
A critique of game-based definitions of
receipt-freeness for voting

Ashley Fraser1, Elizabeth A. Quaglia1, and Ben Smyth2

1 Information Security Group, Royal Holloway, University of London, UK
{Ashley.Fraser.2016, Elizabeth.Quaglia}@rhul.ac.uk

2 Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg, Luxembourg

research@bensmyth.com

Abstract. We analyse three game-based definitions of receipt-freeness;
uncovering soundness issues with two of the definitions and completeness
issues with all three. Hence, two of the definitions are too weak, i.e.,
satisfiable by voting schemes that are not intuitively receipt-free. More
precisely, those schemes need not even satisfy ballot secrecy. Consequently,
the definitions are satisfiable by schemes that reveal how voters’ vote.
Moreover, we find that each definition is limited in scope. Beyond sound-
ness and completeness issues, we show that each definition captures a
different attacker model and we examine some of those differences.

Keywords: E-voting, receipt-freeness, privacy, game-based definitions,
computational security.

1 Introduction

Electronic voting, or e-voting, is the process of voting with the use of electronic
aids at some stage in the voting process. In the context of this paper, we use the
term e-voting to refer to remote electronic voting. That is, e-voting that does not
require paper at any point in the process and can be accomplished anywhere in
the world. E-voting is gaining popularity, both for public office elections and other
voting scenarios. In particular, Australia has used iVote [20] for state general
elections in New South Wales since 2011 and Estonia has implemented Internet
voting in municipal elections since 2005 and in parliamentary elections since
2007 [38]. Moreover, Helios [2, 18] has been used by the International Association
for Cryptologic Research (IACR) to elect board members since 2010 [19]. It
has also been used to elect the president of Université Catholique de Louvain,
Belgium, and Princeton’s student government [17].

E-voting has created new opportunities, including the introduction of conve-
nience to the voting process and the potential to automate the process of tallying
elections when compared to hand-counting ballots in a traditional paper-based
election. It also has the potential to produce verifiable elections, one of the main

2 Ashley Fraser, Elizabeth A. Quaglia, and Ben Smyth

security goals of e-voting.1 E-voting also creates new challenges. In particular,
voter privacy is a concern. This is not new or unique to electronic voting but is
particularly true for schemes that do not rely on a physical voting booth because
the voter cannot rely upon the privacy afforded by the booth. A step towards
overcoming the challenge of ensuring voter privacy is to provide rigorous privacy
definitions for e-voting schemes, and then formally prove that a scheme satisfies
a given definition.

Privacy for e-voting is often presented as a hierarchy of security properties [14]
as follows, and there exist definitions of each property in the literature.

– Ballot secrecy : a voter’s vote remains secret throughout the election, except
when the result of the election reveals the vote, or when partial information
about the vote can be deduced from the result.

– Receipt-freeness: a voter cannot prove their vote to anyone.
– Coercion-resistance: a voter can cast their vote as they intended, even if they

are under the control of an attacker for some time during the election.

The relationship between these privacy properties is often considered to be lin-
ear [14]. In particular, receipt-freeness strengthens ballot secrecy with additional
protection against vote buying, which ensures potential attackers have no in-
centive to buy votes, since a voter cannot prove how they voted, and therefore
cannot prove that their vote was truly ‘bought.’ Coercion-resistance strengthens
receipt-freeness by protecting against randomization, abstention and simulation
attacks [23]. Küesters et al. challenge this hierarchy, showing that increasing the
level of ballot secrecy can lead to a decrease in the level of coercion-resistance [25].

Formal ballot secrecy definitions were surveyed in [6, 32], where Bernhard et
al. and Smyth compared existing ballot secrecy definitions from the literature
and presented their own definitions. Similarly, definitions of coercion resistance
were surveyed in [35]. Receipt-freeness, on the other hand, has not been surveyed,
which motivates this work.

The earliest definitions of receipt-freeness are informal, with the first definition
credited to Benaloh and Tuinstra in 1994 [5]. A general shift towards formal
definitions occurred in response to concerns that voting schemes may appear to
be receipt-free when they are not [31]. The early formal definitions, with the
exception of Moran and Naor’s simulation-based definition [30], are formulated
in the symbolic model, for example, [3, 9, 15, 16, 21, 22]. These definitions use a
variety of logical languages to capture the intuition of receipt-freeness. In fact,
these definitions helped to shape the intuition and determine how to define
receipt-freeness. However, more recently, there has been a movement towards
game-based definitions of receipt-freeness, possibly driven by the simplicity of
proof techniques in the model. Given that this is a young area of research and,
to the best of our knowledge, there is no examination that tests the rigour of

1 Verifiability is typically defined as individual verifiability (any voter can check that
their ballot is counted), universal verifiability (anyone can check that the published
tally is correct) and eligibility verifiability (only eligible voters voted). The interested
reader can consult [12, 34, 37] for a discussion on the subject of verifiability.

A critique of game-based definitions of receipt-freeness for voting 3

these game-based definitions, we revisit existing game-based definitions in the
literature and perform a critical analysis.

1.1 Our contributions

We analyse three game-based definitions of receipt-freeness from the literature:
a receipt-freeness definition by Kiayias et al., which we call KZZ [24] (§3); one
by Chaidos et al., which we call CCFG [10] (§4); and one by Bernhard et al.
for schemes that use deniable vote updating, a process that allows a voter to
change their vote without detection, which we call DKV [7, 8] (§5). We cast each
definition into the syntax introduced in Definition 1 to facilitate analysis and
comparison of definitions.

We uncover soundness issues with KZZ and CCFG, and find all three definitions
to be incomplete. The soundness issue in KZZ arises because the definition is
satisfied by schemes that reveal how voter’s vote when not all voters vote (§3.1)
and an issue arises in CCFG because Chaidos et al. do not consider strong
consistency (§4.1), a property defined to accompany ballot secrecy definition
BPRIV [6], upon which CCFG is based, and is used to detect some attacks against
ballot secrecy. The definitions are incomplete because some schemes are out of
scope. Schemes that count votes in some particular ways and others that allow
voters to submit multiple ballots are out of scope of KZZ (§3.2). In particular,
we prove that neither KZZ nor CCFG is satisfiable by JCJ [23] (§3.2,4.2). Finally,
DKV limits the class of schemes it considers to those that use deniable vote
updating.

We discuss the attacker model adopted by each definition, showing that each
definition considers a different attacker model. We find that KZZ models a voter
that attempts to prove their vote to an attacker, without allowing the voter
to interact with the attacker before voting. In particular, the attacker cannot
provide instructions to the voter (§3.3). We demonstrate that the attacker model
in CCFG is much stronger, capturing an attacker with some control over the voter
(§4.3). We also comment that DKV does not model a voter who attempts to prove
their vote, but only asks whether an attacker can determine whether a voter has
updated their vote from the attacker’s choice or not. We discuss the consequences
of these differing attacker models, questioning whether each definition captures
the core intuition of receipt-freeness.

2 Preliminaries

Given an algorithm A, we let A(y1, . . . , yn; c) denote the output of A on inputs
y1, . . . , yn and coins c, and let A(y1, . . . , yn) denote A(y1, . . . , yn; c) for some coins
c chosen uniformly at random. Moreover, we let x←M denote assignment of M
to x.

An e-voting scheme typically consists of the following five phases. First (Setup),
the election administrator2 computes and publishes public parameters of the

2 For simplicity, we consider each entity to be a single individual but the role of any
individual can be distributed.

4 Ashley Fraser, Elizabeth A. Quaglia, and Ben Smyth

scheme. Secondly (Register), the administrator provides eligible voters with a
public and private credential and adds the public credential to a list L.3 Thirdly
(Vote), each voter selects their vote v. This vote is stored as a ballot b on the
ballot box BB. Fourthly (Tally), a tallier computes and publishes the result.
Finally (Verification), voters verify that their ballot is on the ballot box and
observers verify that the tally is correct. We now formally introduce the syntax
for an e-voting scheme, adapted from [6, 10], that follows this structure.

Definition 1 (E-voting scheme). An e-voting scheme Γ is a tuple of prob-
abilistic polynomial-time algorithms (Setup,Register,Vote,Append,Tally,Verify)
relative to a result function f : V→ R where V is the set of all possible votes and
R is the result space such that:

Setup(1λ) On input security parameter 1λ, algorithm Setup outputs an election
key pair pk and sk, where pk is the public key and sk is the private key.

Register(1λ) On input security parameter 1λ, algorithm Register outputs a pub-
lic/private credential pair upk and usk and updates the list L with upk (i.e.
L ← L ∪ {upk}).

Vote(v, usk, pk, 1λ) On input vote v, private credential usk, public key pk and
security parameter 1λ, algorithm Vote outputs a ballot b.

Append(BB, b) On input ballot box BB and ballot b, algorithm Append updates
BB to include the ballot b and outputs the updated ballot box.

Tally(BB,L, sk, 1λ) On input ballot box BB, list L, private key sk and security
parameter 1λ, algorithm Tally computes the election outcome r, and outputs
r with a tallying proof ρ that the tally is correct.

Verify(BB, r, ρ, pk, 1λ) On input ballot box BB, election outcome r, proof ρ, public
key pk and security parameter 1λ, any interested party can check that the
outcome of the election was computed correctly. The output of algorithm Verify
is 1 if the election result verifies and 0 otherwise.

E-voting schemes must satisfy correctness: let f be a result function,4 mb be
the maximum number of ballots and mc be the maximum number of candi-
dates. We say that Γ satisfies correctness with respect to f , mb and mc if there
exists a negligible function negl such that, for all security parameters λ and
choices v1, . . . , vnv

∈ V where nv is an integer such that nv ≤ mb ∧ |V| ≤
mc, Pr

[
(pk, sk) ← Setup(1λ); for i = 1, . . . , nv:

{
(upki, uski) ← Register(1λ);

bi ← Vote(vi, uski, pk, 1
λ); BB ← Append(BB, bi)

}
; L ← {upk1, . . . , upknv};

(r, ρ)← Tally(BB,L, sk, 1λ): r = f(v1, . . . , vnv
)
]
> 1− negl(λ).

Our correctness definition uses ideas from the correctness definitions in [6, 37] and
considers an experiment in which the outcome is calculated in two ways: 1) the
outcome is calculated in the normal way by running Tally, and 2) the outcome is
computed by applying a result function f to all the votes input to Vote. Those
two ways must compute equivalent outcomes to satisfy the correctness property.

3 Not all e-voting schemes register voters, for example, Helios.
4 The definition of correctness requires f to be correct, i.e., f must output the election

outcome with respect to v1, . . . , vnv .

A critique of game-based definitions of receipt-freeness for voting 5

3 Receipt-freeness by Kiayias, Zacharias & Zhang (KZZ)

In this section, we analyse the receipt-freeness definition by Kiayias et al. [24],
which we call KZZ. The game captures the following idea: the attacker should be
unable to distinguish between a voter who submits a vote and either proves that
they submitted that vote, or attempts to prove that they submitted a different
vote.

Definition 2 (KZZ). Let Γ = (Setup,Register,Vote,Append,Tally,Verify) be an
e-voting scheme, A be an adversary, S be a simulator,5 λ be a security parameter,
nv, nc and t be positive integers and β be a bit. Let ExpKZZ,βA,S,Γ (λ, nv, nc, t) be the
game that proceed as follows:

1. The challenger initializes BB as an empty list and inputs 1λ, nv, nc to adver-
sary A, which outputs a set of eligible voters I = {id1, . . . , idnv

} and a set
of possible vote choices V such that |V| = nc.

2. The challenger computes Setup(1λ) to produce the key pair (pk, sk) and,
for each i ∈ {1, . . . , nv}, computes Register(1λ) to produce a credential pair
(upk, usk). Public credentials are added to the list L, hence,
L = {upk1, . . . , upknv}. The challenger inputs pk and L to A.

3. For each i ∈ {1, . . . , nv}, A decides whether idi is corrupt.
– If so, the challenger inputs uski to A, which outputs a ballot b.
– Otherwise (idi is not corrupt), A outputs votes v0, v1 ∈ V to the chal-

lenger, the challenger computes ballot b ← Vote(vβ , uski, pk, 1
λ), and the

challenger returns the ballot to A, along with either the view view of the
voter during Vote when β = 0 or S(view) when β = 1.6

Finally, the challenger computes BB ← Append(BB, b).
4. The challenger computes (r, ρ) ← Tally(BB,L, sk, 1λ) and inputs r, ρ and
BB to A, which outputs a bit β′.

5. The game outputs 1 if the following conditions are satisfied: (i) β′ = β, (ii)
the number of corrupted voters is bounded by t, and (iii) f(〈v0〉idi∈Vh

) =
f(〈v1〉idi∈Vh

), i.e., with respect to uncorrupted voters, denoted by the set Vh,
the outcome of the election computed via the result function f is the same,
regardless of whether β = 0 or β = 1.

An e-voting scheme Γ satisfies KZZ for nv voters, nc candidates and at most t
corrupted voters if there exists a probabilistic polynomial-time simulator S and a
negligible function negl such that, for all probabilistic polynomial-time adversaries
A and all security parameters λ, we have∣∣∣Pr

[
ExpKZZ,0A,S,Γ (λ, nc, nv, t) = 1

]
− Pr

[
ExpKZZ,1A,S,Γ (λ, nc, nv, t) = 1

]∣∣∣ ≤ negl(λ) .

We demonstrate a soundness issue with KZZ, namely, that KZZ guarantees receipt-
freeness only if all voters vote (§3.1). Moreover, KZZ is incomplete because there
exists schemes that are receipt-free but do no satisfy KZZ (§3.2).

5 Simulator S models a voter providing fake evidence of a vote they did not submit.
6 view is defined as the “internal state of the voter” [24]. It refers to any information

that the voter inputs to the voting client to produce a ballot, including, but not
necessarily limited to, private credentials and the coins input to algorithm Vote.

6 Ashley Fraser, Elizabeth A. Quaglia, and Ben Smyth

3.1 Soundness issue

KZZ requires that a single ballot is submitted to the ballot box on behalf of each
voter. As a result, KZZ declares schemes as receipt-free that reveal how voters
vote, when not all voters vote. To illustrate this, consider an e-voting scheme for
at most nv voters. If less than nv voters vote and, hence, |BB| ≤ n− 1, define
algorithm Tally to output an election outcome r = {(id1, v1), . . . (idi, vi)} where
i ≤ nv − 1, i.e., it lists each voter that voted and the vote submitted by that
voter. Clearly, this scheme is not receipt-free. Indeed, the scheme does not satisfy
ballot-secrecy because the result announces the link between voter and vote.
However, in the KZZ game, a ballot must be submitted for every voter, so this
privacy leakage will not be identified. Therefore, the scheme may satisfy KZZ
whilst not being receipt-free. Consequently, a proven secure scheme may leak
every voter’s vote when a real-world deployment cannot ensure that all voter’s
vote. Hence, there may exist schemes that are proven secure but, in practice, do
not offer any degree of privacy for voters.

3.2 Completeness issues

Schemes with multiple ballots are out of scope: KZZ requires the submis-
sion of a single ballot on behalf of each voter. Yet, some e-voting schemes require
the submission of more than one ballot to achieve receipt-freeness. For instance,
e-voting schemes may use fake private credentials (that are indistinguishable
from real private credentials). Such schemes require voters to cast dummy ballots
using fake credentials and prove the contents of dummy ballots (rather than real
ballots) to an attacker. A voter can then cast a ballot for a different vote using
their real credential. In these schemes it is necessary that a voter submits two
ballots in order to submit a vote but prove that they submitted a different vote.
JCJ [23] is an e-voting scheme that achieves receipt-freeness this way, hence, the
scheme cannot satisfy KZZ.

Proposition 1. JCJ does not satisfy KZZ.

A proof of Proposition 1 appears in Appendix A.

KZZ limits the set of result functions for which a scheme can be de-
clared receipt-free: We demonstrate this limitation, which exists as a conse-
quence of the condition f(〈v0〉idi∈Vh

) = f(〈v1〉idi∈Vh
), by considering an informal

argument used by Bernhard et al. in [6] to show that ballot-secrecy definition
PRIV [4] has the same limitation. Consider an e-voting scheme with two pos-
sible candidate choices, namely V = {0, 1}, for which f outputs the winning
candidate, or ‘0’ in the event of a draw. An adversary against the KZZ game
can submit a ballot for ‘1’ on behalf of a corrupted voter and can submit votes
on behalf of all other voters such that 〈v0〉idi∈Vh

has exactly half entries equal
to ‘0’ and half equal to ‘1’, and 〈v1〉idi∈Vh

has all entries equal to ‘0’. Then,
f(〈v0〉idi∈Vh

) = f(〈v1〉idi∈Vh
) = 0, but the election outcome r = 0 (if β = 0) or

1 (if β = 1). Thus, the adversary can output β′ = β and the scheme does not
satisfy KZZ.

A critique of game-based definitions of receipt-freeness for voting 7

3.3 Further discussion

KZZ models attack scenarios in which a voter provides evidence of their vote
(including their private credential) to the attacker only after voting, thereby
assuming that honest voters do not reveal their private credentials until they
have voted. We illustrate that DEMOS, an e-voting scheme that satisfies KZZ [24,
Theorem 5], is no longer receipt-free if an attacker can compel a voter to reveal
their credentials before voting, that is, when the assumption does not hold.

DEMOS provides each eligible voter with a voting card (which is a private
credential in our terminology). This voting card consists of two parts: the first
part contains a list of candidates and a unique vote code associated with each
candidate. This is repeated on the second part of the voting card, although the
vote codes associated with each candidate are different. To cast a ballot, each
voter selects a part of their voting card (part ‘0’ or part ‘1’, which we call the
coins, using our terminology) and inputs the selected part and the vote code
listed next to their chosen candidate to the voting client. The part of the ballot
and the vote code constitute the voter’s ballot. The ballot box is updated with
the ballot, i.e., algorithm Append outputs BB ‖ b. Intuitively, DEMOS satisfies
KZZ because voters can swap vote codes on the voting card, and can make the
vote code on their ballot correspond to any candidate they wish. Therefore, the
voter can convince the attacker that the submitted vote code corresponds to the
attacker’s choice of candidate.

However, consider the following scenario: an attacker wants a voter to vote for
candidate A but the voter wants to vote for candidate B. The attacker requests
to see the voter’s voting card before voting. Only after seeing the voting card, the
attacker requests that the voter cast a ballot for candidate A. In this scenario,
the voter may not have switched vote codes for candidates A and B. Thus, the
voter cannot vote for candidate A and convince the attacker that they voted for
candidate B. In contrast, if an attacker does not see the voting card until after
voting, the voter can switch the vote codes for candidates A and B. Therefore,
DEMOS provides a guarantee of receipt-freeness only if the voting card is revealed
after voting.

That being said, KZZ does appear to capture the correct intuition of receipt-
freeness. As noted in §1, receipt-freeness aims to prevent a voter from proving
their vote and KZZ captures the scenario in which the voter votes and then
attempts to prove their vote. The scenario above describes an attacker who
interacts with a voter before voting, which is outside the scope of KZZ. The
question is: should this attack scenario be captured by receipt-freeness, or does it
fall under the remit of coercion-resistance? We do not address this in our informal
definition of receipt-freeness (§1) because this is a grey area in the literature. For
instance, Delaune et al. define receipt-freeness as the property that “a voter does
not gain any information (a receipt) which can be used to prove to a coercer
that she voted in a certain way” and coercion-resistance as “a voter cannot
cooperate with a coercer to prove to him that she voted in a certain way” [15].
This suggests that providing information to an attacker before voting is captured
by coercion-resistance, not receipt-freeness. In fact, Delaune et al.’s definition of

8 Ashley Fraser, Elizabeth A. Quaglia, and Ben Smyth

receipt-freeness implies that a voter uses information to prove their vote after
voting, whereas providing information to an attacker before voting is considered
cooperation with an attacker. It appears that KZZ captures this intuition. On the
other hand, some authors take a different approach. We will discuss a different
approach that leads to an entirely different conclusion in §4. For now, we note
that establishing a boundary between receipt-freeness and coercion-resistance is
an open problem.

4 Receipt-freeness by Chaidos et al. (CCFG)

In this section, we consider a definition of receipt-freeness by Chaidos et al. [10],
which we call CCFG. Chaidos et al. consider ballot boxes that contain ballots
validated by an algorithm Valid and consider ballot boxes as private, introducing
an algorithm Publish that outputs a public view of a ballot box, which we call
the bulletin board. Formally, Chaidos et al. extend the definition of an e-voting
scheme (Definition 1) to include algorithms Valid and Publish such that:

Valid(BB, b) On input ballot box BB and a ballot b, algorithm Valid outputs >,
if the ballot is valid, or ⊥ otherwise.

Publish(BB) On input ballot box BB, algorithm Publish outputs bulletin board
PBB.

Furthermore, algorithm Verify is redefined to take as input a bulletin board PBB,
rather than a ballot box BB. All other aspects of Verify remain the same.7

In this context, Chaidos et al. define CCFG as an extension of the ballot
secrecy game BPRIV by Bernhard et al. [6]. CCFG captures the idea that the
attacker should be unable to determine whether, throughout the game, they are
viewing a real or fake election, when the outcome is always computed for the real
election. As such, CCFG models two ballot boxes, BB0 and BB1, and, respectively,
two bulletin boards, PBB0 and PBB1. The adversary must determine whether
they are viewing PBB0 or PBB1, when the outcome is always computed over
the contents of BB0.

CCFG relies on algorithms SimSetup and SimProof, which facilitate the ability
to simulate the tallying proof ρ such that the outcome computed over the contents
of BB0 appears to be computed over the contents of BB1, when β = 1. Algorithms
SimSetup and SimProof are defined as follows:

SimSetup(1λ) On input security parameter 1λ, algorithm SimSetup outputs an
election key pair pk and sk and auxiliary information aux, which is used to
output a simulated proof during the tally phase of the election.

SimProof(BB, r, aux) On input ballot box BB, election outcome r and auxiliary
information aux, algorithm SimProof outputs a proof ρ that r is the outcome
of an election computed over the contents of BB.

7 In this section, we use the term e-voting scheme to refer to Definition 1 plus algorithms
Valid and Publish, unless stated otherwise.

A critique of game-based definitions of receipt-freeness for voting 9

Using those algorithms, CCFG is formalized as follows:

Definition 3 (CCFG). Let Γ = (Setup,Register,Vote,Valid,Append,Tally,
Publish,Verify) be an e-voting scheme, A be an adversary, λ be a security param-

eter and β be a bit. Let ExpCCFG,βA,Γ (λ) be the game that proceeds as follows:8 the
challenger initializes BB0 and BB1 as empty lists and Vr and Vc as empty sets.
Adversary A can then query the oracles defined in Figure 1, under the constraint
that Osetup must be queried before any other oracles and Otally appears only as
the final oracle call. The adversary terminates by outputting a bit β′. The game
outputs 1 if β′ = β.

An e-voting scheme Γ satisfies CCFG if there exists algorithms SimSetup and
SimProof and a negligible function negl such that, for all probabilistic polynomial-
time adversaries A and all security parameters λ, we have∣∣∣Pr

[
ExpCCFG,0A,Γ (λ) = 1

]
− Pr

[
ExpCCFG,1A,Γ (λ) = 1

]∣∣∣ ≤ negl(λ) .

We show that CCFG is unsound as it overlooks the needs for strong consistency
(§4.1) and is incomplete, limiting the class of schemes that can be declared
receipt-free (§4.2).

4.1 Soundness issue

A property called strong consistency is introduced in [6] to accompany BPRIV.
Strong consistency requires that the outcome output by Tally is consistent with
the application of result function f to the votes and is necessary to detect tally
policies that may lead to an attack against ballot secrecy. Therefore, as noted in
[6, Section IV.D], an e-voting scheme must satisfy BPRIV and strong consistency
to achieve ballot secrecy. However, Chaidos et al. do not consider this property
in [10], which results in an unsound definition of receipt-freeness. In fact, there
exists schemes satisfying CCFG that are vulnerable to attacks that violate ballot
secrecy. We briefly recall an example in [6, Section IV.D], that illustrates this:
define an e-voting scheme for two candidates (say, A and B) that outputs a
multiset of the submitted votes as the election outcome. Suppose this scheme
satisfies CCFG. Now, define a modified scheme such that, if the first voter votes
for candidate A, this vote is removed from the election outcome. An adversary
against CCFG cannot distinguish games ExpCCFG,0A,Γ (λ) and ExpCCFG,1A,Γ (λ), where Γ
is the modified scheme, because the tally is always computed over the contents
of BB0 and so the election outcome will be the same in both games. However,
through removal of the first vote, the tally for this modified scheme allows the
adversary to determine whether the first vote is for candidate A or B. Therefore,
the modified scheme reveals how the first voter voted. We refer the reader to [6,
Section IV.D] for a full details of this argument. Unfortunately, CCFG cannot
simply adopt the original definition of strong consistency by Bernhard et al.,
because it is defined over different syntax, in particular, the original definition
does not consider consider algorithm Append. Adapting the original definition to
consider this algorithm is a possible direction for future work.

8 We omit SimSetup and SimProof as inputs to game ExpCCFG,βA,Γ (λ) for simplicity.

10 Ashley Fraser, Elizabeth A. Quaglia, and Ben Smyth

4.2 Completeness issue

We observe that CCFG is unsatisfiable by schemes for which Append(BB, b)
outputs BB ‖ b and Publish(BB) outputs BB. That is, Append(BB, b) ap-
pends ballot b to ballot box BB without processing the ballot in any way and
Publish(BB) outputs BB such that the ballot that appears on the public view
of BB is identical to the ballot submitted by the voter. Formally, we have the
following result.

Proposition 2. Let Γ = (Setup,Register,Vote,Valid,Append,Tally,Publish,
Verify) be an e-voting scheme for which Append(BB, b) outputs BB ‖ b and
Publish(BB) outputs BB. Then Γ does not satisfy CCFG.

Proof. We construct an adversary A against the CCFG game as follows. A queries
pk ← Osetup(), upk ← Oregister(id) and (upk, usk) ← Ocorrupt(id). Then, A
computes b0 ← Vote(v0, usk, pk, 1

λ) and b1 ← Vote(v1, usk, pk, 1
λ) and queries

Oreceipt(id, b0, b1), PBBβ ← Oboard() and (r, ρ) ← Otally(). It follows that
PBBβ contains the single entry b0 (if β = 0) or b1 (if β = 1). Therefore, A can

correctly distinguish ExpCCFG,0A,Γ (λ) and ExpCCFG,1A,Γ (λ) and outputs β′ = β. Thus,
the e-voting scheme Γ does not satisfy CCFG. ut

CCFG is unsatisfiable by these schemes because, in the CCFG game, the
adversary submits two ballots to Oreceipt. To satisfy CCFG, the adversary must
be unable to distinguish a bulletin board that contains ballot b0 and a bulletin
board that contains ballot b1, where the adversary queries Oreceipt(id, b0, b1)
in the CCFG game. This requires that ballots are modified in some way before
they are appended to BB0 and BB1, or before PBBβ is published. Otherwise,
the adversary can trivially distinguish as shown in the proof of Proposition 2.
Partly, CCFG excludes these schemes by design. Chaidos et al. acknowledge that
a scheme satisfies CCFG only if it achieves receipt-freeness without the voter
relying on some evasion strategy [10]. Generally, schemes that provide voters
with an evasion strategy, a procedure that the scheme provides to allow the voter
to evade coercion, do not rely on ballot modification but instead on the use of
an evasion strategy to achieve receipt-freeness. This means that schemes that
rely on evasion strategies to achieve receipt-freeness cannot satisfy CCFG despite
the fact that they are receipt-free. For example, JCJ relies on fake credentials,
a type of evasion strategy, to achieve receipt-freeness (§3.2). Thus, we have the
following corollary.

Corollary 1. JCJ does not satisfy CCFG.

The corollary follows from Proposition 2, since JCJ ballots are not modified
before they are appended to the ballot box and Publish(BB) outputs BB.

4.3 Further discussion

CCFG captures the scenario in which an honest voter constructs their ballot and
gives the attacker the coins used (or possibly uses coins provided by the attacker)

A critique of game-based definitions of receipt-freeness for voting 11

to construct their ballot. This allows the attacker to reconstruct the ballot
locally and then check whether the ballot appears on the bulletin board. CCFG
captures this scenario through the oracle Oreceipt, which allows the adversary to
construct ballots on behalf of voters and then submit these ballots to Oreceipt.
The adversary can then view PBBβ , and expects to see a ballot corresponding
to one of those submitted to Oreceipt.

Chaidos et al. take a very different approach to the intuition of receipt-freeness
than Kiayias et al. As mentioned in §3.3, Delaune et al. consider a voter that
cooperates with an attacker (e.g. by using coins provided by the attacker) to
fall outwith the scope of receipt-freeness. Moreover, Kiayias et al. exclude this
scenario from the definition of KZZ. However, Chaidos et al. consider this to
fall within the scope of receipt-freeness although, admittedly, they do refer to
CCFG as a definition of strong receipt-freeness. Therefore, we see that there is no
consensus over the boundary between receipt-freeness and coercion-resistance in
the literature and that definitions of receipt-freeness capture varying intuitions.

5 Receipt-freeness for deniable vote updating by
Bernhard, Kulyk & Volkamer (DKV)

In this section, we analyse a definition of receipt-freeness by Bernhard et al. [8,
7] for schemes that use deniable vote updating, which we call DKV. Bernhard et
al. construct a game-based definition of receipt-freeness for KTV-Helios [26], a
variant of the Helios e-voting scheme that uses deniable vote updating whereby a
voter casts a ballot, and then changes their vote, without an attacker detecting
the change. Deniable vote updating uses re-voting to allow the voter to change
their vote and an algorithm executed by an election administrator that posts
dummy ballots on behalf of voters in order to hide the fact that a voter may
cast more than one ballot for the purposes of deniable vote updating. This is the
definition of deniable vote updating for the KTV-Helios voting scheme as defined
in [8], but variations exist [1, 28, 29]. In [8, Section 4.1] it was recognized that
CCFG does not apply to KTV-Helios because deniable vote updating is a type of
evasion strategy and the strategy is required to achieve receipt-freeness. Therefore,
Bernhard et al. introduce a new receipt-freeness definition that modifies CCFG to
schemes that use deniable vote updating. We rely on the definition presented in
[7] (the technical report associated with the conference version of the paper [8]).

Bernhard et al. capture the following idea: the attacker should be unable
to distinguish a voter who submits a vote and a voter who submits the same
vote but then deniably updates their vote, where the adversarial advantage of
distinguishing is denoted δ. DKV adopts e-voting syntax (Definition 1) extended
with algorithm Valid (§4) and considers timestamps such that algorithm Vote is
redefined to take additional input of a timestamp t, indicating the time at which
a ballot is to be cast. DKV relies on algorithms SimSetup and SimProof (§4) and,
additionally, requires algorithms DenyUpdate and Obfuscate such that:

DenyUpdate(v0, v1, usk, tu, pk, 1
λ) On input votes v0, v1, private credential usk,

timestamp tu chosen uniformly at random from some probability distribution

12 Ashley Fraser, Elizabeth A. Quaglia, and Ben Smyth

P, public key pk and security parameter 1λ, algorithm DenyUpdate outputs
a ballot that updates a vote from vote v0 to vote v1 at timestamp tu.

Obfuscate(BB, id) On input ballot box BB and voter id, algorithm Obfuscate
casts dummy ballots for voter id to hide ballots cast by id in the event that
id deniably updates their vote, and outputs the updated ballot box.

Using those algorithms, DKV is formalized as follows:

Definition 4 (DKV). Let Γ = (Setup,Register,Vote,Valid,Append,Tally,Verify)
be an e-voting scheme with timestamps, A be an adversary, λ be a security
parameter and β be a bit. Let ExpDKV,β

A,Γ (λ) be the game that proceeds as fol-
lows: the challenger initializes BB0 and BB1 as empty lists. If β = 0 (resp.,
β = 1), the challenger computes Setup(1λ) to produce the keypair (pk, sk) (resp.,
computes SimSetup(1λ) to produce the keypair (pk, sk) and auxiliary informa-
tion aux) and, for each i ∈ {1, . . . , nv}, computes Register(1λ) to produce a
credential pair (upk, usk). Public credentials are added to the list L, namely,
L = {usk1, . . . , usknv}. The challenger inputs pk, L and BBβ9 to adversary A.
Adversary A can then query the oracles defined in Figure 2, under the constraint
that Oreceipt can be queried at most once and Otally appears only as the final
oracle call. The adversary terminates by outputting a bit β′. The game outputs 1
if β′ = β.

An e-voting scheme Γ satisfies DKV if there exists algorithms DenyUpdate,
Obfuscate, SimSetup and SimProof and a negligible function negl such that, for
all probabilistic polynomial-time adversaries A and all security parameters λ, we
have ∣∣∣Pr

[
ExpDKV,0

A,Γ (λ) = 1
]
− Pr

[
ExpDKV,1

A,Γ (λ) = 1
]
− δ

∣∣∣ ≤ negl(λ) .

We did not find any soundness issues with DKV. In particular, although DKV uses
the same framework as CCFG, DKV does not overlook the need for strong consis-
tency and defines strong consistency in their syntax in the technical report [7].
Clearly, DKV is incomplete because it limits the class of e-voting schemes that can
be declared receipt-free to schemes with timestamps that achieve receipt-freeness
through the use of deniable vote updating, though this is by design.

Again, Bernhard et al. capture a different intuition of receipt-freeness. DKV
does not model a voter who interacts with an attacker to prove their vote. In other
words, DKV does not model a voter that provides an attacker with any proof of
their vote. In particular, there is no mechanism to capture the fact that a voter
may try to pass their credentials or coins to an attacker. Certainly, this definition
does not pose any issues with respect to whether it captures attack scenarios

9 In this game BB = PBB. Bernhard et al. do not mention adversarial access to BBβ
in the technical report [7] but do allow the adversary to ‘see’ BB in the conference
version [8]. We assume that, as DKV is a modification of CCFG, the adversary should
have access to BBβ . This could be resolved by providing the adversary with access
to an oracle Opublish as defined for CCFG. This provides the adversary with a view
of BBβ , which we assume is the intention in this definition.

A critique of game-based definitions of receipt-freeness for voting 13

that should be considered under the heading of coercion-resistance. However, it
does raise questions about whether this definition captures receipt-freeness. As
there is no mechanism for a voter to attempt to prove their vote, we conclude
that receipt-freeness is guaranteed under the assumption that the voter does not
pass any proof of their vote to the attacker.

6 Conclusion

In this paper, we systematically analysed game-based definitions of receipt-
freeness and uncovered completeness and soundness issues. We also found that
each definition considers a different attacker model. In this section we bring
together these findings and suggest possible directions for future research.

We discovered soundness issues with KZZ and CCFG: we proved that KZZ
can be satisfied by schemes that leak every voter’s vote. Moreover, we found that
CCFG does not consider strong consistency, which seems necessary for soundness.
By comparison, DKV considers strong consistency, and we believe coupling CCFG
with a suitable notion of strong consistency should suffice to achieve soundness,
albeit defining such a notion is non-trivial.

We found each definitions to be incomplete. KZZ requires that each voter
votes, and only once. As a result, JCJ does not satisfy KZZ. CCFG is unsatisfiable
by a class of schemes that do not process ballots before adding them to the ballot
box and for which the bulletin board is identical to the ballot box. Consequently,
JCJ does not satisfy CCFG either. Furthermore, DKV only applies to schemes
that use deniable vote updating. Thus, there is no game-based definition of
receipt-freeness that can be applied to a wide class of schemes. This is a potential
area of future research.

Beyond completeness and soundness issues, each definition captures a different
attacker model: KZZ models a voter that provides evidence of their vote (including
coins and credentials) after voting. By comparison, CCFG captures scenarios
wherein the voter uses coins provided by an attacker. Consequently, KZZ does
not capture scenarios where a voter interacts with an attacker before voting (e.g.,
by providing the attacker with credentials), whereas CCFG does. It is unclear
whether a definition of receipt-freeness should capture the scenario where a voter
interacts with an attacker before voting, or whether this should be considered
beyond the scope of receipt-freeness and be captured by coercion-resistance. The
boundary between receipt-freeness and coercion-resistance is unclear and we
believe establishing a boundary is an interesting open problem.

We also observe that KZZ, CCFG and DKV consider that all election authori-
ties are honest, in particular, the election administrator, tallier and ballot box
are honest. Beyond trusting the authorities, communication channels between
voters and/or election authorities are considered to be private. In practice, trust
assumptions may be difficult to enforce, or it may not be possible to prove that the
assumption holds. Motivated by this, ballot secrecy in the context of a malicious
ballot box was considered in [33, 32], whereby the adversary controls the contents

14 Ashley Fraser, Elizabeth A. Quaglia, and Ben Smyth

of the ballot box. We believe that this setting warrants further exploration and we
believe that security definitions with minimal trust assumptions are preferable.

A further point of interest is that receipt-freeness (and, more generally, pri-
vacy for e-voting) does not exist in a vacuum and it must be considered in the
context of other desirable security properties. This has been addressed in the
recent literature and one notable area of research relates to the relationship
between receipt-freeness and verifiability. Traditionally, verifiability and privacy
are viewed as competing and, in some cases, incompatible properties. For example,
if a voter wants to keep their vote secret but also wants to be sure that their
vote is included in the tally, the scheme must provide the voter with enough
information to verify the result, without compromising the privacy of their vote.
Some results have shown that the relationship between privacy and verifiability is
rather intricate: Chevallier-Mames et al. prove that receipt-freeness and universal
verifiability are incompatible under certain assumptions on the communication
channels and election authorities [11]. On the other hand, receipt-freeness and
universal verifiability are compatible under different assumptions, see, for exam-
ple [27, 10]. Moreover, Cortier and Lallemand recently showed that ballot secrecy
implies individual verifiability [13] assuming the same trust assumptions for both
ballot secrecy and individual verifiability, but this result does not hold more
generally [36]. We believe that exploring the relationship between privacy and
verifiability, particularly with respect to trust assumptions, is an interesting and
exciting area of future research.

Acknowledgements. This work is partly supported by the EPSRC and the UK
government as part of the Centre for Doctoral Training in Cyber Security at
Royal Holloway, University of London (EP/P009301/1), and by the Luxem-
bourg National Research Fund (FNR) under the FNR-INTER-VoteVerif project
(10415467).

References

1. Dirk Achenbach, Carmen Kempka, Bernhard Löwe, and Jörn Müller-Quade. Im-
proved coercion-resistant electronic elections through deniable re-voting. USENIX
Journal of Election Technology and Systems, pages 26–45, 2015.

2. Ben Adida. Helios: web-based open-audit voting. In USENIX Security Symposium,
volume 17, pages 335–348. USENIX, 2008.

3. Anguraj Baskar, Ramaswamy Ramanujam, and SP Suresh. Knowledge-based mod-
elling of voting protocols. In 11th Conference on Theoretical Aspects of Rationality
and Knowledge, pages 62–71. ACM, 2007.

4. Josh Benaloh. Verifiable secret-ballot elections. PhD thesis, Yale Univeristy, 2006.
5. Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections. In 26th

Annual ACM Symposium on Theory of Computing, pages 544–553. ACM, 1994.
6. David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bogdan

Warinschi. Sok: a comprehensive analysis of game-based ballot privacy definitions.
In IEEE Security and Privacy, pages 499–516. IEEE, 2015.

7. David Bernhard, Oksana Kulyk, and Melanie Volkamer. Security proofs for partici-
pation privacy, receipt-freeness, ballot privacy, and verifiability against malicious

A critique of game-based definitions of receipt-freeness for voting 15

bulletin board for the helios voting scheme. Cryptology ePrint Archive, Report
2016/431.

8. David Bernhard, Oksana Kulyk, and Melanie Volkamer. Security proofs for par-
ticipation privacy, receipt-freeness and ballot privacy for the helios voting scheme.
In 12th International Conference on Availability, Reliability and Security, page 1.
ACM, 2017.

9. Katharina Braunlich and Rudiger Grimm. Formalization of receipt-freeness in
the context of electronic voting. In 6th International Conference on Availability,
Reliability and Security, pages 119–126. IEEE, 2011.

10. Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo. Bele-
niosrf: a non-interactive receipt-free electronic voting scheme. In ACM SIGSAC
Conference on Computer and Communications Security, pages 1614–1625. ACM,
2016.

11. Benôıt Chevallier-Mames, Pierre-Alain Fouque, David Pointcheval, Julien Stern,
and Jacques Traoré. On some incompatible properties of voting schemes. Towards
Trustworthy Elections, 6000:191–199, 2010.

12. Véronique Cortier, David Galindo, Ralf Küsters, Johannes Mueller, and Tomasz
Truderung. Sok: verifiability notions for e-voting protocols. In IEEE Security and
Privacy, pages 779–798. IEEE, 2016.

13. Véronique Cortier and Joseph Lallemand. Voting: you can’t have privacy without
individual verifiability. In ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 53–66. ACM, 2018.

14. Stephanie Delaune, Steve Kremer, and Mark Ryan. Coercion-resistance and receipt-
freeness in electronic voting. In 19th Computer Security Foundations Workshop,
pages 28–42. IEEE, 2006.

15. Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type properties
of electronic voting protocols. Journal of Computer Security, 17(4):435–487, 2009.

16. Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech. A formal taxonomy of
privacy in voting protocols. In International Conference on Communications (ICC),
pages 6710–6715. IEEE, 2012.

17. Harvard magazine secret ballots, verifiable votes. harvardmagazine.com/2010/05/

secret-ballots-verifiable-votes. Accessed: 2017/08/01.

18. Helios voting system. heliosvoting.org/. Accessed: 2018/03/06.

19. IACR final report of iacr electronic voting committee. www.iacr.org/elections/

eVoting/finalReportHelios_2010-09-27.html. Accessed: 2017/08/01.

20. iVote online voting. www.ivote.nsw.gov.au/. Accessed: 2017/08/01.

21. HL Jonker and W Pieters. Receipt-freeness as a special case of anonymity in
epistemic logic. In IAVoSS Workshop On Trustworthy Elections (WOTE), 2006.

22. Hugo L Jonker and Erik P de Vink. Formalising receipt-freeness. In International
Conference on Information Security, pages 476–488. Springer, 2006.

23. Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In ACM Workshop on Privacy in the Electronic Society, pages 61–70.
ACM, 2005.

24. Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-end verifiable
elections in the standard model. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 468–498. Springer, 2015.

25. Ralf Küesters, Tomasz Truderung, and Andreas Vogt. Verifiability, privacy, and
coercion-resistance: new insights from a case study. In IEEE Security and Privacy,
pages 538–553. IEEE, 2011.

16 Ashley Fraser, Elizabeth A. Quaglia, and Ben Smyth

26. Oksana Kulyk, Vanessa Teague, and Melanie Volkamer. Extending helios towards
private eligibility verifiability. In International Conference on E-Voting and Identity,
pages 57–73. Springer, 2015.

27. Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and
Seungjae Yoo. Providing receipt-freeness in mixnet-based voting protocols. In-
ternational Conference on Information Security and Cryptology, pages 245–258,
2004.

28. Philipp Locher and Rolf Haenni. Receipt-free remote electronic elections with
everlasting privacy. Annals of Telecommunications, 71(7-8):323–336, 2016.

29. Philipp Locher, Rolf Haenni, and Reto E Koenig. Coercion-resistant internet voting
with everlasting privacy. In International Conference on Financial Cryptography
and Data Security, pages 161–175. Springer, 2016.

30. Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with everlasting
privacy. In Annual International Cryptology Conference, pages 373–392. Springer,
2006.

31. Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elections.
In International Workshop on Security Protocols, pages 25–35. Springer, 1998.

32. Ben Smyth. Ballot secrecy: security definition, sufficient conditions, and analysis of
helios. Cryptology ePrint Archive, Report 2015/942.

33. Ben Smyth. Ballot secrecy with malicious bulletin boards. Cryptology ePrint
Archive, Report 2014/822.

34. Ben Smyth. A foundation for secret, verifiable elections. Cryptology ePrint Archive,
Report 2018/225.

35. Ben Smyth. Surveying definitions of coercion resistance. Cryptology ePrint Archive,
Report 2019/822.

36. Ben Smyth. Verifiability of helios mixnet. Cryptology ePrint Archive, Report
2018/017.

37. Ben Smyth, Steven Frink, and Michael R. Clarkson. Election verifiability: crypto-
graphic definitions and an analysis of helios, helios-c, and jcj. Cryptology ePrint
Archive, Report 2015/233.

38. Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri Hursti,
Margaret MacAlpine, and J Alex Halderman. Security analysis of the estonian inter-
net voting system. In ACM SIGSAC Conference on Computer and Communications
Security, pages 703–715. ACM, 2014.

A JCJ does not satisfy KZZ and CCFG

We briefly define the JCJ voting scheme in the syntax of Definition 1, omitting
full details of the non-interactive zero-knowledge (NIZK) proofs, Tally and Verify
algorithms. We refer the reader to [37, Appendix I] for a full scheme description.

Definition 5. Let Π = (Gen,Enc,Dec) be an IND-CPA, multipicatively homo-
morphic asymmetric encryption scheme in a given group G, Σ be a set of sigma
protocols and H be a hash function used to form NIZK proof systems. We define
JCJ(Π,Σ,H) = (Setup,Register,Vote,Append,Tally,Verify) as follows:

Setup(1λ) Compute (pkΠ , skΠ) ← Gen(1λ), a NIZK proof of correct key con-
struction pf and output pk = (pkΠ , pf) and sk = (pkΠ , skΠ)).

Register(1λ) Compute usk ←$ G; upk ← Enc(pkΠ , usk). Output (upk, usk).

A critique of game-based definitions of receipt-freeness for voting 17

Vote(v, usk, pk, 1λ) Compute ciph1 ← Enc(pkΠ , v); ciph2 ← Enc(pkΠ , usk), a
NIZK proof of plaintext knowledge of ciph1, denoted σ, and a NIZK proof of
conjunctive plaintext knowledge of ciph1 and ciph2, denoted τ . Output ballot
b = (ciph1, ciph2, σ, τ).

Append(BB, b) Output BB ← BB ‖ b.
Tally(BB,L, sk, 1λ) Remove invalid and duplicate ballots and mix the remaining

ballots. Remove ineligible ballots and decrypt remaining ballots. Output (r, ρ)
where r is a tally vector and ρ is a NIZK proof that each step of Tally is
carried out correctly.

Verify(BB, r, ρ, pk, 1λ) Verify that each step of Tally is carried out correctly. Out-
put 1 if each step verifies.

We now formally state and prove Proposition 1.

Proposition 3. Let JCJ′ be the scheme defined in Definition 5 for nv voters, nc
candidates and at most t corrupted voters. Then JCJ′ does not satisfy KZZ.

Proof. Let view = (v, usk, c) where v is the vote submitted, usk is the private
credential of the voter and c is the coins used to encrypt vote v and private
credential usk. We construct an adversary A against the KZZ game as follows.

On input 1λ, nv, nc and t, A outputs a set of possible votes I and a set
of candidates V such that |I| = nv and |V| = nc. Then, on input L and pk,
A chooses voter id1 to be uncorrupted and submits (v0, v1), where v0 and v1
are distinct choices, on behalf of id1 and the challenger inputs a ballot b and
view1 to A. The adversary continues in this manner, selecting that each of the
n− 1 remaining voters are uncorrupted and submitting pairs of votes of the form
(v0, v1) on behalf of each voter such that f(〈v0〉idi∈Vh

) = f(〈v1〉idi∈Vh
). Finally,

on input (r, ρ) and BB, A outputs a bit β′.
Consider voter id1. BB contains the ballot b = Vote(v0, usk1, pk, 1

λ; c0) (if
β = 0) or b = Vote(v1, usk1, pk, 1

λ; c1) (if β = 1) where usk1 is the private
credential of voter id1 and c0, c1 are the coins used to encrypt votes v0 and v1,
respectively. A can locally compute a ballot b′ using view1. If β = 0, view1 =
(v0, usk, c0) and b′ = b. If β = 1, view1 = (v0, usk

′, c′) for some simulated
private credential usk′ and simulated coins c′, and b′ 6= b (assuming JCJ satisfies
injectivity, the property that algorithm Vote does not map two distinct votes to
the same ballot, which is shown to be true in [37]). Therefore, A can correctly

distinguish ExpKZZ,0A,S,JCJ′(λ, nv, nc, t) and ExpKZZ,1A,S,JCJ′(λ, nv, nc, t) and outputs β′ =

β. Furthermore, A does not corrupt any voters (hence, the number of corrupted
voters is less than t) and f(〈v0〉idi∈Vh

) = f(〈v1〉idi∈Vh
). Thus, the e-voting scheme

JCJ′ does not satisfy KZZ. ut

We now define the JCJ e-voting scheme in the syntax of Chaidos et al. (§4).

Definition 6. We define JCJ′′(Π,Σ,H) = (Setup,Register,Vote,Valid,Append,
Tally,Verify,Publish) to be the e-voting scheme JCJ defined in Definition 5 with
the addition of algorithms Valid and Publish such that:

Valid(BB, b) On input ballot box BB and a ballot b, algorithm Valid outputs >.

18 Ashley Fraser, Elizabeth A. Quaglia, and Ben Smyth

Publish(BB) On input ballot box BB, algorithm Publish outputs BB.

Then we have the formal statement of Corollary 1.

Corollary 2. JCJ′′ does not satisfy CCFG.

The corollary follows from Proposition 2.

A critique of game-based definitions of receipt-freeness for voting 19

Osetup()

if β = 0 then

(pk, sk)← Setup(1λ)

else

(pk, sk, aux)← SimSetup(1λ)

return pk

Oregister(id)

if (id, upk, usk) /∈ Vr then

(upk, usk)← Register(1λ)

L ← L ∪ {upk}
Vr ← Vr ∪ {(id, upk, usk)}

return upk

Ocorrupt(id)

if (id, upk, usk) ∈ Vr then

Vc ← Vc ∪ {(id, upk)}
return (upk, usk)

Ovote(id, v0, v1)

if v0, v1 ∈ V ∧ (id, upk, usk) ∈ Vr then

b0 ← Vote(v0, usk, pk, 1
λ)

b1 ← Vote(v1, usk, pk, 1
λ)

BB0 ← Append(BB0, b0)

BB1 ← Append(BB1, b1)

Ocast(id, b)

if Valid(BBβ , b) = > then

BB0 ← Append(BB0, b)

BB1 ← Append(BB1, b)

Otally()

if β = 0 then

(r, ρ)← Tally(BB0,L, sk, 1λ)

else

(r, ρ′)← Tally(BB0,L, sk, 1λ)

ρ← SimProof(BB1, r, aux)

return (r, ρ)

Oboard()

return Publish(BBβ)

Oreceipt(id, b0, b1)

if (id, upk) ∈ Vc ∧ Valid(BB0, b0) = > ∧ Valid(BB1, b1) = > then

BB0 ← Append(BB0, b0)

BB1 ← Append(BB1, b1)

Fig. 1. Oracles used in the receipt-freeness game CCFG by Chaidos et al. [10]

20 Ashley Fraser, Elizabeth A. Quaglia, and Ben Smyth

Ovote(id, v0, v1, t)

b0 ← Vote(v0, usk, t, pk, 1
λ)

b1 ← Vote(v1, usk, t, pk, 1
λ)

if Valid(BBβ , bβ) = > then

BB0 ← Append(BB0, b0)

BB1 ← Append(BB1, b1)

Otally()

if β = 0

(r, ρ)← Tally(BB0,L, sk, 1λ)

else

(r, ρ′)← Tally(BB0,L, sk, 1λ)

ρ← SimProof(BB1, r, aux)

return (r, ρ)

Ocast(id, b)

if Valid(BBβ , b) then

BB0 ← Append(BB0, b)

BB1 ← Append(BB1, b)

Oreceipt(id, v0, v1, t)

if v0, v1 ∈ V then

b0 ← Vote(v0, usk, t, pk, 1
λ)

BB0 ← Append(BB0, b0)

BB1 ← Append(BB1, b0)

tu ←$ P

b1 ← DeniablyUpdate(v0, v1, usk, tu, pk, 1
λ)

BB1 ← Append(BB1, b1)

BB0 ← Obfuscate(BB0, id)

BB1 ← Obfuscate(BB1, id)

Fig. 2. Oracles used in the receipt-freeness game DKV by Bernhard et al. [7]

