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Abstract

In this work, we define and construct fully homomorphic non-interactive zero knowledge (FH-NIZK)
and non-interactive witness-indistinguishable (FH-NIWT) proof systems.

We focus on the NP complete language L, where, for a boolean circuit C' and a bit b, the
pair (C,b) € L if there exists an input w such that C(w) = b. For this language, we call a non-
interactive proof system fully homomorphic if, given instances (C;,b;) € L along with their proofs II;,
for i € {1,...,k}, and given any circuit D : {0,1}¥ — {0, 1}, one can efficiently compute a proof II for
(C*,b) € L, where C*(wM) ..., wk)) = D(C;(w),...,Cr(w¥)) and D(by,...,by) = b. The key
security property is unlinkability: the resulting proof II is indistinguishable from a fresh proof of the
same statement.

Our first result, under the Decision Linear Assumption (DLIN), is an FH-NIZK proof system
for L in the common random string model. Our more surprising second result (under a new decisional
assumption on groups with bilinear maps) is an FH-NIWI proof system that requires no setup.
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1 Introduction

Homomorphism is a desirable feature that enhances the capabilities of many cryptographic systems. Most
notably, the concept of fully homomorphic encryption [RADTS8|[Gen09, BV14] has revolutionized the area of
cryptography. Other primitives such as homomorphic signatures [BE11, I(GVW15| and homomorphic secret
sharing [BGIT18| have also found useful cryptographic applications [KWI8, [BCG™17|. In this work, we
study homomorphism in the context of non-interactive proof systems. Our goal is to design homomorphic
proof systems with secrecy guarantees; specifically, we focus on the most common secrecy guarantees
studied in the literature, namely zero-knowledge [BDMP9I| and witness indistinguishability [BOV05,
DNOQ].

Our Work: Fully-Homomorphic NIZK and NIWI Proofs. We introduce the notion of fully-
homomorphic non-interactive zero-knowledge (FH-NIZK) and witness-indistinguishable (FH-NIWI) proof
systems. In the simplest setting, this proof system allows for combining proofs for the instances A and B
into a proof for the instance A A B. In the more general setting, this proof system allows for combining
proofs for multiple instances Ay, ..., 4, using a function f into a single proof for f(Ay,...,4,).

A naive attempt to combine proofs for the instances (Aj,...,A,) using a function f is to simply
output the concatenation of the individual proofs on each of the instances Ai,..., A, together with the
function f. However, this combined proof does not resemble an honestly generated proof for the instance
f(A1,..., Ay). Our goal is to combine proofs in a way that is indistinguishable from an honestly generated
proof for the instance f(Aj,..., A,). We call this property unlinkability.

There are several reasons why unlinkability is an interesting feature: Firstly, it is often desirable to
hide the fact that a proof was obtained by combining multiple proofs. Unlinkability also preserves the
privacy of the underlying proof; namely, it ensures that homomorphic evaluation of multiple NIZK (resp.,
NIWT) proofs still results in a NIZK (resp., NIWI) proof. Moreover, it guarantees that the homomorphic
evaluation can be multi-hop, meaning that the proofs can be evaluated upon multiple times. We describe
the homomorphic evaluation procedure and unlinkability property below.

We define the notion of a fully-homomorphic proof system for the NP-complete language L;; which
consists of instances (C,b), where C' is a boolean circuit with single-bit output and b is a bit, such that
there exists a witness w (a vector of bits) for which C(w) = b. A non-interactive proof system for proving
membership in this language consists of the algorithms Prove and Verify. A fully homomorphic proof
system additionally has the algorithm Eval defined as follows:

Homomorphic Evaluation (Eval): On input k instances {z; = (Cj,b;)}iep accompanied with proofs
{;}iepy for the statements {z; € Ly }icy), and a circuit D : {0,1}* — {0,1}, Eval outputs a proof
IT* for the statement z* = (C*, D(by,...,bx)) € Ly, where C* is defined to be the circuit that on input
(Wi, ...,wg) outputs D(Cq(w1),...,Cr(wg)).

We define unlinkability as follows: A proof II* output by Eval on input {z; € Lu}ie[k] accompanied
with proofs {II;};c(x), where II; is output by Prove on input z; and a valid witness w;, should be indis-
tinguishable from the output of Prove on input the instance (C*, D(by, ..., b)) and witness (w1, ..., wg).
As mentioned above, unlinkability guarantees that the evaluation property preserves zero-knowledge (ZK)
or witness-indistinguishability (WI) of an evaluated proof, depending on whether the fresh proof is ZK or
WI respectively. We refer the reader to Figure [I] for an illustrative description of unlinkability, and refer
the reader to Section [4] for our definition of fully homomorphic proofs.

Our Results. We construct both a NIZK and a NIWI fully homomorphic proof system.

Theorem 1 (Informal). Assuming Decisional Linear Assumption (DLIN), there exists a fully-homomorphic
non-interactive zero-knowledge proof system in the common random string model.
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Figure 1: Unlinkability property of Fully Homomorphic Proofs: Let II* be the output of Eval on input
{(Ci,bi) € Ly }iep) accompanied with proofs {I1; };¢(], where II; is output by Prove on input (Cj, b;) and a
valid witness w;. Let C* be the circuit that on input (w1, ..., wy), outputs D(Cy(w1), ..., Ci(wyg)) and let
II7 be an honestly generated proof for the instance (C*,b*) € L. We require that II* is computationally
indistinguishable from IIg.

2
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For constructing FH NIWI proofs, we rely on a new decisional assumption on groups with bilinear maps
called DLIN with leakage, defined in Figure 2| (below).

Let f, h, g be three random generators in a group G. The assumption states that Dg(1}) =,
D1 (1), where:

— Dy(1*) : Choose R, S,t Zy, and output (f,h,g) along with the following matrix:

fR BS gR+S
fR2 pRS—t gR(R+S+1)7t
fRS+t 1S? gS(R+S+1)+t

— Dy(1") : Choose R, S, t Zy and output (f,h,g) along with the following matrix:

fR hS gR+S—1
fR2 pRS—t gR(R+S—1)—t
fRS+t BS? gS(R+S—1)+t

Figure 2: Description of the DLIN with leakage, with respect to a group G of prime order p with a bilinear
map e : G x G — Gp. We refer to this as DLIN with leakage assumption since the first row in both
the distributions are indistinguishable assuming DLIN, and the second and third rows can be viewed as
leakage.

For a more detailed description of the assumption, we refer the reader to Section [5.3] We prove that our
assumption holds in the bilinear generic group model in Appendix [A.T]

Theorem 2 (Informal). Assuming DLIN with Leakage, there exists a fully-homomorphic non-interactive
witness-indistinguishable proof system in the plain model (i.e. without setup).

Related Works. Most relevant to our work is the work on malleable proof systems [CKLM12,[CKLM13b],
who studied unary transformations, i.e., when Eval receives a single instance-proof pair and outputs a
mauled instance along with the corresponding proof. The work of [CKLM12| studied malleable proof sys-
tems for specific relations, and [CKLM13b] studied malleability for general relations albeit under knowledge
assumptions. Moreover, these works consider NIZK proof systems and thus require trusted setup. We note



that [CKLMI12] satisfies a stronger proof of knowledge property (called controlled-malleable simulation-
sound extractability) that we don’t achieve in this work.

The notion of malleability, although seemingly limited due to its unary nature, has found many appli-
cations, such as verifiable shuffles [CKLM12], delegatable anonymous credentials [BCCT09a, [CKLM13al
and leakage-resilient proof systems [AGPT4]. Re-randomizability [BCCT09a], a special case of malleabil-
ity, has also been studied in the literature. Following [CKLMI12| [CKLM13b|, [ACJ17| construct privately
malleable NIZK proof systems, and the works of [ANTIl [AGM18] study homomorphic proof systems for
specific relations.

It is important to stress that all the prior works, even in the case of unary transformations studied in
the context of malleable proofs [CKLM12, [CKLM13b]|, assume trusted setup. Thus, in the context of WI
proof systems, our results are especially surprising since it allows for combining proofs that were created
completely independently, with no shared setup.

We now describe some applications of fully-homomorphic proofs.

Private Incremental Proofs. Incremental proofs, introduced by Valiant [Val08|, allow for merging
many computationally sound proofs [Mic0O0] into one proof which is as short and easily verifiable as
the original proofs. Incremental proofs have been applied in several contexts such as proof-carrying
data [BCCT13| and cryptographic image authentication mechanisms [NT16]. It is useful in two types of
settings: one where the computation dynamically evolves over a period of time, hence a proof of correctness
of the entire computation cannot be computed all at once, and the other where different entities wish to
compute a proof for the correctness of computation in a distributed setting.

The focus of prior works on incremental proofs was on succinctness whereas the focus of our work is
on privacy. While our work does not achieve succinctness, as we will see later achieving privacy alone
turns out to be quite challenging (especially, in the context of fully-homomorphic NIWIs). We hope that
our tools can be combined with succinct incremental proofs to yield incremental proofs that enjoy both
succinctness and privacy guarantees.

Commit-and-Compute Paradigm. Another application of fully-homomorphic proofs is the commit-
and-compute paradigm. At a high level, the commit-and-compute paradigm allows a prover to commit to
its sensitive data, and later on, prove statements about the committed data. Proofs from different provers
can then be combined to infer arbitrary statements about the committed data. We give two examples that
illustrate the applicability of this paradigm: (i) Regulation of cryptocurrency activities and, (ii) Verifiable
data analysis.

Regulation of Cryptocurrency Activities. New regulation laws regarding cryptocurrency activities are
being formulated and some of them require that financial transactions involving cryptocurrencies be re-
ported [oSBS15|. The regulators can then infer different conclusions about the state of the digital economys;
for instance, they can conclude the debt of different entities, and publish the findings for the public. The
involved entities may have motives to lie about their finances and this would in turn lead the regulators to
arrive at false conclusions. We can address this problem using fully homomorphic NIZK or NIWI proofs:
Each entity can now commit to their financial transactions (to maintain privacy) and submit a proof that
the financial transactions reported to the regulators are valid. The regulators can collect the data and the
proofs from all the entities, publish its conclusions along with a proof that is obtained by homomorphically
computing on the individual proofs.

Verifiable Data Analysis. Consulting firms often collect data from different research groups, perform
analysis on the joint dataset and then share the analyzed results with different organizations. For instance,
there are firms that collect medical data from different research groups and share the analysis on the
medical data to pharmaceutical companies. This raises concerns about trusting the research groups and the



consulting firms to not lie about their conclusions. We can tackle this concern by using fully homomorphic
NIZK or NIWTI proofs. The research groups can publish their (committed) data along with a proof that it
was collected from valid sources, without revealing the identity of the sources. The consulting firms can
then perform analysis on the joint data sets and homomorphically compute a proof that the analysis was
performed correctly. Moreover, the homomorphically computed proof will also hide the identities of the
research groups involved in sharing the data to the firms.

Commit-and-compute paradigm is formalized by defining the NP language Lcom, a modification of
Ly so that the instance includes a vector of commitments along with (C,b). The language Lcom is as
follows:

Lcom = {(C, (comy,...,comy),b) | F{w;,r;} such that C(ws,...,w,) =bA {com; = Commit(w;,r;)}}

The evaluation is defined similarly to that of homomorphic Eval for L;;. We show how to instantiate the
commit-and-compute paradigm using fully-homomorphic proofs in Section [§]

Roadmap for Rest of the Sections. In Section 2, we give an overview of our techniques. In Section [3]
we describe some notation and definitions. In Section [ we present our definition of fully homomorphic
NIZK and NIWI proof systems. In Section [5| we define and instantiate the building blocks for our
constructions, and describe our DLIN with Leakage assumption (in Section. In Section@ we construct
fully homomorphic NIZK proofs for NP from DLIN. In Section [7], we construct fully homomorphic NIWI
proofs from the DLIN with Leakage assumption. Finally in Section [§] we define and instantiate the
Commit-and-Compute paradigm.

2 Technical Overview

Let us start with some intuition. Suppose we want to generate a proof for the satisfiability of C7 A Cy for
some circuits Cq,Cy. Given a proof II; for the satisfiability of C7 and a proof Il for the satisfiability of
Cy, clearly IT = (113, II3) is a proof for the satisfiability of C1 A Ca. However, such a proof does not satisfy
unlinkability. Moreover, the structure of the proof II = (II;,IIs) may be different from that of a fresh
proof computed for the satisfiability of Cy A Cs.

To achieve homomorphism and unlinkability, a natural candidate is a proof system that works gate-
by-gate as follows: Commit to all the wire values of the circuit and prove that each gate is consistent
with the committed values. Such a proof structure is a good candidate because structurally, a proof of
the composed instance C7 A Co will be similar to a fresh proof.

Indeed the beautiful work of Groth, Ostrovsky and Sahai [GOS06a] (henceforth referred to as GOS)
has this proof structure and it is the starting point for our FH NIZK construction as well as our FH NIWI
construction. GOS constructed NIZK and NIWI proofs under the decisional linear (DLIN) assumption.
First in Section we describe our FH NIZK construction which builds on the GOS NIZK. Then in
Section we describe our FH NIWI construction which contains the bulk of the technical difficulty in
this work.

2.1 Overview: Fully Homomorphic NIZK

Recall that an Ly instance is of the form (C,out) where C : {0,1}} — {0,1} and out € {0,1}. Let
w = (w1,...,w) be a witness such that C(w) = out. Let us first recall the GOS NIZK proof for Ly,.

GOS NIZK. The GOS NIZK proof system is associated with a commitment scheme with public parameters
(as we elaborate on later). The CRS consists of the parameters pp for the commitment scheme. The prover
on input (C,out) along with witness w does the following:



1. Let wy,...,w, be the values induced by witness w = (wq, ..., w;) on all the wires of the circuit C.
Commit to all the wire values with respect to pp, except the output wire. For every i € [n — 1],
denote by c; the commitment to wire value w;. Denote by ¢, = w,,.

2. For each i € [n], prove that the commitment ¢; is a commitment to a boolean value. We refer to
such proofs by Bit Proofs.

3. For each gate in C, prove that the commitments to the input and the output wires of the gate are
consistent with the gate functionality. We refer to such proofs by Gate Proofs.

In their construction, GOS use a commitment scheme which has two indistinguishable modes of public
parameters: perfectly binding and perfectly hiding. Loosely speaking, the perfectly binding mode is used
to argue perfect soundness, and the perfectly hiding mode is used to argue zero-knowledge. In addition,
they require the commitment scheme to be additively homomorphic and the additive homomorphism is
used in the Gate Proofs.

GOS constructed NIWI proof systems for Bit Proofs and Gate Proofs, and proved that this is sufficient
for their NIZK construction. Both Bit and Gate Proofs are computed using the openings of the commit-
ments as the witness. Our FH NIZK construction follows a similar template (our NIZK construction is
identical to the GOS NIZK) but in order to achieve unlinkability, we need additional properties from the
commitment scheme as well as from the Bit Proofs and Gate Proofs, as we explain below.

Homomorphic FEvaluation. Homomorphic evaluation works as follows: On input k instances {z; =
(Ci, b:) }iex) along with proofs {II; };cx) where each II; is a proof that z; € Ly, and a circuit D, we
want to output a proof that (C*,b*) € Ly where C* is the composed circuit and b* = D(by, ..., bg). First,
compute a fresh proof for the circuit D with witness (by,...,b;). Note that the fresh proof for (D,b*)
together with the proofs {II;};c[), forms a verifying proof with respect to (C*,b*). This follows from
the fact that in each proof II;, the output wire b; is given in the clear. However this combined proof is
distinguishable from a fresh proof (given the individual proofs {Il;};c[). Thus, to achieve unlinkability,
we randomize this entire proof.

Randomizing the NIZK Proof. A proof system is said to be randomizable [BCCT09b] if given a proof
IT for an instance x, it is possible to randomize the proof II to obtain a proof II' for z, such that I’ is
indistinguishable from a fresh proof for x. Randomizability of a proof system is sufficient for achieving
unlinkability in our construction, as explained above.

At a high level, we randomize the proof II as follows: Randomize all the commitments in the proof,
and then “update” the existing proofs to be with respect to the randomized commitments. Thus, given
the original Bit Proofs and Gate Proofs, we need to be able to “maul” them to be with respect to the new
randomized commitments in such a way that the updated proofs are distributed as fresh Bit Proofs and
Gate Proofs. We refer to such proofs as malleable proofs.

Ingredients for our FH NIZK. In summary, for constructing FH NIZK, we use a commitment scheme from
GOS, which is also randomizable (we describe the corresponding scheme (C.Setup, C.Commit, C.Rand) in
Definition @ Section . We also need malleable proof systems for Bit proofs and for Gate proofs (we
describe the corresponding proof systems (Bit.Prove, Bit.Verify, Bit.Maul) and (N.Prove, N.Verify, N.Maul)
in Section .

As shown in GOS, both Bit Proofs and Gate Proofs can be reduced to proofs of linearity with respect
to the NP language Li;,. The language Ly;, is parameterized by three random group elements (f, h, g) in
some underlying group G of prime order (which has a bilinear map), and whose instances consists of pairs
(A, B), where A = (f®, h%, ¢%) and B = (f*, "2, ¢"), such that a; + as = a3 or by + by = bgﬂ

Yf a1 + a2 = a3 then A is said to be a linear tuple.



GOS constructed a NIWI proof for L;,. Recall that for our purposes, we need malleable proof systems
for Bit Proofs and Gate Proofs, and as a result we need the underlying NIWI proof for L;, to be malleable
with respect to randomization. Namely given a pair (A,B) € Ly, with a NIWI proof II, it should be
possible to maul the proof II for (A, B) into a proof II' for a randomization (A’,B’) of (A, B). We show
that the GOS proof for Ly, has the desired malleability property, and we refer the reader to Section
for the description of the malleable proof system.

2.2 Overview: Fully Homomorphic NIWI

We now focus on our construction of a FH NIWI proof system for Ly;. As we will see, this is a signifi-
cantly harder task compared to the FH NIZK, since NIWI is constructed in the plain model without a CRS.

The GOS NIWI Construction. We will first describe the GOS NIWI proof system. Recall that in the
GOS NIZK construction, the CRS consists of the parameters pp of the commitment scheme. In a NIWI
construction, there is no CRS. In the GOS NIWI, the prover chooses two parameters (pp?, pp') such that
it is possible to publicly verify that one of them is binding. The NIWTI proof for (C,out) € Ly is of the
form (pp?,I1°, pp!, II') where II° is the NIZK proof with respect to pp® for each b € {0, 1}.

Towards Homomorphic Evaluation and Unlinkability. It is not clear how to use the GOS NIWI construction
to construct an FH NIWI. In particular, achieving unlinkability here is significantly harder. Intuitively,
the difficulty stems from the fact that even though the GOS NIWI appears to be gate-by-gate, there is
an over-arching pair of parameters associated with the entire proof, and this pair is different for different
proofs.

In more detail, a fresh GOS NIWI proof as described above has two parameters (pp?, pp!) associated
with it. Thus, if we use an approach similar to the FH NIZK construction for composing proofs, namely
if we prove that (D(C1,...,Ck),b") € Ly, given k instances {z; = (Cj, b;) }ie|x) along with corresponding
proofs {IL;};e[x), where b* = D(b1,...,by), then the resulting composed proof will have 2k parameters
associated with it. It is unclear how to randomize such a composed proof to look like a fresh proof which
has only two parameters associated with it.

In order to achieve unlinkability in our construction, we diverge from the GOS construction. Rather
than choosing a pair of parameters per proof, we choose a fresh pair of parameters (pp?, ppjl) for each gate
of the circuit. As in the GOS construction, the honest prover chooses one of them to be binding and the
other hiding such that one can publicly verify that indeed one of the parameters is binding. Recall that
in the GOS NIWTI construction, the prover committed to each wire value with respect to two parameters
(pp?, pp!). Now that we are choosing fresh parameters per gate, the question is which parameters do we
use to commit to a wire value?

We associate four parameters pp?7 ppil, pp?, ppjl- with an internal wire between the " and the j*" gate
in the circuit. In our construction, we commit to the wire value with respect to all of these parameters and
?, cil,cg,cjl- per wire. We compute Bit Proofs with respect to each of the
four commitments, and compute Gate Proofs for every gate with respect to both parameters associated
with that gate.

thus, have four commitments c

Ensuring Soundness. Recall that the GOS NIWI consists of two independent NIZK proofs I1%, IT' with
respect to parameters pp?, pp! respectively. Thus, the commitments, Bit Proofs and Gate Proofs with
respect to both the parameters are independent of each other, and II°, IT! are verified separately. This is
not the case in our setting.

Our proof contains a pair of parameters per gate, and has four commitments per wire. Thus, we need
to prove that the multiple commitments per wire commit to the same value. In particular for soundness,
it is sufficient to prove that among the four commitments per wire, the two commitments corresponding
to the two binding parameters commit to the same value.



However the verifier does not know which of the four parameters pp?, ppll, pp?, ppjl- are binding. All
we are guaranteed is that for every gate j, one of (ppg-), ppjl-) is binding. So in our construction, we give
four pairwise proofs that each commitment with respect to gate i commits to the same value as each
commitment with respect to gate j. Namely, for all by,by € {0,1}, the commitments (c?l,c??) with
respect to ppi-’1 pp?? commit to the same value. This ensures consistency with respect to the two binding
commitments across gates 4,j. This, along with the Bit and Gate proofs will ensure that there is a
consistent boolean assignment w1, ..., w, induced by the witness w across all the wires of the circuit, such
that C'(w) = out.

We emphasize that we do not provide consistency proofs between the two commitments (c?7 czl) for a
gate 7, and in fact this is crucial for achieving witness indistinguishability, as we explain later. Towards
constructing such pairwise proofs, we define the language Ltc E] which consists of instances of the form
(ci, cj, pp;; PP;) Where commitment c; with respect to parameters pp; and c; with respect to pp; commit

to the same bit. See Section for a detailed description of the language.

2.2.1 Arguing Witness Indistinguishability

The main challenge is to prove that the final construction is witness indistinguishable even given the
additional Ltc proofs for instances of the form (c;, cj, pp;, pp;). We note that even if the proof system
for Ltc satisfies WI, we do not know how to argue that the final construction is WI. Intuitively, the issue
is that an Ltc statement may have a unique witness, in which case WI offers no secrecy. As we explain
below, we need our Ltc proof system to have a secrecy guarantee of the flavor of strong NIWI (with
respect to specific distributions).

To argue WI of our final FH NIWI construction, we prove that a proof Ily for (C,out) € Ly with
respect to witness witg is indistinguishable from a proof IlI; with respect to witness wit;. Let us zoom
in on a wire k between gates ¢, j whose value changes from 0 (for witg) to 1 (for wit;). Both Iy, IT; will
contain four commitments to the wire k with respect to parameters ppY, pp%, ppg-), ppjl., along with the four
Ltc proofs (see Figure 3).

Denote by PP = (pp?,ppil,pp?,pp]l-). Denote by W(b) the four commitments to bit b on wire k,
that is W(b) = (cg,c},c?,cjl-) where all the four commitments are to the bit b. Denote by II(b) =
(700, 701 710 711} where for all by, by € {0,1}, 712 is a proof for (cbl,cgz, ppfl, ppg?) € Ltc.

)

e

11

Ve

Figure 3: Zooming in on wire k of circuit C with parameters PP = (pp?,pp},ppg,pp}), commitments
W = (c?,cil,c?,c}) and Ltc proofs IT = (7% 701 710 711),

To prove WI of the final construction, in particular the following should hold:

(PP, W(0),T1(0)) ~ (PP, W(1),TI(1)) (1)

2TC stands for the language of Two Commitments.



This indistinguishability requirement already implies a strong NIWI for Lyc, with respect to distributions
Dy and Dy, where Dy samples Lyc instances (c;, ¢, pp;, ppj) such that c;,c; commit to the bit b.

For our analysis, Equation is insufficient since we need Equation to hold even given the rest of
the proof for (C,out) € Ly. In other words, we need Equation to hold given some auxiliary information
aux, where given aux it should be possible to efficiently compute the rest of the proof from it. One possible
aux is the openings of all the four commitments so that it is then possible to compute Bit and Gate Proofs
for the rest of the proof. But if we give the openings with respect to 0 and 1 respectively, then the two
distributions in Equation are clearly distinguishable.

So the question is, what aux can we give? Our key insight is that we can give equivocated openings
for the commitments with respect to the two hiding parameters and honest openings with respect to the
binding parameters, so that in both the distributions in Equation , two of the openings are to 0 and two
of them are to 1. Without loss of generality, we think of pp?, ppg as the binding parameters and ppl-l, pp}
as the hiding parameters. We strengthen the requirement in Equation as follows:

(PP(0), W(0), II(0), 0(0)) ~ (PP(1), W(1), II(1), O(1)) (2)

where PP(b) = (pp?, ppz-l_b7 ppz’-, pp}_b), and W(b), II(b) are as before, and where in both the distributions,
O(b) contains openings for the commitments W(b) to (0, 1,0, 1) respectively. This is the case since in the
left-hand-side parameters PP(0), the second and fourth parameters are hiding, and we equivocate c%, c}
to open to 1, whereas in the right-hand-side parameters PP(1), the first and third parameters are hiding,
and we equivocate cil,cjl to open to 0. Note that the Ltc proofs in II(b) are still computed using the
(honest) openings to b.

This is still not sufficient for our WI analysis. In order to argue WI of the final construction, we need
to invoke Equation for every wire k in the circuit for which the value of witg on wire k is different from
value of wit; on wire k. These invocations are not completely independent since two different wires may
be associated with the same gate, and in particular the two wires may be associated with an overlapping

set of parameters. Thus, we need to further strengthen Equation to as follows:
(PP(0), W(0),T1(0), O(0), W(1), TI(1), 0(1)) ~ (PP(1), W(1),TI(1), O(1), W(0), TI(0), 0(0))  (3)

where PP(b), W(b), II(b) and O(b) are as described above. We note that in the left-hand-side, W(1) are
four commitments to 1 with respect to PP(0), II(1) are the corresponding Lyc proofs computed using the
honest openings to 1, and O(1) are the openings to (1,0, 1,0) respectively. Similarly, in the right-hand-
side, W(0) are four commitments to 0 with respect to PP(1), II(0) are the corresponding Ltc proofs,
and again O(0) are the openings to (1,0,1,0) respectively. We refer to the property from Equation
as Strong Secrecy of Ltc and describe it in detail in Section [7.I] The Strong Secrecy requirement of Lyc
as in Equation is sufficient for our WI analysis. Before explaining our WI analysis, we describe the
ingredients for our FH NIWI Construction.

Recall that our NIWI proof for (C, out) € Ly is computed as follows: Choose a fresh pair of parameters
per gate, commit to all the wire values with respect to all the associated parameters (2 commitments per
input wire, 4 commitments per connecting wire), compute Bit Proofs (one per commitment), compute
Gate Proofs (two per gate) and compute Ltc proofs (four per connecting wire). In order to randomize
our NIWI proof, we randomize all the parameters, correspondingly update the commitments and update
the proofs to be with respect to the randomized parameters and commitments. Specifically, we need the
following ingredients for our final FH NIWI Construction.

Ingredients for our FH NIWI.

— A Commitment Scheme as required in the FH NIZK construction, but with the additional feature
that allows for randomizing the parameters and updating the commitments to be with respect to
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the randomized parameters, so that the randomized parameters and commitments are distributed
like fresh commitments.

— Bit Proofs and Gate Proofs as required in the FH NIZK construction, but with the following (mod-
ified) malleability property: Given a proof for commitments with respect to some pp, it is possible
to efficiently randomize the parameters, correspondingly update the commitments and update the
proofs to be with respect to the new parameters and commitments, such that they are all distributed
like fresh ones. As in the FH NIZK, we require the Bit and Gate Proofs to satisfy WI.

— A proof system for Ltc with the same malleability property as Bit and Gate Proofs, and with the
Strong Secrecy property as described in Equation .

We show (in Section that the GOS commitment scheme (C.Setup, C.Commit, C.Rand) satisfies the
additional feature that we require. The malleability of Bit Proofs and Gate Proofs can be reduced to the
malleability of the NP language L, described previously (similar to the FH NIZK construction). We de-
scribe the corresponding proof systems (Bit.Prove, Bit.Verify, Bit.GenMaul) and (N.Prove, N.Verify, N.GenMaul)
in Section [Z.1l

Jumping ahead, we construct the proof system for Ly¢ also using the proof system for L;,, and the
malleability of Ly¢ follows from the malleability of Li;,. We then argue that the Strong Secrecy follows
from our new DLIN with Leakage assumption (see Section for an overview and Section for the
details).

WI Analysis. To explain our WI analysis, we describe an algorithm ProofGen that on input a sample from
the left-hand-side distribution in Equation (3), generates an entire proof II for (C,out) € Ly which is
indistinguishable from an honest proof generated using witg, and on input a sample from the right-hand-
side distribution, ProofGen generates a proof II which is indistinguishable from an honest proof generated
using wit.

ProofGen Algorithm. Without loss of generality, we assume that every circuit is layered; that is, all the
gates of the circuit can be arranged in ¢ layers so that for all ¢ € [t], all the output wires of gates from
layer i are input wires to gates in layer i + 1. Fix any two witnesses witg and wit; for (C,out) € L.

On input (PP(b), W(b), II(b),0(b), W(1 — b),II(1 — b), O(1 — b)), ProofGen does the following:

1. Recall that PP(b) = (pp?, ppgfb, ppg, pp}*b). Assign parameters (pp?, pp}*b) to all the odd layer gates
of the circuit and (ppg’-, pp}_b) to all the even layer gates of the circuit. We will refer to {pps’7 ppé’.}
as the Left Parameters and {pp%*b, pp}*b} as the Right Parameters.

2. For all the input wires of the circuit C', commit to witg with respect to ppi-’ (Left Parameter) and
commit to wit; with respect to ppil_b (Right Parameter).

3. For every wire k, produce the 4 commitments and 4 Lyc proofs for the wire as follows: Denote by
w0 the value induced by witg on wire &, and denote by wy, ; the value induced by wit; on wire & in
the circuit.

— If w0 = wg,1 then compute the commitments and Ltc proofs honestly.
— If wgp =0 and wy; =1 then use W(b) as the commitments and II(b) as the Lyc proofs.
— If wyo =1 and w1 = 0 then use W(1 —b) as the commitments and II(1—0b) as the Ltc proofs.

4. Compute the Bit Proofs and Gate Proofs honestly: We have the openings for all the commitments

to the input bits (from Step 2). We also have the openings for the commitments to every non-input
wire k, namely O(b) for W(b) when wy g = 0 and wy 1 = 1, or O(1—-0b) for W(1—b) when wy o = 1 and
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wy,1 = 0, or since we generated the commitments honestly when wy, o = wy 1. Note that the openings
with respect to the Left Parameters always correspond to wity and the openings with respect to the
Right Parameters always correspond to wity.

— Bit Proofs can be computed honestly since all the openings are to 0 or 1.

— Gate Proofs can be computed honestly since all the openings with respect to the Left Parameters
are consistent with witg and all the openings with respect to the Right Parameters are consistent
with wity.

5. Randomize the entire proof as follows:

— For every gate, randomize the pair of parameters for that gate.

— Update all the commitments (2 commitments per input wire, 4 commitments per connecting
wire) to be with respect to the randomized parameters.

— Maul all the Bit Proofs (one per commitment), all the Gate Proofs (two per gate) and all the
Ltc proofs (four for every connecting wire) to be with respect to the updated parameters and
commitments.

Finally output this randomized proof.

So far, we described the ProofGen algorithm that given a sample from the distributions in Equation ,
generates an entire proof for (C,out) € L. Let H%en be a proof output by ProofGen on input a sample
from the left-hand-side of Equation and let HlGen be a proof output by ProofGen on input a sample
from the right-hand-side of Equation .

From Equation 7 it follows that H%en R Héen. All that remains is to argue that Ily ~ ngn and
II; =~ Héen, where II}, is an honestly computed proof for (C,out) € Ly, using witness wit,. Note that IIp and
H%en are identical except that H%en uses equivocated openings to wit; on the Right Parameters to compute
the Bit and Gate Proofs. Hence, Iy ~ H%en follows from WI of the Bit and Gate Proofs, and in addition
follows by the randomizability of the commitment scheme and the malleability of the underlying proofs. By
a similar argument, II; = Héen. Thus, WI of the final construction follows form the Strong Secrecy of Ltc.

2.2.2 Constructing the Ltc Proof System

We construct a proof system for Lt¢ with the following properties:
1. Strong Secrecy: As defined in Equation .

2. Malleability: Given a proof m for (c1,ca, pp;, pp2) € L1c, one can efficiently randomize the parame-
ters to obtain pp}, pph, update the commitments to obtain ¢}, ¢, which are with respect to ppj, pp,
and then maul 7 to a proof 7’ for (¢, ch, ppl,pph) € Ltc such that (c},ch, pp, ppy) looks like a
fresh instance and 7’ is distributed like a fresh proof.

3. Soundness: We require that soundness holds for all instances (c1, 2, pp;, ppy) Where both pp;, pp,y
are binding. As noted above, this is sufficient for the soundness of the final construction.

We construct such a proof system using the malleable NIWI proof system for L, described before.
Recall that L, is a parameterized language with parameters pp = (f, h, g) where f, h, g are generators of
a group G, and it consists of a pair of tuples (A, B) such that one of them is of the form (f®, h%, g%)
where a3 = a1 + as.

We reduce proving that (ci,ca, ppy, pp2) € Ltc to proving that (A,B) € Ly, for some (A, B). How-
ever, we only know how to do this reduction for Lyc instances (ci,c2,ppy, pps) for which pp; = pps.
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Therefore, we consider an NP-relation for Lt¢ with an additional witness which lets us convert an in-
stance (cy, €2, ppy, PPy) into an instance (cx, c2, pps, ppz). The additional witness for (c1, ca, ppy, pp2) is a
hard-to-compute function of the parameters ppy, pps, and we refer to it as an “intermediate parameter”
pp. of pp;, ppy- Using the intermediate parameter pp, we can convert the commitment c¢; with respect to
pp; into a commitment c, with respect to pp,.

More specifically in our proof, pp, helps in converting the commitment c; with respect to parameters
pp;, into a commitment c, (to the same value) with respect to ppy. Then, we can reduce the instance
(Cx, €2, ppa, PPy) € L1c to a pair of tuples (A, B) € Li;,. The soundness and malleability of the Ly¢ proof
system follows from the corresponding properties of Li;, proof system. We refer to Section for a
detailed description of the construction.

Strong Secrecy from DLIN with Leakage. All that remains is to show that the strong secrecy of Lt¢ follows
from our new assumption of DLIN with Leakage. We first prove that Strong Secrecy of Ltc follows from
the fact that the NIWI for L;;, is strong WI with respect to the following distributions Dy and D;.

— Dy generates (A,B) where A = (f*,h2, ¢%) for random ay,ag,as such that a; + a2 = a3, and
B = (fo1, b2, g*+).

— D generates (A, B) where A = (f®, h92, ¢%~1) for random ay,az, a3 such that a; + az = a3, and
B = (f",h",g%).

We then prove that the proof system for L, is strong WI with respect to Dy and D; under DLIN
with Leakage assumption. We refer to Section for a detailed description of the reduction.

3 Preliminaries

We denote the security parameter by A. We use PPT to denote that an algorithm is probabilistic poly-
nomial time. We denote by y < A(z) if y is the output of a single execution of A on input z. We denote
by y = A(z;r) to explicitly mention the randomness used in the execution. We denote y € A(x) if there
exists randomness r such that y = A(z;r).

We use [n] to represent the set {1,...,n}. Vectors are denoted by a where a = (ay,...,a,) and a; is
the i th element of a. |a| denotes the size of a. aob denotes concatenation of the vectors a,b. {X }ren =
{V}ren will denote that distributions {X'} ey and {Y }ren are computationally indistinguishable.

3.1 Definition of Proof Systems

Definition 1 (Non-interactive Zero-knowledge Proofs [BDMPO91]). Let L € NP and let Ry, be the corre-
sponding NP relation. A triplet of PPT algorithms (Setup, Prove, Verify) is called a non interactive zero
knowledge (NIZK) proof system for L if it satisfies:

— Perfect Completeness: For all security parameters A € N and for all (z,w) € Ry,

Pr[CRS « Setup(1*) ; 7 < Prove(CRS, z,w) : Verify(CRS,z,7) = 1] = 1

— Adaptive Soundness: For any all-powerful prover P*, there exists a negligible function p such
that for all A,

Pr[CRS « Setup(1}) ; (z,7) = P*(CRS) : Verify(CRS,z,7) =1 A = ¢ L] < u(\)

When this probability is 0, we say it is perfectly sound.
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— Adaptive Zero Knowledge: There exists a PPT simulator S = (S1,S2) where S;(1*) outputs
(CRSg,7) and S2(CRSg, 7, ) outputs 75 such that for all non-uniform PPT adversaries A,

{CRS « Setup(1") : ACHCRS)(CRS)} .
{(CRSg,7)+51(1") : AP2CRSs:m)(CRS )}

where O, 09 on input (z,w) first check that (z,w) € Ry, else output L. Otherwise O; outputs
Prove(CRS, z, w) and O3 outputs S2(CRSg, T, z).

Definition 2 (Non interactive Witness Indistinguishable Proofs [BOV05, IDN00]). A pair of PPT algo-
rithms (Prove, Verify) is called a non interactive witness indistinguishable (NIWI) proof for an NP language
L with NP relation Ry, if it satisfies:

— Completeness: For all security parameters A and for all (z,w) € Ry,

Pr[m + Prove(1*, z,w) : Verify(1),z,7) =1] =1

— Soundness: For any all-powerful prover P*, if P*(1*) = (x,7) and x ¢ L, then Verify(1*,z,7) = 0.

— Witness Indistinguishability: For all non-uniform PPT adversaries A, there exists a negligible
function v such that for every A € N, probability that o = b in the following game is at most
1/2 4+ v(A):

1. (state,z,wp,wr) <+ A(1%).

2. Choose b & {0,1}. If Rp(x,wp) # 1 or Rp(x,w1) # 1 then output L. Else, if b = 0 then
7 + Prove(1*, z,wp), and if b = 1 then 7 < Prove(1*, z,w1).

3. U« A(state, 7).

We say that a pair of PPT algorithms (Prove, Verify) is called a non interactive proof system for an NP
language L if it satisfies completeness and adaptive soundness.

For our purposes, we will be using NIWI proofs with respect to parameterized languages of the form
L[pp] where pp denotes some global parameters.

Definition 3 (Non interactive Witness Indistinguishability proofs for Parameterized Languages). Let
Setup be a PPT algorithm that takes as input the security parameter and outputs a set of parameters pp.
A pair of PPT algorithms (Prove, Verify) is called a NIWI proof for a parameterized NP language L[pp],
with NP relation Ry [pp] if it satisfies:

— Completeness: For all security parameters A, for all pp € Setup(l)‘) and for all (z,w) € Rr[pp],
Pr[r < Prove(pp,x,w) : Verify(pp,z,m) =1] = 1.
— Adaptive Soundness: For any all-powerful prover P*, there exists a negligible function u such

that for all A,

Pr[pp « Setup(1}) : (z,7) < P*(pp) : Verify(pp,z,7) =1 A x ¢ L] < u(\)

— Witness Indistinguishability: For all non-uniform PPT adversaries A, there exists a negligible
function v such that for every A € N, probability that o' = b in the following game is at most
1/2 +v(A):
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1. pp < Setup(1?).

2. (state,z,wp, w1) < A(pp).

3. Choose b &- {0,1}. If Rr[pp](x,wo) # 1 or Rp[pp](z,w1) # 1 then output L. Else if b = 0 then
7 <— Prove(pp, x,wp), else if b = 1 then 7 < Prove(pp, z,w1). Send 7 to A.

4. b« A(state, ).

Definition 4 (Randomizable NIZK and NIWI Proofs [BCCT09b|). A NIZK proof system for an NP
language L with NP relation R; with algorithms (Setup, Prove, Verify) is said to be a randomizable proof
system if there exists a PPT algorithm Rand which on input a CRS, an instance x and a proof 7, outputs
a “randomized” proof 7’ for x such that for all non-uniform PPT adversaries A, there exists a negligible
function v such that for every A € N, the probability that &' = b in the following game is at most 1/2+v()):

CRS < Setup(1*).

(state, z, w, ) < A(CRS).

Choose b & {0,1}. If Verify(CRS,z,m) # 1 or Rp(x,w) # 1 then output L.

Else if b = 0 then 7’ + Prove(CRS, z,w), else if b = 1 then 7’ < Rand(CRS, z, 7).
b+ A(state, 7).

Tl W N

More generally, a (WI) proof system (Prove, Verify) is said to be randomizable if there exists a PPT
algorithm Rand with the same description and properties as above and where CRS = 1*.

Definition 5 (Malleable NIWI Proofs for Parameterized Languages [?]). Let (Prove, Verify) be a NITWI
proof system for a parameterized NP language L[pp] with NP relation Ry [pp] where pp < Setup(1) (as
per Definition . Let T' = (Tinst, Twit) be a pair PPT transformations such that for every (x,w) € Ry, and
for every randomness o € {0, 1}PoV) (Tinst (PP, 23 0), Twit (PP, ¢, w, 0)) € Ry

Such a proof system is said to be malleable with respect to T, if there exists a randomized PPT
algorithm Maul which on input parameters pp, an instance x, randomness o and proof 7w, outputs a
“mauled” proof ©’ for T'(pp, x; o) such that the following properties hold:

Malleability For all non-uniform PPT A, for all pp € Setup(1*), for all A € N,

Pr[(z,m) « A(pp) ; (0, R) + {0,1}PYWN 1 7/ = Maul(pp,z,0,m; R)
(Verify(pp,z,7) = 0) v (Verify(pp,T(pp, ;0),7') =1)] =1

Perfect Randomizability There exists a poly-time function fr such that for all pp € Setup(1*) and
every (z,w) € Rr[pp], for every R, o € {0,1}POYRN),

Maul(pp, z, o, Prove(pp, z, w; R); R") = Prove(pp, Tinst (PP, z; 7), Twit (PP, z, w, 0); S)

where S = fr(pp,w, R, R',0). Moreover, if R',o are uniform, then fr(w,R,R’,o) is uniformly
distributed.

Definition 6 (Strong Non-interactive Witness Indistinguishability [Gol00]). Let Setup be a PPT algorithm
that takes as input the security parameter and outputs a set of parameters pp. Let Dy = {Dp »}ren, P1 =
{D1,}ren be distribution ensembles in the support of Ry [pp] N {0,1}* such that for every b € {0, 1},
(xp, wp) < Dy such that (xp, wp) € Rr[pp].

A NIWI proof system (Prove, Verify) for a parameterized NP language L[pp] is a strong non interactive
witness indistinguishable (Strong NIWI) proof with respect to distributions Dy, Dy, if the following holds:

If {pp,z0} ~ {pp, 21} then Ey ~ E;
where Ep(1%) does the following: Sample (2, ws) = Dy(pp) and compute m, < Prove(pp, zp, wp). Output

(PP, b, ).
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3.2 Bilinear Maps

We will be working with abelian groups G, G of prime order p equipped with a symmetric bilinear map
e: G x G~ Gr. We let G be a deterministic polynomial time algorithm that takes as input the security
parameter 1* and outputs (p, G, Gr, e, gp) such that p is a prime, G, G are descriptions of groups of order
D, gp is a fixed generator of G and e : G x G — G is a bilinear map with the following properties:

— (Non-degenerate) For any generator g of G, gr = e(g, g) has order p in Gr
— (Bilinear) For all a,b € G, for all z,y € Zy,, e(a”,bY) = e(a, b)™

We require that the group operations and the bilinear operations are computable in polynomial time with
respect to security parameter.

Assumption 1 (Decisional Linear Assumption). We say that the Decisional Linear (DLIN) Assumption
holds for a bilinear group generator G if the following distributions are computationally indistinguishable:

{(p>Ga GT,@,Q) A g(l)\) ; (l’,y) ﬁ Z; : (T7 S) i Zp : (p’GaGTveaganggyangvgySagr—i_s)} and

i J— $ x zr s
{(p.G,Gr,e,9) « G(17) 5 (w,y) < Z « (r,8,d) < Zy : (p,G,Gr,e,9,9",9%.9", 9", 9%}

4 Fully Homomorphic Proofs: Definition

In this section we define fully homomorphic NIZK and NIWI proofs for the NP-complete language L
consisting of instances of the form (C,b) where C : {0,1}* — {0, 1} is a boolean circuit and b € {0,1}.

Formally, I;; is defined as:
Ly = {(C,b) | 3 w such that C'(w) = b}

Let Ry be the corresponding NP-relation. We first define the notion of composing multiple instances of
Ly to get a new instance in Lyy:

Composing Ly Instances: On input k instances {(C’i,bi)}le where C; : {0,1}% — {0,1} and C’ :
{0,1}* — {0,1},
Compose({(C;, b;)}F_,,C") = (C,b)

where C : {0,1}7 — {0,1} and T' = Zle t; and for all (wq,...,wy) € {0,1}1 x -+ x {0, 1},

C(Wl,...,Wk):C/(Cl(wl),...,ck(wk)) VAN b:C/(bl,...,bk).

4.1 Definition: Fully Homomorphic NIZK and NIWI Proofs
We now define fully homomorphic NIZK and NIWI proofs for the language Ly; defined above.

Definition 7 (Fully Homomorphic NIZK Proofs). A randomizable NIZK proof system (Setup, Prove, Verify,
Rand) is a fully homomorphic proof system if there exists a PPT algorithm Eval with the following input-
output behavior:

((C,b),11) «+ Eval(CRS, {(C;,b:),11;}5_,,C"): The Eval algorithm takes as input the CRS, k instances
{(Ci,b;)}E_| along with their proofs {II;}¥_,, and a circuit C’ : {0,1}* — {0,1}. It outputs the composed
instance (C, b) = Compose({(C;, b;)}¢_,,C") and a corresponding proof IT such that the following properties
hold:

16



Completeness of Eval: We require that evaluating on valid proofs (proofs that verify), should result in
a proof that verifies. More concretely, we require that for all non-uniform PPT A and for all A € N,
CRS«Setup(1*) ;5 ({(Cy,b;,I1;)}e_ | ,C")+A(CRS) ;
((C,b),I1)+Eval(CRS,{(C;,b;) 1L }r_,,C") -

(Valid(C")=0) v (3 i€[K] s.t.Verify(CRS,(Cy,b;),11;)=0) v

((Verify(CRS,(C,b),)=1) A (C,b)=Compose({(Ci,bi)}r_;,.C"))

where Valid(C') = 1 if and only if ¢’ : {0,1}* — {0, 1}.

Unlinkability: We require that a proof for (C,b) € L obtained by Eval should be indistinguishable
from a fresh proof for the same instance. Namely, for any non-uniform PPT adversary A, there exists a
negligible function v such that for every A the probability that bit = bit’ in the following game is at most
1/2 4+ v(A):
GAMEEV3|:

1. CRS « Setup(1?).
2. (state, {((Cu bi), W;, Hi) le, C/) — .A(CRS)

. Choose bit & {0,1}. If for any i € [k], Verify(CRS, (C;, b;),11;) # 1 or ((Cy,b;), w;) ¢ Ry, output L.

w

4. Else if bit = 0 then ((C,b),II) < Eval(CRS, {(C;, b;),II;}¥_,,C’). Else if bit = 1 then compute
(C,b) = Compose({(C;, b;)}r_;,C") and
IT < Prove(CRS, (C,b), w) where w = wj o --- o w. Send (C,b,1I) to A.

5. bit’ «+ A(state, (C,b,11)).

Definition 8 (Fully Homomorphic NIWI Proofs). A randomizable NIWI proof system (Prove, Verify, Rand)
is a fully homomorphic NIWI proof system if there exists a PPT algorithm Eval with the same description
and properties as in Definition [7] and where CRS = 1*.

5 Building Blocks for Fully Homomorphic Proofs

In this section we describe the building blocks for our fully homomorphic (FH) NIZK and NIWT construc-
tions. In Section we define a commitment scheme with additional properties, which we will use in our
FH NIZK and NIWI constructions, and we then instantiate it from DLIN.

In Section we describe a NIWI proof system for the NP language L, (defined in Definition
based on DLIN. This proof system is the main ingredient in constructing FH NIZK and FH NIWI proofs.

For our FH NIWI construction, we need the NIWI proof for L;, to have additional properties of
malleability and strong WI with respect to specific distributions. We prove that the proof system is
malleable and we prove that strong WI holds under a new assumption on bilinear groups: DLIN with
Leakage. We describe the corresponding bilinear assumption in Section

5.1 Randomizable Commitment Scheme

Definition 9 (Randomizable Commitment Scheme). A Randomizable commitment scheme for message
space M consists of PPT algorithms COM = (C.Setup, C.Commit, C.Rand) with the following descriptions
and properties:

pp < C.Setup(l)‘): On input the security parameter, the setup algorithm outputs public parameters pp.
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com = C.Commit(pp, b; 0): Using the public parameters pp, the commit algorithm produces commitment
com to message b € {0,1} using randomness o < {0,1}?V) for some polynomial p. We will refer to
o as “opening” for the commitment com.

com’ = C.Rand(pp, com;0’): On input parameters pp, commitment com, randomness o', C.Rand outputs
a randomized commitment com’ to the same value.

We require the following properties from the commitment scheme:
Perfectly Binding: For all (mg, m;) € M such that mg # m; and for all og, 01 € {0,1}POYP)

Pr[pp « C.Setup(1*) : C.Commit(pp, mq; 0p) = C.Commit(pp,mi;01)] =0

Computationally Hiding: Let pp + C.Setup(1*). For all (mq,m;) € M and oy, 01 + {0,1}PoYPN)

(C.Commit(pp, mo; 0p)) ~. (C.Commit(pp, m1;01))

Perfect Randomizability: Let pp < C.Setup(1}). There exists an efficient function feom such that for
any randomness o, the following holds:

— For every o € {0,1}P°YN  C.Rand(pp, C.Commit(pp,m;o0);0') = C.Commit(pp,m;s) where
§= fcom(oa 0,)-

— If o' is chosen uniformly at random, then feom(0,0’) is uniformly distributed.

We now describe additional properties that we require from our commitment scheme for our FH NIZK
construction:

— Additive Homomorphism: We require that if ¢; and co are commitments to mi and ms respec-
tively, then there exists an efficient function fag4g such that ¢ = fagd(c1,c2) is a commitment to
(mq + ma).

— Perfect Equivocation: There exists a PPT algorithm C.Setup’ and a polynomial time algorithm
C.Equivocate such that

— C.Setup’ on input the security parameter, outputs pp’, such that
{pp < C.Setup(1*) : pp} ~. {pp’ < C.Setup’(1*) : pp'}.

— Fix any rpp € {0,1}PYN any m,m’ € M and any randomness o € {0,1}PYN . Let pp’ =
C.Setup’(1*;7pp) and ¢ = C.Commit(pp’, m; 0). Algorithm C.Equivocate on input (pp’, rpp, €, 0,m’)
outputs o' such that ¢ = C.Commit(pp’,m’;0’). Also, for truly random o, (c,0’) is distributed
identically to (c”,0"”) where 0" is chosen at random and ¢” = C.Commit(pp’, m’; 0").

Note that the parameters output by C.Setup(1*) are binding and the parameters output by C.Setup’(1*)
are hiding.

We will denote a randomizable commitment which is also additively homomorphic (aH) and equivocable
(E) as described above, by a RaHE-commitment scheme.

Remark 1. We will denote by 1 and 0 the canonical commitments to 1,0 respectively, namely the com-
mitments computed with randomness o = 0. Given such a commitment it is possible to verify, that the
commitment is indeed to 0 or 1.
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Additional Functionalities for FH NIWI. In our FH NIWI construction, we use a RaHE-commitment
scheme which has additional functionalities (OutParam, ValidParam, RParam, ChangeCom) with properties
described below:

— Outputting hiding parameters: The deterministic algorithm OutParam takes as input parameters
pp? and outputs pp! such that for all ryp, if pp? = C.Setup(1%; Tpp), then pp! = C.Setup/(1*; Top)-

— Verifying if two parameters are valid: The algorithm ValidParam is an efficient predicate that
outputs 1 if pp? € C.Setup(1*) and pp' = OutParam(pp?®). It outputs 0 if both parameters are hiding,
namely if pp?, pp! € C.Setup’(1*).

— Randomization of parameters: The RParam algorithm takes as input parameters pp, randomness
rpp, and outputs new parameters pp’ such that for all rp, and for pp = C.Setu p(17 ;Tpp), the following
properties hold:

— There exists an efficient function fpp: fop(rpp, 7pp) = o and pp’ = RParam(pp; rp,,) = C.Setup(1

— RParam(OutParam(pp); rp,,) = OutParam(RParam(pp; 7))

— Transformation of commitments with respect to new parameters: The ChangeCom algo-
rithm takes in parameters pp, randomness rpp, commitment ¢, and outputs commitment ¢’ to the
same value, with respect to the parameters pp’ = RParam(pp; r;,p).

5.1.1 Instantiation from DLIN

We will be using the additively homomorphic commitment scheme used in GOS [GOS06a]. We show that
the scheme is randomizable. The scheme is as follows:

C.Setup(1*;rpp): Compute G(1*) = (p, G, Gr, e, gp) (as defined in Section 3.2). Parse rp, = (,¥, 2, R, S)
for ,y,2, R, S € Z3. Compute f = g¥, h=gp,g9=g5; (u,v,w) = (fB, hS, gfT5+h) . Output

pp = [p, G, Gr, ¢, gp, f, by g, u, v, w]]
C.Commit(pp,m): Choose r, s <= Z,, and let opening o = (r, s). Output
c = (61,62,03) — (umfr mhs m r+s>
C.Rand(pp, c): Parse c = (c1, c2,c3). Choose 1, 5" < Z and output
¢ = (ler/7 CQ]’LSI, C3gr’+s’) _ (umfrJrr” Umhers W g(r+s)+r +s' )

Proposition 1. Assuming DLIN, the commitment scheme described above is an additively homomorphic
randomizable commitment scheme as per Definition [9

Proof. The fact that this commitment scheme is perfectly binding and computationally hiding was proven
in GOS |[GOS06a]. Their commitment scheme is also additively homomorphic: Let ¢ = (ci, ¢, c3)
and ¢’ = (], cy, ¢5) be commitments to (m,m’) respectively. Then, (¢1¢}, cach, csc%) is a commitment to
(m 4+ m').

We now prove perfect randomizability: Define feom(0,0") = (r +1/,s + s’), where 0 = (r,s) and
o' = (', s'). We have that if ¢ = (u™f",v™h*, w™g"**) and ¢/ = C.Rand(pp, ¢; 0'), then ¢’ = (¢}, c, cs) =
(u mf’"*” VRS M gr TS Also for 0,0’ + (Z5)2, feom(0,0') is uniformly distributed.

3We sometimes write pp = [f, h, g, u, v, w] and omit (p, G, Gr, e, gp) when it is obvious from the context.

19

Ao).



We now prove perfect equivocation: C.Setup’(1?) is defined exactly as C.Setup(1*) except that it
outputs w = g+ as opposed to g%t By DLIN, (f, h, g, f% 1%, g%t =, (f, h, g, f% b5, gTt+9).
Also C.Equivocate(pp, 7pp, €, (1, 5), m’) for rpp = (2,4, 2, R, S), outputs o’ = (r— Rm'+ Rm, s — Sm’+ Sm)
which is distributed as fresh o.

]

We now instantiate the additional functionalities and observe that they satisfy the desired properties:

— OutParam(pp®): Parse pp’ = [f, h, g, u,v,w]. Output pp! = [f, h,g,u,v,w/g]. Note that if pp® €
C.Setup(1) then pp' € C.Setup’(1*).

— ValidParam(pp?, pp') : Parse pp? = [f, h,g,u,v,wp] for all b € {0,1}. Output 1 if and only if
wyp=w1-g -

— RParam(pp, rpp) : Parse rpp = (2/,¢/, 2/, R, S’) and parse pp = [f,h,g,u,v,w] for all b € {0,1}.
Compute f' = f* b =hwv, ¢ = g%, (W0, 0') = ((ufR/)”/,(Uhsl)y/,(wbgRurS,)zl). Output pp =
[f/,h/,g’,u/,v/,w’].

We now show the function fy, as required by RParam. Let ¢ = (x,y,%, R,S) such that pp =
C.Setup(1*; o). Define

fpp((x7y7 Z: R7 S)7 (33/:3//7 Z/7 R/a Sl)) = (3333/7213//’ ZZ/, R + Rla S + SI)
Note that pp’ = C.Setup(1*;0’) where o’ = (za/,yy/,22/,R+ R',S + 5").
— ChangeCom(pp, c,mpp): Parse rpp = (2/,4/,2/, R, S’) and parse ¢ = (c1,c2,c3). Output ¢ =

((c1)™, (c2)¥', (c3)*).

5.1.2 Dual Tuples and More Functionalities for FH NIWI

We now define the notion of Dual Tuples and Intermediate Parameter over a group G. We then describe ef-
ficient algorithms (ValidInter, InterParam) that we will be using in our FH NIWI construction. Specifically,
these algorithms are used in the construction of proof system for Ltc, to prove that two commitments
with respect to two different parameters commit to the same value.

Let (p,G7GT,6,gp) = g(lA) and let flahlagl7f27h2792 € G.

Definition 10 (Dual Tuples). Tuples (fi,h1, 91, f1*, h1%,91%) and (f2, ha, g2, gl,th,gg?’) are said to be
Dual Tuples if a; = b; for all i € [3].

Let ppy, ppy, pp* € GO and denote pp; = (f;, hi, g, wi, vi, w;) for all i € [2].

Definition 11 (Intermediate Parameter). A tuple pp* is said to be an Intermediate Parameter between
(PP1;PP2) if PP* = ([}, hyj, gj, u*, v*,w*) for some j € [2] and (pp*, pp3—;) are dual tuples.

Remark 2. If pp;,ppy are such that (fi,h1,91) = (f2,h2,92), then ppy is an intermediate parameter
between (ppy, ppy) since each tuple is trivially a dual tuple of itself. This is the case for pp; + C.Setup(1*)
and ppy = OutParam(pp;) as instantiated in Section|5.1.1]

We now define efficient algorithms (ValidInter, InterParam) which we will use in conjunction with the
RaHE-commitment scheme:

bit = ValidInter(ppy, pps, pp*): The ValidInter is a efficient predicate which on input (ppy, pps, pp*) outputs
1 if and only if pp* is an intermediate parameter between pp;, pps.

20



Note that ValidInter can be efficiently checked using the bilinear map: Check that for some ¢ € [2],
e(u*, f;) = e(u;, f*), e(v*, h;) = e(v;, h*) and e(w*, g;) = e(w;, g*).

Similarly, we define the following algorithm that given ppy, ppy, and randomness rpp, = (z,y, 2, R, S)
that generates ppy, outputs the intermediate parameter pp*.

pp* = InterParam(ppy, pps, pp): InterParam is an efficient function which takes as input (ppy, ppa, 7pp)
which could be of the following forms:

— For all i € [2], pp; € C.Setup(1*) or pp; € C.Setup’(17).
— pp; € C.Setup(1?) or pp,; € C.Setup’(1*) for some i € [2] and where pps_; = RParam(pp;; 7pp)-

In both cases, it outputs pp* such that ValidInter(pp;, pps, pp*) = 1.

InterParam(ppy, ppy, 7pp) can be instantiated as follows: Parse pp; = [fi, i, gi, wi, vi, w;] for all i € [2]
and parse rpp = (7,¥, 2, R, S). Suppose that pp; = C.Setup(1*; rpp) (binding case) or pp; = C.Setup’(1%; rpp)
(hiding case). Compute (u*,v*,w*) = (f§,h5,g7) where T = R+ S + 1 for the binding case and
T = R+ for the hiding case. Output pp* = [f2, ha, g2, u*, v*, w*]. The case where ppy = C.Setup(1*;7pp)
or ppy = C.Setup’(1*;7,) is analogous.

Alternatively, if pps_; = RParam(pp,; rpp) for some j € [2], first parse pp; = [fi, hi, gi, ui, vi, w;] for all
i € 2] and parse rpp = (2,y, 2, R, S). Output pp* = [fF, 1Y, g7, uf, v!, w}].

17 7))

5.2 Proofs of Linearity.

In this section we describe the main ingredient for our fully homomorphic proofs, which is a NIWI proof
system with additional properties for the parameterized language Ly;,[pp].

Definition 12 (Linear Tuples). Let (p,G,Gr,e,g,) = G(1") and let f,h,g be any three generators of G.
A tuple A = (f*, h®2,g%) is said to be linear with respect to (f,h,g) if a1 + a2 = as.

Before describing the parameterized language Lyi,[pp], we describe the corresponding setup algorithm

for the parameters of the language, given by Lin.Setup.

Lin.Setup(1*): Compute G(1*) = (p,G,Gr, e, gp). Choose at random z,y, z < Zy. Compute f = gy, h =

95,9 = g;- Output pp = [p,G,Gr, e, gp, f, b, g].
We abuse notation and let pp denote the output of Lin.Setup as well as the output of C.Setup. Note
that pp < Lin.Setup(1?) is a subset of pp < C.Setup(1*).

We now define the language Ly;,[pp] where pp < Lin.Setup(1*). Li;,[pp] is the language consisting of
a pair of tuples such that one of them is linear. It is defined as follows:

Liinlpp] = {(A,B) | 3 (w1, w2, ws) ((w1 4wy = wg) A (A = (f",h2,¢g") Vv B= (fwl,hw2,9w3))}

5.2.1 NIWI Proof from GOS
We first describe the NIWI proof (Lin.Prove, Lin.Verify) for Lii,[pp] from GOS |[GOS06a]:

Lin.Prove(pp, (A1, A2, A3), (B1, B2, B3), (a1, az,a3)): Without loss of generality, let (a1, a2,as) be such

that (A1, Ao, A3) = (f*,h%,¢%) and a; + az = a3. Choose t & Z;, and output proof IT which
consists of the following matrix:
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m1 = Bi' mga=B3'h7" m3=Bgg"
_ a2 rt _ a _ az t
mo1 = Bi* f oo = By? mo3 = B3®g

Llnverlfy(pp7 (A17 A27 A3)7 (Bla B2a B3)? H)

— Compute 731 = w1791 and w3y = momeg and 733 = W137T23.
— Check e(Al, Bl) = e(f, 7'('11), 6(142, BQ) = 6(h,7T22), €(A3, B3) = e(g,7r33).

— Finally check e(Al,Bg)e(Ag,Bl) = €(f, 71'12)6(h,71’21), e(AQ,Bg)e(Ag,BQ) = 6(h,7‘(’23)€(g,ﬂ'32)
and e(A1, Bs)e(As, B1) = e(f, m3)e(g, m31).

Proposition 2 ( [GOS06a]). Assuming DLIN, the proof system described above is a perfectly sound witness
indistinguishable proof system for the language Liin[pp] (as per Definition [3).

Remark 3. If II = [m11,...,m33] is a valid proof for ((A1, Az, A3), (B1, B2, B3)) € Lyin[pp], then II71 =
[771_117 v ’7.(.;31] is a valid prooffor ((Al_lu A2_17 A:;l)7 (B17 BZa B3)) S Ll_in[pp] and fOT ((A17 A27 A3)a
(B1_17B2_lvB3_1)) € LLin[pp]'

GOS |[GOS06a] provided a NIWTI proof for Li;,[pp] as described above. In our work, we need the NTWI
proof system to satisfy two additional properties: The first is malleability with respect to randomization,
namely given a tuple (A, B) € Lyj,[pp] with NIWT proof II, it is possible to randomize (A,B) to a new
tuple (A’,B’) € Lyiin[pp] and maul the proof II to be proof II" with respect to (A’,B’). As a second
property, we require that the proof system satisfies strong witness indistinguishability with respect to
specific distributions (which we describe later in the section).

5.2.2 Malleable Proofs for L;,

We now show that (Lin.Prove, Lin.Verify) is malleable with respect to the transformation
Lin.T = (Lin.Transform, Lin.WitTrans) defined as follows:

Lin.Transform(pp, A B; (T‘l,?@, s1, 32)) 4 ((141.]07“1’142}11@7 Aggm-i-rz)7 (Blfsl,thSQ, ng‘”“"’))
where pp = [pa G)GT)evgpvf)hvg]v A= (AlaAQaAZ')) and B = (Bl)BQaB3)~

Lin.WitTrans(pp, (A, B), (w1, w2, w3); (r1,72, 51, 52)) = (w1 + 21, wa + 22, w3 + 21 + 22) Where
(z1,22) = (r1,7m2) if A= (f“ A", g"?) else (z1,22) = (s1,s2) if B = (f"', h"2,¢g"?)

Mauled proof for Lin.Transform(pp, A, B, (r1,72, s1,52)) = (A1 f™, Ash", A3g™), (B1f*', Boh®2, Bsg®®) is
given by Lin.Maul(pp, (A, B), (r1,72, 51, s2),1I): Choose t < Z;, and output a proof II" consisting of the
following matrix:

/I S1 PT1 £718 !/ 81 PTr1y,r1s2—t ! 81 RT1 ,r183—t
T = T11A4] Blflit Mg = M12A5 By h™52 T3 = T134; ngl3+t
!/ 82 PT2 £ros /! S2 PTr2 1,128 !/ S2 PT2 128
Ty, = M1 A7 By f2°1 Ty = Moo A5 B> h'2%2  mhy = maz A3* By g™

Proposition 3. Assuming DLIN, the proof system (Lin.Prove, Lin.Verify, Lin.Maul) is a malleable NIWI
for Liin[pp] as per Deﬁm’tion@ with respect to transformation Lin.T = (Lin.Transform, Lin.WitTrans).

Proof. Malleability: Fix any PPT adversary A and fix any pp € Lin.Setup(1*). Let (A,B,II) «+ A(pp).
Let II' = Lin.Maul(pp, (A, B), (11,72, $1, 82), I1; ') for randomly chosen 71,79, s1, 2, .

We prove that Lin.Verify(pp, (A’,B’),II') = 1 if and only if Lin.Verify(pp, (A,B),II) = 1. Let g; =
fy92="h and g3 = g. For i € {1,2,3},

6(A29:17 Blgfl) = Q(Ai, Bl)e(A’Lv gfl)e(g:lv Bl)e(g:17 gfl) = e(gi7 ﬂ-’L,Z)e(A:ZBflg:Z&ng) = e(gi) 71—7/;,7;)
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if and only if e(A;, B;) = e(gs, m;;) which are the first three verification check for II.
For i # j and 4,5 € {1,2,3},
e(Aigi*, Bjg;')-e(Aj97, Big;")
=e(Ai, Bj)e(Aj, Bie(Ai, g7 )e(g;", Bj)e(Aj, g e (9] , Bi)e(gi, )%
=e(g;, mi7)e(gi ) e(AT B gl g))e(BY A% g™ gi) for ' = (byr; — byry)
(gjv Zj) (gh jZ)

if and only if e(A;, B;) = e(gj, mi j)e(gi, mj:), which are the verification checks for II.

Perfect Randomizability: Fix any pp € Lin.Setup(1}) and (A, B) € Li;,[pp] with witness a = (a1, az, a3).
Fix 71,79, 1, 82, t, ' such that IT = Lin.Prove(pp, A, B, a; t), (A’, B’) = Transform(pp, (A, B), (r1, r2, 51, $2))
and II' = Lin.Maul(pp, (A, B), (11, r2, 51, $2), IL;t'). Let r3 =71 + ro and s3 = s1 + so.

Function fi;, is given by: flin(pp,a,t,t’, (r1,r2, 81, 82)) = t+t'+0 where o = a1s9—a281 = a1s3—s3a; =
assg — agsg. Also if ¢/ is uniform, t” = fi;,(pp, a, t,t’, (r1,72, 81, s2)) is distributed as uniform. O

Remark 4. We denote by Lin.Transform(pp, (A, B), (r1,7r2)) the transformation given by
Lin.Transform(pp, (A, B), (r1,7r2,71,72)).
5.2.3 Strong NIWI for L;,.

For our FH NIWT construction, we require that the NIWI proofs for (A, B) € Li;,[pp] satisfy strong wit-
ness indistinguishability with respect to distributions Dy (pp), D1 (pp) for pp < Lin.Setup(1?). For every
b € {0, 1}, distribution Dy(pp) is defined as follows:

Parse pp = [p,G,Gr, e, gp, f, h,g]. Choose a1,az < Zj, let a3 = a1 + az. Let Ay = (f*, h?2, g?37%) and
let By = (f1, h%2, g~b+1) Output (Ay, By).

Recall that (Lin.Prove, Lin.Verify, Lin.Maul) is said to be strong NIWI with respect to distributions Dy (pp),
D1 (pp) (as per Definition [6)), if the following holds:

{pp7 (A()?BO)a 7[-0} ~ {pp7 (Ala B1)7 771}

where (Ayp, Bp) < Dy(pp) and where 7, <— Lin.Prove(pp, Ay, By, (a1, a2, a3)).

5.3 Assumption: DLIN with Leakage

In this subsection, we state our new assumption on bilinear maps: DLIN with Leakage.
Let pp < Lin.Setup(1*) and parse pp = [p, G, Gr, e, f, h, g]. DLIN with Leakage states that
Dy(1*) =, D) (1*) where Dj (1) is as follows:

— Dj(1*) : Choose R, S,t + Zy, and output pp along with the following matrix:

fR hS gR+S
fR2 pRS—t gR(R+S+1)—t
fRS+t 1S? gS(R+S+1)+t

— D} (1%) : Choose R, S,t + Z, and output pp along with the following matrix:

fR hS gR+S*1
fR2 pRS—t gR(R+S—1)—t
fRS+t 1S? gS(R+S—1)+t
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Proposition 4. The DLIN with Leakage assumption is secure in the generic group model.

Proof. We defer the proof to Appendix [A.T] O

Proposition 5. Assuming DLIN with Leakage, (Lin.Prove,Lin.Verify) is strong NIWI for Lyi,[pp] with
respect to Dy, Dy (as described in Section .

6 Fully Homomorphic NIZK Proofs

In this section, we construct fully homomorphic NIZK proofs for NP from DLIN. Our construction uses
certain NIWT proof systems as ingredients; we describe them in Section[6.1] In Section we present our
FH NIZK construction from these ingredients. In Section [6.3] we instantiate the ingredients from DLIN.

6.1 Ingredients for the FH NIZK Construction
Recall that the generic template for NIZK proofs for Ly, from GOS [GOS06b, [GOS06a] is as follows:

GOS Template. An L instance is of the form (C,out) where C : {0,1}' — {0,1} and out € {0, 1}.
Denote by n the number of wires in C' (including ¢ input wires and excluding the output wire) and denote
by m the number of gates. The NIZK proof is computed as follows:

1. Let wy, ..., wy be the values induced by witness w € {0, 1}! on all the wires of the circuit C' (except
the output wire). Commit to all wire values in the circuit C' using an additively homomorphic
commitment scheme. Let ¢; denote the commitment to wire ¢ for i € [n].

2. For each commitment c¢; to wire ¢ in C, give a NIWI proof that c¢; is a commitment to a boolen
value. We denote such a proof by 7., for i € [n].

3. For each gate in C, give a NIWI proof that the input and the output values to the gate are consistent
with the gate functionality. We denote such a proof by Wéate for j € [m].

4. Give a canonical commitment to the output value out, denoted by cout.

A NIZK proof for (C,out) is of the form:

= [{ei} i, b, {mhare}f21: Cout.

Our FH NIZK construction follows a similar template and will use three ingredients: A RaHE-
commitment scheme (C.Setup, C.Commit, C.Rand) as per Definition @ a NIWI proof system to prove that
committed bit is boolean (denoted by Bit Proofs), a NIWI proof system to prove that committed bits are
consistent with the gate functionality (denoted by Gate Proofs).

We note that GOS [GOS06a] defined and constructed NIWI proof systems (Bit.Prove, Bit.Verify) and
(N.Prove, N.Verify) for bit proofs and gate consistency proofs respectively. This was sufficient for their
NIZK construction. However, to achieve full homomorphism, we require the NIWI proof systems to be
malleable. At a high level, we need to be able to randomize the commitments in the proofs and maul the
bit proofs and gate consistency proofs with respect to the new commitments. In what follows, we describe
the concrete transformations for which malleability is needed.
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Malleability of Bit Proofs. Let (C.Setup,C.Commit, C.Rand) be RaHE-commitment scheme as per
Definition @ For Bit Proofs, we consider the following language parameterized by pp « C.Setup(1?).

Leom[pp] = {c | 3 (b,0) s.t. ¢ = C.Commit(pp,b;0) A be {0,1}}

We require a malleable NIWI proof system (Bit.Prove, Bit.Verify, Bit.Maul) for Leom[pp] (as per Defini-
tion [p]), with respect to the transformation: Bit.T = (Bit.Transform, Bit.WitTrans) given by

Bit. Transform(pp, ¢, 0’) = C.Rand(pp, c; 0') and Bit.WitTrans(pp, c, (b,0),0") = feom(pp,0,0")

where o is fresh randomness.

Malleability of Gate Consistency Proofs. Without loss of generality, we assume that the circuit
is made up of NAND gates. Boolean values by, by, b3 satisfy NAND relation that is, b3 = by A by if and
only if by + by + 2b3 — 2 € {0,1}. For Gate Proofs, we consider the following language parameterized by
pp < C.Setup(17).

LN[pp] = {{ci}ie[?;] | 3 {bi,oi}i€[3] s.t. C;, = C.Commit(bi;oi) VAN (b3 = bl /_\ bz) A {bz € {0, 1}}i€[3]}

We require a malleable NIWI proof system (N.Prove, N.Verify, N.Maul) for Ly[pp] (as per Definition [j]),
with respect to the transformation: N.T = (N.Transform, N.WitTrans) given by

N.Transform(pp, {c; }ic(3), {0} }icjz)) = {ci}icis) and N.WitTrans(pp, {c;, b, 0, 0; }ic[3)) = feom (PP, 0, 0')
where ¢, = C.Rand(pp, c;,0;) for fresh randomness (0}, 0%, 05) and where o = 01 + 02 + 203 — 2 and
o' =0 + oy + 205 — 2.

6.2 FH NIZK Construction

We use the following ingredients for our FH NIZK construction:

— Randomizable commitment scheme as per Definition [9] which is additively homomorphic and equiv-
ocable, denoted by
(C.Setup, C.Commit, C.Rand)

— Malleable NIWT proof system for Leom[pp] with respect to transformation Bit.Transform from Sec-
tion [6.1] denoted by
(Bit.Prove, Bit.Verify, Bit.Maul).

— Malleable NIWTI proof system for Ly[pp] with respect to transformation N.Transform as described in
Section denoted by
(N.Prove, N.Verify, N.Maul).

We now describe our construction:

NIZK.Setup(1¥): Output pp + C.Setup(1*).

NIZK.Prove(CRS, (C,out), w): Let C : {0,1}* — {0, 1} consist of n wires (including input wires and
excluding output wire), one output wire and m NAND gates. Let wy, ..., wy,, Wout be the boolean
values induced by w € {0,1}! on all (input and internal) the wires of circuit C' and where wout
is the output wire (wout = out).
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1.

For wire 7, commit to the value w; as follows: Choose 0; at random and compute
c; = C.Commit(wj; 0;).

For the output wire weut, use canonical commitments so that coye = 1 if out = 1 and
Cout = 0 if out = 0.

. For each wire i (except output), generate a proof that commitment ¢; commits to a bit.

Namely, compute
mi.. = Bit.Prove(pp, ¢;, 0;)

where 0; is the opening for commitment c;.

. For each NAND gate j, let j1, jo be the input wires and j3 be the output wire with corre-

sponding commitments c;, for ¢ € [3]. Compute

hate = N.Prove(pp, {¢;, }iepa)» 107 }ie3))-

Finally output

1= [{ea} i et {mhace} o Cout

NIZK.Verify(CRS, (C, out), IT): Parse Il = [{c,-}g:l, (g, (el l,cout].

3.

. For each wire i € [n], check whether Bit.Verify(pp, c;, 7...) = 1. Else output 0.
. For each NAND gate j € [m], with input wires ji, jo and output wire j3 and with corre-

sponding commitments c;,, for i = 1,2,3. Check that N.Verify(CRS, {Cji}?:177réate) = 1.
Else output 0.

Finally check that mout = 1 for out = 1 and 7o, = 0 for out = 0.

NIZK.Rand(CRS, (C, out), II)): Parse I = [{c;}1", {m{.. }7 4, {ﬂéate};’;l,cout].

. For each wire 4, choose o} at random and compute ¢; = C.Rand(pp, c;, 0}).

. Compute 7{;, < Bit.Maul(pp, c;, 0}, (., ).

. For each NAND gate j, With input wires j1,j2 and output wire j3, compute Fé;te —

N-Maul(pp. {{€;,. 0}, }iefs): Thate)-

. Finally keep the output proof cey same as before. Output

. -/
' = {C;}?:l, {ﬂ-éit}?zlﬂ {Wéate};‘nzla Cout

NIZK.Eval(CRS, {(C;, b, TL) Y, C"):

. Compute (C,out*) = Compose({(C;,b;, II;)}_,, C").
. Let m, € IT} be the gate consistency proof for the output gate out’ of circuit C; for i € [k].

Compute II; as the proof IT; without the proof ml ., namely ﬁ\z =1I;\ =

out» out*

. Compute a proof for C’ with witness (by,...,br) by computing: I «

NIZK.Prove(CRS, (C’, out*), (b1, ..., b)) where out* = C’(by, ..., bg).
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4. For each output gate out’ for C;, i € [k], let i1, is be the input wires to the gate and iz be
the output wire (with value b;). Let oj, be the randomness used in step 2 such that cj, € I’

and cj; = C.Commit(pp, b;,0f,). Compute (7g,,)" = N.Maul(pp, {{c},, 0/ }ic(3], Tour) Where
o, =0 for ke [2].
k
5 Let 1II = [ﬁ:,...,ﬁ;,ﬂ*,(wl Yoo, (nk )’] Compute I —

out out

NIZK.Rand(CRS, (C, out*),II). Finally output (C,out*, IT').

Theorem 3. The construction as described above is a fully homomorphic NIZK proof system for Ly as
per Definition [

Proof. The algorithms (NIZK.Setup, NIZK.Prove, NIZK.Verify) are identical to the NIZK construction in
Groth-Ostrovsky-Sahai [GOS06a]. Hence completeness, statistical Soundnes{r] and perfect zero-knowledge
follows. It is left to prove the following claims.

Claim 1. IIppnizk satisfies completeness of evaluation.

Proof. Completeness of evaluation follows from completeness of randomizability and malleability of Bit
proofs and Gate consistency proofs. O

Claim 2. [Igpnizk satisfies randomizability.

Proof. We show that for any instance (C, b) with witness w and any proof IT such that NIZK.Verify(CRS, (C, b),
IT) = 1, the following distributions are identical:

{(C,b),w, IR, 11} and {(C,b),w,IL,R,1I'}

where II; is a fresh proof obtained as ITy <— NIZK.Prove(CRS, (C,b), w), II' is a randomized proof obtained
as IT" + NIZK.Rand(CRS, (C,b),II) and R is such that IT = NIZK.Prove(CRS, (C, b), w; R). Parse

I = [{Ci}?:h {ﬂ—éit}?zla {Tréate};‘nzla Cout}-

We will parse
R=101,.-..,0n,t1, s tn, 815+, Sm]

where o; is such that ¢; = C.Commit(pp, w;,0;) where w; is the value on wire i, ¢; is such that Wéit =
Bit.Prove(pp, c;, 0;;t;) for i € [n]. Finally s; is such that
7Téate = N.Prove(pp, {cji? 0j; }16[3]; Sj)'
Similarly, let II" = NIZK.Rand(CRS, (C, b),II; R’) and parse
R =[o},...,00,th, .., th, 81, . 8]
where 0} is such that ¢} = C.Ransl(pp, c,0}) for i € [n], t} is such tha‘p Wé/it = Bit.Maul(pp, ¢;, 0, 7..; ;) for
i € [n]. Finally s} is such that Tgate = N.Maul(pp, {c;,, 0% Yie[3)> 85 )

By perfect randomizability of the commitment scheme, there exists feom such that o} = feom(0s,0})
and ¢, = C.Commit(pp, w;;0}) and o is uniformly distributed. By perfect randomizability of bit proofs,
there exists fuir such that fuie(ti, 04, 0}, ;) =t such that Wé/it = Bit.Prove(pp, ¢, o/; /) and ¢/ is uniformly
distributed.

Similarly, perfect randomizability of gate consistency proofs, there exists fgate such that fgate(s;, s;-’ )

-/
{0);, 0 Yieps)) = 87 and gy = N.Prove(pp, {cj,, 0] }ic[3); 87) where s7 is distributed as uniform.

4The GOS NIZK construction achieves statistical soundness in the common random string model.
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We can now identify R” such that II' = NIZK.Prove(CRS, (C, b), w; R") as follows:

R"=[of,...;0o0 t],...;th s, ... s"]
which is distributed as uniform. It follows that {(C, b), w, I, R, Hf}, {(C’, b), w, I, R, H’} are identical,
where II; = NIZK.Prove(CRS, (C,b), w;S) and II' = NIZK.Prove(CRS, (C,b),w;R”) for truly random
S,R”.
]

Claim 3. Ilgynizk satisfies unlinkability.

Proof. Follows from completeness of underlying primitives and randomizability of the NIZK. O

6.3 Instantiating the Ingredients

We now give concrete instantiations of the two malleable NIWI proof systems described in Section bit
proofs (Bit.Prove, Bit.Verify, Bit.Maul) and gate consistency proofs (N.Prove, N.Verify, N.Maul) from DLIN.

Bit Proofs. Let (C.Setup, C.Commit, C.Rand) be the RaHE-commitment scheme from Section Recall
the language,

Leom[pp] = {(c1,c2,¢3) | 3 (b,7,8) s.t. ((c1,c0,c3) = (ubfT,vbhs,wbg”s)) A be{0,1}}

Let ¢ = (c1, ¢a, c3), define Spp(c) £ (c1/u,ca/v, (c3/w)). We drop pp when it is obvious from the context.
Observe that if ¢ € Leom[pp] then ¢ or d(c) is linear. In particular, c is linear if ¢ commits to 0 and d(c)
is linear if ¢ commits to 1.

Let (Lin.Prove, Lin.Verify, Lin.Maul) be the malleable NIWT proof system for L;,[pp] with respect to trans-
formation Lin.Transform. (Bit.Prove, Bit.Verify, Bit.Maul) is as follows:

Bit.Prove(pp, c,0) : Let pp = [p,G,Gr,e,g9, f, h,u,v,w]. Parse ¢ = (c1,c2,c3) and o = (r,s). Com-
pute dpp(c) = (c1/u, c2/v, (c3/w) ™). Output 7 < Lin.Prove(pp, (c,d(c)), (1, s, (r + s))).

Bit.Verify(pp, ¢, mpit) : Output Lin.Verify(pp, (c,5(c)),7rbit)).

Bit.Maul(pp, c, o', mpit) : Parse o/ = (1, s). Output Lin.Maul(pp, (c,d(c)), (1, s), Tbit) -

Gate Proofs. Recall that boolean values b1, be, bg satisfy NAND relation that is, b3 = by A by if and
only if by + by + 2b3 — 2 € {0,1}. We use this observation along with the homomorphic properties of the
underlying commitment to prove gate consistency for every NAND gate. This approach was also used in

GOS [GOS06a].

Definition 13 (NAND Function). Function fy takes as input three commitments {c;}3_, where ¢; =
(c},ch,ch) along with (f,h,g), and outputs a homomorphically computed commitment as follows:

fn({eidior f.h.g) & (el () F 7% a3 (3)°h 2, ec3(c5)°9 )
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We also define function Ry which on input randomness to commitments {Ci}?zl, outputs the randomness
corresponding to the commitment fy ({c s fih, g).

RN({(riys:)Yoy) 2 (11 + 72+ 2r3 — 2,51 + 89 + 283 — 2)
Recall the language, parameterized by pp = [p, G, Gr, €, g, f, h,u,v,w]:

Lnlpp] = {{ci}i=y | 3 (b1, b2, b3) and {(ri,s:)}_; s:t.

((cil,c’é,cé) _ (ubifri’Ubihsz"wbigrﬁ-si)) A (b3 — bl A bg)}
The NIWI proof construction for Ly[pp] is as follows:

N.Prove(pp, {ci}?_1, {bi, 0i}?_1): Compute a commitment to b = (by + bz + 2b3 — 2) homomorphically.
Namely, compute d = fy ({(ci,c’é,c@)}g’:l,f, h,g). Note that (dj,da,ds) € Leom with witness
b= (by+by+2b3—2) and (r,5) = Rn({(r4, si)};_;) where 0; = (7, s;). Output Leom proof given
by:

Iy = Bit.Prove(pp,d,d(d), (r, s, (r + 5))).

N.Verify(pp, {c;}3_;,IIn):  Compute d = fy({c;}iq, fih,g) and d = 4(d). Output
Bit.Verify(pp, d, d’, ITy).

N.Maul(pp, {ci, 0;}3_1,7N) : Parse = (rl,s}) for i € [3] and compute (r',s") = Rn({(r}, s})}3_).
Output Lin.Maul(pp, (d,d’) ) N))-

We again note that (Bit.Prove, Bit.Verify) and (N.Prove, N.Verify) are taken verbatim from GOS [GOS06a).
In this work, we show that both the proof systems are malleable with respect to Bit. T and N.T respectively.
For both the proof systems, malleability follows from malleability of Li;,[pp] as per Proposition

7 Fully Homomorphic NIWI Proofs

In this section, we construct a fully homomorphic (FH) NIWT proof system. In Section we describe our
main ingredient: a malleable proof system (with additional properties) for proving that two commitments
with respect to different parameters commit to the same value. We defer the construction of this malleable
proof system to Section [7.3] In Section we describe our construction for FH NIWI and prove security.

7.1 Ingredients for the FH NIWI Construction

Our first ingredient is (C.Setup, C.Commit, C.Rand), a RaHE-commitment scheme with the additional
functionalities (OutParam, ValidParam, RParam, ChangeCom, ValidInter, InterParam) as defined in Section

Our second ingredient is a malleable proof system (TC.Prove, TC.Verify, TC.Maul) for the language
Ltc defined as follows:

Lrc= {(c1,02, PPy, PP2) | 3 (b, pp,, 01,02) s.t.

{ci = C.Commit(pp;, b; 0i) }iejz) A (ValidInter(ppy, ppa, pp.) = 1)}
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Recall that pp, is the intermediate parameter between pp;, ppy. It is a hard-to-compute function of the
parameters which we require as an additional witness for the language.

The malleability is with respect to the transformation TC.T = (TC.Transform, TC.WitTrans). TC.Transform
takes as input an instance (c1, 2, ppy, pp2), randomness (rép, rgp, 01,02) and outputs transformed instance

(¢}, €5, PPy, PP3)-
In detail, TC.Transform on input (c1, ce, ppy, pPps), does the following:

— Randomize the parameters as follows: For all i € [2], compute pp, = RParam(pp;; rép).

— Change the commitment c; to be with respect to the new parameters pp;, by computing z; =
ChangeCom(pp;, cs; 5, for all i € [2].

— Randomize the commitments as follows: For all ¢ € [2], compute ¢; = C.Rand(pp}, z;;0;). Output
(¢, ¢y, PPY, PPY)-

Correspondingly,

TC.WitTrans((cl, €2, PP1, pp2)a (bv PP.; 01, 02)a (T;pa T,:Q)pa Olla 0/2)) = (b7 657 71, TQ)

where pp = InterParam(ppy, pps, rpl,p) and where for every i € [2], r; = feom(0i,0}). Recall that InterParam

i
and feom are as per the definition of the RaHE-commitment scheme described in Section [5.1

Let us look at the soundness and secrecy requirements from this proof system. We weaken the soundness
requirement of our NIWI proof system and require a stronger secrecy property from the proof system. We
now describe both of these properties:

1. Weak Soundness: Rather than requiring soundness to hold for every (c1, c2, ppy, pp2) € Ltc, we only
require soundness to hold for all instances for which ppy, ppy € C.Setup(1}) (when both parameters
are binding).

Note that our construction for NIWI proof of Ltc¢ achieves standard soundness, however for the FH
NIWT construction it suffices for the proof system to have weak soundness.

2. Strong Secrecy: We require that the distributions Dginq and Dyige (described below) are computa-
tionally indistinguishable. Both the distributions output two parameters pp, pp’, four commitments
Co, ¢, €1, ¢; where ¢, ¢; are with respect to pp and cf, ¢} are with respect to pp’. The distributions
also output openings to the four commitments and two Ltc proofs. We now explain in detail.

In the output of Dgjng, pp is the binding parameter and pp’ is hiding. The commitments co, ¢},
commit to 0 and cj,c} commit to 1. Honest Ltc proofs HOTC,H%C are computed with respect to
(co, ¢y, pp, pp’) and (cy, cf, pp, pp’) respectively. Finally, the commitments ¢, ¢| (with respect to the
hiding parameter pp’) are equivocated to obtain openings to the compliment bit and Dgjng outputs
honest openings o0p, 01 for cg,c; (openings to 0, 1 respectively) along with equivocated openings
0y, 0} for cf, ¢} (openings to 1, 0 respectively).

In the output of Dhjge, pp is the hiding parameter and pp’ is binding. The commitments ¢y, ¢{, now
commit to 1 and ¢1,c¢} commit to 0. Honest Ltc proofs H%)-C,H-ll-c are computed with respect to
(co,cg, pp, pp’) and (c1, ¢, pp, pp’) respectively. Finally, the commitments cg, ¢; (with respect to the
hiding parameter pp) are equivocated to obtain openings to the compliment bit and Dyjge outputs
equivocated openings 0p, 01 for cp,c; (openings to 0, 1 respectively) and honest openings of), o} for
¢y, ¢; (openings to 1, 0 respectively).

Note that in both the distributions, the openings o, of, 01,0} are with respect to the values 0,1, 1,0
respectively. Formally, the distributions are as follows:
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— Dgind(1") : Choose 7p, at random and compute pp = C.Setup(1*;7p,). Compute pp’ =
OutParam(pp). For every d € {0, 1}, do the following:
— Choose 04, 0)] at random and compute c¢g = C.Commit(pp,d ; 04), ¢/, = C.Commit(pp’, d; 07}).
— Compute HTC < TC.Prove((cy, cd, pp, pP’), (d, pp, 04, d))
— Compute 0/, = C.Equivocate(pp’, rpp, ¢, 05,1 — d).

! / / / / 0 1
()utput (pp7 pp’, o, €y, C1, €1, 00, 0y, 01, O71, 1_IT(:> 1_ITC)'

— Dhide(1") : Choose rp, at random and compute pp = C.Setup’(1};7p,). Compute pp’ =
OutParam(pp). For every d € {0, 1}, do the following:
— Choose 0},0] at random. Compute c¢q = C.Commit(pp,1 — d ;0) and compute ¢, =
C.Commit(pp’, 1 — d; 0))).
— Compute Hfll-c « TC.Prove((cq, ), pp, pp’), (1 — d, pp, 0f}, 0}))).
— Compute o4 = C.Equivocate(pp, 7pp, €4, 0}, d).
Output (pp,pp’,co,cg,cl,c’l,oo,og,ol,o’l,ﬂ(%c,ﬂ%c).

Remark 5. Note that strong secrecy implies plain witness indistinguishability for Ltc¢ instances with more
than one witnesses. In particular, it implies that the following two distributions are indistinguishable for
any d € {0,1}:

— E¢: Choose 71,72 at random and for all 4 € [2], compute pp;, = C.Setup’(1*;7;). Compute pp, =
InterParam(pp;, pps, 71). Choose 01, 02 at random and for all i € [2], compute ¢; = C.Commit(pp;, d; 0;).
Finally compute 7% <= TC.Prove((c1, ¢, pp1, pP2); (d; PP, 01, 02)). Output (ppy, ppa, €1, €2, 7).

— FE{: Choose 71,72 at random and for all i € [2], compute pp; = C.Setup’(1*;r;). Compute pp, =
InterParam(pp;, pps, 71). Choose 01, 02 at random and for all i € [2], compute ¢; = C.Commit(pp;, d; 0;).
For all i € [2], compute s; = C.Equivocate(pp;, 74, ¢;, 0;, 1—d). Finally compute 7! «+ TC.Prove((cl, Co,
PPy, PP2), (1 — d, pp,, 51, 52)). Output (ppy, ppy,c1,c2, 7).

Additional Procedures. We now describe procedures (OutCom, VerCom, RCom) that will help describe
the FH NIWI construction succinctly. These procedures use the RaHE-commitment scheme and the algo-
rithms (TC.Prove, TC.Verify, TC.Maul) as subroutines.

Notation: We denote by (pp], pp]) the public parameters associated with gate j where pp0 denotes the
binding parameters and ppj are the hiding parameters. For any b € {0,1}, we denote by (ppj) the
randomized parameters corresponding to pp?.

(O’C,O'W,St) < OutCom(pp!, ppg,rép,b): The OutCom algorithm takes as input two pairs of parameters
ppY, ppy € C.Setup(1?), randomness 7" » such that pp) = C.Setup(1*;r} ) and a bit b, and does the

following:

) pp)

— For all i € [2], compute pp} = OutParam(pp?). For all i € [2], d € {0, 1}, choose at random of

and compute c¢ = C.Commit(pp¢, b; 0¢). Denote by 0. = (c,c9,ci, cl) and st = (07, 09,01, 0d).

— Compute pp} = InterParam(pp?, ppg,rép) and ppl = InterParam(ppl,pp2,rép). For all by,by €
{0,1}, compute

mh1b2 TC.ProVe((Clivaz aPP1 ,pp2 ), (b, ppl! ’01 ’032))

Denote by o, = (7%, 7% 710 711) Output (o, o, st).

Recall that for parameters pp, pp’ such that pp’ = OutParam(pp), pp itself is an intermediate parameter between pp, pp’;

see Remark 2 (Section [5.1.2).
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{0,1} « VerCom(pp(l), PPy, 0¢, 0 ): The verification algorithm takes as input two pairs of parameters,
four commitments o, and four proofs o, and outputs 1 if and only if all the following checks are
successful:

For every i € [2], compute pp; = OutParam(pp?). Parse 0. = (!, ¢, c},cd) and o, = (709, 70 710 711y,

For all by, by € {0,1}, check that

TC.Verify((cl{1 ; CSZ, Pplfla PP32)7 7Tble) =1

(ol, 0%, st') < RCom({pp?, (pp?)’,rép}iep&, 0c,07): The RCom algorithm takes as input two parameters
ppY, ppY, randomized parameters (pp\)’, (pp3)’, randomness rép, rgp used in randomizing the param-

eters ppY, pp), commitments o. and proofs o, and does the following:

— For all i € [2], check that (pp?)/ = RParam(pp?;Tép) and compute (pp})’ = OutParam( (pp?) ).
— Parse 0. = (c{,c9,ct,cd). Foralli € [2] and d € {0, 1}, compute z¢ = ChangeCom(pp?, cgl,rf,p),

- 0d). Denote by o, =

choose randomness o and compute (c?)’ = C.Rand(pp? , 2¢; of

()", (€)', (e1)', (e3)") and st’ = (of, 03, 01, 03).

— Parse o, = (7%, 701 710 711). For all by, by € {0,1}, compute

(7Tblb2)/ — TC.I\/IauI((clfl,c?, pplil, pplf), (r;p,rﬁp, 01{1,032),7Tb1b2).

Denote by o = (7%, (z%1), (x1°), (x1)’). Output (o, o%, st’).

cr Y

In Section , we construct the proof system (TC.Prove, TC.Verify, TC.Maul), prove weak soundness,
and prove the strong secrecy property assuming DLIN with Leakage as described in Section

The third ingredient in our FH NIWI construction is a malleable NIWI proof system (Bit.Prove,
Bit.Verify, Bit.GenMaul) for Leom[pp]. Recall that Leom[pp] is parameterized by pp < C.Setup(1*) and is
defined as follows:

Leom[pp] = {c | 3 (b,0) s.t. ¢ = C.Commit(pp,b;0) A be {0,1}}

In Section [6.1], we described a malleable NIWI (Bit.Prove, Bit.Verify, Bit.Maul) for Leom[pp] with respect
to transformation Bit.T. For the FH NIWI construction, we need the malleability to be with respect to a
more general transformation Bit.GenT = (Bit.GenTrans, Bit.GWitTrans). The transformation Bit.GenTrans
randomizes and transforms a commitment ¢ € Leom[pp] to a new commitment ¢’ € Leom[pp’]. Formally,
Bit.GenTrans(c; 0, 7pp) works as follows:

1. Compute pp’ = RParam(pp, 7pp) and output z = ChangeCom(pp’, ¢, 7pp).

2. Compute ¢’ = C.Rand(pp, z;0'). Output c'.

Recall that the syntax of the associated mauling algorithm is as follows:
ﬂ'()it + Bit.GenMaul(pp, c, ol,rpp, Tbit )

The fourth ingredient in our FH NIWI construction is the NIWI proof system (N.Prove, N.Verify,
N.GenMaul) for Ly[pp]. Recall that Ly[pp] is parameterized by pp < C.Setup(1*) and is defined as follows:

Lnlpp] = {{ci}ie | 3 {bi, 0i}ieps) s-t. ci = C.Commit(b;;0;) A (b3 =by A ba) A {bi € {0,1}}icz }

In Section we described a malleable NIWI (N.Prove, N.Verify, N.Maul) for Ly[pp] with respect to
transformation N.T. For the FH NIWI construction, we need the malleability to be with respect to a more
general transformation N.GenT = (N.GenTrans, N.GWitTrans). The transformation N.GenTrans(pp, {c; }ic3];
{0 }icp3), Tpp) Works as follows:
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1. Compute pp’ = RParam(pp, 7pp).

2. For every i € [3], output z; = ChangeCom(pp’, ¢, 7pp)-

3. Compute ¢, = C.Rand(z;, 0}) for i € [3]. Output (¢}, ¢}, ch)

Recall that the syntax of the associated mauling algorithm is as follows:
mn  N.GenMaul(pp, {c;}ic(3), {0} }icfs), Tpp> T™N)

Note that the third and fourth ingredients can be instantiated similar to the instantiations described in
Section again using the malleable NIWT proof system (Lin.Prove, Lin.Verify, Lin.Maul) for Ly;,[pp] with
respect to transformation Lin.T.

7.2 FH NIWI Construction

In this section we construct a FH NIWI for the language L;;. Recall that
Ly = {(C,out) | 3 w such that C'(w) = out}.

We start by defining a connecting wire for a circuit C.

Definition 14 (Connecting Wire). A wire k in a circuit C' is said to be a connecting wire for a pair of
NAND gates (7, ) if it is an output wire of gate ¢ and an input wire to gate j.

Without loss of generality, we assume that every circuit C' in an Ly, instance (C,out) is a layered circuit;
namely, the circuit consists of ¢ layers of gates such that any output wire from a gate at layer i € [t] is an
input wire to a gate in layer ¢ + 1@ We also assume without loss of generality that the circuit consists of
NAND gates where each gate has fan-in 2 and fan-out at most 2.

We will use the following ingredients in our FH NIWI construction:
— A RaHE-commitment scheme (C.Setup, C.Commit, C.Rand) with the additional functionalities
(OutParam, ValidParam, RParam, ChangeCom, ValidInter, InterParam)

as defined in Section B.11

— Malleable proof system for Lt¢ with weak soundness and strong secrecy, with respect to the trans-
formation TC.T = (TC.Transform, TC.WitTrans) as described in Section denoted by

(TC.Prove, TC.Verify, TC.Maul).

— Malleable NIWI proof system for Leom[pp] with respect to the transformation Bit.GenT = (Bit.GenTrans,
Bit.GWitTrans) as described in Section denoted by

(Bit.Prove, Bit.Verify, Bit.GenMaul).

— Malleable NIWT proof system for Ly[pp] with respect to the transformation N.GenT = (N.GenTrans,
N.GWitTrans) as described in Section denoted by

(N.Prove, N.Verify, N.GenMaul).

SAny circuit can be converted into a layered circuit by adding dummy gates.
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Theorem 4. Assuming the existence of the ingredients as described above, the following construction
Heuniwi @ a Fully Homomorphic NIWI proof system as per Definition [§

We instantiate the first, third and fourth ingredients from DLIN and instantiate the second ingredient
from DLIN with Leakage as we describe in Section This gives the following corollary:

Corollary 1. Assuming DLIN with Leakage, the following construction Ilgpnwi 4s a Fully Homomorphic
NIWI proof system as per Definition [§

Construction: We now describe our construction of fully homomorphic NIWTI proofs for ;.

NIWI.Prove((C,out),w) : For C': {0,1}" — {0,1}, denote by m the number of NAND gates, and by
£ the number of connecting wires. Let w = wy, ..., w,+¢ be the values induced by w on all the wires
excluding the output wire (but including the input wires).

1.

For each gate j € [m], choose randomness rgp and compute pp? = C.Setup(l’\;rgp) and pp} =
OutParam(ppjl-). Denote by ﬁj = (ppg7 pp}).

For each input wire k € [n], denote by j the gate for which wire k is an input. For every b € {0, 1},

choose at random oz’j and compute cz’j = C.Commit(ppg’-,wk; oz’j). Let ¢ = (c%j, c,lcyj).

For the output wire wout (which is the output wire of gate m) and for every b € {0,1}, let
cf,’vout’m = 1 for out = 1 and let cfjvout’m = 0 for out = 0. Recall that 1,0 are the canonical

commitments to 1 and 0 respectively (see Remark . Let Cwout = (Corout.ms Coout.m)-
For each connecting wire k € {n +1,...,n + ¢} that connects gates i,j € [m] (i < j), compute

(%, o%, st*) < OutCom(ppY, ppY, i, wy)

ko (00 W0 a1 k _ (.00 01 10 _11 k_ (0 0 1 1
where oy = (cm,ck,j,ck’i,ck’j), op = (m), 7, m, ) and where st¥ = (ok’i,ok’j,ok7i,ok’j).

We will denote (o¥, o¥) by @

Note that a commitment cz ; commits to wy with respect to parameters pp?, and where wire k
is either an input or output wire for gate j. Also note that there are two commitments for each
input wire and four commitments for each connecting wire.

Denote by S the set of all pairs (k, j) for k € [n+/],j € [m], such that wire k is an input or output
to gate j. For all (k,j) € S and for every b € {0,1}, generate a proof that the commitment CZ]'
commits to a bit. Namely, compute

7Tbit[khj]b — Bit.Prove(ppg, cz,ju Oz,j)
where oz ;18 the opening for commitment ci ; as computed in step 2 (for input wires) or as part
of st¥ output by OutCom (for connecting wires) in step 3. Let myi[k, j] = (Wbit[k:,j]o, wbit[kz,j]l).

For each gate j € [m], denote by ki, ky the input wires of the gate j and by ks, k4 the output
wires to gate j. For each t € {3,4} and b € {0,1}, compute a gate consistency proof as follows:

j,b
éate [t] N'PVOVG(PP?a {Czi,j}ie{l,Zt}a {wii, Ozi,j}ie{l,zt})

7r
. 0 1 0 1

Let 71'éate = (Wé;ate 3], Wéate 3], Wéate [4]77Téate [4})

Finally output

nwt = [{PB; }jepm)s {8k Hreinls 1Pk trepgs {mbitli, J] Yoges {7 ate}jefm]» Cwout] -
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NIWI.Verify((C, out), IT): Parse

I = [{PBs }jepm)s {€k rep) { @ Hreigs { it 631} i jyes {Tate} jefm]» Cwout

. For each j € [m], parse ﬁj = (pp?, ppjl) and check that VaIidParam(ppg-)7 ppjl-) =1

For each connecting wire k that connects gates 4,5 € [m], check that VerCom(pp?, pp?, op) = 1.

For each (k,j) € S, parse myi[k, j] = (wb;t[k,j]o,wb;t[k,j]l) and for every b € {0, 1}, check that
Bit.Verify(ppg’., czjj,wbit[k,j]b) =1.

. For each gate j € [m], parse Wéate = (m éa[ie[3],7ré;1te[3],ﬂé’aqce[él],Wé’alte[él]). Denote by ki, k2

the input wires to gate j and by ks, k4 the output wires of gate j. For each t €
{3,4} and b € {0,1}, check that NVerlfy(pp],{ck”}ze{l’z,t}, gate[t}) = 1 where TFéate =

,0 1 ,0 1
(Wéate 3], 71'éate 3], Wéate 4], Wé;ate [4]) .

Parse Cwout = (Chout.m> Coout.m) and check that for all b € {0,1}, cboup,, = 1 if out = 1 and
cf,’vout’m =0if out =0.

NIWI.Rand((C, out), II) : Parse

Hnwi = [{@j}je[m]a {Ck}ké[n]a {‘I)k:}k:e[é}, {Wbit [iaj]}(i’j)ega {ﬂ-éate}je[m]a CWOUt]

Randomize the proof II as follows:

1.

For each j € [m], parse ﬁj = (ppg,pp}), choose randomness r,];p and compute (ppg)’ —
RParam(pp?;r,J)p) and (ppjl-)’ = OutParam(pp?,).

For each k € [n], denote by j the gate for which wire & is an input. For each b € {0,1},

— Compute z,l;j = ChangeCom((ppg’-)’,c,bcvj, ).

— Choose fresh randomness oz’j and compute (c%j)’ = C.Rand(pp?, z,l;’j; Oz,j)'

Let ¢}, = ((c%j)’, (c,lw-)’).
For each connecting wire k between gates i, j € [m], compute

(k) (o), st}) < RCom(ppy, (pPY)', 75, PP}, (PP})', 7, o8, o)

Let st = (okl,okj,okl,akj) Denote by ¢} = ((a%)', (o¥)').
For all (k,j) € S, for every b € {0,1}, compute
(mbie[k, 7]°) Bit.GenI\/IauI(pp?-,cz’j,ozj,rgp, it [k, 51°)

where 02 ;18 the randomizing factor for commitment ci? as computed in the step 2 (for input wires)

or as part of stj. output by RCom (for connecting wires) computed in step 3. Let mpit[k, il =
(i, 1), (moie [, 1) -
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5. For each gate j € [m], let k1, ka be the input wires to gate j, and ks, k4 be the output wires. For
each t € {3,4} and for every b € {0, 1}, compute
j,b b r.b b i _gb
(ﬂ-éate[ﬂ), A N.GenMauI(ppj, {Cki,j}ié{l,lt}v {Oki,j}z'e{l,zt}, Tf)pa 7Téate[t])

and where ozh ; is the randomizing factor for commitment czh ; as computed in the step 2 (for

input wires) or as part of stj, output by RCom (for connecting wires) computed in step 3. Let

(mgate) = ((mgate[3])'s (gate[3)', (mgate[4])’ (e [4))')
Finally output randomized proof as:

1_[1\IIWI = [{ﬁ;‘}je[m]v {C;‘}ie[nb {(I);s}k‘e[ﬁ]a {Wbit [kv j]/}(k,j)eS’ {(Wéate)/}je[m]a CWout]-

NIWLEval({(Cq, bg, T Y, C7):

1. Check that Valid(C’) = 1, else output L. Recall that Valid(C’) = 1 if and only if C" : {0,1}* —
{0,1}. Compute (C,out’) = Compose({(Cy, by, 1)}, C").

i=q’
2. For each ¢ € [K], let n3if, , € II; be the gate consistency proofs of the output gate goy of circuit

gate,q
Cq and let cyouty € Il be the canonical output commitments to output by of circuit C,. Let

2

Iy =1, \ {ng'ge,qa Cwoutq}~

3. Compute a  proof Il for ¢ with witness (b1,...,bx) by evaluating
NIWI.Prove((C’,out’), (b1, ...,bx)) (where out’ is from Step 1) with the following modifi-
cation:

For each ¢ € [K], denote by gout the output gate of Cy, by W, the output wire and by gi, the
gate to which wire W is an input in the composed circuit C'.

— For every ¢q € [K], choose randomness 7y, and compute ppgh1 = C.Setup(1*;7,, ) and pp}lm =
OutParam(pp} ).

— Instead of fresh commitment for the wires W, € [K], compute

crYTm

(0‘1 od stq) — OutCom(ppgout, ppgin,rqin,bq)

b
2,Gout

the input wire values to the gate gout. Let og be the randomness used to commit to b, with

out,0 out,1
gate,q» 7rgate,q

4. For each output gate gout for Cy and for b € {0,1}, let cll’7qout,c be the commitments to

out

gate,q = ) and CWOth =

respect to pplq’out, computed as part of st? in step 3. Recall (m

(c?/quout, cll/quout). For every b € {0,1}, compute

out,b \/ b b b b b out,b
(ﬂgat&q) — N.Genl\/laul(ppqout, <C1,QOut7 €3 goue> c‘,[,mqout)7 (1, 1,0.), l,ﬂgate’()

_ P b
5. Note that II = [IIy,...,II,,IT, {(ﬂ(g)g:eﬂ)’}iE[K]7be{071}]

domize the proof by computing IT' <~ NIWI.Rand((C, out’),II). Finally output (C,out’,I").

is a complete proof for (C,out). Ran-

Proof of Theorem [f; Completeness follows from the completeness of underlying primitives.

Claim 4. IIggnwi satisfies perfect soundness.
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Proof. Suppose for contradiction, there exists P* and an infinite set A C N such that for all A € A,
Pr[((C,out),II) + P*(1%) : NIWI.Verify((C,out),II) =1 A (C,out) ¢ Ly] > 0. (4)

For C' : {0,1}"™ — {0, 1}, denote by m the number of NAND gates, by ¢ the number of connecting wires,
and by S the set of all pairs (k, ) for k € [n+ £],j € [m], such that wire k is an input or output to gate

j. Parse IT = [{pB;}jepmys 1€k Hren]> 1Pk Hrel {mbieli, 31} jyes {7 st} jefm)> Cwout] -

Let E1 be the event that NIWI.Verify((C,out),ITI) = 1 where ((C,out),II) < P*(1"). Let E3 be the
event that (C,out) ¢ Ly where ((C,out),II) < P*(1%).

— FEy implies that for all j € [m)], VaIidParam(ﬁj) = 1. Namely, for all j € [m], there exists b; € {0, 1}
such that pp?-j € C.Setup(1?). Let {PP;}jem) be the set of all binding parameters such that for each

. —~ b;
j € [m], pp; = pp;’.

— Let w = (w1, ..., wpye) be the values committed with respect to {pp;} jem) on all the wires excluding
the output wire (but including the input wires). Ej implies that for all (k, j) € S, Bit.Verify(pp;, cz.j,
it [k, j]) = 1 where ¢y ; is the commitment to wire k € [n+¢] with respect to pp; and 7pic[k, j] is the
corresponding Lcom [55]] proof. This along with perfect soundness of (Bit.Prove, Bit.Verify), implies
that for all k € [n + /], wy € {0,1}.

— E; implies that for any connecting wire k € [¢] between gates 4, j, VerCom (pp;, PP; ®)) = 1. This in
turn implies that TC.Verify((EBZ-,B[\)j,ckyi, ), m1c) where ¢ ;, ¢ ; are commitments to wire value
k under pp;, 55]- respectively and 7rc is the corresponding Ltc proof. This along with the soundness
of (TC.Prove, TC.Verify) implies that cj ;, ¢ ; commit to the same value wy.

— For any gate j € [m]|, let kj,,kj, be the input wires and kj, be the output wire. E; implies that
for all j € [m], N.Verify(pp;, pp;, {iji7j}i6[3]>7ré§te) = 1) = 1 where {cy, ;}ic[3) are the commitment
to wires kj,, kj,, kj, with respect to pp; and mg, is the corresponding Ln[pp;] proof. This along
with perfect soundness of (N.Prove, N.Verify), implies that for all j € [m], wy; A wg;, = wy;,. In
particular, wyi¢ 1 A Wy = out where wy1p 1, w, ¢ are the values of the two input wires to the
output gate of C.

Thus, E; implies that w = (wy, ..., wy4¢) defines a consistent boolean assignment across the entire circuit
C such that C(w) = out. However Fs implies that that C(w) # out. Hence we contradict Equation
which says that Pr[E; A Es] > 0. O

Claim 5. IIpyniwi @s a randomizable non-interactive proof system as per Definition [{]

Proof. We show that for any instance (C,b) € Ly with witness w € {0,1}" and any proof IT such that
NIWI.Verify((C, b),1II) = 1, the following distributions are identical:

{(C,b),w, IR, 11} and {(C,b),w,IL,R,1I'}

where II; is a fresh proof obtained by IIy < NIWI.Prove((C,b),w), I is a randomized proof obtained
by II' <= NIWILRand((C,b),II) and R is randomness such that II = NIWI.Prove((C,b),w; R). Let w =
W1, ..., Wty be the values induced by w on all the wires excluding the output wire (but including the
input wires). Parse

I = [{PP;}jelm]s {Ck treln]s { Pk reqas {moicli, Wi jyes {m e} icim]> Cwout]

and parse .
R = [{T%p’ Sj}je[m]a {Sk‘}ke[é]a {oi, ti}ie[n—i—%}]
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where pp(; = C.Setup(1* rpp) pp] = OutParam(pp]) (Pk,sty) OutCom(pp?,ppg,rgp,wk;Sk) for k €
{n+1,...,n+£}, where ¢c; = C.Commit(pp;, w;; 0;) for i € [n], 7{,, = Bit.Prove(pp, c;, 0;; t;) for i € [n+2/].
Finally 73, = N.Prove(pp;, {c;;, 05, }icpa); 57) for j € [m].

Similarly, let IT" = NIWIL.Rand((C, b), IT; R’) and parse

R' = [{ Top> ]}]E[m] {Sk}ke []> {0” z}ze n+2€}]

where (pp})’ = RParam(ppg,r‘g;) ( ;c,st’) < RCom(¢y;Sy), ¢, = C. Rand(ppz,cz;og) for i € [n + 2/,
Fé/it = Bit.Maul(pp, ¢;, 0}, 7i.; t;). Finally, gate = N.Maul(pp, {c‘h,oh}le 3],7rN, j)
By perfect randomizability of TC.Maul, there exists function f, given by (R}, R}, S}) = fo(rt Tpps rpp, pp>

rg/p,st%) such that (ppJ)’ C.Setup(l)‘;Rf]) for ¢ € {4,7} and (¢}, st}) <= OutCom(pp;, pp;, Ri,b;Sy).
By perfect randomizability of commitment scheme and of underlying proof systems, there exists

o = feom(0i,0}) such that ¢, = C.Commit(pp, wl, of) and o] is distributed as uniform, there exists
Joit(th, ti, 05, 0}) = t! such that 7rbIt = Bit.Prove(pp, cl, of;t!) and t is distributed as uniform.

Similarly, feate(s}, 55,105, 0}, i) = 85 and mgae = N.Prove(pp, {c;;, 0] }icp3); 87) where s7 is dis-
tributed as uniform. We can now identify R” such that II" = NIWI.Prove((C, b), w; R”) as follows:

= [{Rj’7 33/}]6[771}7 {Sl/c, kel {Oilv t;/}le[rH»Qﬂ]

which is distributed as uniform. It follows that {(C, b), w, I, R, 11 f} and {(C, b), w, I, R, I } are identical
distributions, where Iy = NIWIL.Prove((C,b),w;S) and II' = NIWI.Prove((C,b), w; R”) for truly random
S.R”.

O

Claim 6. IIggnwi satisfies unlinkability.
Proof. Follows from the completeness of the underlying primitives and randomizability of the NIWI. [
Claim 7. IIpynwi satisfies witness indistinguishabiilty.

Proof. Fix any (C,out), witg, wit; such that ((C,out),wity) € Ry and ((C,out),wit;) € Ry. We will prove
that {Ilp} ~ {II; } where II; - NIWI.Prove((C,out), wit;) for b € {0, 1}.

For C : {0,1}" — {0,1}, denote by m the number of NAND gates, by ¢ the number of connecting
wires, and by S the set of all pairs (k, j) for k € [n+£],j € [m], such that wire k is an input or output to
gate j. Let w® = (wll’, . n+£) be the values induced by wit, on all the wires excluding the output wire
(but including the input eres) We will proceed through the following hybrids:

Hyby: Compute IT <— NIWI.Prove((C,out), wity). Output proof II.

Hyb,: This is exactly as Hyb, with the following changes: Instead of choosing fresh pp; < C.Setup(1*)
for each gate j € [m], compute only two parameters pp;, ppy by running C.Setup(1*) twice independently.
Recall that C is a layered circuit. Use parameters pp; for all the gates on odd layers of C' and pp, for
all the gates on even layers of C. Compute the rest of the proof honestly and at the end, randomize the
resulting proof. In more detail, Hyb; is as follows:

1. Denote by layery, ..., layer, the t layers of gates in C. Choose at random 71,72 < {0, 1}p°'y()‘)

— For each i € [2], compute pp? = C.Setup(1*;r;) and compute pp; = OutParam(pp!).
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— For all j € [t] and for each gate v; € layer;, let ?U] = ppl, ppl) if 7 is odd, else
ﬁ”]’ = (ppJ, pp3) if j is even.

2. For each input wire k € [n], denote by j the gate for which wire k is an input. For every b € {0, 1},

b b 0 1
choose at random oj, ; and compute c; ; = C. Commlt(ppj,wk, ij) Let ¢, = (ck’j, ckd-).

For the output wire wout and for every b € {0,1}, if out = 1, c} = 1 and if out = 0,

wout,m

b
Cwout,m =0. Let Cwout = (c\(/)vout,mv C\}vout,m)'
3. For each connecting wire k € {n+ 1,...,n + £} that connects gates i,j € [m], compute

(af,aﬁ,stk) — OutCom(ppg, ppg,rj,wg)

k _ (o0 0 o1 1 k _ (00 01 _10 _11 k_ (0 0 1 1
where o} = (c,@’i,c/,cyj,c/,w;,c,w-)7 oy = (mp), 7, w7, ) and where st = <0k,i70k,j70k,z’70k,j)'

™
We will denote (%, %) by .

4. For all (k,j) € S and for every b € {0, 1}, generate a proof that the commitment Ci, ; commits
to a bit. Namely, compute

Wb;t[k,j]b — Bit.Prove(ppg, c%j, OZJ)

where 02, j is the opening for commitment ci} ; as computed in step 2 (for input wires) or as part

of st® output by OutCom (for connecting wires) in step 3. Let mpi[k, j] = (Wbit[k,j]o, ﬂbit[k,j]l).

5. For each gate j € [m], denote by ki, ko the input wires of the gate j and by ks, k4 the output
wires of the gate j. For each t € {3,4} and b € {0,1}, compute a gate consistency proof as
follows:

,b b r.b 0 b
Wéate [t] < N-PVOVG(PP]', {Cki,j}ie{l,Zt}a {wkp Oki,j}ie{l,zt})

0 j,1 7,0 j,1
gate — ( éate [3]7 7Téate [3]7 7Téa'ce [4] ) 71-éate [4})

6. Let II = [{ﬁj}je[m]a {Ck}ke[n]a {(I)k}ke[f]a {Wbit[iaj]}(i’j)egv {ﬂ—éate}je[m]a Cwout] .
Finally compute II' < NIWI.Rand((C, out), II). Output II'".

Let 7

Hyb,: This is exactly as Hyb; with the following changes: Recall that for each j € [m] and each ﬁj eIl
where pp; = (pp], pp]) pp? is the binding parameter and ppjl- is the hiding parameter. We now equivocate
the commitments with respect to the hiding parameters to obtain the openings with respect to wit;. We
then compute the bit consistency and gate consistency proofs for the hiding parameters using the equivo-
cated openings with respect to wit;. Note that the Ltc proofs output by OutCom (step 3) are still with
respect to witg. In more detail, Hyb, is as follows:

1. Denote by layer, ..., layer, the t layers of gates in C'. Choose at random 7,79 < {0, 1}F’°'y()‘)

— For each i € [2], compute pp? = C.Setup(1*;7;) and compute pp} = OutParam(pp!).

— For all j € [t] and for each gate v; € layer;, let _[51,7 pp17 ppl) if j is odd, else
Py, = (PP, pp3) if j is even.
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2. For each input wire k € [n], denote by j the gate for which wire & is an input. For every b € {0, 1},
choose at random OZJ and compute CZJ = C.Commit(ppg,wg; OZJ). Let ¢, = (c%j, Cllw')'

For the output wire wout and for every b € {0,1}, if out = 1, cfjvounm = 1 and if out = 0,
b _ _ (0 1
Cwout,m =0. Let Cwout = (cwout,m7 cwout,m)'

3. For each connecting wire k € {n+ 1,...,n + £} that connects gates i,j € [m], compute

(af, ok, stk) < OutCom(pp?, pp(;-7 i, wh)

k(o0 o0 ol ol k _ (.00 01 10 11 k_ (0 0 1 1
where o = (¢ ;¢ 5, € ;,C ), 07 = (m°, 7w, ", T ) and where st = (o ;, 04 5,0 ;04 ;).
We will denote (%, %) by .

4. For all (k,j) € S, first compute s,lcj = C.Equivocate(ppjl»,rj,c}cj,okj, w,}:) where 7 is the

0 : e o0 _ o1 T _ 1 o :
randomness used to generate pp; in step 1. Note that if wy = wy;, then Sy,j = O,; since equiv-

ocation is to the same bit as the committed bit.

Compute [k, 7]° < Bit.Prove(pp?, cgj, ogj) as before where ogj is the opening for commit-
ment cg’j as computed in step 2 (for input wires) or as part of st* output by OutCom (for
connecting wires) in step 3. Compute [k, 7] < Bit.Prove(pp]l,c,ij,skj) where s,lcj is the

opening of c,lw- with respect to wit; as computed before. Let mpi[k, j] = (Wbit[k‘,j]o, Wbit[kz,j]l).
5. For each gate j € [m], denote by ki, ko the input wires of the gate j and by ks, k4 the output
wires to gate j. For each t € {3,4}, compute gate consistency proofs as follows:

j’O

ﬂ—gate[t] A N.Prove(ppg, {C(Igi,j}ie{lﬂ,t}v {wl(c)zv Ogi,j}ie{l,%t})

as before and Wé’alte[t] — N.Prove(ppjl-, {c}%’j}ie{l,g,t}, {wéi, s,l%j}ie{1727t}).

Let e = (0e[3], Thate 3], mhae[4], hake[4]).-

6. Let TT = [{pB; }jeim), {Ck trepnl { Pk trelo; {ﬂbit[iuj]}(i7j)esv{Wéate}je[m}7cwout]- Finally compute
IT" + NIWI.Rand((C, out), II). Output {(C’,out),wito,witl,l'[/}.

Hybs: This is exactly as hybrid 2 and the only change is in step 3 where we use OutComg;,g instead of using
OutCom. Recall that OutCom outputs four commitments (c?, c9, i, ¢i) with respect to (pp?, ppY, ppi, ppi)
respectively, four Ltc proofs and openings for the four commitments. OutCompgij,q is same as OutCom
except that it computes the Ltc proof for (ci, cl, ppl, pp3) differently. In more detail,

(ac,a,r,st) + OutComp;ing(ppY, ppY, 71, 72, bit): The OutCompjng algorithm takes as input two pairs of
parameters ppY, ppJ € C.Setup(1*), randomness 71, 79 such that for all i € [2], pp? = C.Setup(1*;7;) and a
bit, and does the following:

— For all i € [2], compute pp} = OutParam(pp?).

— For all i € [2], for all d € {0,1}, choose at random of and compute ¢ = C.Commit(pp¢, bit; of).
Denote by o, = (c?,¢J,ci, cd).

— Compute pp! = InterParam(pp{, pp3,71) and ppl = InterParam(ppl, pps,r1). For all by, by € {0,1}
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except for by = by = 1, compute

nhibz TC.PrOVe((Cl{Ia% aPPl ,ppg ), (bit, ppl! ’01 ’032))

For all i € [2], compute s} = C. Equwocate(ppz ,Ti,¢},0f, 1 — bit). Denote by st = (0,09, s1, s3).

19 17

Compute 71-11 — TC.PI’OVE((Cl, C27 pplv pp2)’ ( - blt) pp*? 817 8%))
Denote by o, = (7%, 7% 710 711) Output (o, o, st).

Concretely, the changed step 3 in Hybs will be as follows:

For each connecting wire k € {n + 1,...,n + £} that connects gates i, j € [m], if wQ # w} then compute
(aﬁ,afﬁ,stk) < OutComging(pp?, ppg,ri,rj,w,g) else compute (af,afr,stk) < OutCom(pp?, ppg,ri,wg).

Hyb,: In this hybrid, compute pp} + C.Setup’(1*) and pp + C.Setup’(1?). As before, compute pp;} =
OutParam(pp?) for all i € [2]. Note that pp{,pp) are now the hiding parameters and ppi, pps are the
binding parameters.

In addition, all the commitments are now with respect to wit; but the bit consistency and gate con-
sistency proofs for the hiding parameters, are with respect to witg. These are computed by using the
equivocations to witg, with respect to hiding parameters (similar to Hyb,, Hybs).

Also in step 3, use OutComp;ge instead of using OutCompging. OutComp;ge is similar to OutCom except
that it computes the Ltc proof for (c?,cJ, pp{, pp9) differently. In more detail,

(O’C,O'F,St> <+ OutCompige(ppY, ppY, 71,72, bit): The OutCompige algorithm takes as input two pairs of
parameters pp{, ppJ € C.Setup’(1}), randomness 71,79 such that for all i € [2], ppY = C.Setup/(1*; ;) and
a bit, and does the following:

— For all i € [2], compute pp} = OutParam(pp?).

— For all i € [2], for all d € {0,1}, choose at random of and compute ¢ = C.Commit(ppZ, bit; 0f).
Denote by o, = (c?,c9,ci, cd).

— Compute pp! = InterParam(pp{, pp3,71) and ppl = InterParam(ppl, ppi,r1). For all by, by € {0,1}
except for by = by = 0, compute

b1 b b by b
7Tb1b2 — TC.Prove((cll,CQQ, ppll, PPy ) (blt pp* 701 7022))

For all ¢ € [ } compute s¥ = C. Equocate(ppl ,ri,cr, 09,1 — bit). Denote by st = (s, 9, o}, 0d).

70 17

Compute 790 TC.Prove((cl, c9, ppY, ppY), (1 — bit, pp, s?, 88)).

Denote by o, = (7%, 7%, 710 711) Output (o, o, st).

We now describe the hybrid in detail:

1. Denote by layer, ..., layer, the t layers of gates in C'. Choose at random 71,79 < {0, 1}p°|y()‘).

— For each i € [2], compute pp? = C.Setup/(1*;7;) and compute pp} = OutParam(pp?).

— For all j € [t] and for each gate v; € layer;, let ?vj (ppY, pp1) if j is odd, else
@Uj = (ppJ, pp3) if j is even.
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2. For each input wire k € [n], denote by j the gate for which wire & is an input. For every b € {0, 1},
choose at random OZJ and compute CZJ = C.Commit(ppg,w,ﬁ; OZJ). Let ¢, = (c%j, Cllw')'

For the output wire wout and for every b € {0,1}, if out = 1, cf,’vout’m = 1 and if out = 0,
Cevout,m = 0. Let cwout = (c\(/)vout,m7 c\}vout,m)'

3. For each connecting wire k € {n +1,...,n + ¢} that connects gates i, j € [m], if w) # w}, then
compute (c¥, ok st") + OutCompige (pp?, PPy, 7i, 7, wy,) else compute (ok, ok, sth)
OutCom(pp?, ppy), i, wy,) where ob = (cg,i,cg’j,cii,c}c,j), ok = (700, 79 710 7ll) and where

k_ (0 0 -1 1 . k _k
sth = (ok,i,0k7j,0k,i,0k7j). We will denote (o7, 07%) by ®y.

4. For all (k,j) € S, first compute 52,3‘ :C.Equivocate(pp?,Tj,cgyj,ogj,wg) where r; is the

randomness used to generate ppg-) in step 1. Compute it [k, j]° Bit.Prove(ppg7 cg,j, sgj).

For all (k,j) € S, compute [k, j]* < Bit.Prove(pp},ckj,oij), where ollcj is the opening for
commitment cg ; as computed in step 2 (for input wires) or as part of st* output by OutCom

(for connecting wires) in step 3. Let mpi[k, j| = (Wbit[k‘,j]o, Wbit[k:,j]l).

5. For each gate j € [m], denote by ki, ko the input wires of the gate j and by ks, k4 the output
wires to gate j. For each t € {3,4}, compute gate consistency proofs as follows:

i,0
Wéate[t] A N-PFOVG(PP% {Cgi,j}ie{l,Zt}? {wgi, Sgi,j}ie{lz,t})
and
1
ﬂ-éate[t] A N-PFOVe(PP}a {Cii7j}z‘e{1,2,t}a {wliz-, Oki,j}z‘e{m,t})
. 0 1 0 1
Let 7"-éate = (Tréate [3]7 7Téate [3]’ ﬂ-éate [4] ) 7"-éate [4})

6. Let T1 = [{pB;}jeim), {Ck trepnl { Pk treio, {moielis 1} i jyeso {m] e} jelm)> Cwout] - Finally compute
I + NIWIL.Rand((C, out),II). Output {(C,out), wity, wity, II'}.

Hybs: This hybrid is same as Hyb, except that in step 3 it uses OutCom instead of OutComyjge. More
specifically step 3 is as follows:

For each connecting wire k € {n+ 1,...,n + £} that connects gates i,j € [m], compute
(05, a§7stk) — OutCom(pp?, pp?, 5, wg)

Hybg: This hybrid is same as Hyby except that it uses wit; for all the bit consistency and gate consistency
proofs in steps 4,5. In detail, the hybrid is as follows:

1. Denote by layer, ..., layer, the ¢ layers of gates in C'. Choose at random 7,79 < {0, 1}p°'y(A).

— For each i € [2], compute pp? = C.Setup(1*;r;) and compute pp} = OutParam(pp!).
— For all j € [t] and for each gate v; € layer;, let ﬁvj = (pp(l]7 pp%) if j is odd, else
Py, = (PPY, pP3) if j is even.

42



2. For each input wire k € [n], denote by j the gate for which wire & is an input. For every b € {0, 1},
choose at random OZJ and compute CZJ = C.Commit(ppg,w,ﬁ; OZJ). Let ¢, = (c%j, Cllw')'

For the output wire wout and for every b € {0,1}, if out = 1, cfjvounm = 1 and if out = 0,
b _ _ (0 1
Cwout,m =0. Let Cwout = (cwout,m7 cwout,m)'

3. For each connecting wire k € {n+ 1,...,n + £} that connects gates i,j € [m], compute

(af, ok, stk) < OutCom(pp?, pp(;-7 i, W)

where o¥

We will denote (%, %) by .

(0 A0 a1l E _ (00 01 10 11 E_ (0 0 1 1
= (ckﬂ,ck?j,ck,i,cw), op = (m), 7m0, T, ) and where st¥ = (0k7i,0k7j,ok7i,ok7j).

4. For all (k,j) € S and b € {0,1}, compute

Tie[k, 7]° Bit.Prove(pps, ch 02,j)

where oz ;s the opening for commitment ci ; as computed in step 2 (for input wires) or as part

of st® output by OutCom (for connecting wires) in step 3. Let mpi[k, j] = (Wbit[k‘,j]o, ﬂbit[k:,j]l).

5. For each gate j € [m], denote by ki, ky the input wires of the gate j and by ks, k4 the output
wires to gate j. For each t € {3,4} and b € {0,1}, compute a gate consistency proof as follows:

,b b r.b b
7Téate [t] « N-PrOVe(PPja {Cki,j}ie{l,zt}a {wii,oki,j}ie{1,2,t})

. 0 i1 0 i1
Let 7"-éate = (Wéate [3]’ 7Téate [3]7 7I-éate [4] ) 7"-éate [4D

6. Let II = [{ﬁj}je[m]v {Ck}k’e[n]v {(I’k}ke[é]a {Wbit[iaj]}(id‘)ega {Wéate}jE[m}’cWOUt]' Finally compute
IT" + NIWI.Rand((C, out), II). Output {(C’,out),wito,witl,l'[’}.

Hyb,: Exactly as Hybg except in step 1, compute parameters pp(l], ppg using C.Setup instead of using
C.Setup’ so that they are binding again. In detail, step 1 will be as follows:

Denote by layery, ..., layer, the t layers of gates in C. Choose at random r1,79 < {0, 1}p°'y(’\).
— For each i € [2], compute pp) = C.Setup(1*;7;) and compute pp; = OutParam(ppY).
— For all j € [t] and for each gate v; € layer;, let ﬁfuj = (ppY, ppi) if j is odd, else
PBu, = (ppY, pp3) if j is even.

Hybg: Compute IT <— NIWI.Prove((C,out), wit;). Output proof II.

We now prove indistinguishability of all the hybrids. We note that the main challenge is proving that
hybrids 3,4 are indistinguishable (we prove this at the end), the proof of which uses the strong secrecy of

Lc.

Proposition 6. Hyb, ~ Hyb,
Proof. Follows directly from randomizability of the proof system (as proved in Claim [f)). O

Proposition 7. Hyb; ~ Hyb,
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Proof. Follows by witness indistinguishability of (Bit.Prove, Bit.Verify) and of (N.Prove, N.Verify). O
Proposition 8. Hyb, ~ Hyb,

Proof. Follows by witness indistinguishability (WI) of (TC.Prove, TC.Verify). Recall that strong secrecy of
Ltc implies plain WI (see Remark . O

Proposition 9. Hyb, ~ Hyb;

Proof. Follows by witness indistinguishability of (TC.Prove, TC.Verify). O
Proposition 10. Hybs ~ Hybg

Proof. Follows by witness indistinguishability of (Bit.Prove, Bit.Verify) and of (N.Prove, N.Verify). O
Proposition 11. Hybg ~ Hyb,

Proof. Follows from the perfect equivocation of the RaHE-commitment scheme. Recall that C.Setup’
outputs pp’, such that {pp < C.Setup(1*) : pp} ~ {pp’ + C.Setup’(1*) : pp'}. O

Proposition 12. Hyb; ~ Hybg
Proof. Follows directly from randomizability of the proof system. O
Proposition 13. Hyb; ~ Hyb,

Proof. We will prove this via intermediate hybrids Hybs and Hyb). Hybj is generated using a sample
drawn from Dgjng and its output is distributed identically to Hybs. Similarly, Hyb) is generated using a
sample drawn from Dyjge and its output is distributed identically to Hyb,. The proposition then follows
directly from the strong secrecy of Ltc.

Recall that by strong secrecy of Ltc, the following two distributions are computationally indistinguishable.

— Dging(1?) : Choose r at random and compute pp) = C.Setup(1*;7). Compute ppi = OutParam(pp?).
For every d € {0,1}, do the following:

— Choose 04,0/} at random and compute c¢; = C.Commit(pp!,d ;04), ¢, = C.Commit(ppi, d; 0}j).
— Compute I <— TC.Prove((cq, cl, ppY, pPi), (d, ppY, 04, o).

— Compute o/, = C.Equivocate(ppi,r, ¢}, 0lj, 1 — d).

0 1 / / / / 0 1
OutPUt (pplapp17COaCO7CI7C17007007017017H 7H )

— Diige(1?) : Choose r at random and compute pp} = C.Setup’(1*;7). Compute ppl = OutParam(pp).
For every d € {0,1}, do the following:

- Chloose o, olg at random. Compute ¢ = C.Commit(pp?,1—d ;0}j) and compute c/; = C.Commit(
pp1, 1 —d;oy).
— Compute 1 <— TC.Prove((cq, cl, ppy, ppl), (1 —d, pp(f,og, o).

— Compute o4 = C.Equivocate(pp{, , Cq, 0}, d).

0 1 / / / / 0 1
()utput (ppla PpP7, €o, €y, C1, C1, 00, Oy, 01, 07, HTC7 HTC)'
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Before describing the hybrids Hyb’ and Hybj, we describe intermediate procedures SComg, SCom; that
take as input a sample from Dgjnq or Dhide and output four commitments o, four proofs o, and state st.

In detail, for every d € {0,1}, SComg on input (pp?, ppi, co, cf, €1, €}, 00, 0f, 01, 0}, IV, IT') uses only a part
of its input as follows:

SComy uses (ppY, ppi, ca, €, 04, 0}, 1) and does the following:

— Choose randomness 7’ and compute ppy = RParam(pp{;r’). Compute pps = OutParam(pp)). For
every b € {0,1}, compute pp = InterParam(pp4, pp}, 7).

— Choose randomness 0", o' and compute ¢ = C.Rand(pp?, c4; 0°), ¢} = C.Rand(ppi, c/j; o). For every

b € {0,1}, let o} be the new opening of ¢} computed as 03 = feom(04,0°) and o} = feom (0, 0b).
Denote by o, = (c4,c9, ¢}, c}) and st = (04, 09, )}, 03).

— Compute two fresh Ltc proofs as follows:

— 7% « TC.Prove((cq, ¢3, ppY, ppY), (d, ppY, 04, 09)).
— il TC.Prove((cZi,c%7 pp%7 pp%), (1 —d,ppl, ozl,o%)).
— Compute two mauled Lt¢ proofs as follows:

— 70— TC.MauI((cd,c%, ppy, ppl), (1,77, 1,01),7r). Note that mauled proof 7% is a proof that
(ca: c3,pPY, PP3) € LTc.

— 7'« TC.Maul((c}, cf, ppY, ppi), (', 1,0% 1), 7). Note that mauled proof 7'” is a proof that
(c3, ¢, pPY, ppi) € Lc.

Denote by o, = (7%, 7%, 719 711). Output (o, oy, st).

Claim 8. Let Yging < Dgind(1?). Let r1,79 be chosen at random and for all i € [2], let pp; =
C.Setup(1*; 7). Then, for all d € {0,1}, the following distributions are identical:

(SComy(Egind)) and (OutComging(ppy, PP2, 71,72, d))

Proof. Let us look at the difference in the two distributions: SComg(Xgjng) and OutComging(pp;, PP2s
r1,72,d). Recall that OutCompging(ppy, PP2, 71, 72, d) computes four fresh commitments with respect
to d to obtain o, = (c(l], cg, c%, c%) Proofs 7%, 79 719 are computed honestly using the openings
with respect to d and randomness 1 such that pp; = C.Setup(1*;71). Proof 7! is computed using
equivocated openings of c% and c% with respect to 1 — d. Denote o, = (7%, 701 710 711). Finally,
OutComg;ng outputs (o, o, st) where st consists of openings of ¢!, ¢ wrt. d and openings of ci,cl
wrt. 1 —d.

SComy(Xgind) outputs o. = (c,c9,cl,cl) where cJ, ¢l are obtained by randomizing c{,c} respec-

tively and, their openings are also computed using openings of c!,cl and randomization values.
Again, st consists of openings of c{,c9 wrt. d and openings of ci, ¢} wrt. 1 —d. In this distribution,
790, 71 are computed identically as in QutComgjng whereas, proofs 79, 710 are both computed by
mauling proof 7 from Ygj,q with respect to different transformations.

Indistinguishability of the distributions follows from the perfect randomizability and equivocability
of the commitment scheme, perfect randomizability of RParam and by malleability of the proof
system (TC.Prove, TC.Verify, TC.Maul) for Ltc with respect to the transformation TC.T. O

Similarly, we have the following claim.
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Claim 9. Let Yhige < Dhide(1Y). Let 71,19 be chosen at random and for all i € [2], let pp; =
C.Setup/(1%;7;). Then, for all d € {0,1}, the following distributions are identical:

(SComg(Shide)) and (OutCompide(ppy, PPo;s 1,72, d))

We are now ready to describe hybrids Hyb%, Hyb/,. Hybj differs from Hyb, in the following ways:

— Parameters (ppJ, pps) are computed as randomization of (ppY, ppi) rather than as fresh param-
eters.

— For all connecting wires, SCom, is used instead of OutCompgjng. All commitments (including
to input wires) with respect to pp{, pp) (binding parameters) are with respect to witg and all
commitments with respect to pp%, pp% (binding parameters) are with respect to wit;.

— For bit-proofs and gate-proofs, instead of using equivocated openings use the inconsistent open-
ings output by SComy. Note that in Hyb’, we do not have the randomness used in the generation
of ppy, pps2 to equivocate the commitments. But we get the openings (distributed identically as
Hybs) through the sample Xgjnqg.

Concretely, Hyb% does the following:

0 1 / / / / 0 1 A
1. Sample (pp17pp17c07C07Cl7C17007007017017HTC7HTC) — DBind(l )

2. Choose randomness r’ and compute ppg = RParam(pp(l); ). Compute pp% =
OutParam(pp)).
3. Denote by layery,...,layer, the ¢ layers of gates in C. For all j € [t] and for each gate

v; € layer;, let ﬁyj = (ppY, ppi) if j is odd, else @vj = (ppY, pp3) if j is even.
4. For each input wire k € [n], denote by j the gate for which wire k is an input. For

every b € {0,1}, choose at random Oz’j and compute cz’j = C.Commit(ppg’-,wz_;oz’j). Let

Cr = (c%j,c}w-).

For the output wire wout and for every b € {0,1}, if out = 1, cf}vout’m =1 and if out = 0,
b _ — (0 1
Cwout,m =0. Let Cwout = (Cwout,m’ Cwout,m)'

5. For each connecting wire k € {n+ 1,...,n + £} that connects gates i,j € [m],

— If w) # w}, and w) = 0 then

k _k k 0 1 / / / / 0 1 ../
(0c70'7-r?st ) — ScomO(pplupp17C07c07cl7C17007007017017HTC7HTC7T7‘)

— If wg #* w,}/, and wg =1 then

k _k 4k 0 1 / / / / 0 1 ../
(0'070'7”51'_ ) < Scoml(pplapplaC07CO)C17017007007017017HTC7HTCaTa‘)

Note that we use same 7’ in SComg, SCom; as used in step 2 so that the parameters

(ppJ, pp3) used in SComg, SCom; are consistent with step 2.
— Finally if wlg = w’f compute

(0¥, 0k, st") < OutCom(pp,, pp;, ', w)
Note here that 7’ is the randomization factor between pp;, pp; and that is sufficient for
computing the intermediate parameter pp, required for Lt¢ proofs output by OutCom.

See description of InterParam in Section
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. For all (k,j) € S and b € {0,1}, compute

. For each gate j € [m], denote by ki, ks the input wires of the gate j and by ks, k4 the

- Let II = [{ﬁj}je[mh {ck}ke[n]7 {(I)k}ke[é}, {Wbit [ia.j]}(i’j)esv {ﬂ—éate}je[m]v CWOUt] - Finally com-

E _ (0 A0 1 1 k _ (.00 01 _10 _11 E o _
where of = (ck,i,cm,ck’i,ck?j), oy = (mg,m .7 ,m,) and where st¥ =

0o 0 .1 .1 : ko _k
(okvi,om,ok,i,okd). We will denote (07, 07%) by @.

Wb;t[k:,j]b — Bit.Prove(ppg, Cz,jv OZJ)

where oz’j is the opening for commitment Cz,j as computed in step 2 (for input wires)

or as part of st* output by OutCom (for connecting wires) in step 3. Let mpit[k, 7] =
(mbit[k, 7]°, moie [k, 4]1)-

output wires to gate j. For each t € {3,4} and b € {0, 1}, compute a gate consistency proof
as follows:
b
Wéate [t] < N.Prove(ppg’», {Czi,j}ie{l,zt}a {wii, OZi,j}ie{l,Q,t})

Let 7Téate - (Tré’aqce [3]7 7-réa\lte [3]7 ﬂéﬂe [4] ) 7Té}alte [4}) :

pute I+~ NIWI.Rand((C, out),II). Output {(C,out), wity, wit,II'}.

Hyb) is exactly the same as Hybg except that in step 1, we sample from Dyqe instead of Dgjng-

Concretely, step 1 will be:

0 1 / / / / 0 1 A
Sample (pp17pp17c07CO7cl7C17007007017017HTC7HTC) — 2)Hide(]- )

Hyb), differs from Hyb, in the following ways:

— Parameters (pp9, pp3) are computed as randomization of (pp}, ppi) rather than as fresh parameters.

— For all connecting wires, SComg is used instead of OutComp;j,g. All commitments (including to input
wires) with respect to pp}, ppy (binding parameters) are with respect to witg and all commitments

with respect to ppi, ppl (binding parameters) are with respect to wity.

— For bit-proofs and gate-proofs, instead of using equivocated openings use the inconsistent openings

output by SComy.

Hybs, Hyb’; are identically distributed by Claim [8] by the hiding property of the commitment and by
the perfect randomizability of RParam. Similarly, Hyb,, Hyb/, are identically distributed by Claim 9, by the
hiding property of the commitment and by the perfect randomizability of RParam. Hence, Proposition 13

follows from strong secrecy of Ltc.

7.3 Constructing Malleable Proof System for L+c

In this section, we construct the malleable proof system (TC.Prove, TC.Verify, TC.Maul) for Ltc, with
respect to the transformation TC.T as described in Section [7.I] We also prove that it satisfies weak

soundness and satisfies strong secrecy assuming DLIN with Leakage. Recall that

Ltc = {(C1702,PP1aPP2) | 3 (b, pps, 01,02) s.t.

{ci = C.Commit(pp;, b; 01) }icz) A (Validinter(ppy, ppa, pp.) = 1)}
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We now describe the proof system (TC.Prove, TC.Verify) for Ltc. At a high level, a proof for (c1, c2, pp;, pp2)
€ Lvc is computed by first converting the commitment c¢; with respect to pp; to a commitment c, with
respect to ppy (using the intermediate parameter pp, which is part of the witness). The next step is to
prove that the homomorphically computed commitment (cs - c,) is a commitment to 0 or 2, which can be
reduced to an Lj;, statement with respect to pps.

Let (Lin.Prove, Lin.Verify, Lin. Transform) be the NIWTI proof system for Ly;,[pp] from Section Con-
cretely, the proof system for Lyc is as follows.

TC.Prove((c1, 2, ppy, PPa); (b, pP., 01,02)) : For i € [2], parse pp; = [fi, hi, gi, ui, vi, w;]. Parse pp, =
[y Py Gy Uy Vs, wy]. Without loss of generality, let (fy, by, g«) = (fo, ha,g2). For i € [2], parse
c; = (c,ch, ck), parse o; = (14, s;), and compute

_ b rr bps b _ri+s
Cy = (u*f217v*h21aw*921 1)'

Compute A, B as follows:

* 2 * 2 * 2
(01'01 Co " G5 03'03)

Uy Vsl2 | WiW9

- * 2 x 2 % 2
A= (Cl'61762'02703'c3>7 B

Compute IT;, = Lin.Prove((fg, ha, g2), (A, B), (r, s,u)) and where (7, s,u) = (ri+ra, s1+s2, (r1+
S1+ 19+ 82)).

Finally output IItc = [pp,, Cs, Hiin]-
TC.Verify((c1, 2, pp1, PP2), Itc): Parse Itc = [pp,, €, IIiin]. Make the following checks:
— Check that ValidInter(pp;, pps, pp.) = 1.
— Check e(c}, f1) = e(cl, f2), e(cs, h1) = e(cd, ho) and e(ch, g1) = e(c3, g2).
Finally check that Lin.Verify((f2, ha,g2), A,B,II;,) = 1 where A = (¢} - c3,¢ch - c3,¢5 - c3) and

* 2 * 2 * 2
B = (01“31 €'y C3°C3 )
UxU2? VxV2 ) Wixwz

It is easy to see that completeness holds for all parameters. We now prove weak soundness, namely that
this proof system is sound if both parameters are binding.

Proposition 14. Fori € [2], let pp; = [fi, iy 9i, wi, Vi, w;] and let ¢; = (¢4, ch, c4). Let Tltc be a proof for
(c1,€2,PP1.PP2) € Lc. If,

TC.Verify((c1,¢2,pp1,pp2), ITrc) =1 A ({pp; € C.Setup(1*) }icpz) then, (c1,c2,ppy, pPs) € Lrc

Proof. If TC.Verify((cl,CQ, ppl,pp2),H-|-c) = 1, bilinear checks ensure that there exists n, R1, 51 € Zj

such that (ws, v, wy) = (ffl,hgl,gé%ﬁsﬁn) and (ui,vi,wy) = (fle,hfl,gfﬁsﬁn). Also there exists
b,r1, 51 such that c, = (ulf3", v2h3', wlgy T°1) and 1 = (w4 f]*, v0h5, whgl* ). By perfect soundness of

(Lin.Prove, Lin.Verify),

Pr (3 (a1,a2,a3) st. (a1 +az =a3) A (A= (f" 1" g%) Vv (B=(f"h"g%))] =1

2

* 2 * * 2
(L 2 k2 k2 —_ (&4 S% 434
where A = (¢} - ¢f,¢5 - ¢5,¢5 - ¢3) and B = (u*uz, 22, w*wQ).
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Also since pp; € C.Setup(1*) for i € [2], there exists ro = a; — 1,52 = ap — s; such that, co =
(ub f5%, v5hs2, whgh>t*2). Hence for b = 0, A is linear and for b = 1, B is linear, and we conclude that the
proposition follows.

O]

7.3.1 DMalleability of the Ltc Proof System

Let (c1,c2,pp1,pPP2) € Ltc and let IItc be the corresponding proof as described above. Recall that
TC.Transform outputs a randomized instance (c,ch, pp}, pp5) € Ltc (as described in Section |7.1). The
transformation is defined by randomness {0}, T]gp}ke[Q].

For rpp = (2/,9/, 2/, R', S"), and for any proof for (A, B) € Lyj,[pp] where II = [m1, ..., ma3], define

a2y 2y
ChangEGen(H7 TPP) - [7’['11, 125713, 215 T29; 7T23]'

TC.MaUl((Cl,CQ, PP1, PP2), {0} r’;p}kep], HTC) works as follows:

1. Parse IItc = [pp,, C«, Hiin]. For k € [2], parse r];p = (2}, Y., 23, R}, S,) and parse o), = (qx, ti)-

2. Randomize pp, by computing pp! = (u, v/, wl) = (s fy" vuhy? wigy ).

. : . t
3. Randomize commitment c, by computing c” = (ci £, c3hi!, cigP ™).

oo . . _ * 2 % 2 % 2 _ CI'C% C;'c% c§~c§
4. I}, is a linearity proof for (A, B) where A = (¢} - ¢, ¢35 - ¢5,¢5 - ¢3) and B = (u*uz, 22, w*wz)'

Let (A’,B’) be the transformed Li;, statement with respect to the randomized commitments.
NamQIY7 (A/a B,) = Lin.Transform(pp, Av B7 (Ql +q2, t1 + 12, q1+q2— Rll - /27 t1+12— Si - Sé))
Compute

1—‘[/I_/in <~ Lin.I\/IauI(pp, (A,B),I’,S,Hun)
where r = (q1 + q2,t1 + t2) and s = (q1 + g2 — R} — Ry, t1 +t2 — S — S%).

5. Compute ¢, = ChangeCom(c;’,rgp), I, = ChangeGen(Hﬁin,rgp), and pp., =

()72, (v))%2, (w))?2)

6. Finally output I} = [pp},c,, 11}, ].

Proposition 15. The proof system (TC.Prove, TC.Verify, TC.Maul) is a malleable proof system for Ltc as
per Definition [3, with respect to the transformation TC.Transform.

Proof. Follows from malleability of (Lin.Prove, Lin.Verify, Lin.Maul).

7.3.2 Strong Secrecy from the DLIN with Leakage Assumption

In Section , we described the strong secrecy property required from the NIWI proof system (TC.Prove,
TC.Verify). In particular, strong secrecy states that the distributions Dhjge, Pgind are indistinguishable.
We now show that strong secrecy for the proof system (TC.Prove, TC.Verify, TC.Maul) constructed
above, follows from the Strong NIWI for Ly;,[pp] with respect to specific distributions as described in
Section Strong NIWT for Lyin[pp] in turn, follows from DLIN with Leakage (as per Proposition [5).
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Recall that strong NIWI for Lyi;,[pp] states that:

{pp7 (Ao,Bo),ﬂ'()} ~ {ppa (Ala Bl)aﬂ-l}

where Ay, = (f%,h?%2, g®70) for ay,ap < Zy and a3 = a1 + az, where By = (f*, he2, g®~b+1) "and where
7y, <= Lin.Prove(pp, (Ay, By), (a1, a2, as)).

We now describe a reduction S that takes as input (pp, A, B,7) where (A,B,7) = (Ao, Bg,m) or
(A,B,7) = (A1,By,m) as described above, and does the following:

1. Parse pp = [p,G,Gr,e,0p, f,h,g]. Denote by (u,v,w') = A and (u,v,w) = B. Let ppp =
[f7 h7g7u7UJw] and pplD - [f7h7g’u7/l}7w,:|'

2. For every d € {0, 1}, choose Td; Sds r(’i,ls’d at rando,m z%nd compute commitments cg = (udfrd, vlhsa,
wlgratsa)) and ¢, = (ul = fra, v1=4h%a, (w') =dgratsa)). Let og = (14, 54) and o} = (1), s}).

3. For every d € {0,1} , compute H‘Ein + Lin.Maul(pp, A, B, (tg,24), 7 ') where t = (rq + ),z =
(sa+ s,). Let It = [pp)p, clp, TIL. 1.

/ / / / / 0 1
OUtput (ppD7 ppD7 Co, CO? Cy, Cla 00, 0[)7 01, 017 HTC7 HTC)'

Note that o4,0] are openings with respect to d and 1 — d respectively. Let c¢; = (c(f,cg,cg) and
c, = (cil/, cg/, cgl). The main observation is that when cq and ¢/, commit to different bits, then the Ly,

statement in II1¢ given by

d d d. .d .d. .d
d d d d 4 d €1-C GG C3-C
61'61762'62763'63 9 2 ) 2 ) /

u v ww

is a transformed instance of (A7, B) for d = 1 and (A,B7!) for d = 0 where A = (u,v,w’) and
B = (u,v,w), and where the instance is transformed by (tq, zq) for t = (rq + 1)),z = (sq + s);). Recall
from Remark [3|that given linearity proof for (A, B), it is possible to compute linearity proof for (A~!, B)
or (A, B~!) by inverting all the terms in proof 7 to obtain the proof 71!

It is easy to see that when reduction S gets as input (pp, Ao, Bo, 7o), it outputs a sample from Dyjiqe
since By € C.Setup/(1*), and when it gets as input (pp, A1, By, m), it outputs a sample from Dgjnq since

B, € C.Setup/(1%).

8 Commit-and-Compute Paradigm

In this section, we define and instantiate commit-and-compute proof systems. Our motivation is the setting
where users commit to their private data (say on a public ledger), and then may wish to prove statements
about their private committed data. We want the ability to evaluate an arbitrary function (in the form
of a circuit) over individual proofs to obtain proofs on inferred statements about the committed data.

We first define a commit-and-compute NIZK and NIWI proof system. We then use the construction
ideas in the previous sections to achieve this notion.

8.1 Definition of Commit-and-Compute

Definition 15 (Commit-and-Compute NIZK Proofs). A commit-and-compute NIZK proof system consists
of the PPT algorithms (CnC.Setup, CnC.Commit, CnC.Prove, CnC.Verify, CnC.Eval) with the following input-
output behavior:
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CRS « CnC.Setup(1*): The setup algorithm takes as input the security parameter and outputs a common
random string CRS.

¢ + CnC.Commit(CRS,d;r): The commit algorithm takes as input the CRS, bit d, randomness r, and
outputs a commitment c¢. We denote a vector of commitments (ci,...,c,) by com.

We are now ready to define our language Lcom:

Leom = {(C,com,b) | I(w,r) s.t.(C(wi,...,w,) =b) A ({e; = CnC.Commit(CRS, wy; ) }bicn)) }

IT + CnC.Prove(CRS, (C,com,b), (w,r)): The prove algorithm takes as input the CRS, an instance
(C,com,b) along with its witness (w,r) and outputs a proof II.

0/1 < CnC.Verify(CRS, (C,com, b),II): The verification algorithm takes as input the CRS, an instance
(C,com, b) and a proof II, and outputs a boolean value indicating success or failure.

((C,com,b), ) + CnC.Eval(CRS, {(C;,com;, b;),II;}2£,, C"): The evaluation algorithm takes as input
the CRS, K instances {(C;, com;,b;)}X | of Lcom with their proofs {II;}X | and a circuit ¢’, and
outputs the composed instance (C, com, b) and a corresponding proof II.

Composing for Lcom instances: Recall that in Section 4] we defined the Compose() operation that
takes as input {(Ci, b;)}¥_, where C; : {0,1}" — {0,1} and a circuit C’ : {0,1}* — {0, 1}, and outputs
(C,b) where C : {0,1} — {0,1} for N = nq + --- + ng. In this case, all the circuits {C;}¥_, were with
respect to independent inputs.

We now consider the case where different circuits {Ci}le may have overlapping inputs. In particular,
given k instances {(C;, com,, bi)}ie[k] € Lcom, we want to support the case that different com; given as
input to CnC.Eval are overlapping; namely, there is a commitment ¢ such that c is part of com; as well as
part of com; for some 4, j € [k]. We define the composed com as the sequence (comy,...,comy) where
we delete a commitment c if it has previously appeared. We formalize the compose operation as follows:

Compose({(C;, com;, b;)}¥_,, C"): Let com be the vector of commitments obtained as follows: Instantiate
com with com;. For each commitment ¢ in subsequent com; for i € {2,...,k}, append c to com only
if the string ¢ does not already appear in com. Hence we finally obtain com such that each commitment
in comy,...,comy appears in com exactly once. Thus, com is the union of all the commitments in
comy,...,comy. Let M = |com]|.

We will now think of each C; : {0,1} — {0,1} where C; might use only a part of the M inputs.
The compose algorithm outputs circuit C' : {0,1}¥ — {0,1} such that for all w € {0,1}™, we have
C(W) = C”(C’l(w), ceey C’k(w)) and b= Cl(bl, ey bk)

If Compose() is given as input witnesses (wj, rj) for the k instances then it outputs the composed wit-
ness (w,r) corresponding to commitments in the vector com, where com is computed as explained before.

We require the following properties from Commit-and-Compute NIZK proof system:

— NIZK: (CnC.Setup,CnC.Prove, CnC.Verify) is a non-interactive zero-knowledge proof system for
Lcowm as per Definition [T}

— Completeness of Eval: We require that for all non-uniform PPT A and for all A € N,

CRS«CnC.Setup(1*) ; ({(Ci,com;,b; I1;)}Ee | ,C")+A(CRS) ;
((C,com,b),IT)«CnC.Eval(CRS,{(C;,com;,b;),IL; }*_,,C) :
(Valid(C")=0) v (3 €[] 5.t.CnC.Verify(CRS,(Ci.comy,b;)JT;)=0) v

((CnC.Verify(CRS,(C,com,b),H):l) A (C,com,b):Compose({(C’i,comi,bi)}le,C/))
where Valid(C') = 1 if and only if ¢’ : {0,1}* — {0, 1}.
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— Unlinkability: For all PPT adversaries A, there exists a negligible function v such that for all A,
the probability that bit’ = bit in the following game is at most 1/2 + v()\):

GAMEEV3|:

1. CRS « CnC.Setup(1?).

2. (state, {((Cl, com,;, bl), (WZ', I‘i), Hz) le, C/) — A(CRS)

3. Choose bit < {0, 1}. If for any ¢ € [k], CnC.Verify(CRS, (C;, com;, b;),I1;) # 1 or
((C’i,comi,bi), (wi,ri)) ¢ Rcowm, then output L.

4. If bit = 0 then ((C, com, b),IT) - CnC.Eval(CRS, {(C;, com;, b;), I; }¥_,, C").
If bit = 1 then IT +— CnC.Prove(CRS, (C, com, b), (w,r)) where ((C, com,b), (w,r)) < Compose
({(Cy,com;, b;),;, C’, (wi, r;)}e_;). Send (C,b,11) to A.

5. bit’ + A(state, (C,b,1I)).

Definition 16 (Commit-and-Compute NIWI Proofs). (CnC.Commit, CnC.Prove, CnC.Verify, CnC.Eval) is
a Commit-and-Compute NIWT if it has the same description as in Definition [15] where CRS = 1*. Addi-
tionally, (CnC.Prove, CnC.Verify) is a NIWI proof system for Lcom as per Definition 7 and it also satisfies
the completeness of evaluation and unlinkability properties as in Definition

8.2 Construction Overview

Our commit-and-compute (NIZK or NIWI) proof system is very similar to that of a fully homomorphic
(NIZK or NIWI) proof system. The main difference is that there is an explicit commitment vector com
as part of the instance, and the proofs are with respect to the values committed in this specific vector.

Recall that in our constructions, an FH NIZK as well as FH NIWI proof for (C,b) € Ly contains
commitments to all the wire values in C. One idea is to use the commitments in the instance com directly
in the proof for (C, com, b). However if we do that, it will make an evaluated proof distinguishable from
a fresh proof when circuits share input variables.

For example, let (C1,comi,b) € Lcom and (Co, comy, b) € Lcom such that circuits Cp, Co share some
input variable. Let ¢ be the commitment corresponding to the common input such that c is part of both
com; and comsy. An evaluated proof for Cy A Cy will contain the commitment ¢ twice (the proofs for C;
and Cy will each contain c), whereas a fresh proof for C; A Cy will contain the commitment ¢ only once.

We deal with this issue by keeping the commitments com in the instance separate from the com-
mitments in the proof. We compute the FH NIZK or NIWI proof for (C,b) € Ly as before. We then
add proofs of consistency between the values in com and the commitments to the input values in the proof.

Commit-and-Compute NIZK Proofs. We want to compute a proof for (C,com,b) € Lcom. As described
above, we first compute a FH NIZK proof II for (C,b) € Ly; with witness (w,r). We additionally need to
prove consistency between commitments {comy,...,com;} part of com, and the commitments {cy,...,c;}
to the input values. Namely, for each i € [t], we need to prove that com; and ¢; commit to the same value.

This is done as follows: Using the homomorphic properties of the commitment, we can prove the
statement that the commitment com; - ¢; is either a commitment to 0 or a commitment to 2. This can be
reduced to a statement of Li;,[pp] where pp = CRS, similar to the reduction in Bit Proofs and Gate Proofs
of FH NIZK. Our final commit-and-compute NIZK proof for (C, com, b) will consist of an FH NIZK proof
IT for (C,b) € Ly along with ¢ WI proofs that for each i € [t], com; and ¢; commit to the same value. The
completeness of evaluation and unlinkability follow from the corresponding properties of the underlying
FH NIZK and malleability properties of Lyi,[pp].

Commit-and-Compute NIWI Proofs. We start be explaining how we generate the commitments in this

setting. Note that since we have no CRS in a NIWI, we need to slightly modify our commitment scheme
to be without any public parameters. Similar to our FH NIWI construction, we choose two parameters
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(pp®, pp!) such that one of them is verifiably binding and commit with respect to both the parameters.
Thus, our com will be of the form com = (pp®, pp!, (com{, com}), ..., (com?, com))).

Again, we first compute FH NIWI proof II for (C,b) € Ly;. We also need to add consistency proofs
with respect to com and commitments in the FH NIWI proof. Consider an input wire & to circuit C'
the proof II contains (ppg, pp}C7 cg,ci) corresponding to wire k. Proving consistency between these and
some (pp?, pp?, com?, com}) € com boils down to proving four Lt¢ statements exactly as in the procedure
OutCom (described in Section . Our final commit-and-compute NIWI proof for (C, com,b) will con-
sist of an FH NIWT proof II for (C,b) € Ly, along with Ltc proofs for consistency of commitments. The
completeness of evaluation and unlinkability follows from the corresponding properties of the underlying

FH NIWI and malleability properties of Lyc.

Thus, commit-and-compute NIZK and NIWI proofs can be directly instantiated using our FH NIZK
and FH NIWTI constructions and its building blocks, and we get the following theorems.

Theorem 5. There exists Commit-and-Compute NIZK proof system as per Definition[15], assuming DLIN.

Theorem 6. There exists a commit-and-compute NIWI proof system as per Definition[16, assuming DLIN
with Leakage.
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A Bilinear Generic Group Model

Consider groups G, G7 of prime order ¢ and let e : G x G — G be a bilinear map. One popular method to
justify computational assumptions on (G, Gr, €) is by showing that the assumption holds unconditionally
in the bilinear generic group model.

The bilinear generic group model is an idealized model where the computationally unbounded adversary
is given access to randomly chosen encodings (called “handles”) of elements in the group. The handles
themselves reveal no information about the group elements they are associated with; this means that the
adversary cannot perform any computation on the associated group elements using the handles alone.
However, the adversary is given access to an oracle O that performs bilinear computations on the group
elements and also allows the adversary to test if a handle corresponds to the unit element in the group.

In more detail, suppose the bilinear assumption is of the form Dy =. D;, where Dy and D; are
distributions over the group elements in G. For b € {0, 1}, suppose D, generates an N-tuple of group
elements gflf(xl""’xk), . ,gf?v(xl"'”x’@), where g is a generator of G, &, ... ,f?\, are k-variate polynomials
and z1,...,x are random elements in Z,. Associated with the distribution D, is the oracle O initialized
with a list Lj which consists of (h?,€%), ..., (hlj’v,ﬁé’v), where h? is a random handle assigned to &7, for
every i € [N]. We describe the interaction of the adversary A with the oracle O, initialized with Ly.
The oracle O, initialized with L, sends the handles hl{, cees hI}V to the adversary. The adversary can then
submit n handles h;,, ..., h;, and an n-variate polynomial p. The oracle O first checks if for every j € [n],
the handle hij is in its internal list. If one of the hij is not in the list, it returns L. Then it checks if
p(&yy---,&, ) was queried before, where &i; is the polynomial associated with the handle h;,. If it is in
the list then it returns the handle A where (h,p(&;,,...,&,)) is the entry in its internal list. If it is not
in the list then it returns h, picked uniformly at random, and stores (h,p(&;,,...,&;,)) in its internal list.
The adversary can also check if a handle h* corresponds to a zero polynomial by submitting h* to O. As
before, O returns L if h* is not in the list. Otherwise it returns 0 if the polynomial £* associated with h*
(i.e., (h*,£") is an entry in the internal list of O) satisfies £*(x1,...,2,) = 0 for every (z1,...,2,) € Zq,
else it returns 1.

We emphasize that even though the adversary is computationally unbounded, it can only make poly-
logarithmic (in the order of the group) queries to the oracle.

A.1 DLIN with Leakage in the Bilinear Generic Group Model

DLINwithLeakage with respect to (G,Gr,e). Suppose G,Gr be groups of prime order q(X). For every
non-uniform probabilistic polynomial time adversary A, the following holds for some negligible function
negl,

RS Ris fR2 pRS—t gR(R+S+1)7t 5 s
’PI’ 1<—A g?f7h7f 7h 7g + 9 fRS+t hSQ gS(R+S+1)+t : (g,f,h)%@\{l},(R,S,t)%Zq -

R(R+S—1)—t

fR2 hRS—t g g
S(R+S_1)+t]> L (g, £ h) & G\{1}, (R, S.t) & zq] ‘

9

g

fRS+t h52
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< negl())

We prove that the above assumption holds in the generic group model. Before we show this, we define
two distributions Dy and Dy, where:

with z,y, R, S,t & Z, and ag = (R+ S), 80 = (R(R+ S+ 1) — t),70 = (S(R+ S + 1) — t) and
ap=R+S—-1),1=(RR+S5S—-1)—t),71 = (S(R+S—1)+1). Note that the assumption states that
D[) 2 Dl.

T R? y(RS—t) I6]
Dy={g,(f = g%), (h = g"), 5", g% g | * I g
b ) ) ) ) ) RS+t) gySQ

gz( g’Yb

Theorem 7. DLIN with Leakage holds in the bilinear generic group model.

Proof. Suppose A is a computationally unbounded adversary with access to the oracle O. Consider the
following polynomials over the formal variables x,y, R, S, t:

-8 =¢ =

— & ==y

- =g =xr

- Q=& =yS
—@Q=R+S,{¢=R+S-1
- ==

- =& =yRS—t)

— O =RB+S+1)—t, & =RRBR+S—-1)—t
— & =& =x(RS +1t)

- 591 25%1 :Y32

— &, =S(R+S+1)+t, &, =SR+S—1)+t

For any b € {0,1}, denote by h? the handle generated by O, corresponding to the polynomial fi’ . Let Ly
be the list defined by {(h?, §£’)}ie[12]. To prove the theorem it suffices to argue that:

)

‘Pr [1 — AO(LO)} — Pr [1 — AO(Ll)} ‘ < 7polylog(q)
q
where A can make at most polylog(q) queries to O.

We start with the following observation: it suffices to prove that if the adversary submits two poly-
nomials p; and p; such that p;(€7,...,&%) = p;(£,...,€),) then it should hold that p;(&,...,&l,) =
pi(&l, ..., &ly) (and vice versa). More generally, we prove that for every degree-2 polynomial p, p(€?, ..., &%)
is a zero polynomial if and only if p(¢1,. .., &l,) is a zero polynomial.

Lemma 1. Let p € Z,[x,y,R,S,t] be a degree 2 polynomial. p(€Y,...,&%) is a zero polynomial if and
only if p(&1, ..., &L) is a zero polynomial.

Proof. We prove only one direction; the proof for the other direction follows symmetrically.
Suppose p(€Y,...,€%) is a zero polynomial. Let,

p(g(l)7 s 7§§)2) - Ql(f?; s 75(1)2) + Q2(§(1)7 s ag?Q) CX A Q3(§(1)ﬂ s aé??) "y
+Q4(§?a cee 7‘5?2) ! X2 + Q5(‘£?7 v 75?2) : y2 + QG(&?, cee 7‘5(1)2) - Xy
where Q1(£9,...,6%),...,Q6(€Y,...,£%) are polynomials over R, S,t. Since p(¢),...,£),) is a zero poly-
nomial, the polynomials {Q;(£Y,...,£%)} are zero polynomials. We now prove that Q;(&1,...,&5,) is a

zero polynomial for every i € [6]. Once we do this, the proof of the lemma will be complete. We handle
each of these polynomials separately.
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Claim 10. Q1(&1,...,&5) = 0.

Proof. Observe that Q1(&},...,£&%) is of the following form:
c1 4 268 + €365 + callly + csEBES + co&GETs + cr€Els + es(€5)% + ¢o(€9)? + c10(€12)?,

where cy,...,c19 € Z;. We omit writing the terms of the form ¢j&} and ¢f (5117)2 since £ = 1, (511’)2 =1,
and hence are subsumed in the term ¢q, where ¢; = ¢| + ¢{. Similarly, we also omit writing the terms
ﬁ’ﬁg,ff&g, ll’fll’Q since fg = {%’fg, fg = {%’fg and 511’2 = fll’fll’2. We first focus on the case when b = 0. First
observe that c1g = 0; this is because (£7,)? has the term S* that cannot be canceled by other polynomials.
Similarly cg = 0, since (£9)? has the term R?. In addition, it holds that c¢; = 0 since (£9¢7,) has the term
R3S, that cannot be canceled by other polynomials. Also ¢5 = 0, since 5858 contains the term R3 that
cannot be canceled by other polynomials and, similarly cg = 0, £J¢Y, contains the term S3 that cannot be
canceled by other polynomials. So far, we have shown that cs, cg, c7, ¢, c10 = 0. We now expand Q.

Q1(&%,...,6)) = 14+ R+S)+3(R2+RS+R —t) +c4(S?+ RS + S +t) + cs(R? + S + 2RS)
= c1+(ca+c3)R+ (ca+ca)S+ (c3+cg)R*+ (cg +c8)S* + (c3 + ca + 2c5)RS

+(—c3 +ca)t
Since @1 is a zero polynomial, we have ¢ = 0, co = —c3,c0 = —¢4, c3 = —cg, cg+c4+2cg = 0 and c3 = ¢4.
That is, ¢ =0, co = —c3, c3 = ¢4 and, co = cg.

Now, we focus on Q1(£1,...,¢1,). Expanding Q1(&1,...,&L,) we get:

Qi(€l,..., &) = R+S—1)+3(R*+RS—R—t)+ (S +RS - S +1t)
+cg(R2+S2+2RS — 2R — 2S + 1)
= (c3 —c3—2c8)R+ (o — ¢4 — 2¢8)S + (3 4 cg) R + (¢4 + 5)S?
+(c3+ ¢4+ 2c8)RS + (—c3 + )t + (—c2 + ¢3)
=0

The last equality follows from the fact that co = —c3 = —c4 = cs. O
Claim 11. Qq(&1,...,&5) = 0.

Proof. For b € {0,1}, observe that Q2(&%, ..., &%) is of the following form:

-1 § : beb
X ’ Clm?él 5‘] )
1€{1,6,9,12},
je{2,4,7,10}

where ¢; ; € Zg.
We first make some initial observations about the coefficients:

— ¢97 = 0; because €4¢% contains the term xR* that cannot be canceled by other terms.
— c12,10 = 0; because 511’2511’0 contains the term xRS?3 that cannot be canceled by other terms.

— ¢9,10 = 0; because fé"flfo contains the term xt? that can only be canceled by the corresponding term
contained in &5,£%,, but since ¢12,19 = 0 we have cg 19 = 0.

— ci2,7 = 0; 511’25’7’ contains the term xRZ?S? that can only be canceled by the corresponding terms
contained in the polynomials 55’2511’0, 58511’0, but since c12,10, c9,10 = 0 we have c127 = 0.
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6,10 = 0; because fgfll’o contains the term xSt that cannot be canceled by other terms.

c124 = 0; because 5%252 contains the term xRS? that can only be canceled by the corresponding
terms in the polynomials 511’2511’0, 516’511’0, but since c12,10, 6,10 = 0 we have c124 = 0.

c12.2 = 0; because £7,¢% contains the term xS? that cannot be canceled by other terms.

ce2 = 0; because égfg contains xS that can only be canceled by the corresponding term contained
in £1282, but since c122 = 0 we have cg2 = 0.

g4 = 0; because 5352 contains xRt that can only be canceled by corresponding terms contained in
the polynomials €2¢%,, €5¢%,, €55,€8, but since cg.10, co,10, c12,4 = 0 we have cg 4 = 0.

ce,7 = 0; because §g§l7’ contains xR3 that can only be canceled by the corresponding term contained
in fgfi, gf?, but since cg 4, cg7 = 0 we have cg7 = 0.

Rewriting Q2(&2, ..., &%), we have:

x - (e19668 + e1a€0€h + e1.7€hel + cra0€hell + coaheh + coatieh)

We now analyze the cases for b = 0 and b = 1 separately.
We start with b = 0.

Qa(€Y,...,8%) = cro+ (c14+ coo)R+ (c17 4 cou + co2)R
+<C1,10 + co,4 + Cg}g)RS + (01,10 — ngg)t
=0

From the above equation, the following holds:

Now,

C12 = 0.
c14 = —(cg2)
c17+cea+co2=0
1,10 + 4+ o2 =0
€1,10 = €9,2
we consider the case when b = 1.
Q2(&1, ... &la) = cra+ (cra—co2 — coa)R+ (cr7 + cou + co2)R?
+(Cl710 + co4 + CQ’Q)RS + (01,10 — CQ’Q)t
= (c14—coa— ce4)R+ (c17+ 64 + co2)R?
+(Cl710 + co4 + Cg,g)RS + (61710 — 6972)13 ( 12 = 0)
= (—2c92 — (—2¢92))R + (c1,7 + c6,4 + Co2)R?
+(c1,00 + 64+ c92)RS + (c1,10 — co2)t (. c14 = —C92,C64 = —2¢92)

= (c17+coa+coa)R*+ (c110 + co4 + co2)RS + (110 — co2)t
= 0 (. from the last three bullets described above)

Claim 12. Q3(&1,...,&5) = 0.
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Proof. For b € {0,1}, observe that Q3(&2, ..., &%) is of the following form:

— b¢eb
y > e |,

i€{1,6,9,12},
j€{3,5,8,11}

where ¢; ; € Zq and b € {0, 1}.
We first make some initial observations about the coeflicients:

c12,11 = 0; because £%,€%, contains the term yS?* that cannot be canceled by other terms.
cg,8 = 0; because §g§§ contains the term ySR? that cannot be canceled by other terms.

c12,8 = 0; because fll’Qﬁé’ contains the term yt? that can only be canceled by the corresponding terms
contained in £3¢5, but since cgg = 0 we have cjag = 0.

cg,11 = 0; because 585%1 contains the term yR2S? that can only be canceled by the corresponding
terms contained in the polynomials €58, £5,£8, but since co g, c128 = 0 we have cg 11 = 0.

c6,8 = 0; because fg§§ contains the term yRt that cannot be canceled by other terms.

ce,11 = 0; because fgflfl contains the term ySR? that can only be canceled by the corresponding
terms in the polynomials £33, £5,£8, but since cg 8, c12,8 = 0 we have cg11 = 0.

cg,3 = 0; because §g§§ contains the term yR? that cannot be canceled by other terms.

c6,3 = 0; because fgfé’ contains yR that can only be canceled by the corresponding term contained
in &9 3, but since cg 3 = 0 we have cg3 = 0.

c12,5 = 0; because §l1’2§§ contains yS? that can only be canceled by the corresponding term contained
in 511’2511’1,516’511’1, but since c12,11,¢6,11 = 0 we have ci25 = 0.

cg5 = 0; because §g§§ contains ySt that can only be canceled by corresponding terms contained in
the polynomials fll’Qfg, fgfg, 511’2§g, but since c12,8, ¢ 8, 12,5 = 0 we have cg 5 = 0.

Rewriting Q3(&2, ..., &%), we have:

y ' (Cl,:%flf{é’ +e156060 + c1,8E0€E + 111 €YD + o5 EREL + 012,3§Ifz§§)

We now analyze the cases for b = 0 and b = 1 separately.
We start with b = 0.

Qs(€),...,8%) = c13+ (c15+c123)S + (c111 + co5 + c12.3)S?
+(Cl78 + ce5 + 612,3)RS + (6178 — 612,3)1:
=0

From the above equation, the following holds:

C1,3 = 0.
c15 = —(c12,3)
c1,11 + ¢ce5 +c123 =10

c1,8+ce5+ci23=0
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—cg—ci23=0
Now, we consider the case when b = 1.
Qs(&l, .. &) = cis+(c15—ciz3 —c65)S + (e1,11 + co5 + C12,3)S?

+(6178 + co5 + 012,3)RS + (CI,S — 012’3)13

= (c15—c123 —c65)S + (c111 + co5 + c12.3)S?
+(C178 + co5 + 012,3)RS + (Cl,g — 012,3)13('.' c1,3 = 0)

= (=2c123 — (—2¢12,3))S + (c1.11 + co5 + c12,3)S?
+(c18+ c65 + c123)RS + (c1,8 — c123)t (. c1,5 = —c12,3, C65 = —2¢12,3)

= (c111 +co5+c123)8* + (c1.8 + o5 + c123)RS + (c18 — c123)t
= 0 (. from the last three bullets described above)

Claim 13. Q4(&1,...,&5) = 0.

Proof. For b € {0,1}, observe that Q4(&2,...,&%,) is of the following form:

—2 beb
x >, k|

1,j€{2,4,7,10},5>1

where ¢; j € Z; and b € {0,1}. Moreover, &) = ¢} for i € {2,4,7,10}. Thus, Q4(£7,...,£&%) = 0 implies
that Q4(¢1, ..., &ly) = 0. O

Claim 14. Q5(&1,...,&5) = 0.

Proof. For b € {0, 1}, observe that Qs(¢%,...,£%,) is of the following form:

y_2 : Z Cl»]gzbg‘? )

,7€{3,5,8,11},j>i

where ¢; ; € Zy and b € {0,1}. Moreover, &2 = ¢! for i € {3,5,8,11}. Thus, Q5(&Y,...,&%) = 0 implies
that Q5(&1,...,&l,) = 0. O

Claim 15. Qg(&1,..., &) = 0.

Proof. Observe that Qg(£Y,...,£%) is of the following form:

(xy)~"- > ci €67 |

1€{2,4,7,10},5€{3,5,8,11}

where ¢; j € Zy and b € {0,1}. Moreover, f? = §]1- for j € {3,5,8,11} and & = ¢! for i € {2,4,7,10}.
Thus, Qs(£Y, ..., &)%) = 0 implies that Qg(&3, ..., &) = 0. O

Thus, we proved that Q;(£1,...,&L) is a zero polynomial for every i € [6]. This proves that p(&1,. .., &l,)
is also a zero polynomial. As remarked before, the other direction also can be argued symmetrically.
O

O
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