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Abstract. Many cryptographers have focused on lightweight cryptogra-
phy, and a huge number of lightweight block ciphers have been proposed.
On the other hand, designing lightweight stream ciphers is a challenging
task due to the well-known security criteria, i.e., the state size of stream
ciphers must be at least twice the key size. The designers of Sprout ad-
dressed this issue by involving the secret key not only in the initialization
but also in the keystream generation, and the state size of such stream
ciphers can be smaller than twice the key size. After the seminal work,
some small-state stream ciphers have been proposed such as Fruit, Plant-
let, and LIZARD. Unlike conventional stream ciphers, these small-state
stream ciphers have the limitation of keystream bits that can be gener-
ated from the same key and IV pair. In this paper, our motivation is to
show whether the data limitation claimed by the designers is proper or
not. The correlation attack is one of the attack methods exploiting many
keystream bits generated from the same key and IV pair, and we apply
it to Fruit-80 and Plantlet. As a result, we can break the full Fruit-80,
i.e., the designers’ data limitation is not sufficient. We can also recover
the secret key of Plantlet if it allows about 253 keystream bits from the
same key and IV pair.
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1 Introduction

Lightweight cryptography has been a hot topic in the past few years. The avail-
ability of low-area implementation is one of the most common metrics for the
“lightweight,” and many such block ciphers have been proposed [1,2,3,4]. On the
other hand, designing lightweight stream ciphers is a challenging topic. A time-
memory-data trade-off (TMDTO) attack is a powerful generic attack against
stream ciphers, and the state size of stream ciphers must be at least twice of the
key length to avoid the TMDTO attack [5,6,7]. It implies that designing stream
ciphers whose state size is small is impossible.

In FSE 2015, Armknecht and Mikhalev tackled this issue and designed a
small-state stream cipher Sprout based on the Grain structure [8]. The claimed
security level is 80 bits, although the state size of Sprout is 80 bits, which is
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Table 1. State size, security level, and data limitation of Sprout, Plantlet, and Fruit.

Cipher Size of NFSR Size of LFSR Security level Data Limitation

Sprout 40 bits 40 bits 80 bits 240

Plantlet 40 bits 61 bits 80 bits 230

Fruit-80 37 bits 43 bits 80 bits 243

Fruit-128 63 bits 65 bits 128 bits 265

not enough to be secure against the TMDTO attack. However, the designers of
Sprout introduced a new idea, where the secret key is involved not only in the
initialization but also in the keystream generation. Then, the immunity against
the TMDTO attack is higher and small-state stream ciphers become possible.

Unfortunately, full Sprout was exposed to many attacks soon after its pro-
posal [9,10,11,12]. On the other hand, the idea that the secret key is involved
in the keystream generation is promising, and two new small-state stream ci-
phers were proposed by taking these attacks into account. Fruit is a series of
new small-state stream ciphers, and the initial version denoted as Fruit-v1 was
proposed in [13]. However, Fruit-v1 was also broken by the divide-and-conquer
attack [14] and correlation attack [15]. The designers of Fruit then updated the
version of Fruit to be secure against these attacks [16] and proposed a 128-bit
security version called Fruit-128 [17]. Recently, the designers proposed Fruit-80
as the formal journal publication [18]. Plantlet is another new small-state stream
cipher [19] and is conservatively designed compared with Sprout and Fruit. State
sizes of Sprout and Fruit are the same as their key lengths, while the state size
of Plantlet is 101 bits to achieve 80-bit security. On the other hand, Plantlet is
more carefully designed such that it has high performance under the condition
that the secret key is stored in non-volatile memory.

On the Data Limitation of Small-State Stream Ciphers. In this paper,
our focus is the data limitation, and this part is significantly different from the
original Grain ciphers. For example, Grain-v1 does not have such a data limita-
tion, i.e., 280-bit keystream can be generated. On the other hand, the designers
of small-state stream ciphers establish a limitation of keystream generated from
the same key and IV pair. Table 1 summarizes the state size, security level, and
the limitation of Sprout, Plantlet, Fruit-80, and Fruit-128. The data limitations
of Sprout and Fruit are derived from the size of LFSR, and such a limitation is
plausible from the aspect of the security because the same internal state of the
LFSR is repeated when the limitation is exceeded. On the other hand, Plant-
let allows to output at most 230-bit keystream. This limitation is significantly
smaller than the data limitation derived from the LFSR size.

The following question is naturally raised: If small-state stream ciphers out-
put more keystream bits, can the secret key be recovered? The designers of Fruit
said that Fruit-80 is secure against all types of key recovery attacks without any
limitation on the number of keystream bits [18]. Moreover, the authors of Plantlet
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Table 2. Summary of our key-recovery attacks.

Cipher keystream # IV time data note

Fruit-80
246 1 254.5985 246 recovers 0.1501 bit of the weak key.
243 221 277.8702 264 recovers the full key.

Plantlet
255 1 265.9362 255 recovers 1 bit of the key.
253 26 275.0990 259 recovers the full key.

did not provide any plausible reason about the data limitation of Plantlet [19].
To show an answer for this question, we estimate a secure size of keystream
against correlation attacks.

Our Contributions. A Grain-based structure is preferred to design lightweight
stream ciphers because it is comparatively lightweight and had been believed to
be secure. However, in CRYPTO 2018, Grain-v1 and the stream cipher mode
of Grain-128a were broken by using the fast correlation attack [20], where the
authors showed that there are too many linear approximations of the Grain-
based structure. This is a potential vulnerability of the Grain-based structure,
but the designers of small-state stream ciphers had not cared about security
against correlation attacks seriously and it should be considered more carefully
than the designers expected.

The goal of the correlation attack is to recover the initial state of the LFSR.
Linear approximations are constructed, and many keystream bits generated from
the same key and IV pair are used to distinguish the correct initial state of the
LFSR. The more keystream is generated from the same key and IV pair, the
easier the correlation attack. Therefore, the correlation attack is one of useful
metrics to consider the impact of the data limitation.

A small-state stream cipher is a little different from the naive Grain-based
structure, and this difference makes the correlation attack more difficult. The
major difference is involving a round key during the keystream generation. There-
fore, the constructed linear approximations also involve the round key like in lin-
ear cryptanalysis on block ciphers. We cannot exploit data where the involved
round keys are different because the sign of the correlation depends on the in-
volved round keys. This property surely enhances the security against correlation
attacks. On the other hand, interestingly, involving the round key yields a new
property that is useful for attackers. The conventional correlation attack does
not recover the secret key directly because its goal is to recover the initial state
of the LFSR. On the correlation attack on the small-state stream cipher, we
can recover the secret key directly by observing the bias direction of its empiri-
cal correlation like Matsui’s Algorithm 1 [21]. Moreover, since the bias direction
does not depend on the IV, we show an extended correlation attack that uses
keystream generated from the same key and different IVs.

We applied the correlation attacks to Fruit-80 and Plantlet, and Table 2
summarized the attack. The conventional correlation attack using the single IV
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Fig. 1. Correlation attacks on Grain-based stream ciphers

can recover the secret key of Fruit-80 and Plantlet if they allow to output 246-
bit and 255-bit keystream, respectively. The extended correlation attack using
multiple IVs requires more data and time complexities, but it is useful to reduce
the size of keystream generated from the same key and IV pair. The extended
attack successfully breaks the full Fruit-80, and the secret key can be recovered
with 277.8702 time and 243+21 data. Even if the extended attack is used, we
cannot break the full Plantlet because it only allows to output at most 230-bit
keystream. On the other hand, 253-bit keystream is enough to recover the secret
key, and it is quite smaller than 261 deduced by the size of the LFSR.

2 Correlation Attacks on Grain-Based Stream Ciphers

2.1 Notations

We first introduce some notations used in this paper. Let B = {b0, b1, . . . , bm−1}
be a set of n-bit vectors. Then, V (B) ⊆ {0, 1}n denotes a vector space spanned
by B, i.e., V (B) := {

∑
aibi : ai ∈ {0, 1}}.

Example 1. When B is given as {0100, 1101}, the vector space V (B) is {0000,
0100, 1101, 1001}.

If all vectors in B are linearly independent, the cardinal number of V (B) is 2m,
i.e., |V (B)| = 2m.

2.2 Grain-Based Stream Ciphers

In this paper, we discuss the security of small-state stream ciphers, and many
such ciphers adopt the so-called Grain structure. The Grain structure consists of
an LFSR and NFSR, where the LFSR is updated independent of the NFSR and
the NFSR is updated while involving the output of the LFSR. The keystream bit
is generated as the output of a nonlinear filter function, and the domain of the
filter function is made of tapping some bits from the LFSR and NFSR states.

We focus on the correlation attack [22,23] against the Grain structure. The
correlation attack exploits high correlation between the initial state of the LFSR
and corresponding keystream, and the goal is to recover the state of the LFSR.
When we apply the correlation attack to the Grain structure, we simply re-
gard the structure as the model described in Fig. 1. The difference from the
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classical LFSR-based stream ciphers is the existence of a linear function ĥ,
which is generated by linearly approximating the nonlinear filter function. Let
{a0, a1, . . . , aN−1} be an N -bit output sequence of ĥ. Then, an N -bit keystream
{z0, z1, . . . , zN−1} is computed as zt = at ⊕ et, where et is a binary noise. Let

f(x) = c0 + c1x
1 + c2x

2 + · · ·+ cn−1x
n−1 + xn

be the feedback polynomial of the LFSR and L(t) = (`t, `t+1, . . . , `t+n−1) be an
n-bit internal state of the LFSR in round t. Then, the state is updated as

L(t+1) = L(t) × F = L(t) ×


0 · · · 0 0 c0
1 · · · 0 0 c1
...

. . .
...

...
...

0 · · · 1 0 cn−2
0 · · · 0 1 cn−1

 ,

where F is an n × n binary matrix that represents the feedback polynomial
f(x). In concrete Grain-based stream ciphers, the binary noise et is nonlinearly
generated from the internal state in the LFSR and NFSR and the secret key.

2.3 Linear Approximations for Correlation Attacks

To understand the correlation attack, we first assume the simplest case, where
there is ĥ such that et itself is highly biased. Let p be the probability of et = 1,
and the correlation c is defined as c = 1 − 2p. We guess the initial internal
state L(0), calculate {a0, a1, . . . , aN−1} from the guessed L(0) and ĥ, and evalu-

ate
∑N−1
t=0 (−1)at⊕zt , where the sum is computed over the set of integers. If the

correct initial state is guessed, the sum is equal to
∑N−1
t=0 (−1)et and follows a

normal distribution N (Nc,N) 3. On the other hand, assuming that the sum be-
haves at random when an incorrect initial state is guessed, it follows N (0, N). To
distinguish their distributions, we need to collect N ≈ O(1/c2) bits of keystream.

Since the ĥ function is linear, there is a corresponding linear mask Λh satis-
fying ĥ(L(t)) = 〈L(t), Λh〉. Then, the output at is linearly computed as

at = ĥ(L(0) × F t) = 〈L(0) × F t, Λh〉 = 〈L(0), Λh × TF t〉.

Once a high-biased ĥ is found, the aim of attackers is to find L(0) such that∑N−1
t=0 (−1)zt⊕〈L

(0),Λh×TF t〉 =
∑N−1
t=0 (−1)et is far from 0.

Modern stream ciphers are usually designed such that the binary noise et
is balanced, but we may be able to observe a high bias by summing optimally

3 If the correct initial state is guessed, it follows N (Nc,N −Nc2). However, since N
is huge and Nc2 is small, N (Nc,N) is enough to approximate the distribution.
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chosen binary noises. In other words, the following value⊕
q∈Tz

et+q =
⊕
q∈Tz

at+q ⊕
⊕
q∈Tz

zt+q

=
⊕
q∈Tz

〈L(0), Λh,q × TF t+q〉 ⊕
⊕
q∈Tz

zt+q

=

〈
L(0),

⊕
q∈Tz

(
Λh,q × TF q

)× TF t

〉
⊕
⊕
q∈Tz

zt+q

could be biased. Note that the ĥ function is generated by linearly approximating
the filter function, and we do not need to use a common ĥ function in all q ∈ Tz.
If a different ĥ function is used, the corresponding linear mask is also different.
Therefore, different linear masks Λh,q can be used for each q in Tz in the equation
above. For simplicity, we introduce Γ denoted by Γ =

⊕
q∈Tz

(Λh,q×TF q). Then,
we can introduce the following parity-check equations

e′t(Γ ) =
〈
L(0), Γ × TF t

〉
⊕
⊕
q∈Tz

zt+q. (1)

We redefine p as the probability satisfying e′t(Γ ) = 1 for all possible t, and the
correlation c is also redefined from the corresponding p.

2.4 Key-Recovery Algorithm Based on FWHT

The most straightforward algorithm requires the time complexity of O(N2n) to
recover L(0). Chose et al. showed that the guess and evaluation procedure can
be regarded as a Walsh-Hadamard transform [24]. The fast Walsh-Hadamard
transform (FWHT) can be successfully applied to accelerate the algorithm, and
it reduces the time complexity to O(N + n2n).

Definition 1 (Walsh-Hadamard Transform (WHT)). Given a function
w : {0, 1}n → Z, the WHT of w is defined as ŵ(s) =

∑
x∈{0,1}n w(x)(−1)〈s,x〉.

When s ∈ {0, 1}n is guessed, the empirical correlation
∑N−1
t=0 (−1)e

′
t is rewritten

as

N−1∑
t=0

(−1)e
′
t =

N−1∑
t=0

(−1)〈s,Γ×
TF t〉⊕

⊕
q∈Tz zt+q

=
∑

x∈{0,1}n

 ∑
t∈{0,1,...,N−1|Γ×TF t=x}

(−1)〈s,x〉⊕
⊕

q∈Tz zt+q


=

∑
x∈{0,1}n

 ∑
t∈{0,1,...,N−1|Γ×TF t=x}

(−1)
⊕

q∈Tz zt+q

 (−1)〈s,x〉.
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Therefore, from the following public function w given as

w(x) :=
∑

t∈{0,1,...,N−1|Γ×TF t=x}

(−1)
⊕

q∈Tz zt+q ,

we get ŵ by using the FWHT, where ŵ(s) is the empirical correlation when s is
guessed.

2.5 Use of Multiple Linear Masks

In [20], Todo et al. showed that Grain-based stream ciphers have a huge number

of high-biased linear masks.4 The ĥ function is generated by linearly approx-
imating the filter function, and the filter function tends to have many linear
approximate representations. For example, let us consider the following function

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8,

which is used in the filter function of Grain-128a [25] and Plantlet. Then, there
are 28 linear masks Λ such that the correlation of h(x)⊕〈x,Λ〉 is ±2−4. In other
words, we can construct 28 high-biased linear masks, and each one generates a
different linear mask Γ .

Assuming that there are m high-biased linear masks (Γ0, Γ1, . . . , Γm−1) and
letting ci be the correlation when Γi is used, we compute∑

i∈{{0,1,...,m−1}|ci>0}

(−1)e
′
t(Γi) −

∑
i∈{{0,1,...,m−1}|ci<0}

(−1)e
′
t(Γi),

where e′(Γ ) is defined in Eq. (1). When we guess the initial state L(0), the value
above follows a normal distribution N (mNc̄,mN), where c̄ is the average value
of absolute values of ci, i.e.,

c̄ =

∑
i,ci>0 ci −

∑
i,ci<0 ci

m
=

∑
i |ci|
m

.

The key recovery algorithm based on the FWHT also works. Assuming that the
data complexity (size of keystream) is N , the time complexity O(N) is required
to collect data. Then, we apply m high-biased linear masks for N data, and
the time complexity is O(mN). Finally, the FWHT is applied, and the time
complexity is O(n2n). In total, the time complexity is O(N +mN + n2n).

3 Correlation Attacks on Small-State Stream Ciphers

Almost all small-state stream ciphers are based on the Grain structure, but it
is modified from the original structure to avoid the time-memory-data trade-
off (TMDTO) attack. Figure 2 shows the overview of Grain-based small-state

4 Another contribution of [20] is to show the link between the parity-check equation
and the multiplication over a finite field. This link is used to execute the correlation
attack without guessing the whole of the initial state of the LFSR, but we do not
use this technique because the size of the LFSR is small enough.
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Fig. 2. Overview of Grain-based small-state stream ciphers

stream ciphers. The major difference is involving the round key in the state
update function g and filter function h.

In this paper, we apply the correlation attack to Grain-based small-state
stream ciphers. The basic attack strategy is the same as the correlation attack
described in Sect. 2, but some different strategy is used to be optimized for the
small-state stream ciphers. In this section, we summarize three major differences
from the original correlation attack against the Grain structure.

3.1 Involving Round Keys

Generally, involved round keys makes correlation attacks difficult because con-
structed linear approximations also involve the round key. In other words, in-
volved round keys must be constant when we collect data used in the correlation
attack. The sequence of round keys usually has a small cycle to avoid degradation
in efficiency. Assuming that the cycle length is φ, the available data decreases
to N/φ when N -bit keystream is used. For example, in Fruit-80, both k′t and k∗t
are generated from the secret key and a 7-bit counter. Therefore, the same pair
of round keys is used every 27 rounds, i.e., φ = 27. In Plantlet, only k′t is used
and k′t = k

t mod 80
+ct. Since the counter ct is public and linear, we can remove

ct efficiently. Thus, φ = 80.

On the attack procedure of the correlation attack, the only difference is the in-
terval of data sampling. Therefore, we can use the same attack strategy described
in Sect. 2. Then, the empirical correlation follows N (mNc̄/φ,mN/φ) when the
correct initial state is guessed. Otherwise, it follows N (0,mN/φ). Since m lin-
ear masks are used every φ rounds, the data and time complexities are N and
O(N +mN/φ+ n2n).
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3.2 Finding Multiple Linear Approximations with High Correlation

The reason why the Grain structure has many high-biased linear masks comes
from the fact that there are many linear approximations of the filter function.
Therefore, Grain-based small-state stream ciphers also inherit the property. On
the other hand, finding such concrete linear masks is still difficult. A systematic
method was used to find high-biased linear masks of Grain-128 and Grain-128a
in [20], but the correlation found by the method is too small to attack small-state
stream ciphers. Therefore, we use a more heuristic method. Recalling Eq. (1),
the linear approximation exploits the sum

⊕
q∈Tz

zt+q, where we exhaustively
evaluate preferable Tz. Unfortunately, only considering Tz is not enough because
the sum

⊕
q∈Tz

zt+q always involves new bits, which are computed from the g
function. Let Nt = (nt, nt+1, . . . , nt+m−1) be an internal state in the NFSR.
Then, the new bit nt+m is computed by nt+m = k′t ⊕ gt ⊕ `t, where gt denotes
the output of the g function and `t denotes the output of the LFSR in the tth
round. We introduce a value bt such that

bt = nt+m ⊕ k′t ⊕ `t ⊕ gt = 0.

Then, our linear approximations are constructed from
⊕

q∈Tz
zt+q⊕

⊕
i∈Tb

bt+i.
Our task exhaustively evaluates preferable Tz and Tb. To reduce the search

space, we evaluate Tz and Tb such that the exploited number of rounds is small,
i.e., the maximum number of values in Tz and Tb are not large.

3.3 Exploiting Keystream Generated from Different IVs

As shown in Sect. 3.1, the data must be sampled such that involved round keys
are constant. While involved round keys are constant, they are still involved
in the linear approximations. It implies that the bias direction depends on the
involved round keys like in linear cryptanalysis on block ciphers.

We construct our linear approximations from
⊕

q∈Tz
zt+q ⊕

⊕
i∈Tb

bt+i, and
the term

⊕
i∈Tb

k′t+i is included in
⊕

i∈Tb
bt+i. Then, parity-check equations that

we eventually construct change from Eq. (1) to

e′t(Γ )⊕
⊕
i∈Tb

k′t+i =
〈
L(0), Γ × TF t

〉
⊕
⊕
q∈Tz

zt+q. (2)

In other words, the bias direction is inverted if
⊕

i∈Tb
k′t+i = 1. It implies that

we can easily recover the involved round keys by observing the bias direction.
Another important observation is that the bias direction is preserved unless

the secret key changes. This property is useful when we consider an attack in
which the size of keystream generated from the same key and IV pair is limited.
Let N be the available keystream size, m be the number of linear masks, c̄ be
the average number of absolute values of correlations, and φ be the cycle length.
Once we execute the correlation attack, the empirical correlation follows

N (mNc̄/φ,mN/φ) for correct initial state and
⊕

i∈Tb
k′t+i = 0,

N (0,mN/φ) for incorrect initial state,

N (−mNc̄/φ,mN/φ) for correct initial state and
⊕

i∈Tb
k′t+i = 1.
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We introduce a threshold th such that

Pr[|X| > th | X ∼ N (0,mN/φ)] ≤ 2−n,

where 2n denotes the number of candidates of the initial state of the LFSR.
We pick initial states of the LFSR whose absolute value of empirical correlation
is larger than the threshold th and store only the information whether its bias
direction is positive or negative. Then, one incorrect initial state remains in
average, where we assume that it behaves randomly, i.e., the probability that
the bias direction is positive is 1/2. Similarly, let ε be the probability that the
correct initial state survives, i.e.,

ε = Pr[X > th | X ∼ N (mNc̄/φ,mN/φ)].

In other words, the bias direction leans toward positive with probability 1/2 + ε
when

⊕
i∈Tb

k′t+i = 0. Similarly, it leans toward positive with probability 1/2− ε
when

⊕
i∈Tb

k′t+i = 1. Assuming that we repeat the attack procedure above
over Niv IVs under the fixed key, the number that the bias direction is positive
follows a binomial distribution B(Niv, 1/2 + ε). Since it follows B(Niv, 1/2) in
the case of random behavior, we can distinguish the correct bias direction by
using Niv = O(1/ε2) and recover

⊕
i∈Tb

k′t+i. Since we repeat the correlation
attack Niv times, the data and time complexities are N ×Niv and O(Niv× (N +
mN/φ+ n2n)), respectively.

Note that this technique does not improve both time and data complexities.
In other words, if we can collect enough keystream such that ε is almost 1, we
do not need to use this technique because the naive correlation attack is always
more efficient than this technique. This technique is useful only when there are
data limitations about the keystream generated from the same key and IV pair.

4 Cryptanalysis on Full Fruit-80

In this section, we apply the correlation attack to Fruit-80. As shown in Sects. 2
and 3, we can estimate the data and time complexities by enumerating linear
masks with high correlation and estimating the average value of correlations.

4.1 Specification of Fruit-80

The keystream generation of Fruit-80 is depicted in Fig. 2, where the sizes of
NFSR and LFSR are 37 and 43 bits, respectively. Let L(t) = (`t, `t+1, `t+2, . . . ,
`t+42) and N (t) = (nt, nt+1, nt+2, . . . , nt+36) be the internal state of t rounds
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after the initialization. Then, the state update function is defined as

`t+43 = `t+37 ⊕ `t+28 ⊕ `t+23 ⊕ `t+18 ⊕ `t+8 ⊕ `t,
nt+37 = k′t ⊕ `t ⊕ gt,

gt = nt ⊕ nt+10 ⊕ nt+20 ⊕ nt+12nt+3 ⊕ nt+14nt+25

⊕ nt+5nt+23nt+31 ⊕ nt+8nt+18 ⊕ nt+28nt+30nt+32nt+34,

zt = ht ⊕
⊕
j∈A

nt+j ⊕ `t+38,

ht = k∗t · (nt+36 ⊕ `t+19)

⊕ `t+6`t+15 ⊕ `t+1`t+22 ⊕ nt+35`t+27 ⊕ nt+1nt+24 ⊕ nt+1nt+33`t+42,

where A = {0, 7, 19, 29, 36}.
The round keys k′t and k∗t are generated from the secret key and 7-bit counter

C(t) = (c0t‖c1t‖ · · · ‖c6t ) as

k′t = kr · kp+16 · kq+48 ⊕ kr · kp+16 ⊕ kp+16 · kq+48 ⊕ kr · kq+48 ⊕ kp+16,

k∗t = kr · kp+16 ⊕ kp+16 · kq+48 ⊕ kr · kq+48 ⊕ kr ⊕ kp+16 ⊕ kq+48,

where p = (c1t‖c2t‖c3t‖c4t‖c5t ), q = (c2t‖c3t‖c4t‖c5t‖c6t ), and r = (c0t‖c1t‖c2t‖c3t ).

4.2 Enumerating Linear Masks with High Correlation

We exhaustively evaluated various Tz and Tb in the range that the maximum
number of values in Tz and Tb are 8. As a result, Tz = {0, 2, 3, 7} and Tb =
{0, 1, 2, 6} yielded the highest correlation.

Core Linear Approximate Representation. Let bt be defined as bt =
nt+37 ⊕ k′t ⊕ `t ⊕ gt = 0, and let us consider the following sum of keystream.⊕
q∈{0,2,3,7}

zt+q =
⊕

q∈{0,2,3,7}

zt+q ⊕
⊕

i∈{0,1,2,6}

bt+i

=
⊕

i∈{0,1,2,6}

k′t+i ⊕
⊕

i∈{0,1,2,6}

`t+i ⊕
⊕

q∈{0,2,3,7}

`t+38+q

⊕
⊕

q∈{0,2,3,7}

ht+q ⊕⊕
j∈A

nt+q+j

⊕ ⊕
i∈{0,1,2,6}

(
nt+37+i ⊕ gt+i

)
.

Since the internal state of the LFSR can be guessed in the correlation attack,⊕
i∈{0,1,2,6} `t+i ⊕

⊕
q∈{0,2,3,7} `t+38+q is computed. Therefore, assuming that

the following Boolean function

g′t =
⊕

q∈{0,2,3,7}

ht+q ⊕⊕
j∈A

nt+q+j

⊕ ⊕
i∈{0,1,2,6}

(
nt+37+i ⊕ gt+i

)
(3)
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is highly biased and the correlation of g′t is c, the following approximation⊕
q∈{0,2,3,7}

zt+q ⊕ 〈L(t), Γbase〉 = g′t ⊕
⊕

i∈{0,1,2,6}

k′t ≈
⊕

i∈{0,1,2,6}

k′t

holds with the correlation c, where the linear mask Γbase is defined as

〈L(t), Γbase〉 =
⊕

i∈{0,1,2,6}

`t+i ⊕
⊕

q∈{0,2,3,7}

`t+38+q.

When we use the formula of Eq. (2), e′t(Γbase) = g′.

Generating Multiple Linear Approximations. Before we evaluate the cor-
relation of g′t, we first focus on the linear approximation of ht+q, i.e., we focus
on the correlation of the following function

ht+q ⊕ 〈Lt+q, Λh,q〉 = k∗t+q · (nt+q+36 ⊕ `t+q+19)⊕ `t+q+6`t+q+15

⊕ `t+q+1`t+q+22 ⊕ nt+q+35`t+q+27 ⊕ nt+q+1nt+q+24

⊕ nt+q+1nt+q+33`t+q+42 ⊕ 〈Lt+q, Λh,q〉.

When k∗t+q = 0, six bits listed as `t+q+1, `t+q+6, `t+q+15, `t+q+22, `t+q+27, and
`t+q+42 are involved in ht+q. Therefore, if other bits except for the six bits above
are involved in 〈Lt+q, Λh,q〉, the correlation of ht+q ⊕ 〈Lt+q, Λh,q〉 is always 0.
Therefore, Λh,q must be chosen from the vector space V (u1,u6,u15,u22,u27,u42),
where ui denotes a unit vector whose (i+ 1)th element is 1 and the vector space
V (B) is defined in Sect. 2. When k∗t = 1, Λh,q ∈ u19+V (u1,u6,u15,u22,u27,u42)
because `t+q+19 is linearly involved.

Recall Eq. (3), where
⊕

q∈{0,2,3,7} ht+q is used. Therefore, we introduce a
linear mask Λ such that the following equation⊕

q∈{0,2,3,7}

ht+q ⊕ 〈Lt, Λ〉 =
⊕

q∈{0,2,3,7}

(
ht+q ⊕ 〈Lt+q, Λh,q〉

)
holds. Then, Λ can take a value from the set k∗tu19 + k∗t+2u21 + k∗t+3u22 +
k∗t+7u26 + V (B), where

B = {u1,u3,u4,u6,u8,u9,u13,u15,u17,u18,u22,u24,u25,u27,u29,u30,u34,u42,

u44 = u38 + u29 + u24 + u19 + u9 + u1,

u45 = u39 + u30 + u25 + u20 + u10 + u2,

u49 = (u37 + u28 + u23 + u18 + u8 + u0) + u34 + u29 + u24 + u14 + u6}.

Since all vectors in B are linearly independent, |V (B)| = 221. Since the linear
approximation involves k∗t nonlinearly, the correlation depends on k∗t . Therefore,
we first assume weak keys as (k∗t , k

∗
t+2, k

∗
t+3, k

∗
t+7) = (0, 1, 0, 0) because the use of

this weak key yielded the highest correlation eventually. Note that this weak-key
assumption can be removed in the attack procedure of the correlation attack.
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We substitute (0, 1, 0, 0) for (k∗t , k
∗
t+2, k

∗
t+3, k

∗
t+7), and then, Λ takes a value from

the set u21 + V (B).

The internal state of the LFSR is guessed in the correlation attack. Namely,
if g′t⊕〈L(t), Λ〉 is biased for multiple Λ, we can construct multiple linear approx-
imations. The following

∑
q∈{0,2,3,7}

zt+q ⊕ 〈L(t), Γbase〉 ⊕ 〈L(t), Λ〉 =
∑

i∈{0,1,2,6}

k′t+i ⊕ g′t ⊕ 〈L(t), Λ〉

≈
∑

i∈{0,1,2,6}

k′t+i

represents linear approximations for our correlation attack, and the correlation
that this approximation holds coincides with the correlation of g′t⊕〈L(t), Λ〉. We
want to evaluate correlations of g′t ⊕ 〈L(t), Λ〉 for Λ ∈ u21 + V (B). To evaluate
them simply, we extract independent terms from g′t ⊕ 〈L(t), Λ〉 as

g′t ⊕ 〈L(t), Λ〉
= `t+6`t+15 ⊕ `t+6 · Λ[6]⊕ `t+15 · Λ[15] (4)

⊕ `t+9`t+18 ⊕ `t+9 · Λ[9]⊕ `t+18 · Λ[18] (5)

⊕ `t+3`t+24 ⊕ `t+3 · Λ[3]⊕ `t+24 · Λ[24] (6)

⊕ `t+4`t+25 ⊕ `t+4 · Λ[4]⊕ `t+25 · Λ[25] (7)

⊕ `t+1`t+22 ⊕ `t+13`t+22 ⊕ `t+1 · Λ[1]⊕ `t+13 · Λ[13]⊕ `t+22 · Λ[22] (8)

⊕ nt+42`t+34 ⊕ `t+34 · Λ[34]. (9)

⊕ g′′t ⊕ 〈L(t), Λ′〉,

where g′′t ⊕ 〈L(t), Λ′〉 is the remaining term after extracting six lines. Equa-
tion (4) is independent of other terms, and each correlation is ±2−1 for 22

linear masks Λ[6, 15] ∈ {00, 01, 10, 11}. Similarly, the correlations of Eqs. (5),
(6), and (7) are also ±2−1 for 22 linear masks. In Eq. (8), the correlation is
±2−1 for Λ[1, 13, 22] ∈ {000, 001, 110, 111}. In Eq. (9), the correlation is 2−1 for
any Λ[34]. In total, the correlation of the above six lines is ±2−6, and their
signs are determined by Λ[1, 3, 4, 6, 9, 13, 15, 18, 22, 24, 25, 34], and the number
of linear masks is 22+2+2+2+2+1. In other words, there are 211 linear masks
Λ[1, 3, 4, 6, 9, 13, 15, 18, 22, 24, 25, 34] satisfying g′t ⊕ 〈Λ,L〉 ≈ g′′t ⊕ 〈L(t), Λ′〉 with
correlation ±2−6.

Finally, we want to evaluate the correlation of g′′t ⊕ 〈L(t), Λ′〉, and it is cal-
culated by using the brute force method. Eventually, we can find 12 Λ′ whose
absolute values of correlations are 2−17.415 and 2−17.8301, and please refer to Ap-
pendix A in Supplementary Material in detail. Since there are 211 linear masks
Λ satisfying g′t ⊕ 〈L(0), Λ〉 ≈ g′′t + 〈L(0), Λ′〉 with correlation ±2−6, there are
12× 211 linear masks Λ such that the correlations of g′t⊕〈L(t), Λ〉 are ±2−23.415

and ±2−23.8301.
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Table 3. Success probability of correlation attack on Fruit-80.

keystream 240 241 242 243 244 245 246 247 threshold

probability
0 % 0 % 0 % 0.27 % 18.36 % 96.09 % 100.00 % 100.00 % th2−42

0 % 0 % 0 % 0.01 % 3.76 % 81.15 % 100.00 % 100.00 % th2−52

4.3 Correlation Attack against Fruit-80

There are 12×211 linear masks whose correlations are ±2−23.415 and ±2−23.8301,
respectively. Thus, the attack parameter is

m = 24× 211, c̄ =
2−23.415 + 2−23.8301

2
= 2−23.6077.

We assume that N keystream bits are observed. The linear approximation de-
pends on k′t and k∗t , and the same (k′t, k

∗
t ) is used every 27 rounds. There-

fore, φ = 27. As we already showed in Sect. 3, the empirical correlation follows
N (mNc̄/φ,mN/φ) if we guess the initial state correctly and

∑
i∈{0,1,2,6} k

′
t = 0.

When
∑
i∈{0,1,2,6} k

′
t = 1, the bias direction is inverted, i.e.,N (−mNc̄/φ,mN/φ).

Otherwise, we assume that the empirical correlation behaves randomly, i.e.,
N (0,mN/φ).

We introduce a threshold thp satisfying Pr[|X| > thp | X ∼ N (0,mN/φ)] =
p, and pick initial states whose absolute value of the empirical correlation is
greater than thp. Table 3 summarizes the probability that the correct initial
state survives. To avoid all-zero initial state of the LFSR, the leftmost bit of the
initial state of the LFSR is forced to 1. Therefore, the number of candidates of
the initial state of the LFSR is 242. Therefore, using 246 keystream with th2−52

is enough to recover the initial state of the LFSR uniquely. Then, the data and
time complexities are N = 246 and N +mN/φ+ n2n = 254.5985.

Reducing Data Complexity and Removing Weak-Key Assumption.
As explained in Table 3, using 243 keystream is not enough to recover the initial
state of the LFSR. Even if th2−42 is used, the survival probability is ε = 0.27%.
Besides, it assumes the use of the weak key. To enhance the success probability
and remove the weak-key assumption, we exploit the technique described in
Sect. 3.3.

We use 243 keystream generated from the same key and IV pair. We pick
initial states of the LFSR whose absolute value of empirical correlation is larger
than the threshold th2−42 and store only the information whether its bias direc-
tion is positive or negative. Then, we repeat this procedure while changing IVs,
and let Niv be the number of repetitions. If the secret key belongs to the weak
key, the number that the bias direction is positive follows a binomial distribution
B(Niv, 1/2 + ε). If the secret key is not weak key, it follows B(Niv, 1/2).

Figure 3 shows the comparison of the binomial distributions B(Niv, 1/2) and
B(Niv, 1/2± ε), where Niv = 221 and ε = 0.27% = 2−1.8890. We can distinguish
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Fig. 3. Comparison of binomial distributions on Fruit-80

three binomial distributions enough. As a result, the data and time complexities
are

N ×Niv = 243 × 221 = 264,

Niv × (N +mN/φ+ n2n) = 221 × (243 + 24× 211+43−7 + 42× 242) ≈ 272.67,

respectively.
Finally, we analyze the round-key functions, which are not balanced. The

probabilities satisfying k∗t = 1 and k∗t = 0 are 3/4 and 1/4, respectively. More-
over, the probabilities satisfying k′t = 1 and k′t = 0 are 3/8 and 5/8, respectively.
Therefore, the probability satisfying weak keys is (1/4)3 × (3/4) = 2−6.4150. In
other words, we can recover − log2(15/16), 4− log2(3/8), 4− log2(5/8) bits of in-
formation with probabilities (1−2−6.4150), 2−6.4150×(3/8), and 2−6.4150×(5/8),
respectively. Therefore, only 0.1501 bits of information is recovered. On the other
hand, exploited rounds t are restricted as t ∈ Si, where Si := {27 × j + i | j =
{0, 1, . . . , N/27− 1}}. We can repeat this attack procedure for S1,S2, . . . ,Si. By
taking the trade-off with the brute-force search into account, the time complex-
ity is optimal when 27 sets are used, i.e., 27 × 272.67 + 280−0.1501×27 ≈ 277.8702.
Note that we assume that the exhaustive search of the secret key can be im-
mediately filtered by using the recovered round keys, and we believe that it is
possible because the round key function is very simple.

5 Plantlet

5.1 Specification

Plantlet is another Grain-based small-state stream cipher and consists of a 61-
bit LFSR and 40-bit NFSR. Let L(t) and N (t) be the internal state in round t
after the initialization, and they are represented as

L(t) = (`t, `t+1, `t+2, . . . , `t+60),

N (t) = (nt, nt+1, nt+2, . . . , nt+39).
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Then, the state update function is defined as

`t+61 = `t+54 ⊕ `t+43 ⊕ `t+34 ⊕ `t+20 ⊕ `t+14 ⊕ `t,
nt+40 = k′t ⊕ `t ⊕ gt,

gt = nt ⊕ nt+13 ⊕ nt+19 ⊕ nt+35 ⊕ nt+39 ⊕ nt+2nt+25 ⊕ nt+3nt+5

⊕ nt+7nt+8 ⊕ nt+14nt+21 ⊕ nt+16nt+18 ⊕ nt+22nt+24 ⊕ nt+26nt+32

⊕ nt+33nt+36nt+37nt+38 ⊕ nt+10nt+11nt+12 ⊕ nt+27nt+30nt+31,

zt = ht ⊕ `t+30 ⊕
⊕
j∈A

nt+j ,

ht = nt+4`t+6 ⊕ `t+8`t+10 ⊕ `t+32`t+17 ⊕ `t+19`t+23 ⊕ nt+4`t+32nt+38,

where A = {1, 6, 15, 17, 23, 28, 34}. Moreover, the round key k′t is defined as

k′t = kt mod 80 ⊕ ct,

where ct is 0 and 1 when 0 ≤ (t mod 8) ≤ 3 and 4 ≤ (t mod 8) ≤ 7, respectively.

5.2 Enumerating Linear Masks with High Correlation

We heuristically searched for various Tz and Tb, where we restricted the number
of elements in Tz and the maximum number of values in Tz and Tb to 2 and 13,
respectively. As a result, Tz = {0, 12} and Tb = {1, 3, 5, 7, 8, 9, 10} yielded the
highest correlation.

Core Linear Approximate Representation. Let bt be defined as bt =
nt+40 ⊕ k′t ⊕ `t ⊕ gt = 0, and let us consider the following sum of keystream
bits.⊕
q∈{0,12}

zt+q =
⊕

q∈{0,12}

zt+q ⊕
⊕

i∈{1,3,5,7,8,9,10}

bt+i

=
⊕

i∈{1,3,5,7,8,9,10}

k′t+i ⊕
⊕

q∈{0,12}

`t+30+q ⊕
⊕

i∈{1,3,5,7,8,9,10}

`t+i

⊕
⊕

q∈{0,12}

ht+q ⊕⊕
j∈A

nt+q+j

⊕ ⊕
i∈{1,3,5,7,8,9,10}

(
nt+40+i ⊕ gt+i

)
.

Since the internal state of the LFSR can be guessed in the correlation attack,⊕
q∈{0,12} `t+30+q⊕

⊕
i∈{1,3,5,7,8,9,10} `t+i is computed. Therefore, assuming that

the following Boolean function

g′t =
⊕

q∈{0,12}

ht+q ⊕⊕
j∈A

nt+q+j

⊕ ⊕
i∈{1,3,5,7,8,9,10}

(
nt+40+i ⊕ gt+i

)
(10)
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is highly biased and the correlation of g′t is c, the following linear approximation⊕
q∈{0,12}

zt+q ⊕ 〈L(t), Γbase〉 =
⊕

i∈{1,3,5,7,8,9,10}

k′t+i ⊕ g′t ≈
⊕

i∈{1,3,5,7,8,9,10}

k′t+i

holds with the correlation c, where Γbase is defined as

〈L(t), Γbase〉 =
⊕

i∈{1,3,5,7,8,9,10}

`t+i ⊕
⊕

q∈{0,12}

`t+30+q.

Generating Multiple Linear Approximations. We first focus on the linear
approximation of ht+q, i.e., we focus on the correlation of the following function

ht+q ⊕ 〈Lt+q, Λh,q〉 = nt+q+4`t+q+6 ⊕ `t+q+8`t+q+10 ⊕ `t+q+32`t+q+17

⊕ `t+q+19`t+q+23 ⊕ nt+q+4`t+q+32nt+q+38 ⊕ 〈Lt+q, Λh,q〉.

Seven bits listed as `t+q+6, `t+q+8, `t+q+10, `t+q+17, `t+q+19, `t+q+23, and `t+q+32

are involved in ht+q. Therefore, Λh,q must be chosen from the vector space
V (u6,u8,u10,u17,u19,u23,u32), where ui denotes a unit vector whose (i+1)th
element is 1 and the vector space V (B) is defined in Sect. 2.

Recall Eq. (10), where
⊕

q∈{0,12} ht+q is used. Therefore, we introduce a linear
mask Λ such that the following equation⊕

q∈{0,12}

ht+q ⊕ 〈Lt, Λ〉 =
⊕

q∈{0,12}

(
ht+q ⊕ 〈Lt+q, Λh,q〉

)
holds. Then, Λ can take a value from the set V (B), where

B = {u6,u8,u10,u17,u18,u19,u20,u22,u23,u29,u31,u32,u35,u44}.

Since all vectors in B are linearly independent, |V (B)| = 214.
The internal state of the LFSR is guessed in the correlation attack. Namely,

if g′t⊕〈L(t), Λ〉 is biased for multiple Λ, we can construct multiple linear approx-
imations. The following⊕

q∈{0,12}

zt+q ⊕ 〈L(t), Γbase〉 ⊕ 〈L(t), Λ〉 ≈
⊕

i∈{1,3,5,7,8,9,10}

k′t+i

represents linear approximations for our correlation attack, and the probability
that this approximation holds coincides with the correlation of g′t⊕〈L(t), Λ〉. We
want to evaluate correlations of g′t ⊕ 〈L(t), Λ〉 for Λ ∈ V (B). To evaluate them
simply, we extract independent terms from g′t ⊕ 〈L(t), Λ〉 as

g′t ⊕ 〈L(t), Λ〉
= `t+8`t+10 ⊕ `t+8 · Λ[8]⊕ `t+10 · Λ[10] (11)

⊕ `t+19`t+23 ⊕ `t+19 · Λ[19]⊕ `t+23 · Λ[23] (12)

⊕ `t+20`t+22 ⊕ `t+20 · Λ[20]⊕ `t+22 · Λ[22] (13)

⊕ `t+31`t+35 ⊕ `t+31 · Λ[31]⊕ `t+35 · Λ[35] (14)

⊕ g′′t ⊕ 〈L(t), Λ′〉,
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Table 4. Success probability of correlation attack on Plantlet.

keystream 250 251 252 253 254 255 256 257 threshold

probability
0 % 0 % 0.06 % 18.17 % 99.14 % 100.00 % 100.00 % 100.00 % th2−60

0 % 0 % 0 % 4.93 % 94.93 % 100.00 % 100.00 % 100.00 % th2−70

where g′′t ⊕ 〈L(t), Λ′〉 is the remaining term after extracting four lines. The cor-
relations of Eqs. (11), (12), (13), and (14) are ±2−1 for 22 linear masks. In total,
the correlation of the above four lines is ±2−4, and their signs are determined by
Λ[8, 10, 19, 20, 22, 23, 31, 35], and the number of linear masks is 22+2+2+2 = 28.
In other words, there are 28 linear masks Λ[8, 10, 19, 20, 22, 23, 31, 35] satisfying
g′t ⊕ 〈Λ,L〉 ≈ g′′t ⊕ 〈L(t), Λ′〉 with correlation ±2−4.

Finally, we want to evaluate the correlation of g′′t ⊕ 〈L(t), Λ′〉, and it is cal-
culated by using the brute force method. Eventually, we can find 12 Λ′ whose
absolute values of correlations are 2−22.142, and please refer to Appendix B in
Supplementary Material in detail. Since there are 28 linear masks Λ satisfying
g′t ⊕ 〈L(0), Λ〉 ≈ g′′t + 〈L(0), Λ′〉 with correlation ±2−4, there are 12 × 28 linear
masks Λ such that the correlations of g′t ⊕ 〈L(t), Λ〉 are ±2−26.142.

5.3 Correlation Attack against Plantlet

There are 12×28 linear masks whose correlations are ±2−26.142. Thus, the attack
parameter is m = 12 × 28 and c̄ = 2−26.142. We assume that N keystream bits
are observed. The linear approximation depends on k′t = kt mod 80 ⊕ ct. Since
the same kt mod 80 is used every 80 rounds and ct is public, φ = 80.

As shown in Sect. 3, the empirical correlation follows N (mNc̄/φ,mN/φ)
if we guess the initial state correctly and

⊕
i∈{1,3,5,7,8,9,10} k

′
t = 0. On the

other hand, when
⊕

i∈{1,3,5,7,8,9,10} k
′
t = 1, the bias direction is inverted, i.e.,

N (−mNc̄/φ,mN/φ). Otherwise, we assume that the empirical correlation be-
haves randomly, i.e., N (0,mN/φ).

We introduce thp, which was defined in Sect. 4, and pick initial states whose
absolute value of the empirical correlation is greater than thp. Table 4 summa-
rizes the probability that the correct initial state survives. Similarly to Fruit-80,
one bit in the initial state of the LFSR is forced to 1. Therefore, the number of
candidates of the initial state of the LFSR is 260. Therefore, using 255 keystream
with th2−70 is enough to recover the initial state of the LFSR uniquely. Then,
the data and time complexities are N = 255 and N +mN/φ+ n2n = 265.9362.

Reducing Data Complexity. Similarly to the application to Fruit-80, we
exploit the technique described in Sect. 3.3. We use 253 keystream generated from
the same key and IV pair, and pick initial states of the LFSR whose absolute
value of empirical correlation is larger than the threshold th2−60 and store the
information whether its bias direction is positive or negative. We repeat this
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Fig. 4. Comparison of binomial distributions on Plantlet.

procedure while changing IVs, and let Niv be the number of repetitions. When⊕
i∈Tb

k′t+i = 0, the number that the bias direction is positive follows a binomial

distribution B(Niv, 1/2+ε), where ε = 18.17% = 2−2.4604. When
⊕

i∈Tb
k′t+i = 1,

it follows B(Niv, 1/2− ε).
Figure 4 shows the comparison of the binomial distributions when Niv = 26,

and we can distinguish two binomial distributions enough. As a result, the data
and time complexities are

N ×Niv = 253 × 26 = 259,

Niv × (N +mN/φ+ n2n) = 26 × (253 + 12× 28+53/80 + 60× 260) ≈ 271.92,

respectively. Unlike Fruit-80, it is very easy to analyze the time complexity to
recover the secret key due to its simple round key function. Since all round keys
are balanced, one procedure can recover 1 bit of information. Moreover, we can
repeat this attack procedure for S1,S2, . . . ,Si, where Si is defined in Sect. 4. By
taking the trade-off with the brute-force search into account, the time complexity
is optimal when 8 sets are used, i.e., 8× 271.92 + 280−8 ≈ 275.0990.

6 Conclusion

In this paper, we discussed the data limitation of keystream generated by stream
ciphers using the same key and IV pair. We proposed correlation attacks for
the small-state stream ciphers and applied them to two Grain-like small-state
stream ciphers, Fruit-80 and Plantlet. The data limitation of Fruit-80 is derived
by designers from the size of the component LFSR, but our correlation attack
can successfully recover the secret key and break full Fruit-80. It implies that
the claimed data limitation is not sufficient. On Plantlet, 253-bit keystream is
required to recover the secret key. The data limitation is 230 bits, which comes
from the expectation that such a keystream length is sufficient for a current
practical use. Thanks to this conservative claimed security, our correlation attack
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cannot break full Plantlet, but 253 is quite smaller than the data limitation
derived from the size of the LFSR.

The round key is involved in the state update function or filter function in the
small-state stream ciphers. When involved round keys are distinct, the absolute
value of the observed correlation is the same but the bias direction could be
reversed. Therefore, in this paper, we used keystream bits in which involved
round keys are common. On the other hand, similar circumstances often happen
in a multi-dimensional linear attack for block cipher, and a chi-squared method is
successfully used to improve the attack. Thus, adopting the chi-squared method
is one of the future works to improve our attacks.

Acknowledgments. The authors thank the anonymous SAC 2019 reviewers
for careful reading and many helpful comments.
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A Correlation of g′t ⊕ 〈L(t), Λ〉 on Fruit-80

In this section, we show the detailed method to evaluate the correlation of g′t ⊕
〈L(t), Λ〉. As we already showed in Sect. 4, we first extract independent terms
from g′t ⊕ 〈L(t), Λ〉 as

g′t ⊕ 〈L(t), Λ〉
= `t+6`t+15 ⊕ `t+6 · Λ[6]⊕ `t+15 · Λ[15]

⊕ `t+9`t+18 ⊕ `t+9 · Λ[9]⊕ `t+18 · Λ[18]

⊕ `t+3`t+24 ⊕ `t+3 · Λ[3]⊕ `t+24 · Λ[24]

⊕ `t+4`t+25 ⊕ `t+4 · Λ[4]⊕ `t+25 · Λ[25]

⊕ `t+1`t+22 ⊕ `t+13`t+22 ⊕ `t+1 · Λ[1]⊕ `t+13 · Λ[13]⊕ `t+22 · Λ[22]

⊕ nt+42`t+34 ⊕ `t+34 · Λ[34].

⊕ g′′t ⊕ 〈L(t), Λ′〉,

where g′′t ⊕ 〈L(t), Λ′〉 is the remaining term after extracting the first six lines.
Then, there are 211 linear masks Λ[1, 3, 4, 6, 9, 13, 15, 18, 22, 24, 25, 34] satisfying
g′t ⊕ 〈Λ,L〉 ≈ g′′t ⊕ 〈L(t), Λ′〉 with correlation ±2−6.

Our next goal is to evaluate the correlation of g′′t ⊕ 〈L(t), Λ′〉, which is de-
scribed as

g′′t ⊕ 〈L(t), Λ′〉
= nt+38 ⊕ `t+21

⊕ nt+35`t+27 ⊕ nt+1nt+24 ⊕ nt+1nt+33`t+42

⊕ `t+8`t+17 ⊕ nt+37`t+29 ⊕ nt+3nt+26 ⊕ nt+3nt+35`t+44

⊕ nt+38`t+30 ⊕ nt+4nt+27 ⊕ nt+4nt+36`t+45

⊕ `t+8`t+29 ⊕ nt+8nt+31 ⊕ nt+8nt+40`t+49

⊕
⊕

q∈{0,2,3,7}

⊕
j∈A

nt+q+j

⊕ ⊕
i∈{0,1,2,6}

(
nt+37+i ⊕ gt+i

)
⊕ 〈L(t), Λ′〉,

where

〈L(t), Λ′〉 = (`t+21 ⊕ Λ′[8] · `t+8 ⊕ Λ′[17] · `t+17 ⊕ Λ′[27] · `t+27 ⊕ Λ′[29] · `t+29

⊕ Λ′[30] · `t+30 ⊕ Λ′[42] · `t+42 ⊕ Λ′[44] · `t+44 ⊕ Λ′[45] · `t+45 ⊕ Λ′[49] · `t+49).

Here, the indices 44, 45, and 49 exceeds the length of Λ, i.e., 43. Therefore,
Λ′[44, 45, 49] are computed by using the feedback function f as

Λ′[44] = Λ′[38]⊕ Λ′[29]⊕ Λ′[24]⊕ Λ′[19]⊕ Λ′[9]⊕ Λ′[1],

Λ′[45] = Λ′[39]⊕ Λ′[30]⊕ Λ′[25]⊕ Λ′[20]⊕ Λ′[10]⊕ Λ′[2]

Λ′[49] = (Λ′[37]⊕ Λ′[28]⊕ Λ′[23]⊕ Λ′[18]⊕ Λ′[8]⊕ Λ′[t])
⊕ Λ′[34]⊕ Λ′[29]⊕ Λ′[24]⊕ Λ′[14]⊕ Λ′[6].
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We expand all terms in g′′t ⊕ 〈L(t), Λ′〉 as

g′′t ⊕ 〈L(t), Λ′〉
= nt+38 ⊕��

�`t+21

⊕ nt+35`t+27 ⊕ nt+1nt+24 ⊕ nt+1nt+33`t+42

⊕ `t+8`t+17 ⊕ nt+37`t+29 ⊕ nt+3nt+26 ⊕ nt+3nt+35`t+44

⊕ nt+38`t+30 ⊕ nt+4nt+27 ⊕ nt+4nt+36`t+45

⊕ `t+8`t+29 ⊕ nt+8nt+31 ⊕ nt+8nt+40`t+49

⊕��nt ⊕���nt+7 ⊕ nt+19 ⊕ nt+29 ⊕���nt+36

⊕���nt+2 ⊕ nt+9 ⊕���nt+21 ⊕ nt+31 ⊕���nt+38

⊕ nt+3 ⊕���nt+10 ⊕���nt+22 ⊕ nt+32 ⊕���nt+39

⊕���nt+7 ⊕ nt+14 ⊕���nt+26 ⊕���nt+36 ⊕���nt+43

⊕ nt+37 ⊕ (��nt ⊕���nt+10 ⊕ nt+20 ⊕ nt+12nt+3 ⊕ nt+14nt+25

⊕ nt+5nt+23nt+31 ⊕ nt+8nt+18 ⊕ nt+28nt+30nt+32nt+34)

⊕���nt+38 ⊕ (nt+1 ⊕ nt+11 ⊕���nt+21 ⊕ nt+13nt+4 ⊕ nt+15nt+26

⊕ nt+6nt+24nt+32 ⊕ nt+9nt+19 ⊕ nt+29nt+31nt+33nt+35)

⊕���nt+39 ⊕ (���nt+2 ⊕ nt+12 ⊕���nt+22 ⊕ nt+14nt+5 ⊕ nt+16nt+27

⊕ nt+7nt+25nt+33 ⊕ nt+10nt+20 ⊕ nt+30nt+32nt+34nt+36)

⊕���nt+43 ⊕ (nt+6 ⊕ nt+16 ⊕���nt+26 ⊕ nt+18nt+9 ⊕ nt+20nt+31

⊕ nt+11nt+29nt+37 ⊕ nt+14nt+24 ⊕ nt+34nt+36nt+38nt+40)

⊕ (��
�`t+21 ⊕ Λ′[8] · `t+8 ⊕ Λ′[17] · `t+17 ⊕ Λ′[27] · `t+27 ⊕ Λ′[29] · `t+29

⊕ Λ′[30] · `t+30 ⊕ Λ′[42] · `t+42 ⊕ Λ′[44] · `t+44 ⊕ Λ′[45] · `t+45 ⊕ Λ′[49] · `t+49).

There are 35 bits in the NFSR and 9 bits in the LFSR in g′′t ⊕ 〈L(t), Λ′〉, and
the size of involved bits is too large to evaluate the correlation with brute force.
Therefore, we decompose this Boolean function into six Boolean functions G1,
G2, G3, G4, G5, and G6, i.e., g′′t ⊕ 〈L(t), Λ′〉 = G1 ⊕G2 ⊕G3 ⊕G4 ⊕G5 ⊕G6.

G1 = nt+20 ⊕ nt+31 ⊕ nt+10nt+20 ⊕ nt+20nt+31,

G2 = nt+1 ⊕ nt+1nt+24 ⊕ nt+1nt+33`t+42 ⊕ Λ′[42] · `t+42,

G3 = nt+14 ⊕ nt+14nt+25 ⊕ nt+14nt+5 ⊕ nt+14nt+24 ⊕ nt+5nt+23nt+31 ⊕ nt+7nt+25nt+33,

G4 = nt+16 ⊕ nt+4nt+27 ⊕ nt+13nt+4 ⊕ nt+16nt+27 ⊕ nt+4nt+36`t+45 ⊕ Λ′[45] · `t+45,

G5 = nt+6 ⊕ nt+32 ⊕ nt+38 ⊕ nt+9 ⊕ nt+19 ⊕ nt+18nt+9 ⊕ nt+9nt+19 ⊕ nt+38`t+30

⊕ nt+8nt+18 ⊕ nt+8nt+40`t+49 ⊕ nt+6nt+24nt+32 ⊕ nt+8nt+31

⊕ nt+28nt+30nt+32nt+34 ⊕ nt+30nt+32nt+34nt+36 ⊕ nt+34nt+36nt+38nt+40

⊕ Λ′[30] · `t+30 ⊕ Λ′[49] · `t+49,

G6 = nt+3 ⊕ nt+11 ⊕ nt+12 ⊕ nt+29 ⊕ nt+37 ⊕ `t+8`t+17 ⊕ `t+8`t+29 ⊕ nt+37`t+29

⊕ nt+35`t+27 ⊕ nt+12nt+3 ⊕ nt+3nt+26 ⊕ nt+15nt+26 ⊕ nt+3nt+35`t+44

⊕ nt+11nt+29nt+37 ⊕ nt+29nt+31nt+33nt+35 ⊕ Λ′[29] · `t+29 ⊕ Λ′[27] · `t+27

⊕ Λ′[8] · `t+8 ⊕ Λ′[17] · `t+17 ⊕ Λ′[44] · `t+44.
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Six Boolean functions G1, G2, G3, G4, G5, and G6 involve 3, 5, 8, 7, 18, and 20
bits, respectively. These involved bits are independent except for nt+24, nt+31,
nt+33, and nt+36, where these four bits are colored by red. Therefore, we compute
the conditional correlations of G1, G2, G3, G4, G5, and G6.

Definition 2 (Conditional correlation). Let G be a Boolean function from
n bits to 1 bit, and let x be the input of G. We add a condition for bits xi ∈ I,
and these bits are fixed to vi. Then, the conditional correlation of G is defined
as ∑

x∈{{0,1}n,xi=vi for all xi∈I}

(−1)G(x).

We add conditions for four bits nt+24, nt+31, nt+33, and nt+36. Then, we compute
the conditional correlations of the six Boolean functions, and then, compute the
conditional correlation ofG by using the piling-up lemma. Finally, the correlation
of G is computed by summing conditional correlations of G over all conditions.

Table 5. Case that Λ′[8, 17, 27, 29, 30, 42, 44, 45, 49] = 000100000.

nt+24 nt+31 nt+33 nt+36 G1 G2 G3 G4 G5 G6 correlation

0 0 0 0 2−1 0 2−1 2−2 0 −2−6 0

0 0 0 1 2−1 0 2−1 2−2 0 −2−6 0

0 0 1 0 2−1 2−1 2−2 2−2 0 −2−6 0

0 0 1 1 2−1 2−1 2−2 2−2 0 −2−6 0

0 1 0 0 −2−1 0 2−2 2−2 0 −2−6 0

0 1 0 1 −2−1 0 2−2 2−2 0 −2−6 0

0 1 1 0 −2−1 2−1 0 2−2 0 −2−6 0

0 1 1 1 −2−1 2−1 0 2−2 0 −2−6 0

1 0 0 0 2−1 1 2−1 2−2 2−5.415 −2−6 −2−15.415 × 2−4

1 0 0 1 2−1 1 2−1 2−2 2−5.415 −2−6 −2−15.415 × 2−4

1 0 1 0 2−1 2−1 2−2 2−2 2−5.415 −2−6 −2−17.415 × 2−4

1 0 1 1 2−1 2−1 2−2 2−2 2−5.415 −2−6 −2−17.415 × 2−4

1 1 0 0 −2−1 1 2−2 2−2 −2−5.415 −2−6 −2−16.415 × 2−4

1 1 0 1 −2−1 1 2−2 2−2 −2−5.415 −2−6 −2−16.415 × 2−4

1 1 1 0 −2−1 2−1 2−2 2−2 −2−5.415 −2−6 −2−17.415 × 2−4

1 1 1 1 −2−1 2−1 2−2 2−2 −2−5.415 −2−6 −2−17.415 × 2−4

sum −2−17.415

Table 5 shows the correlation of G when Λ′[8, 17, 27, 29, 30, 42, 44, 45, 49] =
000100000. Here, note that each conditional correlation must be divided by 24

because we add 4-bit condition. Finally, Table 6 summarizes each correlation,
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where we picked the case whose absolute values of correlation are greater than
2−18.

Table 6. Correlations of g′′t ⊕ 〈L(t), Λ′〉.

Λ′[8] Λ′[17] Λ′[27] Λ′[29] Λ′[30] Λ′[42] Λ′[44] Λ′[45] Λ′[49] correlation

0 0 0 1 0 0 0 0 0 −2−17.4150

0 0 0 1 0 0 0 0 1 −2−17.4150

0 0 0 1 1 0 0 0 0 2−17.4150

0 0 1 1 0 0 1 0 0 −2−17.8301

0 0 1 1 0 0 1 0 1 −2−17.8301

0 0 1 1 1 0 1 0 0 2−17.8301

0 1 0 0 0 0 0 0 0 −2−17.4150

0 1 0 0 0 0 0 0 1 −2−17.4150

0 1 0 0 1 0 0 0 0 2−17.4150

0 1 1 0 0 0 1 0 0 −2−17.8301

0 1 1 0 0 0 1 0 1 −2−17.8301

0 1 1 0 1 0 1 0 0 2−17.8301

1 0 0 1 0 0 0 0 0 −2−17.4150

1 0 0 1 0 0 0 0 1 −2−17.4150

1 0 0 1 1 0 0 0 0 2−17.4150

1 0 1 1 0 0 1 0 0 −2−17.8301

1 0 1 1 0 0 1 0 1 −2−17.8301

1 0 1 1 1 0 1 0 0 2−17.8301

1 1 0 0 0 0 0 0 0 2−17.4150

1 1 0 0 0 0 0 0 1 2−17.4150

1 1 0 0 1 0 0 0 0 −2−17.4150

1 1 1 0 0 0 1 0 0 2−17.8301

1 1 1 0 0 0 1 0 1 2−17.8301

1 1 1 0 1 0 1 0 0 −2−17.8301

B Correlation of g′′t + 〈L(t), Λ′〉 of Plantlet

Similarly to the case of Fruit-80, we compute the correlation of g′′t + 〈L(t), Λ′〉 of
Plantlet. After extracting independent terms from g′t ⊕ 〈L(t), Λ〉, g′′t ⊕ 〈L(t), Λ′〉
is described as

g′′t ⊕ 〈L(t), Λ′〉 = nt+4`t+6 ⊕ `t+32`t+17 ⊕ nt+4`t+32nt+38

⊕ nt+16`t+18 ⊕ `t+44`t+29 ⊕ nt+16`t+44nt+50

⊕
⊕
j∈A

nt+j ⊕
⊕
j∈A

nt+12+j

⊕
⊕

i∈{1,3,5,7,8,9,10}

(
nt+40+i ⊕ gt+i

)
⊕ 〈L(t), Λ′〉,
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where

〈L(t), Λ′〉 = (Λ′[6]`t+6 ⊕ Λ′[17]`t+17 ⊕ Λ′[18]`t+18

⊕ Λ′[29]`t+29 ⊕ Λ′[32]`t+32 ⊕ Λ′[44]`t+44).

Now, let us expand all terms in g′′t ⊕ 〈L(t), Λ′〉 as

g′′t ⊕ 〈L(t), Λ′〉
= nt+4`t+6 ⊕ `t+32`t+17 ⊕ nt+4`t+32nt+38

⊕ nt+16`t+18 ⊕ `t+44`t+29 ⊕ nt+16`t+44nt+50

⊕���nt+1 ⊕ nt+6 ⊕ nt+15 ⊕ nt+17 ⊕���nt+23 ⊕���nt+28 ⊕ nt+34

⊕ nt+13 ⊕���nt+18 ⊕���nt+27 ⊕���nt+29 ⊕ nt+35 ⊕���nt+40 ⊕���nt+46

⊕ nt+41 ⊕ (���nt+1 ⊕ nt+14 ⊕���nt+20 ⊕ nt+36 ⊕���nt+40 ⊕ nt+3nt+26 ⊕ nt+4nt+6

⊕ nt+8nt+9 ⊕ nt+15nt+22 ⊕ nt+17nt+19 ⊕(((((nt+23nt+25 ⊕ nt+27nt+33

⊕ nt+34nt+37nt+38nt+39 ⊕ nt+11nt+12nt+13 ⊕ nt+28nt+31nt+32)

⊕���nt+43 ⊕ (nt+3 ⊕ nt+16 ⊕���nt+22 ⊕ nt+38 ⊕���nt+42 ⊕ nt+5nt+28 ⊕ nt+6nt+8

⊕ nt+10nt+11 ⊕ nt+17nt+24 ⊕ nt+19nt+21 ⊕(((((nt+25nt+27 ⊕ nt+29nt+35

⊕ nt+36nt+39nt+40nt+41 ⊕ nt+13nt+14nt+15 ⊕ nt+30nt+33nt+34)

⊕���nt+45 ⊕ (nt+5 ⊕���nt+18 ⊕ nt+24 ⊕ nt+40 ⊕���nt+44 ⊕ nt+7nt+30 ⊕ nt+8nt+10

⊕ nt+12nt+13 ⊕ nt+19nt+26 ⊕ nt+21nt+23 ⊕ nt+27nt+29 ⊕ nt+31nt+37

⊕ nt+38nt+41nt+42nt+43 ⊕ nt+15nt+16nt+17 ⊕ nt+32nt+35nt+36)

⊕���nt+47 ⊕ (nt+7 ⊕���nt+20 ⊕ nt+26 ⊕���nt+42 ⊕���nt+46 ⊕ nt+9nt+32 ⊕ nt+10nt+12

⊕ nt+14nt+15 ⊕ nt+21nt+28 ⊕(((((nt+23nt+25 ⊕ nt+29nt+31 ⊕ nt+33nt+39

⊕ nt+40nt+43nt+44nt+45 ⊕ nt+17nt+18nt+19 ⊕ nt+34nt+37nt+38)

⊕���nt+48 ⊕ (nt+8 ⊕ nt+21 ⊕���nt+27 ⊕���nt+43 ⊕���nt+47 ⊕ nt+10nt+33 ⊕ nt+11nt+13

⊕ nt+15nt+16 ⊕ nt+22nt+29 ⊕ nt+24nt+26 ⊕ nt+30nt+32 ⊕ nt+34nt+40

⊕ nt+41nt+44nt+45nt+46 ⊕ nt+18nt+19nt+20 ⊕ nt+35nt+38nt+39)

⊕���nt+49 ⊕ (nt+9 ⊕���nt+22 ⊕���nt+28 ⊕���nt+44 ⊕���nt+48 ⊕ nt+11nt+34 ⊕ nt+12nt+14

⊕ nt+16nt+17 ⊕ nt+23nt+30 ⊕(((((nt+25nt+27 ⊕ nt+31nt+33 ⊕ nt+35nt+41

⊕ nt+42nt+45nt+46nt+47 ⊕ nt+19nt+20nt+21 ⊕ nt+36nt+39nt+40)

⊕ nt+50 ⊕ (nt+10 ⊕���nt+23 ⊕���nt+29 ⊕���nt+45 ⊕���nt+49 ⊕ nt+12nt+35 ⊕ nt+13nt+15

⊕ nt+17nt+18 ⊕ nt+24nt+31 ⊕ nt+26nt+28 ⊕ nt+32nt+34 ⊕ nt+36nt+42

⊕ nt+43nt+46nt+47nt+48 ⊕ nt+20nt+21nt+22 ⊕ nt+37nt+40nt+41)

⊕ (Λ′[6]`t+6 ⊕ Λ′[32]`t+32 ⊕ Λ′[17]`t+17

⊕ Λ′[18]`t+18 ⊕ Λ′[44]`t+44 ⊕ Λ′[29]`t+29).

There are 46 bits in the NFSR and 6 bits in the LFSR in g′′t ⊕〈L(t), Λ′〉, and the
size of involved bits is too large to evaluate the correlation with brute force. We
decompose this Boolean function into four Boolean functions G1, G2, G3, and
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G4, i.e., g′′t ⊕ 〈L(t), Λ′〉 = G1 ⊕G2 ⊕G3 ⊕G4.

G1 = nt+6 ⊕ nt+8 ⊕ nt+9 ⊕ nt+10 ⊕ nt+21 ⊕ nt+38 ⊕ nt+4`t+6 ⊕ `t+32`t+17

⊕ nt+4`t+32nt+38 ⊕ nt+4nt+6 ⊕ nt+8nt+9 ⊕ nt+6nt+8

⊕ nt+8nt+10 ⊕ nt+9nt+32 ⊕ Λ′[6]`t+6 ⊕ Λ′[17]`t+17 ⊕ Λ′[32]`t+32

G2 = nt+7 ⊕ nt+34 ⊕ nt+27nt+33 ⊕ nt+7nt+30 ⊕ nt+21nt+23

⊕ nt+27nt+29 ⊕ nt+29nt+31 ⊕ nt+33nt+39

⊕ nt+10nt+33 ⊕ nt+30nt+32 ⊕ nt+23nt+30 ⊕ nt+31nt+33

⊕ nt+30nt+33nt+34

G3 = nt+13 ⊕ nt+14 ⊕ nt+35 ⊕ nt+36 ⊕ nt+40 ⊕ nt+41

⊕ nt+10nt+11 ⊕ nt+29nt+35 ⊕ nt+12nt+13 ⊕ nt+31nt+37 ⊕ nt+10nt+12

⊕ nt+14nt+15 ⊕ nt+11nt+34 ⊕ nt+12nt+14 ⊕ nt+35nt+41

⊕ nt+12nt+35 ⊕ nt+13nt+15 ⊕ nt+36nt+42 ⊕ nt+11nt+13

⊕ nt+34nt+40 ⊕ nt+11nt+12nt+13 ⊕ nt+13nt+14nt+15

⊕ nt+32nt+35nt+36 ⊕ nt+35nt+38nt+39 ⊕ nt+36nt+39nt+40

⊕ nt+37nt+40nt+41 ⊕ nt+34nt+37nt+38

⊕ nt+41nt+44nt+45nt+46 ⊕ nt+34nt+37nt+38nt+39

⊕ nt+36nt+39nt+40nt+41 ⊕ nt+40nt+43nt+44nt+45

⊕ nt+42nt+45nt+46nt+47 ⊕ nt+43nt+46nt+47nt+48

⊕ nt+38nt+41nt+42nt+43

G4 = nt+3 ⊕ nt+5 ⊕ nt+15 ⊕ nt+16 ⊕ nt+17 ⊕ nt+24 ⊕ nt+26 ⊕ nt+50

⊕ nt+16`t+18 ⊕ `t+44`t+29 ⊕ nt+16`t+44nt+50 ⊕ nt+3nt+26

⊕ nt+15nt+22 ⊕ nt+17nt+19 ⊕ nt+5nt+28 ⊕ nt+17nt+24

⊕ nt+19nt+21 ⊕ nt+19nt+26 ⊕ nt+21nt+28 ⊕ nt+15nt+16

⊕ nt+22nt+29 ⊕ nt+24nt+26 ⊕ nt+16nt+17 ⊕ nt+17nt+18

⊕ nt+24nt+31 ⊕ nt+26nt+28 ⊕ nt+32nt+34

⊕ nt+17nt+18nt+19 ⊕ nt+18nt+19nt+20 ⊕ nt+19nt+20nt+21

⊕ nt+28nt+31nt+32 ⊕ nt+15nt+16nt+17 ⊕ nt+20nt+21nt+22

⊕ Λ′[18]`t+18 ⊕ Λ′[29]`t+29 ⊕ Λ′[44]`t+44

Four Boolean functions G1, G2, G3, and G4 involve 14, 12, 24, and 24 bits,
respectively. These involved bits are independent except for nt+39, nt+38, nt+34,
nt+32, nt+31, nt+29, nt+21, nt+15, and nt+10, where these nine bits are colored
by red. Therefore, we compute the conditional correlations of G1, G2, G3, and
G4.

Table 7 shows the correlation of G when Λ′[6, 17, 18, 29, 32, 44] = 001100.
Here, note that each conditional correlation must be divided by 29 because we
add 9-bit condition. Table 8 summarizes each correlation, where we picked the
case whose correlation is non-zero.
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Table 7. Case that Λ′[8, 17, 27, 29, 30, 42, 44, 45, 49] = 000100000.

nt+10 nt+15 nt+29 nt+31 nt+34 nt+38 nt+39 G1 G2 G3 G4 correlation

0 0 0 0 0 0 0 2−3 2−2 2−6.4150 2−6 2−17.4150−9

0 0 0 0 0 0 1 2−3 2−2 2−8 2−6 2−19−9

0 0 0 0 0 1 0 −2−3 2−2 2−6.4150 2−6 −2−17.4150−9

0 0 0 0 0 1 1 −2−3 2−2 −2−8 2−6 2−19−9

0 0 0 1 0 1 1 −2−3 2−2 2−7 −2−7 2−19−9

0 0 1 0 0 0 0 2−3 2−2 −2−4.5406 2−7 −2−16.5406−9

0 0 1 0 0 0 1 2−3 −2−2 −2−4.5406 2−7 2−16.5406−9

0 0 1 0 0 1 0 −2−3 2−2 −2−8 2−7 2−20−9

0 0 1 0 0 1 1 −2−3 −2−2 2−8 2−7 2−20−9

0 1 0 0 0 0 0 2−3 2−2 −2−5.1926 2−7 −2−17.1926−9

0 1 0 0 0 0 1 2−3 2−2 −2−5.4150 2−7 −2−17.4150−9

0 1 0 0 0 1 0 −2−3 2−2 −2−7 2−7 2−19−9

0 1 0 0 0 1 1 −2−3 2−2 2−8 2−7 −2−20−9

0 1 1 0 0 0 0 2−3 2−2 2−5.1926 2−6 2−16.1926−9

0 1 1 0 0 0 1 2−3 −2−2 2−5.4150 2−6 −2−16.4150−9

0 1 1 0 0 1 0 −2−3 2−2 2−7 2−6 −2−18−9

0 1 1 0 0 1 1 −2−3 −2−2 −2−8 2−6 −2−19−9

0 1 1 1 0 0 0 2−3 2−2 −2−5.6781 2−7 −2−17.6781−9

0 1 1 1 0 0 1 2−3 −2−2 −2−5.6781 2−7 2−17.6781−9

0 1 1 1 0 1 0 −2−3 2−2 −2−8 2−7 2−20−9

0 1 1 1 0 1 1 −2−3 −2−2 2−8 2−7 2−20−9

1 0 0 0 1 0 0 2−3 −2−2 −2−3.6077 2−6 2−14.6077−9

1 0 0 0 1 0 1 2−3 −2−2 −2−3.4764 2−6 2−14.4764−9

1 0 0 0 1 1 1 −2−3 −2−2 2−8 2−6 2−19−9

1 0 0 1 1 1 0 −2−3 −2−2 −2−3.6077 −2−7 2−15.6077−9

1 0 0 1 1 1 1 −2−3 −2−2 2−7 −2−7 −2−19−9

1 0 1 0 1 0 0 2−3 −2−2 2−4.5406 2−7 −2−16.5406−9

1 0 1 0 1 0 1 2−3 2−2 2−4.5406 2−7 2−16.5406−9

1 0 1 0 1 1 0 −2−3 −2−2 2−7 2−7 2−19−9

1 0 1 0 1 1 1 −2−3 2−2 −2−3.4764 2−7 2−15.4764−9

1 1 0 0 1 0 0 2−3 −2−2 2−5.6781 2−7 −2−17.6781−9

1 1 0 0 1 0 1 2−3 −2−2 2−5.4150 2−7 −2−17.4150−9

1 1 0 0 1 1 0 −2−3 −2−2 −2−8 2−7 −2−20−9

1 1 0 0 1 1 1 −2−3 −2−2 2−4.5406 2−7 2−16.5406−9

1 1 1 0 1 0 0 2−3 −2−2 2−5.6781 2−6 −2−16.6781−9

1 1 1 0 1 0 1 2−3 2−2 2−5.4150 2−6 2−16.4150−9

1 1 1 0 1 1 0 −2−3 −2−2 −2−8 2−6 −2−19−9

1 1 1 0 1 1 1 −2−3 2−2 2−4.5406 2−6 −2−15.5406−9

1 1 1 1 1 0 0 2−3 −2−2 −2−5.6781 2−7 2−17.6781−9

1 1 1 1 1 0 1 2−3 2−2 −2−5.6781 2−7 −2−17.6781−9

1 1 1 1 1 1 0 −2−3 −2−2 2−4.6781 2−7 2−16.6781−9

1 1 1 1 1 1 1 −2−3 2−2 −2−8 2−7 2−20−9

sum 2−22.1420

When nt+21 = 0 or nt+32 = 1, the correlation is 0. Therefore, nt+21 must be 1, and
nt+32 must be 0, and columns for nt+21 and nt+32 are omitted.
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Table 8. Correlations of g′′t ⊕ 〈L(t), Λ′〉.

Λ′[6] Λ′[17] Λ′[18] Λ′[29] Λ′[32] Λ′[44] correlation

0 0 1 1 0 0 2−22.142

0 0 1 1 0 1 −2−22.142

0 0 1 1 1 0 2−22.142

0 0 1 1 1 1 −2−22.142

0 1 1 1 0 0 2−22.142

0 1 1 1 0 1 −2−22.142

0 1 1 1 1 0 −2−22.142

0 1 1 1 1 1 2−22.142

1 0 1 1 0 0 2−23.678

1 0 1 1 0 1 −2−23.678

1 0 1 1 1 0 2−23.678

1 0 1 1 1 1 −2−23.678

1 1 1 1 0 0 2−22.142

1 1 1 1 0 1 −2−22.142

1 1 1 1 1 0 −2−22.142

1 1 1 1 1 1 2−22.142
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