Succinct Arguments in the Quantum Random Oracle Model

Alessandro Chiesa Peter Manohar Nicholas Spooner
alexch@berkeley.edu pmanohar@cs.cmu.edu nick.spooner@berkeley.edu
UC Berkeley Carnegie Mellon University UC Berkeley

January 14, 2020

Abstract

Succinct non-interactive arguments (SNARGs) are highly efficient certificates of membership
in non-deterministic languages. Constructions of SNARGs in the random oracle model are
widely believed to be post-quantum secure, provided the oracle is instantiated with a suitable
post-quantum hash function. No formal evidence, however, supports this belief.

In this work we provide the first such evidence by proving that the SNARG construction of
Micali is unconditionally secure in the guantum random oracle model. We also prove that, anal-
ogously to the classical case, the SNARG inherits the zero knowledge and proof of knowledge
properties of the PCP underlying the Micali construction. We thus obtain the first zero knowl-
edge SNARG of knowledge (zkSNARK) that is secure in the quantum random oracle model.

Our main tool is a new lifting lemma that shows how, for a rich class of oracle games, we can
generically deduce security against quantum attackers by bounding a natural classical property
of these games. This means that in order to prove our theorem we only need to establish classical
properties about the Micali construction. This approach not only lets us prove post-quantum
security but also enables us to prove explicit bounds that are tight up to small factors.

We additionally use our techniques to prove that SNARGs based on interactive oracle proofs
(IOPs) with round-by-round soundness are unconditionally secure in the quantum random oracle
model. This result establishes the post-quantum security of many SNARGs of practical interest.

Keywords: succinct arguments; quantum random oracle model; probabilistically checkable proofs



Contents

1 Introduction
1.1 SNARGs with random oracles . . . . . . . . . . . . . . e
1.2 Ourresults . . . . . . . e e e e
1.3 Related work . . . . . . . e
2 Techniques
2.1 The construction of Micali . . . . . . . . . . . . . . e
2.2 Challenges in the quantum setting . . . . . . . . . . . ...
2.3 Outline of our approach . . . . . . . . . L
2.4 From oracle games to database games . . . . . . . ... Lo
2.5 A basic lifting lemma for database games . . . . . .. ... oL
2.6 Stronger lifting via conditional instability . . . . . .. .. ... o0 oo oL
2.7 Instability of the Micali oracle game . . . . . . .. . ... . o o
2.8 zkSNARKSs in the QROM . . . . . . . . .
2.9 The BCS construction: succinct arguments beyond Micali . . . . . ... ... ... ... ...
3 Preliminaries
3.1 Quantum notation . . . . . . . ...
3.2 Oracle algorithms . . . . . . . . . . ..
3.3 Non-interactive arguments in the quantum random oracle model . . . . . . ... ... .. ..
3.4 Probabilistically checkable proofs . . . . . . . . . . .. .. ...
3.5 Databases . . . . . .. e
3.6 Compressed phase oracle . . . . . . . . . .. e
4 From oracle games to database games
4.1 The case of classical adversaries . . . . . . . . . . . . L e
4.2 The case of quantum adversaries . . . . . . . . . . . .. e e e e e
5 A lifting lemma for database games
5.1 Database properties and the basic lifting lemma . . . . . . . ... .. ... ... ........
5.2 Conditional instability and the lifting lemma, . . . . . . . ... ... ... 0L
5.3 Proof of Lemma 5.10 . . . . . . . . . e e
6 Soundness of the Micali construction
6.1 Some algorithms for Merkle trees . . . . . . . . ... .
6.2 The oracle game for the Micali construction . . . . . . . . .. ... ... ... .. .......
6.3 Proof of Theorem 6.1 . . . . . . . . . . . . e
7 zkSNARKS in the QROM
7.1 Zero knowledge . . . . . .. L e
7.2 Proof of knowledge . . . . . . . . . L
8 The BCS construction in the QROM
8.1 Interactive oracle proofs . . . . . . . . . . L
8.2 The BCS construction and its oracle game . . . . . . . . .. ... L oL
8.3 Round-by-round soundness and knowledge . . . . . . . ... .. oo oL
8.4 Ourresult . . . . . . L e e
8.5 Proof of Theorem 8.6/. . . . . . . . . . . . e
8.6 On the difference in hash chains . . . . . . . . . . . .. ... .. ... .. ... .. ... ...
A Proof of Lemma 3.2
B Round-by-round vs. strong round-by-round soundness
An appendix authored by James Hulett (jhulett@berkeley.edu)
Acknowledgments

References

48
51

51



1 Introduction

The design and analysis of cryptographic primitives that are plausibly secure against quantum
attackers is an increasingly important goal. The expected advent of quantum computers demands
the cryptography community to be prepared well in advance, so much so that the National Institute
of Standards and Technology (NIST) is already in the process of selecting, from among many
proposals, a new set of cryptography standards that are “post-quantum” [NIS16]. The proposals
involve schemes for key agreement, public-key encryption, and digital signatures, and are intended
to eventually replace existing standards based on the hardness of factoring or discrete logarithms.

In this paper we study the post-quantum security of a cryptographic primitive that has recently
received much attention across theoretical and applied communities: succinct arguments [GW11].
These are argument systems for non-deterministic languages where the communication complexity
between the prover and verifier is sublinear in the size of the non-deterministic witness.! This
notion originates in seminal works of Kilian [Kil92] and Micali [Mic00], which construct succinct
arguments for languages in NTIME(7(n)) where communication complexity is poly(A,log 7'(n)) and
the time complexity of the verifier is poly(A, n,logT'(n)); here A is the security parameter.

Researchers have studied many aspects of succinct arguments in the last two decades, leading to
numerous constructions with different tradeoffs [WB15], efficient realizations in code [SCI14; belll5;
SCI18; dalek18; stark18; SCI19; iden19], real-world deployments |Zc14; Col7], and standardization
efforts [ZKP17]. A particularly useful feature is that many succinct arguments can be made zero
knowledge with minimal overhead. At present, however, most approaches to obtain efficient succinct
arqguments are “pre-quantum”, since they rely on the discrete logarithm problem (and more).

A notable exception is a class of succinct arguments obtained by combining two ingredients:
(a) probabilistic proof systems, which are unconditionally secure, and (b) cryptographic hash func-
tions, for which we have post-quantum candidates. This class includes the succinct interactive ar-
gument of Kilian [Kil92], which use probabilistically checkable proofs (PCPs) [BFLS91; FGLSS96;
AS98; ALMSS98| and collision-resistant hash functions. It also includes the succinct non-interactive
argument (SNARG) of Micali [Mic00], which uses PCPs and random oracles. More generally, by us-
ing random oracles one can construct a SNARG from a multi-round generalization of PCPs known
as interactive oracle proofs (IOPs) [BCS16; RRR16]|. All of these succinct arguments are widely
believed to be post-quantum, provided the hash function is suitably instantiated [BBHR19].?

There is, however, no formal evidence that supports the above widely-held belief. Since suc-
cinct arguments are a fundamental cryptographic primitive with both theoretical and real-world
applications, it is important to prove guarantees on their post-quantum security.

1.1 SNARGs with random oracles

In this paper we focus our attention on the SNARG construction of Micali [Mic00], which is uncon-
ditionally secure in the random oracle model [BR93; PS96]. SNARGS in the random oracle model
are not only plausibly post-quantum secure but also enjoy other desirable features. Namely, the
random oracle can be heuristically instantiated via hash functions that avoid expensive public-key
cryptographic operations. Moreover, the SNARG uses a transparent (public-coin) setup, because
the only public parameter needed to produce/verify proofs is the choice of hash function.

! Achieving communication complexity that is sublinear in the witness size is known to require relaxing soundness
from statistical to computational, provided one assumes standard complexity conjectures [GH98; GVWO02|.
2There is also a class of lattice-based succinct arguments that is plausibly post-quantum; see Section 1.3.



We are thus interested in asking: can we establish formal evidence that the SNARG construction
of Micali is post-quantum secure? One way to establish formal evidence is to prove security in a
quantum analogue of the random oracle model, as we now explain. A quantum attacker can,
among other things, evaluate a hash function in superposition when given the hash function’s
code. This enables the attacker, for instance, to find pre-images [Gro96] or collisions [BHT9S]
faster than a classical attacker. In light of this, Boneh et al. [BDFLSZ11| have argued that, in
the quantum setting, the correct way to model a random oracle is to allow the attacker to query
the random oracle in superposition. The resulting model is known as the quantum random oracle
model (QROM), and a line of work has established post-quantum security within this model for a
variety of cryptographic primitives; see, e.g., [BDFLSZ11; Zhal2; Zhalb; TU16; Eat17].

Our goal is to study the SNARG construction of Micali in the quantum random oracle model.
We also study the SNARG construction of BCS [BCS16|, which yields SNARGs of practical interest.

1.2 Our results

The main result of this paper is establishing that the SNARG construction of Micali [Mic00] is
unconditionally secure in the quantum random oracle model. This is the first formal evidence that
supports the widely-held belief that this construction is post-quantum secure when the oracle is
instantiated via a suitable post-quantum hash function.

Theorem 1 (informal). The non-interactive argument of Micali, when based on a PCP with sound-
ness error e, has soundness error O(t?e + t3/2)) against quantum attackers that make t queries to
a random oracle with output size A. This soundness error is tight up to small factors.

A key step in our proof, of independent interest, is a Lifting Lemma that shows how, for a rich
class of “oracle games”, we can generically deduce security against quantum attackers by bounding
a natural classical property of these games, instability, that we introduce. This means that to prove
Theorem 1 we only need to bound the instability of the Micali construction. This approach not only
yields the theorem but also enables us to prove explicit bounds that are tight up to small factors.

If we base the Micali construction on suitable PCPs, we obtain new statements about the
existence of post-quantum non-interactive arguments. First, if the PCP achieves (honest-verifier)
zero knowledge and proof of knowledge then through the Micali construction we obtain a zero
knowledge non-interactive argument of knowledge that is unconditionally secure in the quantum
random oracle model. This strengthens a result of Unruh [Unr15], which assumes the existence of
a post-quantum X-protocol for NP. Moreover, if the PCP has polylogarithmic query complexity
and verifier running time then we obtain the first construction of a zero knowledge succinct non-
interactive argument of knowledge (zkSNARK) that is secure in the quantum random oracle model.

Theorem 2 (informal). There exists a zero knowledge non-interactive argument of knowledge for
NP in the quantum random oracle model. Moreover, the non-interactive argument is succinct, in
the sense that arguments have size A° and can be verified in time (X - n)¢, where X\ is the random
oracle’s security parameter, n is instance size, and ¢ > 1 is a universal constant.

The above theorem is stated for NP only for simplicity. Analogously to the classical case, a
more general statement holds for all non-deterministic time languages by relying on suitable PCPs
for non-deterministic time. For example, the PCP in [BFLS91| achieves proof of knowledge, can be
made (honest-verifier) zero knowledge [DFKNS92; KPT97], and supports general non-deterministic
time computations.



The BCS construction. We conclude with a result that demonstrates how the tools in this
paper can be used to study the post-quantum security of protocols that are of practical interest.
Since known PCP constructions are expensive, efficient constructions of succinct arguments in
the random oracle model are typically based on the BCS construction [BCS16], which instead uses
interactive oracle proofs (IOPs) [BCS16; RRR16|, a multi-round extension of PCPs. This extension
additionally captures IPs [Bab85; GMR89| and IPCPs [KR08| as special cases.

We prove that the BCS construction is unconditionally secure in the quantum random oracle
model, if applied to public-coin IOPs that have round-by-round soundness [CCHLRR18]. The
resulting argument inherits proof of knowledge and zero knowledge properties of the underlying
10P.

Theorem 3 (informal). The non-interactive argument of BCS, when based on a public-coin IOP
with round-by-round soundness error €, has soundness error O(t*e + t3/2*) against quantum at-
tackers that make t queries to a random oracle with output size \. Moreover, it is an argument of
knowledge if the IOP has round-by-round proof of knowledge, and it is a (statistical) zero knowledge
argument if the IOP is honest-verifier zero knowledge.

Round-by-round proof of knowledge is a natural notion that we introduce, analogous to round-
by-round soundness, and is satisfied by many natural protocols. In particular, Theorem 3 enables
us to deduce the post-quantum security of succinct arguments based on well-known IPs such as
the sumcheck protocol [LFKN92] and the GKR protocol [GKR15], as well as zkSNARKs based
on recent IOPs such as [BBHR19; AHIV17; BCRSVW19]. These protocols (among others) are of
interest to practitioners, and our result can be used to guide parameter choices in practice.

1.3 Related work

Argument systems that use random oracles. Several works study the post-quantum security
of zero knowledge non-interactive arguments of knowledge that use random oracles, most notably
those obtained by applying the Fiat—Shamir transformation [FS86] to a post-quantum X-protocol.
These are used to achieve post-quantum digital signatures [CDGORRSZ17; KKW18; BN19|, and
underlie constructions submitted to the NIST call for post-quantum cryptography [NIS16].

A security reduction for the Fiat—Shamir transformation in the quantum random oracle model
has been recently achieved [DFMS19; LZ19]. Obtaining a security reduction had been elusive, as
the classical approach of rewinding the adversary to reduce to special soundness of the Y-protocol
does not work for quantum adversaries.® Before, researchers were only able to prove security if the
underlying Y-protocol satisfies special properties [DFG13; Unrl7; KLS18], or resorted to proving
security for alternative, less efficient, constructions such as the Unruh transformation [Unrl5].

The question that we study in this paper is complementary to these prior works. On the one
hand, prior works study the security of the Fiat—Shamir transformation given that the underlying
Y-protocol is secure against efficient quantum attackers. On the other hand, we study protocols
such as the Micali construction and BCS construction that can be viewed as applying the Fiat—
Shamir transformation to specific public-coin protocols that are known to be unconditionally secure
in the (classical) random oracle model. In particular, we establish unconditional security in the

3Rewinding quantum adversaries is a delicate matter [Wat09] and, more importantly, special soundness does not
imply post-quantum soundness (relative to some oracle) [ARU14]. These difficulties have been circumvented by using
new techniques that enable reducing directly to the (post-quantum) soundness of the underlying ¥-protocol.



quantum random oracle model via an approach that considers the protocol as a whole (similarly
to the classical analysis of these protocols).

The foregoing differences are reflected in a technical analysis that departs from prior works.
Most of the effort in this paper is establishing classical security properties of the Micali and BCS
constructions, which we then use to generically deduce their quantum security. This approach,
besides being intuitive, yields tight bounds that can be used to guide parameter choices in practice.

Succinct arguments based on lattices. Several lattice problems are presumed to remain hard
even against quantum adversaries, and researchers have relied on such problems to propose numer-
ous cryptographic constructions that are plausibly post-quantum. A handful of works have used
lattices to achieve various notions of succinct arguments that are plausibly post-quantum. Baum et
al. [BBCPGL18] rely on the short integer solution (SIS) problem to obtain an argument system for
arithmetic circuits where the communication complexity grows with the square-root of circuit size;
the argument system is constant-round, public-coin, and honest-verifier zero knowledge. Boneh et
al. [BISW17; BISW18] and Gennaro et al. [GMNO18| rely on lattice knowledge assumptions to
construct designated-verifier SNARGs for boolean circuits, in the preprocessing model [BCIOP13].
Whether one can use lattices to obtain publicly-verifiable SNARGs remains an open problem.



2 Techniques

We discuss the main ideas behind our results. In Section 2.1 we recall the construction of Micali,
and then in Section 2.2 we explain the challenges that arise when trying to prove its security in the
quantum random oracle model. In Section 2.3 we outline our approach to obtain a proof of security
for the Micali construction (Theorem 1); we elaborate on our approach in Sections 2.4 to 2.7.
Finally, in Section 2.8 we discuss how to further establish zero knowledge and proof of knowledge;
we thus obtain the first zkSNARK secure in the quantum random oracle model (Theorem 2).

We conclude in Section 2.9 by explaining how our techniques extend to establish post-quantum
security for the BCS construction applied to many protocols of practical interest (Theorem 3).

2.1 The construction of Micali

The construction of Micali is a transformation that maps any probabilistically checkable proof (PCP)
into a corresponding non-interactive argument in the random oracle model. (See Section 3.4 for
the definition of a PCP, and Section 3.3 for that of a non-interactive argument.) The resulting
non-interactive argument is succinct, i.e. a SNARG, provided the PCP has suitable parameters.

Let (P, V) be a PCP for a relation R with soundness error ¢, proof length ¢ over alphabet X,
and query complexity g. The honest prover P takes as input an instance-witness pair (x,w) and
outputs a proof string II: [¢] — X. The honest verifier V takes as input the instance x, makes ¢
probabilistic queries to a (possibly malicious) proof string II: [¢] — %, and then accepts or rejects.

The PCP (P, V) for R is used to construct a SNARG (P, V) for R, as follows.

The SNARG prover P takes as input an instance x and witness w. First, P uses the random
oracle h to commit to the proof string IT := P(x,w) via a Merkle tree, obtaining a corresponding
root rt. Second, P applies the random oracle h to the root rt in order to derive randomness r for
the PCP verifier V. Third, P simulates the PCP verifier V with the proof string II, input x, and
randomness r, in order to deduce the queried locations of II. Finally, P assembles a SNARG proof
7 that contains the root rt, answers to the queries, and an authentication path for each answer.

Observe that the SNARG proof 7 is succinct because it is small (it has size |7| = O(q- (log |X| +
Mogt)) = Ox(q) for £,|%] = 2°V) and it is cheap to validate via the algorithm described next.

The SNARG verifier V takes as input an instance x and a (possibly malicious) SNARG proof 7.
First, V uses the random oracle h to check that each answer in 7 is certified by an authentication
path relative to the claimed root rt. Next, V applies the random oracle h to the root rt in order
to derive randomness . Finally, V runs the PCP verifier V on the instance x and randomness ¥,
answering V’s queries using the claimed answers in 7.

The intuition behind the construction is that the soundness guarantee of a PCP holds only if
the proof string II to be validated is fized before the randomness f for the PCP verifier is known,
and for this reason the SNARG prover must derive ¥ by hashing a commitment rt to II.

This construction is unconditionally secure in the random oracle model [Mic00; Val08; BCS16):

Theorem 2.1. The SNARG (P, V) has soundness error O(te +t%/2)) against (classical) attackers
that make at most t queries to the random oracle. This soundness error is tight up to small factors.

A SNARG obtained via the Micali construction also inherits zero knowledge and proof of knowl-
edge properties of the underlying PCP. We discuss these additional properties and how we establish
them in the quantum setting later on in Section 2.8. We focus on soundness first.



2.2 Challenges in the quantum setting

Our goal is to show that the SNARG construction of Micali is unconditionally secure in the quantum
random oracle model. Suppose that P is a t-query quantum prover that convinces the SNARG
verifier V with probability § (over the random oracle). We wish to construct a malicious PCP
prover P that, using P as a subroutine, outputs a proof string II: [¢] — % that convinces the PCP
verifier V with related probability (4, t) (here the probability is over the randomness of P and V).

A natural approach to reduce the SNARG prover P to the PCP prover P would be to try to
adapt to the quantum setting the reduction that is used for the classical setting. Below we recall
the classical reduction, and then explain why adapting it to the quantum case is challenging.

The reduction for classical attackers. The reduction from a classical SNARG prover P to a
PCP prover P relies on a straightline extractor, as we now explain.

While the SNARG prover P outputs a short proof 7 that contains a Merkle root and a few
decommitted values, the PCP prover P must output a “long” proof string II. How can P obtain
all this information from seeing only 77 The answer is that, when running P as a subroutine, P
observes the queries that P makes to the oracle, and these queries reveal the proof string 1.

This is only a caricature of how P actually works, though. The reason is that P need not
produce a query sequence from which P can just read off a proof string II consistent with the
Merkle root in 7. For example, P could try to commit to many possible proof strings “in its head”,
derive the corresponding randomness from each commitment, and then select which commitment
to include in 7. Even worse, P could try to commit to a partial proof string I via an incomplete
Merkle tree and, because the PCP verifier inspects only a small fraction of a proof string, hope
that queries will land to leaves of the Merkle tree that do exist.

The proof of Theorem 2.1 shows that, despite these complications, there is a way for P to
observe all queries and answers of a single execution of the SNARG prover P, and then run an
algorithm on these to extract a suitable proof string II.

How to deal with quantum attackers? If we now return to the case where the SNARG prover
P is a quantum attacker, we are immediately confronted with a severe problem. Since P can
query the random oracle in superposition, how can P “observe” queries and answers to the oracle?
If P were to just measure P’s query register, P may detect this and stop working. This basic
problem has made obtaining security reductions against quantum attackers that access random
oracles exceedingly difficult when compared to the case of classical attackers. Papers that study
the security of cryptographic primitives in the quantum random oracle model have had to develop
clever techniques to somehow circumvent this problem in various settings of interest.

Most relevant to this paper is a work of Zhandry [Zhal9] that introduces compressed oracles,
a set of notions and techniques that enables a quantum algorithm to simulate access to a random
oracle for a quantum attacker. This is achieved by replacing a random oracle h: {0,1}™ — {0,1}"
with the action of a specially-crafted unitary O that implicitly keeps track of queries. This is a
quantum analogue of when, in the classical setting, a simulator merely observes the queries made by
the attacker and maintains a database of the query-answer pairs. Formally, the classical simulator
keeps track of a database D, which is a partial function D: {0,1}™ — {0,1}". The database
represents the part of the random oracle that has been “revealed” to the attacker by answering
its queries. In the quantum setting, the state space of the quantum attacker is augmented with
registers to store the database, which (loosely) keep track of the database D in superposition, as
it evolves from query to query. Thus, while the original oracle h operates on the state |1 4) of the



adversary, the unitary O operates on a bipartite state |4, p). This extended state represents a
purification of the mixed state of the adversary induced by choosing the oracle h at random.

One may conjecture that the compressed oracle technique, by virtue of “exposing” a quantum
attacker’s queries, makes proving the quantum security of the Micali construction, or indeed of any
construction that uses random oracles, straightforward. This is, unfortunately, not the case.

For example, the results of [Zhal9] on compressed oracles allow us to argue directly that, given
an adversary that outputs a convincing SNARG proof 7w with high probability, if we measure the
database D after the adversary terminates, then with high probability one can find a convincing
SNARG proof 7 in the database D. This does not allow us to reduce to soundness of the underlying
PCP, however, because to do that we need to argue that one can extract a PCP proof 11 from D
(containing a lot more information than 7) that convinces the PCP verifier with high probability.

While the techniques in [Zhal9| suffice for analyzing simple protocols like collision finding, it is
not clear how to analyze more complex protocols such as the Micali SNARG, as explained above. In
the next section we describe a general framework for analyzing complex protocols in the quantum
random oracle model.

2.3 Outline of our approach

The ideas that we use in this paper to analyze the Micali construction are almost entirely generic,
and can be used to analyze any oracle game. Informally, given a “base game” G C A* x B¥ x C, an
adversary with oracle access to a random oracle h wins the oracle game for G if it outputs a tuple
(a,b,c) € G where h(a;) = b; for each i € [k]. Oracle games are a natural notion that captures
many games of interest, such as finding pre-images or finding collisions. Producing a valid proof
in the Micali construction can also be cast as an oracle game,* and we shall view the soundness
property of the Micali construction as stating that the value (maximum winning probability) of
this game is small (when the statement being proved is false).

Our proof of quantum security consists of two main parts. First, we generically reduce the value
of any oracle game to the instability of the game, a purely classical property of the game that we
introduce. Second, we analyze the instability of the oracle game induced by the Micali construction.
The instability of this oracle game is not too difficult to analyze because it is a classical quantity,
and the “hard work” is crisply, and conveniently, encapsulated within our generic reduction. We
view bounding values of oracle games via instability as the main technical contribution of this paper.

We now elaborate on our approach: in Section 2.4 we recast prior work in the language of oracle
games; in Section 2.5 we explain what is instability and how we use it to bound game values; in
Section 2.6 we introduce conditional instability and use it to prove tighter bounds on oracle game
values; and in Section 2.7 we outline the analysis of instability for the Micali construction.

2.4 From oracle games to database games

We begin with a sequence of three games whose values are closely related. These games play the
role of hybrids in our analysis, and are all defined relative to the given base game G C A* x B* x C.

e Oracle game. This is the game defined earlier that is played in the real world, using a random
oracle h. The adversary wins if it outputs a tuple (a,b,c) € G with h(a;) = b; for each i € [k].

1At a high level, G is the set of all proofs that cause the verifier to accept relative to some oracle; the h(a;) = b;
constraints ensure that the verifier accepts this proof relative to the specific oracle h. For more details, see Section 6.2.



e Simulated oracle game. The simulator of Zhandry [Zhal9] is used to run the adversary and
its final state is measured, leading to a tuple (a,b,¢) and a database D. The adversary wins if
(a,b,c) € G and D(a;) = b; for each i € [k]. (The oracle h: {0,1}"™ — {0,1}" is now replaced
by the database D: {0,1}™ — {0, 1}" stored by the simulator.)

e Database game. Again the simulator of Zhandry is used to run the adversary, leading to a
tuple (a,b,c) and a database D. However, now we ignore (a,b,c) and only consider D. The
adversary wins if there ezists (a’,b’, ) € G such that D(a;) = b; for each i € [k].

We let w§(GLt), we(G,t), and wj(G,t) denote the values of the oracle game, simulated oracle game,
and database game against quantum adversaries that make at most ¢ oracle queries.

A result of Zhandry [Zhal9, Lemma 5], when stated via the notions above, shows that /w§ (G, t) <
VWE(G, 1) + /k/2". Moreover, w¢(G,t) < wp(G,t) holds trivially, because winning the simulated
oracle game implies winning the database game, by taking (a’,b’,¢’) := (a, b, ¢). In sum:

Lemma 2.2. For any base game G,

Vs(Gt) < \Jwp(G ) + VR .

The above lemma is a conceptualization of prior work, and is the starting point for the technical
contributions of this paper. In particular, the lemma tells us that in order to bound the maximum
winning probability of a quantum adversary in an oracle game (played in the real world) it suffices
to bound the maximum winning probability of the adversary in the corresponding database game.

See Section 4 for more details.

2.5 A basic lifting lemma for database games

We describe how we use a classical quantity I(Pg,t) to bound wj(G,t), the maximum winning
probability of any t-query quantum algorithm in the database game of G. When combined with
the hybrids in Section 2.4, this reduces the quantum security of oracle games to studying I(Pg, t).

Given a base game G, we let Pg be the set of databases that win the database game of GG. In the
classical setting, a natural way to bound the maximum winning probability of the database game
is to compute, for each possible database D ¢ Pg (a database that is currently losing the game),
the maximum probability that adding a query-answer pair to D puts D in Pg. Assuming that the
empty database is not in Pg (for otherwise one can win trivially), this quantity characterizes the
probability that the adversary gets lucky and ends up with a winning database D.

We define the instability of Pg with query bound ¢, denoted I(Pg,t), to be the maximum
probability that, for any database D containing less than ¢ queries, making one additional (classical)
query changes whether or not D is in Pg. The foregoing argument explains that the classical value
of the database game G is bounded by t-1(Pg,t). Intuitively this is because each query can increase
the probability that the database D is in Pg by at most I(Pg,t).

We prove that an analogous result holds for quantum adversaries as well. We call this lemma a
lifting lemma, because it enables us to use the classical quantity of instability to prove a bound on
the maximum winning probability of quantum adversaries. The version below is a “basic” version,
because we shall ultimately need a stronger statement, as we discuss in Section 2.6. The result
below extends an idea of Zhandry sketched in [Zhal9, Section 4.3].



Lemma 2.3 (Basic lifting lemma). For any base game G,
wh(G,t) <Ot -1(Pg,t)) .
In particular, combining the above with Lemma 2.2, we get
w(G,t) <Ot - I(Pg,t) + k/2") .

Even the above basic lifting lemma is a powerful tool. For example, suppose that G is the
collision game, where the adversary wins if it outputs an oracle collision. Then I(Pg,t) < t/2",
because if D is a database with no collisions and less than ¢ entries, then making one more query
produces a collision with probability less than ¢/2", and if D has collisions then it is not possible
to make an additional query and remove collisions. Then (since k£ = 2 in the collision game) the
lifting lemma immediately tells us that wg(G,t) < O(t3/2"), which shows that the probability that
a t-query quantum oracle algorithm finds a collision is bounded by O(#3/2"). This further simplifies
the analysis of this fact in [Zhal9] and matches the bound of [AS04] (which is tight [BHT9S]).

We now sketch the proof of the basic lifting lemma. The proof sketch differs slightly from the
actual proof, as in the actual proof we do a slightly more complicated analysis that gives us smaller
constants. The main ideas, however, remain the same.

We let Pg be the operator that projects onto databases that win the database game G: for any
basis state |D) in the database register, Pg |D) = |D) if D € Pg, and Pg |D) =01if D € Pg; Pa
acts as the identity on other registers. If |¢) is the final joint state of the quantum adversary and
database, then ||Pg |#)||? is the probability that D € Pg after measurement. We will assume that
0 ¢ Pg, i.e., that the empty database does not win the database game of G (or else the adversary
can win by doing nothing).

We can represent any simulated quantum adversary making at most ¢ queries as a sequence of
unitary operators U = A;OA; 10 ... A;O applied to an initial state |¢g, @) := |do) @ |0), where O
is the compressed oracle and |()) is the state of the empty database. Each A; acts non-trivially only
on the registers of the adversary being simulated and Pg acts non-trivially only on the database
registers, so Pg and A; commute. So, if Pg and O were to also commute, then we could simply
conclude that PgU |¢g, D) = UPg |¢po, D) = 0, i.e., that the adversary never wins. (Here we used
the fact that () ¢ Pg.)

However, it is not the case that Pg and O commute. This should be expected because in general
an adversary can win with some positive probability. However, if we could show that they almost
commute, then we could apply the previous argument to show that PgcU |¢g, 0) =~ U Pg |¢o,0) = 0;
i.e., the adversary wins with small probability. The notion of “almost” commuting we use is that
the operator norm ||[Pg, O]|| of the commutator [Pg, O] := PO — OF¢ is small.

Unfortunately, for interesting games the operator norm ||[Pg, O]|| may not be small. For exam-
ple, if G is the collision game and D is a database with a pre-image of every y € {0,1}" but no
collisions, then ||[Pg, O] |z, u, D)|| = 1. Generally, this norm may be large if D has many entries.

Query-bounded adversaries, however, cannot produce nonzero amplitudes on databases with
more entries than the query bound. Hence, intuitively we should not consider states that correspond
to large databases when bounding the operator norm of the aforementioned commutator. We follow
this intuition by introducing the notion of a projected oracle, which acts as the compressed oracle
except that it discards databases that do not belong to a certain subset.

Definition 2.4. Let P be the operator that projects onto databases that belong to a given subset P
of databases. A projected oracle is an operator of the form POP.



We thus consider the projected oracle P.OPF;, where P; is operator that projects onto databases
containing at most t queries. For adversaries that make at most ¢ queries, replacing O with
P,OP; has no effect because the adversary cannot create a database that contains more than ¢
entries. Moreover, ||[Pg, P,OP,]|D)|| = 0 if D contains more than ¢ entries, so the operator norm
of [Pg, P.OP,] accounts for the action of O only on databases containing at most t entries.

In sum, projected oracles allow us to cleanly compute the operator norm only over databases
that are reachable by an adversary making a bounded number of queries. By carefully analyzing
the action of O, we show that

I[Pa, POR]|I* < O(I(Pa, 1)) -

We additionally prove that ||PgU |¢o, D) — UPg |¢po,0)|| < t||[Pg, P.OP]||. Combining these two
inequalities yields the lifting lemma.
See Section 5.1 for more details.

2.6 Stronger lifting via conditional instability

The lifting lemma implies that to prove soundness of the Micali construction, it suffices to bound the
instability of the Micali database game. Unfortunately, the instability of the Micali database game
is actually large, even given the query bound. For example, suppose that D is a database containing
Merkle trees for many different proof strings, but each of these Merkle trees has (miraculously) the
same root due to collisions. Then, the probability that querying the root yields a good randomness
for the underlying PCP verifier is large, because the answer to the query only needs to be a good
random string for any one of the many proofs that D contains.

This counterexample, however, should not be of concern because it relies on the database having
many collisions, and we have already argued that creating even a single collision in the database
is difficult. To deal with this issue, we introduce the notion of conditional instability: I(P | Q,t).
This is a refined notion of instability that allows us to condition on events, e.g., that the database
has no collisions. Our main technical contribution is the following stronger variant of Lemma 2.3.

Definition 2.5. A database property P is a set of databases. The complement of P is P.

Lemma 2.6 (Lifting lemma). For any base game G and database property Q,
wh(G, 1) <O+ (IPe | ,1) + 1(QD)) ) -
In particular, combining the above with Lemma 2.2, we get
wh (G, 1) < O(t2 A(I(Pg| O,t) +1(Q,1)) + k/2”> .

The above statement is an “instability analogue” of the standard fact that for any two events
Ei and Ej, Pr[E1] < Pr[Ey U B3] < Pr[E) | Ey| + Pr[E,].

The proof of Lemma 2.6 has three steps. First, we relax the database game Pg so that the
adversary wins if the database is in Pg U Q. Clearly, winning the relaxed game is only easier than

the original database game. Lemma 2.3 then implies that wj(G,t) < O (t2 I(Pa U Q, t)) Finally,

we show that for any two database properties P and Q it holds that I(PUQ, t) < I(P|Q,t)+1(Q,1),
which completes the proof.

10



We remark that Lemma 2.6 cannot be proved by simply arguing that I(P,¢) < I(PU Q,t) and
then applying Lemma 2.3. This is because I(P,t) and I(P U Q,t) are in general incomparable (see
Proposition 5.12 for examples).

See Section 5.2 for more details.

2.7 Instability of the Micali oracle game

Armed with our lifting lemma, establishing the quantum security of the Micali construction is now
relatively straightforward. Let Ppic be the database property for the Micali game, and let Py be
the no-collision property (the set of databases that do not contain collisions). We show that, for a
random oracle of the form h: {0,1}** — {0,1}*,

I(Peoly t) < t/2/\ and  I(Puic | Peols t) < € + O(t/QA) .
Proving each of these inequalities is merely a classical argument.

e I(P.,t): If D is a database containing less than ¢ entries and has a collision, then adding an
entry to D cannot remove the collision, so the probability that adding a new entry to D makes
D have no collisions is 0. Let D be a database containing less than ¢ entries and no collisions.
For any new query z, adding the query-answer pair (z,y) to D for a random y will contain a
collision with probability less than ¢/2*. Thus, I(Pgy,t) < t/27.

o I(Puic | Peol, t): It is impossible to go from a database D in Py;c to a database D not in Pyc by
adding entries. Let D be a database not in Py containing less than ¢ entries that contains no
collisions. There are two ways to make D in Pyjc: either the new query is for the randomness of
the PCP verifier in the Micali construction, in which case this finds a good choice of randomness
with probability at most €, or the new query extends one of the Merkle trees that the adversary
is constructing. To extend the Merkle tree the adversary must find a pre-image, which happens
with probability less than O(t/2}). Hence, I(Pwic | Peols t) < € + O(t/2*), completing the proof.

Combining these bounds on instability with the lifting lemma completes the proof of soundness,
and completes a proof sketch for Theorem 1. See Section 6 for more details.

2.8 zkSNARKSs in the QROM

We have so far discussed how to establish soundness of the Micali construction in the quantum
setting. We now discuss how to further establish zero knowledge and proof of knowledge, obtaining
the first zZkSNARKS secure in the quantum random oracle model (and thereby proving Theorem 2).

Zero knowledge. In the classical setting, the Micali construction achieves statistical zero knowl-
edge provided the underlying PCP is (honest-verifier) statistical zero knowledge (and leaves in the
Merkle tree are suitably salted to ensure statistical hiding of unrevealed leaves) [IMSX15; BCS16].
In the quantum setting, an analogous statement is immediate simply because the zero knowledge
property holds against computationally unbounded verifiers that make an unbounded number of
queries to the random oracle, and any quantum verifier can be simulated by an unbounded verifier.

Proof of knowledge. In the classical setting, the Micali construction achieves proof of knowledge
provided the underlying PCP is a proof of knowledge [Val08]. The quantum analogue of this
statement, however, does not immediately follow from our soundness analysis. Recall that our

11



strategy was to bound the instability of the Micali property for ¢ £, conditioned on no collisions.
But when x € L this approach will not work, because the instability of the Micali property even
conditioned on the absence of collisions is 1 (as witnessed by the existence of the honest prover).

Nevertheless, the tools that we develop in this work are flexible enough that we can apply them
to also establish proof of knowledge. We consider the following natural extractor strategy: run the
prover until completion, and measure the database. Then, for each entry in the database, try to
extract a PCP proof rooted at that entry, and then run the PCP extractor on this proof.

Let P be the set of databases D where there exists a root rt such that D wins the Micali game
with a SNARG proof rooted at rt, but the PCP extractor does not extract a valid witness from
the PCP proof rooted at rt. If the prover wins the Micali game but the extractor fails, then D
must be in P. We then argue that I(P | Peo,t) is at most k + O(t/2*), where k is the knowledge
error of the underlying PCP. Intuitively, this is because if the PCP extractor fails to extract a
witness from the PCP proof II rooted at rt, then Il convinces the verifier with probability at most
k, and hence the probability of finding good randomness for II is at most k. Combining this with
Lemma 2.6 implies that the probability that the prover wins the Micali game but the extractor
fails is at most O(t%k +¢3/2*). Hence, if 4 is the probability that the prover wins the Micali game,
then the probability that the extractor succeeds is at least Q(u — t2k — t3/27).

See Section 7 for more details.

2.9 The BCS construction: succinct arguments beyond Micali

We apply our techniques to prove post-quantum security of the BCS construction [BCS16|, when the
underlying public-coin IOP satisfies a notion of soundness achieved by many protocols of practical
interest. The notion is round-by-round soundness, and was introduced for IPs in [CCHLRR18| for
the purposes of facilitating proofs of security of the Fiat—Shamir transformation for correlation-
intractable hash functions. The notion can be extended in a straightforward way to any IOP,
and this is the notion that we consider in this work. We further show that if the underlying IOP
is honest-verifier zero knowledge and/or has round-by-round proof of knowledge, then the BCS
argument inherits these properties. Round-by-round proof of knowledge is a type of knowledge
property that is analogous to round-by-round soundness (and is also achieved by many protocols
of practical interest). Below we sketch our analysis; see Section 8 for details.

Soundness. An IOP has round-by-round soundness if, for any partial transcript tr of the protocol,
one can tell if tr is “doomed”, i.e., that it is highly unlikely to be accepted by the verifier when
completed to a full transcript; a doomed full transcript is never accepted by the verifier.

By the lifting lemma, in order to prove the post-quantum security of the BCS construction it
suffices to bound the conditional instability of the database property P, where D € P if D contains
a partial transcript where the last verifier message has flipped the transcript from “doomed” to
“not doomed”. We argue that I(P| Peor, ) < €+ O(t/2)), where ¢ is the round-by-round soundness
error of the IOP. The proof is similar to the proof for the Micali construction. If D ¢ P, there are
two ways to add an entry and make D € P: either the new query is for the randomness of the next
verifier message in the IOP for some doomed transcript tr, in which case we find a message that
makes tr not doomed with probability €; or the new query extends one of the Merkle trees that the
adversary is constructing, which happens with probability less than O(t/2*) as this implies finding
a pre-image. Hence, I(P | Peol, t) < € + O(t/2), which completes the proof.

Zero knowledge. Asin the case of Micali, zero knowledge is straightforward, as the BCS construc-

12



tion classically achieves statistical zero knowledge when the IOP is honest-verifier zero knowledge.

Proof of knowledge. Analogously to our analysis of the Micali construction, we define a property
Q, where D € Q if D contains a partial transcript that is in P but the BCS extractor fails to extract
a valid witness. We then argue that I(Q | Peoi) < k + O(t/2}), where k is the round-by-round
knowledge error of the IOP; the proof of this fact is similar to the proof of soundness. We conclude
that if the prover causes the verifier to accept with probability at least u, then the probability that
the extractor succeeds is at least Q(u — t2k — t3/2%).

13



3 Preliminaries

We denote by R a binary relation of instance-witness pairs (x,w), and by £(R) its corresponding
language, which is the set {x | Iw s.t. (x,w) € R}. We denote by f: X — Y a function from a set
X to a set Y; similarly, we denote by f: X — Y a partial function from a set X to a set Y, i.e., a
function f: X — Y U{L}, where L ¢ Y is a special symbol indicating that f(x) is undefined.

3.1 Quantum notation

We briefly recall standard quantum notation. We let |¢) denote an arbitrary quantum state,
and let |z) denote an element of the standard (computational) basis. The norm of a state |¢) is
o) := +/{(¢|¢). In general, the states that we consider will have norm 1. The operator norm
of an operator A is ||A]l := max).|¢)|=1][A[@)[. Note that if A is unitary then [|A| = 1. The
commutator of two operators A and B is [A, B] := AB — BA. The following proposition relates
operator norms and commutators.

Proposition 3.1. Let A, B,C be operators with ||B||,||C|| < 1. Then
I1A, BC|| < [[[A, B[l + [[[A, CTl| -

Proof. By definition, [A, BC] = ABC — BCA = ABC — BAC+ BAC — BCA = [A, B|C + B|A, C).
Therefore, [|[[A, BC]|| < ||[A, BIC|| + | B[A, C|| < [|[A, Bl + [[[A, C]l|, as |B]], |C]| < 1. O

A projector P is an idempotent linear operator (i.e., P2 = P). Throughout, we will only
consider orthogonal projectors of the form Ps := ) ¢ |z) x|, where S is a set of binary strings.
Measuring a state |¢) in the standard basis results in an output that is in S with probability equal to
| Ps |#)]|?. Since all Pg are diagonal in the same basis, they commute with each other. Note that for
any non-zero orthogonal projector P it holds that ||P|| = 1. In particular, since ||AB|| < [|A||||B]],
we see that if A is the product of projectors and unitaries then || Al < 1.

3.2 Oracle algorithms

Let f: {0,1}™ — {0,1}"™ be a function. The standard way to model oracle access to f in the
quantum setting is via a unitary operator Oy that acts as |z,y) — |,y @ f(z)) for all x € {0,1}™
and y € {0,1}". We label the input and output registers X and Y, respectively.

A t-query quantum oracle algorithm A is specified via m,n € N, t unitary operators Ay, ..., A;
and an initial state |¢o) on four registers X,Y,S, T. The register X is on m qubits and is for queries
to the oracle; the register Y is on n qubits and is for answers from the oracle; the register S is for
the output of A; and the register T is for scratch space of A. The initial state |¢o) and unitary
operators A; need not be efficiently computable.

We write ‘.Af> to denote A;O¢A;_10;¢--- A105 |¢p), the final state of the adversary before
measurement. (We implicitly extend Oy to act as the identity on S, T.) We write A’ to denote the
random variable which is the outcome of measuring the register S of ’.Af > in the computational
basis. This is the output of A when accessing the oracle f.

A random oracle is a function h: {0,1}™ — {0,1}" sampled from U (m,n), the uniform distri-
bution over functions from {0, 1} to {0, 1}". We write h < U(m,n) to say that h is sampled from
U(m,n). In the quantum random oracle model [BDFLSZ11|, we study A" for h < U(m,n).

14



3.3 Non-interactive arguments in the quantum random oracle model

Let (P,V) be two polynomial-time (classical) algorithms, known as the prover and verifier. We
say that (P,V) is a non-interactive argument in the quantum random oracle model (QROM) with
soundness error € for a relation R if it satisfies the following properties.

e Completeness. For every (x,w) € R and function h € U(2X\, \), P"(x, w) outputs a (classical)
proof string 7 for which V' (x, 7) = 1.

e Soundness. For every x ¢ £(R) and t-query quantum oracle algorithm P, the probability over
a function h < U(2), \) and (classical) proof string 7 < P" that V(x, %) = 1 is at most €(t, \).

We say that (P, V) has argument size s if a proof m output by P"(x,w) consists of s(|x|) bits.

We also consider non-interactive arguments that additionally achieve proof of knowledge and
zero knowledge. The first property will hold against query-bounded adversaries (that are otherwise
all-powerful), while the second property will hold against unbounded adversaries (and in particular
need not refer to quantum algorithms). We define both of these properties below.

Knowledge. The non-interactive argument (P,V) is an argument of knowledge with extraction
probability & if there exists a polynomial-time quantum extractor £ such that, for every instance
x and t-query quantum oracle algorithm P, if, over a random oracle h < U (2\, A), for m = ph
it holds that V(x,7) = 1 with probability p, the probability that £7(x,1¢,1*) outputs a valid
witness for x is at least x(t, 1, ). Here the notation 7 denotes that £ has black-box access to
P as defined by Unruh [Unr17]. Informally, this means that if P = (Ay,..., A;) with initial state
|po), then £ is given an auxiliary register containing |¢g) and may apply, in addition to any efficient
quantum operation, any A; to any of its registers.

Zero knowledge. The non-interactive argument (P, V) has (statistical) zero knowledge if there

exists a probabilistic polynomial-time simulator S such that for every instance-witness pair (x,w) €
R the distributions below are statistically close (as a function of \):

(el IR ] ey

Above, h[u] is the function that, on input x, equals p(z) if p is defined on x, or h(z) otherwise. This
definition uses explicitly-programmable random oracles [BR93|. (Non-interactive zero knowledge
with non-programmable random oracles is impossible for non-trivial languages [Pas03; BCS16].)

Succinctness for non-deterministic time. A zkSNARK for NTIME(T'(n)) in the QROM
is a non-interactive argument for NTIME(7'(n)) in the QROM such that: (a) it has (statisti-
cal) zero knowledge; (b) it has extraction probability poly(u,1/t) — poly(u,t)/2*; (c) arguments
have size poly(\,logT(n)), the prover runs in time poly(A,n,7T(n)), and the verifier runs in time

poly(A, n,log T (n)).
3.4 Probabilistically checkable proofs

A probabilistically checkable proof (PCP) for a relation R with soundness error €, proof length ¢,
and alphabet X is a pair of polynomial-time algorithms (P, V) for which the following holds.

e Completeness. For every instance-witness pair (x,w) € R, P(x,w) outputs a proof string
IT: [(] — ¥ such that Pr[V(x) = 1] = 1.

15



e Soundness. For every instance x ¢ L(R) and proof string II: [¢(] — %, Pr[Vl(x) = 1] <e.

The quantities €,¢,% can be functions of the instance size |x|. Probabilities are taken over the
randomness of V. The randomness complexity is the number of random bits used by V, and the
query complexity q is the number of locations of II read by V. (Both can be functions of |x|.)

We also consider PCPs that achieve proof of knowledge and (honest-verifier) zero knowledge.
We define both of these properties below.

Proof of knowledge. The PCP (P, V) has knowledge error k if there exists a polynomial-time
extractor E such that for every instance x and proof string II: [¢(] — X if Pr[V(x,II) = 1] > k then
E(x, II) outputs a valid witness for x.

Zero knowledge. The PCP (P,V) is (perfect) honest-verifier zero knowledge if there exists a
probabilistic polynomial-time simulator S such that for every instance-witness pair (x,w) € R the
view of V(x) when given access to a proof string sampled as II - P(x,w) equals the view of V(x)
when given access to S(x). In the latter case, S(x) adaptively answers queries received from V(x).

3.5 Databases

A database mapping X to Y is a partial function D: X — Y. The support of a database D is
supp(D) := {z € X: D(x) # L} and its image is im(D) := {D(z): € supp(D)}. The size of a
database is the size of its support: |D| := [supp(D)|. Given two databases D and D', we write
D C D' if supp(D) C supp(D’) and D(z) = D'(x) for every x € supp(D).

We define two operations on databases, corresponding to deletions and insertions. Given a
database D, input values x, 2’ € X, and output value y € Y, we define the two databases

1 ifzx =2 ifex =2

(D)) = {D(az’) a2 md (D o)) = {%@/) N

For D: {0,1}™ — {0,1}" and t € N with |D| <t < 2™, we define the pure quantum state
‘Dt> = ‘.’El, YLy oo I’|D|7 y‘D|> ® ‘J_’ 0n>®(|D|—t)

where x1,...,2|p| is the lexicographic ordering of supp(D) and y; := D(x;) for each i € [|D[]. We
will write | D) for |D;) when the bound ¢ is clear from context.

3.6 Compressed phase oracle

The standard method to encode a function h: {0,1}™ — {0,1}" as a quantum operation is the
unitary matrix Op, defined in Section 3.2, which acts as |z,y) — |z,y ® h(z)). Another method
is to encode h in the phase of a quantum state, via the unitary matrix O), that acts as |z, u) —
(=1)“"®) |2, u). These two encodings are equivalent under an efficient change of basis: O) =
(I ® H™)O,(I™ @ H™) where I"™ is the identity on the first m qubits and H™ is the Hadamard
transformation on the other n qubits. Thus, choosing between the standard oracle Oy, or the phase
oracle O}, is a matter of convenience. For example, the Deutsch-Josza algorithm [DJ92] is easier
to describe with a standard oracle, while Grover’s algorithm [Gro96] is easier with a phase oracle.

In this paper it is more convenient to always work with phase oracles. All quantum query algo-
rithms will thus have an oracle phase register U instead of the oracle answer register Y. Moreover,
since h is sampled at random from the set of all functions from m bits to n bits, we follow Zhandry

16



[Zhal9] and extend the adversary’s initial state with a random superposition of all functions h,
which represents a purification of the adversary’s mixed state relative to the random oracle.

In fact, instead of considering a superposition of functions h, we will consider a superposition
of databases D, according to the compressed oracle formalism of [Zhal9]. Specifically, throughout
this paper we will only deal with the compressed phase oracle with m input bits and n output
bits, which we denote by 0. We fix the database query bound of the compressed oracle to be t
in advance. For the purposes of this paper, we will only use the fact that O is a certain unitary
matrix, indistinguishable from a real random oracle, whose action is given by the following lemma,
which we prove in Appendix A for completeness. We refer the reader to [Zhal9] for more details.

Lemma 3.2 (|Zhal9]). The compressed phase oracle O (with query bound t) acts on a quantum
state |x,u,z,D), where x € {0,1}"", u € {0,1}", z € {0,1}*, and D: {0,1}"" — {0,1}" is a
database with |D| < t, as follows.

o If|D| =t oru=0", then O|z,u,z D) = (—1)*P@) |2 u, 2, D), where u- L := 0.
o I[f D(x)=1,|D| <t, and u # 0", then O |z,u, z, D) = |z,u, z) ® |¢) where

1
¢) = (=" D+ [z —y))
ﬁyé%:l}"

o I[f D(x)# L, |D| <t, and u # 0", then O |x,u, z, D) = |z,u, z) @ |¢) where

u-D(z) (_1)uD(:r) 1 u-y u-D(z)
6) = (~1)*PO D)+ = D —a) 4 o > (1= ()" = (<) PO) Dzt [w oy
N 2
ye{o,l}"
Given a quantum algorithm A described by unitaries Ay, ..., A; and initial state |¢g), we write

|Sim*(A)) to represent the final state of A before measurement when simulated using O as the
oracle. Formally, |Sim*(A)) = A;O--- A10|¢o, D), where () denotes that the D register holds the
empty database with ¢ slots, and we implicitly extend each A; to act as the identity on D.

The following lemma of [Zhal9] shows simulating A by using O as the oracle is perfectly
indistinguishable from running A with access to a random oracle.

Lemma 3.3 (|Zhal9, Lemma 4]). For any quantum oracle algorithm A making at most t queries,

Tro(Sim" (NS (A)) = e AT
h: {0,1}m—{0,1}"

Le., |Sim*(A)) purifies the mized state of A when interacting with a random oracle h < U(m,n).

The notation Trp denotes the partial trace over the D (database) register, defined as the unique
linear operator such that Trp(Ja)a|, ® |b)b|p) := (b|b) |a)al, for all vectors |a) , |b). Here Z denotes
all the registers of the adversary.

17



4 From oracle games to database games

In this section we formulate three distinct, but closely related, types of games that represent different
hybrids in our proof of security. The material in this section is mostly a conceptualization of prior
work, and forms the starting point for the technical contributions presented in later sections.

The first type of games that we consider are oracle games, which correspond to when an adver-
sary “in the real world” is granted access to a random oracle and must produce a certain output
in order to win. The second type of games are simulated oracle games, which differ in that the ad-
versary is executed by a probabilistic process that efficiently simulates the random oracle (without
actually sampling a random function). The third type of games are database games, which differ
in that we only consider properties of the query-answer pairs recorded in the simulation.

We shall see that the value (i.e., the maximum winning probability) across all these games are
closely related. In particular, in order to bound the value of an oracle game it suffices to bound the
value of the corresponding database game. For this reason in Section 5 we shall focus our attention
on developing new techniques to bound the values of database games.

We now proceed to formalize the foregoing notions. We find it helpful to structure our exposition
by first discussing the special case of classical adversaries (in Section 4.1), and then discussing the
general case of quantum adversaries (Section 4.2). In either case, we will derive each type of game
from a base game that represents a target set of “winning outputs”.

Definition 4.1. Let A, B, C be finite sets, k € N. A base game is a set of tuples G C A*x B x C.

We will use C; to denote the set of all classical algorithms that make at most ¢ queries to an
oracle, and C; to denote the set of all quantum algorithms that make at most ¢ queries to an oracle.

4.1 The case of classical adversaries

We associate to a base game G three classical notions: the classical oracle game Go, the classical
simulated oracle game Gs, and the classical database game Gp. These notions are distinct, but
they are also closely related as shown in Lemma 4.5 below.

A classical algorithm A plays the classical oracle game of G as follows: A has access to a random
oracle h: {0,1}™ — {0,1}" and wins if it outputs (a, b, c) € G with h(a;) = b; for all i € [k].

Definition 4.2. The value of the classical oracle game of G is

. . _ (a,b,c) € G and h < U(m,n)
wo(G,t) == max Pr[A wins Go] = max Pr Wic [k, hla) =bi | (ab,c) < A
Next, we discuss the classical simulated oracle game of G, which is defined via a simulator. We
denote by Sim(A) the probabilistic process that executes the classical algorithm .4 while simulating
a random oracle with random consistent answers,”> and then outputs ((a, b, c), D) where (a,b,c)
is the output of A and D is the database containing all the simulated query-answer pairs. The
classical algorithm A wins if ((a, b, ¢), D) is such that (a,b,c) € G and D(a;) = b; for all i € [k].

Definition 4.3. The value of the classical simulated oracle game of G is
. . B (a,b,c) € G and
ws(G,t) == %eac):Pr[A wins Gs| = max Pr vie [k, Dias) = b

®Initialize an empty database D: {0,1}™ — {0,1}". Whenever A queries the oracle at « € {0,1}™, if z € supp(D)
then answer D(z); else if & supp(D) then answer with a random y € {0,1}" and update as D := D + [z — y].

((a,b,c),D) + Sim(A)

18



Finally, we discuss the classical database game of G. We again simulate the classical algorithm
A using Sim(A) to obtain ((a, b, ¢), D), but now we discard the tuple (a, b, ¢) and only consider the
database D. Concretely, the classical algorithm A wins if there exists a tuple (a’,b’, '), possibly
different from (a, b, ¢), such that (a’,b’, ) € G and D(a}) = ¥, for all i € [k].

Definition 4.4. The value of the classical database game of G is

!/ !
wp(G,t) := maxPr[A wins Gp] = max Pr 3@, b, ) € G st

R max Pr| o Diay =g | (@) D) ¢ Sim(A)

The following lemma relates the three classical notions introduced above.
Lemma 4.5. For every classical algorithm A:

Pr[A wins Go] < Pr[A wins Gs] +1/2" |
Pr[A wins Gs| < Pr[A wins Gp| .

In particular, the values of the three types of classical games are related:

VteN, wo(G,t) <ws(G,t)+1/2"
and ws(G,t) <wp(G,t) .

Proof. We first compare Go and Gs. Consider the adversary A’ for Go given by running Sim(.A)
and answering a query to z with y := h(z). Let (a,b,c) be the output of A’, and let i be the
first index such that (a;,b;) ¢ D. Let E be the event that h(a;) = b;. Then Pr[E] < 1/2", so
Pr[A wins Go| < Pr[A’ wins Go A ~E] + Pr[E]. Observe that if A" wins Go and —F holds, then
the simulated A wins Gs. Since the A simulated by A’ is indistinguishable from Sim(A), it follows
that Pr[A wins Go] < Pr[A wins Gs| + 1/2".

We also note that Pr[A4 wins Gs] < Pr[A’ wins Go] = Pr[A wins Go], which shows additionally
that the first inequality is tight up to the additive term of 1/2".

We now compare Gs and Gp. Let A be an adversary, and let ((a, b, c), D) be the output of
Sim(A). Observe that if A wins Gs then A wins Gp trivially, by taking 8’ =a, b’ =b, and ¢ = c.
Hence, Pr[A wins Gs] < Pr[A wins Gp].

We additionally note that ws(G,t) = wp(G,t). This is because if A wins Gp, then A’ (the
adversary that runs Sim(.A) and uses h to answer oracle queries) can search over all satisfying tuples
in G and see if any of them win Gs. Since the database stored by A’ is equal to the database stored
by Sim(A"), it follows that A" wins Gs whenever A wins Gp, and hence ws(G,t) = wp(G,t). O

4.2 The case of quantum adversaries

This section extends the notions and statements of Section 4.1 to the quantum setting, and provides
a conceptualization of results of Zhandry [Zhal9] that is useful in this paper. Analogously to the
classical setting, we associate to a base game G three notions: its quantum oracle game Gg, its
quantum simulated oracle game Gg, and its quantum database game Gpy. Similarly to before, these
notions are distinct, but they are also closely related as shown in Lemma 4.9 below. Unlike before,
however, the notions and statements are not elementary because executing a quantum algorithm
while recording its queries and answers to the oracle into a database D is not a simple problem.
A quantum algorithm A plays the quantum oracle game of G as follows: A has access to a ran-
dom oracle h: {0,1}™ — {0,1}" and wins if it outputs (a, b, c) € G with h(a;) = b; for all i € [k].

19



Definition 4.6. The value of the quantum oracle game of G is

X o . w1 (a,b,c) € G and h < U(m,n)
wo(G,t) == zneag; Pr[A wins G5 = gleagg Pr Vie [k, hias) =b; | (ab,c)— Ab

Next, we discuss the quantum simulated oracle game of G. One can simulate the interaction
of a quantum algorithm A with a random oracle via the compressed phase oracle O of Zhandry
[Zhal9]. (See Section 3.6 for the definition of O.) We denote by Sim*(.A) the probabilistic process
that executes A while answering its queries with O, and then outputs ((a, b, c), D) where (a, b, c)
is the output of A (obtained by measuring its output register in the computational basis) and D is
the result of measuring the database registers in the computational basis after A has halted. The
quantum algorithm A wins if ((a, b, ¢), D) is such that (a,b,c) € G and D(a;) = b; for all i € [k].

Definition 4.7. The value of the quantum simulated oracle game of G is

w(G,t) == max Pr[A wins G§] = max Pr (a,b,c) € G and

AeCy AEC; Vi€ [k], D(a;) = b ((a,b,c),D) + Sim*(A)

Finally, we discuss the quantum database game of G. We again simulate the quantum algorithm
A using Sim*(A) to obtain ((a, b, c), D) but now we discard the tuple (a,b,c) and only consider
the database D. Concretely, the quantum algorithm A wins if there exists a tuple (a’,b’,¢c) € G
such that D(a}) = b} for all i € [k].

Definition 4.8. The value of the quantum database game of G is

/ AN
wp(G,t) == max Pr[A wins Gp] = max Pr 3@, bl ) € G st

AeC; Aecy Vi€ [k], D(d}) =¥, ((a, b, c),D) — Sim*(A)

The following lemma relates the three quantum notions introduced above.

Lemma 4.9 (|Zhal9]). For every quantum algorithm A:

V/Pr[A wins G§] < \/Pr[A wins G| + /k/2" |
Pr[A wins G| < Pr[A wins Gp] .

In particular, the values of the three types of quantum games are related:

VEEN, \Juh(G.t) < \/wi(G, ) + VE/2"
and wi(G,t) <wp(G,t) .

Proof. We first compare G§ and G¢. The fact that \/Pr[A wins G§] < \/Pr[A wins G&] + \/k/2"
is a restatement of [Zhal9, Lemma 5.

We now compare G and Gpy. As in the classical setting, if A wins G¢ then A wins G trivially,
so Pr[A wins Gg] < Pr[A wins G]. Note that in the classical case the value of the simulated oracle
and database games are the same by a simple simulation argument, but in the quantum setting the
simulation argument does not go through due to the no-cloning theorem. O

20



5 A lifting lemma for database games

In this section we show how to bound the value of a (classical or quantum) database game via the
instability of the game, a purely classical quantity that we introduce in this paper. As we will see
shortly, it is straightforward to argue that for any base game G (Definition 4.1), the value wp(G,t)
is at most ¢ times the instability of G. The goal of this section is to to prove that the (quantum)
value wj (G, 1) is at most t? times the instability of G. In particular, we enable lifting a bound on
the (classical) instability of G to a bound on the (quantum) value wf(G,t). Combining the lifting
lemma with the fact that oracle games can be generically reduced to database games (as described
in Section 4.2), we are able to establish the post-quantum security of the Micali construction solely
by analyzing classical properties of it.

5.1 Database properties and the basic lifting lemma

A database property is a more general notion of a database game.

Definition 5.1. A database property P is a set of databases D: X — Y. The negation of P,
denoted P, is the set (X —Y)\ P.

Given a base game, we define a corresponding database property as follows.
Definition 5.2. The database property of a base game G C A¥ x B* x C is
Pa :={D :3(a,b,c) € G with D(a;) =b; Vi € [k]} .

For a base game (G, the database property Pg is closely related to the database game of G.
This is because winning the database game is equivalent to the database outputted by Sim*(.A)
being in Pg. In particular, the following proposition holds.

Proposition 5.3. For every base game G C A* x B* x C' and quantum algorithm A,
Pr[A wins Gh] = Pr [D € Pa ‘ ((a,b,¢),D) < Sim*(A)}
We define the flip probability of a pair of database properties.
Definition 5.4. The flip probability flip(P — Q,t) from property P to property Q is the quantity

flip(P — Q,t) = max I;r [D+[z—yleQ],

max
D: {0,13™—{0,1}" a¢supp(D)
|D|<t,DeP

and flip() — Q,t) := 0.

Intuitively, this is the maximum probability over all databases D € P with less than ¢ entries
that making an additional query puts D € Q. The following properties can be obtained easily from
the above definition.

Proposition 5.5 (Properties of the flip probability). Let P,P’, Q, Q' be database properties.
(i) If P C P and Q C Q' then flip(P — Q) < flip(P' — Q).
(it) fip(PUP’ — Q) = max (flip(P — Q),flip(P’ — Q)).

21



(iii) flip(P — QU Q') < flip(P — Q) + flip(P — Q).
The instability of a database property is the following classical quantity.

Definition 5.6. The instability I(P,t) of a database property P with query bound t is the max-
imum probability that, for any database D containing less than t queries, making one additional
(classical) query changes whether or not D has the property P. Formally, we let

I(P,t) := max{flip(P — P,t),flip(P — P,t)} .

Note that instability is symmetric: I(P,t) = I(P,t). There is a direct argument that shows
that wp(G,t) is bounded by tI(Pg,t).% Similarly, our basic lifting lemma shows that wf(G,t) is
bounded by the instability of the database property Pg. Thus, it lifts a classical notion to prove
a bound on the quantum value of a database game.

Lemma 5.7 (Basic lifting lemma). For any base game G,
wh(G,t) < t2-61(Pg,t) .

Before we proceed to the proof of Lemma 5.7, we first introduce some quantum notation.
Recall that we let |Sim*(A)) denote the final quantum state of the simulated adversary. Using the
definition of measurement, we can express the probability that the final measured database D is in
a database property P in terms of the state [Sim*(.A)).

Proposition 5.8. For every database property P and quantum adversary A,
Pr[D eP| ((ab,c), D) « Sim*(A)] = |[P|Sim" (A .

where P := 1 ® Y pep |DXD| is the projector that maps all basis states of the form |x,u,z) ® |D)
to 0 if D ¢ P, and is otherwise the identity.

We learn that in order to bound wfy (G, t) it suffices to bound || Pg |Sim*(.A))|| for every A € C;.

Next, define P, := I®3} . pj<; [D)XD| to be the projector that maps all basis states of the form
|z, u, z) ®|D) to 0 if |D| > t, and is otherwise the identity.

The proof of Lemma 5.7 follows from two lemmas. The first lemma shows that || P|Sim*(A))|]
is bounded by t||P(P,OP,)P||. Intuitively, this is because if P and P,OP; almost commute (i.e., P
and O almost commute when acting on databases with at most ¢ entries) then each oracle query
cannot change the probability that the database is in P by too much. The second lemma shows that
| P(P,OP,)P||? is bounded by I(P,t). Combining the two lemmas with Proposition 5.8 completes
the proof of Lemma 5.7.

Lemma 5.9. Let P be a database property with ) ¢ P. For every A € Cf,
IPISim*(A)|| < t - |[P(ROR)P
Lemma 5.10. For any database property P,

| P(P,OP;)P||> < 61(P, 1) .

5Let A be a classical adversary, and let A; be the adversary obtained by stopping A immediately before its i-th
query. Then |Pr[A;11 wins Gp] — Pr[A; wins Gp]| < I(P,t) holds for each i € [t] by definition of instability, and
Pr[A: wins Gp] = 0 since ) ¢ Pg. Therefore, Pr[A wins Gp| < tI(P,t).

22



Lemmas 5.9 and 5.10 strengthen the proof sketch outlined in Section 2.5. This is because for any
operator A and projector P, [P, A] = PA— AP = (PAP+ PAP)— (PAP+ PAP) = PAP— PAP, and
so ||[P, A]||? = || PAP||> + || PAP|?. Hence, Lemma 5.9 implies that || P|Sim*(A))|| < t-||[P, P.OP]|
and Lemma 5.10 implies that ||[P, P,OP]||? < 12I(P, ).

We now prove Lemma 5.9, and postpone the proof of Lemma 5.10 to Section 5.3.

Proof of Lemma 5.9. Recall that the quantum algorithm A is described by some unitaries (Aq, ..., A;)
and initial state |¢g). We can thus describe the quantum algorithm Sim*(.A) via the cumulative uni-
tary U := A;OA;_1 --- OA; 0 acting on the initial state |¢g, @) where () denotes the empty database.
(We abuse notation and implicitly extend A; to act as the identity on the database register.) The
final state is [Sim*(A)) := Uldo, D).

Let U := Ay(P,OP)A;_1 -+ (P.OP,)A1(P,OP;). We have that U’'|¢g, 0) = U|pg, D), as applying
each P; has no effect, since the database can only have at most ¢ queries when P; is applied.

For any operators C1,...,C; and projector P, we have that
¢
Cy---Cy = PCyPCy 1 P---C1P+ Y (Cy---Cit) - P- (CiP---C1P) . (1)
=0

To see this, we observe that
Cy---Cp = (Ct"‘CZ)(Clp)+(Ct“’Cl)'P ,

which implies Eq. (1) by induction.
Let C; = A;i(P,OP;). Then we have that

t
IPISim*(A) | = [|PU|d0,0) | = | (PPOLPC11 P+ CoLP+ 3 P(Cr+-Cisa) - P- (G- CP)) oo, 0|
=0

t
< S NP(Cy- - Cigr) - P+ (CiP-+- C1P)|o, 0|
=0

t
< |P(Cy -+ C1) - Ploo, O)| + D IIP(Cy- - Cisa)|| - [|P- (CiP- - C1P) o, D) |

=1

t
<0+ Y _|[PCiP| - [(CiP---C1P) ¢, D)
=1
t —_
<> | PA(POP)P]
=1

where we use the fact that the operator norm of a product of unitaries/projectors is at most 1, and
that () ¢ P. Since P and A; commute for every i, we get that HPAZ-(BOPQpH = ||A;P(P,OP,)P|| <
A P(POP) Pl| = || (R.OF)P||. Hence, |[P|Sim*(A))|| < t[|P(P,OF,)P|. O
5.2 Conditional instability and the lifting lemma

Lemma 5.7 is not quite sufficient to analyze the database game that corresponds to the Micali
construction. In fact, the instability of this game is high because we take a maximum over all

23



bounded databases, including those which contain collisions. If we were to only take the maximum
over databases that do not contain collisions, then the instability would be low. Moreover, the
instability of the “no collision” property is itself low.

In this section, we strengthen the results of the previous section by introducing the notion of
conditional instability, which allows us to analyze the value w (G, t) by splitting its database prop-
erty Pqg into subproperties and analyzing the subproperties separately, analogous to conditioning
in probability. In particular, we can then analyze the Micali game by analyzing the no collision
property and the instability of the Micali database property conditioned on the no collision property.

For the entirety of this section we will let P and Q be database properties, and we will analyze
quantities about P conditioned on Q. These results strengthen the results of Section 5.1, as the
previous results can be recovered by setting Q to be the database property containing all databases.

Definition 5.11. Let P and Q be two database properties, and let t be a query bound. We define
flip(P| Q,t) :=flip(PNQ — PN Q,t) .
The conditional instability I(P | Q,t) is defined as
L(P|Q,t) :== max{flip(P|Q,¢), flip(P|Q.t)} .
Before we state the lifting lemma, we observe the following properties of instability.
Proposition 5.12. Let P and Q be two database properties. Then
1. I(P,t) and I(P U Q,t) are incomparable.
2. flip(P| Q,t) < flip(P — P,t), and therefore I(P | Q,t) < I(P,t).
3. I(PUQ,t) <I(P|Q,t) +1(Q,1).

Proof. To show Item 1, we give database properties P,Q such that I(P,t) > I(P U Q,t) and
properties P’, Q" such that I(P’;t) < I(P'UQ',t). Let P be the property that D # (. Then clearly
I(P,t) > flip(P — P,t) = 1. Let Q be the property that D = (). Now P U Q is the set of all
databases, so I(PU Q,t) = 0.

On the other hand, let P’ = () be the empty property, and let Q" be the property that D = (.
Then, I(P’,t) =0, and I(P'UQ',t) =1(Q,t) =1

Ttem 2 holds since

flip(P| Q,t) =flip(PNQ — PN Q,t) < flip(P — P,t) .
Finally, for Item 3 we observe that
flip(PUQ — PUQ,t) =flip(PNQ — PUQ,t) <flip(PNQ —PNQO,t)+fip(PNQ — Q,t)
<Aflip(P| Q,t) + flip(Q — O,1) .
On the other hand,
flip(PUQ — PUQ,t) =flip(PUQ — PN Q,t) = max(flip(PNQ — PN Q,t),flip(Q — PN Q,t))
< max(flip(P| Q,t),flip(Q — Q1)) .

Therefore, we get that I(PU Q) < max (flip(P| Q, t) + flip(Q — Q,t), flip(P| Q, ), flip(Q — O, 1)),
which is at most I(P | O,t) + 1(Q, t).
O

24



We now state the lifting lemma.

Lemma 5.13 (Lifting lemma). Let G be a base game. Then for any database property Q,
wi(G,t) <26 (I(Pg | O,t) +1(Q,1))
Proof. Let P and Q be two database properties. We show that for every A € C; it holds that
IPISIm* (A2 < 26 (1P| Q,1) + 1(Q, 1))
Let R =P U Q. Then by Lemmas 5.9 and 5.10 we have that
IP[Sim™ (A))|[* < [|R[Sim*(A))|* < ¢ - [[[R, BOR]||” < t*- 61(R,1) |

where the first inequality holds since P C R. Finally, we use the fact that I(R,t) = I(PU Q,t) <
I(P| Q,t) +1(Q,t), which completes the proof. O

We dedicate the remainder of the section to proving Lemma 5.10.

5.3 Proof of Lemma 5.10

Let |®) be an arbitrary state in the image of PP, i.e. |®) = ZLu’Z’D Qg uzD |2, u, 2, D), where the
sum is over all D: {0,1}™ — {0,1}" such that D € P and |D| < t. By Lemma 3.2,

O®) = [®1) + [@2) + |D3) + [P4) + |D5)

where |®1), |P3), |P3), |P4), and |P5) are the following states:

[@1) = > Uz 2,0, 2) ® (1) P@ D)
x,u,z,D
DeP
(|D]|=t or u=0")

‘(I)2> = Z Qg u,z,D |55a u, Z> X
x,u,z,D Y
D(z)=L1,DeP
|D|<t,u#0™

@)= Y aueplruz)e (-1 PO D)
x,u,z,D
D(2)#L,DeP
|D|<t,u0"

‘(I)4> - Z Op.u,z,D ’«73; u, Z> ®
z,u,z,D
D(2)#L,DeP
|D|<t,u#0™

1 ) .
‘q)5> = Z Qg u,z,D |x’u,z>®272(1_(_1)uD(x) _(_l)uy) ’D-l’+[i€’—>y}>
x,u,z,D Y
D(z)#L,DEP
|D|<t,u#0

(_1)uD(:c)

7’17—@ )

25



Let |¥;) = PP, |®;) for i € [5]. We have that

|¥1) =0,
1 .
= 3 aweplune = 3 (CU"ID+Eey)
x,u,z,D Yy
D(z)=1,DeP D+[z—yleP
|D|<t,u0™
|\I’3> =0,
(_1)u-D($)
‘\Il4> = Z Qg u,2,D ‘$7U, Z> Q ———— ‘D — x>
x,u,z,D \/27
D(z)#L,DeP,D—z€P
|D|<t,u#0™
(_l)u.w /
= Z ( Z Qg u,z, D' +[z—w] \/27 > |ZL‘,U,Z> ® ‘D > s
x,u,z,D’ , LW _
D/($)=L,D/€'P D +[z»—>w}€’P
|D'|<t—1,uz0"
1 : .
Ts) = > pueplTu2)® o0 oo (= (=)*PE — (1)) D~z + [z~ y))
x,u,z,D Y
D(z)#L,DeP D—z+[z—y]€P
|D|<t,u0™
1 . .
= Z Z < Z OCCE,U,Z,D/+[CL‘?—)’IU]27(1 - (_1)uw - (_1)u y)) ‘.Z',U, Z> ® ‘D, + [x —> y]>

s Uy 7D/ Y w D
g’z(txz):L D'+[z—yleP  D'+z—w]eP

|D’|<t—1,u0™

Let Sp(D',z) :=={y € {0,1}" : D' + [z y] € P}, and let Sp(D',z) := {y € {0,1}" : D' + [z
y] € P}. Observe that |¥y) is orthogonal to |¥s) and |Us), as every database D with nonzero
amplitude in |¥4) has D(z) = L.

Define

2
81 = E Qg u,z,D|

z,u,z,D
D(x)#1,DeP,D—xzcP
|D|<t,u0™

82 = § ‘aw,u,z,D’

zu,z,D"
D'(z)=L,D'eP
|D'|=t—1,uz0"

. 2
83 = § ‘ax,u,z,D’

zu,z,D"
D'(z)=L,D'eP
|D!|<t—1,uz0"

2
Sq4 1= E Ay u,z,D

x,u,2,D ~
D(z)#L,DeP,D—zeP
|D|<t,u#0™

2

)

)

Note that by normalization, we have that s; + s2 4+ s3 + s4 < 1.

26



By Cauchy-Schwarz, we have that

H‘\I/4>H2 = Z Z axuzD’«H:c»—)w]ﬂ

xuzD

|D’|<t Luzon

S5 (D',
< Z ( Z ‘aa:,u,z,D’-l—[wa] |2> ’ W

x,u,z,D’ w _
D'(z)=L,D'ep D'tl—wleP
|D’|<t—1,u0™
. = 2
< ﬂlp(P — P, t) Z Z ’O‘x,u,z,D’—l—[wa]‘
z,u,z,D’ w _
D'(z)=L,D'ep D'HlewleP
|D’|<t—1,u#0™
< flip(P — P, 1) | ?
= lp( 9 am,u,z,D
z,u,2,D
D(z)#L1,DeP,D—zeP
|D|<t,u#0"

= flip(P — P,t) - 51

Let 6w,y =1- (—1)1“” — (_1)u-y. Observe that ’\I/2> + ‘\I/5> = ’El> + ‘EQ) + |E.3>7 where ‘El>,
|Z2) and |=3) are the following orthogonal states:

_ 1 vy ,
|:1> = Z ax,u,z,D’ﬁ ; (_1) |xau7 Z> ® {D + [$ = y]>

z,u,z,D’ ,
D'(z)=1,D'eP D'+[z—yleP
| D’ |=t—1,u0™
— 1
‘:2> = Z Z < Z ax,u,z,D’+[wa]275w,y> ’xa U7Z> ® }D/ + [CL‘ = y]>

et} 7D/ Y w D
D(s)et.Diep D/ HloyleP D' +la—uleP

|D!|<t—1,u#0"

- (=1)"¥agu,zpr 1
|Z3) = Z Z ( \/Q%U 22+ Z am,u,z,D’—O—[me]ﬁﬁUhy) |z, u, 2) ® |D, +[z— y]>

D) j%, op D'+l eP e
| D’ |<t—1,uz£0"
2 3-2(-1)ww )%y
We also observe that Zy ‘%nﬁw,y’ = % 23 and ), ’2n ﬁw,y‘ 7) < 2%
We have that
- 1 A 2|Sp(D',
IEIE = > > | =D = 3 e e
x,u,2,D’ 4 z,u,2,D’
D'(z)=L,D'ep D'+lwryleP D'(¢)=L,D'eP
|D’|=t—1,u#0" |D’|=t—1,u#0"
<fipP=P,t) Y. |owuso| =fip(P—Pt) s .
x,u,z,D’
D'(z)=L1,D'cP
|D|=t—1,uz0"

27



By Cauchy-Schwarz, we get that

L S D S

’ 7D w D
D@l Drep D’ Halep D +asuleP

|D|<t—1,uz0"

2
2 1
S Z Z ( Z ‘a;t,u,z,D’+[x»—>w]| ) ( Z ﬁﬁw,y )
D'(gf)u j_DD’eP D’ +[x~>y]e79 D'+ fosuleP D' +arsw]eP
|D!|<t—1,u0"
2 1 2
C S (F ) X (% )
x,u,2,D’ w _ Y w _
D'(:v)’zyL’,D’EP D' +[z—w]eP D'+[z—yleP D'+[z—w]eP
|D'|<t—1,u0"
2 1 2
= Z ( Z }a%%?«‘,D’-‘r[wHw]‘ ) ( Z Z 27511/,3/ )
z,u,2,D’ w _ w _ y
D’(x)’=7J_7,D’€’P D' +[z—w]eP D' +[zw]eP D' +[z—y|eP
|D'[<t—1uz0"
2 5)
< Z ( Z }az,u,z,D’+[x}—>w]‘ ) Z 27
z,u,2,D’ w _ w _
D/(x)’:’L”Dlep D’ +[z—w]eP D' +[z—w]eP
|D’|<t—1,u0"
2\ 5|Sps(D', x)
S Y (Y (e ) 1

D' wo
Dia)el,piep DtlewleP

| D |<t—1,uz0"

<5 ﬂlp(P — 75, t) Z < Z ’a;v,u,z,D’—l—[a:i—)w} ‘2)

z,u,2,D’ w _
D'(zx)=L,D'ep D'tl—wleP
|D'|<t—1,u0"
. = 2
=5-flip(P — P,t) g |tz u,2,D|
z,u,z,D
D(z)#L,DeP,D—zeP
|D|<tu0"

=5-flip(P — P,t) - 51

Finally, we have that by the (square of the) triangle inequality,

_ (=1)"Yagu,zp 1
|||‘:‘3>||2 = Z Z \/Q—Zuz + Z aa:,u,z,D’—i—[:cHw}ﬁﬁml/

b 7D w ™
D’ (I)ui D'ep D’ HarryleP D'+lzw]eP
|D’|<t—1,u#0™
<ede +2Ve e,

28



where

(_1)uya D’ 2 9 |S’P(D, l‘)‘
e = Z Z ‘ z,u,2, < Z |am7u’Z7D,} . 7717
V2n 5
z,u,z,D’ Yy i
D'(z)=L,D'ep D' +lz—=y]eP D'(z)=L,D'eP
|D |<t 1,u#0" |D/‘<t—17u¢0n
ip(P 2 .=
<Hip(P = Pt) 3 fowuen| = fip(P > Pt sg
z,u,z,D’
D'(x)=1,D'eP
|D'|<t—1,u#0"
and
2
1
o= Z Z Z Oy, 2, D' +[z—w) 27,310@
D’
D'(f)ui pep D’ +[ﬂf'—>y]€7> D'+ lrsw]eP
|D’|<t—1,uz0"
2
2 1
: Z Z ( Z ‘aﬂﬁauvz,D’ﬁ-[wa]’ ) ' (2 ﬁﬁw,y )
g D’ P D’Jr[:m—m;]e?? w
D' (z)=L,D'eP +[90'—>y16
\D'\<t 1u750n
2 5}
: 2 Z ( Z |02,/ )| ) on
D’
D’(x>ui p'epl’ HwHy]eP D’+[wa]ep
|D’|<t—1,uz#0"
5/Sp(D’, x)| )
S Z T Z ‘axﬂj‘zsz/‘i’[x'—)’w]}
b b 7D/ w _
D/(z)iiDIEﬁ D'+[z—w]eP
|D’|<t—1,u#0"
ip(P 2
<5-flip(P — P,1) > o
I7U’Z7p _
D(z)#L1,DeP,D—z€P
|D|<t,u0"
=5-flip(P = P,t) - 54
Hence,

11Z3)]|2 < flip(P — P, 1) (33 + Bsg + 2\?3334) < 6-flip(P = P,t) - (s3+ 54) -
Putting it all together (and recalling that s; 4+ s2 + s3 + s4 < 1), we get that

IQRO2|* = [1Wa)|* + IZ01° + 1= * + [1Zs)* .
< Aflip(P — P,t) - s1 + flip(P — P,t) - so + flip(P — P,t) - 5s1 + flip(P — P, t) - 6(s3 + s4)

<1(P,1) (631 + 59+ 653 + 634)
< 6I(P, 1) ,

which completes the proof.

29



6 Soundness of the Micali construction

We use the lifting lemma to prove that the Micali construction is sound in the quantum random
oracle model. First, we show that convincing the Micali verifier amounts to winning a corresponding
oracle game, in the sense of Definition 4.6. Second, we show that the database property induced
by this game is stable when conditioned on the database having no collisions. Both of these are
classical properties of the Micali construction. Indeed, our results show how the existing proof of
soundness for this protocol fits into our instability framework, making quantum security immediate.

Theorem 6.1. Let (P, V) be a PCP for a relation R that has soundness error €, proof length
¢, and query complezity q. The Micali construction, when based on (P, V), is a non-interactive
argument for R that has soundness error O(t%e + t3/2*) against quantum attackers that make at
most t — O(qlog{) queries to the random oracle. This soundness error is tight up to small factors.

The rest of this section is organized as follows: in Section 6.1 we describe the properties of Merkle
trees used in the proof of security; in Section 6.2 we describe the oracle game that corresponds to
the Micali construction; and in Section 6.3 we prove Theorem 6.1.

6.1 Some algorithms for Merkle trees

The Micali construction uses Merkle trees [Mer89] based on random oracles as succinct commit-
ments to lists of values that permit cheaply decommitting to chosen entries in the list. While
Merkle trees are well known, we rely on properties of Merkle trees that, while simple, are less well
known. In this section we introduce notations needed to specify these properties.

Given a domain Z and a power of two ¢ = 2%, a Merkle tree on a list v = (vi)icpy € Z* with
respect to the function h: Z x Z — Z is a list of values (zx,i)keqo,....a},ic2%) € 72 where

Viel], zai = vi ,
Vke{d—-1,...,1,0},Vic [zk] s 2k = h(Zhg1,2i-1, Zht1,2i) -

The root of the Merkle tree, denoted rt, is zp;1. Given i € [¢], the authentication path for the i-th
leaf in the Merkle tree is the list of values ap := (ax)ie(q) € Z4 where ay, is the sibling of the k-th
node on the path from v; = zg; to the root rt = 2p;. An authentication path is valid for v at 4
with respect to rt, h if “hashing up” the path from v at index ¢ to the root using ap yields rt. We
denote by CheckPath”(rt, i, v, ap) the (efficient) algorithm that checks this condition.

Below we describe two algorithms that will be used in the proof of security.

Expanding paths. We define an algorithm Expand that outputs all the input-output pairs that
arise when validating a given authentication path. The name “expand” denotes the fact the algo-
rithm outputs not only the authentication path but also the nodes from the given leaf to the root.
The algorithm Expand is used in Section 6.2 to define the oracle game for the Micali construction.

In more detail, Expand is granted oracle access to a function h: Z x Z — Z and receives as input
an index i € [29], a value v € Z, and an authentication path ap := (ax)ejg € Z%. Then Expand sets
yq := v and proceeds as follows for k =d —1,...,0: if the k-th bit of 7 is 0, set z := (Yg+1, Ak+1);
else if the k-th bit of i is 1, set xg := (ag+1,Yr+1); set yx := h(xy). Finally, Expand outputs the d

input-output pairs (x,y) := ((xi)?;ol, (yz)fl;()l) The following property holds.

Proposition 6.2. CheckPath”(rt,i,v,ap) = 1 if and only if (x,y) < Expand™(i,v,ap) has yo = rt.

30



Extracting trees. We define an algorithm Extract that is used to obtain a Merkle tree rooted
at a chosen entry in a database. This algorithm is similar to the one presented in [Val08; BCS16],
and below we give a description of it because we use it in Section 6.3 within the security proof.

In more detail, Extract, receives a database D: Z x Z — Z, a root value rt € Z, and a height
bound d, and outputs a rooted binary tree T = (V, E) of depth at most d where V C Z x {0,1}=%.
The algorithm Extract is defined as follows.

Extract(D, rt, d):
1. Initialize the vertex set with the root V' := {(rt, @)} and the edge set to be empty E := ().
2. While there exists an unmarked vertex (u, s) € V such that u € im(D) and s € {0, 1}<%
(a) Mark the vertex (u,s).
(b) If w is the result of a collision (D(x) = D(z') = u for distinct z and z’), return L.
(c) Let xg,z1 € Z be the unique values such that D(zg,x1) = u.
(d) Update the vertex set V := V U {(=o, s/|0), (z1, s||1)}.
(e) Update the edge set E := E'U{((u, s), (zo, 5/[0)), ((u, s), (z1, s|[1))}.
3. Output the tree T' := (V, E).

Given a tree T := Extract(D, rt, d), we can define a string leaves(T") where for each i € [29] = {0, 1}¢
if there exists a vertex (z,i) € T then leaves(T"); := x else leaves(T"); := L.

It will be useful in the analysis of Merkle tree algorithms to define the set S(D) of “half-
preimages” in a database D:

Definition 6.3. Let D: Z x Z — Z be a database. Then S(D) := {u : 3u’' € Z s.t. (u,u’) €
supp(D) V (u',u) € supp(D)}.

The following two lemmas are about properties of the algorithm Extract. The first lemma follows
from the algorithm description, and the second one is proved below.

Lemma 6.4. Let D: Z x Z — Z be a database, x € Z X Z an input with x ¢ supp(D), y € Z an
output, rt € Z, and d € N. For the rooted binary trees Ty := Extract(D, rt,d) and Ty := Extract(D +
[z — y],rt,d), if the database D + [z — y| has no collisions then Ty is a subtree of Ts.

Lemma 6.5. Let D be a database and let x ¢ supp(D). Let D' = D + [z — y]. Suppose that
D, D' € Py For any rt € Z, if Extract(D, rt,d) # Extract(D’,rt,d), then y € {rt} US(D).

Proof. Let rt € Z, and let T} := Extract(D, rt,d) and T := Extract(D + [z — y], rt,d), and suppose
that 77 # T». By Lemma 6.4, we get that 77 C Ts. Therefore, there must be a vertex (z,s) that
is marked in 75 but unmarked in 77. This means that z ¢ im(D) but z € im(D’), and hence that
z=uy. If (z,8) = (rt,0), then y = z = rt. If (2, 5) # (rt, (), then there exists 2z’ € Z such that either
(z,2") € supp(D) or (7, z) € supp(D), and hence y € S(D). O

6.2 The oracle game for the Micali construction

We have summarized the Micali construction in Section 2.1. In order to define the oracle game that
represents it, though, we need to recall in more detail how the verifier works. The Micali verifier
V receives as input an instance x and proof m = (rt, (ap;)ic|q; (Vi)ig[q)> and has oracle access to a
function h: {0,1}2* — {0,1}*. First, V ensures that all authentication paths are for a Merkle tree
with ¢ leaves (recall that ¢ is the PCP proof length). After that, V runs the underlying PCP verifier
V on input x and random string A(rt,0*). When V makes its i-th query to location j € [¢], V runs

31



CheckPath”(rt, ap;, v;, j) and answers with v; if this check passes (if not then it rejects). Once V
halts, V accepts if and only if V accepted.
Given a proof m as above, we define

Expand”(r) := ((xl,...,xq,(rt,o)‘)), (yl,...,yq,r)> e ({0,112 x ({0,1}})°

where r := h(rt,0") is the derived randomness, each (x;,y;) := Expand"(j;,ap;, v;) is an expanded
authentication path, and j; € [¢] is the location of the i-th query of V(x;r). Note that a := O(qlog ).

Definition 6.6. Let V be a PCP verifier for a relation R and let x be an instance. The Micali
game for (V,x) is the set GQ",'; := {Expand™(7) : h: {0,1}** = {0, 13}, 7 € {0,1}%, V' (x, ) = 1}.

6.3 Proof of Theorem 6.1

In order to show that the Micali construction is sound in the (quantum) random oracle model, it
suffices to show that the oracle-game value of GY'< is small whenever x ¢ L(R).

Proposition 6.7. The probability that a t-query classical adversary A causes the Micali verifier V
to accept x is at most wo(GQ/',';,t + O(qlog?)). The probability that a t-query quantum adversary

A causes the Micali verifier V to accept x is at most w(*)(GQ/',E;,t + O(qlog?)).

Proof. Let B be the algorithm that, when given access to an oracle h, runs A" to obtain 7 and then
outputs Expand™(7). The query complexity of B is t + O(qlog /) because A makes ¢ queries and
Expand makes O(qlog ) queries. Let ((x;)?_;, (rt,0%), (yi)?_;,r) be the output of B. By definition
of Expand, h((x;);) = (y:); for all 4, 5. Hence B" wins GQ",'; if and only if V(x,7) = 1. O

We now need to establish an upper bound on wg(GQ/',i’;, t) given that x ¢ £L(R). By Lemmas 4.9
and 5.13, it suffices to study the instability of the database property Pumic := PG‘NIHC associated with
the oracle game GQ",i; (in the sense of Definition 5.2). In particular, we upper bound the instability
of Pwmic conditioned on the absence of collisions in the database. To simplify this task, we first
“break down” Pp;c as the union of simpler database properties, at least for databases that do not

contain collisions. Below we assume that the PCP length ¢ equals 2% for some d € N.

Definition 6.8. For rt € {0,1}*, Py is the set of databases D such that (rt,0") € supp(D)
and for T := Extract(D,rt,d) the PCP verifier V'¥ves(T) (s D(rt,0*)) accepts (where the verifier
immediately rejects if it queries a location i with leaves(T'); = L ).

Proposition 6.9. Pyic C P U Urte{o,l}* Pr.

Proof. By definition, a database D is in Pyjc if and only if there exists (x,y) € GQA,';'X such that for
all i € [k], D(x;) = y;. Suppose that D € Pwyic, and let w = ((x1,...,Xg, (rt,0N)), (¥1,---,¥q 1)) €
GQ",'; be a witness to this. If D € P, then we are done, so suppose D € Pey. Then D € Py,
because if D has no collisions then the proof 7 extracted from root rt must be consistent with w;
in particular V'®ves(T) (x; D(rt,0*)) accepts. O

We now prove two lemmas about instability: first we bound the instability of Pu;c when con-
ditioned on databases having no collisions; then we bound the instability for the set of databases
that contain collisions. We denote the latter property by Pgo.

32



Lemma 6.10. If x ¢ L(R) then I(Puic | Peol t) < € + (2t + 1)/27.

Proof. Fix a database D € Pyic N Peo with |D| < t and fix an input (29, z1) € ({0,1}*)2. To bound
the instability I(Pwic | Peols t), it suffices to bound Pry[D + [(zo,z1) — y] € Pmic N Peol] because if
D € Pmic then D' € Pyjc for any D’ with D C D',

Let S' = {r € {0,1}* : VI(x;r) accepts, Il = leaves(Extract(D, zo,d))}. We will show that if
D + [(z0,21) = y] € PMic N Peol, then y € S(D) U {zo} U S".

Let D' := D + [(z0,21) — y]. Proposition 6.9 implies that if D’ € Pyic N Peol then D’ belongs
to the set Py for some rt € {0, 1}>‘ and the database D does not belong to the set P,. Consider
the two rooted binary trees 77 := Extract(D, rt,d) and Ty := Extract(D’, rt,d). We have two cases.

e Case 1: T} # T5. By Lemma 6.5 we get that y € S(D) U {rt}. Since D' € Py, we see that
(rt,0*) € supp(D’). Thus, either rt € S(D) or (xg,x1) = (rt,0"). Hence, y € S(D) U {xo}.

e Case 2: T} = Tp. It must be that (rt,0") ¢ supp(D) but (rt,0*) € supp(D’). Hence xq = rt and
r1 = 0*. Letting II; := leaves(T}) and Il := leaves(73), we have that II; = II,. Now because
D' € Py, VI2(x;y) accepts, so VI (x;y) accepts, and y € S as II; = leaves(Extract(D, rt,d))
and xy = rt.

We deduce that either y € S(D), y = xg, or y € S’. Note that these three sets are independent of
rt, so that in particular this holds for all choices of rt. Hence, Pry[D+[(x0,21) — y] € Pmic NPeol] <
Pryy € S(D) U {zo} US']. Clearly, |S(D)| < 2|D| < 2t and |{zo}| = 1. We have that |S’| < 2*,
by the soundness of the PCP, as I = leaves(Extract(D, x¢, d)) depends only on zy and D, and in
particular is independent of y. Thus, we conclude that Pr,[D + [(x0,71) — Y] € Pwmic N Peol] <
e+ (2t +1)/2%, s0 I(Pwic | Peol, t) < € + (2t +1)/2*, as required. O

Lemma 6.11. I(P,,t) < t/2.

Proof. Fix D ¢ Pe with |[D| < t and = € {0,1}?*. We have that Pr,[D + [z — y] € Peol] < t/27,
as in order for this event to occur it must be that y € im(D), and [im(D)| < ¢t. For any D € Py,
we trivially have that Pry[D + [z — y| ¢ Pcol] = 0, which completes the proof. O

We can now deduce the following statements:

Lemma 4.9 —» \/wg(GQ/',i;,t) < \/wE(GQ",i;,t) +0 (\/qlogﬁ/QA) ,

Lemma 5.13 —  wh(GV'S,t) <2 6(I(Pwiic | Peol, t) + I(Peat, 1)) -

By combining the above statements, we get that wg(GM<,t) = O(t%e + t3/2* + qlog /2*), from
which we obtain the stated upper bound on the soundness error via Proposition 6.7.
Tightness. For simplicity we assume that the leaves in the Merkle tree commitments are salted,
as is the case when one wishes to preserves zero knowledge (Section 7.1). We prove tightness of the
t2¢ term, which is the term that dominates in the expression for the soundness error.

Consider the following adversary. The adversary starts with a proof II that is accepted by the
PCP with probability e and, by making O({) classical queries, builds a Merkle tree for II. Let rt
be the root of the tree. By changing the salt for one of the leaves in the tree and “hashing up”, the
adversary can construct another valid Merkle tree for IT with a newly sampled root rt’ by making

33



only O(log/¢) additional queries. The adversary then uses Grover’s algorithm [Gro96] to search for
a new salt so that the new root rt’ has VI (sx; h(rt/,0%)) = 1.

With high probability over the choice of h, it holds that at least (¢/2)-fraction of the choices of
salt will have a root rt’ with VI (s;; h(rt’,0*)) = 1. By running Grover’s algorithm with ¢ queries, the
adversary thus finds a good salt with probability Q(t%c). Each of the ¢ queries made by Grover’s
algorithm corresponds to O(tlog/) queries to h. The adversary makes O(f) queries initially to
construct the tree, so this gives us a quantum adversary that wins with probability €(t2¢) by
making O(tlog? + ¢) queries.

34



7 zkSNARKS in the QROM

We prove the existence of zkSNARKSs that are unconditionally secure in the quantum random oracle
model, based on the Micali construction.

First, we prove that the Micali construction is a zero knowledge non-interactive argument of
knowledge if the underlying PCP is both honest-verifier zero knowledge and a proof of knowledge.

Theorem 7.1. Let (P, V) be a PCP for a relation R that is honest-verifier zero knowledge and
has knowledge error k, and suppose that (P, V) has proof length ¢ and query complexity q. The
Micali construction, when based on (P, V), is a non-interactive argument in the QROM for R
that is (statistical) zero knowledge and is an argument of knowledge with extraction probability

R, Mt + O(qlog £)) = Qo — 2k — £3/2Y).

We separately prove zero knowledge and proof of knowledge, respectively in Lemma 7.3 and in
Lemma 7.4 below, thereby establishing the above theorem. Observe that the extraction probability
k achieved in the theorem statement implies the soundness bound given Theorem 6.1, because the
extraction probability is positive when the verifier’s acceptance probability u is Q(t?k + 3/ 2M).

If we additionally ensure that the PCP in the Micali construction has small query complexity
and verifier running time (via standard PCPs), then we obtain zkSNARKSs that are unconditionally
secure in the quantum random oracle model (see definition in Section 3.3).

Corollary 7.2. There exist zkSNARKs for NTIME(T (n)) in the quantum random oracle model.

Proof. The PCP in [BFLS91| supports NTIME(T'(n)) with query complexity poly(log T'(n)), a prover
that runs in time poly(n,T'(n)), and a verifier that runs in time poly(n,log7'(n)). The PCP is a

proof of knowledge, and can be modified to achieve honest-verifier zero knowledge and a negligible
soundness error [DFKNS92; KPT97|. We can then apply Theorem 7.1 to the resulting PCP. [

7.1 Zero knowledge

In the classical setting, the Micali construction achieves statistical zero knowledge if the underlying
PCP is honest-verifier zero knowledge (see definition in Section 3.4), and if leaves in the Merkle
tree are salted to ensure statistical hiding of unrevealed leaves [IMSX15; BCS16]|. The following
lemma states that the same is true in the quantum setting.

Lemma 7.3. The construction of Micali (modified to use salted Merkle trees), when based on an
honest-verifier zero knowledge PCP, is a zero knowledge non-interactive argument in the QROM.

Proof. A straightforward adaptation of Theorem 6.1 establishes soundness in the case where leaves
in the Merkle tree are salted by the prover with fresh randomness. Moreover, the classical zero
knowledge guarantee of the Micali construction is statistical, i.e., it holds against verifiers that are
unbounded, in computation and in queries to the random oracle. Such verifiers can in particular
simulate any quantum adversary (including queries in superposition). This means that the zero
knowledge guarantee also holds in the quantum setting. (Indeed, the definition of zero knowledge
that we provide in Section 3.3 for non-interactive arguments in the QROM does not even have to
mention quantum algorithms; it requires the real view and ideal view to be statistically close.) [

35



7.2 Proof of knowledge

In the classical setting, the Micali construction is an argument of knowledge if the underlying PCP
is a proof of knowledge (see definition in Section 3.4). The following lemma states that the same is
true in the quantum setting.

Lemma 7.4. The Micali construction, when based on a PCP of knowledge with knowledge errork, is
a non-interactive argument of knowledge in the QROM with extraction probability Q(u—t2k—13/2*)
against quantum attackers that make at most t — O(qlog¥) queries and win with probability at least
w. In particular, the extraction probability is positive for large enough p = Q(t%k + t3/2*).

We prove the lemma by building on ideas in the proof of Section 6, and also on some additional
generic machinery. Below we assume that the proof length ¢ equals 2¢ for some d € N.

Let A be a t-query quantum adversary A that causes the Micali verifier to accept an instance
x with probability at least u. Following the proof of Proposition 6.7, we obtain a t-query quantum
adversary B that wins the Micali oracle game GQ/',i; with probability at least u, for t :=t'+O(qlog ).
This transformation can be efficiently performéd with black-box access to A, because B merely
extends A with some classical computation that depends on A’s (classical) output.

We now describe the quantum extractor £ for the Micali game, and then argue why it works.

EAx,1Y,17)
Set t :=t' + O(qlog?).
Compute the quantum state [Sim*(B)), by simulating B.
Measure the database register of |[Sim*(B)) to get a database D.
Run w + E(x, 05), where 0¢ denotes the all 0’s proof. If w is a valid witness, return it,
otherwise continue.
5. For each rt € im(D):
Run T <« Extract(D,rt,d),
Set II7 equal to leaves(T') on all points where leaves(T') is not L, and 0 otherwise.
Run w < E(x,II7). If w is a valid witness, return it, otherwise continue.

N =

Let P be the set of databases D where running T' < Extract(D, rt, d) and then w < E(x, IIr)
yields (s, w) € R, where II7 is defined as above. Note that £4(x, 1*, 1) outputs a valid witness if
and only if D € Uycqo,132PE,t- This is because if rt € im(D) then £ tries to extract from rt, and if
rt ¢ im(D) then T < Extract(D, rt, d) has one vertex (just rt), and so Iy = 0F.

We can lower bound the probability that the extractor succeeds as follows:

Pr EA(X, 1t/, 1)‘) outputs a valid Witness} =Pr [D € Urte{oyl}APE,rt]

> Pr[D € UnPg, i N Pumic) = Pr[D € Puic] — Pr[D € NPrn N Puiic]

> Pr[D € Puic] — Pr [D € mrte{ojl}AﬁEJt N ((UptPre) U ,Pcol)}

> Pr[D € Pyic] — Pr [D € Peot U (Ut (Pre N 75E,rt))]

> Pr[B wins the Micali database game] — 2 61(Peol U (Ut (P N 75E,rt)), t) ,

where the second inequality follows by Proposition 6.9 and the third by the fact that Nyiego 131 75E,,tﬂ
((UrtPrt) UPcol) € Peol U (Urt(PrtMPrt)). This latter property can be interpreted as follows: either
there is a collision, or there is some rt € supp(D) such that we can produce a correct SNARG proof
rooted at rt but the PCP extractor cannot extract a valid witness from the PCP proof rooted at rt.

36



We have that the probability that B wins the quantum database game of GQ",i; is Q(pu—qlog £/2*)
by Lemma 4.9. Hence, in order to complete the proof it suffices to show the following proposition.

Proposition 7.5. I(Peol U (Un(Pr N Pr)), t) < k+ (2t +1)/27.

PT’OOf. We have that I(Pcol U (Urt(Prt N 75E,rt)))t) < I(Pcolyt) + I(Urt(Prt N ﬁE,rt) | ﬁcolyt)' By
Lemma 6.11, we have that I(Peo, t) < t/27.

We now bound I(Unt(Pet N PErt) | Peolyt). Let D € Pey be a database, and fix @ = (xg,21) ¢
supp(D). Let S’ = {r € {0,1}* : VI(s;r) accepts, IT = leaves(Extract(D, xo,d))}.

Suppose first that D ¢ U (Pt NPE t); we bound Pry[D+ [z — y] € U (P NPE ) NPeol]. Fix a
y such that this holds, and let D’ := D + [ ~ y]. Then there exists rt* such that D’ € Py N PE >
and D € P+ U Pg,re+. There are two cases.

e Case 1: D € Pg . Since D' ¢ Pg +, we get that Extract(D, rt*, d) # Extract(D’, rt*, d). Hence,
by Lemma 6.5 we get that y € S(D) ory = rt*. Since D’ € Py, we have that (rt*,0*) € supp(D’),
and hence either rt* € S(D) or rt* = xg. Thus, either y € S(D) or y = xo.

e Case 2: D € Py NPgn+. We have that D’ € Py-. If Extract(D, rt*, d) # Extract(D’, rt*, d), then
again we get that y € S(D) or y = xq. If Extract(D, rt*,d) = Extract(D’, rt*, d), then by Case 2
of Lemma 6.10 we get that zop = rt* and y € S’. In particular, this implies that D € Pg 4.

We conclude that either y € S(D)U{xo}, or D € Pg 4, and y € S’. We know that |S(D) U {xo}| <
2t+1. We show that |S’| < k-2*if D € Pg,. Let T = Extract(D, zo,d), Il = leaves(T'), and Il be
as defined earlier. Suppose that |S’|/2* = Pr,. [V (x;7) accepts] > k. Then, Pr,.[VI7 (x;r) accepts] >
Pr,[VI(x;r) accepts] > k and so E(x,II7) outputs a valid witness for x. Therefore, D € Pg 4, a
contradiction, and so |S'| < k- 2.

We thus conclude that if D € Pg, then Pry[D’ € Peot N (Un(Pre N Pr )] < (2t + 1)/2%,
and if D € Pg g, then Pry[D’ € Peoi N (Un(Pr N Pr )] < k+ (2t + 1)/2*. Hence, flip(Upe(Pre N
Pert) | Peols t) < k+ (2t +1)/2%.

Now suppose that D € U (P NPE t); we bound Pry[D + [z +— y] € U (Pt N PE ) N Peol]. Fix
a y such that this holds, and let D’ := D+ [z + y]. Then there exists rt* such that D € Py 075]3,”*
and D’ € P U Pg rtx. There are two cases.

e Case 1: D' € Py-. This is impossible: since D € PyxNPeo and D’ € Py, it follows by Lemma 6.4
that D/ S Prt*-

e Case 2: D' € Py NP p+. Since D € Pg g+ and D' € Pg e+, it follows that Extract(D, rt*, d) #
Extract(D’, rt*,d). Hence, by Lemma 6.5 we get that y € S(D) or y = rt*. Since D € Py, it
follows that (rt*,0*) € supp(D), so rt* € S(D). Hence, y € S(D).

We conclude that flip(Un (Pt N PE rt) | Peol, t) <_2t/2)‘. )
Putting it together, we get that I(Un (P N Prt) | Peol, t) < k+ (2t +1)/22. O

37



8 The BCS construction in the QROM

We prove that non-interactive arguments obtained via the BCS construction applied to IOPs with
round-by-round soundness are unconditionally secure in the quantum random oracle model. More-
over, if the IOP is honest-verifier zero knowledge and has round-by-round knowledge then BCS con-
struction yields a zero knowledge non-interactive argument of knowledge. This section is organized
as follows: in Section 8.1 we define IOPs; in Section 8.2 we define the oracle game that corresponds
to the BCS construction; in Section 8.3 we define round-by-round soundness and round-by-round
knowledge; in Section 8.4 we state our result; and in Section 8.5 we prove our result.

8.1 Interactive oracle proofs

A (public-coin) interactive oracle proof (IOP) [BCS16; RRR16] is a multi-round extension of the
notion of a PCP where in each round the verifier sends a random message m; and the prover replies
with a proof string II;. After the interaction, the verifier queries the proof strings (II;, s, ...)
received from the prover, and then accepts or rejects. A PCP is then a non-interactive IOP.

An IOP for a relation R with soundness error € is a pair of polynomial-time interactive algo-

rithms (P, V) for which the following holds.

e Completeness. For every instance-witness pair (x,w) € R, the probability that P(x, w) con-
vinces V(x) to accept is 1.

e Soundness. For every instance x ¢ £(R) and unbounded malicious prover P, the probability
that P convinces V(x) to accept is at most e.

Like the IP model, a fundamental measure of efficiency is the round complexity k. Like the
PCP model, two additional fundamental measures of efficiency are the proof length ¢, which is the
total number of alphabet symbols in all of the prover’s messages, and the query complexity q, which
is the total number of locations queried by the verifier across all of the prover’s messages.

Transcripts. We denote by tr a transcript of (P, V), which means all verifier messages and proof

strings up to a point where either the prover or the verifier is about to move. In more detail, tr is

one of the following cases (with Iy defined as the empty string):

e the empty transcript, denoted by the symbol () (the verifier is about to move);

e a partial transcript where the prover is about to move, which is a pair of the form (m,II) =
((m1,...,my),(Iy,...,I;_1)) for some i € [k];

e a partial transcript where the verifier is about to move, which is a pair of the form (m,II) =
((mq,...,my), (I, ..., 1I;)) for some i € [k];

e a full transcript, which is a pair of the form (m,II) = ((m1,...,mg11), (I, ..., Ig)).

We allow the proof strings II; to be partial functions, i.e., databases (Section 3.5).

Given a transcript tr = (m,II) = ((m1,...,m;), (II1,...,II;_1)) where the prover is about
to move, we let tr||II denote the transcript ((mq,...,m;),(Iy,...,II;_1,II)). Similarly, given a
transcript tr = (m,IT) = ((mi,...,m;), (II1,...,II;)) where the verifier is about to move, we let

tr|jm denote the transcript (m,II) = ((mq,...,m;,m), (I, ..., IL)).

8.2 The BCS construction and its oracle game

The BCS construction transforms a public-coin IOP into a corresponding non-interactive argument,
using random oracles. Informally, this is achieved by repeating the idea of the Micali construction

38



in each round, and then forcing rounds to be in order via a hash chain; see [BCS16] for details.
In order to define the oracle game that represents the BCS construction, we need to recall how
its verifier works. The BCS verifier V receives as input an instance x and proof

7 = (0, (rtj) jeir]> (P )ielq) (Vi)iclq]) >

and has oracle access to a function h: {0,1}?* — {0,1}*. First, V checks the hash chain: it

initializes og := 0%; then, for each j € [k], it computes m;j := h(oj_1,"]") and o := h(mj,rt;),
where “j" € {0,1}* is some unique encoding of the integer j; finally, V checks that o = oy. Next,
V computes the randomness for the query phase as myiq := h(o, "k+1"). The randomness for

the IOP verifier V is m := (my,...,mg, mgy1). Finally, V simulates the IOP verifier V on m by
answering its queries using the values contained in 7. In more detail, it runs V(x; m) and answers
its i-th query, for i € [g], as follows: if the query is to the j-th proof string at a location s then
check that CheckPath”(rt;, s, v;,ap;) accepts and answer with v; if this check passes (else reject).
Once V halts, V accepts if and only if V accepted. (The BCS verifier V should also do basic
syntactic checks such as ensuring that if the j-th proof string is supposed to have length ¢; then
authentication paths relative to the j-th root have an appropriate length.)
Given a BCS proof 7 as above, we define

BCSExpand” () := (((Xi)ie[q]v(aj—la ) jetr]s (Mg, rty)iem)s (Yidiegq (mj)je[kJrl}v(Uj)je[k]))

round, o; := h(m;, rt;) for j € [k], each (x;,y:) := Expand”(s;, ap;, v;) is an expanded authentication
path, and s; is the location of the i-th query of V(s;m). Note that BCSExpand”(7) € ({0,1}%})% x
({0,1}M)@ for a := O(qlog ) where £ := Z?Zl ¢; is the proof length of the IOP.

Definition 8.1. Let 'V be an IOP verifier for a relation R and let x be an instance. The BCS game
for (V,x) is the set G\B,?XS := {BCSExpand”"(7) : h: {0,1}** = {0,1}*, 7 € {0,1}%, V' (x,7) = 1}.

Remark 8.2. Our definition of the BCS construction uses a slightly different hash chain from the
one used in [BCS16]. This is due to our proof technique. Soundness against quantum attackers also
holds for the hash chain in [BCS16|, provided that the underlying IOP satisfies a slightly stronger
variant of round-by-round soundness. This issue is discussed in Section 8.6.

8.3 Round-by-round soundness and knowledge

We define round-by-round soundness (adapted from [CCHLRR18]) and round-by-round knowledge
(introduced in this work), which are the notions of soundness and knowledge that we consider in
Theorem 8.6 below. We first define an IOP state function, and then give the two definitions.

Definition 8.3. Let (P, V) be an IOP for a relation R. A state function for (P, V) is a deter-
ministic (possibly inefficient) function state that receives as input an instance x and a transcript
tr = (m, IT) and outputs a bit for which the following holds.

e Empty transcript: if tr = () is the empty transcript then state(x, tr) = 0.

e Prover moves: if tr is a transcript where the prover is about to move and state(x,tr) = 0, then

V II, state(x,tr|II) =0 .

39



e Full transcript: if tr is a full transcript and state(x, tr) = 0, then VI (x;m) = 0.

Definition 8.4 ([CCHLRR18| adapted to IOP). An IOP (P, V) for a relation R has round-by-
round soundness error ¢ if there exists a state function state such that for all x ¢ L(R) and
every transcript tr where the verifier is about to move and state(x,tr) = 0 it holds that

Pr[state(x, tr[jm) = 1] < e .

Definition 8.5. An IOP (P, V) for a relation R has round-by-round knowledge error k if
there exists a polynomial-time extractor E and state function state such that for all x and every

transcript tr where the verifier is about to move and state(x,tr) = 0, if Pr,,[state(x, tr |m) = 1] > k
then (x, E(x,tr)) € R.

8.4 Our result

We prove that the BCS construction is sound in the quantum random oracle model if the under-
lying IOP has round-by-round soundness, is a proof of knowledge if the IOP has round-by-round
knowledge, and is statistical zero knowledge if the IOP is honest-verifier zero knowledge. Our result
establishes the post-quantum security of many zkSNARKSs of practical interest, which rely on zero
knowledge IOPs (and IPs) that have round-by-round soundness and round-by-round knowledge.

Theorem 8.6. Let (P, V) be an IOP for a relation R with proof length £ and query complezity q.
Then the BCS construction, when based on (P, V), is a non-interactive argument for R such that:

1. (Soundness) if (P, V) has round-by-round soundness error €, then the argument has soundness
error O(t%e + t3/2*) against quantum attackers that make at most t — O(qlogt) queries to the
random oracle.

2. (Knowledge) if (P, V) has round-by-round knowledge error k, then the argument is an argument
of knowledge with extraction probability Q(u —t?k —t3/2)) against quantum attackers that make
at most t — O(qlog¥) queries and win with probability at least p. The extraction probability is
positive for large enough p = Q(t2k 4 t3/2*).

3. (Zero Knowledge) if (P, V) is honest-verifier zero knowledge, then the argument is (statistical)
zero knowledge.

8.5 Proof of Theorem 8.6

We begin by noting that preservation of zero knowledge is straightforward. This is because, analo-
gous to the Micali construction Section 7.1, the BCS construction achieves statistical zero knowledge
provided the underlying IOP is honest-verifier zero knowledge. See [BCS16] for details.

Next, we prove soundness in Section 8.5.1 and knowledge in Section 8.5.2. To start, we define two
extraction algorithms that operate on databases, which are similar to those defined in Section 6.1.

Extracting hash chains. We define an algorithm HExtract that is used to extract a hash chain
ending at a chosen entry in a database. HExtract receives a database D: Z x Z — Z, an end value
y € Z, and a length bound k, and outputs an integer ¢ and two tuples (x1,...,2¢), (Yo,---,Ye)
where ¢ € [k], each z; and y; € Z, D(y;—1,x;) = y; for each i € [{], and yp = y.

Formally, the algorithm HExtract is defined as follows.

40



HExtract(D, y, k):
1. Initialize two lists chain = (y) and input = (), and a counter ¢ < 0.
2. While ¢ < k:
(a) If y is the result of a collision (D(z,z) = D(2/,2’) = y for distinct (z,x), (2/,2') in
Z?), return L.
(b) Let z,x € Z be the unique values such that D(z,z) = y. If none exist, then exit
the loop.
(c) Prepend z to chain: chain := {z} U chain.
(d) Prepend x to input: input := {z} Uinput.
(e) Update y + z and increment £ < ¢ + 1.
3. Output (¢, input,chain).

The BCS extractor. We now define the BCS extractor, which finds a transcript where the hash
chain of roots ends at a chosen entry in the database. The algorithm BCSExtract is given below.

BCSExtract(D, 0, k,dy, ..., dg):
1. Let (¢, (x1,...,2¢), (Y0,-..,y¢)) < HExtract(D, o, k). If HExtract(D, o, k) outputs L in-
stead, output L.

tr = 0.
3. Let rt; = wg; for i € {1,...,|¢/2]}, let mj = yg;—1 fori € {1,...,|(¢+1)/2]}.
4. Let T; = Extract(D, rt;, d;) for each i € {1,...,|¢/2]}. If T; = L for some 7, output L.

5. Output the transcript tr = ((ml, - ,mugﬂ)m), (Ieaves(Tl), ce Ieaves(TWQJ)))

Lemma 8.7. Let D be a database, and suppose that D € Pey. Then BCSExtract(D, o, k,dy, ..., dy)
always outputs a valid transcript tr. In particular, tr # L.

The following is an analogue of Lemma 6.5 for the BCS extractor.

Lemma 8.8. Let D be a database and let x ¢ supp(D). Let D' = D + [x — y|, and suppose that
D,D'" € Peo. Let o € Z. If BCSExtract(D, o,k,dq,...,d;) # BCSExtract(D’, 0, k,d1, . ..,dy), then

ye{o}US(D).
Lemma 8.8 follows immediately from the following two claims.
Claim 8.9. If HExtract(D, 0, k) # HExtract(D', o, k) for some o € Z, theny € S(D) ory=o.

Claim 8.10. IfBCSExtract(D, o, k,dq,...,d) # BCSExtract(D’, 0, k,dy, . .. ,dy) and HExtract(D, o, k) =
HExtract(D’, 0, k), then y € S(D).

Proof of Claim 8.9. Let (¢, (x1,...,2¢),(Y0,...,y¢)) be the output of HExtract(D’,o,k). Since
D, D’ € Py, it follows that HExtract(D, o, k) outputs (¢ — 4, (zi11,...,2¢), (i, ..,ye)) for some
i € [¢]. Therefore, the entry ((y;—1,x;),y;) is in D’ but not in D. Hence, x = (y;—1, ;) and y = y;.
If i = ¢ then y = yp = 0, and if i < ¢, then the entry ((y;, €it+1),¥it+1) isin D, soy =y; € S(D). O

Proof of Claim 8.10. 1f HExtract(D,o,k) = HExtract(D’,0,k), then there must exist some root
rt; in the execution of BCSExtract such that Extract(D,rt;,d;) # Extract(D’,rt;,d;). Hence, by
Lemma 6.5 we get that y € S(D) or y = rt;. Assume that y = rt;. We must have that (u,rt;) €
supp(D) for some u € Z, as rt; = x9; in the hash chain extracted by HExtract, so (y2;—1,T2;) €
supp(D). Since (u, rt;) € supp(D), it follows that y € S(D). O

41



8.5.1 Soundness

Let R be a relation, and let x ¢ £(R). Let (P, V) be an IOP for a relation R that has round-by-
round error €, proof length ¢, query complexity g, and k rounds. Let ¢y, ..., ¢; be the proof lengths
of the individual rounds. Without loss of generality assume that for each i, ¢; = 2% for some d;.
For ease of notation, we will omit the arguments k, dq, ..., d; from the input to BCSExtract.

We first show the following simple proposition.

Proposition 8.11. The probability that a t-query classical adversary A causes the BCS verifier V
to accept x is at most wo(G‘B,?XS,t + O(qlog?)). The probability that a t-query quantum adversary

A causes the BCS verifier V to accept x is at most ws (Gt + O(qlog?)).

Proof. Let A be a (either classical or quantum) oracle algorithm. Let B be the algorithm that,
when given access to an oracle h, runs A" to obtain 7 and then outputs BCSExpandh(ﬂ'). The
query complexity of B is t + O(qlog¢) because A makes t queries and BCSExpand makes O(qlog /)
queries. Let ((z4)%;, (vi)%;) be the output of B. By definition of BCSExpand, h(x;) = y; for all
i € [a]. Hence B" wins G\B,?XS if and only if V(x,7) = 1. O

Let Pgcs := PG\B/cs. Let Py be the collision property.

Define P := U, P,, where for ¢ € {0,1}*, P, is the set of databases D where (1) D
contains no collisions, (2) tr = BCSExtract(D, o) is a transcript where the verifier is about to
move, (3) state(x,tr) = 0, (4) D(o, “i+1") # L, where i is the number of rounds in tr, and
(5) state(x, tr||D(o, “i+1")) = 1.

Proposition 8.12. Pgcs C P UP.

Proof. Suppose D € Pgcs. If D has a collision, then D € P,. Suppose D has no collisions. Since

D € Pgcs, there exists w = (((xi)ie[q]v (j-1, T )jemrr1s (Mg, ) em) s (Vadielgrs (M) el (Uj)je[k])) €
G%?XS consistent with D. Let tr = BCSExtract(D, myy1). Since D has no collisions the tran-
script tr extracted from my,q by BCSExtract is a full transcript and consistent with w, i.e. tr =
((ma,...,mps1), (I, ..., I})). Since w € GECS the IOP verifier accepts tr. Therefore, state(x, tr) =
1. Since state(x,()) = 0 and adding a prover’message cannot change state from 0 to 1, there ex-
ists ¢ such that try = ((m,...,m;), (I1,...,IL;)) and tro = ((m1,...,mip1), (111, ..., I;)) satisty
state(x, tr;) = 0 and state(x,tra) = 1. Note that by Item 2 of Definition 8.3 it must be that tr;
is a transcript where the verifier is about to move. We have that tr; = BCSExtract(o;, D), and
D(o;, “i+1") = mjy1, so trg = tri||D(oy, “i+1"). Hence, D € P,,. O

Lemma 8.13. I(P | P, t) < &+ (2t +1)/2.

Proof. Fix a database D € Py with |D| < t, and fix an input € {0,1}?}. Suppose that
D € PN Peoi. Then, Pry[D + [z + y] € PN Peol] < 2t/2*. This is because since D € P, D € P,
for some o. Hence, if D + [z — y] € P then D + [z +— y] ¢ P,, and so BCSExtract(D, o) #
BCSExtract(D + [z +— y],0). It follows by Lemma 8.8 that y € S(D) U {c}. Since D € P,, we see
that o € S(D). Thus, y € S(D). Since |S| < 2t, we see that Pr,[D + [z + y] € PN Peol] < 2t/27.

Now, suppose that D ¢ P. We bound Pry[D + [z — y] € P N Peo]. Proposition 8.12 implies
that, if the event inside the probability statement occurs, then the database D’ := D + [z — y]
belongs to the set P, for some ¢ € {0,1}* and the database D does not belong to the set P, for
all o’.

42



Let z denote the first A bits of x, and let tr := BCSExtract(D, z). If state(x,tr) = 1 then
set S’ := (; otherwise set S’ := {m : state(x,tr|m) = 1}, where we use the convention that
state(x, tr|lm) = 0 if tr is not a transcript where the verifier is about to move, i.e. that tr[[m is a
malformed transcript. Note that this implies that |S’| < €2*, since the IOP has round-by-round
soundness error e. We have two cases.

e Case 1: BCSExtract(D, o) # BCSExtract(D’, o). By Lemma 8.8, we see that y € S(D) or y = 0.
Suppose that y = 0. Since D’ € P,, we get that (o,u’) € supp(D’) for some v’ € {0,1}*. Hence,
either o € S(D) or o = z, and so either y € S(D) or y = 2.

e Case 2: BCSExtract(D,o) = BCSExtract(D’, o). Let tr be equal to BCSExtract(D’, o). Since
D’ € P,, we have that tr is a transcript where the verifier is about to move and state(x, tr) = 0.
Let ¢ be the number of rounds in tr. Since D' € P,, we also have that D'(o, “i+1") # L and
state(x, tr||D’(o, “i+1")) = 1. Since D ¢ P,, we must have that D(c, “i+1") = L. Hence, z = o,
so it follows that y € S’.

We deduce that in all cases, either y € S(D), y = z, or y € S’. Note that these events are
independent of o, so in particular this holds for all choices of o. Clearly, |S(D)| < 2|D| < 2t and
[{z}| = 1. As discussed above, |S’| < £2*. Hence Pry[D + [z — y] € Pacs N Peol] < Pryfy €
S(D)u{z}us'] < 6+(2t—|—1)/2>‘ It follows that I(Pgcs | Peol, ) < e+ (2t +1)/2%, as required. [

Finishing the proof of soundness. Since Pgcs C Peot U P, we get that for any A € Cf,
Pr4[A wins GBCS] < Pr[D € Pt UP | ((a,b,c), D) « Sim*(A)]. We also have that I(Pey U
P | Peolst) = (P | Peolyt) and § ¢ P U Py (as state(x,)) = 0). Therefore, by Lemmas 5.9
and 5.10 we have that Pr[D € P UP‘ ((a,b,c),D) + Sim*(A)] < ¢*-6(I (P!Pcoh t)+I(Peo, t)) <
6(t% + 4t3/2*). Thus, wE(G\B,?xS, t) < 6(t%e + 4t3/2*).

By Lemma 4.9, we have that ,/wg(G\B,?XS,t) < wB(G\B,?S,t) + 0 (\/qlogﬁ/?‘). We thus

conclude that wg(G\B,CxS, t) = O(t%e + t3/2* + qlog ¢/2*). Applying Proposition 8.11 completes the
proof of soundness in Theorem 8.6.

8.5.2 Knowledge

Let R be a relation, and let (P, V) be an IOP for a relation R that has round-by-round knowledge
error k, proof length ¢, query complexity ¢, and k rounds. Let £1,..., i be the proof lengths of the
individual rounds. Without loss of generality assume that for each i, £; = 2% for some d;.

Let A be a t’-query quantum adversary A that causes the BCS verifier to accept an instance x
with probability at least u. Following the proof of Proposition 8.11, we obtain a t-query quantum
adversary B that wins the BCS oracle game G\B,CXS with probability at least yu, for ¢t := t'+O(qlog{).
This transformation can be efficiently perfornied with black-box access to A, because B merely
extends A with some classical computation that depends on A’s (classical) output.

We now describe the quantum extractor £ for the BCS game, and then argue why it works.

43



EAG, 1Y, 1)

Set t :=t' + O(qlog?).

Compute the quantum state |Sim*(B)), by simulating B via A.

Measure the database register of |[Sim*(B)) to obtain a database D.

Run w + E(x, (). If w is a valid witness, return it, otherwise continue.

For each ¢ € im(D):
Run tr <— BCSExtract(D, o), then run w <— E(x, tr). If some II in tr has an entry that
is L, treat it as if it were 0.
If w is a valid witness, return it, otherwise continue.

U W

Let Pg be the set of databases D where running tr <— BCSExtract(D, o) and then w < E(x, tr)
has (x,w) € R. Note that E4(x, 1%, 1) outputs a valid witness if and only if D € Usego,112 PE,o-
This is because if o € im(D) then £ tries to extract from o, and if 0 ¢ im(D) then BCSExtract(D, o)
is the empty transcript, and £ always tries to extract from the empty transcript.

As in the case of Micali, we lower bound the probability that the extractor succeeds as follows:

Pr SA(X, 1tl, 1/\) outputs a valid Witness] =Pr [D € UUG{O’I}APE,U}

> Pr[D € UyPg,» N Pacs] = Pr[D € Pacs] — Pr[D € N, Pg,» N Pacs|
> Pr[D € Pgcs) — Pr [D € Noefoa P N (UsPy) U 7>c0|)]
[
[

> Pr[D € Pgcs] — Pr[D € Peo U (Us(Ps N PE,o))]
> Pr[B wins the BCS database game] — ¢ - 61(Peo U (Uy (Py N Pr ), t)

where the second inequality follows by Proposition 8.12 and the third by the fact that N, (0,1} Pg.oN
((Uopo) U Pcol) - Pcol U (UU(PO' N PE,U))- )

We have that the probability that B wins the quantum database game of GQ",'; is Q(u—qlog £/2*)
by Lemma 4.9. Hence, in order to complete the proof it suffices to show the following proposition.

Proposition 8.14. I(Peo U (Us (P, N Pr,)), t) < k+ (2t +1)/2.

Proof. We have that I(Peoi U (Us(Po N PEy))st) < I(Peoiyt) + H(Up(Pyr N Pey) | Peolyt). By
Lemma 6.11, we have that I(Peo, t) < t/27.

We now bound I(Uy (Py NPE,) | Peols ). Let D € Pyl be a database, and let « ¢ supp(D). Let
z be the first A bits of z. Let tr := BCSExtract(D, z). If state(x, tr) = 1 then set S’ := ); otherwise
let S" := {m : state(x, tr||m) = 1}, where we use the convention that state(x, tr||m) = 0 if tr is not
a transcript where the verifier is about to move, i.e. that tr||m is a malformed transcript.

Suppose first that D ¢ U, (Py NPE,s); we bound Pry[D + [z — y] € Us(P,NPE») N Peol. Fix a
y such that this holds, and let D' := D + [z — y]. Then there exists o* such that D’ € P,+ N Pg ,+
and D € Py« U Pg,o+. There are two cases.

e Case 1: D € Pgy-. Since D' ¢ Pg o+, we get that BCSExtract(D,o*) # BCSExtract(D’, o).
Hence, by Lemma 8.8 we get that y € S(D) or y = o*. Since D’ € P,+, we have that (o*,u’) €
supp(D’) for some ' € {0,1}*, and hence either o* € S(D) or ¢* = 2. Thus, either y € S(D) or
Y=z

e Case 2: D € Py« NPg,+. We have that D’ € P,«. If BCSExtract(D, o*) # BCSExtract(D’, o),

then again we get that y € S(D) or y = 2. If BCSExtract(D, 0*) = BCSExtract(D’,0"), then by
Case 2 of Lemma 8.13 we get that z = ¢* and y € S’. In particular, this implies that D € Pg_,.

44



We conclude that either y € S(D) U {z}, or it holds that D € Pg. and y € S’. We know
that |S(D)U{z}| < 2t + 1. We show that |S'| < k-2* if D € Pg,. If state(>,tr) = 1 then
|S’| =0 < k- 2%, so suppose otherwise. Suppose that |S’|/2* = Pr,,[state(s, tr|m) = 1] > k. Then,
since state(x, tr) = 0, by the definition of round-by-round knowledge we get that E(x, tr) outputs a
valid witness for x. Therefore, D € Pg ., a contradiction, and so |S’| < k- 27,

We thus conclude that if D € Pg_, then Pry[D’ € Peoi N (Us(Pr N Pr o)) < (2t +1)/2*, and if
D € Pg_, then Pry[D’ € PeoiN (U (PoNPr )] < k+(2t+1)/2*. Hence, flip(Us (PyNPEo) | Peols t) <
k+ (2t +1)/2*.

Now suppose that D € U, (Py NPE). We bound Pry[D + [z = y] € Uy (Py N PEs) N Peol]. Fix
a y such that this holds, and let D' := D+ [z + y]. Then there exists o* such that D € Py« NPg
and D' € Py U Pg +. There are two cases.

e Case 1: D' € P,+. Since D € Py« U P and D’ € P, it follows that BCSExtract(D, o*) #
BCSExtract(D’,c*). Hence, by Lemma 8.8 we get that y € S(D) U {c*}. Since D € P,~, we see
that o € S(D), and so y € S(D).

e Case 2: D' € Pyx N PEo+. Since D € Py+, we have that ¢* € im(D), and hence also in im(D’).
Since ¢* is in both im(D) and im(D’) and that D € Pg,+ and D' € Pg,+, it follows that
BCSExtract(D, 0*) # BCSExtract(D’, o*). Hence, by Lemma 8.8 we get that y € S(D) or y = o*.
Since D € Py, it follows that (o*,u') € supp(D) for some u’ € {0,1}*, so o* € S(D). Hence,
y 