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Abstract. Clock synchronization allows parties to establish a common notion of global time by
leveraging a weaker synchrony assumption, i.e., local clocks with approximately the same speed. The
problem has long been a prominent goal for fault-tolerant distributed computing with a number of
ingenious solutions in various settings. However, despite intensive investigation, the existing solutions
do not apply to common blockchain protocols, which are designed to tolerate variable—and potentially
adversarial—participation patterns, e.g., sleepiness and dynamic availability. Furthermore, because such
blockchain protocols rely on freshly joining (or re-joining) parties to have a common notion of time, e.g.,
a global clock which allows knowledge of the current protocol round, it is not clear if or how they can
operate without such a strong synchrony assumption.
In this work, we show how to solve the global synchronization problem by leveraging proof of stake
(PoS). Concretely, we design and analyze a PoS blockchain protocol in the above dynamic-participation
setting, that does not require a global clock but merely assumes that parties have local clocks advancing
at approximately the same speed. Central to our construction is a novel synchronization mechanism
that can be thought as the blockchain-era analogue of classical synchronizers: It enables joining parties—
even if upon joining their local time is off by an arbitrary amount—to quickly calibrate their local
clocks so that they all show approximately the same time. As a direct implication of our blockchain
construction—since the blockchain can be joined and observed by any interested party—we obtain a
permissionless PoS implementation of a global clock that may be used by higher level protocols that
need access to global time.

1 Introduction

Global clock synchronization [15,27,20] allows a set of mutually distrustful parties to approximate on a global
notion of “time,” in such a manner that if some party believes that the global time is τ then every party
believes it to be τ ± ε for some small ε > 0. This in terms, allows for an (approximately) synchronous (or
partially synchronous) execution of distributed protocols which has placed the study of such synchronizers
at a prominent prosition in the theoretical computer science research. A number of works investigating
feasibility across the spectrum of security/adversary models—from perfect to computational security and
for different types of network synchronisation assumption [15,27,20,17,16,2,37,28,32,36]. (For completeness,
we include a description of the current landscape of feasibility in Appendix A.) The common assumption of
such synchronizers is that the (honest) parties have local (initially desynchronized) clocks which advance at
(roughly) the same speed.

Notwithstanding, existing synchronization techniques are inapplicable to the standard model used for
the analysis of Nakamoto-style blockchain/consensus protocols. The reason is that the above traditional
models assume accurate knowledge of the total number of parties present in the system, and their main
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tool is smart counting of messages (or message chains) received—a standard technique in the distributed
computing literature that is also adopted in “iterated” Byzantine Fault Tolerant (iBFT) protocols. In contrast,
in the Nakamoto-style setting, Pass and Shi put forth the sleepy model of consensus as a natural model
for the analysis of such protocols, which reduces the applicability of such counting-based approaches. The
reason is that the sleepy model allows for parties to join the protocol at any time and then to temporarily
sleep—i.e., drop out of the protocol4—according to an arbitrary (or even adversarial) sleep pattern. This
model was later generalized—and adapted to the (G)UC setting [9,10]—in the dynamic availability model
of [4], which captures sleepiness with respect to arbitrary resources available to the protocol, e.g, the clock
(capturing temporary loss of time), the network (capturing temporary connectivity issues), or the random
oracle (temporary unavailability of computing resources).

The above dynamic participation assumptions, however natural, limit the power of existing synchonization
techniques, since the lack of agreement of participation patterns makes counting ineffective to take consistent
decisions without additional synchrony assumptions. In fact, the cryptographic analysis of formally specified
and analyzed proof-of-work (PoW) and proof-of-stake (PoS) blockchains, has typically assumed a (partially)
synchronous model with a notion of global time. Indeed, standard references for the proven security of
Bitcoin [18,19,33] implicitly use the fact that they can refer to a global round index in order to prove the
desired properties of the protocol. For example, the common-prefix property is defined to require that if
an honest party holds a chain at Round ρ, then the prefix of this chain—obtained by removing the k most
recent blocks—will eventually become prefix of the chain of any honest party (at some round ρ′ ≥ ρ). The
assumption was made explicit in [5] by assuming a global clock in the global UC setting [10]: this permits
every party to query a common clock on demand and from that deduce the current round. A similar approach,
assuming access to a global clock, was also adopted in the constructions of PoS blockchains, such as Sleepy
Consensus [35], Snow White [6], and Ouroboros [26,14,4]. So a natural question arises: Do the above blockchain
protocols preserve their security when the (implicit) agreement on the current round5 is replaced by the
assumption of local potentially unsynchronized clocks that proceed at roughly the same speed?

Interestingly, answering this question reveals a delicate distinction between proof-of-work (PoW) based
protocols, in particular Bitcoin, and common Nakamoto-style proof-of-stake (PoS) based protocols. In
particular, the description of the Bitcoin blockchain (without difficulty recalibration) can rely on a purely
execution-driven notion of time: when a party engages in the protocol it need not be aware of the current global
time. In fact, in the static difficulty setting, proving security in this way follows immediately from [18,33].
Moreover, a notion of global time may be inferred by the current blockchain length in each party’s local state.
In the PoS setting, however, this execution-driven notion of time has been achieved only by Algorand [12],
requiring a highly relevant concession: that explicit participation bounds are known to the protocol participants,
i.e., each protocol participant at any given time is aware of how many protocol parties are expected to engage
in the protocol step. Such a rigid participation restriction is not necessary for the Bitcoin blockchain.

This state of affairs leaves an important gap between the PoW setting and those PoS protocols that
require no explicit participation bounds such as [35,6,26,14,4]: these protocols use a notion of global time
hardwired in the protocol logic, and the protocol is unspecified without such global knowledge of time/round.
In fact, there does not seem to be a simple way to removing this dependence of global time, and replace it by
local clocks (even, perfectly-coordination ones that advance at exactly the same speed) while preserving the
security guarantees. (Of course, one could include such a notion of (approximate) global time in a trusted
checkpointing assumption [13], but this defeats the purpose of decoupling the protocol from an explicitly
assumed trusted source of global time when joining the protocol which, as discussed below, is the main
challenge of our work.)

In a nutshell, the reason is that in these PoS blockchains a party’s right to create a block is always
associated with a concrete round6 (also called “slot”), and in order to verify that a block is created by an
eligible party, that party must include a proof explicitly referring to the slot number. This means that a

4 Different degrees of sleepiness allow for queueing received messages which are read once the sleepy party re-joins
(light sleepers) or even missing the messages sent while the party is asleep (heavy sleepers)

5 Recall that this implicit agreement was abstracted as an explicit global clock in [5,4].
6 One can view this as an implicit timestamp

2



new party that joins the blockchain—or one that has been sleeping for long—cannot prune-off chains with
adversarial timestamps so that he eventually adopts the right chain. Thus if a new party with an incorrect
local time joins the protocol and sees a chain that includes blocks which appear to be far in the future
(according to her local time), she cannot decide whether the chain is adversarial—in which case she needs to
ignore or truncate it—or her local time is far behind absolute time. It is worth adding that these are not
merely theoretical considerations: in a real world deployment the dependency on a global clock is typically
met by using a global time synchronization service, e.g., NTP [30] and hence the security of all these protocols
becomes compromised if such service fails to deliver a truly reliable clock. This is a possibility that cannot be
excluded [29].

Note that all previous PoS protocols which can operate in a participation-unrestricted setting [35,6,26,14,4]
require an upper bound on the network delay ∆ to be known to all participants; this in fact is a necessary
assumption, see [34], due to the participation uncertainty. Unfortunately, knowing an upper bound on ∆ does
not help the parties in any direct way to assess the actual time (e.g., by locally counting time intervals of length
∆), as participation gaps can invalidate their local timer with respect to the implicit global execution-driven
time.

Our contributions. We present the first provably secure approach to global clock synchronization in the
dynamic participation setting from standard Nakamoto-style consensus assumptions. We focus on PoS—where
we assume the same honest stake-majority underlying existing PoS protocols [4]—but we expect that our
techniques can be adapted to the PoW setting. To this direction, we devise the first participation-unrestricted
(i.e., without explicitly known participation bounds; see below) PoS blockchain that does not need a global
clock and, instead, enables parties to implement and maintain a bounded-drift clock in the delayed-delivery
network model [33,19]. Our new blockchain protocol avoids the dependency on an external service providing
access to global time, which constitutes an improvement in resiliency compared to previous works. Additionally,
our protocol can be used as a cryptographically secure synchronizer by any external application in this new
era of dynamic participation.

In more detail, our construction assumes that the inaugural parties, i.e., those that initially commence
the protocol execution (but might later-on sleep or drop out), have access to local clocks indicating their
local times which might be off by a parameter ∆ and which advance at (roughly) the same speed. This is
similar in spirit to the guarantee offered by the timing model of Kalai et al. [22]; however, to guarantee full
compatibility with past (G)UC statements—including universal composability—we introduce a new, imperfect
version of the clock functionality [24] as a global setup, which captures that parties advance at roughly the
same pace but, unlike previous attempts to capture synchrony in a composable framework [31,21,3], allows
parties to advance to a next round even before every honest party has finished with his current round, as long
as front-running parties do not drift too far ahead. We believe that this global-UC formulation of relaxed
synchronization can be of independent interest.7

Our protocol guarantees that parties who later join the protocol, no matter how outdated their local clock
value is, will synchronize themselves (up to a small drift depending on network delay) with the rest of the
parties, and remain synchronized for as long as they faithfully execute the protocol.

Although we conduct our formal analysis in the UC framework (where we model certain setup functionalities
as being globally accessible) [9,10], we also provide informal description and analysis of our protocols for
readers not familiar with the framework. Note that the advantage of UC analysis is that it ensures that the
resulting synchronizer can be used to enable the design of synchronous protocols—which enjoy the benefits
sketched above—from our arguably weak assumptions of similar speed local clocks and a bounded-delivery
network. In fact, as the protocol exports the clock it implements to all participants, a party wishing to only
use it for synchonization (for a separate application) can simply join the protocol in a passive mode—without
any need to have stake or participate in the lottery as a slot leader—and keep executing it for a sufficiently
large number of (locally clocked) steps. By doing so, the party will compute a clock that, as we prove, is

7 We note that there are UC realizations of other “clocks” in the literature, such as [11]. This is an unfortunate
name-clash of different concepts: That clock is a much weaker functionality that does not guarantee even a relaxed
(bounded-drift) round-based structure with guaranteed termination.
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guaranteed to be in (loose, up to a small constant offset) synchronization with all honest parties running the
protocol (in a passive or full-participation mode) as long as (available) honest stake majority is preserved.

Our construction builds on Ouroboros Genesis [4], where to signify the connection, we refer to our protocol
as (Ouroboros) Chronos. Similar to [4] we work in the dynamic-availability framework which implies that our
solution works independently of the exact number of honest parties who are around, as long as they hold a
majority of the system’s (currently available) stake. The design and analysis of Chronos uses, in a white-box
manner, elements from previous PoS protocols [35,6,26,14,4], but involves several new ideas which are crucial
in achieving global synchronization in this participation-unrestricted setting. We discuss these ideas in detail
below, where we give an overview of our design. (We include details and points of comparison especially with
the most recent prior work [4] in Section C.)

Overview of our techniques. The heart of our protocol, namely its procedure for synchronization of newly
joining parties, starts with these parties listening on the network for some time, collecting broadcasted chains
and following a “densest chain” chain-selection rule. Informally, this rule mandates that if two chains C and
C′ start diverging at some time τ—according to the reported time-stamps in C and C′—then prefer the chain
which is denser in a sufficiently long interval after that time. Our first key observation is that this rule offers a
useful (albeit in itself insufficient) guarantee in our setting: the joining party will end up with some blockchain
that, although arbitrarily long, is at worst forking from a chain held by an honest and already synchronized
party by a bounded number of blocks (equal to a security parameter) with overwhelming probability. This
observation is the key to start building our synchronization mechanism. More concretely, we prove that the
above process guarantees to eventually prune-off all chains with bad prefixes, i.e., prefixes that do not largely
coincide with the prefixes of the other already synchronized honest parties’ chains. In fact, as we show, the
parties can compute an upper bound on the time (according to their local clocks) they need to remain in the
above self-synchronization state before they build confidence in the above guarantee, i.e., before they know
that their locally held chain is consistent with a long and stable prefix that already-synchronized honest
parties adopt.

The second key observation is that once a joining party has converged to such a fresh—i.e., produced after
the joining party was activated—prefix of an honest chain, it may use the difference between its current local
time and the (local) time recorded when this chain (and other control information) was received to adjust its
local clock so that its local time is consistent with the times reported on the prefix. The hope would be that
a clever adjustment will bring this local time sufficiently close to that of an honest and already synchronized
party.

Designing and analyzing such a natural updating process is unexpectedly challenging. To see why, consider
the following näıve attempt: The party resets its local clock so that the time reported in, say, the last block
of the prefix is the time this block was received. Before discussing the limitations of this proposal, let us first
discuss an inherent property when dealing with clock synchronization in the setting with ∆-bounded (but
adversarially controlled) delay networks. A message received by a party might have been sent up to ∆ rounds
before, hence the time that the party will set its clock to might be up to ∆ rounds away from the clock of the
sender (at the point of update). This delay-induced imprecision is unavoidable, so when we assess a given
proposal we accept that clocks only need to be “loosely” synchronized; specifically, clocks of honest parties
might differ by a bounded amount, where the bound is known and depends only on ∆. In fact, this relaxation
is common and believed to be necessary even in the permissioned model [27,20].8

However, the above simple solution is problematic even when no delays are there: Although the chain that
the newly joining party recovered is guaranteed to have a prefix consistent with the already synchronized
honest parties, individual blocks might be originating from the adversary and therefore contain a time stamp
very different from the true sending time of that block. To make matters worse, the rate of honestly generated
blocks in a chain of an honest party can be quite low as implied by the known bounds of chain quality [19,14],
and thus the time inaccuracy of any individual block can be significant.

A second attempt would be to have in every round (or at regular intervals) every party use the credentials
of all the coins it owns to broadcast a signed timestamp, i.e., every party acts as a verifiable synchronization

8 The model from [27] with honest clocks that report values differing by up to ∆ is equivalent to a situation in which
clocks report the right value, but parties might receive it with a difference of up to ∆ rounds.
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(or timestamping) beacon on behalf of all the coins it owns. The joining party receives all these broadcasted
timestamps, and uses their majority to compute the value of its clock. Still, this solution has drawbacks: The
first is scalability; this is not severe, as existing ideas can be employed such as using the protocol history
as input to a verifiable random function (VRF) to identify eligible parties (or, as in the case of Algorand,
by using Bracha-style committees [7]) to send timestamping beacons in every synchronization round. The
second, harder problem is that in order to use the majority, the local clocks of the parties that report time
need to be perfectly synchronized so that their majority agrees. If their clocks have any small drift, this fails.
Furthermore, even with identical speed clocks, dynamic participation allows parties to drop off and rejoin,
which means that, due to the network delay the honest parties will end up with only loosely synchronized
local clocks. Using the average instead of the majority function does not help out here either since a single
adversarial timestamp can throw off the average arbitrarily far. Hence, taking the median of the received
timestamps promises to be more stable against extreme values. Observe that as long as synchronized honest
parties’ local clocks are not far apart, the times they report will be concentrated to a sufficiently small time
interval, and the median will fall in this interval.

The above insight brings us closer, but is still insufficient: If the adversary can serve to, say, two
different joining parties different and possibly disjoint sets of timestamps (on behalf of eligible corrupted
synchronization-beacon parties) then he could force an opposing clock adjustment between the two that will
increase their clock drift well beyond the drift of any pair of already synchronized parties. To resolve this
issue, we need to ensure that the parties agree on the set of eligible timestamps (whether honest or corrupted)
that they use for adjusting their local time. This is a classical consensus problem. Luckily, our synchronizer
runs in tandem with a PoS-based blockchain which solves consensus with dynamic availability, and which
can assist in reaching agreement on the synchronization-beacon values for recalibration. And thanks to the
property discussed at the beginning of the section—namely that even joining parties (without accurate time)
will eventually be able to bootstrap a sufficiently long prefix of the blockchain—the joining parties will agree
on the set of beacons for recalibration.

Our technical solution follows the spirit of the final conclusion above. In a nutshell, we will use the VRF to
assign timestamping-beacon parties to slots according to their state. Parties who are synchronized and active
when their assigned slot is encountered will broadcast a timestamp and a VRF-proof of their eligibility for the
current timeslot (together, we call this a synchronization beacon). And to agree on the set of eligible parties
that will be used (including the dishonest ones) these beacons will also be included in the blockchain by the
already synchronized parties, similarly to transactions. Any party who joins and tries to get synchronized will
gather chains and record any broadcasted beacons (and keep track of the local time these were received).
Once the party is confident it has a sufficiently long prefix of the honest chain, it will retrospectively use this
gathered information to extract the agreed-upon set of beacons, compute a good approximation of the clocks
parties had when they broadcasted these beacons and apply a median rule to set its local clock to at most
a small distance from other honest and synchronized parties. In order to ensure that already synchronized
parties adjust in tandem with joining parties we will have them also periodically execute the synchronization
algorithm—but of course using their local blockchain, which they know is guaranteed to have a large common
prefix with any other honest and synchronized party. Evidently, to turn this high-level idea of our solution
into a provably secure protocol requires careful design choices that we present in Section 3. The analysis is
given in Section 6. This constitutes the main technical contribution of this paper.

Outline. Section 2 sketches our model and Section 3 describes our main result, i.e., outlines the Chronos
protocol and the functionality it realizes, along with the security analysis. These sections are written in a
self-contained manner so that the reader can get a first idea of our contributions and techniques. Sections 4-6
include more details on our results and can help an interested reader to get an overview of the detailed
treatment that is presented in the Appendix.

2 Our Model

Basic Notation. For n ∈ N we use the notation [n] to refer to the set {1, . . . , n}. For brevity, we often
write {xi}ni=1 and (xi)

n
i=1 to denote the set {x1, . . . , xn} and the tuple (x1, . . . , xn), respectively. For a tuple
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(xi)
n
i=1, we denote by med((xi)

n
i=1) the (lower) median of the tuple, i.e., med((xi)

n
i=1) , x′dn/2e, where (x′i)

n
i=1

is a (non-decreasing) sorted permutation of (xi)
n
i=1.

For a blockchain (or chain) C, which is a sequence of blocks, we denote by Cdk the chain that is obtained
by removing the last k blocks; and by head(C) the last block of C. We write C1 � C2 if C1 is a prefix of C2.

Dynamic Availability. We adopt the dynamic availability framework from [4] which captures parties
joining and leaving the protocol at (the environment’s) will. This is done by equipping the functionalities,
global setups, and the protocol with explicit registration/de-registration commands, thereby keeping track of
when parties are joining and adjusting their guarantees depending based on this information. We refer the
reader to [4] for a detailed discussion of this model.

Relaxed Synchrony. The synchrony assumption that parties advance at exactly the same pace can be
captured by the global-setup variant of the clock functionality from [24]. This is a weaker version of the
global clock used in previous composable analyses of blockchains [5,4] in that it does not keep a counter
representing the global system time, but rather maintains for each party (resp. ideal functionality) an
indicator-bit dP (resp. d(F,sid)) of whether or not a new round has started. Each party’s indicator is accessible
by a standard clock-get command. All indicators are set to 0 at the beginning of each round; once any
party or functionality finishes its round it issues a clock-update command that updates his indicator to 1.
Once every party and functionality has updated its indicator, the clock resets all of them to 0; this switch
allows the parties to detect that the previous round has ended and move on to the next round.

Arguably the above clock offers very strong synchronisation guarantees, since once a round switches,
every party is informed about it in the next activation. In [24] a relaxed version of this clock was introduced
which allowed the adversary to delay notifying the parties about a round switch by bounded amount of
fetch-attempts. This behavior relaxes the perfect nature of the clock, but it still ensures that no party advances
to a next round before all parties have completed their current round.

In this work we consider parties that advance at roughly the same speed, which means that a party might
advance its round even before another party has finished with its current round, and even multiple times,
as long as its is ensured that no honest party is left too far behind. For this purpose we introduce an even
more relaxed version of the (global-setup variant) of the clock from [24] which, intuitively, allows a party to
advance to its next round multiple times before some honest parties have completed their current round, as
long as the relative pace of advancement for any two honest parties stays below a drift parameter ∆clock.
We note in passing that a similar guarantee was formulated in the timing model [23]; however, the solution
there notified the underlying model of computation which creates complications with the (G)UC composition
theorem which would need to be reproved. To avoid such complications, in this work we capture the above
relaxed synchrony assumption as a global functionality.9

The above is captured as follows: Similar to the perfect clock above, the imperfect clock stores an
indicator-bit dP which is used to keep track of when everyone has completed a round (not necessarily the
same round)—one can think of this indicator as corresponding to a baseline round-switch, which is however
hidden from the parties and might only be observed by ideal functionalities. Additionally, for every party the
imperfect clock keeps an imperfect version of the indicator bit dImpP (corresponding to switches P’s local, e.g.,
hardware, clock switches) which is what is exported when the party attempts to check his clock.

This local indicator is used similarly to how synchronous protocols would use the perfect indicator in [24];

but we allow the adversary to control when this local indicator is updated under the restrictions that (a) dImpP

cannot advance in the middle of P’s round, (b) it cannot fall behind the baseline induced by the indicator
dP, and (c) it cannot advance ahead of the baseline by more than ∆clock. This is achieved by the imperfect
clock keeping track of the relative difference/distance driftP between the number of local advances of each

registered P from the baseline updates; this distance is increased whenever dImpP is reset (by the adversary)
to 0 and decreased whenever the baseline indicator dP ∈ {0, 1} is reset to 0; if the distance of some party

9 In [24] a functionality corresponding to the timing-model assumptions [23] was proposed along with a reduction to
the (local) clock functionality. However, both the fact that their clock functionality is local and that their reduction
uses a complete network of (known) bounded-delay authenticated channels—which we do not assume here—makes
that result incompatible with our model and goals.
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from the baseline falls below 0 (i.e., the adversary attempts to stall a party when the baseline advances10)

then the local indicator is reset to dImpP = 0 (which allows P to advance his round) and the corresponding
distance is also reset to 0.

Modeling Peer-to-Peer Communication. We assume a diffusion network in which all messages sent by
honest parties are guaranteed to be fetched by protocol participants after a specific delay ∆net. Additionally,
the network guarantees that once a message has been fetched by an honest party, this message is fetched
by any other honest party within a delay of at most ∆net, even if the sender of the message is corrupted.
We note that this network model is not substantially stronger than in previous works [5,4], which use a
network functionality providing bounded-delay message delivery. Our model is equivalent via an unconditional
reduction: echoing received messages. In practice, this reduction of course needs to be applied prudently to
avoid saturating the network. This is exactly done by the relevant networking protocols: e.g. in Bitcoin, when
a new block is received its hash is advertized and then propagated and validated by the network as needed.
Chronos can use the same mechanism. We detail the corresponding functionality in Section B.

Genesis Block Distribution; the Weak Start Agreement. Our model allows parties’ local time-stamps
to drift apart over the course of an execution; additionally the model makes no assumption that the
initialization of the initial stakeholders is completed in the same round, i.e., honest parties might start
producing blocks for logical slot 1 in different rounds of the (global) execution. To this aim, we weaken the
functionality FINIT adopted by [4] to allow for bounded delays when initial stakeholders receive the genesis
blocks. Namely, our F∆net

INIT functionality merely guarantees genesis block delivery to initial stakeholder not
more than ∆net rounds apart from each other; the offsets are under adversarial control. The details of the
F∆net

INIT functionality appear in Section B.

Further Hybrids. The protocol makes use of a VRF (verifiable random function) functionality FVRF, a
KES (key-evolving signature) functionality FKES, and a (global) random oracle functionality GRO (to model
ideal hash functions). Full model details are provided in Section B for reference.

3 The Synchronizing Blockchain

In this section we provide our main result: a concrete blockchain protocol, called Chronos (meaning “time”
in greek), implementing a new functionality that extends the ledger from [4] with a robust notion of time.
Informally, in addition to the standard ledger guarantees, this new ledger exports a notion of global time
with strong accuracy guarantees.

In a nutshell, our new “timed” ledger functionality maintains an immutable ledger state denoted by state

which encodes a sequence of transaction blocks. How fast this state grows and which transactions it includes
are specified in a ledger policy description, which is a ledger parameter. Each registered party can request to
see the state, and is guaranteed to receive a sufficiently long prefix of it—the length of each party’s visible
prefix of the state at any given point is captured by (monotonically) increasing pointers that point to the last
block this party’s current prefix includes. The adversary is given policy-limited control to set these pointers
within a sliding of width windowSize, which starts at the head of the state and slides as the state increases.
The above mechanism captures the guarantees of the common-prefix (CP) property of blockchains (where the
common-prefix parameter relates to the width of the window).

Parties advance the ledger when they are instructed to (activated with specific maintain-ledger input)
by their UC environment. The ledger uses these queries plus the knowledge of the baseline speed to ensure
the advancement of the state (which encapsulates a property analogous to chain growth (CG) [18,33]). Per
the ledger policy, any party can input a transaction to the ledger, which are validated and guaranteed
to be included eventually whenever they stay valid (this will ensure transaction liveness [18]). The ledger
gives different guarantees to honest parties depending on whether they are considered synchronized or
not. Roughly speaking, synchronized parties are the parties for which one can provide the best security
guarantees (for example, they are inaugural, or part of the system for a long time and correctly bootstrapped).

10 Note that, by definition the baseline advances when all parties have completed their current round.
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De-synchronized honest parties receive reduced security guarantees and could, until they become synchronized,
have unreliable values.

In our ledger description, the above policy is specified by means of a ledger-parameter/procedure which
is denoted as ExtendPolicy. The basic mode of operation of ExtendPolicy is as follows: it takes, as an input,
a proposal from the adversary for extending the state, i.e., a sequence of new blocks to be added, and can
then decide to follow this proposal if it satisfies its policy sketched above; if it does not, ExtendPolicy can
ignore the proposal (and enforce a default extension). It will enforce minimal chain growth, a certain fraction
of “good blocks,” (a.k.a. chain quality (CQ) [18,33]) and transaction liveness guarantees for old and (still)
valid transactions. In fact, as discussed below, in the security proof of Chronos, we will demonstrate that
it satisfies the above properties, CP, CG, and CQ for a set of appropriate parameters, and will use this to
derive a UC simulator that respects the restrictions of our ledger’s ExtendPolicy with the same parameters.

The above policy of the new ledger is similar to the one from [4,5]. What differentiates the new Chronos
ledger is an exportable approximate-time extension: Every party P has an associated timestamp t—which will
correspond to this party’s local time in Chronos. t is adjusted in two ways: (1) in a monotonically increasing
manner whenever the local (baseline) clock (of the party) advances, and (2) in a non-monotonic manner
(discussed below), at epoch boundaries. (The beginning and the end of epochs is according to the party’s
local time t—an epoch switch occurs whenever the local time increases by RL from the (local) timestamp of
the previous epoch.) In fact, our ledger records an extended local timestamp timeP for each party P, which
is the pair timeP = (e, t), where t is as above, and e is the number of non-monotone adjustments to t, i.e.,
the number of epoch switches that P has observed. Note that due to the potential adversarial clock and
network influence combined with dynamic participation, we cannot realize a ledger with perfect, monotonically
and consistently increasing timestamps. Therefore we weaken the timestamp updates guarantee to allow
the adversary to apply a limited shift s, within some bounding parameter shiftLB ≤ s ≤ shiftUB, to the
non-monotone adjustments that are triggered by epoch-switches. Nevertheless, the ledger enforces that any
two alert parties with respective timestamps (e, t) and (e′, t′), satisfy the constraints |t− t′| ≤ timeSlacktotal

and |t − t′| ≤ timeSlackep if e = e′, and |e − e′| ≤ 1 for the respective clock parameters timeSlackep,
timeSlacktotal that define the maximally allowed skewness of parties. Note that this gives the possibility
that within an epoch the slack could be potentially different (i.e., much better) than when comparing two
timestamps across epochs.

Our main result is stated in the following. We stress that this is a simplified version of the concrete
theorem we actually prove, with some of the parameters left implicit. Our proof actually shows that we can
obtain security for a much more concrete set of parameters, reflected fully in Theorem 7. Note that such
precision concrete-security statements are crucial for the analysis of Nakamoto-style blockchains as one needs
to take decisions such as “how many confirmations are sufficient to ensure a given block cannot be inverted?”

Theorem. Our blockchain synchronizer realizes the ledger functionality described above and achieves the
clock parameters

shiftLB = −2∆; shiftUB = ∆;

timeSlacktotal = 2∆; timeSlackep = ∆,

where the parameter RL is chosen sufficiently large w.r.t. to the security parameter and ∆ = ∆net +∆clock.
The parameters of the ledger and of ExtendPolicy are instantiated based on the concrete CP, CG, and CQ
guarantees of our blockchain synchronizer.

The ledger functionality is fully specified in Section D. A glossary of all parameters of the ledger is
provided in Section M.2. The full UC-realization statement with all parameters concretely instantiated (which
is the last step in our sequence of proofs) is given in Section L.

Using Chronos as a Black-box Synchronizer. Cryptographic protocols can use the abstracted clock and
make use of the provided timestamps. When timeSlackep = timeSlacktotal = 0, and shiftLB = shiftUB = 0
we obtain an equivalent formulation of the global time/clock of previous works. If shifts are to be expected
but slack is still zero, then a protocol must anticipate irregularities at exactly the epoch boundaries. If in
addition the skew is not zero, then a higher-level protocol must be further resilient to parties working with
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slightly inaccurate time values. Since the irregularities are very predictable and bounded, it is possible to
propose generic countermeasures for protocols that need more accurate clocks. For example, a protocol can
stall the operation at epoch boundaries and resume at a fixed later time in the new epoch. Additionally,
the duration of one logical round of the higher-level protocol can be enlarged to absorb the skew. By the
limited shift, the bounded skew, and the guaranteed advancement of the timestamps one can derive concrete
guarantees for liveness. Finally, when working in more optimistic (i.e., less adversarial) network models,
the time-stamps can be further adjusted to improve accuracy assuming the network parameters (such as
expectation and deviation of delay) are known. We give more details in Section E.

3.1 Our Protocol

The protocol we present is a Nakamoto-style proof-of-stake based protocol for the so-called semi-synchronous
setting; this is the same model used for standard analyses of Bitcoin. In this model, parties have a somewhat
accurate common notion of elapsed time (rather than absolute time information) and the network has an
upper bound on the delay which is not known to the parties. At a very high-level the protocol attempts to
imitate a process which resembles a situation in which state (including time) is continuously passed on to
currently alert stakeholders. The honest majority of active stake assumption that is explicit in [14,4] will
then ensure that the adversary cannot destroy this state by using his ability to tune participation.

To ease into the main protocol ideas it is useful to imagine a situation in which there is a core of parties
with sufficient stake that has been around from the onset of the blockchain. (These parties have a common,
albeit somewhat imperfect, understanding of how much time has passed since the protocol started and can
contribute this information to the synchronization procedure.) We stress that the continuous or indefinite
presence of such parties is not needed in our final protocol which will ensure that the information that these
parties would safeguard is passed on to new parties if/when such inaugural parties go to sleep or deregister.

Here is how such an inaugural participant (i.e., a participant who is assigned stake at the outset of
the computation by FINIT) executes the protocol. With access to the provided genesis block, which reveals
an initial record S1 =

(
(P1, v

vrf
1 , vkes

1 , s1), . . . , (Pn, v
vrf
n , vkes

n , sn)
)

that associates each participant Pi
11 to its

chosen public keys used for verification purposes of the staking process and its initial stake si, each party
begins the so-called first epoch of the staking procedure and sets its local clock localTime to the value 1. The
party has to execute a certain set of tasks per round. Note that two inaugural parties have only a somewhat
accurate notion of elapsed time and receiving the genesis block might be delayed, it might very well be that
a party P1 has executed three rounds, while P2 has only executed one so far, or has not even received the
genesis block. The bounds on the clock drifts and the network delay however ensure that the difference of the
number of completed protocol rounds does not drift too far apart.

A participant’s main task (per round) is to evaluate whether it is elected to produce a block for the
current local time, which we refer to as a slot. For this, it evaluates a verifiable random function (VRF)
on input x := η1 ‖ localTime ‖ TEST, where η1 is a truly random seed provided by FINIT. If the returned
value y is smaller than a threshold value T

ep
P , which is derived from the stake associated with P, then the

participant is called a slot leader. The threshold is computed to yield a higher probability of slot leadership
the higher the stake of the party. The main task of the slot leader is to create a valid block for this slot that
contains, as control information (alongside the transactions), the VRF proof of slot leadership, an additional
random nonce, and the hash to the head of the chain it connects to. Each block is signed using a key-evolving
signature scheme.12 As typical in these systems, the block is made to extend (essentially) the longest valid
chain known to the party. Due to the slightly shifted local clocks, some care has to be taken to not disregard
entirely chains that contain blocks in the logical future of a party. However, the chain a party adopts (and
computes the ledger state from) at slot localTime shall never contain a block with a higher time-stamp.13

11 More precisely, Pi denotes just a bitstring in the model that formally identifies a machine and is used to identify
which keys (and hence stake) are controlled by corrupted machines. Note that we write participant or party instead
of machine.

12 The KES ensures that if a participants gets corrupted, no blocks can be created in retrospect.
13 Some further care has to be taken in proof of stake to detect chains that try to perform a long-range attack. We

describe this in the next section in more detail when we recall the Genesis chain-selection rule.
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In addition to the above actions, or if a party is not slot leader, it must play the lottery once more on
input x′ := η1 ‖ localTime ‖ SYNC. If the party is lucky this time and receives a return value smaller than the
threshold (defined shortly), it must emit a so-called synchronization beacon containing the VRF proof and
the current time localTime. Synchronization beacons are treated similarly to transactions and are contained
into blocks if valid. If a party has done all its tasks, it increments localTime and waits until the round is
over. Except for the generation of synchronization beacons, which is only done in a first fraction of an epoch,
the above round procedure iterates over the entire first epoch, where the length of an epoch is R, a parameter
of the protocol. Our security proof shows that this first epoch does result in a blockchain satisfying common
prefix, chain growth, and chain quality properties for specific parameters, as long as the leader-election per
slot is to the advantage of honest protocol participants.14

At the epoch boundary to the second epoch, two important things happen. First the stake-distribution
and the epoch randomness change: they are derived from specific blocks contained in the guaranteed common
prefix established by the first epoch. In particular, we must ensure that at the time the stake distribution is
fixed, the epoch randomness cannot be predicted to ensure the freshness of the slot leader election lottery for
the second epoch. The second critical update at the epoch boundary is the local time: each party performs a
local-clock adjustment, outlined in Section 5.1, which ensures that after the adjustment parties are still close
together, where “close” means within ∆ = ∆net +∆clock (two sources of bounded variance contribute to this:
delay and drift) and that performed shifts of the local clock remain small (which is crucial for security). The
desired property follows from the common-prefix guarantee (enabling an agreement on beacons), the honest
majority assumption (enabling small clock shifts), and the network properties and clock properties (which
ensure correlated arrival times). With some additional considerations detailed in Section 5.1, the protocol
proceeds executing the above round tasks for the entire second epoch until the next boundary is met. This
iterated process, where one epoch bootstraps the next, is backed by an inductive security argument, following
previous works [4,14,26], that shows how the overall security is a consequence of the first epoch achieving the
desired blockchain properties to serve as a good basis for the second, etc.

The reason to perform a local-clock adjustment is to enable the main goal of our construction: to enable
new parties to safely join the system and to determine, just by observing the network and without any further
help, an accurate and up-to-date local-clock value and ledger state with respect to the existing honest parties
in the system, i.e., being within a ∆ interval of their clock values and obtaining the same common-prefix,
chain-quality and chain-growth guarantees. After this, newly joining parties can start contributing to the
security of the system.

The bootstrapping procedure for newcomers is quite involved due to a combination of obstacles: First,
the joining party needs to obtain a blockchain that shares some common prefix with the common prefix
established by the existing parties. This is achieved by having the joining party listen to the network for
some rounds, and picking the “best” chain C it sees in the following sense: when compared with any other
seen valid chain C′, C contains more blocks in an interval of slots of size s starting from the forking point
of C and C′. We prove that based on the honest-majority assumption, such a densest chain must share a
large common prefix with the chains honest parties currently hold. However, C could still be adversarially
crafted and for example be much longer than what honest parties agreed on by extending into the future,
hence a reliable ledger state cannot yet be computed. However, it will become possible once the joining party
succeeds in bootstrapping also an accurate time-stamp in the ∆ interval of honest participants’ timestamps,
which is the second obstacle to overcome. After the party is guaranteed to be hooked to a large prefix of the
honest parties’ common-prefix, it begins recording all synchronization beacons it receives on the network for
a long enough period of time, a parameter of the system. The length of the waiting time is set in order to
ensure that, after the newly joining party started listening to the network, the parties at least once seeded
the slot-leadership lottery with a fresh nonce that was unpredictable at the time of joining the system. After
an additional waiting time, the agreed-upon set of beacons (with proofs referring to the fresh lottery) will
be part of the common prefix and eventually be part of what is known to the joining party. We prove that
based on this agreement on beacons found in the blockchain, the clock-adjustments procedure by the current

14 We note that the leader election is per logical slot and honest parties will all pass through the same logical not at
the same time, but at related times.
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participants in the system can be retraced and will yield a clock adjustment to the newly joining party’s local
clock that will directly push it into the interval of existing honest participants’ local clock. At this point,
the party runs the normal chain-selection mechanism, essentially cutting off blocks in its logical future and
obtains a reliable ledger state as well.

3.2 Outline of the Security Arguments

To handle the proof complexity, we divide the proof logically into a sequence of steps. Here we give a very
high-level motivation of this modular approach with pointers to the technical sections. Later in Section 6, we
give an in-depth introduction to the more concrete security statements.

We first analyze the protocol only for a single epoch in a rather static world, where parties do not
disappear. We focus on proving the traditional CP, CG, and CQ guarantees of the protocol for the first
epoch. This is needed to establish that the underlying blockchain protocol, Ouroboros Genesis, is able to
tolerate small inaccuracies in terms of time-stamps. To be more precise, the only modification that would
be needed at this point is that parties buffer future chains and consider them later. Once we can rely on
the blockchain properties, we can as a second step analyze the synchronization procedure and prove that
no matter what the adversary does, the parties will always stay close together when transitioning from one
epoch (i.e., the first) to the next and the logical clock-adjustments are very small. This establishes the base
case for a greater inductive argument to establish the full security over the lifetime of the protocol in a static
world. The exact sequence of arguments is given in Section 6.4 and the formal theorems and the proofs are
given in the technical supplement, Sections F to H.

The first step in moving to the more dynamic world we are aiming at is the analysis of the joining
procedure. A party joining the network acts like an observer of the network (i.e., it does not interfere with
the protocol) and becomes synchronized after extracting enough information from the network, at which
point it can start to be an active protocol participant. This step of the security proof can hence be conducted
based on the previous analysis. This is detailed in Section 6.5 and in the technical supplement, Section I
provides the formal theorems and proofs.

At this point, we are ready to derive the CP, CG, and CQ guarantees for the entire protocol in a fully
dynamic world, where parties join any time, might be temporarily stalled, and disappear unannounced. This
can be argued based on a case distinction on different party types (cf. Section 4) and quantify their impact
on the security guarantees established above. As it turns out, the most crucial aspect is the joining of new
parties, whose security we already understand at this point. This theorem and its proof are given in the
technical supplement, Section J.

Moving towards the UC proof, we first observe that the proven chain-growth guarantees (coupled with
CP and CQ) do not directly imply liveness of the ledger as in previous works. The reason is that the parties,
due to the time-adjustments at the end of an epoch, could (from the viewpoint of an outside observer) move
slower than what the observer perceives as the nominal time advancement derived from the baseline speed,
i.e., a more objective notion of time. For this reason, we prove a concrete relationship between the reported
time-stamps by parties and such a reference time. The definition of the reference time and how to connect it
to liveness is discussed in Sections 6.3 and 6.7 respectively, the formal statements with proofs are given in
technical Section K.

Putting everything together, we can finally instantiate all ledger parameters and describe the simulator.
The clue here is that writing down the simulator at this point is conceptually simple: the simulator can in
principle emulate the real-world execution perfectly. As long as the ledger parameters are chosen correctly
based on the CP, CQ, and CG parameters established above in the fully dynamic world, only a violation of
the properties can prevent a correct simulation. This is the topic of the technical Section L.

4 Dynamic Participation Model

To support a fine-grained dynamic participation model, we follow the approach of [4] and categorize the
parties into party types. Recall that the dynamic participation model allows to capture the security of the
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Basic types of honest parties
Resource Resource unavailable Resource available

random oracle GRO stalled operational
network FN-MC offline online
clock GPerfLClock time-unaware time-aware
synchronized state, local time desynchronized synchronized
KES capable of signing (w.r.t. local time) sign-capable sign-uncapable

Derived types:

alert :⇔ operational ∧ online ∧ time-aware ∧ synchronized ∧ sign-capable

active :⇔ alert ∨ adversarial ∨ time-unaware

Note: alert parties are honest, active parties also contain all adversarial parties.

Fig. 1. Party types.

protocol in a realistic fashion, by considering that some parties might be stalling their computation, some
might accidentally lose network access and hence disappear unannounced, and others might lose track of the
passage of time due to some failure. In our model, we formally let the environment be in charge of connecting
and disconnecting to its resources: The various basic and derived types of parties are summarized in Figure 1.

For a given point in execution, a party is considered offline if it is not registered with the network,
otherwise it is considered online. A party is time-aware if it is registered with the clock, otherwise we call it
time-unaware. We say that a party is operational if it is registered with the random oracle, otherwise we
call it stalled. Finally, we say that a party is sign-capable if the counter in FKES is less or equal to its local
time-stamp.

Additionally, an honest party is called synchronized if it has been continuously connected to all its resources
for a sufficiently long interval to make sure that, roughly speaking, (i) it holds a chain that shares a common
prefix with other synchronized parties (synchronized state) and (ii) its local time does not differ by much
from other synchronized parties (synchronized time). Our protocol’s resynchronization procedure JoinProc
will guarantee the party that after executing it for the prescribed number of rounds, it will achieve both
properties (i) and (ii) above. In addition, such a party will eventually become sign-capable in future rounds
(in case the KES is “evolved” too far into the future due to a de-synchronized time-stamp before joining).
We note that an honest party always knows whether it is synchronized or sign-capable and (in contrast to
the treatment in [4]), it maintains its synchronization state in a local variable isSync and makes its actions
depend on it.

Based on these four basic attributes, we define alert and active parties similarly to [4]. Alert parties
are considered the core set of honest parties that have access to all necessary resources, are synchronized
and sign-capable. On the other hand, potentially active parties (or active for short) are those (honest or
corrupted) parties that can potentially act (propose a block, send a synchronization beacon) in its current
status; in other words, we cannot guarantee their inactivity. Formally, it includes alert parties, corrupted (i.e.,
adversarial) parties, and moreover any party that is time-unaware (independently of the other attributes;
this is because those parties are in particular not capable of evolving their signing keys reliably and hence it
cannot be excluded that if they later get corrupted, they might retroactively perform protocol operations in a
malicious way).

The definition of a party type is extended from a single point in an execution to a logical slot in a
natural way as follows: a party P is counted as alert (resp. operational, online, time-aware, synchronized,
sign-capable) for a slot sl if the first time its local clock passes through the (logical) slot sl, it maintains
this state throughout the whole slot, otherwise it is considered not alert (resp. stalled, offline, time-unaware,
desynchronized, sign-uncapable) for sl. It is considered corrupted (i.e., adversarial) for sl if it was corrupted
by the adversary A when its local clock satisfied localTime ≤ sl. Finally, it is active for sl if it is either
corrupted for that slot, or it is alert or time-unaware at any point during the interval when its local clock for
the first time passes through slot sl.
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5 Protocol Details

We provide a more in-depth overview of our new protocol (Ouroboros Chronos) in this section and focus on
the actions of an alert party (i.e., synchronized and with access to all required resources). Such a party runs
the following standard round instructions:

1. Fetch information from the network (procedure FetchInformation) over which transactions, beacons, and
blocks are sent. The local time is updated via a call to UpdateTime. The party locally advances its
time-stamp whenever it realizes that a new (local) round has started by a call to GImperfLClock and
comparison to lastTick. The code is found in Section C.6 of the technical supplement.

2. Record the arrival times of the synchronization beacons the protocol sends out (call to ProcessBeacons).
This is discussed in detail in Section 5.1.

3. Process the received chains: as some chains might have been created by parties whose time-stamps are
ahead of local time, the future chains are stored in the buffer futureChains for later usage. Among the
remaining chains, the protocol will decide whether any chain is more preferable than the local chain
using a chain-selection rule inspired by Ouroboros Genesis [4] (procedure SelectChain) which we thus
refer to as the Genesis rule. An important property of the Genesis rule is that chain selection is secure
without requiring a moving checkpoint: roughly speaking, a chain C1 is preferred over C2 if they have a
large common history, except possibly the last k blocks (where k is some parameter) and C1 is longer. If
however, they fork even before, chain C1 is preferred if it is block density is higher compared to C2 in a
carefully selected interval of size s slots after the forking point. The details of all the above are described
in Sections C.5, C.8 and C.9,

4. Run the main staking procedure (StakingProcedure) to evaluate slot leadership, and potentially create
and emit a new block or synchronization beacon. Before the main staking procedure is executed, the
local state is updated including the current stake distribution (call to UpdateStakeDist). The procedures
are specified in Sections C.10 and C.6.

5. If the end of the round coincides with the end of an epoch, the synchronization procedure is executed
described in Section 5.1.

The code of the entire protocol is given in the technical supplement, Section C. The code of the basic
round structure is given in Section C.3 that steers the above tasks. Below we provide details on the most
important aspects of the above process.

Stake distribution and leader election. A party P is an eligible slot-leader for a particular slot sl in
an epoch ep if its VRF-output (for an input dependent on sl) is smaller than a threshold value T ep

P . The
threshold is derived from the (local) stake distribution Sep assigned to an ep which in turn is defined by
the (local) blockchain Cloc, that is we assume an abstract mapping that assigns to a party (identified by
an encoding of its public keys) its stake derived as a function of the transactions in Cloc, the genesis block,
and the epoch the party is currently in. As described above, the stake distribution is only updated once a
party enters a new epoch, i.e., once localTime mod R = 1. Say a party enters in epoch ep + 1, then the
distribution is defined by the state contained in the block sequence up to and including the last block in
epoch ep− 1 (or the genesis block for the first two epochs). Furthermore, the epoch randomness for epoch
ep + 1 (to refresh the lottery) is extracted from the previous randomness and the seeds defined by the first
two-thirds of the blocks in epoch ep (for the first epoch, the randomness is defined by the genesis block).
Both of these updates thus derived based on the (supposedly) established common prefix among participants.

The relative stake of P in the stake distribution Sep is denoted as αep
p ∈ [0, 1]. The mapping φf (·) is

defined as

φf (α) , 1− (1− f)α (1)

and is parametrized by a quantity f ∈ (0, 1] called the active slots coefficient [14].
Finally, the threshold T

ep
p is determined as

T ep
p = 2`VRFφf (αep

p ), (2)

where `VRF denotes the output length of the VRF (in bits).
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Note that by (2), a party with relative stake α ∈ (0, 1] becomes a slot leader in a particular slot with
probability φf (α), independently of all other parties. We clearly have φf (1) = f , hence f is the probability
that a hypothetical party controlling all 100% of the stake would be elected leader for a particular slot.
Furthermore, the function φ has an important property called “independent aggregation” [14]:

1− φ

(∑
i

αi

)
=
∏
i

(1− φ(αi)) . (3)

In particular, when leadership is determined according to φf , the probability of a stakeholder becoming a slot
leader in a particular slot is independent of whether this stakeholder acts as a single party in the protocol, or
splits its stake among several “virtual” parties.

The technical description of the staking procedure appears in Section C.10. It starts by two calls evaluating
the VRF in two different points, using constants NONCE and TEST to provide domain separation, and receiving
(yρ, πρ) and (y, π), respectively. The value y is used to evaluate slot leadership: if y < T

ep
p then the party is a

slot leader and continues by processing its current transaction buffer to form a new block B. Aside of this
application data, each block contains control information. The information includes the proof of leadership
(y, π), additional VRF-output (yρ, πρ) that influences the epoch-randomness for the next epoch, and the block
signature σ produced using FKES. Finally, an updated blockchain Cloc containing the new block B is multicast
over the network (note that in practice, the protocol would only diffuse the new block B). A slot leader
embeds a sequence of valid transactions into a block. As in [4], we abstract block formation and transaction
validity into predicates blockifyOC and ValidTxOC. The function blockifyOC takes as input a plain sequence of
transactions and outputs a block, whereas ValidTxOC takes as input a single transaction and the ledger state.
A transaction is said to be valid with respect to the ledger state if and only if it fulfills the predicate. The
transaction validity predicate ValidTxOC induces a natural transaction validity on blockchain-states that we
succinctly denote by the predicate isvalidstate(st) that decides that a state is valid if it can be constructed
sequentially by adding one transaction at a time and viewing the already added transactions as part of the
state.

Emitting synchronization beacons. An alert party emits so-called synchronization beacons in the first
R/6 slots of an epoch ep. To be admissible to emit a beacon, the party evaluates the VRF again as for
slot-leadership. To obtain an independent evaluation, we use a new constant called SYNC to obtain domain
separation. If the returned value y ≤ T ep,bc

P , where in this case we can simply use a linear scaling of the
domain, i.e., we define the threshold

T ep,bc
p := 2`VRF · αep

p , (4)

then the party will create a block header and send it on the broadcast network.15

Embedding synchronization beacons. Part of the staking procedure is to embed synchronization beacons
in the first 2R/3 slots of an epoch ep. A synchronization beacon is embedded if the creator of the beacon was
elected to emit a beacon (according to the current stake distribution in epoch ep) in the first R/6 slots of
this epoch, and if no other beacon in the chain already specifies the same slot and party identifiers. Like
this, an alert party is assured to produce a valid chain according to the validity predicate IsValidChain in
Section C.5. Note that for a slot leader, we provide for simplicity an extra-predicate ValidSB in Section C.5
that allows ensuring that the extension block is valid with respect to beacon inclusion.

Running the synchronization procedure. At the end of an epoch, parties run the synchronization
procedure based on the beacons recorded in this epoch. We will elaborate on this core procedure of the new
protocol in Section 5.1.

15 Note that there is no need to additionally sign a beacon. Looking ahead, for the synchronization procedure to
achieve its goal, we only need agreement on the reported slot numbers (by the respectively elected parties), which is
derived from the blockchain, and the guarantees provided by the broadcast functionality. Furthermore, to bound
the shift that alert parties experience, it is sufficient that slot numbers reported by alert (and thus synchronized
parties) are dominating and are delivered within a reasonable number of rounds after first being emitted.
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5.1 The Synchronization Procedure

Our main synchronization procedure is based on several logical building blocks. We describe each of them in
detail and provide the rationale behind the choices.

1.) Synchronization slots: Once a party’s local time-stamp reaches a defined synchronization slot for the first
time, it will adjust its local time-stamp before moving to the next slot. The protocol will specify the
necessary actions for the cases where the local time-stamp is shifted forward or backward. We define the
synchronization slots to be the slots with numbers i ·R for i ≥ 1 and hence they coincide with the end
of an epoch. In a real-word execution (which is a random experiment with discrete steps), we say that
a party P has passed its synchronization slot i · R (e.g., at step x of the experiment) if it has already
concluded its operations in a round where P.localTime = i ·R holds for the first time. In the code, the
synchronization procedure is invoked as the final step in a synchronization slot in Section C.3.

2.) Synchronization Beacons: In addition to the other messages, the parties in Ouroboros Chronos generate
synchronization messages or “beacons” as follows: an alert party P evaluates the VRF functionality
by sending (EvalProve, sid, ηj ‖P.localTime ‖ SYNC) to FVRF to receive the response (Evaluated, sid, y, π).
The beacon message is then defined as the meta-data

SB , (P.localTime,P, y, π),

where P.localTime is the current slot number party P reports and the triple (P, yρ, π) is the usual
attestation of slot leadership by party (or stakeholder) P. In the code, synchronization beacons are created
in the main staking procedure in Section C.10.

3.) Arrival times bookkeeping: Every party P maintains an array P.TimestampSB(·) that assigns to each
synchronization beacon SB a pair (n, flag) ∈ N× {final, temp}. Assume a beacon SB with slotnum(SB) ∈
[j · R + 1, . . . , j · R + R/6], j ∈ N and party P′ is fetched by party P (for the first time). If the pair
(slotnum(SB),P′) is new, the recorded arrival time is defined as follows:

• If P has already passed synchronization slot j ·R but not yet passed synchronization slot (j + 1) ·
R, TimestampSB(SB) is defined as the current slot number and the value is considered final, i.e.,
TimestampSB(SB) , (P.localTime, final).

• If party P has not yet passed synchronization slot j ·R (and thus the beacon belongs logically to this
party’s next epoch), TimestampSB(SB) is defined as the current slot number P.localTime and the
decision is marked as temporary, i.e., TimestampSB(SB) , (P.localTime, temp). This value will be
adjusted once this party adjusts its local time-stamp for the next epoch (when arriving at the next
synchronization slot j ·R).

If a party has already received a beacon for the same slot and creator, it will set the arrival time equal to
the first one received among those. The process to record arrival times is described in its own algorithm
in Section C.7.

4.) The synchronization interval : the interval based on which the adjustment of the local time-stamp is
computed. For a synchronization slot i ·R (i ≥ 1), its associated synchronization interval is the interval
Isync(i) , [(i− 1) ·R+ 1, . . . (i− 1) ·R+R/6] and hence encompasses the first sixth of the epoch that is
now ending.

5.) Emitting Beacons and inclusion into the chain: An alert party sends out a synchronization beacon
during a synchronization interval (i.e., if the current local time reports a slot number that falls into a
synchronization interval) if and only if the VRF evaluation (EvalProve, sid, ηj ‖P.localTime ‖ SYNC) to

FVRF returned (Evaluated, sid, y, π) with y < T
ep
P where T

ep,bc
P is the beacon threshold in the current epoch

as defined in equation 4. An alert slot leader P′ on the other hand will include any valid synchronization
beacon in its new block as long as P′.localTime reports a slot number within the first two-thirds of an
epoch (and if the beacon has not been included yet). This process is part of the main staking procedure
in Section C.10.

The remaining three steps are implemented as part of the core synchronization procedure in Section C.11.
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6.) Computing the adjustment evidence: The adjustment will be computed based on evidence from the set SP
i

that is defined with respect to the current view of P in the execution: Let SP
i contain all beacons SB that

report a slot number slotnum(SB) ∈ [(i− 1) ·R+ 1, . . . , (i− 1) ·R+R/6] (of the synchronization interval)
and which are included in a block B of P.Cloc that reports a slot number slotnum(B) ≤ (i− 1) ·R+ 2R/3.
Based on these beacons and their recorded arrival times, the shift will be computed. More precisely, if a
beacon SB is recorded in P.Cloc, then the arrival time used in the computation will be based on a the
valid16 beacon SB′ that reports the same slot number and party identity as SB and which has arrived
first—either as part of some blockchain block or as a standalone message. By our choice of parameters,
parties will have assigned an arrival value to any such beacon with overwhelming probability.

7.) Adjusting the local clock: The shift shiftP
i a party P computes to adjust its clock in synchronization slot

i ·R is defined by

shiftP
i , med

{
slotnum(SB)− Timestamp(SB) | SB ∈ SP

i

}
.

Recall that Timestamp(SB) is shorthand for the first element of the pair TimestampSB(SB). As we will
show, this adjustment ensures that the local time stamps of alert parties report values in a sufficiently
narrow interval (depending on the network delay) to provide all protocol properties we need. Furthermore,
for each beacon SB with P.TimestampSB(SB) = (a, temp) and slot number slotnum(SB) > i ·R the arrival
time is adjusted by P.TimestampSB(SB) , (a+ shiftP

i , final). This ensures that eventually the arrival times
of all beacons that logically belong to epoch i+ 1 will be expressed in terms of the newly adjusted local
time-stamp computed at synchronization slot i ·R. At this point, the party is further capable of excluding
invalid beacons.

8.) At the beginning of the next round the party will report a local time equal to i ·R+ shift + 1. If shift ≥ 0,
the party proceeds by emulating its actions for shift rounds. If shift < 0, the party remains a silent
observer (recording arrival times for example) until its local time has advanced to slot i · R + 1 and
resumes normally at that round. Note that in this time, an alert party will not revert any previously
reported ledger state with overwhelming probability. The reason is that the party will stick to Cloc during
this waiting time and only replace it by longer chains that do not fork by more than k blocks from Cloc

which is a direct consequence of the security guarantees implied by the Genesis chain-selection rule. (An
alert party reverting a previously reported state implies a common-prefix violation.)

5.2 The Joining Procedure

De-Registration and Re-Joining. If a party is alert, it can lose in several ways its status of being alert. If
a party loses access to the random oracle only, then it will still be able to observe the protocol execution and
record message arrivals as seen in Section C.1. The main issue is that such a party—when re-joining—will
have to retrace what it missed. This is slightly complicated due to the adjustments to the local clock in the
course of the execution. However, the party has all reliable information to actually retrace the actions as if it
was present as a passive observer all the time. This special procedure SimulateClockAdjustments is described
in Section C.13. It is invoked as part of procedure LedgerMaintenance before preforming as an alert party
again.

On the other hand, if any alert party loses access to GImperfLClock or FN-MC by the respective de-registration
queries, or if it joins anew only late in the execution, then it considers itself as de-synchronized. Parties are
aware of their synchronization status, and any party that is de-synchronized will have to run through the
main joining procedure JoinProc.

Description of JoinProc. Introducing synchronization slots into the protocol serves the main purpose of
enabling a novel joining procedure that newly joining (or resynchronizing) parties can execute to bootstrap
an actual reliable time-stamp and ledger state, where a reliable time-stamp is one that lies in the interval of
time stamps reported by alert parties. The joining procedure is divided into several phases where the party
gathers reliable information, identifies a good synchronization interval and finally applies the shift(s) that
will allow it to report a local time-stamp that is sufficiently close to the alert parties in the system. Below

16 Evaluated using this epoch’s stake distribution.
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we give an overview and rationale behind our procedure and formally prove its security in Section 6.5. The
code for this procedure is given in Figure 2 containing the procedure JoinProc which is invoked as part of
LedgerMaintenance for newly joining parties. The procedures refer to parameters that are summarized in
Table 1 along with their default values.

Phase A: A joining party with all resources available invokes the main round procedure triggering the join
procedure that first resets the local variables.

Phase B: In the second activation upon a maintain-ledger command, the party will jump to phase B
and continue to do so until and including round toff . During this interval, the party applies the Genesis chain
selection rule maxvalid-bg to filter its incoming chains. It will apply the chain selection rule to all valid chains
it receives. Since the party does not have reliable time, it will consider also future chains as valid, as long
as they satisfy all remaining validity predicates (cf. Section C.5). As we prove in Lemma 6, at the end of
this phase, the party adopts chain C that stands in a particularly useful relation to any chain C′ an alert
party adopts. Roughly, the relation says that the point at which the two chains fork is about k blocks behind
the tip of C′. This follows from the Genesis chain selection rule and the fact that C′ is more dense than C
shortly after the fork. However, this also means that P could still hold an extremely long chain served by the
adversary (namely, an adversarial extension of an alert party’s chain at some point less than k blocks behind
the tip into the future). On the positive side, the stake distribution used for general validation of blocks and
beacons logically associated to the time before the fork are reliable.

Phase C: If a party arrives at local time toff + 1, it starts with phase C, the gathering phase. The party still
filters chains as before, but now processes the arrival times of beacons from the network (or indirectly via the
received chains). This phase is parameterized by two quantities: the sum of tminSync and tstable define the
total duration of this round, where intuitively, tminSync guarantees that enough arrival times are recorded to
compute a reliable estimate of the time-shift, and tstable ensures that the blockchain reaches agreement on
which (valid) synchronization beacons to use. After this phase, a party can reliably judge valid arrival times.

Phase D: The party collects the valid evidence and computes the adjustment based on the first synchronization
interval I = [(i − 1)R, . . . , (i − 1)R + R/6] identified on the blockchain that reports beacons that arrived
sufficiently later than the start of phase C (parameter tpre). Party P computes the adjustment value that
alert parties would do at synchronization slot i · R based on the recorded beacon arrival times associated
with interval I. The party P is done if its adjusted time does not indicate that it should have passed another
synchronization slot (and otherwise, the above is repeated with adjusted arrival times of already recorded
beacons).

6 Analysis Details

6.1 Security Assumptions: Alert and Participating Stake Ratio

We begin by setting down notation and defining the conventions we adopt for measuring stake ratios. The
following definition is adapted from [4]; the crucial difference is that it refers to the types of parties with
respect to a logical slot as defined in Section 4.

Definition 1 (Classes of parties and their relative stake). Let P [sl] denote the set of all parties in a
logical slot sl and let Ptype[sl], for any type of party described in Figure 1 (e.g. alert, active), denote the set
of all parties of the respective type in the slot sl. For a set of parties Ptype[sl], let S−(Ptype[sl]) ∈ [0, 1] (resp.
S+(Ptype[sl]) ∈ [0, 1]) denote the minimum (resp., maximum), taken over the views of all alert parties, of the
total relative stake of all the parties in Ptype[sl] in the stake distribution used for sampling the slot leaders for
slot sl.

Looking ahead, we remark that even though we give the general definition above, our protocol will
have the desirable property that for all party types and all time slots, S−(Ptype[sl]) = S+(Ptype[sl]) with
overwhelming probability, as all the alert parties will agree on the distribution used for sampling slot leaders
with overwhelming probability.
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Definition 2 (Alert ratio, participating ratio). For any logical slot sl during the execution, we let: (i.)
the alert stake ratio be the fraction S−(Palert[sl])/S+(Pactive[sl]); and (ii.) the (potentially) participating
stake ratio be S−(Pactive[sl]).

It is instructive to see that the potentially participating stake ratio allows us to infer the ratio of stake
belonging to parties that cannot participate in slot sl. Intuitively speaking, we will prove the security of our
protocol under the assumption that both stake ratios from Definition 2 are sufficiently lower-bounded (the
former one by 1/2 + ε, the latter one by a constant). We remark that it is easy to verify that in particular,
such an assumption also implies the existence of alert parties at any point in the execution.

6.2 Blockchain Security Properties

We now define the standard security properties of blockchain protocols: common prefix, chain growth and
chain quality. These will later be useful as an intermediate step in establishing the UC-security guarantees.

Similarly to [4], we only grant these guarantees to alert parties. More importantly for this work, the
definitions from [4] need to be adjusted to take into account the fact that the local clocks of the parties
are not synchronized. To this end, we choose now to define the properties below with respect to the logical
timestamps (i.e., slot numbers) contained in blocks, and the local clocks of the parties. Namely, we refer to
logical slots below, and a party is considered to be on the onset of slot sl (or enter slot sl) if her local clock
just switched to sl.

Common Prefix (CP); with parameters k ∈ N. The chains C1, C2 possessed by two alert parties at the

onset of the slots sl1 < sl2 are such that Cdk1 � C2, where Cdk1 denotes the chain obtained by removing
the last k blocks from C1, and � denotes the prefix relation.

Chain Growth (CG); with parameters τ ∈ (0, 1], s ∈ N. Consider a chain C possessed by an alert party
at the onset of a slot sl. Let sl1 and sl2 be two previous slots for which sl1 + s ≤ sl2 ≤ sl, so sl2 is
at least s slots ahead of sl1. Then |C[sl1 : sl2]| ≥ τ · s. We call τ the speed coefficient.

Chain Quality (CQ); with parameters µ ∈ (0, 1] and k ∈ N. Consider any portion of length at least k
of the chain possessed by an alert party at the onset of a slot; the ratio of blocks originating from alert
parties is at least µ. We call µ the chain quality coefficient.

Existential Chain Quality (∃CQ); with parameter s ∈ N. Consider a chain C possessed by an alert
party at the onset of a slot sl. Let sl1 and sl2 be two previous slots for which sl1 + s ≤ sl2 ≤ sl. Then
C[sl1 : sl2] contains at least one alertly generated block (i.e., block generated by an alert party).

The first 3 properties are standard, the last one is a slight variant of chain quality fitting better our
analysis. For brevity we sometimes write CP(k) (resp., CG(τ, s), CQ(µ, k), ∃CQ(s)) to refer to these properties.

While these definitions based on the logical time allow us to talk about the logical structure of the forks
created by the parties and reuse parts of the technical machinery given in [26,14,4] to analyze it, providing
only guarantees based on the logical time would be unsatisfactory, as the parties running Ouroboros Chronos
desire persistence and liveness with respect to a more “real-time” notion (that we define in a moment). We
will address this translation from logical-time to real-time guarantees later in Section 6.7.

6.3 Formal Definitions of Nominal Time and Skew

As discussed earlier, for many of the security arguments, it is very convenient to define a nominal time notion:

Definition 3 (Nominal Time). Given an execution of Ouroboros Chronos, any prefix of the execution can
be mapped deterministically to an integer t, which we call nominal time, as follows: parsing the prefix from
genesis and keeping track of the honest party set registered with the imperfect clock functionality (bootstrapped
with the set of inaugural alert parties), t is the number of times the functionality internally switches all
flags dP,P ∈ P from 1 to 0 until the final step of the execution prefix. (In case no honest party exists in the
execution t is undefined).
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Nominal time is a technical definition useful for the analysis. It naturally coincides with the idea of defining
a baseline that runs at a certain speed, but where parties have some varying (but bounded) lead ahead of
the baseline. For example, if a set of alert parties execute Chronos from the beginning, then nominal time
lower bounds the number of rounds completed by any of them. Furthermore, by the bounded (absolute)
drift enforced by G∆clock

ImperfLClock, the number of locally completed rounds by these alert parties can each be
decomposed to be t+ δ (nominal) rounds, where t is the baseline, and δ is bounded by ∆clock.

We next state a definition that will help us quantify how much parties’ (local) timestamps deviate from
the nominal time and from each other.

Definition 4 (Clock skew and Skew∆). Given an honest party P, we define its skew in slot sl (denoted
SkewP[sl]) as the difference between sl and the nominal time t when P enters slot sl. For any ∆ ≥ 0 and a
slot sl, we denote by Skew∆[sl] the predicate that for all parties that are synchronized in slot sl, their skew
in this slot differs by at most ∆; formally

Skew∆[sl] :⇔
(
∀P1,P2 ∈ Palert[sl] :

∣∣∣SkewP1 [sl]− SkewP2 [sl]
∣∣∣ ≤ ∆) .

Note that in the static-registration setting, all honest parties are synchronized (and hence are considered
for Skew∆[sl]); the difference will become important in later sections.

6.4 Setting with Static Registration

As outlined in Section 3, our first goal is to establish that the properties of (logical-time) common prefix, chain
growth, and chain quality are achieved by Ouroboros Chronos when executed in a restricted environment
where all parties participate in the protocol run from the beginning and never get deregistered from any of
their resources (i.e., from GRO, FN-MC or GImperfLClock). Similarly to [4], we refer to this setting as the setting
with static registration; we will drop this assumption later.

6.4.1 Single-Epoch Analysis with ∆-Bounded Skew

Before we can analyze the resynchronization procedure SyncProc, we first need to establish the blockchain
security properties given in Section 6.2 for Ouroboros Chronos during a single-epoch execution, as the proper
functioning of SyncProc will inductively depend on these properties being satisfied in the epochs preceding it.
Having this inductive structure of the proof in mind, we actually need a security statement for the single-epoch
setting in the regime where the predicate Skew∆[sl] is satisfied for all slots in that epoch, we refer to this as
the setting with ∆-bounded skew. Looking ahead, this property will be guaranteed in the first epoch thanks
to FINIT, and preserved by induction.

The desired properties are established in the following theorem; we give its proof in Appendix F. Recall
that R denotes the epoch length in slots, f is the active-slot coefficient, let ∆ ≥ ∆net +∆clock be the upper
bound on the sum of the network delay and clock drift and let ∆̃ , 2∆.

Theorem 1. Consider the single-epoch execution of the protocol Ouroboros-Chronos in the setting with static
registration and ∆-bounded skew. Let α, β ∈ [0, 1] denote a lower bound on the alert ratio and participating
ratio throughout this epoch, respectively. If for some ε ∈ (0, 1) we have

α · (1− f)∆̃+1 ≥ (1 + ε)/2 , (5)

and the maxvalid-bg parameters, k and s, satisfy

k > 192∆̃/(εβ) and R/6 ≥ s = k/(4f) ≥ 48∆̃/(εβf) (6)

then Ouroboros-Chronos achieves the following guarantees:
Common prefix. The probability that it violates the common prefix property with parameter k′ is no

more than ε̄CP(k′;R,∆, ε) + ε̄mv where

ε̄CP(k′;R,∆, ε) ,
19R

ε4
exp(∆̃− ε4k′/18) ;
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Chain growth. The probability that it violates the chain growth property with parameters s′ ≥ 48∆̃/(εβf)
and τCG = βf/16 is no more than ε̄CG(τCG, s

′;R, ε) + ε̄mv where

ε̄CG(τCG, s
′;R, ε) ,

s′R2

2
exp

(
−(εβf)2s′/256

)
;

Existential chain quality. The probability that it violates the existential chain quality property with
parameter s′ ≥ 12∆̃/(εβf) is no more than ε̄∃CQ(s′;R, ε) + ε̄mv where

ε̄∃CQ(s′;R, ε) , (s′ + 1)R2 exp
(
−(εβf)2s′/64

)
;

Chain quality. The probability that it violates the chain quality property with parameters k′ ≥ 48∆̃/(εβf)
and µ = εβf/16 is no more than ε̄CQ(µ, k′;R, ε) + ε̄mv where

ε̄CQ(µ, k′;R, ε) ,
kR2

2
exp

(
−(εβf)2k′/256

)
;

and where ε̄mv is a shorthand for the quantity

ε̄mv , exp (lnR−Ω(k)) + ε̄CG(βf/16, k/(4f)) + ε̄∃CQ(k/(4f)) + ε̄CP(kβ/64) .

In this work, we analyze the concrete security of the protocol. In asymptotic terms, if κ denotes the
security parameter, we can treat the chain selection parameters k and s, as well as the parameters k′ and s′

of CP, CG, and CQ, as functions in ω(log k) to conclude that the error terms are negligible such that all
chain properties hold (for the concrete coefficients τCG and µ) except with negligible probability. Note that
the bound on s implies that the epoch length R has a lower bound in ω(log k), too.

6.4.2 Properties of SyncProc

Here we establish two key properties of the resynchronization procedure SyncProc given in Section 5.1 that
is being executed by all alert parties on the edge of any two epochs. Consider the following fact, proven in
Appendix G for completeness.

Fact 1 Let (ai)
n
i=1 and (bi)

n
i=1 be two sequences of n integers each, with the property that |ai − bi| ≤ ∆ for

all i ∈ [n]. Then we also have |med ((ai)
n
i=1)−med ((bi)

n
i=1)| ≤ ∆.

The above simple statement is at the heart of our analysis of the synchronization procedure SyncProc.
Informally, consider an execution of Ouroboros-Chronos over its full lifetime consisting of several epochs, and
focus on the edge between epochs i and i + 1, where SyncProc is executed. We show that it satisfies two
properties:

SyncProc maintains Skew∆. If (some parametrizations of) CG and CP are not violated up to the end of
epoch i, then Skew∆ is satisfied in the first slot of epoch i+ 1.

Bounded shift. If a lower bound on α, some parametrization of ∃CQ, and Skew∆ are not violated up to
epoch i, then the shift by which an alert party updates its local clock in SyncProc right before epoch i+ 1
satisfies |shift| ≤ 2∆.

We state each of these properties in a formal manner separately as Lemmas 4 and 5 and give their full proofs
in Appendix G.

Here we only briefly comment on the proof of the first property, which relies on two intermediate claims:
The first is that all alert parties use the same set of synchronization beacons in their execution of the procedure
SyncProc between epochs ep and ep + 1; the second is that for any fixed beacon SB ∈ SP1

j = SP2
j (in the jth

synchronization slot), the quantity µ(Pi, SB) , SkewPi [sl] + slotnum(SB)− Pi.Timestamp(SB) will differ by at
most ∆ between any two alert parties P1 and P2.
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6.4.3 Lifting to Multiple Epochs

Theorem 1 gives us security guarantees achieved by Ouroboros Chronos in a single-epoch setting with static
stake distribution and perfect randomness. These guarantees can be extended throughout the whole lifetime
of the system consisting of many epochs by an inductive argument over epochs, using the properties of FINIT

and Theorem 1 for the base case, and the epoch-randomness analysis of [14] together with the properties of
SyncProc from Section 6.4.2 (again together with Theorem 1) for the inductive step. We give an informal
theorem here and defer the formal statement (Theorem 5) and its proof to Appendix H.

Theorem 2 (Full-execution security with static registration; informal). Consider the setting with
static registration. If the assumptions (5) and (6) are satisfied, then the full execution of Ouroboros-Chronos
achieves the same guarantees for CP, CG, CQ, ∃CQ as given in Theorem 1 except with additional error
probability roughly equal to the one induced by the lifting argument in [4].

While we always target concrete security, an asymptotic summary of this theorem would be that under the
same dependencies of the parameters on a security parameter as explained after Theorem 1, the additional
error term incurred by the lifting is just negligible.

6.5 Newly Joining Parties

In this section we prove that the guarantees on common prefix, chain growth and (existential) chain quality
obtained for Ouroboros-Chronos in Section 6.4 remain valid also when new parties join the protocol later
during its execution. Again in this section ∆ denotes the upper bound on the sum of the maximum network
delay and maximum clock drift. We use the letter t to refer to (nominal) time, i.e., to the sequence of execution
steps where nominal time is t.

Definition 5 (Joining party). We say that an honest party P is joining the protocol execution at time
tjoin > 0 if tjoin is the nominal time at the point of the execution where P becomes operational, time-aware and
online for the first time.

Consider an execution of Ouroboros-Chronos over its full lifetime and a joining party Pjoin with access to
all its resources. Informally speaking, our analysis shows two properties of the joining process of Pjoin that
hold as long as some parametrizations of CP, CG, ∃CQ as well as the assumptions of Theorem 5 remain
satisfied throughout the joining process:

1. After Phase B, Pjoin will be holding a chain Cjoin that satisfies Cdkalert � Cjoin with respect to any Calert held
by an alert party at least ∆ time steps ago.

2. In Phase D, Pjoin correctly identifies an epoch i∗ for which it has collected all the beacons that alert
parties had used in their execution of SyncProc after epoch i∗, and based on these beacons mimics the
synchronization procedure so that starting with epoch i∗ + 1, Pjoin does not violate Skew∆ as it becomes
alert.

Again, we state each of these properties formally as Lemmas 6 and 7 and give their proofs in Appendix I.

6.6 The Dynamic-Availability Setting

Using the above analysis of the joining procedure, we can generalize the results from previous sections to the
dynamic availability setting of Section 4, where the parties get arbitrarily registered and deregistered from
their resources upon the decision of the environment. We give an informal theorem here and defer the formal
statement (Theorem 6) and its proof to Appendix J.

Theorem 3 (Dynamic availability, informal). In the dynamic-availability setting, under the assumptions
of Theorem 2 and Lemma 7, Ouroboros-Chronos achieves the same guarantees for CP, CG, CQ and ∃CQ
as given in Theorem 2 except for a negligible additional error probability that corresponds to violating the
assumptions of Lemmas 6 and 7.

Recall that Lemmas 6 and 7 referred in the above theorem are the formalizations of the argument of
Section 6.4.2 and hence their assumptions are informally summarized in that section.
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6.7 From Logical-Time to Real-Time Guarantees

Recall that eventually, we are interested in a ledger that provides consistency and liveness and they typically
follow black-box from the three blockchain properties above. However, since in our protocol, parties emulate
a global time themselves, we must make related logical time advancement with the nominal time, which is
especially important for liveness. Since parties adjust their timestamps at the boundary of every epoch, an
external observer that takes nominal time as the baseline, would conclude that parties are slightly off. To
quantify the general relationship, we introduce a concrete discount factor τTG. The concrete expression is
given by Lemma 8 in the technical Section K, and we state the lemma informally here:

Lemma 1 (Nominal vs. logical time, informal). Consider an execution of the full protocol
Ouroboros-Chronos in the dynamic-availability setting, let P be a party that is synchronized between (and
including) slots sl and sl′, let t and t′ be the nominal times when P enters slot sl and sl′ for the first time,
respectively. Denote by δsl and δt the respective differences |sl′ − sl| and |t′ − t|. Then, under the same
assumptions as before, we have δsl ≥ τTG · δt for large enough δt.

It is important to point out that the τTG is close to 1 for typical parameter choices and that the lower
bound on δt does depend on ∆ and not on the security parameter. We are ready to state chain-growth with
respect to nominal time. Again, the concrete bounds are given in the formal version, Corollary 7 in technical
Section K.

Corollary 1 (Nominal time CG, informal). Consider the event that the execution of Ouroboros Chronos
under the assumptions as above does not violate property CG with parameters τ ∈ (0, 1], s ∈ N. Let τCG,glob ,
τ · τTG. Consider a chain C possessed by an alert party at a point in the execution where the party is at an
onset of a (local) round and where the nominal time is t. Let further t1, t2, and δt be such that t1 + δt ≤ t2 ≤ t.
Let sl1 and sl2 be the last slot numbers that P reported in the execution when nominal time was t1 (resp. t2)
Then it must hold that |C[sl1 : sl2]| ≥ τCG,glob · δt whenever δt is sufficiently large,

6.8 Composable Guarantees of Ledger and Clock

The final step of our treatment is to show that we get composable security. To this end, we can leverage all the
above proven statements and compile all obtained properties into concrete instantiations of ledger parameters.
In Section 3 we provided the short form of the full UC statement. The full version is given in Section L where
we give the simulation argument and some additional proofs to obtain the stated clock parameters.
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Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 643–673. Springer, Heidelberg, April / May 2017.

34. Rafael Pass and Elaine Shi. Rethinking large-scale consensus. In 30th IEEE Computer Security Foundations
Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017, pages 115–129. IEEE Computer Society,
2017.

35. Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 380–409. Springer, Heidelberg, December 2017.

36. Barbara B. Simons, Jennifer Lundelius Welch, and Nancy A. Lynch. An overview of clock synchronization. In
Barbara B. Simons and Alfred Z. Spector, editors, Fault-Tolerant Distributed Computing, volume 448 of LNCS.
Springer, Heidelberg, 1990.

37. T. K. Srikanth and Sam Toueg. Optimal clock synchronization. In Michael A. Malcolm and H. Raymond Strong,
editors, 4th ACM PODC, pages 71–86. ACM, August 1985.

Appendix and Technical Sections

A Short Survey of Related Literature

PoS protocols have been proposed as a sustainable and potentially more scalable alternative to the resource-
intensive proof-of-work paradigm, but had initially been criticised as a much more limited technology, due
to early attacks such as the nothing-at-stake or the stake-bleeding attack. The systematic study of such
blockchains, however, has established them as a viable replacement to PoW blockchains, by proving the
ability to counter adaptive attacks [14,26], removing the need of checkpointing while assuming dynamic
availability [4], adding transaction privacy [25], and, new in our work, removing the dependency on global
time for participation-unrestricted environments.

On a different note, as a tool for bootstrapping loose synchronization—local clocks advancing with
approximately the same speed—to (approximate) global time, Chronos shares similarities in its goal with
synchronizers, which occupy an important part of the distributed computing literature. A synchronizer is
a sophisticated distributed fault-tolerant protocol which achieves a similar bootstrapping goal, but relies
on either knowledge of concrete participation bounds, or at times even knowledge of credentials of the
participants. In a nutshell, in typical synchronizer scenarios [15,27,20] it is assumed that the parties have
initially (loosely) synchronized clocks and that the clocks advance at about the same speed. It is proved that
without setup assumptions, such as a public-key infrastructure that enables digital signatures, n parties can
synchronize their clocks and keep them (loosely) synchronized if and only if no more than t < n/3 of the
parties report far-drifting or inconsistent clocks values [15,27,20]. This bound can be improved to t < n/2
by use of existentially unforgeable digital signatures [27]. A number of follow up works have investigated
clock synchronization in various settings [17,16,2,37,28,32] and we refer the reader to [36] for a survey (albeit
somewhat outdated).

Unfortunately the techniques used in the above traditional synchronizer setting do not translate to the
unrestricted participation setting we consider here. Informally, the reason is that these techniques rely on
knowledge (and counting) the total number of parties in the system, an assumption which one cannot make
in our setting. More concretely, the main tool used by classical synchronizers is counting of messages in
combination with signatures to thwart malicious behavior. In the dynamic availability setting, counting
messages does not work (or even counting “stake” in the PoS setting), as the parties have no way of knowing
how many, or which parties are present at any given time. We note in passing that this is also a major factor
that distinguishes the Algorand [12] approach to decentralized consensus from that we follow here. Concretely,
Algorand explicitly assumes that parties know (approximately) how many parties are in any committee, and
therefore, know how many honest messages they can expect by any such committee. This assumption has
been shown to allow Algorand to achieve complete agreement on the whole blockchain after each block; and,
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although not explicitly proven we conjecture that techniques from the permissioned synchronizers literature
can be employed here to achieve global clock synchronization in the setting of [12]. It is evident, however,
that this is poses a much stronger assumption than that of dynamic availability leaving open the question
of whether PoS-based clock synchronization in the dynamic availability setting is even possible, which we
answer affirmatively in our work.

The protocol most closely related to Chronos, which is also the starting point of the underlying blockchain,
is Ouroboros Genesis [4]. Notwithstanding, the two solutions have major differences both in terms of their
assumptions (access to global time vs. merely similar speed clocks), and in terms of techniques used in the
protocol design and in the proof. We refer to Section C for a discussion of these differences. We note that
a recent and concurrent work [1] which appeared after our paper (an earlier version of our paper17 with
only minor differences was made public prior to the publication of [1]) also investigated the possibility of
using the Ouroboros family of protocols for synchronization of newly joining parties. However [1] lacks a full
treatment of dynamic availability and appears to follow a protocol design that we have already argued in the
introduction to be insufficient for providing secure synchronization.

B Model Details

The purpose of this section is to give the details of the underlying (UC) model.

Relaxed Synchrony. We use the following version of imperfect local clocks that allow parties to proceed at
roughly the same speed, where “roughly” is captured by the upper bound ∆clock on the drift between any
two honest parties:

The functionality manages the set P of registered identities, i.e., parties P = (pid, sid). It also manages the set F
of functionalities (together with their session identifier). Initially, P := ∅ and F := ∅.
For each identity P := (pid, sid) ∈ P it manages bit variables dP and dImpP , and a (possibly negative) integer
driftP. For each pair (F, sid) ∈ F it manages variable d(F,sid) ∈ {0, 1} (all these variables are initially set to 0).

Synchronization:

– Upon receiving (clock-update, sidC) from some party P ∈ P set dImpP := 1 and dP := 1; execute
Round-Update and forward (clock-update, sidC ,P) to A.

– Upon receiving (clock-update, sidC) from some functionality F in a session sid such that (F, sid) ∈ F set
d(F,sid) := 1, execute Round-Update and return (clock-update, sidC ,F) to this instance of F.

– Upon receiving (clock-push, sidC ,P) from A where party P ∈ P, if dImpP := 1 and driftP < ∆clock then
update dImpP := 0 and driftP := driftP + 1 and return (clock-push-ok, sidC ,P) to A. Otherwise ignore the
message.

– Upon receiving (clock-get, sidC) from any participant P—including the environment on behalf of a party—or
the adversary on behalf of a corrupted party P (resp. from any ideal—shared or local—functionality F),
execute procedure Round-Update; return (clock-get, sidC , d

Imp
P ) (resp. (clock-get, sidC , d(F,sid)))) to the

requestor (where sid is the sid of the calling instance).

Procedure Round-Update: For each session sid do: If d(F,sid) := 1 for all F ∈ F and dP = 1 for all honest parties
P = (·, sid) ∈ P, then update d(F,sid) := 0 and update dP := 0 and driftP := driftP − 1 for all parties

P = (·, sid) ∈ P; for all P = (·, sid) ∈ P with driftP < 0 reset dImpP := 0 and driftP := 0.

Functionality G∆clock
ImperfLClock

To improve accessibility, we colored in blue the differences, i.e., the much weaker coordination that the
functionality provides compared to the original clock of [24]. In order to appreciate the difference, we sketch
the clock from [24] here:

17 See https://eprint.iacr.org/2019/838
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The functionality manages the set P of registered identities, i.e., parties P = (pid, sid). It also manages the set F
of functionalities (together with their session identifier). Initially, P := ∅ and F := ∅.
For each identity P := (pid, sid) ∈ P it manages variable dP ∈ {0, 1}. For each pair (F, sid) ∈ F it manages
variable d(F,sid) ∈ {0, 1} (both bit variables are initially set to 0).

Synchronization:

– Upon receiving (clock-update, sidC) from some party P ∈ P set dP := 1; execute Round-Update and forward
(clock-update, sidC ,P) to A.

– Upon receiving (clock-update, sidC) from some functionality F in a session sid such that (F, sid) ∈ F set
d(F,sid) := 1, execute Round-Update and return (clock-update, sidC ,F) to this instance of F.

– Upon receiving (clock-get, sidC) from any participant P—including the environment on behalf of a party—or
the adversary on behalf of a corrupted party P (resp. from any ideal—shared or local—functionality F),
execute procedure Round-Update, return (clock-get, sidC , dP) (resp. (clock-get, sidC , d(F,sid)))) to the
requestor (where sid is the sid of the calling instance).

Procedure Round-Update: For each session sid do: If d(F,sid) := 1 for all F ∈ F and dP = 1 for all honest parties
P = (·, sid) ∈ P, then update d(F,sid) := 0 and dP := 0 for all parties P = (·, sid) ∈ P.

Functionality GPerfLClock

Modeling Peer-to-Peer Communication. We assume a diffusion network in which all messages sent by
honest parties are guaranteed to be fetched by protocol participants after a specific delay ∆net. Additionally,
the network guarantees that once a message has been fetched by an honest party, this message is fetched by
any other honest party within a delay of at most ∆net, even if the sender of the message is corrupted. This is
a slightly stronger guarantee than the multicast-functionality from [5,4] which only guaranteed this bounded
delivery for messages sent by honest parties, however it appears to capture well the behavior of peer-to-peer
gossiping where honest parties always forward messages they have not already seen. To avoid confusion, we
refer to using such a network as broadcasting. We detail the corresponding functionality below:

The functionality is parameterized with a set possible senders and receivers P. Any newly registered (resp.
deregistered) party is added to (resp. deleted from) P.

– Honest sender multicast. Upon receiving (multicast, sid,m) from some P ∈ P, where P = {U1, . . . , Un}
denotes the current party set, choose n new unique message-IDs mid1, . . . ,midn of the form midi = (mid, i),
initialize 2n new variables Dmid1 := DMAX

mid1
. . . := Dmidn := DMAX

midn := 1, a per message-delay ∆midi = ∆net for
i = 1, . . . , n and set M := M ||(m,mid1, Dmid1 , U1)|| . . . ||(m,midn, Dmidn , Un), and send
(multicast, sid,m,P, (U1,mid1), . . . , (Un,midn)) to the adversary.

– Adversarial sender multicast. Upon receiving (multicast, sid,m) from some P ∈ P (where
P = {U1, . . . , Un} denotes the current party set), do execute it the same way as an honest-sender multicast,
with the only difference that ∆midi =∞.

– Honest party fetching. Upon receiving (fetch, sid) from P ∈ P (or from A on behalf of P if P is corrupted):
1. For all tuples (m,mid, Dmid,P) ∈M , set Dmid := Dmid − 1.
2. Let MP

0 denote the subvector M including all tuples of the form (m,mid, Dmid,P) with Dmid = 0 (in the
same order as they appear in M). Then, delete all entries in MP

0 from M and in case some
(m,mid, Dmid,P) is in MP

0 , where P is honest, set ∆mid′ = ∆net for any (m,mid′, Dmid′ ,P
′) in M and

replace this record by (m,mid′,min{Dmid′ ,∆net},P′). Finally, send MP
0 to P.

– Adding adversarial delays. Upon receiving (delays, sid, (Tmidi1
,midi1), . . . , (Tmidi`

,midi`)) from the
adversary do the following for each pair (Tmidij

,midij ):

Functionality F∆net
N-MC
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If DMAX
midij

+ Tmidij
≤ ∆midij

and midij is a message-ID registered in the current M , set

Dmidij
:= Dmidij

+ Tmidij
and set DMAX

midij
:= DMAX

midij
+ Tmidij

; otherwise, ignore this pair.

– Adversarially reordering messages. Upon receiving (swap, sid,mid,mid′) from the adversary, if mid and
mid′ are message-IDs registered in the current M , then swap the triples (m,mid, Dmid, ·) and
(m,mid′, Dmid′ , ·) in M . Return (swap, sid) to the adversary.

The Genesis Block Distribution with Weak Start Agreement. In this work, we not only allow that
parties’ local time-stamps might shift apart over the course of an execution, we also model that the genesis
block is received by initial stakeholders in a delayed fashion (such that one party already starts staking, but
another one is still waiting for the genesis block). To this aim, we weaken the functionality FINIT described
in [4] to allow for bounded offsets in starting times. Namely, F∆net

INIT does not enforce that all honest stakeholders
receive the created genesis block in the same round, but merely guarantees delivery differences of ∆net, just
as the message delays above (the offsets are under adversarial control). In fact, we find it reasonable to think
of the genesis block delay as being considered similar to a “message delay”, i.e., we model that the genesis
blocks “arrives with a delay”. The details of the F∆net

INIT functionality appear below:
More concretely, we allow the adversary to define the offsets upon the first activation to the functionality.

For the sake of convenience, we consider this initial offset query to the adversary as restricting (and prefix
the query with the keyword Respond) as defined by Camenisch et al. [8] which means that the adversary is
required to answer this query immediately (and hence the offsets can technically be seen as chosen “when the
FINIT is created”).18 The functionality makes sure that at the onset of the execution, the genesis block is
actually created with the keying material form the initial stakeholders. As long as this creation is not yet
complete, the baseline cannot advance (recall that ideal functionalities are allowed to proceed at the baseline
speed). Once the creation is complete, which defines the “big bang” for this execution, the clock is released,
and at this point, the offsets steer when a initial stakeholder receives genesis block and start working.

The functionality FINIT is parameterized by the delay ∆net, the set P1, . . . ,Pn of initial stakeholders n and their
respective stakes s1, . . . , sn. It additionally stores n variables offseti, one for each stakeholder Pi to steer when they
receive the genesis block (once ready), a variable ready to steer when the genesis block is fully generated. It
maintains the set of registered parties P.

– On the first activation of the functionality, send (Respond, (DefineOffset, sid)) to the adversary. Upon receiving
the response (DefineOffset, sid, o1, . . . , on) where o1 ∈ [0, . . . ,∆net], set offseti := oi. It further sets ready← 0
and registers with the clock. Proceed handling the first input as specified in the following.

– On receiving any input by a registered party, do the following case distinction:
• If ready = 0 and the message is a request from some initial stakeholder P = Pi, i ∈ [n], of the form

(ver keys, sid,P, vvrf , vkes), then FINIT stores the verification keys tuple (Pi, v
vrf
i , vkes

i ) and acknowledges its
receipt. If some of the registered public keys are equal, it outputs an error and halts. Otherwise, it samples

and stores a random value η1
$← {0, 1}λ and constructs a genesis block (S1, η1), where

S1 =
(
(P1, v

vrf
1 , vkes

1 , s1), . . . , (Pn, v
vrf
n , vkes

n , sn)
)
. If all initial stakeholders have made their requests, then

FINIT de-registers from the clock to release the execution.
• If ready = 1, then do the following
∗ If the currently received input is the kth request of the form (genblock req, sid,P) from an initial

stakeholder P = Pi (for some i ∈ [n]), if k > offseti, FINIT sends (genblock, sid, (S1, η1)) to P.

Functionality F∆net
INIT

18 In case the query would be not be restricting, this would incur a slight but rather artificial complication of the
initialization procedure of the protocol as we would have to take into account that the very first activated honest
protocol participant (and only this one) will actually lose its activation token right away. Defining this query to be
restricting is not crucial for our treatment.
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∗ If it is a request from a party that is not initial stakeholder then return
((genblock, sid, (S1, η1)),Running) to the requestor. // The case when the setup is completed and
potentially, the protocol has advanced a lot and the party must bootstrap from this genesis block.

B.1 Additional Functionalities Used in the Proof

The protocol makes use of a VRF (verifiable random function) functionality FVRF, a KES (key-evolving
signature) functionality FKES, a (global) random oracle functionality GRO. We use the random oracle as the
idealization of a hash function. We use the strongest form of a global random oracle to express that our new
consensus algorithm does not need any kind of programmability or query restrictions (and the result using a
local random oracle is implied). The idealizations FVRF and FKES are shown to be realizable under standard
assumptions or an additional random oracle in [14].

Recall that in order to reflect the synchronization and liveness pattern properly in UC, ideal signing or
verification (in both, KES or VRF) is a local operation performed by a slot-leader and hence one invokes
the proposed formalism of Camenisch et al. [8] and declare signing request as restricting, which means that
although activated to provide a signature, the adversary has to provide the answer, i.e. the signature string
for example, immediately (no other output to another protocol machine is allowed) and return the activation
token back to the functionality. Such responsive queries are prefixed with the keyword Respond in outputs to
the adversary.

Verifiable Random Functions. The idealized VRF functionality is defined below:

FVRF interacts with its set of registered parties P (denoted by U1, . . . , U|P|) as follows:

– Key Generation. Upon receiving a message (KeyGen, sid) from a stakeholder Ui, hand
(Respond,KeyGen, sid, Ui) to the adversary. Upon receiving (VerificationKey, sid, Ui, v) from the adversary, if Ui
is honest, verify that v is unique, record the pair (Ui, v) and return (VerificationKey, sid, v) to Ui. Initialize the
table T (v, ·) to empty.

– Malicious Key Generation. Upon receiving a message (KeyGen, sid, v) from S, verify that v has not being
recorded before; in this case initialize table T (v, ·) to empty and record the pair (S, v).

– VRF Evaluation. Upon receiving a message (Eval, sid,m) from Ui, verify that some pair (Ui, v) is recorded. If
not, then ignore the request. Then, if the value T (v,m) is undefined, pick a random value y from {0, 1}`VRF and
set T (v,m) = (y, ∅). Then output (Evaluated, sid, y) to Ui, where y is such that T (v,m) = (y, S) for some S.

– VRF Evaluation and Proof. Upon receiving a message (EvalProve, sid,m) from Ui, verify that some pair
(Ui, v) is recorded. If not, then ignore the request. Else, send (Respond,EvalProve, sid, Ui,m) to the adversary.
Upon receiving (EvalProve, sid,m, π) from the adversary, if value T (v,m) is undefined, verify that π is unique,
pick a random value y from {0, 1}`VRF and set T (v,m) = (y, {π}). Else, if T (v,m) = (y, S), set
T (v,m) = (y, S ∪ {π}). In any case, output (Evaluated, sid, y, π) to Ui.

– Malicious VRF Evaluation. Upon receiving a message (Eval, sid, v,m, π) from S for some v, do the
following. First, if (S, v) is recorded and T (v,m) is undefined, then choose a random value y from {0, 1}`VRF and
set T (v,m) = (y, S) and output (Evaluated, sid, y) to S. The same is performed in case (Ui, v) is recorded and
Ui corrupted. Else, if T (v,m) = (y, S′) for some S′ 6= ∅, union S to S′ and output (Evaluated, sid, y) to S, else
ignore the request.

– Verification. Upon receiving a message (Verify, sid,m, y, π, v′) from some party P , send
(Respond,Verify, sid,m, y, π, v′) to the adversary. Upon receiving (Verified, sid,m, y, π, v′) from the adversary
do:
1. If v′ = v for some (·, v) and the entry T (v,m) equals (y, S) with π ∈ S, then set f = 1.
2. Else, if v′ = v for some recorded pair of the form (·, v), but no entry T (v,m) of the form (y, {. . . , π, . . .}) is

recorded, then set f = 0.

Functionality FVRF
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3. Else, initialize the table T (v′, ·) to empty, and set f = 0.
Output (Verified, sid,m, y, π, f) to P .

Key-Evolving Signatures. The idealized KES module is defined below:

FKES is parameterized by the total number of signature updates T , interacting with a signer US and registered
parties in P (denoted by U1, . . . , U|P|) as follows:

– Key Generation. Upon receiving a message (KeyGen, sid, US) from a stakeholder US , send (KeyGen, sid, US)
to the adversary. Upon receiving (VerificationKey, sid, US , v) from the adversary, verify that v is unique and
send (VerificationKey, sid, v) to US , record the triple (sid, US , v) and set counter kctr = 1.

– Sign and Update. Upon receiving a message (USign, sid, US ,m, j) from US , verify that (sid, US , v) is
recorded for some sid and that kctr ≤ j ≤ T . If not, then ignore the request. Else, set kctr = j + 1 and send
(Respond, (Sign, sid, US ,m, j)) to the adversary. Upon receiving (Signature, sid, US ,m, j, σ) from the adversary,
verify that no entry (m, j, σ, v, 0) is recorded. If it is, then output an error message to US and halt. Else, send
(Signature, sid,m, j, σ) to US , and record the entry (m, j, σ, v, 1).

– Signature Verification. Upon receiving a message (Verify, sid,m, j, σ, v′) from some stakeholder Ui do:

1. If v′ = v and the entry (m, j, σ, v, 1) is recorded, then set f = 1. (This condition guarantees completeness: If
the verification key v′ is the registered one and σ is a legitimately generated signature for m, then the
verification succeeds.)

2. Else, if v′ = v, the signer is not corrupted, and no entry (m, j, σ′, v, 1) for any σ′ is recorded, then set f = 0
and record the entry (m, j, σ, v, 0). (This condition guarantees unforgeability: If v′ is the registered one, the
signer is not corrupted, and never signed m, then the verification fails.)

3. Else, if there is an entry (m, j, σ, v′, f ′) recorded, then let f = f ′. (This condition guarantees consistency:
All verification requests with identical parameters will result in the same answer.)

4. Else, if j < kctr, let f = 0 and record the entry (m, j, σ, v, 0). Otherwise, if j = kctr, hand
(Verify, sid,m, j, σ, v′) to the adversary. Upon receiving (Verified, sid,m, j, φ) from the adversary let f = φ
and record the entry (m, j, σ, v′, φ). (This condition guarantees that the adversary is only able to forge
signatures under keys belonging to corrupted parties for time periods corresponding to the current or future
slots.)

Output (Verified, sid,m, j, f) to Ui.

Functionality FKES

C A Complete Description of the Protocol

The purpose of this section is to specify more formally the code of the Chronos protocol for more clarity
with respect to the security claims. We present the ledger protocol following the structure of other ledger
protocols in UC [5,4].

C.1 The Main Protocol Instance

Ouroboros Chronos is a ledger-protocol and the main protocol dispatches to the relevant sub-processes. It
accepts three kinds of input: inputs in order to register the party to the required setup and which models the
dynamic availability of parties.

Registration. A party P can only start operation once it is registered to all resources. The registration
handling is given in Section C.2. The protocol will initialize a party P’s local time P.localTime to 0 and the
protocol is aware that it is not synchronized (since existing participants might be far off) and sets P.isSync
to false. Finally, in order to be able to recognize a new round, the party maintains a variable lastTick that
stores the most recent tick from GImperfLClock (either 0 or 1).
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Second, the ledger-specific queries to submit new transactions (submit), to read the ledger state (read),
to read the exported time value, and finally to make parties work and proceed with their “real round
operations” to advance and maintain the ledger.

Submit transactions. As in [4] parties take as inputs transactions that serve as the inputs to the ledger.

Read state. As in [4], the ledger protocol exports a stable ledger state to the environment (implemented as
a certain prefix of the longest chain of a party).

Read time. A novelty compared to Ouroboros Genesis, where the global clock showed the global time to all
parties, Ouroboros Chronos will export a feature to read the logical protocol time. The exact guarantees on
this “new clock”, in particular the skew between reported times and the offset to a related “real-time” notion
are given first as properties and then by the ideal ledger-functionality that Ouroboros Chronos realizes.

Activations requests. Note that maintain-ledger inputs are the activations that “make the parties work”
and perform their round actions in the main procedure LedgerMaintenance later.

Finally, the protocol allows a caller controlled access to the features of the global shared setups through
this protocol instance and to directly steer the registration status (to model the state in which a party is). We
present the relevant sub-protocols and procedures in handling all these calls in the sequel. A summary of the
state variables appears in Section M.1. Additionally, the protocol is designed to allow for a predictable number
of activations per round and party to allow for a guaranteed advancement (independent of the adversarial
actions) as defined in [4].

Technical remark: handling interrupts in a UC protocol. As a general paradigm to write the ledger
protocol as a UC protocol, we follow the approach taken in [4] to simplify the treatments with interrupts in
UC. Note that a protocol command might consists of a sequence of operations. In UC, certain operations,
such as sending a message to another party or just the inability to conclude a task because a resource is
unavailable, result into the protocol machine having to lose its activation. Thus, one needs a mechanism for
ensuring that a party that looses the activation in the middle of such a multi-step command is able to resume
and complete this command.

The general mechanism is to introduce an anchor a that stores a pointer to the current operation; the
protocol associates each anchor with an input I, so that when such an input is received (again) it directly
jumps to the stored anchor, executes the next operation(s) and updates (increases) the anchor before releasing
the activation. We refer to execution in such a manner as I-interruptible.

Global Variables:

Read-only (parameters): R, k, f , s, toff , tstable, tminSync,tpre

Read-write: vvrf
P , vkes

P , localTime, ep, sl, Cloc, T
ep

P , isInit, twork, buffer, futureChains, lastTick, isSync,
EpochUpdate(·), fetchCompleted, lastTimeAlert,TimestampSB(·). (recall that we use Timestamp(·) to
denote the first (and numerical) element of the pair TimestampSB(·))

Registration/Deregistration:

Upon receiving input (register,R), where R ∈ {Gledger,GImperfLClock,GRO} execute protocol
Registration-Chronos(P, sid, Reg,R).

Upon receiving input (de-register,R), where R ∈ {Gledger,GImperfLClock,GRO} execute protocol
Deregistration-Chronos(P, sid, Reg,R).

Upon receiving input (is-registered, sid) return (register, sid, 1) if the local registry Reg indicates that this
party has successfully completed a registration with R = Gledger (and did not de-register since then).
Otherwise, return (register, sid, 0).

Interacting with the Ledger:

Protocol Ouroboros-Chronosk(P, sid;Gledger,GImperfLClock,GRO,F∆N-MC)
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Upon receiving a ledger-specific input I ∈ {(submit, . . .), (read, . . .), (maintain-ledger, . . .)} verify first that all
resources are available. If not all resources are available, then ignore the input; else (i.e., the party is operational
and time-aware) execute one of the following steps depending on the input I:

If I = (submit, sid, tx) then set buffer← buffer||tx, and send (multicast, sid, tx) to F∆N-MC.

If I = (maintain-ledger, sid,minerID) then invoke protocol LedgerMaintenance(Cloc,P, sid, k, s, R, f); if
LedgerMaintenance halts then halt the protocol execution (all future input is ignored).

If I = (read, sid) then invoke protocol ReadState(k, Cloc,P, sid, R, f).

If I = (export-time, sid) then do the following: if isSync or isInit is false, then return
(export-time, sid,⊥) to the caller. Otherwise call UpdateTime(P, R) and do:
1. Define e to be the highest value s.t. EpochUpdate(e) = Done.

2. Return (export-time, sid, (e, localTime)) to the caller.

Handling calls to the shared setup:

Upon receiving (clock-get, sidC) forward it to GImperfLClock and output GImperfLClock’s response.

Upon receiving (clock-update, sidC), record that a clock-update was received in the current round. If the
party is registered to all its setups, then do nothing further. Otherwise, do the following operations before
concluding this round :
1. If this instance is currently time-aware but otherwise stalled or offline, then call UpdateTime(P, R) to

update localTime and evolve the KES signing key by sending (USign, sid,P, 0, localTime) to FKES. If the
party has passed a synchronization slot, then set isSync← false.

2. If this instance is only stalled but isSync = true, then additionally execute FetchInformation(P, sid),
extract all new synchronization beacons B from the fetched chains and record their arrival times and set
fetchCompleted← true. Also, any unfinished interruptible execution of this round is marked as completed.

3. Forward (clock-update, sidC) to GImperfLClock to finally conclude the round.

Upon receiving (eval, sidRO, x) forward the query to GRO and output GRO’s response.

C.2 Registration, De-registration

A party P needs access to all its resources in order to start operation. Once it is registered to all resources it
is able to perform basic operations. In contrast to Ouroboros Genesis, the protocol will initialize a party P’s
local time P.localTime to 0. Furthermore, the protocol is aware that it is not synchronized (since existing
participants might be far off) and sets P.isSync to false. Finally, in order to be able to recognize a new round,
the party maintains a variable lastTick that stores the most recent tick from GImperfLClock (either 0 or 1).

1: if G ∈ {GImperfLClock,GRO} then send (register, sid) to G, set registration status to registered with G, and
output the valued received by G.

2: end if
3: if G = Gledger then
4: if the party is not registered with GImperfLClock or GRO then or already registered with all setups ignore

this input
5: else
6: for each F ∈ {F∆INIT,FVRF,FKES} do
7: Send (register, sid) to F, set its registration status as registered with F, but do not output the

received values.
end for

8: Send (clock-get, sidC) to GImperfLClock and receive (clock-get, sidC , tick) and set lastTick← tick
9: Send (register, sid) to F∆N-MC.

10: Set localTime := 0 and isSync← false.

Protocol Registration-Chronos(P, sid, Reg,G)
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11: If this is the first registration invocation for this ITI, then set isInit← false.
12: Output (register, sid,P) once completing the registration with all the above resources F.

end if
end if

De-registration is then the analogous action of setting variables to the initial values and record the
synchronization status correctly:

1: If the party is alert, set lastTimeAlert← localTime

2: if G ∈ {GImperfLClock,GRO} then
3: if G = GImperfLClock then set isSync← false
4: Send (de-register, sid) to G and set registration status as de-registered with G.
5: Output the valued received by G.

end if
6: if G = Gledger then
7: Set isSync← false

Send (de-register, sid) to F∆N-MC, set its registration status as de-registered with F∆N-MC and output
(de-register, sid,P).

end if

Protocol Deregistration-Chronos(P, sid, Reg,G)

C.3 Ledger Maintenance

What exactly a party might execute in a round depends on its status: newly registered parties first run
through initialization and only later start to create blocks. All these steps are grouped in the main ledger
operation procedure below and the relevant processes follow in the following paragraph. Compared to Genesis,
the main round procedure is substantially more involved and we try to modularly adjust the code to see the
difference.

The following steps are executed in an (maintain-ledger, sid,minerID)-interruptible manner:

1: if isInit is false then invoke Initialization-Chronos(P, sid, R); if Initialization-Chronos halts then halt (this will
abort the execution)
end if

2: // From here the variables vvrf
P , vkes

P , localTime, ep, sl, Cloc, isSync, T
ep

P , T ep,bc
P , fetchCompleted, twork can be

used to read from as they are guaranteed to be initialized.
3: if isSync and stalled before (and now up and running) then
4: SimulateClockAdjustments(P, R, k, f, s)
5: end if
6: if not isSync then
7: Call JoinProc(P, sid, R, k, f, s, toff , tstable, tminSync)
8: end if
9: // normal operation when alert

10: Call FetchInformation(P, sid) and denote the output by (C1, . . . , CM ), (tx1, . . . , txk).
11: Set buffer← buffer||(tx1, . . . , txk) and define futureChains← futureChains||(C1, . . . , CM )
12: Call UpdateTime(P, R)
13: // Ensures the processing of new beacons arrived in chains only.
14: Extract beacons B ← {SB1, . . . , SBn} contained in C1, . . . , CM and not yet contained in syncBuffer.
15: Call ProcessBeacons(P, sid,B)
16: Let N0 be the subsequence of futureChains s.t. C ∈ N0 :⇔ ∀B ∈ C : slotnum(B) ≤ localTime

Protocol LedgerMaintenance(Cloc,P, sid, k, s, R, f)
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17: Remove each C ∈ N0 from futureChains.
18: fetchCompleted← true
19: Call SelectChain(P, sid, Cloc,N0, k, s, R, f) to update Cloc

20: if twork < localTime then
21: Call UpdateStakeDist(P, sid, k, R, f) to update the values Sep, α

ep

P , T
ep

P , T ep,bc
P and ηep.

22: Call StakingProcedure(k,P, ep, sl, buffer, Cloc)
23: Set twork ← localTime

24: if localTime mod R = 0 then
25: Call SyncProc(P, sid, R)
26: end if

end if
27: Call FinishRound(P) // Mark normal round actions as finished.

Standard Round Operations. Before discussing the involved special case of joining, let us first define all
relevant procedures for an alert party to complete its task per round as described in Section 5 of the main
body, that is:

– Fetch information from the network (by a call to FetchInformation).
– Update the time (by a call to UpdateTime): the party locally advances its time-stamp whenever it realizes

that a new round has started by a call GImperfLClock and comparing it to lastTick.
– Record the arrival times of the synchronization beacons the protocol sends out (call to ProcessBeacons).
– Process the received chains: as some chains might be created by parties whose time-stamps might be

ahead, the future chains are stored in the buffer futureChains for later usage. Among the remaining
chains, the protocol will according to the Genesis chain-selection rule decide whether any chain is more
preferable than the local chain (procedure SelectChain).

– Run the main staking procedure (StakingProcedure) to evaluate slot leadership, and potentially create
and emit a new block or synchronization beacon. Before the main staking procedure is executed, the
local state is updated including the current stake distribution (call to UpdateStakeDist).

– If the end of the round coincides with the end of an epoch, the synchronization procedure is executed.
This core procedure of our proposal is detailed below.

The above round operations are based on several core procedures of blockchain protocols, most notably
three procedures we introduce next:

– The initialization algorithm to properly define the initial values.
– The verification algorithms to evaluate whether a chain is valid, and for the specific case of Ouroboros

Chronos also whether a beacon is valid.

C.4 Initialization

The first special procedure a party runs through is initialization. It is invoked upon the first maintain-ledger
input given to this instance. Since every party starts at local time 0 and has no knowledge whether the
session is already running, it will first try to claim stake from FINIT in its first round and then in subsequent
rounds, tries to receive the genesis block until it is successful. As a difference to Ouroboros Genesis, a party
might be delayed in receiving the genesis block. In any case, once a party obtains the genesis block it will
initialize the variables of this instance which are described in Table M.1. In particular, as specified by our
setup FINIT if the genesis block is delivered to an inaugural party of the system, then the party considers
itself as synchronized.19 Otherwise it has to invoke the joining procedure.

19 Note that this knowledge is needed to bootstrap the system with a set of alert parties.
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The following steps are executed in an (maintain-ledger, sid,minerID)-interruptible manner:

1: Send (KeyGen, sid,P) to FVRF and FKES; receiving (VerificationKey, sid, vvrf
P ) and (VerificationKey, sid, vkes

P ),
respectively.// Note that this can be seen as defining the party’s address 〈vvrf

p , vkes
p 〉 (where 〈〉 denotes an

encoding).
2: if localTime = 0 then // Right after registration of this instance
3: Send (ver keys, sid,P, vvrf

P , vkes
P ) to FINIT to claim stake from the genesis block.

4: FinishRound(P) // Mark round actions as finished. Resume below upon next activation
5: Call UpdateTime(P, R, f) to update localTime, ep, and sl

6: while localTime = 0 do
7: Call UpdateTime(P, R, f) to update localTime, ep, and sl and give up the activation (set anchor here)

end while
8: end if

// The following is executed in future init-activations of this instance
9: if localTime > 0 then

10: if FINIT signals an error then
11: Halt the execution.
12: end if
13: Send (genblock req, sid,P) to FINIT.
14: while FINIT ignores the input do
15: FinishRound(P) // Round actions as finished. Resume below upon next activation
16: Send (genblock req, sid,P) to FINIT.
17: end while
18: Receive the genesis block (genblock, sid,G = (S1, η1)), where

S1 =
(

(U1, v
vrf
1 , vkes

1 , s1), . . . , (Un, v
vrf
n , vkes

n , sn)
)
.

19: Set Cloc ← (G).

20: If FINIT did not mark the returned value as Running (the execution just started) and this instance was
time-aware and online from registration onward, then additionally set isSync← true // This party becomes a
synchronized inaugural protocol participant.
end if

21: Set isInit← true, fetchCompleted← false, twork ← 0, lastTimeAlert← 0, localTime, sl, ep← 1 and call
UpdateStakeDist(P, sid, k, R, f) to initialize the values Sep, α

ep

P , T
ep

P , T ep,bc
P and ηep. // Now, ready to start,

either with the first slot in first epoch, or with bootstrapping (joining procedure).
22: buffer← ∅, futureChains← ∅
23: EpochUpdate(·)← empty table (initial symbol ⊥), EpochUpdate(0)← Done

Protocol Initialization-Chronos(P, sid, R)

C.5 Validity Checks of Chains and Beacons in Chronos

Chain verification. A core procedure is to distinguish valid from invalid blockchains. The procedure is
depicted below. It is a slightly extended version of Ouroboros Genesis to cover beacons.

if C contains empty epochs or starts with a block other than G, or isvalidstate(st) = 0 then
return false

end if
if isSync and (∃B ∈ C : slotnum(B) > localTime) then

return false
end if
for each epoch ep do

Protocol IsValidChain(P, sid, C, f, R)
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// Derive stake distribution and randomness for this epoch from C
// In the following, H(·) stands for an RO evaluation for simplicity.
Set SCep to be the stakeholder distribution at the end of epoch ep− 2 in C.
Set αep,C

P′ to be the relative stake of any party P′ in SCep and T ep,C
P′ ← 2`VRFφf (αep,C

P′ ). Also define

T ep,bc,C
P′ ← 2`VRF · αep,C

P′ .
Set ηCep ← H(ηCep−1 ‖ ep ‖ v) where v is the concatenation of the VRF outputs yρ from all blocks in C from

the first two-thirds of slots of epoch ep− 1, and ηC1 , η1 from G.
for each block B in C from epoch ep do

Parse B as (h, st, sl, crt, ρ, σ).
// Check hash
Set badhash← (h 6= H(B−1)), where B−1 is the last block in C before B.
// Check VRF values
Parse crt as (P′, y, π) for some P′.
Send (Verify, sid, ηep ‖ sl ‖ TEST, y, π, vvrf

P′ ) to FVRF,
denote its response by (Verified, sid, ηep ‖ sl ‖ TEST, y, π, b1).

Send (Verify, sid, ηep ‖ sl ‖ NONCE, yρ, πρ, vvrf
P′ ) to FVRF,

denote its response by (Verified, sid, ηep ‖ sl ‖ NONCE, yρ, πρ, b2),

Set badvrf ←
(
b1 = 0 ∨ b2 = 0 ∨ y ≥ T ep,C

P′

)
.

// Check signature
Send (Verify, sid, (h, st, sl, crt, ρ), sl, σ, vkes

P′ ) to FKES,
denote its response by (Verified, sid, (h, st, sl, crt, ρ), sl, b3).

Set badsig← (b3 = 0).
// Check Beacons
if ∃SB ∈ B ∧ slotnum(B) > (ep− 1)R+ 2R/3 then

Set badBeacon← true
else if ∃SB ∈ B : slotnum(SB) > slotnum(B) ∨ slotnum(SB) 6∈ [(ep− 1)R+ 1, ep ·R] then

Set badBeacon← true
else

for each SB ∈ B do
Parse SB as (sl′,P′, y, π)
If C contains more than one beacon with (sl′,P′, ·, ·) then set badBeacon← true
Send (Verify, sid, ηep′ ‖ sl′ ‖ SYNC, y, π, vvrf

P′ ) to FVRF.
Denote the response from FVRF by (Verified, sid, ηep′ ‖ sl′ ‖ SYNC, y, π, b4),

if (b4 = 0) or (y ≥ T ep,bc,C
P′ ) then

Set badBeacon← true
end if

end for
end if
if (badhash ∨ badvrf ∨ badsig ∨ badBeacon) then

return false
end if

end for
end for
return truek

The beacon validity predicate. Beacons validity is related to chain validity as one has to verify validity
of leadership. The details are found below:

// Precondition: Chain C is valid. Returns true if the beacon is a valid beacon w.r.t. C, undecided if no
judgement is possible, and false if the beacon is invalid w.r.t. C.

Protocol ValidSB(P, sid, SB, C, f, R)
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Parse SB as (sl′,P′, y, π)
Let ep′ be the epoch number slot sl′ falls into. Let ep := ep′ − 2.
if C contains no block in epoch ep′ then

return undecided // no judgement possible for this beacon
end if
// Derive stake distribution and randomness for epoch ep′ as indicated by C
Set SCep′ to be the stakeholder distribution at the end of epoch ep′ − 2 in C.
Set αep

′,C
P′ to be the relative stake of party P′ in SCep′ and T ep

′,bc,C
P′ ← 2`VRF · αep

′,C
P′ .

Set ηCep′ ← H(ηCep′−1 ‖ ep′ ‖ v) where v is the concatenation of the VRF outputs yρ from the existing blocks in

C with slot numbers of the first two-thirds slots of epoch ep′ − 1 (and ηC1 , η1 from G).
// Check VRF value
Send (Verify, sid, ηep′ ‖ sl′ ‖ SYNC, y, π, vvrf

P′ ) to FVRF.
Denote the response from FVRF by (Verified, sid, ηep′ ‖ sl′ ‖ SYNC, y, π, b1),

if b1 = 0 or y ≥ T ep
′,bc,C

P′ then
return false

end if
return true

C.6 Fetching information, stake distribution and time update

The two algorithms FetchInformation and UpdateTime are basically identical to Ouroboros Genesis except
that FetchInformation was simplified since newly joining parties do not make an active request.

1: if fetchCompleted then
2: Set fetchcount← 0
3: else
4: Set fetchcount := 1 // Compared to Genesis, time-aware and online parties in Chronos do always fetch once

per round and never have to catch up missed round messages.
5: end if

// Fetching on Fbc
N-MC.

6: Send fetchcount fetch-queries (fetch, sid) to Fbc
N-MC; denote the ith response from Fbc

N-MC by (fetch, sid, bi).
7: Extract chains C1, . . . , Ck from b1 . . . bfetchcount.

// Fetching on F tx
N-MC.

8: Send fetchcount fetch-queries (fetch, sid) to F tx
N-MC; denote the ith response from F tx

N-MC by (fetch, sid, bi).
9: Extract received transactions (tx1, . . . , txk) from b1 . . . bfetchcount.

10: if not isSync or P is stalled then
11: buffer← buffer||(tx1, . . . , txn)
12: futureChains← futureChains ∪ {C1, . . . , Cn}
13: end if

Output: The protocol outputs (C1, . . . , Ck) and (tx1, . . . , txk) to its caller (but not to Z).

Protocol FetchInformation(P, sid)

The stake distributions for epochs defined in the local chain (and all associated state-variables) are
computed as follows:

1: Set Sep to be the stakeholder distribution at the end of epoch ep− 2 in Cloc in case ep ≥ 2 (and keep the initial
stake distribution in case ep < 2).

2: Set αep

P to be the relative stake of P in Sep and T ep

P ← 2`VRFφf (αep

P ) as well as T ep,bc
P ← 2`VRF · αep

P

Protocol UpdateStakeDist(P, k, R, f)
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3: Set ηep ← H(ηep−1 ‖ ep ‖ v) where v is the concatenation of the VRF outputs yρ from all blocks in Cloc from the
first 2R/3 slots of epoch ep− 1 (and if ep = 1, η1 is the nonce of the genesis block).

Output: The protocol outputs Sep, α
ep

P , T
ep

P , ηep and T ep,bc
P to its caller (but not to Z).

And, finally, the time update procedure:

// Precondition: Only executed if time-aware
1: Send (clock-get, sidC) to GImperfLClock and receive (clock-get, sidC , tick)
2: if lastTick 6= tick then
3: lastTick← tick
4: localTime← localTime + 1
5: fetchCompleted← false
6: end if
7: Set ep← dlocalTime/Re, and sl← localTime.

Output: The protocol outputs localTime, ep, sl to its caller (but not to Z).

Protocol UpdateTime(P, R)

C.7 Process Beacons and Arrival Times

The following procedure records and processes beacons, their arrival times, and filters out invalid beacons.
Special care needs to be made to properly filter out bogus beacons as soon as possible. The validity predicate
for beacons follows in the next section, where we discuss all validity predicates in Ouroboros Chronos.

1: if not fetchCompleted then
2: Send (fetch, sid) to F sync

N-MC. denote the ith response from F sync
N-MC by (fetch, sid, b).

3: Extract all received beacons (SB1, . . . , SBk) contained in b ∪ B.
4: for each SBi with TimestampSB(SB) = ⊥ do
5: syncBuffer← syncBuffer ∪ {SB}
6: Let ep be the epoch number slotnum(SB) belongs to
7: if isSync ∧ (EpochUpdate(ep− 1) = Done) then
8: Set TimestampSB(SBi)← (localTime, final). // The measurement is final.
9: else

10: TimestampSB(SBi)← (localTime, temp) // Will be adjusted upon next time shift.
11: end if
12: end for
13: // Buffer cleaning. Keep one representative arrival time.
14: if isSync then
15: Remove from syncBuffer all beacons such that ValidSB(P, sid, SB, Cloc, f, R) returns false.
16: syncBuffervalid ← {SB

′ ∈ syncBuffer |ValidSB(P, sid, SB′, Cloc, f, R) = true}
17: Let L = (SB1, . . . , SBn) be a canonical ordering of syncBuffervalid

18: for each SB = (sl,P, y, π) ∈ L do
19: QSB ← {SB′ = (sl′,P′, ·, ·) ∈ L |P′ = P ∧ sl′ = sl}
20: minSB ← min{Timestamp(SB′) | SB′ ∈ QSB}
21: SB′ ← min{SB′′ ∈ QSB |Timestamp(SB′′) = minSB} // Min w.r.t. ordering in L
22: Remove from syncBuffer all beacons (sl,P, ·, ·) except SB′.
23: end for
24: end if
25: end if

Output: ok to its caller (but not to Z).

Protocol ProcessBeacons(P, sid,B)
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C.8 Select Chain

Chain selection consists of two steps: filtering out valid chains, and second compare them using the Genesis
rule.

1: Initialize Nvalid ← ∅
2: for i = 1 . . .M do
3: Invoke IsValidChain(P, sid, Ci, f, R); if it returns true then update Nvalid ← Nvalid ∪ Ci

end for
4: Execute Algorithm maxvalid-bg(Cloc,Nvalid = {C1, . . . , CM}, k, s, f) and receive its output Cmax.
5: Replace Cloc by Cmax

Output: The protocol outputs Cmax to its caller (but not to Z).

Protocol SelectChain(P, sid, Cloc,N = {C1, . . . , CM}, k, s, R, f)

C.9 The Genesis Chain Selection Rule

The genesis rule is given below:

// Compare Cmax to each Ci ∈ N
1: Set Cmax ← Cloc.
2: for i = 1 to M do
3: if (Ci forks from Cmax at most k blocks) then
4: if |Ci| > |Cmax| then // Condition A

Set Cmax ← Ci.
end if

5: else
6: Let j ← max {j′ ≥ 0 | Cmax and Ci have the same block in slj′}
7: if

∣∣Ci[0 : j + s]
∣∣ > ∣∣Cmax[0 : j + s]

∣∣ then // Condition B
Set Cmax ← Ci.

end if
end if

end for
8: return Cmax.

Algorithm maxvalid-bg(Cloc,N = {C1, . . . , CM}, k, s, f)

C.10 The Core Staking Procedure of Alert Parties

Once a party has properly filtered all information and updated its state, it can run the core staking procedure
and beacon emitting process formally given below:

The following steps are executed in an (maintain-ledger, sid,minerID)-interruptible manner:

// Determine leader status
1: Send (EvalProve, sid, ηj ‖ sl ‖ NONCE) to FVRF, denote the response from FVRF by (Evaluated, sid, yρ, πρ).
2: Send (EvalProve, sid, ηj ‖ sl ‖ SYNC) to FVRF, denote the response from FVRF by (Evaluated, sid, ysync, πsync).
3: Send (EvalProve, sid, ηj ‖ sl ‖ TEST) to FVRF, denote the response from FVRF by (Evaluated, sid, y, π).
4: if y < T ep

P and this party is sign-capable then
// Generate a new block

Protocol StakingProcedure(P, sid, k, ep, sl, buffer, Cloc)
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5: Set buffer′ ← buffer, N ← txbase-tx
P , and st← blockifyOC(N)

6: repeat
7: Parse buffer′ as sequence (tx1, . . . , txn)
8: for i = 1 to n do
9: if ValidTxOC(txi, st||st) = 1 then

10: N ←N ||txi
11: Remove tx from buffer′

12: Set st← blockifyOC(N)
end if

end for
until N does not increase anymore

13: Set crt = (P, y, π), ρ = (yρ, πρ) and h← H(head(Cloc)).
14: if Slot sl is within the first 2R/3 slots of this epoch then
15: sb← {SB′ ∈ syncBuffer |ValidSB(P, sid, SB′, Cloc, f, R) = true}
16: Remove from sb all beacons SB = (sl,P, ·, ·) that satisfy:
17: (slotnum(SB) > sl) ∨ (slotnum(SB) ≤ (ep− 1) ·R) ∨ Cloc contains a beacon (sl,P, ·, ·)
18: end if
19: Send (USign, sid,P, (h, st, sb, sl, crt, ρ), sl) to FKES; denote the response from FKES by

(Signature, sid, (h, st, sb, sl, crt, ρ), sl, σ).
20: Set B ← (h, st, sb, sl, crt, ρ, σ) and update Cloc ← Cloc ‖B.

// Multicast the extended chain and wait.
21: Send (multicast, sid, Cloc) to Fbc

N-MC and proceed from here upon next activation of this procedure.
22: else
23: Evolve the KES signing key at least to localTime by sending (USign, sid,P, 0, sl) to FKES (and ignore the

returned value). Give up activation and set anchor here to resume on next maintenance activation
end if

24: if ysync < T ep,bc
P and sl lies within the first R/6 slots of this epoch then

25: SB← (sl,P, ysync, πsync).
26: Send (multicast, sid, SB) to F sync

N-MC and set anchor at end of procedure to resume on next maintenance
activation

27: else
28: Give up activation and set anchor at end of procedure to resume on next maintenance activation
29: end if

C.11 Code of the Synchronization Procedure

The synchronization procedure is run at an epoch boundary, and the code is given below:

1: // Only called when: P is alert, localTime mod R = 0 and localTime > 0
2: Set i← localTime divR
3: if (not EpochUpdate(i) = Done) then
4: EpochUpdate(i)← Done // Remember that clock adjustment has happened
5: Bi ← Cloc[(i− 1)R : (i− 1)R+ 2R/3]
6: Si ← {SB | ∃B ∈ Bi : SB ∈ B ∧ slotnum(SB) ∈ {(i− 1)R, . . . , (i− 1)R+R/6}}
7: for each SB = (sl,P, y, π) ∈ Si do
8: // Find representative beacon and compute recommendation.
9: Find unique SB′ = (sl,P, ·, ·) ∈ syncBuffer. If inexistent, set SB′ ← ⊥.

10: if SB′ 6= ⊥ then
11: Set TimestampSB(SB)← TimestampSB(SB′) // Assign correct value
12: recom(SB)← slotnum(SB)− Timestamp(SB)
13: else

Protocol SyncProc(P, sid, R)
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14: S ← S \ {SB} // Negligible probability event in execution.
15: end if
16: end for
17: shifti ← med {recom(SB) | SB ∈ Si}
18: for each SB with TimestampSB(SB) = (a, temp) do
19: TimestampSB(SB)← (a+ shifti, final)
20: end for
21: if shifti > 0 then // Move fast forward
22: newTime← localTime + shifti
23: Mchains ←Msync ← ∅
24: while localTime < newTime do
25: localTime← localTime + 1
26: Let N0 be the subsequence of futureChains s.t.
27: C ∈ N0 :⇔ ∀B ∈ C : slotnum(B) ≤ localTime

28: Remove each C ∈ N0 from futureChains.
29: Call SelectChain(Cloc,N0, k, s, R, f) to update Cloc

30: Call UpdateStakeDist(P, k, R, f)
31: Emulate StakingProcedure(k,P, ep, sl, buffer, Cloc) but instead of multicasting new chains or

beacons, add them to the sets Mchains and Msync, respectively (activation is not lost).
32: end while
33: Send (multicast, sid,Mchains) to Fbc

N-MC and (multicast, sid,Msync) to F sync
N-MC and proceed from here

upon next activation of this procedure.
34: end if
35: if shifti < 0 then // Need to wait
36: Set twork ← localTime

37: Set localTime← localTime + shifti // Next slot in which staking will be performed is slot
localTime + 1 according to the “new time”.

38: end if
39: end if

Output: The protocol outputs ok to its caller (but not to Z).

C.12 Reading the Ledger State

Reading the ledger state is rather straightforward: first process all relevant information for this round and
then extract the state.

1: If any of isInit or isSync is false output the empty state (read, sid, ε) (to Z). Otherwise, do the following:
2: Call FetchInformation(k,P) and denote the output by (C1, . . . , CM ), (tx1, . . . , txk).
3: Set buffer← buffer||(tx1, . . . , txk) and define N ← {C1, . . . , CM}
4: Call UpdateTime(P, R)
5: Call ProcessBeacons(P, sid)
6: Let N0 := {C ∈ N ∪ futureChains | ∀B ∈ C : slotnum(B) ≤ localTime}
7: Let N1 := {C ∈ N | ∃B ∈ C : slotnum(B) > localTime}
8: futureChains← (futureChains \ N0) ∪N1

9: fetchCompleted← true
10: Call SelectChain(P, sid, Cloc,N0, k, s, R, f) to update Cloc

11: Extract the state st from the current local chain Cloc.
12: Output (read, sid, stdk) (to Z). // stdk denotes the prefix of st with the last k state blocks chopped off

Protocol ReadState(k, Cloc,P, sid, R, f)
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C.13 Simulate Clock Adjustments

Parties that have been absent only for a limited time (i.e., stalled for a limited time) can bootstrap very
easily to the actual reliable state and time. Note that after doing this, they might be not yet alert for a small
amount of time until they can start to work again, since they might have evolved their keys too far.

1: simulatedTime← lastTimeAlert

2: for localTime− lastTimeAlert iterations do
3: Let N0 be the subsequence of futureChains s.t. C ∈ N0 :⇔ ∀B ∈ C : slotnum(B) ≤ simulatedTime
4: Remove each C ∈ N0 from futureChains.
5: Emulate SelectChain(Cloc,N0, k, s, R, f) with simulated time simulatedTime (instead of localTime)
6: - Update Cloc

7: if simulatedTime mod R = 0 then
8: Emulate SyncProc(P, R) on simulated time simulatedTime (instead of localTime)
9: - Execute Lines 1 to 13 to compute the shift shiftep and to adjust already recorded arrival times.

10: - Set simulatedTime← simulatedTime + shiftep
11: end if
12: simulatedTime← simulatedTime + 1
13: end for
14: Evolve the KES signing key by sending (USign, sid,P, 0, localTime) to FKES

15: Set twork ← localTime
16: Set localTime← simulatedTime

Output: The protocol outputs ok to its caller (but not to Z).

Protocol SimulateClockAdjustments(P, R, k, f, s)

C.14 The round finish procedure

Once a party is done its actions in a round it has to advance the synchronous computation by sending the
indication to GImperfLClock. Since the functionality is shared, an update request in the ideal world will be
relayed which implies that the protocol cannot simply ignore this input in the real world either. However, the
update-request by the environment might not be well aligned with the round actions, so the protocol merely
remembers that such an update has been received. At the end of its functions it then executes FinishRound
which enforces that the protocol only sends the clock-update once (1) the round operations are concluded
and (2) the environment has given the command to advance the round. (Note that in the ideal world, it is
the ledger functionality which is registered with GImperfLClock and enforces the same principal time-evolving
behavior as in the real world.)

1: while A (clock-update, sidC) has not been received during the current round do
Give up activation (set the anchor here)

end while
2: Send (clock-update, sidC) to GImperfLClock. // Party will lose its activation here.

Protocol FinishRound(P)

C.15 The Joining Procedure

One of the main procedures of Ouroboros Chronos concludes this description. The joining procedure will make
any party that joins the system getting synchronized with the blockchain and to derive a local time-stamp
that is in a small interval around the current alert parties time-stamps. The parameters of the procedure,
along with their default values, are summarized in Table 1.
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1: Call UpdateTime(P, R, f) // Align with newest round
2: if localTime > 1 then // Set back to local round 1
3: Set localTime← 1
4: Set ep← dlocalTime/Re, and sl← localTime.
5: fetchCompleted← false, futureChains, buffer← ∅, TimestampSB ← empty array.
6: end if
7: // Phase B
8: while localTime ≤ toff do
9: if fetchCompleted = false then

10: Call FetchInformation(k,P) and denote fetched chains by N := (C1, . . . , CM )
11: Call SelectChain(Cloc,N , k, s, R, f) to update Cloc // Since isSync = false, all chains are considered
12: fetchCompleted← true
13: FinishRound(P) // Mark round actions as finished. Resume below upon next activation
14: end if
15: Call UpdateTime(P, R, f) to update localTime, ep, and sl // fetchCompleted will reset.
16: end while
17: // Phases C
18: while localTime ≤ toff + tminSync + tstable do
19: if fetchCompleted = false then
20: Call FetchInformation(k,P) and denote the output by (C1, . . . , CM ), (tx1, . . . , txk).
21: Set buffer← buffer||(tx1, . . . , txk) and define futureChains← futureChains||(C1, . . . , CM )
22: Call ProcessBeacons to collect new beacons in this round.// All arrival times are temporary
23: Call SelectChain(Cloc, futureChains, k, s, R, f) to update Cloc

24: fetchCompleted← true
25: FinishRound(P) // Mark round actions as finished. Resume below upon next activation
26: end if
27: Call UpdateTime(P, R, f) to update localTime, ep, and sl // fetchCompleted will reset.
28: end while
29: // Phase D
30: Define the function Isync(j) : j 7→ Ij := [(j − 1)R + 1, . . . , (j − 1)R + 2R/3].
31: syncBuffervalid ← {SB

′ ∈ syncBuffer |ValidSB(P, sid, SB′, Cloc, f, R) = true}
32: Initialize i := 0. Now set i to be the minimum positive integer such that
∀SB ∈ Cloc[Isync(i)] : SB ∈ syncBuffervalid ∧ Timestamp(SB) > toff + tpre (if no interval exists, i is unchanged).

33: if i ≥ 1 then
34: for at most ((tstable + tminSync) divR)) iterations do
35: Si ← {SB | ∃B ∈ Cloc[Isync(i)] : SB ∈ B ∧ slotnum(SB) ∈ {(i− 1)R + 1, . . . , (i− 1)R + R/6}}
36: for each SB = (sl,P, y, π) ∈ Si do
37: QSB ← {SB′ = (sl′,P′, ·, ·) ∈ syncBuffervalid |P

′ = P ∧ sl′ = sl}
38: if QSB 6= ∅ then
39: minSB ← min{Timestamp(SB′) | SB′ ∈ QSB}
40: TimestampSB(SB)← (minSB, final)
41: recom(SB)← slotnum(SB)− Timestamp(SB)
42: else
43: S ← S \ {SB} // Negligible probability event in execution.
44: end if
45: end for
46: shifti ← med {recom(SB) | SB ∈ Si}
47: for each SB with TimestampSB(SB) = (a, temp) do
48: TimestampSB(SB)← (a+ shifti, temp)
49: end for
50: Set localTime← localTime + shifti; EpochUpdate(i)← Done
51: Break if localTime ≤ (i+ 1)R. Otherwise, set i← i+ 1 and continue iteration.
52: end for
53: isSync← true; Run SelectChain(Cloc, futureChains, k, s, R, f) to update Cloc; twork ← localTime− 1
54: If localTime ≤ i · R then set twork ← i · R. // Wait if shifted back before sync slot of i.
55: Evolve the KES signing key by sending (USign, sid,P, 0, twork) to FKES

56: for each beacon SB ∈ syncBuffervalid with slotnum(SB) ≤ (i+ 1)R do
57: Parse TimestampSB(SB) as (a, temp). Define TimestampSB(SB)← (a, final)
58: end for
59: end if

Output: The protocol outputs ok to its caller (but not to Z).

Protocol JoinProc(P, sid, R, k, f, s, toff , tstable, tminSync)

Fig. 2. The joining procedure.
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Parameter Default Phase

toff R/3 B

tminSync 2R C

tstable R C

tpre 3R/4 D

Table 1. Parameters of the joining procedure and phases in which they play a role.

D The Extended Ledger Functionality

As in [4], we prove composable security of this proof-of-stake protocol by showing that it realizes a ledger
functionality that additionally exports additional time-stamps. This is important to show on what guarantees
a higher-level protocol can rely as it requires to abstract the time advancement of the protocol in a way that
is less complex than the real world. Compared to [4], we have thus two major differences:

1. The ledger uses GImperfLClock to maintain its baseline reference time (time since creation of the function-
ality).

2. We need to incorporate the detailed achieved guarantees for the exported time-stamps and provide a
useful behavior for alert parties to be used by external protocols.

Overview. The ledger functionality introduced in [4] builds upon the general functionality [5]. In a nutshell,
it maintains a central and unique ledger state denoted by state. How fast this state grows and which
transactions it includes are part of the ledger policy—and therefore fully adjustable—as this depends heavily
on the protocol achieving it. In any case, each registered party can request to see the state, and is guaranteed
to receive a sufficiently long prefix of it; the size of each party’s view of the state is captured by (monotonically)
increasing pointers that define which part of the state each party can read; the adversary has a limited control
on these pointers. The dynamics of this can be reflected with a sliding window over the sequence of state
blocks, with width windowSize and starting at the head of the state; each party’s pointer points to a location
withing this window. The adversary can choose the position of the pointers within this sliding window. As is
common in UC, parties advance the ledger when they are instructed to (activated with specific maintain-ledger
input by their environment Z). The ledger uses these queries along with the function predict-time(·) to ensure
that the ideal world execution advances with the same pace (relatively to the pacemaker)—in this work the
baseline speed captured by the nominal time derived from GImperfLClock—as the protocol.

Any party can input a transaction to the ledger; upon reception transactions are validated using a predicate
Validate and, if found valid, are added to a buffer. Each new block of the state consists of transactions which
were previously accepted to the buffer. To give protocols syntactic freedom to structure their state blocks,
a vector of transactions, say N i, is mapped to the ith state block via function Blockify(N i). Validate and
Blockify are two of the ledger’s parametrization algorithms. The third algorithm is the predicate predict-time
that is instantiated by the predictable time-behavior predicate of the protocol under consideration (in this
case Ouroboros Chronos). We note that that Ouroboros Chronos has a predictable time-advancement pattern
due to the way the UC protocol is designed and it is always clear when honest parties call FinishRound in the
protocol.

Party sets maintained by the ledger. In accordance with the classification of parties in Section 4, the
ledger divides the registered honest into two different basic categories called synchronized and desynchronized.
Synchronized parties are the parties that enjoy full security guarantees. Formally, a party that is considered
synchronized by the ledger and which is connected to all shared setups is what we usually called alert in
the dynamic availability setting. A party is considered synchronized if it has been continuously connected to
all its resources for a sufficiently long interval and has maintained connectivity to these resources until the
current time. Formally, here, “sufficiently long” refers to Delay-many rounds, where Delay is a parameter of
the ledger and directly relates to the real-world time duration between joining and becoming synchronized.
In the general formulation, de-synchronized parties receive significantly weaker guarantees.
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State-extend policy. A defining part of the behavior of the ledger is the (parameterizable) procedure which
defines when/how to extend state and what the constraints are for an adversary. The state-extend policy of
the ledger in this work is almost identical to the ledger in [4] except that we establish a slightly better bound
for transaction liveness guarantees. In nutshell, the basic mode of operation of ExtendPolicy is that it takes as
an input a proposal from the adversary for extending the state, and can decide to follow this proposal if it
satisfies its policy; if it does not, ExtendPolicy can ignore the proposal (and enforce a default extension). It
will enforce minimal chain growth, a certain fraction of “good blocks,” and transaction liveness guarantees
for old and (still) valid transactions.

Given this similarity, we give a concise summary of the ledger parameters used in this work in Table M.2.
The ledger functionality and its ExtendPolicy are further provided in the appendix for the sake of self-
containment.

The Export-Time Extension. We introduce the export time extension to Gledger. first, we represent a
time-stamps timeP associated to party P as a pair (e, t), where t is the actual time stamp, and e refers to what
we call a epoch.20 An alert party’s time t in (e, t) is guaranteed to increase during an epoch with every tick of
the reference speed. Once t hits an epoch boundary, defined as multiples of an epoch length parameter RL

21,
the epoch value increases as well. Clearly, this would a perfect, monotonically increasing, two-dimensional
time-stamp. We have to weaken this guarantee by allowing to the adversary to apply a limited shift whenever
a party is at an epoch boundary (parameters shiftLB, shiftUB). Furthermore the ledger enforces that any two
alert parties with respective time-stamps (e, t) and (e′, t′), satisfy the constraints |t− t′| ≤ timeSlacktotal

and |t − t′| ≤ timeSlackep if e = e′, and |e − e′| ≤ 1 for the respective ledger parameters timeSlackep,
timeSlacktotal that define the maximally allowed skewness of parties. Note that we give the possibility than
Within an epoch the slack could be potentially different (i.e., much better) than across epochs.

We give an overview of the parameters in Table M.2 and provide the functionality in Section D.1.

D.1 The Functionality

For completeness, we describe here the ledger functionality in the GImperfLClock world together with the
export-time extension. A couple of technicalities might be mentioned here regarding the novel aspects for
time-management: as explained in the main body, the timestamps are two-dimensional of the form (e, t),
where e is an epoch number and t is the actual timestamp. Initially, the epoch is e = −1 which stands for
“prior” to be active. Timestamps advance in a monotone fashion controlled by the functionality. The only
irregularities are introduced, by the adversary, once the epoch increases from e to e+ 1 for a party. Then the
functionality allows the adversary shifting the reported timestamp of that party by a limited amount. The
influence is captured by the above explained clock parameters. The first switch the adversary can do (when
e = −1 and t = 0) corresponds to the initial offset. We highlight the differences to the PoS ledger from [4] in
blue to make the quite complex definition more modular.

General: The functionality is parameterized by four algorithms, Validate, ExtendPolicy, Blockify, and predict-time,
along with three parameters: windowSize, Delay ∈ N, and SinitStake := {(U1, s1), . . . , (Un, sn)}. The functionality
manages variables state, NxtBC, buffer, τL, and τ state, as described above. The variables are initialized as follows:
state := τ state := NxtBC := ε, buffer := ∅, τL = 0. For each party P ∈ P the functionality maintains a pointer pti
(initially set to 1) and a current-state view statep := ε (initially set to empty). The functionality also keeps track
of the timed honest-input sequence in a vector ITH (initially ITH := ε).

Party Management: The functionality maintains the set of registered parties P, the (sub-)set of honest parties
H ⊆ P, and the (sub-set) of de-synchronized honest parties PDS ⊂ H (as discussed below). The sets P,H,PDS are

Functionality Gledger with Export-Clock Extension

20 In the real world, e would be the number of adjustments a party has made to its local clock.
21 In this work, this is always exactly the length of normal epoch, i.e., RL = R.
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all initially set to ∅. When a (currently unregistered) honest party is registered at the ledger, if it is registered with
the clock-tick functionality and the global RO already, then it is added to the party sets H and P and the current
time of registration is also recorded; if the current time is τL > 0, it is also added to PDS . Similarly, when a party
is deregistered, it is removed from both P (and therefore also from PDS or H). The ledger maintains the invariant
that it is registered (as a functionality) to GImperfLClock in round τL = 0 or whenever H 6= ∅ in which case it
updates the clock at the speed of the slowest party in H.

Time management: When activated with the first registration command, the ledger prepends to its actions
above the following steps: it asks for the clock tick to GImperfLClock and stores the variable internally as lastTick

and sets τL := 0.
It further activates the adversary with restricting query (Respond, (start, sid)) and resumes with normal
registration after receiving the immediate acknowledgment from the adversary.

Handling initial stakeholders: The ledger blocks the advancement of the baseline time of the clock until each
initial stakeholder, i.e., P ∈ SinitStake has registered. Additionally, the adversary can assign a unique reference
string refp once to each registered party P.

Extension Parameters: The extension is parameterized by shiftLB, shiftUB, timeSlackep, timeSlacktotal, and
the epoch length RL.

Extension Variables: The extension introduces the new variables timeP for each registered party P ∈ P (initial
value (−1, 0)).

Upon receiving any input I from any party or from the adversary, send (clock-get, sidC) to GImperfLClock

and upon receiving response (clock-get, sidC , tick) set d = 1 if lastTick 6= tick and 0 otherwise. Set
τL := τL + d. Do the following if τL > 0 (otherwise, ignore input):

1. Updating synchronized/desynchronized party set:

(a) Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been registered (continuously) to
the ledger,GImperfLClock, and the GRO since time τ ′ < τL − Delay.

(b) For each party P ∈ P̂ with timeP = (e, t), ensure valid range of timestamps: verify that t ≤ τL +∆clock and
that for any party P′ ∈ H \PDS with timeP′ = (e′, t′), it holds that |t− t′| ≤ timeSlacktotal, if e = e′ it also
holds that |t− t′| ≤ timeSlackep and that |e− e′| ≤ 1. If a comparison fails, set timeP to that value timeP′ .

(c) Set PDS := PDS \ P̂.

(d) For any synchronized party P ∈ H \ PDS , if P is not registered to the clock, then consider it desynchronized,
i.e., set PDS ∪ {P}.

2. If I was received from an honest party P ∈ P:

(a) Set ITH := ITH ||(I,P, τL);

(b) Compute N = (N1, . . . ,N `) := ExtendPolicy(ITH , state, NxtBC, buffer, τ state) and if N 6= ε set
state := state||Blockify(N1)|| . . . ||Blockify(N `) and τ state := τ state||τ `L, where τ `L = τL|| . . . , ||τL.

(c) For each BTX ∈ buffer: if Validate(BTX, state, buffer) = 0 then delete BTX from buffer. Also, reset
NxtBC := ε.

(d) If there exists Uj ∈ H \ PDS such that |state| − ptj > windowSize or ptj < |statej |, then set
ptk := |state| for all Uk ∈ H \ PDS .

3. Increase the party time stamps in a new round:

(a) For all P ∈ H \ PDS do: parse timeP as (e, t) and set timeP ← (e, t+ 1) for all the parties that have
advanced locally according to GImperfLClock since the last activation. If P is stalled and t+ 1 divRL > e then
PDS ∪ {P}.

4. If the calling party P is stalled or time-unaware (according to the defined party classification), then no further
actions are taken. Otherwise, depending on the above input I and its sender’s ID, Gledger executes the
corresponding code from the following list:
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• Submitting a transaction:
If I = (submit, sid, tx) and is received from a party P ∈ P or from A (on behalf of a corrupted party P) do
the following

(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL,P)

(b) If Validate(BTX, state, buffer) = 1, then buffer := buffer ∪ {BTX}.
(c) Send (submit, BTX) to A.

• Reading the state:
If I = (read, sid) is received from a party P ∈ H \ PDS then immediately return (read, sid, ε) if
timeP = (e, t) with e ≤ 0 ∧ t < 0. Else, set statep := state|min{ptp,|state|} and return (read, sid, statep) to

the requester. If the requester is A then send (state, buffer,ITH) to A.

• Maintaining the ledger state:
If I = (maintain-ledger, sid,minerID) is received by an honest party P ∈ P and (after updating ITH as
above) predict-time(ITH , aux) = τ̂ > τL then send (clock-update, sidC) to GImperfLClock. Here we provide
aux = (state, (P1, refP1 , timeP1), . . . , (P|P|, refP|P| , timeP|P|)). Else, send I to A.
Before losing the activation, if party P ∈ H \ PDS has only locally completed its round actions, update the
clock in the name of this party. If timeP = (e, t) for t > 0 and tdivRL > e then set timeP ← (e+ 1, t).

• The adversary proposing the next block:
If I = (next-block, hFlag, (txid1, . . . , txid`)) is sent from the adversary, update NxtBC as follows:

(a) Set listOfTxid← ε

(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid,minerID, τL, Uj) ∈ buffer with ID txid = txidi then
set listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC := NxtBC||(hFlag, listOfTxid) and output (next-block, ok) to A.

• The adversary setting state-slackness:
If I = (set-slack, (Ui1 , p̂ti1), . . . , (Ui` , p̂ti`)), with {Pi1 , . . . ,Pi`} ⊆ H \ PDS is received from the adversary
A do the following:

(a) If for all j ∈ [`] : |state| − p̂tij ≤ windowSize and p̂tij ≥ |stateij |, set pti1 := p̂ti1 for every j ∈ [`] and

return (set-slack, ok) to A.

(b) Otherwise set ptij := |state| for all j ∈ [`].

• The adversary setting the state for desychronized parties:
If I = (desync-state, (Ui1 , state

′
i1), . . . , (Ui` , state

′
i`

)), with {Ui1 , . . . , Ui`} ⊆ PDS is received from the
adversary A, set stateij := state′ij for each j ∈ [`] and return (desync-state, ok) to A.

• Reading the time:
If I = (export-time, sid) is received from a party P ∈ H \ PDS then parse timeP as (e, t). If e ≥ 0 and
t ≥ 0 then return (export-time, sid, timeP) to the requester. Otherwise, return (export-time, sid,⊥).

• The adversary setting the shift on epoch boundaries :
If I = (apply-shift, sid, (P, s)) is received from the adversary A and P ∈ H \ PDS then do the following:

(a) Parse timeP as (e, t). If tmodRL 6= 0 return to the adversary.

(b) Verify that shiftLB ≤ s ≤ shiftUB. If the check fails, return to the adversary.

(c) Set t′ ← t+ s and verify correct range of timestamps:
Check that t′ ≤ τL and that for each party P′ ∈ H \ PDS with timetime′ = (e′′, t′′), it holds that
|t′ − t′′| ≤ timeSlacktotal, |e′ − e′′| ≤ 1, and if e′ = e′ verify that |t′ − t′′| ≤ timeSlackep.

(d) If all checks succeeds, set timeP ← (e, t′). Otherwise, set timeP ← timeP′ where P′ is the
lexicographically smallest identity of H \ PDS . Return activation to the adversary.

• The adversary setting the timestamp for desynchronized parties:
If I = (set-time, sid,P, time) is received from the adversary A do the following: if P ∈ PDS then set
timeP ← time
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D.2 Extend Policy

For completeness, we state here the extend policy of [4] and mark in blue the minor modification. Note that
the default block mechanism DefaultExtension is identical to [4] and thus omitted.

function ExtendPolicy(ITH , state, NxtBC, buffer, τ state)
// First, create a default honest client block as alternative:
N df ← DefaultExtension(ITH , state, NxtBC, buffer, τ state) // Extension if adversary violates policy.
Let τL be current ledger time (computed from ITH)
// The function must not have side-effects: Only modify copies of relevant values.
Create local copies of the values buffer, state, and τ state.
// Now, parse the proposed block by the adversary
Parse NxtBC as a vector ((hFlag1, NxtBC1), · · · , (hFlagn, NxtBCn))
N ← ε // Initialize Result
// Determine the time of the state block which is windowSize blocks behind the head of the state
if |state| ≥ windowSize then

Set τlow ← τ state[|state| − windowSize + 1]
else

Set τlow ← 1
end if
oldValidTxMissing← false // Flag to keep track whether old enough, valid transactions are inserted.
for each list NxtBCi of transaction IDs do

// Compute the next state block
// Verify validity of NxtBCi and compute content
Use the txid contained in NxtBCi to determine the list of transactions
Let tx = (tx1, . . . , tx|NxtBCi|) denote the transactions of NxtBCi
if tx1 is not a coin-base transaction then

return N df

else
N i ← tx1

for j = 2 to |NxtBCi| do
Set sti ← blockifyB(N i)
if ValidTxB(txj , state||sti) = 0 then

return N df

end if
N i ←N i||txj

end for
Set sti ← blockifyB(N i)

end if
// Test that all old valid transaction are included
if the proposal is declared to be an honest block, i.e., hFlagi = 1 then

for each BTX = (tx, txid, τ ′,P) ∈ buffer of an honest party P with time τ ′ < τlow − Delaytx do
if ValidTxB(tx, state||sti) = 1 but tx 6∈N i then

oldValidTxMissing← true
end if

end for
end if
N ←N ||N i

state← state||sti
τ state ← τ state||τL
// Must not proceed with too many adversarial blocks
i← max{{windowSize} ∪ {k | stk ∈ state ∧ proposal of stk had hFlag = 1}} // Determine most
// recent honestly-generated block in the interval behind the head.

Algorithm ExtendPolicy for Gledger
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if |state| − i ≥ advBlckswindow then
return N df

end if
// Update τlow: the time of the state block which is windowSize blocks behind the head of the
// current, potentially already extended state
if |state| ≥ windowSize then

Set τlow ← τ state[|state| − windowSize + 1]
else

Set τlow ← 1
end if

end for
// Final checks (if policy is violated, it is enforced by the ledger):
// Must not proceed too slow or with missing transaction.
if τlow > 0 and τL − τlow > maxTimewindow then // A sequence of blocks cannot take too much time.

return N df

else if τlow = 0 and τL − τlow > 2 · maxTimewindow then // Bootstrapping cannot take too much time.
return N df

else if oldValidTxMissing then // If not all old enough, valid transactions have been included.
return N df

end if
return N

end function

E On Using the Exported Clock

The goal of this section is to give an overview on how external protocols could make use of the timing service
provided by Ouroboros Chronos. For simplicity, this section assume that all parties run at equal speed, i.e.,
∆clock = 0. In this model, the nominal time has a simple meaning: it is the objective number of rounds passed
in the execution.

E.1 General Considerations

Cryptographic protocols can use the exported clock of Chronos and make use of the provided timestamps. It
is instructive to see different cases depending on the parameters of the clock. For example, if timeSlackep =
timeSlacktotal = 0, and shiftLB = shiftUB = 0, then we have an equivalent formulation of the global clock of
previous works. Each weakening of the parameters will result in a higher-level protocol to require specific
reactions. This is, however, possible: for example, if shifts are to be expected but still timeSlackep =
timeSlacktotal = 0, then the parties will know that some strange behavior could happen around the epoch
boundaries. However, the behavior is limited and predictable based on the clock parameters. For example,
parties could stall their operations just before the epoch boundary switches and depending on the shift, resume
their operations later at a specific time. Furthermore, by the limited shift and the guaranteed advancement
the parties will proceed and, if the protocol uses explicit knowledge of shiftLB and shiftUB, liveness can be
explicitly quantified. If parties can further be skewed, in addition to the above, the higher level protocol has
to be resilient against small variations in the time-stamps. Again, the level of resilience required is clearly
defined by parameters timeSlacktotal and timeSlackep.

E.2 Clock Properties in Optimistic Network Models

In the above cryptographic treatment, we made worst-case assumptions regarding the delivery times of the
synchronization beacons and chains. One can ask the question how well Chronos adjusts to more optimistic
network models, i.e., how the clock parameters get more precise if Chronos is executed in a less adversarial
environment. We can infer some rough estimates based on our analysis by formally imposing restrictions on
the delays occurring in the network and then reworking the derivation of the main clock properties along the
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lines of Lemma 9. We exemplify this with two examples. Let us assume that we have initial coordination,
i.e., that all parties obtain the genesis block in the same objective round. Let us further assume that all
messages sent in round ` are guaranteed to be delivered in round `+ 1—or more generally in round `+m.
Along the lines of Lemma 9, we observe that the timestamps reported by alert parties are very coordinated.
In fact, if τ denotes objective time (as recorded inside GImperfLClock), then each alert party reports time
t = τ −m · e (where e is the timestamp’s epoch number) and thus the clock parameters of the ledger would
in this case be shiftLB = shiftUB = −m and timeSlackep = 0, timeSlacktotal = m. Even more, in this case,
any external protocol can recompute the objective time (as recorded by GImperfLClock) from a timestamp
(e, t) of an alert party by the adjustment t+ e ·m and thereby obtain a perfect “global clock” whenever this
particular “network parameter” m is known.

More realistically, if we consider delays in an interval of the form [m−d,m+d] ⊆ [0, ∆] then the arguments
of Lemma 9 suggest the clock parameters shiftLB = −m − 3d, shiftUB = −m + 3d and timeSlackep = 2d,
timeSlacktotal = m+3d. In this case, the above proposed time-adjustment t+e·m, based on the characteristic
value m of the network, would yield an approximation of the objective τ in the order of the width 2d of the
interval (note that this naturally matches our security analysis when choosing m = d and 2d = ∆, i.e., when
m is the center of [0, ∆]).

In the above considerations, the term 2d refers to a logical width measured in number of rounds. Depending
on the message sizes and the physical time duration of one round, if messages that a party needs to send
during round ` are always sent at the end of round `, then a logical width of 2d ≈ 0 might not be unrealistic
to achieve. Also, an accurate approximation of the “typical delay” parameter m seems in principle feasible.
Hence, obtaining quite accurate approximations of objective time seems achievable by Ouroboros Chronos in
networks that have a somewhat predictable behavior. This, however, depends heavily on the implementations
and the network stack and a more accurate study is part of future work.

F Single-Epoch Security with Static Registration and ∆-Bounded Skew

In this section we prove Theorem 1. First, in Section F.1, we introduce a simplified chain-selection rule that
will make our protocol easier to analyze. In Section F.2 we draw the connection between a single-epoch
execution of this simplified protocol and the formalism of characteristic strings and forks that we later employ.
We then analyze the distribution of the characteristic strings induced by an execution of the simplified
Ouroboros Chronos in Section F.3, and establish the implications of that for the properties CP, CG and CQ
in Section F.4. Finally, in Section F.5, we replace the simplified chain-selection rule with the actual one,
concluding the proof of Theorem 1.

F.1 The Simplified Chain-Selection Rule maxvalid-mc

To make our analysis more modular, and take advantage of the combinatorial framework for analyzing
common-prefix violations of longest-chain rule protocols developed gradually in [26,14,4], we first consider the
protocol Ouroboros-Chronos with a simplified chain-selection rule maxvalid-mc (given in Fig. 3) instead of the
actual rule maxvalid-bg given in Fig. C.8; we will denote this variant Ouroboros-Chronosmc for conciseness.

The rule maxvalid-mc differs in that it applies the longest-chain preference and refuses to revert more
than k blocks under any circumstances (hence the “mc” identifier standing for “moving checkpoint”). This is
in contrast to the more nuanced behavior of maxvalid-bg that compares the two chains forking more than k
blocks ago for density close to the point where they fork (cf. Condition B in Fig. C.8). The latter rule allows
for so-called bootstrapping from genesis [4] (hence “bg”) and so we adopt it for Ouroboros Chronos as well,
the consequences for our analysis are discussed in Section F.5.

F.2 From Executions to Forks

We recall the notion of a characteristic string, which we use to record, for each slot in a sequence of slots,
whether any leader is elected for the slot and, if that is the case, whether this leader is unique and alert.
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1: Set Cmax ← Cloc.
2: for i = 1 to ` do
3: if IsValidChain(Ci) then

// Compare Cmax to Ci
4: if (Ci forks from Cmax at most k blocks) then
5: if |Ci| > |Cmax| then // Condition A

Set Cmax ← Ci.
end if

end if
end if

end for
6: return Cmax.

Protocol maxvalid-mc(Cloc, C1, . . . , C`)

Fig. 3. The simplified chain selection rule maxvalid-mc.

Definition 6 (Characteristic string [26,14,4]). Let S = {sl1, . . . , slR} be a sequence of slots of length
R; consider an execution (with adversary A and environment Z) of the protocol. For a slot slj, let P(j)
denote the set of active parties assigned to be slot leaders for slot j by the protocol. We define the characteristic
string w ∈ {0, 1,⊥}R of S to be the random variable so that

wj =


⊥ if P(j) = ∅,
0 if |P(j)| = 1 and the assigned party is alert,

1 otherwise.

(7)

For such a characteristic string w ∈ {0, 1,⊥}∗ we say that the index j is uniquely alert if wj = 0, empty if
wj = ⊥, and potentially active if wj ∈ {0, 1}.

If the execution is fixed (i.e., the randomness of the execution is fixed), we use the notation wE to denote
the fixed characteristic string resulting from that particular execution, where the subscript E is used to indicate
its difference to the random variable above.

We also recall the notion of a ∆-fork, a tool developed to reason about the various blockchains that can
be induced by an adversary in the ∆-synchronous setting with a particular characteristic string.

Definition 7 (∆-fork [14]). Let w ∈ {0, 1,⊥}k and ∆ be a non-negative integer. Let A = {i |wi 6= ⊥}
denote the set of potentially active indices, and let H = {i |wi = 0} denote the set of uniquely alert indices. A
∆-fork for the string w is a rooted tree F = (V,E) with a labeling ` : V → {0} ∪A so that

(i) the root r ∈ V is given the label `(r) = 0;
(ii) the labels along any (simple) path beginning at the root are strictly increasing;

(iii) each uniquely alert index i ∈ H is the label of exactly one vertex of F ;
(iv) the function d : H → {1, . . . , k}, defined so that d(i) is the depth in F of the unique vertex v for which

`(v) = i, satisfies the following ∆-monotonicity property: if i, j ∈ H and i+∆ < j, then d(i) < d(j).

For convenience, we direct the edges of forks so that depth increases along each edge; then there is a unique
directed path from the root to each vertex and, in light of (ii), labels along such a path are strictly increasing.
As a matter of notation, we write F `∆ w to indicate that F is a ∆-fork for the string w. We typically refer
to a ∆-fork as simply a “fork”.

Note that both notions of a characteristic string and a fork can be directly ported to our setting without
a global clock, interpreting the slot indices as logical time, in accordance with the rest of this paper (cf.
Section 2). However, this change of the setting requires us to re-establish the connection between executions
and forks from [14]. The relevant part of the outcome of an execution is captured in the notion of an execution
tree which we first define, the transition from executions to forks is then stated in Lemma 2.
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Definition 8 (Execution tree [14]). Consider an execution E of the real-world experiment. The execution
tree for this execution is a directed, rooted tree TE = (V,E) with a labeling ` : V → N0 that is constructed
during the execution as follows:

(i) At the beginning, V = {r}, E = ∅ and `(r) = 0.
(ii) Every chain C ′ that is input to maxvalid-bg as a part of N or created as a new local chain in Step 20

of StakingProcedure of Ouroboros-Chronos run by any alert party is immediately processed block-by-block
from the genesis block to head(C ′). For every block B = (h, st, sb, sl, crt, ρ, σ) processed for the first
time:

– a new vertex vB is added to V ;
– a new edge (vB− , vB) is added to E where B− is the unique block such that H(B−) = h;
– the labeling ` is extended by setting `(vB) = sl.

Lemma 2. Consider a single-epoch execution E of Ouroboros-Chronosmc with static registration and ∆-
bounded skew, where ∆ is the sum of the maximum (local) clock drift and maximum network delay; let R be
the epoch length.

1. Every message sent by an alert party P in slot sl (according to the local time of P) will be received by

any other alert party P′ by slot sl′ , sl + ∆̃ for ∆̃ , 2∆ (according to the local time of P′).
2. In particular, we have TE `∆̃ wE unless a collision in the responses of the random oracle occurs.

Proof (sketch). For the first statement, note that by the assumption Skew∆[sl], we know that P will be
executing its (logical) slot sl at most ∆ rounds (by the increase of nominal time) later than P′ executed sl;
and if P sends a message in sl, the party P will receive it at most ∆net activations later after the send event.
Note that in the worst case, the send-event happens when the receiving party already has an offset of ∆clock

rounds to the sender. Therefore, it will receive it ∆ rounds later (again, with respect to the nominal time
advancement) be the assumption on network delay. Combining these two bounds, P′ will receive the message
at latest by slot sl′ according to its own local clock.

As for the second statement, observe that the properties (i)–(iii) in Definition 7, as well as the requirement
that range(`) = {0} ∪ A, are satisfied for the same reasons as given in [14, Lemma 6]. The remaining

property (iv) is satisfied for ∆̃ , 2∆ thanks to the first statement of this lemma: Given that an alert party
P′ is aware of any block produced by P for slot sl, it will act based upon it and if it creates any block for
slot sl′, its depth will be strictly larger than the depth of any block created by P for the slot sl by the
description of the protocol. ut

To maintain readability, in the following treatment we will omit the (negligible) failure probability caused
by random-oracle collisions that are mentioned in the second statement of Lemma 2.

F.3 Protocol-Induced Distribution of the Characteristic String

Badertscher et al. [4] identified the following property of a characteristic string distribution to be of particular
interest.

Definition 9 (The characteristic conditions [4]). Consider a family of random variables W1, . . . ,Wn

taking values in {0, 1,⊥}. We say that they satisfy the (f ; γ)-characteristic conditions if, for each k ≥ 1,

Pr[Wk = ⊥ |W1, . . . ,Wk−1] ≥ (1− f) ,

Pr[Wk = 0 |W1, . . . ,Wk−1,Wk 6= ⊥] ≥ γ , and hence

Pr[Wk = 1 |W1, . . . ,Wk−1,Wk 6= ⊥] ≤ 1− γ .
In the expressions above, conditioning on a collection of random variables indicates that the statement is true
for any conditioning on the values taken by variables.

The distribution of the characteristic string induced by Ouroboros-Chronosmc satisfies (f ; γ)-characteristic
conditions for parameters recorded in the next lemma.
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Lemma 3 (Protocol-Induced Distribution). Consider an execution of the protocol Ouroboros-Chronosmc

in the single-epoch setting, with static registration and ∆-bounded skew. Let R denote the epoch length and f be
the active-slot coefficient. Let α (resp., β) be a lower bound on the alert stake ratio (resp., participating stake
ratio) over the execution. This execution then induces a characteristic string W1, . . . ,WR (with each Wt ∈
{0, 1,⊥}) satisfying the (f ; (1− f)2α)-characteristic conditions, and moreover Pr[Wt = ⊥ |W1, . . . ,Wt−1] ≤
1− fβ.

Proof (sketch). The lemma can be established by following the same reasoning as in [4, Corollary 2] with
respect to logical slots rather than nominal-time rounds. ut

F.4 Single-Epoch Security Properties

Any characteristic string that satisfies particular (f ; γ)-characteristic conditions does not allow for too large
common prefix violations, as proven in [4, Theorem 6] and formally captured by the notion of divergence. We
record this result below as Theorem 4, after presenting the necessary formalism in Definitions 10 and 11.

Definition 10 (Tines, length, and viability [4]). A path in a fork F originating at the root is called a
tine. For a tine t we let length(t) denote its length, equal to the number of edges on the path. For a vertex v,
we call the length of the tine terminating at v the depth of v. For convenience, we overload the notation `(·)
so that it applies to tines by defining `(t) , `(v), where v is the terminal vertex on the tine t. We say that a
tine t is ∆-viable if length(t) ≥ maxh+∆≤`(t) d(h), this maximum extended over all uniquely alert indices h
(appearing ∆ or more slots before `(t)). Note that any tine terminating in a uniquely alert vertex is necessarily
viable by the ∆-monotonicity property.

Definition 11 (Divergence [26,14]). Let F be a ∆-fork for a string w ∈ {0, 1,⊥}∗. For two ∆-viable tines
t and t′ of F , we define the notation t/t′ by the rule

t/t′ = length(t)− length(t ∩ t′) ,

where t ∩ t′ denotes the common prefix of t and t′. Then define the divergence of two viable tines t1 and t2 to
be the quantity

div(t1, t2) =


t1/t2 if `(t1) < `(t2),

t2/t1 if `(t2) < `(t1),

max(t1/t2, t2/t1) if `(t1) = `(t2).

We extend this notation to the fork F by maximizing over viable tines: div∆(F ) , maxt1,t2 div(t1, t2), taken
over all pairs of ∆-viable tines of F . Finally, we define the ∆-divergence of a characteristic string w to be the
maximum over all ∆-forks: div∆(w) , maxF `∆w div∆(F ).

Theorem 4 ([4, Theorem 6]). Let W = W1, . . . ,WR be a family of random variables, taking values in
{0, 1,⊥} and satisfying the (f, γ)-characteristic conditions. If ∆ > 0 and ε > 0 satisfy γ(1−f)∆−1 ≥ (1+ ε)/2
then

Pr[div∆(W ) ≥ k +∆] ≤ 19R

ε4
exp(−ε4k/18) .

This general statement allows us to translate the properties of the characteristic string distribution induced
by an execution of Ouroboros-Chronosmc, as recorded in Lemma 3, into a common-prefix guarantee for the
protocol, given below.

Corollary 2 (Common prefix). Let W = W1, . . . ,WR denote the characteristic string induced by the
Ouroboros-Chronosmc protocol in the single-epoch setting with static registration and ∆-bounded skew. Let R
be the epoch length and f the active-slot coefficient. Assume that ε > 0 satisfies

α(1− f)∆̃+1 ≥ (1 + ε)/2 ,

52



where α is a lower-bound on the alert stake ratio over the execution and ∆̃ = 2∆ is twice the network delay.
Then

Pr[div∆̃(W ) ≥ k + ∆̃] ≤ 19R

ε4
exp(−ε4k/18) ,

and hence a k-common-prefix violation occurs with probability at most

ε̄CP(k;R,∆, ε) ,
19R

ε4
exp(∆̃− ε4k/18) .

Proof. Follows directly from Theorem 4 and Lemma 3, using the first statement of Lemma 2 as a bound on
the observed message delivery delay. ut

The remaining Corollaries 3 (resp., 4, 5) below can be established by following the same reasoning as used
in the proof of [4, Corollary 4] (resp., [4, Corollary 5], [4, Lemma 11]) with respect to logical slots instead of
the nominal time, and using the first statement of Lemma 2 to bound the observed message delivery delay. ut

Corollary 3 (Chain Growth). Let W = W1, . . . ,WR denote the characteristic string induced by the
Ouroboros-Chronosmc protocol in the single-epoch setting with static registration and ∆-bounded skew. Let R
be the epoch length and f the active-slot coefficient. Let α, β ∈ [0, 1] denote lower bounds on the alert stake
ratio and the participating stake ratio over the execution as per Definition 2, and assume that for some some
ε ∈ (0, 1) the parameter α satisfies

α(1− f)∆̃+1 ≥ (1 + ε)/2 .

where ∆̃ = 2∆ is twice the network delay. Then for

s = 48∆̃/(εβf) and τ = βf/16 (8)

we have

Pr[W admits a (s, τ)-CG violation] ≤ ε̄CG(τ, s;R, ε) ,
1

2
sR2 exp

(
−(εβf)2s/256

)
.

Corollary 4 (Chain Quality). Let W = W1, . . . ,WR denote the characteristic string induced by the
Ouroboros-Chronosmc protocol in the single-epoch setting with static registration and ∆-bounded skew. Let R
be the epoch length and f the active-slot coefficient. Let α, β ∈ [0, 1] denote lower bounds on the alert stake
ratio and the participating stake ratio as per Definition 2, and assume that for some some ε ∈ (0, 1) the
parameter α satisfies

α(1− f)∆̃+1 ≥ (1 + ε)/2 .

where ∆̃ = 2∆ is twice the network delay. Then for

k = 48∆̃/(εβf) and µ = εβf/16

we have

Pr[W admits a (µ, k)-CQ violation] ≤ ε̄CQ(µ, k;R, ε) ,
1

2
kR2 exp

(
−(εβf)2k/256

)
.

Corollary 5 (Existential Chain Quality). Let W = W1, . . . ,Wr denote the characteristic string induced
by the protocol Ouroboros-Chronos in the single-epoch setting with static registration and ∆-bounded skew.
Let R be the epoch length and f the active-slot coefficient. Let α, β ∈ [0, 1] denote lower bounds on the alert
stake ratio and the participating stake ratio over the execution as per Definition 2, and assume that for some
ε ∈ (0, 1) the parameter α satisfies

α(1− f)∆̃+1 ≥ (1 + ε)/2 ,

where ∆̃ = 2∆ is twice the network delay. Then for s ≥ 12∆̃/(εβf),

Pr[W admits a s-∃CQ violation] ≤ ε̄∃CQ(s; r, ε) = r2(s+ 1) exp
(
−(εβf)2s/64

)
.
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F.5 Switching to maxvalid-bg

To capture the security of the full protocol Ouroboros Chronos with the chain-selection rule maxvalid-bg
given in Section C.8, the bounds above need to be adjusted by an additional term that reflects the probability
that the new chain selection rule deviates from the easier-to-analyze rule maxvalid-mc. This error term was
quantified by Theorem 2 in [4] and this quantification translates directly into our setting.

Corollary 6 (Security of maxvalid-bg). Consider the protocol Ouroboros-Chronos (with maxvalid-bg), ex-
ecuted in the same setting and under the same assumptions as in Corollaries 2–5 above. If the maxvalid-bg
parameters, k and s, satisfy

k > 192∆̃/(εβ) and R/6 ≥ s = k/(4f) ≥ 48∆̃/(εβf)

then the guarantees given in Corollaries 2–5 for common prefix, chain growth, chain quality and existential
chain quality are also valid for Ouroboros-Chronos except for an additional error probability

ε̄mv , exp (lnR−Ω(k)) + ε̄CG(βf/16, k/(4f)) + ε̄∃CQ(k/(4f)) + ε̄CP(kβ/64) , (9)

where the subscript “mv” stands for “maxvalid”.

Proof (sketch). The corollary follows by the same reasoning as Theorem 2 in [4], again by using the first
statement of Lemma 2 to bound the observed message delivery delay. ut

Putting things together. The proof of Theorem 1 now follows by combining Corollaries 2, 3, 4, 5 and 6.

G Analysis of the Synchronization Procedure

G.1 The Proof of Fact 1

Proof (of Fact 1). Without loss of generality order the pairs so that ai ≤ aj for i < j (and note that this
does not necessarily imply bi ≤ bj for i < j). Now we have

adn/2e −∆
(a)

≤ min {bi : dn/2e ≤ i ≤ n}
(b)

≤ med ((bi)
n
i=1)

(c)

≤ max {bi : 1 ≤ i ≤ dn/2e}
(d)

≤ adn/2e +∆ ,

where inequalities (a) and (d) follow from the assumption of the lemma and the assumed ordering of the
values ai, inequalities (b) and (c) follow from the definition of med. The proof is concluded by observing that
med((ai)

n
i=1) = adn/2e by definition. ut

G.2 SyncProc maintains Skew∆

Lemma 4 (SyncProc maintains Skew∆). Consider an execution of the full protocol Ouroboros-Chronos
over a lifetime of L = ER slots, where R is the epoch length. Let ∆net be the upper bound on message delay
enforced by FN-MC and let ∆clock be the maximal drift enforced by GImperfLClock and let ∆ = ∆clock +∆net;
and let sl ≥ 1 be the last slot of some epoch ep ≥ 1, i.e., such that sl mod R = 0. If the properties
CG(τCG, R/3) and CP(τCGR/3) for τCG as in Theorem 1 are not violated during the execution up to slot sl,
then the predicate Skew∆[sl′] is satisfied for sl′ = sl + 1 onward to the next synchronization slot.

Proof. We first establish two intermediate claims under the lemma assumptions:

(i) All alert parties use the same set of synchronization beacons in their execution of the procedure SyncProc
between epochs ep and ep + 1, formally SP1

j = SP2
j for any two parties P1,P2 that are alert in the j-th

synchronization slot.
(ii) For any fixed beacon SB ∈ SP1

j = SP2
j , the quantity

µ(Pi, SB) , SkewPi [sl] + slotnum(SB)− Pi.Timestamp(SB)

will differ by at most ∆ between any two alert parties P1 and P2.

54



To see (i), note that the set SP
j is constructed by the party P by collecting all beacons SB that report a

slot number slotnum(SB) within [(i− 1) ·R+ 1, . . . , (i− 1) ·R+R/6] (the preceding synchronization interval)
and which are included in a block of the adopted chain P.Cloc of P up to slot (i− 1) ·R+ 2R/3. Based on
the chain growth property, the chain Cloc contain as least τCGR/3 blocks in the last R/3 slots, and by the
common prefix property, the chains are identical up to slot (i− 1) ·R+ 2R/3.

Now observe that
µ(Pi, SB) = (slotnum(SB)− t)−θPi,SB − δPi,SB , (10)

where t is the nominal time at the point of the execution where SB was sent, and δPi,SB ∈ [∆net] is the

number of rounds that SB was delayed in its transit from P̃ to Pi , i.e., where one round is counted per local
clock update of Pi, and where θPi,SB ∈ [∆clock] is the drift of Pi from the nominal time t at the point of the

execution when SB was sent. Clearly, equation (10) establishes (ii). Note that (10) holds even if the sender P̃
of SB was corrupted when sending it (owing to the network model); for alert parties P̃ the first bracket in (10)

is equal to SkewP̃[slotnum(SB)] which includes any drift from the sender to the nominal time by definition.
Given the above properties, we invoke Fact 1 for the tuples

(µ(P1, SB))
SB∈SP1

j
and (µ(P2, SB))

SB∈SP2
j

for two arbitrary alert parties P1 and P2. By property (i) both tuples are of the same size, and by property (ii)
one can see that the update mechanism of Chronos will yield close time stamps because the preconditions of
Fact 1 are fulfilled by some ∆′ ≤ ∆. Therefore we obtain∣∣∣med

(
(µ(P1, SB))

SB∈SP1
j

)
−med

(
(µ(P2, SB))

SB∈SP2
j

)∣∣∣ ≤ ∆′
and further, for i ∈ {1, 2}, med

(
(µ(Pi, SB))

SB∈SPi
j

)
= SkewPi [sl + 1] by the update mechanism of Chronos.

Lemma 4 finally follows by observing that the maximal drift of a party in the execution of the system is
an absolute term, and thus the quantity ∆clock −max{θPi,SB | SB ∈ S

Pi
j } is the remaining additional term

(measured in number of rounds) that the party Pi can be pushed forward (and hence increasing the actual
skew ∆′) in the execution without the baseline (and therefore everyone) moving forward. We see from the
computation in equation (10) that the the skew will never exceed ∆ and can thus establish Skew∆[sl′] for
sl′ = sl + 1 and onward up to the next synchronization slot j + 1. ut

G.3 Bounded shift

Lemma 5 (Bounded shift). Consider an execution of the full protocol Ouroboros-Chronos over a lifetime of
L = ER slots, where R is the epoch length. Let ∆net be the upper bound on message delay enforced by FN-MC

and let ∆clock be the maximal drift enforced by GImperfLClock and let ∆ = ∆clock + ∆net. Further assume
∆̃ , 2∆ ≤ R/6. Let sl ≥ 1 be the last slot of some epoch ep ≥ 1, i.e., such that sl mod R = 0, and assume
that Skew∆[sl′] is satisfied for all slots in epoch ep. Let α ∈ [0, 1] denote a lower bound on the alert ratio and
participating ratio throughout the execution. If for some ε ∈ (0, 1) we have α · (1 − f) ≥ (1 + ε)/2, and if
the property ∃CQ(R/3) is not violated during the execution up to slot sl, then in any invocation of SyncProc
by an alert party during sl, the local variable shift computed on line 17 will satisfy |shift| ≤ 2∆, except with
error probability exp(lnL−Ω(R)) over the whole execution.

Proof. We first show that the set SP
i used by any alert party P contains all beacon messages produced

by alert parties in the last synchronization interval. This follows by observing that all synchronization
beacons produced by alert parties in (their) slots [(i− 1) ·R+ 1, . . . , (i− 1) ·R+R/6] will be delivered to

other alert parties by the slot (i− 1) ·R +R/3 by the assumption ∆̃ ≤ R/6 and by the first statement of
Lemma 2. Moreover, by the ∃CQ property, the chain Cloc of any alert party P will contain at least one block
created by an alert party over the slot interval [(i− 1) ·R+R/3 + 1, . . . , (i− 1) ·R+ 2R/3]. When such an
alertly-created block is included, it will contain all the synchronization beacons produced by alert parties for
slots [(i− 1) ·R+ 1, . . . , (i− 1) ·R+R/6] that were not included yet.

Next, in light of the lower bound on alert stake ratio, a majority of synchronizing beacons in SP
i will be

alertly-generated, except with error probability exp(lnL−Ω(R)). Therefore, if this error does not occur, due
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to the use of median in the definition of shift there exist alert parties P1,P2, which produced synchronization
beacons SB1, SB2 ∈ SP

i respectively, such that

SkewP1 [slotnum(SB1)]−∆
(a)

≤ SkewP[sl] + shift
(b)

≤ SkewP2 [slotnum(SB2)] .

The inequalities (a) and (b) follow again from the core computation in equation (10), this time considering
µ(P, SB1) and µ(P, SB2) and the bounds δP,SB1+θPi,SB1 ≤ ∆ and δP,SB2 , θPi,SB2 ≥ 0, respectively. The proof is
now concluded by observing that for both i ∈ {1, 2}, we have∣∣∣SkewPi [slotnum(SBi)]− SkewP[sl]

∣∣∣ ≤ ∆
thanks to the assumption Skew∆[sl]. ut

H Security for the Full Execution with Static Registration

The following theorem is a formal statement corresponding to the informal Theorem 2.

Theorem 5 (Full-execution security with static registration). Consider the execution of
Ouroboros-Chronos with adversary A and environment Z in the setting with static registration. Let f be the
active-slot coefficient, let ∆ be the upper bound on the sum of the maximum network delay and maximum local
clock drifts, and let ∆̃ , 2∆. Let α, β ∈ [0, 1] denote a lower bound on the alert and participating stake ratios
throughout the whole execution, respectively. Let R and L denote the epoch length and the total lifetime of the
system (in slots), and let Q be the total number of queries issued to GRO. If the assumptions (5) and (6) are
satisfied, then Ouroboros-Chronos achieves the same guarantees for common prefix (resp. chain growth, chain
quality, existential chain quality) as given in Theorem 1 (with L replacing R as execution length) except with
an additional error probability of

QL · (ε̄CG (τCG, R/3;R, ε) + ε̄CP (τCGR/3;R,∆, ε) + ε̄∃CQ (R/3;R, ε)) , (11)

where τCG = βf/16. If R ≥ 144∆̃/εβf then this term can be upper-bounded by

εlift , QL ·
[
R3 · exp

(
− (εβf)2R

768

)
+

19R

ε4
· exp

(
∆̃− ε4τCGR

54

)
+ 3ε̄mv

]
. (12)

For all p ∈ {CP,CG,∃CQ,CQ}, we denote the obtained counterparts of the single-epoch error terms ε̄p for the
full execution with static registration by εp.

Proof (of Theorem 5, sketch). When moving from the single-epoch setting to a setting with several epochs,
the following aspects need to be considered:

– Stake distribution updates. The stake distribution used for sampling slot leaders changes in every
epoch. In Ouroboros-Chronos the distribution used for sampling in epoch ep is set to be the stake
distribution recorded on the blockchain up to the last block of the epoch ep− 2.

– Randomness updates. Every epoch needs new public randomness to be used for the private leader
election process based on the above distribution. For epoch ep, this randomness is obtained by hashing
together VRF-outputs put into blocks in epoch ep − 1 by their creators. More precisely, the protocol
hashes together these values from the blocks in the first 2R/3 slots of epoch ep− 1 (out of its R slots).

– Resynchronization. All alert parties execute the resynchronization procedure SyncProc in the last slot
of every epoch.

This proof partly follows the treatment in Section 5 of [14] to argue about stake distribution and randomness
updates, and hence we only sketch the reasoning for these parts, adding a discussion of the resynchronization.
The proof has an inductive structure over the epochs of the execution.

First, note that in the first epoch, we have both perfect epoch randomness, and the property Skew∆[sl]
is satisfied for all slots sl in this epoch, by definition of the functionality FINIT and GImperfLClock. More
precisely, they ensure that Skew∆[sl] for all slots in the first epoch (where ∆ is the bound on the sum of all
incurred delays and clock inaccuracies) and all alert parties advance their local clock at least at the pace of
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the baseline. Given that, we can apply Theorem 1 to the first epoch and obtain the bounds for CP, CG and
CQ it provides.

For the induction step, Lemma 4 shows that the properties CG(τCG, R/3) and CP(τCGR/3) satisfied in
epoch ep imply Skew∆[sl] for all slots in epoch ep + 1. Furthermore, CG(τCG, R/3) and CP(τCGR/3) during
the first R/3 slots of epoch ep also imply that each alert player’s chain grows by at least τR/3 blocks and after
these slots, all alert players agree on the stake distribution at the end of epoch ep− 1. Moreover, ∃CQ(R/3)
implies that during the second R/3 slots of epoch ep, each alert player’s chain contains at least one honest
block. Hence the randomness that will be derived for epoch ep + 1 will be influenced by at least one honest
VRF-output chosen after the stake distribution for ep + 1 is fixed. Finally, CG(τCG, R/3) and CP(τCGR/3)
during the last R/3 slots of epoch ep imply that each alert player’s chain grows by at least τR/3 blocks and
therefore after these slots, all alert players agree on the randomness for the epoch ep + 1.

Exactly as in [14,4], we need to additionally account for the limited amount of grinding that the adversary
can achieve by deciding whether to include blocks (with VRF outputs) in slots where he is a slot leader. This
can be crudely upper-bounded by limiting the number of queries to the random oracle that the adversary
makes, adding an additional quantity Q into our bound.

Now, having established Skew∆[sl] for the slots in epoch ep + 1 as well as accounted for the quality of
the randomness used in epoch ep + 1, we can again invoke Theorem 1 to include ep + 1 to obtain guarantees
on CP, CG, and CQ and complete the induction step.

Finally, the bound (12) is obtained by instantiating (11) with the concrete bounds of Theorem 1. ut

I Analysis of Joining

Lemma 6. Consider an execution of the full protocol Ouroboros-Chronos and let Pjoin be a party joining the
protocol execution at time tjoin > 0 that retains its access to all resources during its joining procedure JoinProc
(cf. Fig. 2). Let t ∈ (tjoin + toff , tjoin + toff + tminSync + tstable + 1] be the (nominal) time at some point in the
execution in which Pjoin is in Phase C or D of its joining procedure and let Cjoin denote the chain held by Pjoin

at that point. Let Calert denote a chain held by any alert party Palert at some point in the execution where time
t′ , t−∆. Then under the assumptions of Theorem 5 and assuming no violations of CP(kβ/64), ∃CQ(s),
and CG(τCG, s) until the end of the joining procedure (for the parameters k and s of maxvalid-bg), we have

Cdkalert � Cjoin except with error probability exp(lnL−Ω(R)) over the whole execution.

Proof (sketch). Notice that the chain-selection procedure maxvalid-bg given in Fig. C.8 does not involve the
local time localTime of the party executing it. Therefore, Pjoin and Palert would do the same chain-selection
decisions in their maxvalid-bg procedures, if presented with the same inputs. The only (but crucial) difference in
their chain-adoption behavior comes from the fact that Palert has local clock that satisfies the Skew∆ predicate,
and based on this local clock the party removes from consideration all received chains that contain blocks from
its logical future (with timestamp larger than its local time), this is done on line 4 of procedure IsValidChain
in Fig. C.5. Of course, Pjoin does no such filtering as it does not possess reliable local time information yet.

To see the implications of this difference, we consider the concept of a virtual execution for Pjoin introduced
in [4]. This is an artificial random experiment that consists of the execution of the protocol with an additional
(“virtual”) party Pvirt that participates from the beginning, is always alert, but commands no stake and hence
is passive. Moreover, starting from the point of execution where Pjoin joins the system, the virtual party
advances exactly like Pjoin and receives the same messages in the same slots and order as Pjoin.

The only case when Pjoin may adopt as its local chain a chain Cjoin that Pvirt does not adopt over the chain
it is currently holding (call it Cvirt) is if Cjoin contains an adversarially-created suffix of future blocks such
that it dominates Cvirt based on Condition A in maxvalid-bg. (As proved in [4, Theorem 2], the adversary
is not capable of creating a chain that would dominate an alert chain according to Condition B under
the assumptions of the lemma, except for a global bad event with probability exp(lnL−Ω(R)).) However,

Condition A is only applied if Cdkvirt � Cjoin so this must have been the case when Pjoin adopted Cjoin prior to
the point of the execution at time t we are considering in the lemma statement. Moreover, since Pjoin is still
holding Cjoin at the point under consideration at time t, it means that since it adopted it, Pvirt has not received
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any chain C′virt that would violate C′dkvirt � Cjoin, as in that case also Pjoin would receive and adopt it (as follows
by inspection of maxvalid-bg). Therefore, the chain C′virt that Pvirt holds at the point under consideration at

time t satisfies C′dkvirt � Cjoin. Finally, if any alert party Palert held at nominal time t′ a chain Calert that would

violate Cdkalert � Cjoin, by our assumptions on the network delay and clock drift, it would be delivered and
considered by Pvirt at any point in the execution where nominal time is t and hence adopted, concluding the
proof. ut

Lemma 7. Consider an execution of the full protocol Ouroboros-Chronos and let Pjoin be a party joining the
protocol execution at time tjoin > 0 that retains its access to all resources during its joining procedure JoinProc
(cf. Fig. 2). Under the assumptions of Theorem 5 and Lemma 6, and assuming no violations of CG(τCG, R/3),
CP(τCGR/3), and ∃CQ(R/3) until the end of the joining procedure, we have the following except with error
probability exp(lnL−Ω(R)) over the whole execution:

(a) The index value i∗ determined on line 32 of its joining procedure JoinProc satisfies i∗ ≥ 1.

(b) For all values of i ≥ i∗ processed in the iteration on lines 34–52 we have SPjoin

i = SPalert
i , where SPjoin

i is

the set of synchronization beacons determined by Pjoin on line 35 and SPalert
i is the set of synchronization

beacons determined by any alert party Palert on line 6 of its procedure SyncProc for the same i.

(c) For all values of i ≥ i∗ processed in the iteration on lines 34–52 and for any fixed beacon SB ∈ SPjoin

i = SPalert
i ,

the quantity µ(P, SB), which is defined to be SkewP[sl] + slotnum(SB)− P.Timestamp(SB), will differ by at
most ∆ between the two parties P ∈ {Pjoin,Palert}, and furthermore, when the joining party becomes alert
Skew∆[sl] is satisfied for any slot in which the joining party is considered alert.

Proof (sketch). We first show the claim (a) that condition i∗ ≥ 1 on line 32 of JoinProc will be satisfied for
Pjoin. Informally speaking, this means that while Pjoin executed Phase C of its joining procedure JoinProc
(recall that line 32 is only executed after that), it has observed at least one full synchronization interval
Isync(i∗) that started at least tpre rounds after the beginning of Phase C; and has recorded timestamps (in its
data structure Timestamp) for all synchronization beacons SB recorded in its local chain and coming from
Isync(i) according to their included logical slot numbers. Also recall that when we talk about an interval
d of rounds that a party locally executes, then this relates to the number of rounds all other parties have
executed by an additive offset δ ≤ ∆clock and we choose the all intervals in this proof in such a way that it
encompasses this small offset.

To proceed, let us split Phase C into two consecutive, non-overlapping Phases Csync and Cstable consisting

of tminSync and tstable rounds, respectively. Let t
(j)
start denote the nominal time in which it happens for the first

time that an alert party enters the synchronization interval Isync(j) according to its local clock (i.e., enters
the logical slot (j − 1)R+ 1). Then for all j ≥ 1 we have

t
(j+1)
start − t

(j)
start ≤ R+ 3∆ ≤ 13R/12 (13)

thanks to the fact that there is a synchronization interval starting at the first slot of every R-slot epoch, the
bound of Lemma 5 and the assumptions Skew∆ and (6).

Let now i∗ denote the minimal i such that t
(i)
start ≥ tjoin + toff + tpre, i.e., t

(i∗)
start occurs at least tpre rounds

after the beginning of Pjoin’s Phase C. According to (13) we have

t
(i∗)
start ≤ tjoin + toff + tpre + 13R/12 ≤ tjoin + toff + tminSync −R/6

by the values of tpre and tminSync (cf. Table 1). Therefore t
(i∗)
start is guaranteed to occur at least R/6 rounds

before the end of Phase Csync for Pjoin.

We now argue that i∗ will satisfy the condition on line 32 of JoinProc. This follows as by round t
(i∗)
start, Pjoin

has been already recording the timestamps of all received synchronization beacons for tpre rounds, and hence,
has recorded into its Timestamp data structure the timestamps of all beacons that (according to the logical
slot number they contain) belong to the synchronization interval Isync[i∗] — either by receiving the beacon
directly or observing it as included in a blockchain block. This is exactly what is needed for i∗ to pass the
test on line 32 of JoinProc. Note that the adversary cannot create valid beacons logically belonging to Isync[i]
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before the start of Pjoin’s Phase C, as before that point the epoch randomness necessary for creating valid
synchronization beacons for this synchronization interval is still completely unpredictable (thanks to the
choice of tpre).

Moving to claim (b), we first establish it for i∗. This can be argued in a similar way as the validity of
item (i) in the proof of Lemma 4: the set SP

i∗ is for both P ∈ {Pjoin,Palert} constructed by collecting all beacons
SB (satisfying certain conditions on the reported slot number) from the adopted chain P.Cloc of P up to slot
(i∗ − 1) ·R+ 2R/3. As observed above, the synchronization interval Isync(i∗) will start (from the perspective
of the first alert party) at least R/6 rounds before the end of Pjoin’s Phase Csync, and hence will also end
(for this alert party) before the end of Phase Csync. Therefore, it will be followed by tstable = R rounds of
Phase Cstable, and the relevant beacons will be collected from up to round 2R/3 of Phase Cstable (to account
for the potential skew of other alert parties and delays plus drifts, as in ( 13)). Assuming CG(τCG, R/3) and
R ≥ 3kτCG (which follows from (6)), we get that the chain held by Palert grows by at least k blocks during the
last R/3 slots, and is hence identical to the chain held by Pjoin up to slot (i∗ − 1) ·R+ 2R/3 by Lemma 6,

resulting in SPjoin

i∗ = SPalert
i∗ . The above reasoning applies identically also to all following values of i ≥ i∗ that

the iteration on lines 34–52 considers.
Finally, claim (c) follows by similar arguments as in the proof of Lemma 4 (relying on the network and

clock model guarantees). ut

J Full Security in the Dynamic Availability Setting

The following theorem is a formal statement corresponding to the informal Theorem 3.

Theorem 6 (Dynamic availability). Consider an execution of the full protocol Ouroboros-Chronos in the
dynamic-availability setting. Under the assumptions of Theorem 5 and Lemma 7, Ouroboros-Chronos achieves
the same guarantees for common prefix (resp. chain growth, chain quality, existential chain quality) as given
in Theorem 5 except for the negligible additional error probability

εDA , εCP max

{
kβ

64
,
τCGR

3

}
+ εCG(τCG, s) + ε∃CQ(τCGR/3) + elnL−Ω(R) .

Proof (of Theorem 6, sketch). The theorem follows by considering each of the new situations that occur when
honest parties loose and regain some of their resources. We sketch these considerations below.

If an alert party briefly loses access to its random oracle, it will keep the synchronized status, and start
caching all network messages and advancing its local clock “blindly” by 1 slot per tick of GImperfLClock. Hence,
it will not violate the Skew∆ invariant until it first reaches a synchronization slot, and is able to become alert
again immediately upon regaining access to GRO. However, once it reaches a synchronization slot, it declares
itself desynchronized, hence not affecting Skew∆ anymore. Similarly, if an honest party loses access to its
clock or its network, it immediately becomes desynchronized.

Desynchronized parties maintain this status until they regain all resources, at which point they run the
joining procedure JoinProc analyzed in Section 6.5, just like newly joining parties. The claims (b) and (c)
of Lemma 7 guarantee that upon completion of this procedure, when the party declares itself synchronized
again, it will indeed satisfy the invariant Skew∆ except with a negligible error probability: this follows again
by invoking Fact 1 in the same way as done for synchronized parties in Lemma 4 based on the claims (i)
and (ii) from its proof.

Finally, note that the proof of Theorem 1 relies on the martingale analysis from Appendix F, which was
designed in [4] exactly for the purpose of carrying over to the dynamic availability setting that allows the
environment to adjust the stake ratios of alert and active parties adaptively during the execution of the
protocol. ut

K Connection between Logical Time and Nominal Time

We first state and prove the general lemma:
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Lemma 8 (Nominal vs. logical time growth). Consider an execution of the full protocol
Ouroboros-Chronos in the dynamic-availability setting, let P be a party that is synchronized between (and
including) slots sl and sl′, let t and t′ be the nominal times when P enters slot sl and sl′ for the first
time, respectively. Denote by δsl and δt the respective differences |sl′ − sl| and |t′ − t|. Define the quantity
τTG , 1−(96∆+Rεβf)/(48R). Then, under the assumptions of Theorem 6, we have δsl ≥ τTG ·δt whenever

δt ≥ 48∆̃/(εβf) (where ∆̃ = 2∆).

Proof (of Lemma 8). The lemma follows directly from Lemma 5 carried over to the dynamic-availability
setting. In particular, the skew that the adversary can apply in every sequence when nominal time increases
by R is at most 2∆ since no more synchronization slots can occur where the synchronized parties adjust their
local time-stamps. In between, all alert parties proceed at least at the baseline speed, which is used to define
the nominal time. Given that the interval under consideration could start right at a synchronization slot of
alert party P, we need to incorporate an additional offset of 2∆ giving a total shift of at most 2∆ · δt/R+ 2∆.
Relative to δt, this shift can be expressed as (2∆/R+ x)δt for some x > 0 as long as δt ≥ 2∆/x. For the sake

of concreteness, we pick x = (εβf)/48 to obtain the lower bound on δt ≥ 48∆̃/(εβf) that aligns with the

bound in Corollary 6 (where ∆̃ = 2∆), finally yielding the τTG of the statement. Note that the coefficient

tends to the value (1− x) for increasing epoch lengths R ≥ 144∆̃/(εβf). ut

Its main application is to the following corollary:

Corollary 7. Consider the event that the execution of Ouroboros Chronos under the assumptions of Theorem 6
does not violate property CG with parameters τ ∈ (0, 1], s ∈ N. Let τCG,glob , τ · τTG. Consider a chain C
possessed by an alert party at a point in the execution where the party is at an onset of a (local) round and
where the nominal time is t. Let further t1, t2, and δt be such that t1 + δt ≤ t2 ≤ t. Let sl1 and sl2 be the
last slot numbers that P reported in the execution when nominal time was t1 (resp. t2) Then it must hold that

|C[sl1 : sl2]| ≥ τCG,glob · δt whenever δt ≥ max{s/τ, 48∆̃}.

Proof (of Corollary 7). By the previous Lemma, if the nominal time increases by δt, then in the view of alert
party P, at least τTG · δt ≥ s slots were reported (immediate by the property that all parties run at least at
the baseline speed). Thus, by chain growth as of Definition 6.2, the increase in blocks between the reported
logical slots sl1 and sl2 must be τTG · δt · τ = (τTG · τ) · δt. ut

L UC Realization

We are now ready to state the UC theorem in full detail, including all the parameters:

Theorem 7. Let k be the common-prefix parameter, R the epoch-length parameter (constrained as required
by Theorem 5) and ∆ = ∆net +∆clock. Let τCG be the chain growth coefficient as of Theorem 1, let τCG,glob be
the derived (nominal time) chain-growth coefficient as of Corollary 7, and let µ be the chain quality coefficient
as of Theorem 1. Under the constraints22 of Theorem 6, the protocol Ouroboros Chronos realizes the ledger
functionality, i.e., there exists a simulator that simulates the protocol execution in the ideal world perfectly
except with negligible probability in the parameter k for R ≥ ω(log k), for the ledger parameters

windowSize = k; Delay = tjoin; Delaytx = 2∆;

maxTimewindow ≥
windowSize

τCG · τCG,glob
; advBlckswindow ≥ (1− µ)windowSize,

and the clock-parameters

shiftLB = −2∆; shiftUB = ∆; RL = R

timeSlacktotal = 2∆; timeSlackep = ∆,

and where the algorithms Blockify, Validate, and predict-time are instantiated as stated in Section M.2.
22 Note that while we express the theorem as a constrained statement, it is possible to express the constraint

as a (hybrid) functionality wrapper in the real world that enforces the constraints and leaves the environment
unconstrained. For more details we refer to [5] and [4].
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Proof. For the simulation part, we observe that compared to the simulator of the protocol Ouroboros Genesis
in [4], the protocol Ouroboros Chronos does only introduce code such that the entire process of honest parties
can still be simulated perfectly inside the simulator. All added procedures can be emulated by the simulator
who is emulating the honest parties code, extracts their states and times, and sets the ledger parameter
appropriately. We give the simulator in Section L.1.

We thus define the bad events that any constraints imposed by the above choice of parameters would prohibit
the simulator in correctly setting the ledger state or the time (the events are called BAD-CP,BAD-CQ,BAD-CG,
and BAD-TIME-RANGE in the simulation).

We first observe that violating the state parameters implies either violation of common-prefix, chain
quality or chain-growth in the execution (i.e., we have a identical-until-bad simulation). Furthermore, the
protocol is designed such that the activation pattern is still predictable by an efficiently computable predicate
predict-time, since for the maintain-ledger it is by design fixed how many inputs are need to reach the
FinishRound statement in the code.

Finally, the weak liveness of transactions holds since whenever a transaction is in the network at least
∆ < tjoin rounds, it will eventually be included in the next high-quality block (i.e., a block with hFlag = 1) (and
in the real-world by any alert party proposing a block) as long as the transaction is still valid. Considering
that the analysis conditions no collisions among random oracle outputs, we obtain an upper bound of
exp(−Ω(κ)) + exp(ln poly(κ)−Ω(k)) + exp(ln poly(κ)−Ω(R)), where poly(κ) denotes the polynomial upper
bound on the runtime of Z measured with respect to the security parameter κ. (Note that in particular, the
parameters L and Q of the security bound can simply be upper bounded by this polynomial.) Combining
this with the connection established in 6.7 settles that the chosen parameters do not impose a restriction on
the ideal-world adversary except with negligible probability.

We next turn to the export-clock extension parameters. First, setting RL = R is identical to the real world.
Second, the simulator is given enough activation in every round s.t. whenever a synchronized party reaches a
synchronization slot i ·R = i ·RL, it can input a shift value. Next, by Lemma 5 it is clear that shiftLB = −2∆
and timeSlackep = ∆ by Lemma 4. What remains to show is that we can essentially bound the (1) overall
skew between two adjacent epochs by 2∆ and (2) that no party ever shifts its clock by more than ∆. Both
claims follow from directly from strengthening Lemma 5 as done in Lemma 9. By the preceeding analysis,
the probability that any constraint is violated, and thus BAD-TIME-RANGE is triggered, is also in this case
bounded by a negligible function of the above form for our choice of parameters. ut

Lemma 9. Consider the same setting as in Lemma 5. Let sl be the synchronization slot of epoch ep and
let SP

i be the set of beacons of an alert party P that is used for synchronization. Furthermore, assume that
Skew∆[sl] is not violated in this execution. Then it holds that

1. The shift shift party P computes is upper bounded by the maximal recommendation recom(SB), SB ∈ SP
i

for which slotnum(SB) = s for some s ∈ [(ep−1)R, . . . , (ep−1)R+R/6] and for which that it was created
by an alert party P′ in slot s. By the Lemma assumption, this is upper bounded by ∆.

2. After the shift, party P reports a time-stamp that is at most 2∆ off of any alert party’s reported time
stamp.

Proof (Sketch). The first part of the claim follows from the observation that Timestamp(SB) recorded by P
is received after P′ created the beacon. Consider the term slotnum(SB) − Timestamp(SB) that this beacon
contributes to the overall recommendation. If at the point the beacon was created the creator reported slot
s, and party P’ local timestamp (used to measure arrival times in epoch ep) differs by d to the creator’s
timestamp, then the recommendation is upper bounded by d, as delays can make the term only smaller and
subsequent clock drifts do not influence the reported arrival times (as a party fetches once per observed
round). The limited skew Skew∆[s] at that slot s further says that d ≤ ∆. Since the alertly generated beacons
are in the majority as argued in Lemma 5 the median is bounded by ∆ as well.

To prove the second item, note that it is sufficient to show that the difference in reported time stamp of
party P in slot sl after the synchronization procedure to any alert party P′ that has not yet made the clock
adjustment for synchronization slot sl is at most 2∆ and cannot be further beyond that e.g., by doing some
additional drift. First by 1., the party’s shift is upper bounded by ∆. Since by Skew∆[sl], any other alert party
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P′ that has not yet passed synchronization slot sl, will report a time stamp sl′ ≥ sl−∆. Finally, similarly to
the maximal shift, the lower bound on the shift can be obtained by examining the recommendation computed
by alertly generated beacons slotnum(SB)− Timestamp(SB). Analogous to the above case, if at the point of
the execution the beacon was created the creator reported slot s, party P’ local timestamp (used to measure
arrival times in epoch ep) differs by at most d to the creator’s timestamp, then the recommendation is lower
bounded by d−∆. Similar to the arguments in Lemma 4, this worst case cannot be further amplified, because
the drift allowed by GImperfLClock is an absolute additive constant over the entire execution (and therefore,
either the true shift is in fact lower than the worst case and later maximized, or is maximal and cannot be
further increased). Again, assuming Skew∆[sl] is not violated, this is lower bounded by −2∆. Since any alert
party that has not yet made its adjustment reports a local time stamp larger equal to sl−∆, the adjustment
of P in this round will not increase the distance to any alert party that has not yet passed the synchronization
slot to more than 2∆. As above, this invariant remains true until everyone has made the adjustments (and
then the stronger guarantees proven in previous sections apply). ut

L.1 Simulator

Below we present the simulator used in the proof that the UC implementation of Ouroboros Chronos securely
realizes the ledger functionality Gledger with the clock extension. The simulator shares a lot of similarities
with the simulator provided in [4] and is given below for the sake of concreteness.

Overview:

– The simulator internally emulates all local UC functionalities by running the code (and keeping the state) of
FVRF, FKES, F∆net

INIT , Fbc
N-MC, F tx

N-MC, and F sync
N-MC, where refP := 〈vvrf

P , vkes
P 〉 identifies the address of party (i.e., ITI)

P (and is given to the ledger when an ITI is registered).
– The simulator mimics the execution of Ouroboros Chronos for each honest party P (including their state and

the interaction with the hybrids).
– The simulator emulates a view towards the adversary A in a black-box way, i.e., by internally running

adversary A and simulating his interaction with the protocol (and hybrids) as detailed below for each hybrid.
To simplify the description, we assume A does not violate the theorem assumptions (as they are enforced by a
wrapper WPoS

OG (·)as in [4]).
– For global functionalities, the simulator simply relays the messages sent from A to the global functionalities

(and returns the generated replies). Recall that the ideal world consists of the dummy parties, the ledger
functionality, the clock, and the random oracle.

Party sets:

– As defined in the main body of this paper, honest parties are categorized. We denote Salert the alert parties
(synchronized and executing the protocol) and use SsyncStalled shorthand for parties that are synchronized (and
hence time aware and online) but stalled. Finally, we denote by PDS all honest but de-synchronized parties
(both operational or stalled).

– For each registered honest party, the simulator maintains the local state containing in particular the local chain
C(P)

loc , the time ton it remembers when last being online. For each party P, the simulator maintains the objective
(or nominal) round number τ ′L := τL + δP, i.e., decomposed into the baseline time and the party-specific offset
δP bounded by ∆clock. For each party P, the simulator stores the reported time timeP = (e, localTime), and
the flags updateStateP,τ ′

L
, updateTimeP,τ ′

L
, and updateInitTimeP,τ ′

L
(initially false) to remember whether this

party has completed its core maintenance tasks in its nominal round τ ′L to update the state and its time (where
the initial time for each party is a separate case), respectively. Note that an registered party is registered with
all its local hybrids.

– Upon any activation, the simulator will query the current party set from the ledger, the clock, and the random
oracle to evaluate in which category an honest party belongs to. If a new honest party is registered to the

Simulator Sledg (Part 1 - Main Structure)
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ledger, it runs the initialization procedure for this party in each new round until the party is initialized
(P.isInit becomes true).

– We assume that the simulator queries upon any activation for the sequence ITH , and the current (baseline) time
τL from the ledger. We note that the simulator is capable of determining predict-time(·) of Gledger and hence
the nominal time of the execution at any point. If the baseline advances, the simulator adjusts all offsets δP

accordingly (which it can do exactly as in GImperfLClock).

Messages involving the Clock:

– Upon receiving (clock-update, sidC ,P) from GImperfLClock, if P is an honest registered party, then remember
that this party has received such a clock update (and the environment gets an activation). Otherwise, send
(clock-update, sidC ,P) to A.

– Upon receiving (clock-push, sidC ,P) from A, remember that P is allowed to locally advance in this round if
allowed by GImperfLClock (restricted by the maximal drift ∆clock) and adjust δP.

Messages from the Ledger:

– Upon receiving (Respond, (start, sid)) from Gledger, send (Respond, (DefineOffset, sid)) in the name of F∆INIT to
the adversary. Upon receiving the response (DefineOffset, sid, o1, . . . , on), oi ∈ [0, . . . ,∆], store the values and
relay the ansower to the simulated instance of F∆INIT.

– Upon receiving (submit, BTX) from Gledger where BTX := (tx, txid, τ,P) forward (multicast, sid, tx) to the
simulated network F tx

N-MC in the name of P. Output the answer of FN-MC to the adversary.
– Upon receiving (maintain-ledger, sid,minerID) from Gledger, extract from ITH the party P that issued this

query. If P has already completed its round-task, then ignore this request. Otherwise, execute
SimulateMaintenance(P, τL).

Simulation of Functionality FINIT towards A:

– The simulator relays back and forth the communication between the (internally emulated) F∆net
INIT functionality

and the adversary A acting on behalf of a corrupted party.
– If at time τL = 0, a corrupted party P ∈ SinitStake registers via (ver keys, sid,P, vvrf

P , vkes
P ) to FINIT, then input

(register, sid) to Gledger on behalf of P.

Simulation of the Functionalities FKES and FVRF towards A:

– The simulator relays back and forth the communication between the (internally emulated) hybrids and the
adversary A (either direct communication, communication to A caused by emulating the actions of honest
parties, or communication of A on behalf of a corrupted party).

Simulation of the Network Fbc
N-MC (over which chains are sent) towards A:

– Upon receiving (multicast, sid, (Ci1 , Ui1), . . . , (Ci` , Ui`) with a list of chains and corresponding parties from A
(or on behalf some corrupted P ∈ Pnet), then do the following:
1. Relay this input to the simulate network functionality and record its response to A.
2. Execute ExtendLedgerState(τL)
3. Provide A with the recorded output of the simulated network.

– Upon receiving (multicast, sid, C) from A on behalf of some corrupted party P , then do the following:
1. Relay this input to the simulate network functionality and record its response to A.
2. Execute ExtendLedgerState(τL)
3. Provide A with the recorded output of the simulated network.

– Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ Pnet forward the request to the simulated
Fbc

N-MC and return whatever is returned to A.
– Upon receiving (delays, sid, (Tmidi1

,midi1), . . . , (Tmidi`
,midi`)) from A: Forward the request to the simulated

Fbc
N-MC and record the answer to A. Before giving this answer to A, query the ledger state state and execute

AdjustView(state, τL).

Simulator Sledg (Part 2 - Black-Box Interaction)
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– Upon receiving (swap, sid,mid,mid′) from A: Forward the request to the simulated Fbc
N-MC and record the

answer to A. Before giving this answer to A, query the ledger state state and execute
AdjustView(state, τL).

Simulation of the Network F tx
N-MC (over which transactions are sent) towards A:

– Upon receiving (multicast, sid,m) from A with list a transaction m from A on behalf some corrupted
P ∈ Pnet, then do the following:
1. Submit the transaction to the ledger on behalf of this corrupted party, and receive for the transaction id txid.
2. Forward the request to the internally simulated F tx

N-MC, which replies for each message with a message-ID
mid

3. Remember the association between mid and the corresponding txid
4. Provide A with whatever the network outputs.

– Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ Pnet forward the request to the simulated
F tx

N-MC and return whatever is returned to A.
– Upon receiving (delays, sid, (Tmidi1

,midi1), . . . , (Tmidi`
,midi`)) from A forward the request to the simulated

F tx
N-MC and return whatever is returned to A.

– Upon receiving (swap, sid,mid,mid′) from A forward the request to the simulated F tx
N-MC and return whatever

is returned to A.

Simulation of the Network F sync
N-MC (over which beacons are sent) towards A:

– Upon receiving (multicast, sid,m) from A with a beacon m from A on behalf some corrupted P ∈ Pnet, then
do the following:
1. Forward the request to the internally simulated F sync

N-MC, which replies for each message with a message-ID
mid

2. Remember the association between each mid and the corresponding beacon.
3. Provide A with whatever the network outputs.

– Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ Pnet behave analogously to above for F tx
N-MC.

– Upon receiving (delays, sid, (Tmidi1
,midi1), . . . , (Tmidi`

,midi`)) from A behave analogously to above for

F tx
N-MC.

– Upon receiving (swap, sid,mid,mid′) from A behave analogously to above for F tx
N-MC.

procedure SimulateMaintenance(P, τL)
Simulate the (in the UC interruptible manner) the maintenance procedure of party P as in
the protocol in round τ ′L = τL + δP when the party reports localtime P.localTime, i.e., run
LedgerMaintenance(Cloc,P, sid, k, s, R, f) for this simulated party.
if party P gives up activation then then

if party P has completed JoinProc(·) and updateInitTimeP,τ ′
L

is false then

Execute AdjustTime(τL) and then set updateInitTimeP,τ ′
L
← true.

end if
if party P has reached the instruction SelectChain(·) and updateStateP,τ ′

L
is false then

Execute ExtendLedgerState(τL) and then set updateStateP,τ ′
L
← true.

end if
if party P has reached the instruction SyncProc(·) and updateTimeP,τ ′

L
is false then

Execute AdjustTime(τL) and then set updateTimeP,τ ′
L
← true.

end if
if party P has reached the instruction FinishRound(P) in round τ ′L then

Send (clock-update, sidC ,P) to A if Sledg has received such an input in round τ ′L
end if
Return activation to A

end if

Simulator Sledg (Part 3 - Internal Procedures)
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end procedure

procedure ExtendLedgerState(τL)
for each synchronized party P ∈ Salert ∪ SsyncStalled of round localTime do

Let C(P)
loc be the party’s currently stored local chain.

// Note: In the following the internally simulated party state is not changed
Determine the number of fetches ρ(P) ∈ {0, 1} this party is still going to make in this round τ ′L := τL + δP.

If ρ(P) > 0 then let C(P)
1 , . . . , C(P)

k be the chains contained in the receiver buffer M (P) of Fbc
N-MC with delay

at most ρ(P).

Re-evaluate CP ← SelectChain() using the additoinal chains as well and let this resulting chain’s encoded
state be stP.

end for
Let st be the longest state among all such states stP, P ∈ Salert ∪ SsyncStalled from above.

Compare stdk with the current state state of the ledger
if |state| > |stdk| then // Only pointers need adjustments

Execute AdjustView(state)
end if
if state is not a prefix of stdk then // Simulation fails

Abort simulation: consistency violation among synchronized parties. // Event BAD-CPk
end if
Define the difference diff to be the block sequence s.t. state||diff = stdk.
Parse diff := diff1|| . . . ||diffn.
for j = 1 to n do

Map each transaction tx in this block to its unique transaction ID txid. If a transaction does not yet have
a txid, then submit it to the ledger first and receive the corresponding txid from Gledger
Let listj = (txidj,1, . . . , txidj,`j ) be the corresponding list for this block diffj
if coinbase txidj,1 specifies a party honest at block creation time then

hFlagj ← 1
else

hFlagj ← 0
end if
Output (next-block, hFlagj , listj) to Gledger (receiving (next-block, ok) as an immediate answer)

end for
if Fraction of blocks with hFlag = 0 in the recent k blocks > 1− µ then

Abort simulation: chain quality violation. // Event BAD-CQµ,k

else if State increases less than k blocks during the last k
τCG

rounds then

Abort simulation: chain growth violation. // Event BAD-CGτCG,k/τCG

end if
// If no bad event occurs, we can adjust pointers into this new state.
Execute AdjustView(state||diff)

end procedure

procedure AdjustTime(P, τL)
Let τ ′L := τL + δP be the current (objective) round of this party.
if P completed JoinProc in this round τ ′L then

// Note that this party is about to become synchronized and to report time.
Take the simulated timestamp timeP and send (set-time, sid,P, timeP) to Gledger.

end if
if τ ′L = 0 and P is an initial stakeholder Ui then

Send (apply-shift, sid, (Ui,−oi)) to Gledger, where the oi are the initial offsets by A as recorded above.
else if P.localTimemodR = 0 then

Take the simulated timestamp timeP and the simulated shift shift of this party.
if The range of timestamps of parties in Salert ∪ SsyncStalled is invalid then
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Abort simulation: time-range violation. // Event BAD-TIME-RANGE
else

Send (apply-shift, sid, (P, shift)) to Gledger.
end if

end if
end procedure

M Glossary: Protocol Variables and Ledger Parameters

M.1 Main State Variables of Ouroboros Chronos

The variables defining the state of a protocol participant are summarized below.

Variable Description

localTime,sl The party’s current time-stamp. In the staking context we call the
time slot.

ep The epoch that sl belongs to.

Cloc The local chain the party adopts based on which it does staking and
exports the ledger state.

isInit A variable to keep track of whether initialization is complete.

twork A value to steer when the party executes the staking procedure for
the next time.

buffer The buffer of transactions.

futureChains A buffer to store chains that are not yet processed, for example
because they contain blocks that belong to the logical future of this
party.

TimestampSB(·) A map that assigns to each synchronization beacon a pair (a, b),
where a is a numerical value (the arrival time) and b is an indication
of whether a is final or not.

Timestamp(·) Shorthand for the first (and numerical) element of the pair
TimestampSB(·).

lastTick The last tick received from GPerfLClock. Used to infer when a round
change occurs.

isSync A party stores its synchronization status, as it can infer when its
time and state become reliable.

EpochUpdate(·) An function table to remember which clock adjustments have been
done already. Used to update beacon arrival times.

fetchCompleted A variable to store whether the round messages have been fetched.

lastTimeAlert The local time stamp the party was alert the last time. Used for
rejoining if the party was only stalled.

T ep

P , T ep,bc
p The thresholds of this party to evaluate slot leadership (and beacon

production and validity) in (current) epoch ep.

vvrf
P , vkes

P The public keys of this party to interact with FKES and FVRF.

Fig. 4. Overview of the main state variables of Ouroboros Chronos.
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M.2 Main Ledger Elements

The state variables of the new ledger functionality are given below.

Core Ledger Parameter Description

windowSize The window size (number of blocks) of the sliding window. In the
realization statement, it is typically set to the common-prefix pa-
rameter.

Validate Decides on the validity of a transaction with respect to the current
state. Used to clean the buffer of transactions. If the protocol fixes a
validation predicate, say ValidTxOC, then the realization statement
holds with Validate(BTX, state, buffer) := ValidTxOC(tx, state).

Blockify The function to format the ledger state output. If the protocol fixes
a particular function, say blockifyOC, the ledger will use the same in
the realization proof.

predict-time The function to predict the real-world time advancement. Ouroboros
Chronos has a predictable time-advancement predict-timeOC as it
can inferred by design when the protocol will call FinishRound in
each round, when given a fixed number of activations that depends
on the local time-stamp of this party.

Delay A general delay parameter for the time it takes for a newly joining
(after the onset of the computation) miner to become synchronized.
In this paper, it corresponds to the duration of the joining procedure.

Policy Parameter (ExtendPolicy) Description

maxTimewindow Minimal Growth: In maxTimewindow rounds at least windowSize blocks
have to be inserted into the ledger state. The value in the realization
proof will depend on the chain-growth property.

advBlckswindow A limit advBlckswindow of adversarial blocks (i.e., contributed blocks
that do not need to employ higher standards) in each window of
windowSize state blocks. This ensures a minimal fraction of blocks
that contain all old and valid transactions. The value in the realiza-
tion proof will depend on the chain-quality property.

Delaytx An extra parameter to define when a transaction is old. In this
work, this will be much less than Delay as it will only depend on
the network delay.

Export-Time Parameter Description

timeP A variable that will represent the (idealized) clock value that the
party reports as its local time. A party will export pairs (e, t), where
t is the current local time, and e is the epoch.

shiftLB, shiftUB Limits on the shift values an adversary can impose at epoch bound-
aries

RL The parameter characterizing epoch boundaries: if a party’s times-
tamp (e, t) is such that t = iRL + 1 (for the first time), then the
party moves to the next epoch.

timeSlacktotal An upper bound between t and t′ of two synchronized parties P
and P′ reporting (e, t) and (e′, t′) as their respective time timeP and
timeP′ , respectively.

timeSlackep An upper bound between t and t′ of two synchronized parties P
and P′ reporting (e, t) and (e′, t′) as their respective time timeP and
timeP′ , respectively whenever e = e′

Fig. 5. Overview of main ledger elements such as parameters and state variables. As in [5, Definition 2], we always
assume that blockifyOC and ValidTxOC do not disqualify each other.
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