′c =(

(c0
1)′, (c0

2)′, (c1
1)′, (c1

2)′
)
and st′ = (o0

1, o
0
2, o

1
1, o

1
2).

− Parse σπ = (π00, π01, π10, π11). For all b1, b2 ∈ {0, 1}, compute

(πb1b2)′ ← TC.Maul
(
(cb11 , c

b2
2 , pp

b1
1 , pp

b2
2 ), (r1

pp, r
2
pp, o

b1
1 , o

b2
2 ), πb1b2

)
.

Denote by σ′π =
(
(π00)′, (π01)′, (π10)′, (π11)′

)
. Output (σ′c, σ

′
π, st

′).

In Section 7.3, we construct the proof system (TC.Prove,TC.Verify,TC.Maul), prove weak soundness,
and prove the strong secrecy property assuming DLIN with Leakage as described in Section 5.3.

The third ingredient in our FH NIWI construction is a malleable NIWI proof system (Bit.Prove,
Bit.Verify,Bit.GenMaul) for Lcom[pp]. Recall that Lcom[pp] is parameterized by pp ← C.Setup(1λ) and is
defined as follows:

Lcom[pp] = {c | ∃ (b, o) s.t. c = C.Commit(pp, b; o) ∧ b ∈ {0, 1}}

In Section 6.1, we described a malleable NIWI (Bit.Prove,Bit.Verify,Bit.Maul) for Lcom[pp] with respect
to transformation Bit.T. For the FH NIWI construction, we need the malleability to be with respect to a
more general transformation Bit.GenT = (Bit.GenTrans,Bit.GWitTrans). The transformation Bit.GenTrans
randomizes and transforms a commitment c ∈ Lcom[pp] to a new commitment c′ ∈ Lcom[pp′]. Formally,
Bit.GenTrans(c; o, rpp) works as follows:

1. Compute pp′ = RParam(pp, rpp) and output z = ChangeCom(pp′, c, rpp).

2. Compute c′ = C.Rand(pp, z; o′). Output c′.

Recall that the syntax of the associated mauling algorithm is as follows:

π′bit ← Bit.GenMaul(pp, c, o′, rpp, πbit)

The fourth ingredient in our FH NIWI construction is the NIWI proof system (N.Prove,N.Verify,
N.GenMaul) for LN[pp]. Recall that LN[pp] is parameterized by pp← C.Setup(1λ) and is defined as follows:

LN[pp] =
{
{ci}i∈[3] | ∃ {bi, oi}i∈[3] s.t. ci = C.Commit(bi; oi) ∧ (b3 = b1 ∧̄ b2) ∧ {bi ∈ {0, 1}}i∈[3]

}
In Section 6.1, we described a malleable NIWI (N.Prove,N.Verify,N.Maul) for LN[pp] with respect to

transformation N.T. For the FH NIWI construction, we need the malleability to be with respect to a more
general transformation N.GenT = (N.GenTrans,N.GWitTrans). The transformation N.GenTrans(pp, {ci}i∈[3],
{o′i}i∈[3], rpp) works as follows:
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1. Compute pp′ = RParam(pp, rpp).

2. For every i ∈ [3], output zi = ChangeCom(pp′, ci, rpp).

3. Compute c′i = C.Rand(zi, o
′
i) for i ∈ [3]. Output (c′1, c

′
2, c
′
3)

Recall that the syntax of the associated mauling algorithm is as follows:

π′N ← N.GenMaul(pp, {ci}i∈[3], {o′i}i∈[3], rpp, πN)

Note that the third and fourth ingredients can be instantiated similar to the instantiations described in
Section 6.3, again using the malleable NIWI proof system (Lin.Prove, Lin.Verify, Lin.Maul) for LLin[pp] with
respect to transformation Lin.T.

7.2 FH NIWI Construction

In this section we construct a FH NIWI for the language LU . Recall that

LU = {(C, out) | ∃ w such that C(w) = out}.

We start by defining a connecting wire for a circuit C.

Definition 14 (Connecting Wire). A wire k in a circuit C is said to be a connecting wire for a pair of
NAND gates (i, j) if it is an output wire of gate i and an input wire to gate j.

Without loss of generality, we assume that every circuit C in an LU instance (C, out) is a layered circuit;
namely, the circuit consists of t layers of gates such that any output wire from a gate at layer i ∈ [t] is an
input wire to a gate in layer i+ 1.6 We also assume without loss of generality that the circuit consists of
NAND gates where each gate has fan-in 2 and fan-out at most 2.

We will use the following ingredients in our FH NIWI construction:

− A RaHE-commitment scheme (C.Setup,C.Commit,C.Rand) with the additional functionalities

(OutParam,ValidParam,RParam,ChangeCom,ValidInter, InterParam)

as defined in Section 5.1.

− Malleable proof system for LTC with weak soundness and strong secrecy, with respect to the trans-
formation TC.T = (TC.Transform,TC.WitTrans) as described in Section 7.1, denoted by

(TC.Prove,TC.Verify,TC.Maul).

− Malleable NIWI proof system for Lcom[pp] with respect to the transformation Bit.GenT = (Bit.GenTrans,
Bit.GWitTrans) as described in Section 7.1, denoted by

(Bit.Prove,Bit.Verify,Bit.GenMaul).

− Malleable NIWI proof system for LN[pp] with respect to the transformation N.GenT = (N.GenTrans,
N.GWitTrans) as described in Section 7.1, denoted by

(N.Prove,N.Verify,N.GenMaul).

6Any circuit can be converted into a layered circuit by adding dummy gates.
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Theorem 4. Assuming the existence of the ingredients as described above, the following construction
ΠFHNIWI is a Fully Homomorphic NIWI proof system as per Definition 8.

We instantiate the first, third and fourth ingredients from DLIN and instantiate the second ingredient
from DLIN with Leakage as we describe in Section 7.3. This gives the following corollary:

Corollary 1. Assuming DLIN with Leakage, the following construction ΠFHNIWI is a Fully Homomorphic
NIWI proof system as per Definition 8.

Construction: We now describe our construction of fully homomorphic NIWI proofs for LU .

NIWI.Prove((C, out),w) : For C : {0, 1}n → {0, 1}, denote by m the number of NAND gates, and by
` the number of connecting wires. Let w = w1, . . . , wn+` be the values induced by w on all the wires
excluding the output wire (but including the input wires).

1. For each gate j ∈ [m], choose randomness rjpp and compute pp0
j = C.Setup(1λ; rjpp) and pp1

j =

OutParam(pp1
j ). Denote by −→ppj = (pp0

j , pp
1
j ).

2. For each input wire k ∈ [n], denote by j the gate for which wire k is an input. For every b ∈ {0, 1},
choose at random obk,j and compute cbk,j = C.Commit(ppbj , wk; o

b
k,j). Let ck = (c0

k,j , c
1
k,j).

For the output wire wout (which is the output wire of gate m) and for every b ∈ {0, 1}, let
cbwout,m = 1 for out = 1 and let cbwout,m = 0 for out = 0. Recall that 1,0 are the canonical
commitments to 1 and 0 respectively (see Remark 1). Let cwout = (c0

wout,m, c
1
wout,m).

3. For each connecting wire k ∈ {n+ 1, . . . , n+ `} that connects gates i, j ∈ [m] (i < j), compute(
σkc , σ

k
π, st

k
)
← OutCom(pp0

i , pp
0
j , r

j
pp, wk)

where σkc = (c0
k,i, c

0
k,j , c

1
k,i, c

1
k,j), σ

k
π = (π00

k , π
01
k , π

10
k , π

11
k ) and where stk = (o0

k,i, o
0
k,j , o

1
k,i, o

1
k,j).

We will denote (σkc , σ
k
π) by Φk.

Note that a commitment cbk,j commits to wk with respect to parameters ppbj , and where wire k
is either an input or output wire for gate j. Also note that there are two commitments for each
input wire and four commitments for each connecting wire.

4. Denote by S the set of all pairs (k, j) for k ∈ [n+`], j ∈ [m], such that wire k is an input or output
to gate j. For all (k, j) ∈ S and for every b ∈ {0, 1}, generate a proof that the commitment cbk,j
commits to a bit. Namely, compute

πbit[k, j]
b ← Bit.Prove(ppbj , c

b
k,j , o

b
k,j)

where obk,j is the opening for commitment cbk,j as computed in step 2 (for input wires) or as part
of stk output by OutCom (for connecting wires) in step 3. Let πbit[k, j] =

(
πbit[k, j]

0, πbit[k, j]
1
)
.

5. For each gate j ∈ [m], denote by k1, k2 the input wires of the gate j and by k3, k4 the output
wires to gate j. For each t ∈ {3, 4} and b ∈ {0, 1}, compute a gate consistency proof as follows:

πj,bgate[t]← N.Prove
(
ppbj , {cbki,j}i∈{1,2,t}, {w

b
ki
, obki,j}i∈{1,2,t}

)
Let πjgate =

(
πj,0gate[3], πj,1gate[3], πj,0gate[4], πj,1gate[4]

)
.

6. Finally output

ΠNIWI =
[
{−→ppj}j∈[m], {ck}k∈[n], {Φk}k∈[`],

{
πbit[i, j]

}
(i,j)∈S , {π

j
gate}j∈[m], cwout

]
.
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NIWI.Verify((C, out),Π): Parse

ΠNIWI =
[
{−→ppj}j∈[m], {ck}k∈[n], {Φk}k∈[`],

{
πbit[i, j]

}
(i,j)∈S , {π

j
gate}j∈[m], cwout

]
1. For each j ∈ [m], parse −→ppj = (pp0

j , pp
1
j ) and check that ValidParam(pp0

j , pp
1
j ) = 1.

2. For each connecting wire k that connects gates i, j ∈ [m], check that VerCom(pp0
i , pp

0
j ,Φk) = 1.

3. For each (k, j) ∈ S, parse πbit[k, j] =
(
πbit[k, j]

0, πbit[k, j]
1
)
and for every b ∈ {0, 1}, check that

Bit.Verify(ppbj , c
b
k,j , πbit[k, j]

b) = 1.

4. For each gate j ∈ [m], parse πjgate =
(
πj,0gate[3], πj,1gate[3], πj,0gate[4], πj,1gate[4]

)
. Denote by k1, k2

the input wires to gate j and by k3, k4 the output wires of gate j. For each t ∈
{3, 4} and b ∈ {0, 1}, check that N.Verify(ppbj , {cbki,j}i∈{1,2,t}, π

j,b
gate[t]) = 1 where πjgate =(

πj,0gate[3], πj,1gate[3], πj,0gate[4], πj,1gate[4]
)
.

5. Parse cwout = (c0
wout,m, c

1
wout,m) and check that for all b ∈ {0, 1}, cbwout,m = 1 if out = 1 and

cbwout,m = 0 if out = 0.

NIWI.Rand((C, out),Π) : Parse

ΠNIWI =
[
{−→ppj}j∈[m], {ck}k∈[n], {Φk}k∈[`],

{
πbit[i, j]

}
(i,j)∈S , {π

j
gate}j∈[m], cwout

]
Randomize the proof Π as follows:

1. For each j ∈ [m], parse −→ppj = (pp0
j , pp

1
j ), choose randomness rjpp and compute (pp0

j )
′ ←

RParam(pp0
j ; r

j
pp) and (pp1

j )
′ = OutParam(pp0′

j ).

2. For each k ∈ [n], denote by j the gate for which wire k is an input. For each b ∈ {0, 1},

− Compute zbk,j = ChangeCom((ppbj)
′, cbk,j , r

j
pp).

− Choose fresh randomness obk,j and compute (cbk,j)
′ = C.Rand(ppbj , z

b
k,j ; o

b
k,j).

Let c′k =
(
(c0
k,j)
′, (c1

k,j)
′).

3. For each connecting wire k between gates i, j ∈ [m], compute(
(σkc )′, (σkπ)′, st′k)← RCom(pp0

i , (pp
0
i )
′, ripp, pp

0
j , (pp

0
j )
′, rjpp, σ

k
c , σ

k
π)

Let st′k = (o0
k,i, o

0
k,j , o

1
k,i, o

1
k,j). Denote by φ′k =

(
(σkc )′, (σkπ)′

)
.

4. For all (k, j) ∈ S, for every b ∈ {0, 1}, compute

(πbit[k, j]
b)′ ← Bit.GenMaul(ppbj , c

b
k,j , o

b
k,j , r

j
pp, πbit[k, j]

b)

where obk,j is the randomizing factor for commitment cbi as computed in the step 2 (for input wires)
or as part of st′k output by RCom (for connecting wires) computed in step 3. Let πbit[k, j]

′
=[

(πbit[k, j]
0)′, (πbit[k, j]

1)′
]
.
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5. For each gate j ∈ [m], let k1, k2 be the input wires to gate j, and k3, k4 be the output wires. For
each t ∈ {3, 4} and for every b ∈ {0, 1}, compute

(πj,bgate[t])
′ ← N.GenMaul(ppbj , {cbki,j}i∈{1,2,t}, {o

b
ki,j
}i∈{1,2,t}, rjpp, π

j,b
gate[t])

and where obki,j is the randomizing factor for commitment cbki,j as computed in the step 2 (for
input wires) or as part of st′k output by RCom (for connecting wires) computed in step 3. Let
(πjgate)

′ =
(
(πj,0gate[3])′, (πj,1gate[3])′, (πj,0gate[4])′, (πj,1gate[4])′

)
Finally output randomized proof as:

Π′NIWI =
[
{−→pp′j}j∈[m], {c′i}i∈[n], {Φ′k}k∈[`],

{
πbit[k, j]

′}
(k,j)∈S , {(π

j
gate)

′}j∈[m], cwout
]
.

NIWI.Eval({(Cq, bq,Πq)}Kq=1, C
′):

1. Check that Valid(C ′) = 1, else output ⊥. Recall that Valid(C ′) = 1 if and only if C ′ : {0, 1}k →
{0, 1}. Compute (C, out′) = Compose({(Cq, bq,Πq)}Ki=q, C ′).

2. For each q ∈ [K], let πoutgate,q ∈ Πq be the gate consistency proofs of the output gate qout of circuit
Cq and let cwoutq ∈ Πq be the canonical output commitments to output bq of circuit Cq. Let
Π̂q = Πq \ {πoutgate,q, cwoutq}.

3. Compute a proof Π̂′ for C ′ with witness (b1, . . . , bK) by evaluating
NIWI.Prove((C ′, out′), (b1, . . . , bK)) (where out′ is from Step 1) with the following modifi-
cation:

For each q ∈ [K], denote by qout the output gate of Cq, by Wq the output wire and by qin the
gate to which wire Wq is an input in the composed circuit C.

− For every q ∈ [K], choose randomness rqin and compute pp0
qin

= C.Setup(1λ; rqin) and pp1
qin

=
OutParam(pp0

qin
).

− Instead of fresh commitment for the wires Wq ∈ [K], compute(
σqc , σ

q
π, st

q
)
← OutCom(pp0

qout , pp
0
qin
, rqin , bq)

4. For each output gate qout for Cq and for b ∈ {0, 1}, let cb1,qout , c
b
2,qout be the commitments to

the input wire values to the gate qout. Let obq be the randomness used to commit to bq with
respect to ppbqout , computed as part of stq in step 3. Recall πoutgate,q = (πout,0gate,q, π

out,1
gate,q) and cwoutq =

(c0
Wq ,qout

, c1
Wq ,qout

). For every b ∈ {0, 1}, compute

(πout,bgate,q)
′ ← N.GenMaul(ppbqout , (c

b
1,qout , c

b
2,qout , c

b
Wq ,qout), (1, 1, o

b
q), 1, π

out,b
gate,q)

5. Note that Π =
[
Π̂1, . . . , Π̂n, Π̂′,

{
(πout,bgate,q)

′}
i∈[K],b∈{0,1}

]
is a complete proof for (C, out). Ran-

domize the proof by computing Π′ ← NIWI.Rand((C, out′),Π). Finally output (C, out′,Π′).

Proof of Theorem 4: Completeness follows from the completeness of underlying primitives.

Claim 4. ΠFHNIWI satisfies perfect soundness.
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Proof. Suppose for contradiction, there exists P ∗ and an infinite set Λ ⊆ N such that for all λ ∈ Λ,

Pr[((C, out),Π)← P ∗(1λ) : NIWI.Verify((C, out),Π) = 1 ∧ (C, out) /∈ LU ] > 0. (4)

For C : {0, 1}n → {0, 1}, denote by m the number of NAND gates, by ` the number of connecting wires,
and by S the set of all pairs (k, j) for k ∈ [n+ `], j ∈ [m], such that wire k is an input or output to gate
j. Parse Π =

[
{−→ppj}j∈[m], {ck}k∈[n], {Φk}k∈[`],

{
πbit[i, j]

}
(i,j)∈S , {π

j
gate}j∈[m], cwout

]
.

Let E1 be the event that NIWI.Verify((C, out),Π) = 1 where ((C, out),Π) ← P ∗(1λ). Let E2 be the
event that (C, out) /∈ LU where ((C, out),Π)← P ∗(1λ).

− E1 implies that for all j ∈ [m], ValidParam(−→ppj) = 1. Namely, for all j ∈ [m], there exists bj ∈ {0, 1}
such that ppbjj ∈ C.Setup(1λ). Let {p̂pj}j∈[m] be the set of all binding parameters such that for each

j ∈ [m], p̂pj = pp
bj
j .

− Let w = (w1, . . . , wn+`) be the values committed with respect to {p̂pj}j∈[m] on all the wires excluding
the output wire (but including the input wires). E1 implies that for all (k, j) ∈ S, Bit.Verify(p̂pj , ck,j ,
πbit[k, j]) = 1 where ck,j is the commitment to wire k ∈ [n+`] with respect to p̂pj and πbit[k, j] is the
corresponding Lcom[p̂pj ] proof. This along with perfect soundness of (Bit.Prove,Bit.Verify), implies
that for all k ∈ [n+ `], wk ∈ {0, 1}.

− E1 implies that for any connecting wire k ∈ [`] between gates i, j, VerCom
(
p̂pi, p̂pj ,Φk

)
= 1. This in

turn implies that TC.Verify((p̂pi, p̂pj , ck,i, ck,j), πTC) where ck,i, ck,j are commitments to wire value
k under p̂pi, p̂pj respectively and πTC is the corresponding LTC proof. This along with the soundness
of (TC.Prove,TC.Verify) implies that ck,i, ck,j commit to the same value wk.

− For any gate j ∈ [m], let kj1 , kj2 be the input wires and kj3 be the output wire. E1 implies that
for all j ∈ [m], N.Verify(p̂pj , p̂pj , {ckji ,j}i∈[3], π

j
gate) = 1) = 1 where {ckji ,j}i∈[3] are the commitment

to wires kj1 , kj2 , kj3 with respect to p̂pj and πjgate is the corresponding LN[p̂pj ] proof. This along
with perfect soundness of (N.Prove,N.Verify), implies that for all j ∈ [m], wkj1 ∧̄ wkj2 = wkj3 . In
particular, wn+`−1 ∧̄ wn+` = out where wn+`−1, wn+` are the values of the two input wires to the
output gate of C.

Thus, E1 implies that w = (w1, . . . , wn+`) defines a consistent boolean assignment across the entire circuit
C such that C(w) = out. However E2 implies that that C(w) 6= out. Hence we contradict Equation (4)
which says that Pr[E1 ∧ E2] > 0.

Claim 5. ΠFHNIWI is a randomizable non-interactive proof system as per Definition 4.

Proof. We show that for any instance (C, b) ∈ LU with witness w ∈ {0, 1}n and any proof Π such that
NIWI.Verify((C, b),Π) = 1, the following distributions are identical:{

(C, b), w,Π,R,Πf

}
and

{
(C, b), w,Π,R,Π′

}
where Πf is a fresh proof obtained by Πf ← NIWI.Prove((C, b), w), Π′ is a randomized proof obtained
by Π′ ← NIWI.Rand((C, b),Π) and R is randomness such that Π = NIWI.Prove((C, b), w; R). Let w =
w1, . . . , wn+` be the values induced by w on all the wires excluding the output wire (but including the
input wires). Parse

Π =
[
{−→ppj}j∈[m], {ck}k∈[n], {Φk}k∈[`],

{
πbit[i, j]

}
(i,j)∈S , {π

j
gate}j∈[m], cwout

]
and parse

R =
[
{rjpp, sj}j∈[m], {Sk}k∈[`], {oi, ti}i∈[n+2`]

]
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where pp0
j = C.Setup(1λ; rjpp), pp1

j = OutParam(pp1
j ), (φk, stk) ← OutCom(pp0

i , pp
0
j , r

j
pp, wk;Sk) for k ∈

{n+1, . . . , n+`}, where ci = C.Commit(ppi, wi; oi) for i ∈ [n], πibit = Bit.Prove(pp, ci, oi; ti) for i ∈ [n+2`].
Finally πjgate = N.Prove(ppj , {cji , oji}i∈[3]; sj) for j ∈ [m].

Similarly, let Π′ = NIWI.Rand((C, b),Π; R′) and parse

R′ =
[
{rj′pp, s′j}j∈[m], {S′k}k∈[`], {o′i, t′i}i∈[n+2`]

]
where (pp0

j )
′ = RParam(pp0

j ; r
j′
pp), (φ′k, st

′
k) ← RCom(φk;S

′
k), c′i = C.Rand(ppi, ci; o

′
i) for i ∈ [n + 2`],

πi
′
bit = Bit.Maul(pp, ci, o

′
i, π

i
bit; t

′
i). Finally, π

j′

gate = N.Maul(pp, {cji , o′ji}i∈[3], π
j
N; s′j).

By perfect randomizability of TC.Maul, there exists function fσ given by (R′i, R
′
j , S
′′
k ) = fσ(ripp, r

j
pp, r

i′
pp,

rj
′

pp, st′k) such that (pp0
q)
′ ← C.Setup(1λ;R′q) for q ∈ {i, j} and (φ′k, st

′
k)← OutCom(ppi, ppi, Ri, b;S

′′
k ).

By perfect randomizability of commitment scheme and of underlying proof systems, there exists
o′′i = fcom(oi, o

′
i) such that c′i = C.Commit(pp, wi; o

′′
i ) and o′′i is distributed as uniform, there exists

fbit(t
′
i, ti, oi, o

′
i) = t′′i such that πi′bit = Bit.Prove(pp, c′i, o

′′
i ; t
′′
i ) and t′′i is distributed as uniform.

Similarly, fgate(s′j , sj , {oji , o′ji}i∈[3]) = s′j and πj
′

gate = N.Prove(pp, {cji , o′′ji}i∈[3]; s
′′
j ) where s′′j is dis-

tributed as uniform. We can now identify R′′ such that Π′ = NIWI.Prove((C, b), w; R′′) as follows:

R′′ =
[
{Rj′ , s′′j }j∈[m], {S′′k}k∈[`], {o′′i , t′′i }i∈[n+2`]

]
which is distributed as uniform. It follows that

{
(C, b), w,Π,R,Πf

}
and

{
(C, b), w,Π,R,Π′

}
are identical

distributions, where Πf = NIWI.Prove((C, b), w; S) and Π′ = NIWI.Prove((C, b), w; R′′) for truly random
S,R′′.

Claim 6. ΠFHNIWI satisfies unlinkability.

Proof. Follows from the completeness of the underlying primitives and randomizability of the NIWI.

Claim 7. ΠFHNIWI satisfies witness indistinguishabiilty.

Proof. Fix any (C, out),wit0,wit1 such that ((C, out),wit0) ∈ RU and ((C, out),wit1) ∈ RU . We will prove
that {Π0} ≈ {Π1} where Πb ← NIWI.Prove((C, out),witb) for b ∈ {0, 1}.

For C : {0, 1}n → {0, 1}, denote by m the number of NAND gates, by ` the number of connecting
wires, and by S the set of all pairs (k, j) for k ∈ [n+ `], j ∈ [m], such that wire k is an input or output to
gate j. Let wb = (wb1, . . . , w

b
n+`) be the values induced by witb on all the wires excluding the output wire

(but including the input wires). We will proceed through the following hybrids:

Hyb0: Compute Π← NIWI.Prove((C, out),wit0). Output proof Π.

Hyb1: This is exactly as Hyb0 with the following changes: Instead of choosing fresh ppj ← C.Setup(1λ)

for each gate j ∈ [m], compute only two parameters pp1, pp2 by running C.Setup(1λ) twice independently.
Recall that C is a layered circuit. Use parameters pp1 for all the gates on odd layers of C and pp2 for
all the gates on even layers of C. Compute the rest of the proof honestly and at the end, randomize the
resulting proof. In more detail, Hyb1 is as follows:

1. Denote by layer1, . . . , layert the t layers of gates in C. Choose at random r1, r2 ← {0, 1}poly(λ).

− For each i ∈ [2], compute pp0
i = C.Setup(1λ; ri) and compute pp1

i = OutParam(pp0
i ).
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− For all j ∈ [t] and for each gate vj ∈ layerj , let
−→ppvj = (pp0

1, pp
1
1) if j is odd, else

−→ppvj = (pp0
2, pp

1
2) if j is even.

2. For each input wire k ∈ [n], denote by j the gate for which wire k is an input. For every b ∈ {0, 1},
choose at random obk,j and compute cbk,j = C.Commit(ppbj , w

0
k; o

b
k,j). Let ck = (c0

k,j , c
1
k,j).

For the output wire wout and for every b ∈ {0, 1}, if out = 1, cbwout,m = 1 and if out = 0,
cbwout,m = 0. Let cwout = (c0

wout,m, c
1
wout,m).

3. For each connecting wire k ∈ {n+ 1, . . . , n+ `} that connects gates i, j ∈ [m], compute(
σkc , σ

k
π, st

k
)
← OutCom(pp0

i , pp
0
j , rj , w

0
k)

where σkc = (c0
k,i, c

0
k,j , c

1
k,i, c

1
k,j), σ

k
π = (π00

k , π
01
k , π

10
k , π

11
k ) and where stk = (o0

k,i, o
0
k,j , o

1
k,i, o

1
k,j).

We will denote (σkc , σ
k
π) by Φk.

4. For all (k, j) ∈ S and for every b ∈ {0, 1}, generate a proof that the commitment cbk,j commits
to a bit. Namely, compute

πbit[k, j]
b ← Bit.Prove(ppbj , c

b
k,j , o

b
k,j)

where obk,j is the opening for commitment cbk,j as computed in step 2 (for input wires) or as part
of stk output by OutCom (for connecting wires) in step 3. Let πbit[k, j] =

(
πbit[k, j]

0, πbit[k, j]
1
)
.

5. For each gate j ∈ [m], denote by k1, k2 the input wires of the gate j and by k3, k4 the output
wires of the gate j. For each t ∈ {3, 4} and b ∈ {0, 1}, compute a gate consistency proof as
follows:

πj,bgate[t]← N.Prove
(
ppbj , {cbki,j}i∈{1,2,t}, {w

0
ki
, obki,j}i∈{1,2,t}

)
Let πjgate =

(
πj,0gate[3], πj,1gate[3], πj,0gate[4], πj,1gate[4]

)
.

6. Let Π =
[
{−→ppj}j∈[m], {ck}k∈[n], {Φk}k∈[`],

{
πbit[i, j]

}
(i,j)∈S , {π

j
gate}j∈[m], cwout

]
.

Finally compute Π′ ← NIWI.Rand((C, out),Π). Output Π′.

Hyb2: This is exactly as Hyb1 with the following changes: Recall that for each j ∈ [m] and each −→ppj ∈ Π
where −→ppj = (pp0

j , pp
1
j ), pp

0
j is the binding parameter and pp1

j is the hiding parameter. We now equivocate
the commitments with respect to the hiding parameters to obtain the openings with respect to wit1. We
then compute the bit consistency and gate consistency proofs for the hiding parameters using the equivo-
cated openings with respect to wit1. Note that the LTC proofs output by OutCom (step 3) are still with
respect to wit0. In more detail, Hyb2 is as follows:

1. Denote by layer1, . . . , layert the t layers of gates in C. Choose at random r1, r2 ← {0, 1}poly(λ).

− For each i ∈ [2], compute pp0
i = C.Setup(1λ; ri) and compute pp1

i = OutParam(pp0
i ).

− For all j ∈ [t] and for each gate vj ∈ layerj , let
−→ppvj = (pp0

1, pp
1
1) if j is odd, else

−→ppvj = (pp0
2, pp

1
2) if j is even.
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2. For each input wire k ∈ [n], denote by j the gate for which wire k is an input. For every b ∈ {0, 1},
choose at random obk,j and compute cbk,j = C.Commit(ppbj , w

0
k; o

b
k,j). Let ck = (c0

k,j , c
1
k,j).

For the output wire wout and for every b ∈ {0, 1}, if out = 1, cbwout,m = 1 and if out = 0,
cbwout,m = 0. Let cwout = (c0

wout,m, c
1
wout,m).

3. For each connecting wire k ∈ {n+ 1, . . . , n+ `} that connects gates i, j ∈ [m], compute(
σkc , σ

k
π, st

k
)
← OutCom(pp0

i , pp
0
j , rj , w

0
k)

where σkc = (c0
k,i, c

0
k,j , c

1
k,i, c

1
k,j), σ

k
π = (π00

k , π
01
k , π

10
k , π

11
k ) and where stk = (o0

k,i, o
0
k,j , o

1
k,i, o

1
k,j).

We will denote (σkc , σ
k
π) by Φk.

4. For all (k, j) ∈ S, first compute s1
k,j = C.Equivocate(pp1

j , rj , c
1
k,j , o

1
k,j , w

1
k) where rj is the

randomness used to generate pp0
j in step 1. Note that if w0

k = w1
k, then s

1
k,j = o1

k,j since equiv-
ocation is to the same bit as the committed bit.

Compute πbit[k, j]0 ← Bit.Prove(pp0
j , c

0
k,j , o

0
k,j) as before where o0

k,j is the opening for commit-
ment c0

k,j as computed in step 2 (for input wires) or as part of stk output by OutCom (for
connecting wires) in step 3. Compute πbit[k, j]1 ← Bit.Prove(pp1

j , c
1
k,j , s

1
k,j) where s1

k,j is the

opening of c1
k,j with respect to wit1 as computed before. Let πbit[k, j] =

(
πbit[k, j]

0, πbit[k, j]
1
)
.

5. For each gate j ∈ [m], denote by k1, k2 the input wires of the gate j and by k3, k4 the output
wires to gate j. For each t ∈ {3, 4}, compute gate consistency proofs as follows:

πj,0gate[t]← N.Prove
(
pp0

j , {c0
ki,j
}i∈{1,2,t}, {w0

ki
, o0
ki,j
}i∈{1,2,t}

)
as before and πj,1gate[t]← N.Prove

(
pp1

j , {c1
ki,j
}i∈{1,2,t}, {w1

ki
, s1
ki,j
}i∈{1,2,t}

)
.

Let πjgate =
(
πj,0gate[3], πj,1gate[3], πj,0gate[4], πj,1gate[4]

)
.

6. Let Π =
[
{−→ppj}j∈[m], {ck}k∈[n], {Φk}k∈[`],

{
πbit[i, j]

}
(i,j)∈S , {π

j
gate}j∈[m], cwout

]
. Finally compute

Π′ ← NIWI.Rand((C, out),Π). Output
{

(C, out),wit0,wit1,Π
′}.

Hyb3: This is exactly as hybrid 2 and the only change is in step 3 where we use OutComBind instead of using
OutCom. Recall that OutCom outputs four commitments (c0

1, c
0
2, c

1
1, c

1
2) with respect to (pp0

1, pp
0
2, pp

1
1, pp

1
2)

respectively, four LTC proofs and openings for the four commitments. OutComBind is same as OutCom
except that it computes the LTC proof for (c1

1, c
1
2, pp

1
1, pp

1
2) differently. In more detail,(

σc, σπ, st) ← OutComBind(pp0
1, pp

0
2, r1, r2, bit): The OutComBind algorithm takes as input two pairs of

parameters pp0
1, pp

0
2 ∈ C.Setup(1λ), randomness r1, r2 such that for all i ∈ [2], pp0

i = C.Setup(1λ; ri) and a
bit, and does the following:

− For all i ∈ [2], compute pp1
i = OutParam(pp0

i ).

− For all i ∈ [2], for all d ∈ {0, 1}, choose at random odi and compute cdi = C.Commit(ppdi , bit; o
d
i ).

Denote by σc = (c0
1, c

0
2, c

1
1, c

1
2).

− Compute pp0
∗ = InterParam(pp0

1, pp
0
2, r1) and pp1

∗ = InterParam(pp1
1, pp

1
2, r1). For all b1, b2 ∈ {0, 1}
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except for b1 = b2 = 1, compute

πb1b2 ← TC.Prove
(
(cb11 , c

b2
2 , pp

b1
1 , pp

b2
2 ), (bit, ppb1∗ , o

b1
1 , o

b2
2 )
)
.

For all i ∈ [2], compute s1
i = C.Equivocate(pp1

i , ri, c
1
i , o

1
i , 1− bit). Denote by st = (o0

1, o
0
2, s

1
1, s

1
2).

Compute π11 ← TC.Prove
(
(c1

1, c
1
2, pp

1
1, pp

1
2), (1− bit, pp1

∗, s
1
1, s

1
2)
)
.

Denote by σπ = (π00, π01, π10, π11). Output (σc, σπ, st).

Concretely, the changed step 3 in Hyb3 will be as follows:

For each connecting wire k ∈ {n + 1, . . . , n + `} that connects gates i, j ∈ [m], if w0
k 6= w1

k then compute(
σkc , σ

k
π, st

k
)
← OutComBind(pp0

i , pp
0
j , ri, rj , w

0
k) else compute

(
σkc , σ

k
π, st

k
)
← OutCom(pp0

i , pp
0
j , ri, w

0
k).

Hyb4: In this hybrid, compute pp0
1 ← C.Setup′(1λ) and pp0

2 ← C.Setup′(1λ). As before, compute pp1
i =

OutParam(pp0
i ) for all i ∈ [2]. Note that pp0

1, pp
0
2 are now the hiding parameters and pp1

1, pp
1
2 are the

binding parameters.
In addition, all the commitments are now with respect to wit1 but the bit consistency and gate con-

sistency proofs for the hiding parameters, are with respect to wit0. These are computed by using the
equivocations to wit0, with respect to hiding parameters (similar to Hyb2,Hyb3).

Also in step 3, use OutComHide instead of using OutComBind. OutComHide is similar to OutCom except
that it computes the LTC proof for (c0

1, c
0
2, pp

0
1, pp

0
2) differently. In more detail,(

σc, σπ, st) ← OutComHide(pp
0
1, pp

0
2, r1, r2, bit): The OutComHide algorithm takes as input two pairs of

parameters pp0
1, pp

0
2 ∈ C.Setup′(1λ), randomness r1, r2 such that for all i ∈ [2], pp0

i = C.Setup′(1λ; ri) and
a bit, and does the following:

− For all i ∈ [2], compute pp1
i = OutParam(pp0

i ).

− For all i ∈ [2], for all d ∈ {0, 1}, choose at random odi and compute cdi = C.Commit(ppdi , bit; o
d
i ).

Denote by σc = (c0
1, c

0
2, c

1
1, c

1
2).

− Compute pp0
∗ = InterParam(pp0

1, pp
0
2, r1) and pp1

∗ = InterParam(pp1
1, pp

1
2, r1). For all b1, b2 ∈ {0, 1}

except for b1 = b2 = 0, compute

πb1b2 ← TC.Prove
(
(cb11 , c

b2
2 , pp

b1
1 , pp

b2
2 ), (bit, ppb1∗ , o

b1
1 , o

b2
2 )
)
.

For all i ∈ [2], compute s0
i = C.Equivocate(pp0

i , ri, c
1
i , o

0
i , 1− bit). Denote by st = (s0

1, s
0
2, o

1
1, o

1
2).

Compute π00 ← TC.Prove
(
(c0

1, c
0
2, pp

0
1, pp

0
2), (1− bit, pp1

∗, s
0
1, s

0
2)
)
.

Denote by σπ = (π00, π01, π10, π11). Output (σc, σπ, st).

We now describe the hybrid in detail:

1. Denote by layer1, . . . , layert the t layers of gates in C. Choose at random r1, r2 ← {0, 1}poly(λ).

− For each i ∈ [2], compute pp0
i = C.Setup′(1λ; ri) and compute pp1

i = OutParam(pp0
i ).

− For all j ∈ [t] and for each gate vj ∈ layerj , let
−→ppvj = (pp0

1, pp
1
1) if j is odd, else

−→ppvj = (pp0
2, pp

1
2) if j is even.
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2. For each input wire k ∈ [n], denote by j the gate for which wire k is an input. For every b ∈ {0, 1},
choose at random obk,j and compute cbk,j = C.Commit(ppbj , w

1
k; o

b
k,j). Let ck = (c0

k,j , c
1
k,j).

For the output wire wout and for every b ∈ {0, 1}, if out = 1, cbwout,m = 1 and if out = 0,
cbwout,m = 0. Let cwout = (c0

wout,m, c
1
wout,m).

3. For each connecting wire k ∈ {n+ 1, . . . , n+ `} that connects gates i, j ∈ [m], if w0
k 6= w1

k then
compute

(
σkc , σ

k
π, st

k
)
← OutComHide(pp

0
i , pp

0
j , ri, rj , w

1
k) else compute

(
σkc , σ

k
π, st

k
)
←

OutCom(pp0
i , pp

0
j , ri, w

1
k) where σkc = (c0

k,i, c
0
k,j , c

1
k,i, c

1
k,j), σ

k
π = (π00

k , π
01
k , π

10
k , π

11
k ) and where

stk = (o0
k,i, o

0
k,j , o

1
k,i, o

1
k,j). We will denote (σkc , σ

k
π) by Φk.

4. For all (k, j) ∈ S, first compute s0
k,j = C.Equivocate(pp0

j , rj , c
0
k,j , o

0
k,j , w

0
k) where rj is the

randomness used to generate pp0
j in step 1. Compute πbit[k, j]0 ← Bit.Prove(pp0

j , c
0
k,j , s

0
k,j).

For all (k, j) ∈ S, compute πbit[k, j]1 ← Bit.Prove(pp1
j , c

1
k,j , o

1
k,j), where o

1
k,j is the opening for

commitment c0
k,j as computed in step 2 (for input wires) or as part of stk output by OutCom

(for connecting wires) in step 3. Let πbit[k, j] =
(
πbit[k, j]

0, πbit[k, j]
1
)
.

5. For each gate j ∈ [m], denote by k1, k2 the input wires of the gate j and by k3, k4 the output
wires to gate j. For each t ∈ {3, 4}, compute gate consistency proofs as follows:

πj,0gate[t]← N.Prove
(
pp0

j , {c0
ki,j
}i∈{1,2,t}, {w0

ki
, s0
ki,j
}i∈{1,2,t}

)
and

πj,1gate[t]← N.Prove
(
pp1

j , {c1
ki,j
}i∈{1,2,t}, {w1

ki
, o1
ki,j
}i∈{1,2,t}

)
Let πjgate =

(
πj,0gate[3], πj,1gate[3], πj,0gate[4], πj,1gate[4]

)
.

6. Let Π =
[
{−→ppj}j∈[m], {ck}k∈[n], {Φk}k∈[`],

{
πbit[i, j]

}
(i,j)∈S , {π

j
gate}j∈[m], cwout

]
. Finally compute

Π′ ← NIWI.Rand((C, out),Π). Output
{

(C, out),wit0,wit1,Π
′}.

Hyb5: This hybrid is same as Hyb4 except that in step 3 it uses OutCom instead of OutComHide. More
specifically step 3 is as follows:

For each connecting wire k ∈ {n+ 1, . . . , n+ `} that connects gates i, j ∈ [m], compute(
σkc , σ

k
π, st

k
)
← OutCom(pp0

i , pp
0
j , rj , w

0
k)

Hyb6: This hybrid is same as Hyb5 except that it uses wit1 for all the bit consistency and gate consistency
proofs in steps 4,5. In detail, the hybrid is as follows:

1. Denote by layer1, . . . , layert the t layers of gates in C. Choose at random r1, r2 ← {0, 1}poly(λ).

− For each i ∈ [2], compute pp0
i = C.Setup(1λ; ri) and compute pp1

i = OutParam(pp0
i ).

− For all j ∈ [t] and for each gate vj ∈ layerj , let
−→ppvj = (pp0

1, pp
1
1) if j is odd, else

−→ppvj = (pp0
2, pp

1
2) if j is even.
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2. For each input wire k ∈ [n], denote by j the gate for which wire k is an input. For every b ∈ {0, 1},
choose at random obk,j and compute cbk,j = C.Commit(ppbj , w

1
k; o

b
k,j). Let ck = (c0

k,j , c
1
k,j).

For the output wire wout and for every b ∈ {0, 1}, if out = 1, cbwout,m = 1 and if out = 0,
cbwout,m = 0. Let cwout = (c0

wout,m, c
1
wout,m).

3. For each connecting wire k ∈ {n+ 1, . . . , n+ `} that connects gates i, j ∈ [m], compute(
σkc , σ

k
π, st

k
)
← OutCom(pp0

i , pp
0
j , rj , w

1
k)

where σkc = (c0
k,i, c

0
k,j , c

1
k,i, c

1
k,j), σ

k
π = (π00

k , π
01
k , π

10
k , π

11
k ) and where stk = (o0

k,i, o
0
k,j , o

1
k,i, o

1
k,j).

We will denote (σkc , σ
k
π) by Φk.

4. For all (k, j) ∈ S and b ∈ {0, 1}, compute

πbit[k, j]
b ← Bit.Prove(ppbj , c

b
k,j , o

b
k,j)

where obk,j is the opening for commitment cbk,j as computed in step 2 (for input wires) or as part
of stk output by OutCom (for connecting wires) in step 3. Let πbit[k, j] =

(
πbit[k, j]

0, πbit[k, j]
1
)
.

5. For each gate j ∈ [m], denote by k1, k2 the input wires of the gate j and by k3, k4 the output
wires to gate j. For each t ∈ {3, 4} and b ∈ {0, 1}, compute a gate consistency proof as follows:

πj,bgate[t]← N.Prove
(
ppbj , {cbki,j}i∈{1,2,t}, {w

1
ki
, obki,j}i∈{1,2,t}

)
Let πjgate =

(
πj,0gate[3], πj,1gate[3], πj,0gate[4], πj,1gate[4]

)
.

6. Let Π =
[
{−→ppj}j∈[m], {ck}k∈[n], {Φk}k∈[`],

{
πbit[i, j]

}
(i,j)∈S , {π

j
gate}j∈[m], cwout

]
. Finally compute

Π′ ← NIWI.Rand((C, out),Π). Output
{

(C, out),wit0,wit1,Π
′}.

Hyb7: Exactly as Hyb6 except in step 1, compute parameters pp0
1, pp

0
2 using C.Setup instead of using

C.Setup′ so that they are binding again. In detail, step 1 will be as follows:

Denote by layer1, . . . , layert the t layers of gates in C. Choose at random r1, r2 ← {0, 1}poly(λ).

− For each i ∈ [2], compute pp0
i = C.Setup(1λ; ri) and compute pp1

i = OutParam(pp0
i ).

− For all j ∈ [t] and for each gate vj ∈ layerj , let
−→ppvj = (pp0

1, pp
1
1) if j is odd, else

−→ppvj = (pp0
2, pp

1
2) if j is even.

Hyb8: Compute Π← NIWI.Prove((C, out),wit1). Output proof Π.

We now prove indistinguishability of all the hybrids. We note that the main challenge is proving that
hybrids 3, 4 are indistinguishable (we prove this at the end), the proof of which uses the strong secrecy of
LTC.

Proposition 6. Hyb0 ≈ Hyb1

Proof. Follows directly from randomizability of the proof system (as proved in Claim 5).

Proposition 7. Hyb1 ≈ Hyb2
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Proof. Follows by witness indistinguishability of (Bit.Prove,Bit.Verify) and of (N.Prove,N.Verify).

Proposition 8. Hyb2 ≈ Hyb3

Proof. Follows by witness indistinguishability (WI) of (TC.Prove,TC.Verify). Recall that strong secrecy of
LTC implies plain WI (see Remark 5).

Proposition 9. Hyb4 ≈ Hyb5

Proof. Follows by witness indistinguishability of (TC.Prove,TC.Verify).

Proposition 10. Hyb5 ≈ Hyb6

Proof. Follows by witness indistinguishability of (Bit.Prove,Bit.Verify) and of (N.Prove,N.Verify).

Proposition 11. Hyb6 ≈ Hyb7

Proof. Follows from the perfect equivocation of the RaHE-commitment scheme. Recall that C.Setup′

outputs pp′, such that {pp← C.Setup(1λ) : pp} ≈ {pp′ ← C.Setup′(1λ) : pp′}.

Proposition 12. Hyb7 ≈ Hyb8

Proof. Follows directly from randomizability of the proof system.

Proposition 13. Hyb3 ≈ Hyb4

Proof. We will prove this via intermediate hybrids Hyb′3 and Hyb′4. Hyb′3 is generated using a sample
drawn from DBind and its output is distributed identically to Hyb3. Similarly, Hyb′4 is generated using a
sample drawn from DHide and its output is distributed identically to Hyb4. The proposition then follows
directly from the strong secrecy of LTC.

Recall that by strong secrecy of LTC, the following two distributions are computationally indistinguishable.

− DBind(1λ) : Choose r at random and compute pp0
1 = C.Setup(1λ; r). Compute pp1

1 = OutParam(pp0
1).

For every d ∈ {0, 1}, do the following:

– Choose od, o′′d at random and compute cd = C.Commit(pp0
1, d ; od), c′d = C.Commit(pp1

1, d; o′′d).

– Compute Πd ← TC.Prove((cd, c
′
d, pp

0
1, pp

1
1), (d, pp0

1, od, o
′′
d)).

– Compute o′d = C.Equivocate(pp1
1, r, c

′
d, o
′′
d, 1− d).

Output
(
pp0

1, pp
1
1, c0, c

′
0, c1, c

′
1, o0, o

′
0, o1, o

′
1,Π

0,Π1
)
.

− DHide(1
λ) : Choose r at random and compute pp0

1 = C.Setup′(1λ; r). Compute pp1
1 = OutParam(pp).

For every d ∈ {0, 1}, do the following:

– Choose o′d, o
′′
d at random. Compute cd = C.Commit(pp0

1, 1−d ; o′′d) and compute c′d = C.Commit(
pp1

1, 1− d; o′d).

– Compute Πd ← TC.Prove((cd, c
′
d, pp

0
1, pp

1
1), (1− d, pp0

1, o
′′
d, o
′
d)).

– Compute od = C.Equivocate(pp0
1, r, cd, o

′′
d, d).

Output
(
pp0

1, pp
1
1, c0, c

′
0, c1, c

′
1, o0, o

′
0, o1, o

′
1,Π

0
TC,Π

1
TC

)
.
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Before describing the hybrids Hyb′3 and Hyb′4, we describe intermediate procedures SCom0,SCom1 that
take as input a sample from DBind or DHide and output four commitments σc, four proofs σπ and state st.

In detail, for every d ∈ {0, 1}, SComd on input (pp0
1, pp

1
1, c0, c

′
0, c1, c

′
1, o0, o

′
0, o1, o

′
1,Π

0,Π1) uses only a part
of its input as follows:

SComd uses (pp0
1, pp

1
1, cd, c

′
d, od, o

′
d,Π

d) and does the following:

− Choose randomness r′ and compute pp0
2 = RParam(pp0

1; r′). Compute pp1
2 = OutParam(pp0

2). For
every b ∈ {0, 1}, compute ppb∗ = InterParam(ppb1, pp

b
2, r
′).

− Choose randomness o0, o1 and compute c0
2 = C.Rand(pp0

1, cd; o
0), c1

2 = C.Rand(pp1
1, c
′
d; o

1). For every
b ∈ {0, 1}, let ob2 be the new opening of cb2 computed as o0

2 = fcom(od, o
0) and o1

2 = fcom(o′d, o
1).

Denote by σc = (cd, c
0
2, c
′
d, c

1
2) and st = (od, o

0
2, o
′
d, o

1
2).

− Compute two fresh LTC proofs as follows:

– π00 ← TC.Prove
(
(cd, c

0
2, pp

0
1, pp

0
2), (d, pp0

∗, od, o
0
2)
)
.

– π11 ← TC.Prove
(
(c′d, c

1
2, pp

1
1, pp

1
2), (1− d, pp1

∗, o
′
d, o

1
2)
)
.

− Compute two mauled LTC proofs as follows:

– π01 ← TC.Maul
(
(cd, c

1
1, pp

0
1, pp

1
1), (1, r′, 1, o1), π

)
. Note that mauled proof π01 is a proof that

(cd, c
1
2, pp

0
1, pp

1
2) ∈ LTC.

– π10 ← TC.Maul
(
(c′d, c

1
1, pp

0
1, pp

1
1), (r′, 1, o0, 1), π

)
. Note that mauled proof π10 is a proof that

(c0
2, c
′
d, pp

0
2, pp

1
1) ∈ LTC.

Denote by σπ = (π00, π01, π10, π11). Output (σc, σπ, st).

Claim 8. Let ΣBind ← DBind(1λ). Let r1, r2 be chosen at random and for all i ∈ [2], let ppi =
C.Setup(1λ; ri). Then, for all d ∈ {0, 1}, the following distributions are identical:(

SComd(ΣBind)
)
and

(
OutComBind(pp1, pp2, r1, r2, d)

)
Proof. Let us look at the difference in the two distributions: SComd(ΣBind) and OutComBind(pp1, pp2,
r1, r2, d). Recall that OutComBind(pp1, pp2, r1, r2, d) computes four fresh commitments with respect
to d to obtain σc = (c0

1, c
0
2, c

1
1, c

1
2). Proofs π00, π01, π10 are computed honestly using the openings

with respect to d and randomness r1 such that pp1 = C.Setup(1λ; r1). Proof π11 is computed using
equivocated openings of c1

1 and c1
2 with respect to 1 − d. Denote σπ = (π00, π01, π10, π11). Finally,

OutComBind outputs (σc, σπ, st) where st consists of openings of c0
1, c

0
2 wrt. d and openings of c1

1, c
1
2

wrt. 1− d.
SComd(ΣBind) outputs σc = (c0

1, c
0
2, c

1
1, c

1
2) where c0

2, c
1
2 are obtained by randomizing c0

1, c
1
1 respec-

tively and, their openings are also computed using openings of c0
1, c

1
1 and randomization values.

Again, st consists of openings of c0
1, c

0
2 wrt. d and openings of c1

1, c
1
2 wrt. 1− d. In this distribution,

π00, π11 are computed identically as in OutComBind whereas, proofs π01, π10 are both computed by
mauling proof π from ΣBind with respect to different transformations.

Indistinguishability of the distributions follows from the perfect randomizability and equivocability
of the commitment scheme, perfect randomizability of RParam and by malleability of the proof
system (TC.Prove,TC.Verify,TC.Maul) for LTC with respect to the transformation TC.T.

Similarly, we have the following claim.
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Claim 9. Let ΣHide ← DHide(1
λ). Let r1, r2 be chosen at random and for all i ∈ [2], let ppi =

C.Setup′(1λ; ri). Then, for all d ∈ {0, 1}, the following distributions are identical:(
SComd(ΣHide)

)
and

(
OutComHide(pp1, pp2, r1, r2, d)

)
We are now ready to describe hybrids Hyb′3,Hyb

′
4. Hyb

′
3 differs from Hyb3 in the following ways:

– Parameters (pp0
2, pp

1
2) are computed as randomization of (pp0

1, pp
1
1) rather than as fresh param-

eters.

– For all connecting wires, SComd is used instead of OutComBind. All commitments (including
to input wires) with respect to pp0

1, pp
0
2 (binding parameters) are with respect to wit0 and all

commitments with respect to pp1
1, pp

1
2 (binding parameters) are with respect to wit1.

– For bit-proofs and gate-proofs, instead of using equivocated openings use the inconsistent open-
ings output by SComd. Note that in Hyb′3, we do not have the randomness used in the generation
of pp1, pp2 to equivocate the commitments. But we get the openings (distributed identically as
Hyb3) through the sample ΣBind.

Concretely, Hyb′3 does the following:

1. Sample (pp0
1, pp

1
1, c0, c

′
0, c1, c

′
1, o0, o

′
0, o1, o

′
1,Π

0
TC,Π

1
TC)← DBind(1λ).

2. Choose randomness r′ and compute pp0
2 = RParam(pp0

1; r′). Compute pp1
2 =

OutParam(pp0
2).

3. Denote by layer1, . . . , layert the t layers of gates in C. For all j ∈ [t] and for each gate
vj ∈ layerj , let

−→ppvj = (pp0
1, pp

1
1) if j is odd, else −→ppvj = (pp0

2, pp
1
2) if j is even.

4. For each input wire k ∈ [n], denote by j the gate for which wire k is an input. For
every b ∈ {0, 1}, choose at random obk,j and compute cbk,j = C.Commit(ppbj , w

b
k; o

b
k,j). Let

ck = (c0
k,j , c

1
k,j).

For the output wire wout and for every b ∈ {0, 1}, if out = 1, cbwout,m = 1 and if out = 0,
cbwout,m = 0. Let cwout = (c0

wout,m, c
1
wout,m).

5. For each connecting wire k ∈ {n+ 1, . . . , n+ `} that connects gates i, j ∈ [m],

– If w0
k 6= w1

k and w0
k = 0 then

(σkc , σ
k
π, st

k)← SCom0(pp0
1, pp

1
1, c0, c

′
0, c1, c

′
1, o0, o

′
0, o1, o

′
1,Π

0
TC,Π

1
TC; r′, ·)

– If w0
k 6= w1

k and w0
k = 1 then

(σkc , σ
k
π, st

k)← SCom1(pp0
1, pp

1
1, c0, c

′
0, c1, c

′
1, o0, o

′
0, o1, o

′
1,Π

0
TC,Π

1
TC; r′, ·)

Note that we use same r′ in SCom0,SCom1 as used in step 2 so that the parameters
(pp0

2, pp
1
2) used in SCom0,SCom1 are consistent with step 2.

– Finally if wk0 = wk1 compute

(σkc , σ
k
π, st

k)← OutCom(ppi, ppj , r
′, wk0)

Note here that r′ is the randomization factor between ppi, ppj and that is sufficient for
computing the intermediate parameter pp∗ required for LTC proofs output by OutCom.
See description of InterParam in Section 5.1.2.
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where σkc = (c0
k,i, c

0
k,j , c

1
k,i, c

1
k,j), σkπ = (π00

k , π
01
k , π

10
k , π

11
k ) and where stk =

(o0
k,i, o

0
k,j , o

1
k,i, o

1
k,j). We will denote (σkc , σ

k
π) by Φk.

6. For all (k, j) ∈ S and b ∈ {0, 1}, compute

πbit[k, j]
b ← Bit.Prove(ppbj , c

b
k,j , o

b
k,j)

where obk,j is the opening for commitment cbk,j as computed in step 2 (for input wires)
or as part of stk output by OutCom (for connecting wires) in step 3. Let πbit[k, j] =(
πbit[k, j]

0, πbit[k, j]
1
)
.

7. For each gate j ∈ [m], denote by k1, k2 the input wires of the gate j and by k3, k4 the
output wires to gate j. For each t ∈ {3, 4} and b ∈ {0, 1}, compute a gate consistency proof
as follows:

πj,bgate[t]← N.Prove
(
ppbj , {cbki,j}i∈{1,2,t}, {w

b
ki
, obki,j}i∈{1,2,t}

)
Let πjgate =

(
πj,0gate[3], πj,1gate[3], πj,0gate[4], πj,1gate[4]

)
.

8. Let Π =
[
{−→ppj}j∈[m], {ck}k∈[n], {Φk}k∈[`],

{
πbit[i, j]

}
(i,j)∈S , {π

j
gate}j∈[m], cwout

]
. Finally com-

pute Π′ ← NIWI.Rand((C, out),Π). Output
{

(C, out),wit0,wit1,Π
′}.

Hyb′4 is exactly the same as Hyb′3 except that in step 1, we sample from DHide instead of DBind.
Concretely, step 1 will be:

Sample (pp0
1, pp

1
1, c0, c

′
0, c1, c

′
1, o0, o

′
0, o1, o

′
1,Π

0
TC,Π

1
TC)← DHide(1

λ).

Hyb′4 differs from Hyb4 in the following ways:

− Parameters (pp0
2, pp

1
2) are computed as randomization of (pp0

1, pp
1
1) rather than as fresh parameters.

− For all connecting wires, SComd is used instead of OutComBind. All commitments (including to input
wires) with respect to pp0

1, pp
0
2 (binding parameters) are with respect to wit0 and all commitments

with respect to pp1
1, pp

1
2 (binding parameters) are with respect to wit1.

− For bit-proofs and gate-proofs, instead of using equivocated openings use the inconsistent openings
output by SComd.

Hyb3,Hyb
′
3 are identically distributed by Claim 8, by the hiding property of the commitment and by

the perfect randomizability of RParam. Similarly, Hyb4,Hyb
′
4 are identically distributed by Claim 9, by the

hiding property of the commitment and by the perfect randomizability of RParam. Hence, Proposition 13
follows from strong secrecy of LTC.

7.3 Constructing Malleable Proof System for LTC

In this section, we construct the malleable proof system (TC.Prove,TC.Verify,TC.Maul) for LTC, with
respect to the transformation TC.T as described in Section 7.1. We also prove that it satisfies weak
soundness and satisfies strong secrecy assuming DLIN with Leakage. Recall that

LTC =
{

(c1, c2, pp1, pp2) | ∃ (b, pp∗, o1, o2) s.t.

{ci = C.Commit(ppi, b; oi)}i∈[2] ∧
(
ValidInter(pp1, pp2, pp∗) = 1

)}
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We now describe the proof system (TC.Prove,TC.Verify) for LTC. At a high level, a proof for (c1, c2, pp1, pp2)
∈ LTC is computed by first converting the commitment c1 with respect to pp1 to a commitment c∗ with
respect to pp2 (using the intermediate parameter pp∗ which is part of the witness). The next step is to
prove that the homomorphically computed commitment (c2 · c∗) is a commitment to 0 or 2, which can be
reduced to an LLin statement with respect to pp2.

Let (Lin.Prove, Lin.Verify, Lin.Transform) be the NIWI proof system for LLin[pp] from Section 5.2. Con-
cretely, the proof system for LTC is as follows.

TC.Prove
(
(c1, c2, pp1, pp2), (b, pp∗, o1, o2)

)
: For i ∈ [2], parse ppi = [fi, hi, gi, ui, vi, wi]. Parse pp∗ =

[f∗, h∗, g∗, u∗, v∗, w∗]. Without loss of generality, let (f∗, h∗, g∗) = (f2, h2, g2). For i ∈ [2], parse
ci = (ci1, c

i
2, c

i
3), parse oi = (ri, si), and compute

c∗ = (ub∗f
r1
2 , vb∗h

s1
2 , w

b
∗g
r1+s1
2 ).

Compute A,B as follows:

A =
(
c∗1 · c2

1, c
∗
2 · c2

2, c
∗
3 · c2

3

)
, B =

(c∗1 · c2
1

u∗u2
,
c∗2 · c2

2

v∗v2
,
c∗3 · c2

3

w∗w2

)
Compute ΠLin = Lin.Prove

(
(f2, h2, g2), (A,B), (r, s, u)

)
and where (r, s, u) = (r1+r2, s1+s2, (r1+

s1 + r2 + s2)).

Finally output ΠTC = [pp∗, c∗,ΠLin].

TC.Verify
(
(c1, c2, pp1, pp2),ΠTC

)
: Parse ΠTC = [pp∗, c∗,ΠLin]. Make the following checks:

− Check that ValidInter(pp1, pp2, pp∗) = 1.

− Check e(c∗1, f1) = e(c1
1, f2), e(c∗2, h1) = e(c1

2, h2) and e(c∗3, g1) = e(c1
3, g2).

Finally check that Lin.Verify((f2, h2, g2),A,B,ΠLin) = 1 where A = (c∗1 · c2
1, c
∗
2 · c2

2, c
∗
3 · c2

3) and
B = (

c∗1·c21
u∗u2

,
c∗2·c22
v∗v2

,
c∗3·c23
w∗w2

).

It is easy to see that completeness holds for all parameters. We now prove weak soundness, namely that
this proof system is sound if both parameters are binding.

Proposition 14. For i ∈ [2], let ppi = [fi, hi, gi, ui, vi, wi] and let ci = (ci1, c
i
2, c

i
3). Let ΠTC be a proof for

(c1, c2, pp1, pp2) ∈ LTC. If,

TC.Verify
(
(c1, c2, pp1, pp2),ΠTC

)
= 1 ∧

(
{ppi ∈ C.Setup(1λ)}i∈[2]

)
then, (c1, c2, pp1, pp2) ∈ LTC

Proof. If TC.Verify
(
(c1, c2, pp1, pp2),ΠTC

)
= 1, bilinear checks ensure that there exists η,R1, S1 ∈ Z∗p

such that (u∗, v∗, w∗) = (fR1
2 , hS1

2 , gR1+S1+η
2 ) and (u1, v1, w1) = (fR1

1 , hS1
1 , gR1+S1+η

1 ). Also there exists
b, r1, s1 such that c∗ = (ub∗f

r1
2 , vb∗h

s1
2 , w

b
∗g
r1+s1
2 ) and c1 = (ub1f

r1
1 , vb1h

s1
1 , w

b
1g
r1+s1
1 ). By perfect soundness of

(Lin.Prove, Lin.Verify),

Pr
[
∃ (a1, a2, a3) s.t. (a1 + a2 = a3) ∧

(
A = (fa1 , ha2 , ga3) ∨

(
B = (fa1 , ha2 , ga3)

)]
= 1

where A = (c∗1 · c2
1, c
∗
2 · c2

2, c
∗
3 · c2

3) and B = (
c∗1·c21
u∗u2

,
c∗2·c22
v∗v2

,
c∗3·c23
w∗w2

).
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Also since ppi ∈ C.Setup(1λ) for i ∈ [2], there exists r2 = a1 − r1, s2 = a2 − s1 such that, c2 =
(ub2f

r2
2 , vb2h

s2
2 , w

b
2g
r2+s2
2 ). Hence for b = 0, A is linear and for b = 1, B is linear, and we conclude that the

proposition follows.

7.3.1 Malleability of the LTC Proof System

Let (c1, c2, pp1, pp2) ∈ LTC and let ΠTC be the corresponding proof as described above. Recall that
TC.Transform outputs a randomized instance (c′1, c

′
2, pp

′
1, pp

′
2) ∈ LTC (as described in Section 7.1). The

transformation is defined by randomness {o′k, rkpp}k∈[2].

For rpp = (x′, y′, z′, R′, S′), and for any proof for (A,B) ∈ LLin[pp] where Π = [π11, . . . , π23], define

ChangeGen(Π, rpp) , [πx
′

11, π
y′

12, π
z′
13, π

x′
21, π

y′

22, π
z′
23].

TC.Maul
(
(c1, c2, pp1, pp2), {o′k, rkpp}k∈[2],ΠTC

)
works as follows:

1. Parse ΠTC = [pp∗, c∗,ΠLin]. For k ∈ [2], parse rkpp = (x′k, y
′
k, z
′
k, R

′
k, S

′
k) and parse o′k = (qk, tk).

2. Randomize pp∗ by computing pp′′∗ = (u′′∗, v
′′
∗ , w

′′
∗) = (u∗f

R′1
2 , v∗h

S′1
2 , w∗g

R′1+S′1
2 ).

3. Randomize commitment c∗ by computing c′′∗ = (c∗1f
q1
2 , c∗2h

t1
2 , c

∗
3g
q1+t1
2 ).

4. ΠLin is a linearity proof for (A,B) where A = (c∗1 · c2
1, c
∗
2 · c2

2, c
∗
3 · c2

3) and B = (
c∗1·c21
u∗u2

,
c∗2·c22
v∗v2

,
c∗3·c23
w∗w2

).
Let (A′,B′) be the transformed LLin statement with respect to the randomized commitments.
Namely, (A′,B′) = Lin.Transform(pp,A,B; (q1 + q2, t1 + t2, q1 + q2−R′1−R′2, t1 + t2−S′1−S′2)).
Compute

Π′′Lin ← Lin.Maul(pp, (A,B), r, s,ΠLin)

where r = (q1 + q2, t1 + t2) and s = (q1 + q2 −R′1 −R′2, t1 + t2 − S′1 − S′2).

5. Compute c′∗ = ChangeCom(c′′∗, r
2
pp), Π′Lin = ChangeGen(Π′′Lin, r

2
pp), and pp′∗ =(

(u′′∗)
x′2 , (v′′∗)

y′2 , (w′′∗)
z′2
)

6. Finally output Π′TC = [pp′∗, c
′
∗,Π

′
Lin].

Proposition 15. The proof system (TC.Prove,TC.Verify,TC.Maul) is a malleable proof system for LTC as
per Definition 5, with respect to the transformation TC.Transform.

Proof. Follows from malleability of (Lin.Prove, Lin.Verify, Lin.Maul).

7.3.2 Strong Secrecy from the DLIN with Leakage Assumption

In Section 7.1, we described the strong secrecy property required from the NIWI proof system (TC.Prove,
TC.Verify). In particular, strong secrecy states that the distributions DHide,DBind are indistinguishable.

We now show that strong secrecy for the proof system (TC.Prove,TC.Verify,TC.Maul) constructed
above, follows from the Strong NIWI for LLin[pp] with respect to specific distributions as described in
Section 5.2.3. Strong NIWI for LLin[pp] in turn, follows from DLIN with Leakage (as per Proposition 5).
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Recall that strong NIWI for LLin[pp] states that:{
pp, (A0,B0), π0

}
≈
{
pp, (A1,B1), π1

}
where Ab = (fa1 , ha2 , ga3−b) for a1, a2 ← Z∗p and a3 = a1 + a2, where Bb = (fa1 , ha2 , ga3−b+1), and where
πb ← Lin.Prove(pp, (Ab,Bb), (a1, a2, a3)).

We now describe a reduction S that takes as input (pp,A,B, π) where (A,B, π) = (A0,B0, π0) or
(A,B, π) = (A1,B1, π1) as described above, and does the following:

1. Parse pp = [p,G,GT , e, gp, f, h, g]. Denote by (u, v, w′) = A and (u, v, w) = B. Let ppD =
[f, h, g, u, v, w] and pp′D = [f, h, g, u, v, w′].

2. For every d ∈ {0, 1}, choose rd, sd, r′d, s′d at random and compute commitments cd = (udf rd , vdhsd ,
wdgrd+sd)) and c′d = (u1−df r

′
d , v1−dhs

′
d , (w′)1−dgr

′
d+s′d)). Let od = (rd, sd) and o′d = (r′d, s

′
d).

3. For every d ∈ {0, 1} , compute Πd
Lin ← Lin.Maul(pp,A,B, (td, zd), π

−1) where t = (rd + r′d), z =
(sd + s′d). Let Πb

TC = [pp′D, c
′
d,Π

d
Lin].

Output
(
ppD, pp

′
D, c0, c

′
0, c1, c

′
1, o0, o

′
0, o1, o

′
1,Π

0
TC,Π

1
TC

)
.

Note that od, o′d are openings with respect to d and 1 − d respectively. Let cd = (cd1, c
d
2, c

d
3) and

c′d = (cd
′

1 , c
d′
2 , c

d′
3 ). The main observation is that when cd and c′d commit to different bits, then the LLin

statement in ΠTC given by (
cd1 · cd

′
1 , c

d
2 · cd

′
2 , c

d
3 · cd

′
3

)
,
(cd1 · cd′1

u2
,
cd2 · cd

′
2

v2
,
cd3 · cd

′
3

ww′

)
is a transformed instance of (A−1,B) for d = 1 and (A,B−1) for d = 0 where A = (u, v, w′) and
B = (u, v, w), and where the instance is transformed by (td, zd) for t = (rd + r′d), z = (sd + s′d). Recall
from Remark 3 that given linearity proof for (A,B), it is possible to compute linearity proof for (A−1,B)
or (A,B−1) by inverting all the terms in proof π to obtain the proof π−1.

It is easy to see that when reduction S gets as input (pp,A0,B0, π0), it outputs a sample from DHide

since B0 ∈ C.Setup′(1λ), and when it gets as input (pp,A1,B1, π1), it outputs a sample from DBind since
B1 ∈ C.Setup′(1λ).

8 Commit-and-Compute Paradigm

In this section, we define and instantiate commit-and-compute proof systems. Our motivation is the setting
where users commit to their private data (say on a public ledger), and then may wish to prove statements
about their private committed data. We want the ability to evaluate an arbitrary function (in the form
of a circuit) over individual proofs to obtain proofs on inferred statements about the committed data.

We first define a commit-and-compute NIZK and NIWI proof system. We then use the construction
ideas in the previous sections to achieve this notion.

8.1 Definition of Commit-and-Compute

Definition 15 (Commit-and-Compute NIZK Proofs). A commit-and-compute NIZK proof system consists
of the PPT algorithms (CnC.Setup,CnC.Commit,CnC.Prove,CnC.Verify,CnC.Eval) with the following input-
output behavior:
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CRS← CnC.Setup(1λ): The setup algorithm takes as input the security parameter and outputs a common
random string CRS.

c ← CnC.Commit(CRS, d; r): The commit algorithm takes as input the CRS, bit d, randomness r, and
outputs a commitment c. We denote a vector of commitments (c1, . . . , cn) by com.

We are now ready to define our language LCOM:

LCOM =
{

(C, com, b) | ∃(w, r) s.t.
(
C(w1, . . . , wn) = b

)
∧
(
{ci = CnC.Commit(CRS, wi; ri)}i∈[n]

)}
Π ← CnC.Prove(CRS, (C, com, b), (w, r)): The prove algorithm takes as input the CRS, an instance

(C, com, b) along with its witness (w, r) and outputs a proof Π.

0/1 ← CnC.Verify(CRS, (C, com, b),Π): The verification algorithm takes as input the CRS, an instance
(C, com, b) and a proof Π, and outputs a boolean value indicating success or failure.

((C, com, b),Π) ← CnC.Eval(CRS, {(Ci, comi, bi),Πi}Ki=1, C
′): The evaluation algorithm takes as input

the CRS, K instances {(Ci, comi, bi)}Ki=1 of LCOM with their proofs {Πi}Ki=1 and a circuit C ′, and
outputs the composed instance (C, com, b) and a corresponding proof Π.

Composing for LCOM instances: Recall that in Section 4, we defined the Compose() operation that
takes as input {(Ci, bi)}ki=1 where Ci : {0, 1}ni → {0, 1} and a circuit C ′ : {0, 1}k → {0, 1}, and outputs
(C, b) where C : {0, 1}N → {0, 1} for N = n1 + · · · + nk. In this case, all the circuits {Ci}ki=1 were with
respect to independent inputs.

We now consider the case where different circuits {Ci}ki=1 may have overlapping inputs. In particular,
given k instances {(Ci, comi, bi)}i∈[k] ∈ LCOM, we want to support the case that different comi given as
input to CnC.Eval are overlapping; namely, there is a commitment c such that c is part of comi as well as
part of comj for some i, j ∈ [k]. We define the composed com as the sequence (com1, . . . , comk) where
we delete a commitment c if it has previously appeared. We formalize the compose operation as follows:

Compose({(Ci, comi, bi)}ki=1, C
′): Let com be the vector of commitments obtained as follows: Instantiate

com with com1. For each commitment c in subsequent comi for i ∈ {2, . . . , k}, append c to com only
if the string c does not already appear in com. Hence we finally obtain com such that each commitment
in com1, . . . , comk appears in com exactly once. Thus, com is the union of all the commitments in
com1, . . . , comk. Let M = |com|.

We will now think of each Ci : {0, 1}M → {0, 1} where Ci might use only a part of the M inputs.
The compose algorithm outputs circuit C : {0, 1}M → {0, 1} such that for all w ∈ {0, 1}M , we have
C(w) = C ′(C1(w), . . . , Ck(w)) and b = C ′(b1, . . . , bk).
If Compose() is given as input witnesses (wi, ri) for the k instances then it outputs the composed wit-
ness (w, r) corresponding to commitments in the vector com, where com is computed as explained before.

We require the following properties from Commit-and-Compute NIZK proof system:

− NIZK: (CnC.Setup,CnC.Prove,CnC.Verify) is a non-interactive zero-knowledge proof system for
LCOM as per Definition 1.

− Completeness of Eval: We require that for all non-uniform PPT A and for all λ ∈ N,

Pr


CRS←CnC.Setup(1λ) ; ({(Ci,comi,bi,Πi)}ki=1,C

′)←A(CRS) ;

((C,com,b),Π)←CnC.Eval(CRS,{(Ci,comi,bi),Πi}ki=1,C
′) :(

Valid(C′)=0
)
∨
(
∃ i∈[k] s.t.CnC.Verify(CRS,(Ci,comi,bi),Πi)=0

)
∨(

(CnC.Verify(CRS,(C,com,b),Π)=1) ∧ (C,com,b)=Compose({(Ci,comi,bi)}ki=1,C
′)
)
 = 1

where Valid(C ′) = 1 if and only if C ′ : {0, 1}k → {0, 1}.
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− Unlinkability: For all PPT adversaries A, there exists a negligible function ν such that for all λ,
the probability that bit′ = bit in the following game is at most 1/2 + ν(λ):

GAMEEval:

1. CRS← CnC.Setup(1λ).
2. (state, {((Ci, comi, bi), (wi, ri),Πi)}ki=1, C

′)← A(CRS)
3. Choose bit← {0, 1}. If for any i ∈ [k], CnC.Verify(CRS, (Ci, comi, bi),Πi) 6= 1 or(

(Ci, comi, bi), (wi, ri)
)
/∈ RCOM, then output ⊥.

4. If bit = 0 then ((C, com, b),Π)← CnC.Eval(CRS, {(Ci, comi, bi),Πi}ki=1, C
′).

If bit = 1 then Π← CnC.Prove(CRS, (C, com, b), (w, r)) where ((C, com, b), (w, r))← Compose
({(Ci, comi, bi),Πi, C

′, (wi, ri)}ki=1). Send (C, b,Π) to A.
5. bit′ ← A(state, (C, b,Π)).

Definition 16 (Commit-and-Compute NIWI Proofs). (CnC.Commit,CnC.Prove,CnC.Verify,CnC.Eval) is
a Commit-and-Compute NIWI if it has the same description as in Definition 15 where CRS = 1λ. Addi-
tionally, (CnC.Prove,CnC.Verify) is a NIWI proof system for LCOM as per Definition 2, and it also satisfies
the completeness of evaluation and unlinkability properties as in Definition 15.

8.2 Construction Overview

Our commit-and-compute (NIZK or NIWI) proof system is very similar to that of a fully homomorphic
(NIZK or NIWI) proof system. The main difference is that there is an explicit commitment vector com
as part of the instance, and the proofs are with respect to the values committed in this specific vector.

Recall that in our constructions, an FH NIZK as well as FH NIWI proof for (C, b) ∈ LU contains
commitments to all the wire values in C. One idea is to use the commitments in the instance com directly
in the proof for (C, com, b). However if we do that, it will make an evaluated proof distinguishable from
a fresh proof when circuits share input variables.

For example, let (C1, com1, b) ∈ LCOM and (C2, com2, b) ∈ LCOM such that circuits C1, C2 share some
input variable. Let c be the commitment corresponding to the common input such that c is part of both
com1 and com2. An evaluated proof for C1 ∧C2 will contain the commitment c twice (the proofs for C1

and C2 will each contain c), whereas a fresh proof for C1 ∧ C2 will contain the commitment c only once.
We deal with this issue by keeping the commitments com in the instance separate from the com-

mitments in the proof. We compute the FH NIZK or NIWI proof for (C, b) ∈ LU as before. We then
add proofs of consistency between the values in com and the commitments to the input values in the proof.

Commit-and-Compute NIZK Proofs. We want to compute a proof for (C, com, b) ∈ LCOM. As described
above, we first compute a FH NIZK proof Π for (C, b) ∈ LU with witness (w, r). We additionally need to
prove consistency between commitments {com1, . . . , comt} part of com, and the commitments {c1, . . . , ct}
to the input values. Namely, for each i ∈ [t], we need to prove that comi and ci commit to the same value.

This is done as follows: Using the homomorphic properties of the commitment, we can prove the
statement that the commitment comi · ci is either a commitment to 0 or a commitment to 2. This can be
reduced to a statement of LLin[pp] where pp = CRS, similar to the reduction in Bit Proofs and Gate Proofs
of FH NIZK. Our final commit-and-compute NIZK proof for (C, com, b) will consist of an FH NIZK proof
Π for (C, b) ∈ LU along with t WI proofs that for each i ∈ [t], comi and ci commit to the same value. The
completeness of evaluation and unlinkability follow from the corresponding properties of the underlying
FH NIZK and malleability properties of LLin[pp].

Commit-and-Compute NIWI Proofs. We start be explaining how we generate the commitments in this
setting. Note that since we have no CRS in a NIWI, we need to slightly modify our commitment scheme
to be without any public parameters. Similar to our FH NIWI construction, we choose two parameters
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(pp0, pp1) such that one of them is verifiably binding and commit with respect to both the parameters.
Thus, our com will be of the form com = (pp0, pp1, (com0

1, com
1
1), . . . , (com0

n, com
1
n)).

Again, we first compute FH NIWI proof Π for (C, b) ∈ LU . We also need to add consistency proofs
with respect to com and commitments in the FH NIWI proof. Consider an input wire k to circuit C;
the proof Π contains (pp0

k, pp
1
k, c

0
k, c

1
k) corresponding to wire k. Proving consistency between these and

some (pp0, pp1, com0
i , com

1
i ) ∈ com boils down to proving four LTC statements exactly as in the procedure

OutCom (described in Section 7.1). Our final commit-and-compute NIWI proof for (C, com, b) will con-
sist of an FH NIWI proof Π for (C, b) ∈ LU along with LTC proofs for consistency of commitments. The
completeness of evaluation and unlinkability follows from the corresponding properties of the underlying
FH NIWI and malleability properties of LTC.

Thus, commit-and-compute NIZK and NIWI proofs can be directly instantiated using our FH NIZK
and FH NIWI constructions and its building blocks, and we get the following theorems.

Theorem 5. There exists Commit-and-Compute NIZK proof system as per Definition 15, assuming DLIN.

Theorem 6. There exists a commit-and-compute NIWI proof system as per Definition 16, assuming DLIN
with Leakage.
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A Bilinear Generic Group Model

Consider groups G,GT of prime order q and let e : G×G→ GT be a bilinear map. One popular method to
justify computational assumptions on (G,GT , e) is by showing that the assumption holds unconditionally
in the bilinear generic group model.

The bilinear generic group model is an idealized model where the computationally unbounded adversary
is given access to randomly chosen encodings (called “handles”) of elements in the group. The handles
themselves reveal no information about the group elements they are associated with; this means that the
adversary cannot perform any computation on the associated group elements using the handles alone.
However, the adversary is given access to an oracle O that performs bilinear computations on the group
elements and also allows the adversary to test if a handle corresponds to the unit element in the group.

In more detail, suppose the bilinear assumption is of the form D0 ≈c D1, where D0 and D1 are
distributions over the group elements in G. For b ∈ {0, 1}, suppose Db generates an N -tuple of group
elements gξb1(x1,...,xk), . . . , gξ

b
N (x1,...,xk), where g is a generator of G, ξb1, . . . , ξbN are k-variate polynomials

and x1, . . . , xk are random elements in Zq. Associated with the distribution Db is the oracle O initialized
with a list Lb which consists of (hb1, ξ

b
1), . . . , (hbN , ξ

b
N ), where hbi is a random handle assigned to ξbi , for

every i ∈ [N ]. We describe the interaction of the adversary A with the oracle O, initialized with Lb.
The oracle O, initialized with Lb, sends the handles hb1, . . . , hbN to the adversary. The adversary can then
submit n handles hi1 , . . . , hin and an n-variate polynomial p. The oracle O first checks if for every j ∈ [n],
the handle hij is in its internal list. If one of the hij is not in the list, it returns ⊥. Then it checks if
p(ξi1 , . . . , ξin) was queried before, where ξij is the polynomial associated with the handle hij . If it is in
the list then it returns the handle h where (h, p(ξi1 , . . . , ξin)) is the entry in its internal list. If it is not
in the list then it returns h, picked uniformly at random, and stores (h, p(ξi1 , . . . , ξin)) in its internal list.
The adversary can also check if a handle h∗ corresponds to a zero polynomial by submitting h∗ to O. As
before, O returns ⊥ if h∗ is not in the list. Otherwise it returns 0 if the polynomial ξ∗ associated with h∗

(i.e., (h∗, ξ∗) is an entry in the internal list of O) satisfies ξ∗(x1, . . . , xn) = 0 for every (x1, . . . , xn) ∈ Zq,
else it returns 1.

We emphasize that even though the adversary is computationally unbounded, it can only make poly-
logarithmic (in the order of the group) queries to the oracle.

A.1 DLIN with Leakage in the Bilinear Generic Group Model

DLINwithLeakage with respect to (G,GT , e). Suppose G,GT be groups of prime order q(λ). For every
non-uniform probabilistic polynomial time adversary A, the following holds for some negligible function
negl,

∣∣∣Pr [1← A

(
g, f, h, fR, hS , gR+S ,

[
fR

2
hRS−t gR(R+S+1)−t

fRS+t hS
2

gS(R+S+1)+t

])
: (g, f, h)

$←− G\{1}, (R,S, t) $←− Zq

]
−

Pr

[
1← A

(
g, f, h, fR, hS , gR+S−1,

[
fR

2
hRS−t gR(R+S−1)−t

fRS+t hS
2

gS(R+S−1)+t

])
: (g, f, h)

$←− G\{1}, (R,S, t) $←− Zq

] ∣∣∣
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≤ negl(λ)

We prove that the above assumption holds in the generic group model. Before we show this, we define
two distributions D0 and D1, where:

Db =

(
g, (f = gx), (h = gy), gxR, gyS , gαb

[
gxR

2
gy(RS−t) gβb

gx(RS+t) gyS
2

gγb

])

with x, y,R, S, t
$←− Zq and α0 = (R + S), β0 = (R(R + S + 1) − t), γ0 = (S(R + S + 1) − t) and

α1 = (R+S − 1), β1 = (R(R+S − 1)− t), γ1 = (S(R+S − 1) + t). Note that the assumption states that
D0 ≈c D1.

Theorem 7. DLIN with Leakage holds in the bilinear generic group model.

Proof. Suppose A is a computationally unbounded adversary with access to the oracle O. Consider the
following polynomials over the formal variables x,y,R,S, t:

− ξ0
1 = ξ1

1 = 1
− ξ0

2 = ξ1
2 = x

− ξ0
3 = ξ1

3 = y
− ξ0

4 = ξ1
4 = xR

− ξ0
5 = ξ1

5 = yS
− ξ0

6 = R + S, ξ1
6 = R + S− 1

− ξ0
7 = ξ1

7 = xR2

− ξ0
8 = ξ1

8 = y(RS− t)
− ξ0

9 = R(R + S + 1)− t, ξ1
9 = R(R + S− 1)− t

− ξ0
10 = ξ1

10 = x(RS + t)
− ξ0

11 = ξ1
11 = yS2

− ξ0
12 = S(R + S + 1) + t, ξ1

12 = S(R + S− 1) + t

For any b ∈ {0, 1}, denote by hbi the handle generated by O, corresponding to the polynomial ξbi . Let Lb
be the list defined by {(hbi , ξbi )}i∈[12]. To prove the theorem it suffices to argue that:∣∣∣Pr [1← AO(L0)

]
− Pr

[
1← AO(L1)

]∣∣∣ ≤ polylog(q)

q
,

where A can make at most polylog(q) queries to O.
We start with the following observation: it suffices to prove that if the adversary submits two poly-

nomials pi and pj such that pi(ξ0
1 , . . . , ξ

0
12) = pj(ξ

0
1 , . . . , ξ

0
12) then it should hold that pi(ξ1

1 , . . . , ξ
1
12) =

pj(ξ
1
1 , . . . , ξ

1
12) (and vice versa). More generally, we prove that for every degree-2 polynomial p, p(ξ0

1 , . . . , ξ
0
12)

is a zero polynomial if and only if p(ξ1
1 , . . . , ξ

1
12) is a zero polynomial.

Lemma 1. Let p ∈ Zq[x,y,R,S, t] be a degree 2 polynomial. p(ξ0
1 , . . . , ξ

0
12) is a zero polynomial if and

only if p(ξ1
1 , . . . , ξ

1
12) is a zero polynomial.

Proof. We prove only one direction; the proof for the other direction follows symmetrically.
Suppose p(ξ0

1 , . . . , ξ
0
12) is a zero polynomial. Let,

p(ξ0
1 , . . . , ξ

0
12) = Q1(ξ0

1 , . . . , ξ
0
12) +Q2(ξ0

1 , . . . , ξ
0
12) · x +Q3(ξ0

1 , . . . , ξ
0
12) · y

+Q4(ξ0
1 , . . . , ξ

0
12) · x2 +Q5(ξ0

1 , . . . , ξ
0
12) · y2 +Q6(ξ0

1 , . . . , ξ
0
12) · xy

where Q1(ξ0
1 , . . . , ξ

0
12), . . . , Q6(ξ0

1 , . . . , ξ
0
12) are polynomials over R,S, t. Since p(ξ0

1 , . . . , ξ
0
12) is a zero poly-

nomial, the polynomials {Qi(ξ0
1 , . . . , ξ

0
12)} are zero polynomials. We now prove that Qi(ξ1

1 , . . . , ξ
1
12) is a

zero polynomial for every i ∈ [6]. Once we do this, the proof of the lemma will be complete. We handle
each of these polynomials separately.
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Claim 10. Q1(ξ1
1 , . . . , ξ

1
12) = 0.

Proof. Observe that Q1(ξb1, . . . , ξ
b
12) is of the following form:

c1 + c2ξ
b
6 + c3ξ

b
9 + c4ξ

b
12 + c5ξ

b
6ξ
b
9 + c6ξ

b
6ξ
b
12 + c7ξ

b
9ξ
b
12 + c8(ξb6)2 + c9(ξb9)2 + c10(ξb12)2,

where c1, . . . , c10 ∈ Zq. We omit writing the terms of the form c′1ξ
b
1 and c′′1

(
ξb1
)2 since ξb1 = 1,

(
ξb1
)2

= 1,
and hence are subsumed in the term c1, where c1 = c′1 + c′′1. Similarly, we also omit writing the terms
ξb1ξ

b
6, ξ

b
1ξ
b
9, ξ

b
1ξ
b
12 since ξb6 = ξb1ξ

b
6, ξb9 = ξb1ξ

b
9 and ξb12 = ξb1ξ

b
12. We first focus on the case when b = 0. First

observe that c10 = 0; this is because (ξ0
12)2 has the term S4 that cannot be canceled by other polynomials.

Similarly c9 = 0, since (ξ0
9)2 has the term R4. In addition, it holds that c7 = 0 since (ξ0

9ξ
0
12) has the term

R3S, that cannot be canceled by other polynomials. Also c5 = 0, since ξ0
6ξ

0
9 contains the term R3 that

cannot be canceled by other polynomials and, similarly c6 = 0, ξ0
6ξ

0
12 contains the term S3 that cannot be

canceled by other polynomials. So far, we have shown that c5, c6, c7, c9, c10 = 0. We now expand Q1.

Q1(ξ0
1 , . . . , ξ

0
12) = c1 + c2(R + S) + c3(R2 + RS + R− t) + c4(S2 + RS + S + t) + c8(R2 + S2 + 2RS)

= c1 + (c2 + c3)R + (c2 + c4)S + (c3 + c8)R2 + (c4 + c8)S2 + (c3 + c4 + 2c8)RS

+(−c3 + c4)t

Since Q1 is a zero polynomial, we have c1 = 0, c2 = −c3,c2 = −c4, c3 = −c8, c3 + c4 +2c8 = 0 and c3 = c4.
That is, c1 = 0, c2 = −c3, c3 = c4 and, c2 = c8.

Now, we focus on Q1(ξ1
1 , . . . , ξ

1
12). Expanding Q1(ξ1

1 , . . . , ξ
1
12) we get:

Q1(ξ1
1 , . . . , ξ

1
12) = c2(R + S− 1) + c3(R2 + RS−R− t) + c4(S2 + RS− S + t)

+c8(R2 + S2 + 2RS− 2R− 2S + 1)

= (c2 − c3 − 2c8)R + (c2 − c4 − 2c8)S + (c3 + c8)R2 + (c4 + c8)S2

+(c3 + c4 + 2c8)RS + (−c3 + c4)t + (−c2 + c8)

= 0

The last equality follows from the fact that c2 = −c3 = −c4 = c8.

Claim 11. Q2(ξ1
1 , . . . , ξ

1
12) = 0.

Proof. For b ∈ {0, 1}, observe that Q2(ξb1, . . . , ξ
b
12) is of the following form:

x−1 ·

 ∑
i∈{1,6,9,12},
j∈{2,4,7,10}

ci,jξ
b
i ξ
b
j

 ,

where ci,j ∈ Zq.
We first make some initial observations about the coefficients:

− c9,7 = 0; because ξb9ξb7 contains the term xR4 that cannot be canceled by other terms.

− c12,10 = 0; because ξb12ξ
b
10 contains the term xRS3 that cannot be canceled by other terms.

− c9,10 = 0; because ξb9ξb10 contains the term xt2 that can only be canceled by the corresponding term
contained in ξb12ξ

b
10, but since c12,10 = 0 we have c9,10 = 0.

− c12,7 = 0; ξb12ξ
b
7 contains the term xR2S2 that can only be canceled by the corresponding terms

contained in the polynomials ξb12ξ
b
10, ξ

b
9ξ
b
10, but since c12,10, c9,10 = 0 we have c12,7 = 0.
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− c6,10 = 0; because ξb6ξb10 contains the term xSt that cannot be canceled by other terms.

− c12,4 = 0; because ξb12ξ
b
4 contains the term xRS2 that can only be canceled by the corresponding

terms in the polynomials ξb12ξ
b
10, ξ

b
6ξ
b
10, but since c12,10, c6,10 = 0 we have c12,4 = 0.

− c12,2 = 0; because ξb12ξ
b
1 contains the term xS2 that cannot be canceled by other terms.

− c6,2 = 0; because ξb6ξb2 contains xS that can only be canceled by the corresponding term contained
in ξ12ξ2, but since c12,2 = 0 we have c6,2 = 0.

− c9,4 = 0; because ξb9ξb4 contains xRt that can only be canceled by corresponding terms contained in
the polynomials ξb6ξb10, ξ

b
9ξ
b
10, ξ

b
12ξ

b
4, but since c6,10, c9,10, c12,4 = 0 we have c9,4 = 0.

− c6,7 = 0; because ξb6ξb7 contains xR3 that can only be canceled by the corresponding term contained
in ξb9ξb4, ξb9ξb7, but since c9,4, c9,7 = 0 we have c6,7 = 0.

Rewriting Q2(ξb1, . . . , ξ
b
12), we have:

x−1 ·
(
c1,2ξ

b
1ξ
b
2 + c1,4ξ

b
1ξ
b
4 + c1,7ξ

b
1ξ
b
7 + c1,10ξ

b
1ξ
b
10 + c6,4ξ

b
6ξ
b
4 + c9,2ξ

b
9ξ
b
2

)
We now analyze the cases for b = 0 and b = 1 separately.

We start with b = 0.

Q2(ξ0
1 , . . . , ξ

0
12) = c1,2 + (c1,4 + c9,2)R + (c1,7 + c6,4 + c9,2)R2

+(c1,10 + c6,4 + c9,2)RS + (c1,10 − c9,2)t

= 0

From the above equation, the following holds:

− c1,2 = 0.

− c1,4 = −(c9,2)

− c1,7 + c6,4 + c9,2 = 0

− c1,10 + c6,4 + c9,2 = 0

− c1,10 = c9,2

Now, we consider the case when b = 1.

Q2(ξ1
1 , . . . , ξ

1
12) = c1,2 + (c1,4 − c9,2 − c6,4)R + (c1,7 + c6,4 + c9,2)R2

+(c1,10 + c6,4 + c9,2)RS + (c1,10 − c9,2)t

= (c1,4 − c9,2 − c6,4)R + (c1,7 + c6,4 + c9,2)R2

+(c1,10 + c6,4 + c9,2)RS + (c1,10 − c9,2)t (∵ c1,2 = 0)

= (−2c9,2 − (−2c9,2))R + (c1,7 + c6,4 + c9,2)R2

+(c1,10 + c6,4 + c9,2)RS + (c1,10 − c9,2)t (∵ c1,4 = −c9,2, c6,4 = −2c9,2)

= (c1,7 + c6,4 + c9,2)R2 + (c1,10 + c6,4 + c9,2)RS + (c1,10 − c9,2)t

= 0 (∵ from the last three bullets described above)

Claim 12. Q3(ξ1
1 , . . . , ξ

1
12) = 0.

58



Proof. For b ∈ {0, 1}, observe that Q3(ξb1, . . . , ξ
b
12) is of the following form:

y−1 ·

 ∑
i∈{1,6,9,12},
j∈{3,5,8,11}

ci,jξ
b
i ξ
b
j

 ,

where ci,j ∈ Zq and b ∈ {0, 1}.
We first make some initial observations about the coefficients:

− c12,11 = 0; because ξb12ξ
b
11 contains the term yS4 that cannot be canceled by other terms.

− c9,8 = 0; because ξb9ξb8 contains the term ySR3 that cannot be canceled by other terms.

− c12,8 = 0; because ξb12ξ
b
8 contains the term yt2 that can only be canceled by the corresponding terms

contained in ξb9ξb8, but since c9,8 = 0 we have c12,8 = 0.

− c9,11 = 0; because ξb9ξb11 contains the term yR2S2 that can only be canceled by the corresponding
terms contained in the polynomials ξb9ξb8, ξb12ξ

b
8, but since c9,8, c12,8 = 0 we have c9,11 = 0.

− c6,8 = 0; because ξb6ξb8 contains the term yRt that cannot be canceled by other terms.

− c6,11 = 0; because ξb6ξb11 contains the term ySR2 that can only be canceled by the corresponding
terms in the polynomials ξb6ξb8, ξb12ξ

b
8, but since c6,8, c12,8 = 0 we have c6,11 = 0.

− c9,3 = 0; because ξb9ξb3 contains the term yR2 that cannot be canceled by other terms.

− c6,3 = 0; because ξb6ξb3 contains yR that can only be canceled by the corresponding term contained
in ξ9,3, but since c9,3 = 0 we have c6,3 = 0.

− c12,5 = 0; because ξb12ξ
b
5 contains yS3 that can only be canceled by the corresponding term contained

in ξb12ξ
b
11, ξ

b
6ξ
b
11, but since c12,11, c6,11 = 0 we have c12,5 = 0.

− c9,5 = 0; because ξb9ξb5 contains ySt that can only be canceled by corresponding terms contained in
the polynomials ξb12ξ

b
8, ξ

b
6ξ
b
8, ξ

b
12ξ

b
5, but since c12,8, c6,8, c12,5 = 0 we have c9,5 = 0.

Rewriting Q3(ξb1, . . . , ξ
b
12), we have:

y−1 ·
(
c1,3ξ

b
1ξ
b
3 + c1,5ξ

b
1ξ
b
5 + c1,8ξ

b
1ξ
b
8 + c1,11ξ

b
1ξ
b
11 + c6,5ξ

b
6ξ
b
5 + c12,3ξ

b
12ξ

b
3

)
We now analyze the cases for b = 0 and b = 1 separately.

We start with b = 0.

Q3(ξ0
1 , . . . , ξ

0
12) = c1,3 + (c1,5 + c12,3)S + (c1,11 + c6,5 + c12,3)S2

+(c1,8 + c6,5 + c12,3)RS + (c1,8 − c12,3)t

= 0

From the above equation, the following holds:

− c1,3 = 0.

− c1,5 = −(c12,3)

− c1,11 + c6,5 + c12,3 = 0

− c1,8 + c6,5 + c12,3 = 0
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− c1,8 − c12,3 = 0

Now, we consider the case when b = 1.

Q3(ξ1
1 , . . . , ξ

1
12) = c1,3 + (c1,5 − c12,3 − c6,5)S + (c1,11 + c6,5 + c12,3)S2

+(c1,8 + c6,5 + c12,3)RS + (c1,8 − c12,3)t

= (c1,5 − c12,3 − c6,5)S + (c1,11 + c6,5 + c12,3)S2

+(c1,8 + c6,5 + c12,3)RS + (c1,8 − c12,3)t(∵ c1,3 = 0)

= (−2c12,3 − (−2c12,3))S + (c1,11 + c6,5 + c12,3)S2

+(c1,8 + c6,5 + c12,3)RS + (c1,8 − c12,3)t(∵ c1,5 = −c12,3, c6,5 = −2c12,3)

= (c1,11 + c6,5 + c12,3)S2 + (c1,8 + c6,5 + c12,3)RS + (c1,8 − c12,3)t

= 0 (∵ from the last three bullets described above)

Claim 13. Q4(ξ1
1 , . . . , ξ

1
12) = 0.

Proof. For b ∈ {0, 1}, observe that Q4(ξb1, . . . , ξ
b
12) is of the following form:

x−2 ·

 ∑
i,j∈{2,4,7,10},j≥i

ci,jξ
b
i ξ
b
j

 ,

where ci,j ∈ Zq and b ∈ {0, 1}. Moreover, ξ0
i = ξ1

i for i ∈ {2, 4, 7, 10}. Thus, Q4(ξ0
1 , . . . , ξ

0
12) = 0 implies

that Q4(ξ1
1 , . . . , ξ

1
12) = 0.

Claim 14. Q5(ξ1
1 , . . . , ξ

1
12) = 0.

Proof. For b ∈ {0, 1}, observe that Q5(ξb1, . . . , ξ
b
12) is of the following form:

y−2 ·

 ∑
i,j∈{3,5,8,11},j≥i

ci,jξ
b
i ξ
b
j

 ,

where ci,j ∈ Zq and b ∈ {0, 1}. Moreover, ξ0
i = ξ1

i for i ∈ {3, 5, 8, 11}. Thus, Q5(ξ0
1 , . . . , ξ

0
12) = 0 implies

that Q5(ξ1
1 , . . . , ξ

1
12) = 0.

Claim 15. Q6(ξ1
1 , . . . , ξ

1
12) = 0.

Proof. Observe that Q6(ξb1, . . . , ξ
b
12) is of the following form:

(xy)−1 ·

 ∑
i∈{2,4,7,10},j∈{3,5,8,11}

ci,jξ
b
i ξ
b
j

 ,

where ci,j ∈ Zq and b ∈ {0, 1}. Moreover, ξ0
j = ξ1

j for j ∈ {3, 5, 8, 11} and ξ0
i = ξ1

i for i ∈ {2, 4, 7, 10}.
Thus, Q6(ξ0

1 , . . . , ξ
0
12) = 0 implies that Q6(ξ1

1 , . . . , ξ
1
12) = 0.

Thus, we proved that Qi(ξ1
1 , . . . , ξ

1
12) is a zero polynomial for every i ∈ [6]. This proves that p(ξ1

1 , . . . , ξ
1
12)

is also a zero polynomial. As remarked before, the other direction also can be argued symmetrically.
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