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Abstract. Recently Bar-On et al. proposed the Differential-Linear Connectivity
Table (DLCT) for a tighter analysis of probabilities for differential-linear distinguishers.
We extend the analysis of the DLCT, and gain new insights about this notion.

The DLCT entries correspond to the autocorrelation spectrum of the component
functions and thus the DLCT is nothing else as the Autocorrelation Table (ACT).
We note that the ACT spectrum is invariant under some equivalence relations.
Interestingly the ACT spectrum is not invariant under inversion (and thus not under
CCZ equivalence), implying that it might be beneficial to look at the decryption for
a differential-linear cryptanalysis.

Furthermore, while for Boolean functions a lower bound for the maximal absolute
autocorrelation, the absolute indicator, is not known, the case for vectorial Boolean
functions is different. Here, we prove that for any vectorial Boolean function, its
absolute indicator is lower bounded by 2"/2. Eventually, for APN functions we show
a connection of the absolute indicator to the linearity of balanced Boolean functions,
and exhibit APN permutations with absolute indicator bounded by 2(nt1)/2,

Keywords: DLCT - ACT - Autocorrelation - Absolute Indicator - Differential-Linear
Attack

1 Introduction

Differential-Linear cryptanalysis was developed by Langford and Hellman [LLH94]. The
main idea is to split the cipher under scrutiny into two parts, F = ET o E+. Langford and
Hellman then exploited deterministic differentials over E+ in combination with a linear
approximation of ET with a high correlation.

Recently, Bar-On et al. [Bar+19] proposed the so-called DLCT as a new tool for
differential-linear style cryptanalysis. The DLCT enables us to exactly analyse the proba-
bilities for the connection of the differential and linear parts in a differential-linear attack.
However, only few properties of the DLCT were discussed.

We provide some insights on this new notion. In particular, we show that the DLCT
of F corresponds to its Autocorrelation Table (ACT), see Section 3. There exists also
a correspondence between the ACT of F' and its Difference Distribution Table (DDT),
resp. its Walsh transform, revealing the well-known relation between the DDT and the
corresponding Walsh transform already observed by Blondeau and Nyberg [BN13] and
Chabaud and Vaudenay [CV95]. We further note that (somewhat trivially) the ACT

spectrum of a function is invariant under affine transformations. However in contrast
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2 Observations on the DLCT and Absolute Indicators

to the DDT or LAT spectra, we observe that the ACT spectrum is not invariant under
inversion, and thus also not under CCZ equivalence. This implies that for differential-linear
cryptanalysis it might be better to look at the decryption function than the encryption —
which is in sharp contrast to differential or linear cryptanalysis.

Apart from this we analyse the absolute indicator (the maximal absolute autocorrelation
value) of a vectorial Boolean function in Section 4. In contrast to the case of Boolean
functions, where no lower bound on the absolute indicator is known, we prove here that
for vectorial Boolean functions in n variables the absolute indicator is lower bounded by
2% . Furthermore, we specify this analysis for Almost Perfect Nonlinear (APN) functions.
In particular, we first show that the absolute indicator of an APN function corresponds to
the linearity of a balanced Boolean function. This observation allows a nice explanation
of the relation between the absolute indicator of the inverse mapping over Fon when n is
odd, and its linearity as shown in [Cha+07].

Second, for n odd, we bound the absolute indicator of a class of permutations in n
variables, namely for inverses of quadratic APN permutations (that is inverses of crooked

functions), by 2 =

2 Preliminaries

We denote the finite field with two elements as Fo = {0, 1} and the n-dimensional vector
space over [Fy as F3, where - denotes the canonical inner product. The support of a function
is denoted by supp(F'), that is the set of elements where F' £ 0. A Boolean function maps
an n-bit vector from F3 to one bit in Fy and is called vectorial Boolean function when
mapping to m-bits. Every vectorial Boolean function F' consists of m coordinates that
are the Boolean functions F,,(x) = e; - F/(z) or 2™ components F,(z) =b- F(x) for any
b € Fy'. In the following f : F§ — F5 denotes a Boolean function and F : F§ — [} a
vectorial Boolean function.

Properties of (vectorial) Boolean functions. The derivative of f in direction a is defined
as

Aa(f)(@) = f(z) + f(z +a),

and analogously for F. The i-th order derivative is Ag, . 4. (f) = Ag, (Aal,...,ai,l(f))
The so-called DDT is related to the sizes of the preimages of the derivatives:

DDTpla,b] = dp(a,b) = ‘AG(F)_I(b)‘ .

Differentially 2-uniform functions, that are functions with a maximum entry of two in their
DDT, are called APN.

Note that the b-th component of the derivative equals the derivative of the b-th
component: b- A, (F)(x) = As(Fp)(x).

The Walsh coefficient of f is defined as

W)= 32 ()",
z€Fy

while for F' it is defined as

Wr(a,b) = WFb(a) =Wp.r(a) = Z (_1)a~x+b-F(z).

z€FY

As for the DDT, the so-called Linear Approximation Table (LAT) of F' contains the Walsh
coefficients of F: LATp[a,b] := Wrg(a,b). The maximum absolute entry of the LAT,
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ignoring the 0-th row, is called the linearity of F', written L£(F'), and functions that reach

the lowest possible linearity of 2“3 are Almost Bent (AB).
Finally the linear space of f is defined as

LS(f) :={a € F§ | A,(f) is constant zero or one},
and
LS(F) == {(a,b) € Fy | b- Ay (F) = A,(F}) is constant zero or one}.

An element from the linear space is also called a linear structure.

3 On the DLCT and ACT

Let us define the DLCT as follows.

Definition 1 (Differential-Linear Connectivity Table). Given a permutation F : F} — Fy,
the corresponding Differential-Linear Connectivity Table (DLCT) consists of the following
elements:
DLCTr[a, b] == Z (_1)b~(F(z)+F(x+a)) (1)
z€Fy
We leave out the subscript, if it is clear from the context.
While Bar-On et al. [BO+19] defined the entry at position (a,b) as
DLCTFa,b] = [{z | b- (F(x) + F(x +a)) = 0}| — 2",

it is easy to see that both definitions only differ in a factor of 2 for each entry:

2-({z €Fy | b (F(z) + F(z+a)) =0} —2""") = [Mo| + | M| — 2"

= |Mo| + (2" — | My|) — 2" = | Mo| — | My| = Z (_l)b-(F(m)JrF(era))’

z€FY

where we define M; = {z € F§ | b- (F(x) + F(xz + a)) = i} for the sake of readability.

Our first observation on the DLCT is that it basically contains the autocorrelation
spectra of the component functions of F'. Recall that the autocorrelation of f is defined as,
see e. g. Carlet [Carl0, p. 277],

Af(a) = WAa(f)(O).

Similar to Walsh coefficients, this notion can naturally be generalized to vectorial Boolean
functions as

Ap(a,b) = AFb(a) = WAa(F;,)(O>7
and we name the Ap(a,b) the autocorrelation coefficients of F. In other words, the
autocorrelation coefficients of a vectorial Boolean function consist of the autocorrelation of
its component functions. To easily see the correspondence, we only have to conclude that

Wa.(r,)(0) = Z (—1)b'(F(I)+F(m+a)).

T

Zhang et al. [Zha+00, Section 3] introduced the term Autocorrelation Table (ACT) for
a vectorial Boolean function which, analogously to the Walsh coefficient and LAT again,
contains the autocorrelation spectra of F’s component functions. This implies for the
DLCT that
DLCTF [Cl, b] = .AF(CL, b) = ACTF [a, b]

For the remainder of this paper we thus stick to the established notion of the autocorrelation.

Zhang and Zheng [Z2796] termed the absolute indicator M(f) as the maximum absolute
value of the autocorrelation (of a Boolean function f). Analogously for a vectorial Boolean
function, we define
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Definition 2 (Absolute indicator). Given a function F : F§ — F3. The absolute indicator
of F'is

F) = Fy) = b
M(F) be%i’{‘O}M( b) X ) |Ar(a,b)|

that is the maximum absolute indicator of F’s non-trivial component functions.

We call the multiset {Ar(a,bd) | a,b € F} the autocorrelation or ACT spectrum of F.
Zhang et al. [Zha+00, Section 3] further showed that

ACT=DDT-H

where H is the Walsh matrix of order n. In other words, the ACT is the Walsh transformed
DDT of F:

(DDTp - H)a,b] = > {x € Fy | F(x)+ F(z +a) = c}| - Hlc,b]

celFy

= 3 e €Fy | Fle)+ Fla+a) = c}| - (~1)°

ceFy

T€FY
:.Af{a,w.

Because of the correspondence between the ACT and the DLCT, this corresponds
to [Bar+19, Prop. 1].
Let us now recall some properties of and links between the above discussed notations.

3.1 Links between the ACT, DDT, and Walsh transformation

Sum of the ACT entries, within a row or a column. It is well-known that the entries
Ap(a,b), b # 0 in each nonzero row in the ACT of F' sum to zero if and only if F is
a permutation (see e.g. [Ber4-06, Prop. 2]). The same property holds when the entries
Ar(a,b), a # 0 in each nonzero column in the ACT are considered (see e.g. [Ber+06,

Eq. (9)))-

Link between differential and linear cryptanalysis. The following proposition shows that
the restriction of the autocorrelation function a — Ap(a,b) can be seen as the discrete
Fourier transform of the squared Walsh transform of Fj: u +— W#(u,b). As previously
mentioned, b — Ap(a,b) similarly corresponds to the Fourier transform of the row of
index a in the DDT: v — dp(a,v). It is worth noticing that this correspondence points
out the well-known relationship between the Walsh transform of F' and its DDT exhibited
by Blondeau and Nyberg [BN13] and Chabaud and Vaudenay [CV95].

Proposition 1. Let F' be a function from Fy to F5. Then, for all a,b € FY, we have

Ap(a,b) =27 Y (=1)*“W(u,b) (2)
ueF;
— Z (71)17'“5[:‘(&,1)) . (3)
vEFY

Conversely, the inverse Fourier transform leads to

Wi(a,b) = > (=1)""Ap(u,b) (4)

u€Fy

5F(a7 b) =2" Z (71)b.v~’4F(a’ U) ) (5)

velFy
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for all a,b € 5.

Proof. We first prove Relation (2) which involves the squared Walsh transform. For all
a,b € Fy, we have

> (D) Wi(u,b)

Z (_1)a-u Z (_1)Fb($)+u'w Z (_1)Fb(y)+u-y

uery u€Fy z€Fy y€Fy
= Z (_1)Fb(m)+Fb(y) Z (_1)u-(a+x+y)
z,yeFy u€lFy
=21 3 ()R — 90 A (a,0)
z€FY

where the last equality comes from the fact that

3 (-pyuleten < {2" forat+z+y=0

0  otherwise.
uelFy

Obviously, Eq. (4) can be directly derived from Eq. (2) by applying the inverse Fourier
transform. We now prove the relation involving the DDT, namely Eq. (5). For all a,b € F%,
we have

N D) Ap(a0) = 3 (1P (1) Ae@

veFY veFY z€FY

Z Z (=1)v (o+A(F) ()

z€Fy velFy

= > 2"=2%p(ab).

2€AL(F) ()

Eq. (3) then follows directly by applying the inverse Fourier transform. O

As a corollary, Parseval’s equality leads to an expression of the sum of all squared
entries in each row, and in each column of the autocorrelation table.

Corollary 1. Let F' be a function from Fy to Fg. Then, for all a,b € F5, we have

ST AL(ab) =27 Whu.b) and Y Ah(ab)=2"Y 63(a,v).

a€Fy u€Fy beFy veFy

In the following, we show that the ACT spectrum is affine invariant, the extended ACT
spectrum is extended affine invariant and the ACT spectrum is not invariant under CCZ
equivalence.

3.2 Invariance under Equivalence Relations

Having an equivalence relation on the set of all n-bit functions, allows us to partition these
functions into equivalence classes. Properties which are invariant under this equivalence
notion can then be tested on only one representative of each class — resulting in a massive
decrease of complexity, if we want to characterise the whole set of functions under this
property. Three well-known equivalences are the following:

Definition 3 (Equivalence relations for vectorial Boolean functions). Given two functions
F and G : F§ — 3. We say these functions are
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1. affine equivalent (F L G) if there exist two affine permutations A and B such that
G=BoFoA,

2. extended affine equivalent (F B G) if there exist two affine permutations A and B,
and an affine function C such that G = Bo Fo A+ C,

3. CCZ equivalent (F “~* G) if their graphs are affine equivalent.
Here, the graph of a function is defined as {(x, F'(z)) | z € F§}.

A nice property of the ACT is that its spectrum is invariant under affine equivalence,
and further its extended ACT spectrum, that is the multiset {|Ap(a,b)| | a,b € F}, is
invariant under extended affine equivalence.

Proposition 2 (Affine and Extended Affine Invariance). Given two permutations F', and
G on Fy. Let further A= L, + o, B = Ly + 8 be two affine permutations and C = L.+~
be an affine function. Then

G=BoFoA = Ag(a,b)=Ap(L.(a),L;(b))
and
G=BoFoA+C = |Ac(a,b)|=|Ar(Li(a),L; (D)),
where L* denotes the adjoint of the linear mapping L.

Proof. From the affine equivalence of F and G, we have G(z) = Ly(F(Ly(2) + «)) + 3.
Each entry ACTp[a, b] corresponds to the number of solutions z for the equation

b- (F(z)+ F(z+a))=0.
Thus for each entry of G’s ACT at position a, b, we count the number of solutions for
b [Ly(F(La(z) + @) + B+ Lo(F(La(x +a) + a)) + 5] = 0.
Substituting &’ = L4(x) + «, this simplifies to
b Ly(F(x') + F(z' + Lo(a))) =0
& L) - (F(2')+ F(z' + La(a))) =0

thus the number of solutions for this equation is nothing else as the ACT entry of F' at
position (Lg(a), L (b)).

For the second point, we now only have to show how G = F' 4 C behaves. By definition
of the autocorrelation we have

Ag(a,b) = Z (_1)b'(G(w)+G(z+a))
zEFY

_ Z (_1)b»(F(a:)+Lc(z)+’y+F(a:+a)+LC(w+a)+’y)

z€Fy
where C(z) = Le(x) +

o Z (_1)b»(F(z)+F(m+a)+Lc(a))
z€Fy

— (—1)b'(L“(a))AF(a, b),

and thus the affine map C only influences the sign of the autocorrelation value. O
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The (extended) affine invariance of the (extended) ACT spectra follows directly from
this proposition.

Corollary 2. Given two permutations F, and G on F3.
o If F A G, the ACT spectrum of F equals that of G.

o If F X G, the extended ACT spectrum of F equals that of G.

To examine the behaviour under CCZ equivalence, let us first recall that the ACT is
related to linear structures in the following way, see also [MT14; Zha+00].

Lemma 1 (Linear Structures). Given F : Fy — FY, then
Ap(a,b) = £27
if and only if (a,b) forms a linear structure for F.
Proof. This follows from the fact that, for a linear structure, by definition,
b- (F(x)+ F(z +a))

is constant zero or one. The sign of the entry thus determines, if the linear structure is
constant one (negative) or zero (positive). O

One consequence of this is the next corollary.

Corollary 3 (Inversion). Given a permutation F : FY — FY, then the ACT spectrum of
F is in general not equal to the ACT spectrum of F~1.

Proof. Counterexamples are the S-boxes from SAFER [Mas94], SC2000 [Shi+02], and
FIDES [Bil413], where the S-box has linear structures in one direction but non in the other
direction, and the Gold permutations as analysed in Section 4.4. O

An interesting implication of this is that it might be advantageous when doing a
differential-linear cryptanalysis, to look at both directions, encryption and decryption, of a
cipher.

Another direct consequence of Corollary 3 is the following result.

Corollary 4. Given two CCZ-equivalent permutations F " G on Fy. Their ACT
spectrum is in general not invariant.

Proof. A function and its inverse are always CCZ equivalent. Thus Corollary 3 gives a
counterexample. O

Zhang et al. further showed how the ACT of F and its inverse F~! are related,
see [Zha+00, Corollary 1]. In particular they showed that

ACTp-1 = H ' ACT - H,

which in our notation is

Apr(ab) = g0 S0 ()" Ar(u,0).

u,vEFY
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4 Lower bound on the absolute indicator

Finding the smallest possible absolute indicator for a Boolean function is an open question
investigated by many authors. Zhang and Zheng conjectured [ZZ96, Conjecture 1] that

the absolute indicator of a balanced Boolean function of n variables was at least 23 .
But this was later disproved first for odd values of n > 9 by modifying the Patterson-
Wiedemann construction, namely for n € {9,11} in [Kav+07], for n = 15 in [Kav16;
MS02] and for n = 21 in [Gan+06]. For the case n even, Tang and Maitra [TM18] gave
a construction for balanced Boolean functions with absolute indicator strictly less than
27/2 when n = 2 mod 4. Very recently, similar examples for n = 0 mod 4 were exhibited
by Kavut et al. [Kav+19]. However, we now show that such small values for the absolute
indicator cannot be achieved for vectorial Boolean functions.

4.1 General Case

Parseval’s equality leads to the following upper bound on the sum of all squared autocor-
relation coefficients in each row. This result can be found in [Nyb95] (see also [Ber+06,
Theorem 2]), but we recall the proof for the sake of completeness.

Proposition 3. Let F be a function from Fy into Fy. Then, for all a € Fy, we have

> Ad(ab) =27

bEFL b#£0
Moreover, equality holds for all nonzero a € Fy if and only if F' is APN.

Proof. From Corollary 1, we have that, for all a € F3,

> Ah(a,b) =27 6% (a,v)

beFy veFy

Cauchy-Schwarz inequality implies that

2

> drlav) | <[ D 6%(a,v) | x {v € Fy | dr(a,v) # 0},

veFY veFY

with equality if and only if all nonzero elements in {dr(a,v) | v € F§} are equal. Using
that
{v €F3 | dr(a,v) # 0} <277

with equality for all nonzero a if and only if F' is APN, we deduce that

S 3(a,0) > 22 x 2D = gt

veFy

with equality for all nonzero a if and only if F' is APN. Equivalently, we deduce that

> Ax(a,b) > 22!

beF?

with equality for all nonzero a if and only if F' is APN. Then the result follows from the

fact that
> Ai(ab)=2"+ Y Af(ab).

beFy bEFT b0
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From the lower bound on the sum of all squared coefficients within a row of the ACT,
we deduce the following lower bound on the absolute indicator.

Proposition 4 (Lowest possible absolute indicator). Let F' be a function from FY into
F5. Then,
2n
M(F) 2 — > on/2
2n —1

Proof. From the facts that
> Ab(ab) =2

bEFT b0

and
> AL(a,b) S M(FP(2" - 1)

bEFD b£0

the result directly follows. O

We can get a more precise lower bound on the absolute indicator by using the fact that
all autocorrelation coefficients are divisible by 8. We even have a stronger property for
functions having a lower algebraic degree as shown in the following proposition.

Proposition 5 (Divisibility). Let n > 2 and F : Fy — Fy be a permutation with algebraic
degree at most d. Then, for any a, b € FY, Ap(a,b) is divisible by ol a1+t
Most notably, the autocorrelation coefficients of a permutation are divisible by 8.

Proof. From the definition of the autocorrelation, we know that
.AF(CL, b) = WAa(Fb)(O)'

For the sake of readability, we define hqp = Aq(Fp). We can derive two properties of
this Boolean function h, . First, as F' has degree at most d, deg(hqp) < d — 1. Second,
hap(x) = hap(z + a).

We now focus on the divisibility of Wy, , (0). First, assume for simplicity that a = e,,, we
discuss the general case afterwards. Then we can write he, p as he, »(z) = g(z1,...,Tn-1)
with ¢ : Fg_l — Fq, because he, p(T + €,) = he, p(x). The Walsh coefficient of k., ; at
point 0 can then be computed as

Wi, 0= Y (=) =2. 3 (—1)?™ =2.w,(0)

z€Fy ", €Fs zeFy !

Now degg < d — 1. It is well-known that the Walsh coefficients of a Boolean function f
are divisible by ol awi | (see [McET2] or [Carl0, Section 3.1]). We then deduce that W,(0)
is divisible by 2[%]7 implying that Wy, ,(0) is divisible by ol &= 1+1, Most notably, if
F' is bijective, d < n — 1. We then have that

implying that Wj, ,(0) is divisible by 8.

In the case that a # e,, we can find a linear transformation L, s.t. L(e,) = a, with
which we have the affine equivalent function G = FoL ~ F. Now for G the same argument
as above holds and thus Ag/(a, b) is divisible by 2l 771+ Due to the affine invariance of
G’s and F’s ACT spectra the same holds for Ag(a,b) in this case. O
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The absolute indicator is known for very few permutations only, except in the case of
permutations of degree less than or equal to 2, where the result is trivial. To our best
knowledge, one of the only functions whose absolute indicator is known is the inverse
mapping F(z) = 22" =2 over Fon [Cha+07): M(F) = 25! when n is even. When n is odd,
M(F) = L(F) when L(F) =0 mod 8, and M(F) = L(F) *+ 4 otherwise (see Section 4.3
for an alternative proof).

We now study the absolute indicator of some types of vectorial Boolean functions.

4.2 Case of power permutations

For power permutations on Fo» we can show that the autocorrelation spectrum is invariant
for all component functions, analogously to the same well known fact for the Walsh
spectrum. In this case, the trace function is used as the inner product, i.e. a - b = tr,(ab)
with

try, : Fon — Fy

try, () :

|
8
N,

where we leave out the subscript, if it is clear from the context. Thus we have the following
corollary.

Corollary 5. Let F be a power permutation on Fon, i.e. F = z* with ged(k, 2" — 1) = 1.
Then, for all non-zero a and b in Fan,

Ap(a,b) = Ap(1,a"b) = Ap(ab*,1) .

Most notably, all non-zero component functions Fy, of F have the same (Boolean) absolute
indicator: M(F) = M(Fy) for all b € F. and M(F,) > 2"/2,

Proof. The fact that Ar(a,b) = Ar(1,a*b) has been proved for instance in [Ber+06,
Prop. 4]. The second equality comes from the fact that

b (2" + (@ +a)) =1- ((b’lvx)k+ (bibe;)d)

where b* only exists if ged(k, 2™ — 1) = 1. Tt follows that it is enough to compute only one
column of the ACT, as the remaining ones are just permutations of each other. In other
words, all Boolean functions Fy, b # 0, have the same absolute indicator. O

4.3 Case of APN functions

In the specific case of APN functions, we can also exhibit a stronger condition than
Proposition 4 on the lowest possible absolute indicator.

Proposition 6 (Lowest possible indicator for APN functions). Let n be a positive integer.
If there exists an APN function from FY to FY with absolute indicator M, then there exists
a balanced Boolean function of n variables with linearity M.

Proof. If F' is APN, then dr(a,b) € {0,2} for all a,b, a # 0. It follows that, for each
nonzero a, we can define a Boolean function g, of n variables such that

0 if §p(a,b) =0
9a(b) = . _
1 ifép(a,b)=2.



Anne Canteaut, Lukas Kolsch and Friedrich Wiemer 11

Equivalently,
6p(a,b) =1 — (=1)9a®)

Obviously, all g, are balanced. Moreover, we deduce from Eq. (3) that, for all nonzero a, b,

Ap(a,b) = Z (=1)26p(a,v)

veFY
=3 (1= (== )
veFY
== 3 e =W, )
vEF?D

where W, (b) denotes the value of the Walsh transform of g, at point b. This implies that
max |Ar(a,b)| = £(ga)

The result then directly follows. O

To our best knowledge, the smallest known linearity for a balanced Boolean function
is obtained by Dobbertin’s recursive construction [Dob95]. For instance, for n = 9, the
smallest possible linearity for a balanced Boolean function is known to belong to the
set {24,28,32}, which implies that exhibiting an APN function over F§ with absolute
indicator 24 would determine the smallest linearity for such a function.

It is worth noticing that the proof of the previous proposition shows that the knowledge
of g directly determines the ACT. This explains why the absolute indicator of the inverse
mapping over Faon, n 0odd, is derived from its linearity as proved in [Cha+07, Theorem 1]
and detailed in the following example.

Example 1 (ACT of the inverse mapping, n odd). For any a € F},., the Boolean function
ga Which characterizes the support of Row a in the DDT of the inverse mapping F : z + 2~}
coincides with (1 + F,-1) except on two points:

1+tr(a= o7t ifb¢ {0,a7'}
ga() =240 ifb=0

1 ifb=a""!

This comes from the fact that the equation
(x+a)t+27 =0

for b # a~! can be rewritten as

x4+ (x+a)=b(z+a)x
or equivalently when b # 0, by setting y = a 'z,

Cty=a b,

It follows that this equation has two solutions if and only if tr(a=*b=1) = 0. From the
proof of the previous proposition, we deduce

Ap(a,b) = -W,, (b)
= Wr_, () + 2(1 - (71)“@‘”’)) ,

where the additional term corresponds to the value of the sum defining the Walsh transform
Wr. _, (b) at points 0 and ™"
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It can be observed that Propositions 3 and 6 are actually more general and apply as
soon as the DDT of F' contains one row composed of Os and 2s only.

Proposition 7. Let F be a function from F3 into F3. Then, for any fized a € F5 \ {0},
the following properties are equivalent:

@) Y Ahab)=2*

beFg\{0}
(i) For allb e Fy, dp(a,b) € {0,2}.

Moreover, if these properties hold, then there exists a balanced Boolean function g : F§ — Fo
such that
L(g) = max |Ap(a,b)|.
(0) =, max [ Ar(a.b)
Let us now take a closer look at the absolute indicator of some specific APN permuta-
tions.

4.4 Case of APN permutations

As previously observed, the ACT and the absolute indicator are not invariant under
inversion. Then, while the absolute indicator of a quadratic permutation is trivially equal
to 2™, computing the absolute indicator of the inverse of a quadratic permutation is not
obvious at all. Indeed, the absolute indicator depends on the considered function, as we
will see next.

Inverses of quadratic APN permutations, n odd. For instance, for n = 9, the inverses
of the two APN Gold permutations 23 and 2°, namely 234! and 24%?, do not have the
same absolute indicator: the absolute indicator of 234! is 56 while the absolute indicator
of 2499 is 72.

Nevertheless, the specificity of quadratic APN permutations for n odd is that they are
crooked [BF98], which means that the image sets of their derivatives A,(F), a # 0, is the
complement of a hyperplane (r(a))™". Moreover, it is known (see e.g. [CC03, Proof of
Lemma 5]) that all these hyperplanes are distinct, which implies that 7 is a permutation
of F% when we add to the definition that 7(0) = 0. Then, the following proposition shows
that, for any quadratic APN permutation F, the ACT of F~! corresponds to the Walsh
transform of .

Proposition 8. Let n be an odd integer and F' be a quadratic APN permutation over FY.
Let further m be the permutation of F5 defined by

Im (Ay(F)) = F§ \ (m(a))™, when a # 0 ,
and w(0) = 0. Then, for any nonzero a and b in Fy, we have
Ap-1(a,b) = =Wr(b,a) .
It follows that

n+1

M(F) =27

with equality if and only if ™ is an AB permutation.

Proof. Let a and b be two nonzero elements in F4. Then, from Relation (3), we deduce

Ap-1(a,b) = > (=1)""0p-1(a,u)

u€Fy

= 3 (~1)""5r(u,a) .

u€Fy
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By definition of 7, we have that, for any nonzero u,

2 ifv-w(u)=1
5F(u’v):{o if v m(u) =0

It then follows that
Sp(u,v) =1 — (=1)7W

where this equality holds for all (u,v) # (0,0) by using that 7(0) = 0. Therefore, we have,
for any nonzero a and b,

Ap-r(a,b) = 37 (=1 (1= (~1)700) = —Wi(b,a) .

u€Fy

As a consequence, M(F *1) is equal to the linearity of m, which is at least 2"+ with
equality for AB functions. O

It is worth noticing that the previous proposition is valid, not only for quadratic APN
permutations, but for all crooked permutations, which are a particular case of AB functions.
However, the existence of crooked permutations of degree strictly higher than 2 is an open
question.

As a corollary of the previous proposition, we get some more precise information on
the autocorrelation spectrum of the quadratic power permutations corresponding to Gold
exponents, i.e. F(z) = 22 t1. Recall that 22+ and 22" "*! are affine equivalent since
the two exponents belong to the same cyclotomic coset modulo (2™ — 1). This implies that
their inverses share the same autocorrelation spectrum.

Corollary 6. Let n > 5 be an odd integer and 0 < i < n with ged(i,n) = 1. Let F be the

APN power permutation over Fan defined by F(x) = g2+, Then, for any nonzero a and
b in F3, we have

AF_l(a‘v b) = _Wﬂ—(b, a) where F(.’E) = x2n_2i_2 .

Most notably, the absolute indicator of F~! is strictly higher than 273,

Proof. The result comes from the form of the function 7 which defines the DDT of 22'+1.
Indeed, for any nonzero a € Fon, the number dz(a,b) of solutions of

(z +a)2i+1 +$2i+1 —p
is equal to the number of solutions of
22 4 a=1+ba @+
which is nonzero if and only if tr(ba*(ziﬂ)) = 1. It follows that

m(z) = 22" ~¥ 2

The autocorrelation spectrum of F~! then follows from Proposition 8. Moreover, this
function 7 cannot be AB since AB functions have algebraic degree at most ”7“ [Car+98,
Theorem 1], while 7 has degree (n — 2). It follows that 7 cannot be AB when n > 5.
Therefore, the absolute indicator of the inverse of F~1, i.e. the linearity of , is strictly
higher than 23 O

In the specific case n = 5, it can easily be checked that the inverses of all Gold APN
permutations F(x) = 22 +! have absolute indicator 8.
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Cubic APN permutations. In the case of APN permutations of degree 3, we have a more
precise result.

Proposition 9 (Cubic APN permutations). Let F' : F} — FJ be APN with degree 3.
Then we have that for non-zero a and X

r(a, M) € {0,255

where d(a, A) = dAim LS(A,(F)\)) = dim {b | Ay, (F)) = ¢} and ¢ € Fy is constant. More-
over, Ap(a,\) = 0 if and only if Ay(F)) is balanced, which equivalently means that it has
a all-one derivative.

From this proposition, if n is odd, we obviously have that M(F) > 2"% with equality
if and only if, for any nonzero a, A € F%, either LS(A,(F))) = {0,a} or there exists b
such that Ap(A4(Fy)) = 1. Moreover, if F is APN and M(F) = 2"3" | it follows from
Proposition 3 that the number of nonzero A such that LS(A,(Fy)) = {0,a} is exactly
on—t,

Additionally, an upper bound on the absolute indicator can be established for two
cubic APN permutations, namely the first Kasami power function and the Welch function.
We denote the Kasami power functions K; and the Welch power function W by

Ki : an — an
) ) W : ]FQn — ]FQn
3i i
K; @z gD/ and (n_1)/2
W - 2 +3
i_oi A .
_ .T4 —2"'41

Proposition 10 ([Car08], Lemma 1). The absolute indicator for W on Fan is bounded

from above by
n+5
2

M(W) <2

As long as the (regular) degree of the derivatives is small compared to the field size,
the Weil bound gives a nontrivial upper bound for the absolute indicator of a vectorial
Boolean function. This is particularly interesting for the Kasami functions as the Kasami
exponents do not depend on the field size (contrary to for example the Welch exponent).

Proposition 11. The absolute indicator of K; on Fon is bounded from above by

n

M(K;) < (4" =21 x 22,

In particular,
n+5

M(KQ) SQ 2,

Proof. Note that the two exponents with the highest degree of any derivative of K; are
4% — 2% and 4° — 2¢T1 + 1. The first exponent is even, so it can be reduced using the relation
tr(y?) = tr(y). The result then follows from the Weil bound. Combining the bound with
Proposition 9 yields the bound on K. O

In the two cases of W and K5, we deduce that the absolute indicator belongs to

{2#,2#72%5 }. We actually conjecture the following.

n+3

Conjecture 1. Let n > 9 be odd. Then M(K3) > 2" and MW) =272 .

n+1

Conjecture 2. If n odd and n # 0 mod 3, then M(K;) =272 .
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Some other results on the autocorrelations of the Boolean functions tr(z*) are known in
the literature, which can be trivially extended to the vectorial functions z* if ged(k,n) = 1,
see [GK04, Theorem 5|, [Car08] and [SW09, Lemmas 2 and 3]. In the case n = 6r and
k = 227427 41, the power monomial 2* is not a permutation, but results for all component
functions of z* were derived in [Can+08]. We summarize the results in the following
proposition.

Proposition 12. Let F(x) = z¥ be a function on Fon.

n+1 n+3

1. If nis odd and k = 2" + 3 with r = 2 then M(F) € {272 ,27% }.

2. If n is odd and k is the i-th Kasami exponent, where 3i = £1 (mod n), then
n+1

M(F)=2"=".

3m

3. If n=2m and k = 2™+ + 3 then M(F) < 273 1,

m+1

4. If n =2m, m odd and k = 2™ + 272

+1 then M(F) < 2% +1,
5. Ifn==6r and k = 2%" + 2" + 1 then M(F) = 2°".

We now provide a different proof of the second case in the previous proposition that
additionally relates the autocorrelation table of K; with the Walsh spectrum of a Gold
function.

Proposition 13 ([Dil99]). Let n odd, not divisible by 3 and 3i = +1 (mod n). Set
f = tr(a®) where k = 4* — 21 4+ 1 is the i-th Kasami exponent. Then

supp(Wy) = {a

tr(aZkH) = 1} .
Proposition 14. Let n odd, not divisible by 3 and 3i = £1 (mod n). Then

Ao == 3 (e

u€EFyn

where k = 4° — 2 + 1 is the i-th Kasami exponent and 1/k denotes the inverse of k in

n+1

Zon_1. In particular, M(K;) =272 .

Proof. 1t is well-known that, if F' is a power permutation over a finite field, its Walsh
spectrum is uniquely defined by the entries Wg(1,b). Indeed, for b # 0,

Wi, (u,b) = Z (—1)tr(bfck+ux)

TEFsn

— Z (_1)tr(xk+ub*1/kx) :WKi(17Ub_1/k) c {O,iQnTH},

x€EFyn

where the last fact follows because the Kasami function is AB. Then, by Eq. (2) and
Proposition 13, for any nonzero a and b,

Ag(a,b) =277 37 (1" IWE (u,0) =277 Y (=1 IWE (1, ub”E)

u€lFon u€Fon

—9n Z (71)tr(au)2n+1 -9 Z(il)tr(au) , (6)

ub—l/’“€supp(Wtr(Ik)) ueB
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where B = {u € Fon

0= Z tr(au) + Z tr(au)

u¢ B ueB

=D (-ptient (up™ /)2y 2(71)“@%(%-“’“)2’”1)

u¢ B u€B

tr((ub=1/k)2"+1) = 1}. We have

SO

ST (e T g § gy T g § gyt

u€Fyn ueB ueB
Plugging this into Eq. (6), we obtain
.AK.(G b) _ Z (_1)tr(au+(ub_1/k)2k+l) — Z (_1)tr(ab1/ku+u2k+1) )
u€lFon u€Fon

It can be easily checked that the equation also holds for b = 0. Observe that ged(k,n) =1,
so the Gold function is AB and

O

Note that the cases 3i = 1 (mod n) and 3i = —1 (mod n) are essentially only one case
because the i-th and (n — i)-th Kasami exponents belong to the same cyclotomic coset.
Indeed, (4»=%) — 27~ 4 1)2% = 4" — 2/ + 1 (mod 2" — 1).

Note. Li et al. [Li+19] independently made similar observations on the DLCT.
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