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Abstract. SipHash is a family of ARX-based MAC algorithms opti-
mized for short inputs. Already, a lot of implementations and appli-
cations for SipHash have been proposed, whereas the cryptanalysis of
SipHash still lags behind. In this paper, we study the property of trun-
cated differential in SipHash and find out the output bits with the most
imbalanced differential biases. Making use of these results, we construct
distinguishers with practical complexity 210 for SipHash-2-1 and 236 for
SipHash-2-2. We further reveal the relations between the value of out-
put bias and the difference after first modular addition step, which is
directly determined by corresponding key bits. Based on these relations,
we propose a key recovery method for SipHash-2-1 that can obtain a
nonuniform distribution of the 128-bit key through several bias tests. It
is found that the highest probability can reach 2−41 and the nonuniform
distribution can lead to a 229 gain of search cost in average.

Keywords: SipHash · Distinguish attack · Key recovery · Truncated
differential cryptanalysis.

1 Introduction

In cryptography, a message authentication code (MAC) is a secret-key primitive
that ensures the integrity of data. A MAC algorithm accepts a secret-key K and
an arbitrary-length message M as input, and outputs a MAC value (a fixed size
tag T). The secret-key K must be confidentially shared between two parties prior
to the communication. The MAC value protects both message’s integrity and
authenticity, by allowing verifiers to detect any changes of the message content:
the sender produces a tag T for a message M through the secret-key K, and
sends the pair (M,T) to the receiver. The receiver who possesses the secret-key
K can verify the authenticity of the message M by recalculating the tag T and
comparing it with the sent one. If two tags are the same, the origin and the
integrity of message are ensured. Otherwise, the message, or the tag, or both of
them must have been modified or forged during the transmission.

SipHash [1] is an Add-Rotate-XOR (ARX) based family of MAC algorithms
which was proposed by Jean Philippe Aumasson and Daniel J. Bernstein in
2012. SipHash computes a 64-bit MAC from a variable-length message M and
a 128-bit secret key K. It is specifically suitable for short inputs, with perfor-
mance comparable to non-cryptographic hash functions, such as CityHash [17]



Table 1. Best cryptanalytic results of SipHash

Variant Type of Attack Complexity Reference
SipHash-2-1 Distinguisher 256 [1]
SipHash-2-2 Distinguisher 2159 [1]
SipHash-2-x Internal collision 2236 [7]
SipHash-1-x Internal collision 2167 [7]

4-Round Finalization Distinguisher 235 [7]
SipHash-2-1 Distinguisher 210 This Paper
SipHash-2-2 Distinguisher 236 This Paper
SipHash-2-1 Key Recovery 298 This Paper

and SpookyHash [8]. Thus it can be used in hash tables to prevent DoS colli-
sion attack (hash flooding) or to authenticate network packets. Algorithms in
SipHash family are denoted as SipHash-c-d, where c is the number of compres-
sion rounds per message block and d is the number of finalization rounds after
compression steps. The recommended parameters are SipHash-2-4 for the best
performance, and SipHash-4-8 for conservative security.

Most existing results on SipHash concentrate on implementations and ap-
plications [3, 15, 16, 19], whereas there has been little progress in mounting an
attack so far even in simplified versions of SipHash. In [1], the designers pro-
vide the differential cryptanalysis of SipHash and in [7], Christoph Dobraunig
and Florian Mendel et al provide the first external security analysis regarding
differential cryptanalysis. All the differential cryptanalysis results can reach a
limited number of rounds because standard differential trails diverge quickly in
SipHash and it is hard to keep the number of active bits at a low level.

However, truncated differential cryptanalysis is a powerful technique to help
solve the problem. Truncated differential cryptanalysis [9] is a generalization of
differential cryptanalysis against block ciphers, which was developed by Lars
Knudsen in 1994. Unlike ordinary differential cryptanalysis [4] that analyzes full
differences between two texts, the truncated variant only considers differences
partially determined. That means the attack merely makes prediction of some
specific bits instead of the full output.

This technique has been applied in Salsa [2], E2 [13], Skipjack [11], Chaskey
[12], SAFER [10], Twofish [14] and even the stream cipher Salsa20 [6]. In [2]
and [12] the authors set the input difference as 1-bit to detect output biases,
which gives us great inspiration. As a result, they get differential trails with
more rounds than ordinary differential cryptanalysis. In [5], it is shown that
the data complexity of truncated differential cryptanalysis is Ω(ε−2) (ε denotes
the imbalance of truncated differential). In Section 3, the relation between data
complexity and truncated differential bias is further discussed.

Relative Work. Table 1 gives some existing results on cryptanalysis of
reduced-round SipHash In [1], the designers provide their differential trail up
to SipHash-2-4, with success rates 2−56 for 3 rounds and 2−159 for 4 rounds.
This directly constructs a kind of distinguishers for SipHash-2-1 and SipHash-
2-2. In [9], the authors propose a method to construct internal collisions. Using
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these results, they further present a distinguisher for 4-round finalization (the
finalization part of SipHash-2-4). Although the complexity is very close to our
distinguisher for SipHash-2-2, the techniques involved are quite different.

Our Contributions. This paper studies the output biases under specific
input differences in reduced-round SipHash. Inspired by truncated differential
cryptanalysis above, we introduce 1-bit difference to the input and detect if bi-
ased bits exist in the output of reduced-round SipHash. We exhaustively search
a variety of 1-bit input differences (from bit 0 to 63) and obtain correspond-
ing biased output bits with great imbalances. Using these results, we construct
distinguishers for SipHash-2-1 and SipHash-2-2 with practical complexity (see
in Table 1). We further reveal the relations between the value of differential
bias and corresponding key bits. As a main application, we propose a key recov-
ery method that can obtain a nonuniform distribution of the secret key, among
which the highest probability can reach 2−41. As a result, we find out that this
nonuniform distribution can help decrease the expected complexity of exhaustive
search from 2127 to 298.

Organization of the Paper. The paper starts with a description of SipHash
in Section 2. In Section 3, some basic knowledge about probability theory and
analysis techniques related to this work are given. The following Section 4 in-
troduces the results of differential cryptanalysis and Section 5 constructs distin-
guishers for reduced-round SipHash. Key recovery is discussed in Section 6 and
the conclusion is presented in Section 7.

2 Description of SipHash

SipHash is an ARX primitive operated on 64-bit words. Different SipHash ver-
sions are denoted as SipHash-c-d, where c is the number of compression rounds
processing each message block and d is the number of finalization rounds. SipHash
possesses a 256-bit internal state, uses a 128-bit key and outputs a 64-bit tag.

The 64-bit tag is computed as follows.
Initialization. The internal state of SipHash consists of four 64-bit words
v0, v1, v2 and v3. The 128-bit key can be expressed as k = k1 ∥ k0. Four
64-bit words of internal state are initialized as:

v0 = k0 ⊕ h0 = k0 ⊕ 736f6d6570736575
v1 = k1 ⊕ h1 = k1 ⊕ 646f72616e646f6d
v2 = k0 ⊕ h2 = k0 ⊕ 6c7967656e657261
v3 = k1 ⊕ h3 = k1 ⊕ 7465646279746573

Parsing. The ω-byte input m is parsed into w 64-bit little-endian words
m0 . . .mw−1 before compression where w = 1+int(ω/8). The word mw−1

includes the last ω mod 8 bytes, filled with bytes 00 if needed and followed
by a byte encoding the positive integer ω mod 256 in the end. For example,
1-byte input m = ab will be parsed as m0 = 0x01000000000000ab.
Compression. For each message block mi in sequence, SipHash-c-d will
compress it and update four internal state words through three steps. The
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Fig. 1. SipHash-2-4 processing a 15-byte message [1]

first step is v3 = v3 ⊕mi, and then c rounds of SipRound are iteratively
executed, followed by the final step v0 = v0 ⊕mi.
Finalization. After all message blocks have been processed, the constant
0xff (255) is xored to v2. Then d iterations of SipRound are performed
and SipHash-c-d returns the 64-bit MAC v0 ⊕ v1 ⊕ v2 ⊕ v3 at last.

Fig.1 shows the procedure of hashing a 15-byte message by SipHash-2-4. Af-
ter parsing the message becomes two blocksm = m0m1. There are 2 compression
rounds for each mi and 4 finalization rounds after all compressions.

The function SipRound updates the internal state by:
v0+ = v1 v2+ = v3
v1 ≪= 13 v3 ≪= 16
v1⊕ = v0 v3⊕ = v2
v0 ≪= 32
v2+ = v1 v0+ = v3
v1 ≪= 17 v3 ≪= 21
v1⊕ = v2 v3⊕ = v0
v2 ≪= 32

Symbols +, ≪ and ⊕ separately represent modular addition, left rotation
and xor. Each operation is operated on 64-bit words.

In this paper, distinguisher and key recovery are restricted to one-block at-
tacks, which means the most significant byte of m0 must be 07. So input dif-
ferences on such byte are actually impractical. However, it is still assumed that
attackers have the ability to alter the most significant byte. In other words, the
parsing restriction of SipHash is neglected in this paper. When considering the
parsing restriction, the complexity of distinguisher and key recovery will be a
bit higher.

3 Knowledge about Probability Theory
In this section, we discuss some knowledge about probability theory which is
related to our work. The first part reveals the relationship between the value of
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output bias and the needed amount of input data according to Central Limit
Theorem (CLT). The second part introduces the method to convert prior prob-
abilities into posterior probabilities through Bayes’ Formula. The third part an-
alyzes the expected complexity of exhaustive search under a nonuniform distri-
bution.

3.1 Application of CLT in Bias Test

Suppose {x1, x2, . . . , xn} is a group of independent samples of random variable
X, which has EX = µ and DX = σ2. Central Limit Theorem tells us that X∗ =∑n

i=1(Xi − µ)/
√
nσ can be well approximated by standard normal distribution

N(0, 1) as long as n is large enough. This theorem holds even if X is not normal.
In our bias tests of reduced-round SipHash, X can be regarded as a Bernoulli

random variable. Under a pair of random message blocks (m,m′) holding m ⊕
m′ = 1 ≪ k (1-bit difference), set X = 1 if the difference of a certain output bit
outputj ⊕ output

′

j = 1 and X = 0 if not, where (k, j) is a pair of fix numbers
chosen from 0 to 63 before the tests.

Let b denote the output bias (b can be negative), which means P (X = 1) =
0.5 + b and P (X = 0) = 0.5− b. We can estimate b by sampling a huge number
of Xi and calculating X =

∑n
i=1 Xi/n − 0.5. Compare X and X∗: since |b| is

much smaller than 0.5, we approximately have σ2 = 0.25− b2 ≈ 0.25. Then we
get X ∼ N(b, 1/4n) or b ∼ N(X, 1/4n). It is seen that the standard deviation
σ =

√
1/4n should be in the same order of magnitude as |b|. Otherwise, higher

standard deviation may lead to great disturbance when counting result X. Thus
the amount of input data n must be Ω(b−2).

Next, we concretely discuss the constant coefficient, which also plays a role in
data complexity. This refers to Pauta criterion or 3σ-principle is the same, which
tells us that a random sample of N(µ, σ2) will locate in (µ − 3σ, µ + 3σ) with
probability over 99.73%. In this paper, we use 4σ-principle to further promise
the correctness with probability over 99.99%. According to 4σ-principle, if we
find |X| = 2−t, 2−t > 4σ =

√
4/n is required to ensure the output bias, which

infers n = 22t+2. That is the relationship between the bias value and the data
amount. Take n = 220 with 4σ = 2−9 as examples. If |X| > 2−9 is found, the
corresponding output bias |b| > 0 almost definitely exists with probability over
99.99%. If |X| is found to be 2−10 or 2−11, the probability will drop to 95.45%
or 68.27%.

3.2 Prior Probability and Posterior Probability

Sometimes we can easily get the prior probability P (B|A), but cannot directly
test the posterior probability P (A|B). For example, if the 128-bit key of SipHash
is fixed, we can easily test any property of the output P (output|key) by giving
random inputs and calculating corresponding outputs. However, we cannot test
P (key|output) because it is impossible to recover the 128-bit key from a 64-
bit output. In this situation, we can convert prior probabilities into posterior
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Table 2. Determination with two events

Event B1 : |Xj | ≤ fixbound B2 : |Xj | > fixbound

A1 : keybit = 0 p1 1− p1
A2 : keybit = 1 p2 1− p2

probabilities through Bayes’ Formula:

P (Ak|B) =
P (Ak)P (B|Ak)∑
P (Ai)P (B|Ai)

Among the formula above, A1, A2, . . . , Am are m incompatible events which
means Ai ∩ Aj = ∅ and

∑
Ai = Ω. In this paper, the number of incompatible

events m is always 2 where A1 represents a certain keybit is 0 and A2 represents
a certain keybit is 1. B may be a property or a combination of output biases.
Take Table 2 as an example.

Suppose we need to determine some keybit by testing the output bias Xj

under a certain 1-bit input difference k. First, randomly generate different keys
that fit keybit = 0 or keybit = 1. Second, calculate output bias Xj under those
keys separately. Finally, count the number of keys that meet |Xj | ≤ fixbound
and get the table, in which P (B1|A1) = p1 and P (B1|A2) = p2.

As for the keybit to be determined, we also calculate corresponding bias Xj

and judge whether |Xj | ≤ fixbound holds. According to Bayes’ Formula and
P (A1) = P (A2) = 0.5, we have:

P (A1|B1) =
p1

p1 + p2

P (A2|B1) =
p2

p1 + p2

P (A1|B2) =
1− p1

2− p1 − p2

P (A2|B2) =
1− p2

2− p1 − p2

Then we can determine it by choosing the larger of P (A1|B1) and P (A2|B1)
or the larger of the other two if B1 or B2 happens. The expected success rate is
P (B1) ∗max(P (A1|B1), P (A2|B1)) + P (B2) ∗max(P (A1|B2), P (A2|B2), where
P (B1) = p1P (A1) + p2P (A2) and P (B2) = (1− p1)P (A1) + (1− p2)P (A2).

Finally, the expected success rate can be simplified into:
max(p1, p2) + max(1− p1, 1− p2)

2
=

1 + |p1 − p2|
2

3.3 Exhaustive Search under Nonuniform Distribution
In 1949, Shannon [18] proposed the idea of perfect secrecy that for every cipher-
text y, the distribution of plaintext x should meet P (x = p|y = c) = P (x = p).
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This means the known ciphertext cannot affect the original distribution of the
plaintext (in general, it can be regarded as a uniform distribution in a quiet
large space). It is inferred that the known ciphertext or even the known pair of
ciphertext and plaintext cannot affect the original distribution of the secret key.
In this situation, attackers have to exhaustively search all possible cases without
any strategy. The expected cost is (suppose the goal is N -bit):

E =

i=2N∑
i=1

i · P (x = pi) =

i=2N∑
i=1

i · Pi =

i=2N∑
i=1

i · 1

2N
≈ 2N−1

However, if the encryption is not perfect secret so that attackers can obtain
a nonuniform distribution of the plaintext or the key, the cost of exhaustive
search might be greatly decreased in expectation. According to Rearrangement
Inequality, attackers should make attempts in order of P1 ≥ P2 ≥ · · · ≥ P2N for
the lowest expected cost.

In this section, we mainly discuss the cost of exhaustive search under some
special situations. These will greatly help in the analysis of our key recovery
method. Several theorems are given below.

Theorem 1. Suppose K is an N -bit secret key with expected search cost E.
When adding an extra and irrelevant bit, the expected search cost E′ meets
E′ = E if the extra bit is totally definite (with probability 100%), and meets
E′ ≈ 2E if the extra bit is totally indefinite (with probability 50%).

The first part is clear because the number of possible cases is still 2N and
the distribution remains unchanged with a definite extra bit. Therefore, E′ = E
holds. As for the second part, since the probabilities are arranged in order, those
probabilities meet Pi = 2P

′

2i−1 = 2P
′

2i for all 1 ≤ i ≤ 2N . This relation indicates
E′ = 2E − 1/2 ≈ 2E.

Theorem 2. Suppose K1 and K2 are both N -bit secret keys under different
distributions. In the situation of recovering K1 and K2 together, the expected
search cost EK1K2 meets EK1K2 < c·2EK1EK2 , where c is a compensation factor
much smaller than N .

We just need to find out {Ci,j} an arrangement of {1, 2, · · · , 22N} s.t.:

∑
1≤i,j≤2N

Ci,jPiQj < c · 2EK1
EK2

= c · 2
i=2N∑
i=1

i · Pi

j=2N∑
j=1

j ·Qj

Then the theorem is proved according to Rearrangement Inequality. Notice
that the number of entries in EK1K2

is (22N + 1) ∗ 22N/2 ≈ 24N−1 and the
number of entries in EK1

EK2
is ((2N + 1) ∗ 2N/2)2 ≈ 24N−2. The factor 2 is to

make the number of entries on the same level. The factor c is a compensation
factor because counter-examples may exist under c = 1.

Our proof strategy is arranging {Ci,j} in order of i∗j. For example, {C1,1} =
1, {C1,2, C2,1} = {2, 3}, {C1,3, C3,1} = {4, 5}, {C1,4, C2,2, C4,1} = {6, 7, 8}, and
so on.
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Fig. 2. Relation between c and N

And then we choose a factor c to make c · 2ij ·PiQj ≥ Ci,jPiQj hold. Define
S(i) as the number of different divisors of i (including 1 and i). It can be proved
that 2c =

∑i=2N

i=1 S(i)/2N can satisfy the inequality. For a simple explanation,
we take N = 2 and N = 3 as examples.

Under N = 2, the coefficients of PiQj are (in order of i ∗ j):

EK1EK2 : 1, 2, 2, 3, 3, 4, 4, 4, 6, 6, 8, 8, 9, 12, 12, 16
EK1K2 : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

And multiplied by 2c = 2, c · 2ij · PiQj ≥ Ci,jPiQj holds for every entry.
However, under N = 3, the coefficients become:

EK1
EK2

: 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, · · ·
EK1K2

: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 29, 20, 21, · · ·

In this situation, 2c = 2.5 =
∑i=23

i=1 S(i)/23 is required.
As for the range of factor c, it is quite hard to give a mathematical analysis.

Instead, we give a programmatical analysis as Fig.2. It is inferred that c = Θ(N)
holds as N increases.

Theorem 3. Suppose each bit of the N -bit key can be correctly recovered with
probability p (p > 0.5). Then the expected cost is E(p,N) =

∑i=N
i=0 pN−i(1 −

p)i(Ci
NSi−1 + (Ci

N + 1)Ci
N/2), where Si−1 =

∑j=i−1
j=0 Cj

N .
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Table 3. Differential characteristics reported by the designers [1]

Round Difference Prob.

1 0000000000000000 0000000000000000 0000000000000000 8000000000000000 1
0000000000000000 0000000000000000 8000000000000000 8000000000008000 (1)

2 8000000000008000 8000000000000000 0000000080000000 8000001000108000 13
0000800000000000 0000000000009000 8000001080108000 8010000000100000 (14)

3 0010800000100000 80000011a0101000 8010100080000010 8010820000000200 42
a000100080108011 8012b413a2000000 0000920080000210 8200920082008200 (56)

4 2200820002100211 e835621322010235 2200021080122613 6210c21042004203 103
20110024ca35e013 667784530057bd22 4010c000c2126410 8200820080110600 (159)

5 a21182244a24e613 2ec144fcb80115dd c245d93226674453 e20180048a34a603 152
f225f3ce8cd0c6d8 a44f51d8d09e5616 20445936ac53e250 a040d3020a500051 (311)

6 526520cc8680c689 27baa9d2d0e0fcd8 7ccdb446840b08ee 32246acc8cb4ce93 187
56603a5175df891e 20e5d30249fb3ea6 4ee9de8a08bfc67d 2425523ec62cf459 (498)

Since each bit can be correctly recovered with probability p, according to
Binomial Theorem, the number of cases with success rate pN−i(1 − p)i is Ci

N .
In addition, all the cases are tested in order of pN−i(1− p)i or to say in order of
i. Therefore, Si−1 =

∑j=i−1
j=0 Cj

N cases have been tested before i. And the cost
for pN−i(1− p)i in total is:

(Si−1 + 1) + (Si−1 + 2) + · · ·+ (Si−1 + Ci
N = Ci

NSi−1 + (Ci
N + 1)Ci

N/2)

Going through all possible i, E(p,N) is obtained.
In Section 6, after giving the results of the success rate for recovering each

key bit, we will further give an approximate analysis of expected complexity
according to these theorems above.

4 Differential Cryptanalysis of Reduced-Round SipHash

In this section, we start with the standard differential trail of SipHash-2-4 based
on previous work. It is found that all the differential cryptanalysis results can
reach a limited number of rounds where standard differential trails diverge
quickly. Next, we investigate if biased differential bits exist in the output of
reduced-round SipHash instead of analyzing full differences. As a result, we find
out some interesting phenomena about the output bias.

4.1 Standard Differential Cryptanalysis Results

In [1], the designers provide the differential cryptanalysis of SipHash-2-4. The
differential trail is listed in Table 3.

9



As we can see from the table, the probability of differential characteristic is
less than 2−128 for more than 3 rounds. Notice that the upper bound of distin-
guishing complexity is 2128, because the complexity of exhaustively searching all
possible keys is only 2128. Therefore, the differential cryptanalysis provided in
[1] cannot help in distinguishing for SipHash-2-2.

The best differential trail given in [7] is used in internal collision of SipHash-
2-4 with a probability of 2−236.3. Compared with the trail in [1], it is better for
constructing internal collisions. Using these results, a distinguisher for 4-round
finalization is further presented. However, this trail is unsuitable for constructing
distinguishers for SipHash-2-x because all the active bits of the trail occur in the
first two rounds.

In summary, we cannot construct distinguishers for SipHash-2-2 based on
present standard differential cryptanalysis. However, truncated differential crypt-
analysis can help improve the results.

4.2 Truncated Differential Cryptanalysis Results

In this part, we give some results of our truncated differential cryptanalysis of
SipHash-2-1 and SipHash-2-2. As mentioned above, we set 1-bit input difference
on the k-th input bit and calculate differential biases of all 64 output bits, among
which k varies from 0 to 63 starting from the least significant bit. For example,
k = 0 means input difference is δ = 0x0000000000000001. For each test under
a certain k, we randomly choose 4096 keys with data complexity n = 220 in
SipHash-2-1 and 256 keys with n = 240 in SipHash-2-2, which can detect output
biases over 2−9 and 2−19.

We finally find out some thought-provoking phenomena as below:
Observation 1. In SipHash-2-1, we can always find some biased bits with
obvious biases, among which the greatest one varies from 2−3 to 2−7.
Observation 2. In SipHash-2-2, for a proportion of keys we can find some
bits with biases varying from 2−14 to 2−19, while for the other proportion
we can find nothing.
Observation 3. In both SipHash-2-1 and SipHash-2-2, the relations be-
tween the input differential bits and the biased output bits show a kind of
rotation property, which means if output bit j has differential bias with
input differential bit k, then output bit j + i is much likely to have the
same differential bias with input differential bit k + i.

Table 4 shows output bits with the greatest imbalance for each 1-bit input
difference in SipHash-2-1, which also reveals the rotation property in a way. In
each entry, we give at most 2 bits that may have the greatest imbalance with
the highest probability. If an entry gives only 1 bit, it means those bits with the
greatest imbalance are almost centralized into that position.

Explanations for Table 4. Symbol k denotes the input differential bit and
symbol λ shows output bits with the greatest imbalance under input differential
bit k. Let bλ denote the bias of output bit λ. Negative integer l reflects the level
of bias bλ, which means |bλ| > 2l holds for all tested keys. This bias level is
related to the complexity of distinguish attack.
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Table 4. Bits with the greatest imbalance in SipHash-2-1

k δ λ k δ λ k δ λ k δ λ

0 10,26 -7 16 26,42 -7 32 42,58 -7 48 10,58 -7
1 11,27 -7 17 27,43 -7 33 43,59 -7 49 11,59 -7
2 12,28 -7 18 28,44 -7 34 44,60 -7 50 12,60 -7
3 13,29 -7 19 29,45 -7 35 45,61 -7 51 13,61 -7
4 14,30 -7 20 46 -7 36 46,62 -7 52 14,62 -7
5 15,31 -7 21 31,47 -7 37 47,63 -7 53 15,63 -7
6 32 -6 22 32 -5 38 0 -5 54 16,0 -7
7 17,33 -6 23 33 -5 39 1 -5 55 17,1 -7
8 18,34 -6 24 34 -6 40 2 -5 56 18,2 -7
9 19,35 -6 25 35 -6 41 3 -6 57 19,3 -7
10 20,36 -7 26 36 -6 42 4,52 -7 58 20,4 -7
11 21,37 -7 27 37 -7 43 5,53 -7 59 21 -6
12 22,38 -7 28 38 -7 44 6,54 -7 60 22 -5
13 23,39 -7 29 39,55 -7 45 55 -6 61 23 -5
14 24,40 -7 30 40,56 -7 46 56 -6 62 24 -5
15 25,41 -7 31 41,57 -7 47 13 -6 63 25 -4

Source codes are provided at https://github.com/hele27/SipHash, including
both bias test of this section and key classification discussed in Section 6.

In this paper, we are not concerned about why it shows a rotation property
or why it reaches such a bias level. However, a great number of experiments can
support those observations. Based on these results, we construct a distinguisher
and propose a key recovery method for reduced-round SipHash. The details are
presented in the following sections.

5 Distinguish Attack for SipHash-2-1 and SipHash-2-2

We have revealed the relationship between the output bias and the data complex-
ity in Section 3. To detect an output bias |b| > 2−t, n = 22t+2 data complexity
is required. With the same complexity, a distinguisher can be constructed for
SipHash-2-1 according to 4σ-principle.

The algorithm is given below.

Algorithm 1 Distinguisher for SipHash-2-1
Input: a 64-bit-output function f(m) to be distinguished.
Output: 0 for f(m) is pseudorandom and 1 for f(m) is SipHash-2-1.
1: k = 63; λ = 25; l = −4; //k is the input differential bit, λ is the output

biased bit and l is the bias level.
2: n = 2−2l+2;
3: for i = 1 : n do
4: Randomly generate 64-bit message pair (m,m′) holding m⊕m′ = 1 ≪ k;
5: Query output = f(m) and output′ = f(m′);

11



6: Compute the difference of the λ-th output bit outputλ ⊕ output
′

λ;
7: Set Bernoulli variable Xi = outputλ ⊕ output

′

λ;
8: end for
9: Compute X =

∑n
i=1 Xi/n− 0.5;

10: Return (|X| > 2l)

Parameters k, λ, l can be determined according to Table 4.
For the best performance, we choose k = 63, λ = 25 and l = −4. Experi-

ments have shown that under k = 63 in SipHash-2-1, the output bias b25 meets
|b25| > 2−4 for all keys. Therefore, complexity n = 210 is enough for the algo-
rithm. If f(m) is SipHash-2-1, |X| > 2−4 holds with 100% probability. If f(m)
is a pseudorandom function without output biases, |X| < 2−4 holds with proba-
bility over 99.99% according to 4σ-principle. Thus Algorithm 1 can distinguish
SipHash-2-1 from a pseudorandom function with success rate over 99.99%.

Similar algorithm can be applied to SipHash-2-2.

Algorithm 2 Distinguisher for SipHash-2-2
Input: a 64-bit-output function f(m) to be distinguished.
Output: 0 for f(m) is pseudorandom and 1 for f(m) is SipHash-2-2.
1: k = 63; λ = 57; l = −17; //k is the input differential bit, λ is the output

biased bit and l is the bias level.
2: n = 2−2l+2;
3: for i = 1 : n do
4: Randomly generate 64-bit message pair (m,m′) holding m⊕m′ = 1 ≪ k;
5: Query output = f(m) and output′ = f(m′);
6: Compute the difference of the λ-th output bit outputλ ⊕ output

′

λ;
7: Set Bernoulli variable Xi = outputλ ⊕ output

′

λ;
8: end for
9: Compute X =

∑n
i=1 Xi/n− 0.5;

10: Return (|X| > 2l)

For the reason of computing power, we cannot test all k in SipHash-2-2 like
Table 4. Inspired by the good performance of Algorithm 1 (and the differential
trail in Table 3 as well), we remain k = 63 in distinguishing for SipHash-2-2.
It is found that |b57| > 2−17 holds for all 256 tested keys. Similar analysis can
be given as the above. Thus Algorithm 2 can distinguish SipHash-2-2 from a
pseudorandom function with success rate over 99.99% and the complexity is 236.

6 Key Recovery Attack for SipHash-2-1

In this section, we discuss key recovery attack for SipHash-2-1. First, we discuss
key classification by whether carry exists in the first modular addition v2+ = v3.
Next, we present the results of our key classification experiments. Finally, we
propose a method to recover the 128-bit key according to those results and give
an approximate analysis of expected complexity.
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6.1 Key Classification
Experiments in Section 4 have shown that values of the greatest output biases
vary from 2−3 to 2−7 under different keys. This inspires us to design a classi-
fication so that keys in different classes will lead to output biases of different
levels. With the classification, some information about the key can be obtained
through the output bias.

For 1-bit input difference on m[k], step v3 = v3 ⊕m leads to 1-bit difference
on v3[k] firstly. The differential trail continues with step v2+ = v3, while step
v0+ = v1 is independent of m.

Notice the fact that for an ARX-based algorithm, the differential trial di-
verges and the number of active bits increases when carry appears in modular
additions. For example, the difference after v2+ = v3 remains 1 ≪ k without
carry while it becomes 11 ≪ k or even more consecutive 1 if carries exist. Based
on this fact, we propose an assumption that with difference 1 ≪ k after first
modular addition v2+ = v3, output biases may be greater and easier to de-
tect than those with difference 11 ≪ k or more consecutive 1. This assumption
provides a classification method by whether carry exists and the results of key
classification experiments can support our assumption.

Details of key classification are given below. Suppose 1-bit difference is set
on the k-th bit, which means m[k]⊕m′[k] = 1.

– Situation k = 0. The difference is introduced to v3[0] first.
• In this situation, it can be divided into 2 classes v2[0] = 0 and v2[0] = 1.
• If v2[0] = 0 holds, the difference must be 0x0000000000000001 without
carry for both of m[0] and m′[0].

• If v2[0] = 1 holds, the difference becomes 0x0000000000000011 at least
with carry existing for either of m[0] and m′[0].

– Situation k > 0. The difference is introduced to v3[k] first.
• In this situation, v2[k − 1], v3[k − 1] and even less significant bits also
work besides v2[k]. For simplicity, we divide them into 8 classes by the
values of v2[k], v2[k − 1] and v3[k − 1].

• If v2[k − 1] = v3[k − 1] = 0 holds, carry existences for m[k] and m′[k]
are irrelevant to less significant bits, only depending on v2[k]. Difference
1 ≪ k can be ensured with v2[k] = 0 or avoided with v2[k] = 1.

• If v2[k − 1] = v3[k − 1] = 1 holds, carry existences for m[k] and m′[k]
are irrelevant to less significant bits, only depending on v2[k]. Difference
1 ≪ k can be ensured with v2[k] = 1 or avoided with v2[k] = 0.

• In other cases of v2[k− 1]⊕ v3[k− 1] = 1, carry existences are indefinite
because of unknown less significant bits. The difference after v2+ = v3
is still uncontrollable no matter what v2[k] is.

According to the classification, we randomly generate a great number of keys
that meet the conditions separately and perform the key classification experi-
ments (4096 keys in each group). We use a boundary-line ej ≤ bound to filter
those keys with difference 1 ≪ k after v2+ = v3, where ej equal to log2 |bj | is
the exponent part of tested output bias. It is expected that output biases under
keys in different classes will locate on different sides of the boundary-line.
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Table 5. Results of key classification experiments (partial)

k conditions ej ≤ bound proportion k0 k1

0 v2[k] = 0
e26 ≤ −5.255

0% 100% /
v2[k] = 1 100%

1

v2[k] = 0&v2[k − 1] = 0&v3[k − 1] = 0

e27 ≤ −5.285

0%

100% 50%v2[k] = 0&v2[k − 1] = 0&v3[k − 1] = 1 0%
v2[k] = 1&v2[k − 1] = 0&v3[k − 1] = 0 100%
v2[k] = 1&v2[k − 1] = 0&v3[k − 1] = 1 100%
v2[k] = 0&v2[k − 1] = 1&v3[k − 1] = 0

e30 ≤ −7.635

19.5%

51.2% 61.8%v2[k] = 0&v2[k − 1] = 1&v3[k − 1] = 1 51.0%
v2[k] = 1&v2[k − 1] = 1&v3[k − 1] = 0 49.7%
v2[k] = 1&v2[k − 1] = 1&v3[k − 1] = 1 16.7%

· · · · · · · · · · · · · · · · · ·

31

v2[k] = 0&v2[k − 1] = 0&v3[k − 1] = 0

e9 ≤ −6.505

0%

90.5% 73.2%v2[k] = 0&v2[k − 1] = 0&v3[k − 1] = 1 16.8%
v2[k] = 1&v2[k − 1] = 0&v3[k − 1] = 0 97.3%
v2[k] = 1&v2[k − 1] = 0&v3[k − 1] = 1 17.1%
v2[k] = 0&v2[k − 1] = 1&v3[k − 1] = 0

e9 ≤ −6.525

15.8%

90.3% 72.8%v2[k] = 0&v2[k − 1] = 1&v3[k − 1] = 1 96.3%
v2[k] = 1&v2[k − 1] = 1&v3[k − 1] = 0 16.3%
v2[k] = 1&v2[k − 1] = 1&v3[k − 1] = 1 0%

· · · · · · · · · · · · · · · · · ·

63

v2[k] = 0&v2[k − 1] = 0&v3[k − 1] = 0

e41 ≤ −3.935

88.8%

50.9% 50.2%v2[k] = 0&v2[k − 1] = 0&v3[k − 1] = 1 88.8%
v2[k] = 1&v2[k − 1] = 0&v3[k − 1] = 0 90.3%
v2[k] = 1&v2[k − 1] = 0&v3[k − 1] = 1 89.3%
v2[k] = 0&v2[k − 1] = 1&v3[k − 1] = 0

e44 ≤ −5.095

28.3%

51.2% 50.3%v2[k] = 0&v2[k − 1] = 1&v3[k − 1] = 1 29.1%
v2[k] = 1&v2[k − 1] = 1&v3[k − 1] = 0 29.9%
v2[k] = 1&v2[k − 1] = 1&v3[k − 1] = 1 30.9%

The results of our key classification experiments are given in Table 5, which
is a simplified table for SipHash-2-1. The full table is given in Appendix.

Explanations for Table 5. Symbol k denotes the input differential bit. The
conditions have been discussed above that there are 2 classes for k = 0 and 8
classes for k > 0. The percentage of a group shows the proportion of keys that
meet the boundary-line inequation. For example, among all 4096 keys in class
v2[k] = 1&v2[k − 1] = 1&v3[k − 1] = 1, only 16.7% of them show e30 ≤ −7.635
under k = 1. Symbol k0 is the expected success rate of correctly recovering v2[k]
(corresponding to a bit of key k0) and symbol k1 is the expected success rate
of correctly recovering v3[k − 1] (corresponding to a bit of key k1). As it can be
seen, k1 is meaningless under k = 0.

The boundary-line is chosen to make great disparities among the propor-
tions. Notice that the boundary-line must be the same in different groups when
determining a certain v2[k]. As for how to define the boundary-line or how to
calculate the expected success rate, more details are given in the next part.
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Table 6. Situations of k = 0 and k > 0

k conditions P (ej ≤ bound) P (ej > bound)

k = 0
v2[k] = 0 p1 1− p1
v2[k] = 1 p2 1− p2

k > 0

v2[k] = 0&v3[k − 1] = 0 p1 1− p1
v2[k] = 0&v3[k − 1] = 1 q1 1− q1
v2[k] = 1&v3[k − 1] = 0 p2 1− p2
v2[k] = 1&v3[k − 1] = 1 q2 1− q2

6.2 Key Recovery Method and Expected Success Rate

Based on the key classification results, we can propose a bit-by-bit key recovery
method. Firstly, we set the input difference on k = 0 and test e26, determining
v2[0] by whether e26 ≤ −5.255 holds. We can continue recovering v2[1] by choos-
ing boundary-line e27 ≤ −5.285 for v2[0] = 0 or e30 ≤ −7.635 for v2[0] = 1 after
v2[0] is determined. Similar procedures can be executed until v2[63].

Now we discuss the specific method and the calculation of expected success
rate in a single step. Table 6 shows the prior probabilities in different situations.

Step k = 0. A similar determination has been discussed in Section 3.
Using Bayes’ Formula, we get:

P (v2[k] = 0|ej ≤ bound) =
p1

p1 + p2

P (v2[k] = 1|ej ≤ bound) =
p2

p1 + p2

P (v2[k] = 0|ej > bound) =
1− p1

2− p1 − p2

P (v2[k] = 1|ej > bound) =
1− p2

2− p1 − p2

And the expected success rate is (1 + |p1 − p2|)/2.
Step k > 0 with v2[k − 1] determined. A problem is we cannot get the value

of v3[k− 1] right now: if we are able to get v3[k− 1], the calculation is the same
as step k = 0.

However, without knowing v3[k− 1], we can still control m[k− 1] to support
the determination. We first fix m[k − 1] = 0, set input difference on m[k], and
test corresponding ej . Then we flip m[k − 1] and perform the same experiment
once again. According to the combination of two results, we are able to reach
a determination. There are three kinds of combinations: both ej ≤ bound hold
(denoted as ll), neither ej ≤ bound hold (denoted as rr), and either of them
holds (denoted as lr). Since we have controlled m[k− 1] in two experiments, we
know one meets v3[k − 1] = 0 and the other meets v3[k − 1] = 1.

According to Table 6, probabilities of those three events can be calculated
as shown in Table 7. Notice that the results of m[k − 1] = 0 and m[k − 1] = 1
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Table 7. Determination with three events

Event B1 : ll B2 : lr B3 : rr

A1 : v2[k] = 0 p1q1 p1 + q1 − 2p1q1 (1− p1)(1− q1)

A2 : v2[k] = 1 p2q2 p2 + q2 − 2p2q2 (1− p2)(1− q2)

are actually relevant, but we still regard them as independent of each other to
give an approximate analysis that can be calculated.

Similarly, we have:

P (v2[k] = 0|ll) = p1q1
p1q1 + p2q2

P (v2[k] = 1|ll) = p2q2
p1q1 + p2q2

P (v2[k] = 0|lr) = p1 + q1 − 2p1q1
p1 + q1 + p2 + q2 − 2p1q1 − 2p2q2

P (v2[k] = 1|lr) = p2 + q2 − 2p2q2
p1 + q1 + p2 + q2 − 2p1q1 − 2p2q2

P (v2[k] = 0|rr) = (1− p1)(1− q1)

2− p1 − q1 − p2 − q2 + p1q1 + p2q2

P (v2[k] = 1|rr) = (1− p2)(1− q2)

2− p1 − q1 − p2 − q2 + p1q1 + p2q2

And the expected success rate is (max(p1q1, p2q2)+max(p1+q1−2p1q1, p2+
q2 − 2p2q2) + max((1− p1)(1− q1), (1− p2)(1− q2))/2.

After v2[k] is determined, we can further recover v3[k−1] (or k1[k−1]) by the
results of experiments m[k − 1] = 0 and m[k − 1] = 1. Denoting m[k − 1] = 0 : l
as S and m[k − 1] = 1 : r as T , we have (the same as Table 2):

P (k1[k − 1] = h3[k − 1]|S) = P (v3[k − 1] = 0|S) = p1
p1 + p2

P (k1[k − 1] = h3[k − 1]|S) = P (v3[k − 1] = 0|S) = 1− p1
2− p1 − p2

P (k1[k − 1] = h3[k − 1]|T ) = P (v3[k − 1] = 1|T ) = 1− p2
2− p1 − p2

P (k1[k − 1] = h3[k − 1]|T ) = P (v3[k − 1] = 1|T ) = p2
p1 + p2

Suppose p1 > p2. It is seen that we should choose k1[k− 1] = h3[k− 1] when
S or T happens and k1[k − 1] = h3[k − 1] when S or T happens. If two results
are contradictory, we cannot get any information about k1[k − 1] because the
probabilities are exactly symmetrical, which means P (k1[k − 1] = h3[k − 1]) =
50% if ST or ST happens, with probability of p1p2 + (1− p1)(1− p2).
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The main question is how to deal with P (k1[k−1] = h3[k−1]|ST ). Actually,
it can hardly be calculated because the relevance of events S and T is hard to
analyze. In this situation, we use the larger of (P (k1[k − 1] = h3[k − 1]|S) and
P (k1[k − 1] = h3[k − 1]|T ) to give an approximate analysis since S and T both
support k1[k − 1] = h3[k − 1].

So the expected success rate of recovering k1[k − 1] is:

(1− p1− p2+2p1p2) ∗
1

2
+ (p1+ p2− 2p1p2) ∗max(

max(p1, p2)

p1 + p2
,
1−min(p1, p2)

2− p1 − p2
)

Take k = 31 and v2[k − 1] = 0 in Table 5 as an example. If we determine
v2[k] = 0, we have p1 = 0% and p2 = 16.8%, with calculated success rate 58.4%.
In the other situation with p1 = 97.3% and p2 = 17.1%, the result is 88.0%. So
the success rate in average is 73.2%. All the probabilities are given in Appendix.

As for how to define the boundary-line, since the formula of expected success
rate calculation has been known, we can scan all 4*64*4096 possible (ej , bound)
(bound > −9 must hold first) for each determination and choose one with the
highest expected success rate, which is a kind of optimization.

In our experiments, the optimization target is the highest expected success
rate for v2[k] only, without any improvement on recovering v3[k − 1]. Moreover,
the analysis in the next section can show that recovering v3[k−1] actually helps
little in decreasing the expected complexity because the success rate of v3[k− 1]
cannot reach such a high level like v2[k].

6.3 Complexity Analysis

We have discussed the calculation of expected success rate. According to our
experimental results, we can recover v2[0] and k0[0] with 100% success rate.
Behind v2[0], we can continue recovering v2[1] and k0[1]: if v2[0] = 0 holds, the
success rate is 100% and if v2[0] = 1 holds, the success rate becomes 51.2%.
So the average success rate of recovering k0[1] is (100% + 51.2%)/2 = 75.6%.
Bits k0[2] to k0[63] can be recovered step by step. The probability of correctly
recovering all k0 is:

100% + 51.2%

2
∗ 99.6% + 75.1%

2
∗ · · · ∗ 85.5% + 86.3%

2
∗ 50.9% + 51.2%

2
> 2−10

Similarly, bits k1[0] to k1[62] can be recovered step by step (bit k1[63] cannot
be recovered by this method). The probability of correctly recovering all k1 is:

50% + 61.8%

2
∗ 62.2% + 86.6%

2
∗· · ·∗ 70.1% + 71.2%

2
∗ 50.2% + 50.3%

2
∗ 1
2
> 2−31

Therefore, the expected success rate of a single guess can reach 2−41. How-
ever, this result is only the highest probability of the nonuniform distribution.
This probability shows that among all 2128 keys, about 2−41 ∗2128 = 287 of them
can directly be recovered by this method with all judgements right. But for the
other proportions, mistakes may occur on some step.

17



For example, although the expected success rate of recovering v2[31] is over
90%, there is still a probability of 10% that the bias test leads to a wrong answer.
In this situation, the solution is related to the exhaustive search under nonuni-
form distribution discussed in Section 3. If the key with highest probability fails,
attackers can continue attempting the key with the second highest probability,
the third and fourth highest probability (by changing k0[63] and k1[63]), and so
on, until the key succeeds.

In an actual attack, the different success rates can help attackers make a sort,
but in theoretical analysis, the different success rates can only make troubles.
It is impossible to calculate the probability of all possible cases and make a
sort in advance to calculate the expected complexity. Therefore, we will give an
approximate analysis based on Theorem 1, Theorem 2 and Theorem 3.

According to the full table of key classification results, it is found that:
Bit k0[0] is totally definite with probability 100%.
Bits k0[63], k1[62] and k1[63] are totally indefinite with probability 50%.
Success rates for bits k0[1] to k0[62] can be regarded as 90%.
Success rates for bits k1[0] to k1[61] can be regarded as 70%.

Then the expected complexity of recovering the entire 128-bit key is:

Ek0k1 ≈ 2Ek0Ek1 ≈ 2 ∗ (2 ∗E(0.9, 62)) ∗ (4 ∗E(0.7, 62))) = 2 ∗ 239.4 ∗ 257.5 = 298

In summary, the expected complexity of recovering the 128-bit key can be
increased from 2127 to 298.

7 Conclusion

This paper mainly provides truncated differential cryptanalysis of reduced-round
SipHash. In order to find out biased output bits, we study the propagation
properties of output differences. As a result, we obtain some output bits with
great imbalances under 1-bit input differences, which can be used to distinguish
SipHash-2-1 and SipHash-2-2 from a pseudorandom function with practical com-
plexity.

Furthermore, we find a fact that the output imbalance under a certain input
difference has a great relation with corresponding key bits. Based on this obser-
vation, some key bits can be recovered with high probabilities. We finally propose
a new key recovery method for SipHash-2-1 that can obtain a nonuniform dis-
tribution of the 128-bit key. This nonuniform distribution can help decrease the
expected complexity of exhaustive search.

Our results do not endanger the recommended version SipHash-2-4, which is
still remained indistinguishable from a pseudorandom function. But this work
reveals that for the version of SipHash-2-2, some information of the key can
be obtained especially when attackers have the ability to deal with higher data
complexity. We also believe that this key recovery method can be applied in
other ARX-based algorithms as long as the output bias can be detected and a
proper classification exists.
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Appendix

The full table of our key classification experiments is given below.
For simplicity, we use the common condition v2[k − 1] to represent the de-

termination with four groups v2[k] = 0&v3[k − 1] = 0, v2[k] = 0&v3[k − 1] = 1,
v2[k] = 1&v3[k − 1] = 0 and v2[k] = 1&v3[k − 1] = 1.

Symbols p1, q1, p2, q2 denote the proportions of corresponding groups like
Table 6. Analysis of the expected success rate (for both of k0 and k1) has been
presented in Section 6.

Table 8. Results of key classification experiments (full table)

k conditions boundline p1 q1 p2 q2 k0 k1
0 / e26 ≤ −5.255 0% / 100% / 100% /
1 v2[k − 1] = 0 e27 ≤ −5.285 0% 0% 100% 100% 100% 50%
1 v2[k − 1] = 1 e30 ≤ −7.635 19.5% 51.0% 49.7% 16.7% 51.2% 61.8%
2 v2[k − 1] = 0 e44 ≤ −6.465 0% 0.6% 99.6% 51.1% 99.6% 62.2%
2 v2[k − 1] = 1 e44 ≤ −6.535 0.3% 98.7% 48.5% 0% 75.1% 86.6%
3 v2[k − 1] = 0 e29 ≤ −5.485 0% 3.8% 96.4% 27.5% 96.8% 67.0%
3 v2[k − 1] = 1 e29 ≤ −5.475 4.1% 97.1% 28.4% 0% 84.4% 79.0%
4 v2[k − 1] = 0 e46 ≤ −6.515 0% 10.5% 97.2% 23.1% 93.7% 70.1%
4 v2[k − 1] = 1 e46 ≤ −6.525 11.4% 96.6% 22.0% 0% 87.5% 75.4%
5 v2[k − 1] = 0 e47 ≤ −6.505 0% 13.3% 97.6% 19.9% 92.4% 71.9%
5 v2[k − 1] = 1 e31 ≤ −5.685 13.1% 96.3% 17.4% 0% 89.7% 73.7%
6 v2[k − 1] = 0 e32 ≤ −4.825 0% 13.2% 96.4% 15.9% 91.9% 72.0%
6 v2[k − 1] = 1 e32 ≤ −4.825 14.1% 96.4% 16.0% 0% 90.4% 73.2%
7 v2[k − 1] = 0 e33 ≤ −4.745 0% 15.4% 96.5% 15.6% 90.8% 72.7%
7 v2[k − 1] = 1 e33 ≤ −4.725 16.5% 98.0% 16.6% 0% 90.9% 73.8%
8 v2[k − 1] = 0 e34 ≤ −4.835 0% 15.3% 96.4% 16.4% 90.9% 72.5%
8 v2[k − 1] = 1 e34 ≤ −4.845 15.3% 96.2% 15.5% 0% 90.6% 72.6%
9 v2[k − 1] = 0 e51 ≤ −6.515 0% 16.7% 97.3% 15.7% 90.5% 73.5%
9 v2[k − 1] = 1 e51 ≤ −6.545 15.8% 95.7% 15.3% 0% 90.6% 72.2%
10 v2[k − 1] = 0 e52 ≤ −6.515 0% 15.9% 97.1% 15.8% 90.8% 73.2%
10 v2[k − 1] = 1 e52 ≤ −6.505 16.5% 97.2% 16.3% 0% 90.7% 73.2%
11 v2[k − 1] = 0 e53 ≤ −6.515 0% 16.2% 97.2% 17.9% 90.8% 72.8%
11 v2[k − 1] = 1 e53 ≤ −6.535 16.4% 96.3% 15.6% 0% 90.7% 72.5%
12 v2[k − 1] = 0 e54 ≤ −6.525 0% 14.8% 96.4% 16.5% 91.1% 72.3%
12 v2[k − 1] = 1 e54 ≤ −6.565 14.8% 94.9% 15.0% 0% 90.3% 71.9%
13 v2[k − 1] = 0 e55 ≤ −6.515 0% 18.0% 97.0% 16.3% 89.8% 73.5%
13 v2[k − 1] = 1 e55 ≤ −6.485 17.9% 97.7% 17.5% 0% 90.3% 73.4%
14 v2[k − 1] = 0 e56 ≤ −6.565 0% 14.5% 94.4% 13.8% 90.3% 71.6%
14 v2[k − 1] = 1 e56 ≤ −6.515 16.2% 96.8% 17.3% 0% 90.0% 73.2%
15 v2[k − 1] = 0 e57 ≤ −6.525 0% 15.9% 96.5% 15.5% 90.6% 72.9%
15 v2[k − 1] = 1 e57 ≤ −6.505 17.4% 97.2% 17.0% 0% 90.3% 73.1%
16 v2[k − 1] = 0 e42 ≤ −5.585 0% 14.4% 96.3% 14.9% 91.2% 72.5%
16 v2[k − 1] = 1 e42 ≤ −5.565 16.2% 97.1% 15.5% 0% 91.0% 73.0%
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17 v2[k − 1] = 0 e43 ≤ −5.575 0% 13.8% 95.6% 16.0% 91.2% 71.7%
17 v2[k − 1] = 1 e59 ≤ −6.545 15.3% 96.3% 15.0% 0% 90.9% 72.6%
18 v2[k − 1] = 0 e60 ≤ −6.515 0% 16.8% 96.5% 16.8% 90.2% 72.8%
18 v2[k − 1] = 1 e60 ≤ −6.535 15.7% 96.6% 15.9% 0% 90.6% 72.9%
19 v2[k − 1] = 0 e61 ≤ −6.515 0% 16.5% 96.9% 17.5% 90.5% 72.8%
19 v2[k − 1] = 1 e61 ≤ −6.535 16.5% 96.3% 15.7% 0% 90.6% 72.5%
20 v2[k − 1] = 0 e62 ≤ −6.535 0% 16.2% 96.5% 15.6% 90.4% 72.9%
20 v2[k − 1] = 1 e46 ≤ −5.485 15.1% 96.5% 16.0% 0% 90.5% 73.0%
21 v2[k − 1] = 0 e63 ≤ −6.515 0% 16.4% 97.2% 16.5% 90.6% 73.2%
21 v2[k − 1] = 1 e47 ≤ −5.455 16.0% 97.3% 15.7% 0% 91.0% 73.2%
22 v2[k − 1] = 0 e48 ≤ −5.465 0% 16.4% 96.6% 16.7% 90.4% 72.8%
22 v2[k − 1] = 1 e48 ≤ −5.445 17.7% 97.4% 18.1% 0% 89.9% 73.4%
23 v2[k − 1] = 0 e49 ≤ −5.455 0% 17.5% 96.8% 17.7% 89.9% 72.9%
23 v2[k − 1] = 1 e49 ≤ −5.475 16.0% 96.0% 16.4% 0% 90.1% 72.6%
24 v2[k − 1] = 0 e50 ≤ −5.485 0% 14.1% 96.1% 15.7% 91.3% 72.1%
24 v2[k − 1] = 1 e50 ≤ −5.465 15.5% 96.9% 16.3% 0% 90.5% 73.2%
25 v2[k − 1] = 0 e51 ≤ −5.455 0% 16.0% 97.2% 16.7% 90.8% 73.0%
25 v2[k − 1] = 1 e51 ≤ −5.465 16.4% 96.9% 16.2% 0% 90.6% 73.0%
26 v2[k − 1] = 0 e3 ≤ −8.635 0% 8.3% 98.2% 8.8% 95.0% 73.6%
26 v2[k − 1] = 1 e3 ≤ −8.605 9.2% 98.6% 8.7% 0% 95.0% 73.9%
27 v2[k − 1] = 0 e5 ≤ −6.515 0% 15.7% 96.1% 16.9% 90.5% 72.3%
27 v2[k − 1] = 1 e5 ≤ −6.525 15.8% 96.5% 14.8% 0% 91.1% 72.6%
28 v2[k − 1] = 0 e17 ≤ −8.995 0% 15.9% 100% 15.9% 92.0% 75.0%
28 v2[k − 1] = 1 e17 ≤ −8.995 16.5% 100% 17.5% 0% 91.2% 75.3%
29 v2[k − 1] = 0 e7 ≤ −6.525 0% 16.2% 96.8% 15.6% 90.6% 73.1%
29 v2[k − 1] = 1 e7 ≤ −6.535 16.3% 96.1% 15.8% 0% 90.5% 72.4%
30 v2[k − 1] = 0 e8 ≤ −6.515 0% 15.7% 97.3% 15.7% 91.0% 73.3%
30 v2[k − 1] = 1 e8 ≤ −6.535 16.9% 96.3% 15.6% 0% 90.7% 72.3%
31 v2[k − 1] = 0 e9 ≤ −6.505 0% 16.8% 97.3% 17.1% 90.5% 73.2%
31 v2[k − 1] = 1 e9 ≤ −6.525 15.8% 96.3% 16.3% 0% 90.3% 72.8%
32 v2[k − 1] = 0 e58 ≤ −5.485 0% 15.6% 96.6% 16.5% 90.8% 72.6%
32 v2[k − 1] = 1 e10 ≤ −6.515 16.6% 97.4% 16.4% 0% 90.7% 73.3%
33 v2[k − 1] = 0 e59 ≤ −5.495 0% 14.7% 96.3% 16.0% 91.1% 72.3%
33 v2[k − 1] = 1 e11 ≤ −6.525 16.7% 96.7% 16.3% 0% 90.5% 72.8%
34 v2[k − 1] = 0 e12 ≤ −6.535 0% 15.6% 96.8% 16.0% 90.8% 72.8%
34 v2[k − 1] = 1 e60 ≤ −5.485 17.0% 96.6% 15.9% 0% 90.7% 72.6%
35 v2[k − 1] = 0 e61 ≤ −5.495 0% 15.0% 96.2% 15.4% 90.9% 72.5%
35 v2[k − 1] = 1 e61 ≤ −5.495 14.8% 96.0% 16.0% 0% 90.3% 72.8%
36 v2[k − 1] = 0 e14 ≤ −6.555 0% 15.3% 95.6% 15.7% 90.5% 72.1%
36 v2[k − 1] = 1 e14 ≤ −6.525 17.6% 96.9% 17.8% 0% 89.8% 73.1%
37 v2[k − 1] = 0 e15 ≤ −6.565 0% 14.9% 95.3% 15.1% 90.6% 72.0%
37 v2[k − 1] = 1 e63 ≤ −5.485 16.3% 96.4% 15.9% 0% 90.5% 72.6%
38 v2[k − 1] = 0 e16 ≤ −6.535 0% 16.3% 97.0% 16.0% 90.6% 73.1%
38 v2[k − 1] = 1 e16 ≤ −6.565 14.6% 96.3% 15.1% 0% 90.9% 72.8%
39 v2[k − 1] = 0 e16 ≤ −8.995 0% 19.4% 93.0% 20.3% 87.5% 70.7%
39 v2[k − 1] = 1 e16 ≤ −8.985 18.7% 94.0% 19.1% 0% 88.0% 71.5%
40 v2[k − 1] = 0 e2 ≤ −3.925 0% 23.9% 90.8% 24.1% 84.5% 69.9%
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40 v2[k − 1] = 1 e17 ≤ −6.155 23.4% 90.4% 22.4% 0% 85.1% 69.4%
41 v2[k − 1] = 0 e3 ≤ −4.195 0% 21.3% 93.3% 20.7% 86.7% 71.3%
41 v2[k − 1] = 1 e3 ≤ −4.185 21.1% 93.3% 21.9% 0% 86.4% 71.3%
42 v2[k − 1] = 0 e19 ≤ −8.995 0% 5.1% 99.4% 4.9% 97.2% 74.6%
42 v2[k − 1] = 1 e19 ≤ −8.965 5.2% 99.6% 5.4% 0% 97.1% 74.8%
43 v2[k − 1] = 0 e21 ≤ −5.995 0% 12.8% 96.6% 13.1% 92.2% 72.7%
43 v2[k − 1] = 1 e21 ≤ −5.955 13.8% 97.7% 13.7% 0% 92.1% 73.4%
44 v2[k − 1] = 0 e22 ≤ −5.815 0% 12.4% 98.6% 12.2% 93.2% 74.1%
44 v2[k − 1] = 1 e22 ≤ −5.855 11.1% 96.5% 11.4% 0% 92.7% 72.8%
45 v2[k − 1] = 0 e23 ≤ −5.765 0% 12.3% 98.1% 14.0% 93.0% 73.3%
45 v2[k − 1] = 1 e23 ≤ −5.775 12.3% 97.9% 13.3% 0% 92.4% 73.9%
46 v2[k − 1] = 0 e8 ≤ −5.415 0% 14.0% 97.0% 15.2% 91.7% 72.8%
46 v2[k − 1] = 1 e8 ≤ −5.415 14.4% 97.5% 14.5% 0% 91.7% 73.4%
47 v2[k − 1] = 0 e25 ≤ −6.165 0% 9.4% 98.7% 9.5% 94.7% 74.1%
47 v2[k − 1] = 1 e25 ≤ −6.135 10.7% 99.4% 10.5% 0% 94.5% 74.5%
48 v2[k − 1] = 0 e10 ≤ −5.435 0% 20.2% 96.2% 20.5% 88.4% 72.6%
48 v2[k − 1] = 1 e10 ≤ −5.445 19.6% 95.2% 18.7% 0% 88.7% 71.8%
49 v2[k − 1] = 0 e11 ≤ −5.495 0% 15.9% 94.8% 16.1% 89.9% 71.7%
49 v2[k − 1] = 1 e11 ≤ −5.475 16.6% 96.0% 16.2% 0% 90.2% 72.4%
50 v2[k − 1] = 0 e12 ≤ −5.495 0% 16.3% 96.2% 15.1% 90.3% 72.9%
50 v2[k − 1] = 1 e12 ≤ −5.505 15.1% 95.6% 15.6% 0% 90.3% 72.3%
51 v2[k − 1] = 0 e29 ≤ −6.535 0% 15.8% 96.4% 15.7% 90.6% 72.7%
51 v2[k − 1] = 1 e13 ≤ −5.495 15.2% 95.7% 15.7% 0% 90.3% 72.4%
52 v2[k − 1] = 0 e30 ≤ −6.535 0% 16.3% 95.9% 16.1% 90.1% 72.5%
52 v2[k − 1] = 1 e14 ≤ −5.495 15.1% 96.1% 15.6% 0% 90.6% 72.7%
53 v2[k − 1] = 0 e31 ≤ −6.555 0% 14.9% 95.1% 15.8% 90.5% 71.7%
53 v2[k − 1] = 1 e31 ≤ −6.495 17.4% 97.9% 18.3% 0% 90.0% 73.8%
54 v2[k − 1] = 0 e32 ≤ −6.375 0% 16.3% 97.2% 17.2% 90.7% 73.0%
54 v2[k − 1] = 1 e16 ≤ −5.515 13.9% 94.6% 14.1% 0% 90.6% 71.6%
55 v2[k − 1] = 0 e17 ≤ −5.285 0% 16.6% 97.9% 16.1% 90.8% 73.8%
55 v2[k − 1] = 1 e17 ≤ −5.315 14.2% 96.6% 15.4% 0% 90.8% 73.1%
56 v2[k − 1] = 0 e18 ≤ −5.255 0% 18.1% 98.2% 14.7% 90.2% 74.6%
56 v2[k − 1] = 1 e18 ≤ −5.275 15.6% 96.7% 15.1% 0% 91.1% 72.8%
57 v2[k − 1] = 0 e19 ≤ −5.255 0% 15.1% 97.5% 13.8% 91.4% 73.7%
57 v2[k − 1] = 1 e19 ≤ −5.265 15.6% 96.5% 14.3% 0% 91.4% 72.4%
58 v2[k − 1] = 0 e20 ≤ −5.275 0% 13.8% 94.6% 13.2% 90.8% 71.8%
58 v2[k − 1] = 1 e20 ≤ −5.235 15.2% 97.7% 15.9% 0% 91.1% 73.7%
59 v2[k − 1] = 0 e37 ≤ −5.815 0% 14.9% 97.4% 14.3% 91.4% 73.4%
59 v2[k − 1] = 1 e37 ≤ −5.835 13.5% 96.4% 14.7% 0% 91.1% 73.0%
60 v2[k − 1] = 0 e37 ≤ −7.985 0% 11.0% 95.6% 10.8% 92.5% 72.1%
60 v2[k − 1] = 1 e37 ≤ −7.925 13.3% 97.4% 13.6% 0% 92.1% 73.4%
61 v2[k − 1] = 0 e39 ≤ −5.545 0% 14.1% 98.4% 12.8% 92.2% 74.2%
61 v2[k − 1] = 1 e39 ≤ −5.535 14.7% 98.2% 13.0% 0% 92.7% 73.4%
62 v2[k − 1] = 0 e39 ≤ −7.085 0% 21.7% 90.8% 20.6% 85.5% 70.1%
62 v2[k − 1] = 1 e39 ≤ −7.065 21.1% 93.1% 21.9% 0% 86.3% 71.2%
63 v2[k − 1] = 0 e41 ≤ −3.935 88.8% 88.8% 90.3% 89.3% 50.9% 50.2%
63 v2[k − 1] = 1 e44 ≤ −5.095 28.3% 29.1% 29.9% 30.9% 51.2% 50.3%
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