
Kadcast: A Structured Approach to Broadcast
in Blockchain Networks

Elias Rohrer
elias.rohrer@tu-berlin.de

Technical University of Berlin
Berlin, Germany

Florian Tschorsch
�orian.tschorsch@tu-berlin.de
Technical University of Berlin

Berlin, Germany

ABSTRACT
In order to propagate transactions and blocks, today’s blockchain
systems rely on unstructured peer-to-peer overlay networks. In
such networks, broadcast is known to be an ine�cient operation
in terms of message complexity and overhead. In addition to the
impact on the system performance, ine�cient or delayed block
propagation may have severe consequences regarding security and
fairness of the consensus layer. Therefore, we introduce Kadcast,
a novel peer-to-peer protocol for block propagation in blockchain
networks. Kadcast utilizes the well-known structured overlay topol-
ogy of Kademlia to realize an e�cient broadcast operation with
tunable overhead. As our protocol is based on UDP, we incorporate
forward error correction (FEC) to increase reliability while still
maintaining its lightweight protocol architecture. To this end, we
build a probabilistic model to analyze Kadcast’s resilience to packet
losses as well as random and adversarial node failures. Moreover, we
evaluate Kadcast’s block delivery performance, broadcast reliability,
e�ciency, and security based on advanced network simulations,
which con�rm the merits of the Kadcast protocol.

1 INTRODUCTION
Bitcoin [42] fundamentally challenged the role of banks by enabling
decentralized money transfer on the Internet. It builds upon a peer-
to-peer network to implement an electronic cash system, where
nodes can interact directly without intermediaries. Following its
genesis in 2008, a high number of blockchain networks emerged.
In these systems, nodes may issue transactions by broadcasting
them in the overlay network. Validator nodes collect and verify
transactions and periodically consolidate them into blocks, which
are appended to a replicated, immutable ledger—the blockchain.
Blocks are broadcast in the network as well, which gives every
node the capability to verify correctness locally. That is, nodes run
a distributed agreement protocol to enable state replication.

Broadcast is accordingly the most commonly used network op-
eration in blockchain networks. However, current implementations
are typically based on unstructured overlay networks, which is
not necessarily favorable for this kind of operation: while being
relatively robust, broadcast in unstructured overlays su�ers from
high message overhead, as duplicates are introduced to the system.
To reduce the load, many networks spread block messages only by
gossiping to a subset of neighbors, which in turn might introduce
additional propagation delays.

To date, the scalability of blockchain protocols is a huge concern,
and the ine�ciency of the utilized network protocols is a limiting
factor for innovations striving for higher transaction rates, such as
increased limits for block sizes, block rates, or changes that depart

even further from the Nakamoto consensus [12, 20, 49]. Further-
more, it has been shown that the block propagation delay has severe
e�ects on the consistency of blockchain networks, leading to higher
rates of stale blocks and blockchain forks [27]. As this opens oppor-
tunities for fraud [15, 50], alleviating the network-layer de�ciencies
is not only a matter of performance, but also a pressing issue of
fairness and security. While it has been shown that unsolicited block
propagation has the largest impact on the stale block rate [27], it
leads to �ooding the network with block data, which the network
architectures currently deployed in the blockchain landscape can-
not handle. The emergence of third-party relay networks [25, 35]
emphasize the need for an improved propagation mechanism. We
however consider them orthogonal to our work, because they do
not address the inherent shortcomings of blockchain networks.

In this paper, we present Kadcast, a new broadcast overlay for
blockchain networks, based on the Kademlia [40] architecture. Kad-
cast allows for a more e�cient broadcast operation with tunable
redundancy and overhead. To this end, we exploit the structured
overlay topology to delegate broadcast responsibilities for subtrees
with decreasing height. By combining redundant execution of our
algorithm with forward error correction (FEC), we achieve a high
degree of reliability and resilience in the face of packet loss, as
well as random and adversarial node failures. Kadcast is design-
compatible with many open and decentralized blockchain systems.
Our evaluation shows that Kadcast distributes blocks on average
30% faster than the currently deployed blockchain protocols in
a Bitcoin-like scenario, and even faster under an Ethereum-like
parametrization with smaller block intervals and block sizes. Kad-
cast increases the e�ciency of block propagation, making room to
introduce additional features such as unsolicited block push. The
simulations indicate that Kadcast achieves similar, often better, se-
curity results in terms of the stale block rate, in particular for the
Ethereum-like case.

Our key contributions can be summarized as follows: (1) We
design an e�cient broadcast protocol for blockchain networks,
which exploits Kademlia’s structured architecture. (2) We introduce
parallelization and FEC to improve the reliability and resilience
of our algorithm in a completely adjustable and predictable way.
(3) We discuss attack vectors, provide mitigation strategies against
Sybil and Eclipse attacks, and analyze the network’s resilience to
adversarial nodes obstructing block delivery. (4) We conducted a
comprehensive simulation study and evaluated the performance,
reliability, e�ciency, and security of Kadcast in comparison to
“VanillaCast”, a paradigmatic blockchain protocol, which general-
izes the currently prevalent networking layer of blockchains. To
this end, we developed a new simulation framework for blockchain

networks, bns, which focuses on networking aspects, and which
we make accessible to the research community.

The remainder of this paper is structured as follows. First, we
describe primitives of information dissemination currently found
in the blockchain landscape and introduce the VanillaCoin mod-
el in Section 2. In Section 3, we introduce Kadcast, including its
overlay construction, block propagation algorithm, and adjustable
reliability factors. Subsequently, we analyze Kadcast’s security and
discuss various threats and mitigation strategies in Section 4. We
present our simulation model and evaluation results in Section 5.
In Section 6, we discuss related work and emphasize the novelty of
our approach, before we conclude the paper in Section 7.

2 BLOCKCHAIN NETWORKS
In this section, we portray the workings of blockchain systems in
a generalized form. To this end, we �rst introduce a straw man
blockchain design and then discuss the information dissemination
method most prevalent in current blockchain networks.

2.1 VanillaCoin: A Paradigmatic Blockchain
For the sake of clarity, we introduce a prototypical blockchain
protocol, VanillaCoin, that mirrors the quintessential operations
of current blockchain systems. This allows us to describe how
blockchain networks generally function, while abstracting from
the particularities of speci�c implementations.

The central purpose of VanillaCoin is to keep track of the current
state of accounts, which are bound to cryptographic key pairs.
Entities that are in possession of this key material function as
account owners and are able to issue publicly veri�able transactions,
i.e., transitions in the account state. Note that this is independent
of the nature of the managed state: it can solely consist of a simple
(�nancial) account balance, as for example in Bitcoin, or hold more
complex data, as in Ethereum. Moreover, we do not specify how the
account owners come to possession of the required key materials,
as the VanillaCoin model aims to capture open blockchain networks
as well as networks with restricted access, i.e., so-called private
blockchains. That is, the owners might be able to simply create new
accounts by generating a new key pair, or they would have to be
approved by some sort of registry or public key infrastructure.

Transactions, issued by account owners, are broadcast in the
network of VanillaCoin nodes, whereby they also reach validator
nodes. Elected validators (a.k.a., “round leaders”) collect and verify
new transactions, decide on an authoritative transition ordering,
and �nally batch them into blocks, e�ectively issuing a new global
state transition and initializing a new round.1 Again, depending on
the system speci�cations, leaders may be elected due to some kind
of byzantine fault tolerant consensus mechanism, e.g., Nakamoto-
style Proof-of-Work [42], Proof-of-Stake [33], or PBFT [7]. After
their issuance, blocks are broadcast to all nodes in the blockchain
network, which append them to the local state of their ledger. The
nodes are able to independently verify the validity of incoming
state transition based on the VanillaCoin consensus rules and the
previous blockchain state. Such protocols have been proven to be

1In [20], Eyal et al. observe that the two described operations of leader election and
transaction serialization do not necessarily have to be ful�lled by the same entity.
However, as they often are, we assume this is the case for our VanillaCoin model.

Required
Super�ous

Figure 1: Example broadcast in an unstructured overlay.

consistent in the partial synchronous network model [26, 33, 34, 45],
i.e., under the assumption that blocks are delivered to all nodes in
a timely fashion (with regard to an upper bound).

The resulting VanillaCoin blocks are of a certain block size and
are issued at a rate roughly following a certain block interval. These
parameters are especially interesting from a networking perspec-
tive, since they not only determine the transaction throughput of
the system, but also the bandwidth limit the networking layer has
to be able to handle, which is known to be a bottleneck in scaling
blockchain systems [12].

To summarize, the VanillaCoin protocol combines the concept of
distributed state machine replication with a consensus mechanism
to implement a byzantine fault tolerant agreement protocol.

2.2 Information Dissemination in Blockchain
Networks

As we have seen, VanillaCoin mimics the typical blockchain op-
erations, and as these systems, VanillaCoin heavily relies on the
networking layer for transaction and block propagation. In partic-
ular, it requires an e�cient broadcast operation, since most data
items are typically transferred to all participants in the network.
In the following, we give a blueprint of VanillaCoin’s networking
layer, VanillaCast, which again abstracts from the speci�cs of each
individual blockchain system. However, more detailed information
on the Bitcoin [42] and Ethereum [18] networking layers can be
found in Appendix A and Appendix B, respectively.

When joining the VanillaCast network, nodes retrieve the ad-
dresses of a number of other participants by the means of an ade-
quate bootstrapping mechanism. Then, it establishes TCP connec-
tions to a random subset of nodes R ⊂ N , which are henceforth its
neighbors in the peer-to-peer network. This networking paradigm
is known as an unstructured overlay network. As nodes are only
able to communicate to the rest of the network via the neighbors,
messages are passed hop-by-hop in a store-and-forward manner.
In particular, upon arrival of new transactions and blocks, each
VanillaCoin node �rst stores them in local memory, veri�es their
validity based on its current blockchain state, and then forwards
them to adjacent nodes in the network.

To ensure timely message delivery via the shortest path, the
messages are forwarded to all neighbors, which then follow the
same protocol. However, while this propagation method indeed
covers the shortest path, it actually covers all paths in the network.
As Figure 1 illustrates, this introduces a large amount of super�ous

2

messages to the network. Therefore, this kind of broadcast oper-
ation exhibits a high message complexity (O(N · R)), which has
been shown to have severe consequences on network scalability in
the past [8]. Therefore, VanillaCast tries to reduce the net accruing
tra�c by introducing a request-response scheme in which every
node �rst advertises larger data items to neighbor nodes, whose
transmission then may subsequently be requested. However, this
again adds at least one round-trip time (RTT) per hop to the mes-
sage propagation delay. In the case of blockchain networks, such
delayed block propagation however has been shown to be unfavor-
able compared to unsolicited block propagation [27]. However, as
unsolicited block relay would lead to blindly �ooding the network,
it is currently not considered option for blockchain systems based
on unstructured overlay networks, such as VanillaCoin.

3 THE KADCAST PROTOCOL
In contrast to the prevalence of VanillaCoin-like approaches to
networking in blockchain systems, we believe that a thorough
exploration of the design space is necessary to facilitate higher
networking performance. In particular the unpredictable nature of
information dissemination in unstructured peer-to-peer networks
is an issue when it comes to �nd new solutions that are tailored
to the problem at hand. We therefore in the following introduce
Kadcast, a new structured approach to information propagation in
blockchain networks, whose tunable characteristics create a more
predictable environment for optimized block transmission.

While Kadcast can be used for other broadcast operations, such
as transaction propagation, such an applicationmay have additional
requirements, e.g., privacy-wise. It is however considered out-of-
scope of this initial discussion. In the following, we therefore mainly
focus on block propagation. Kadcast is based on Kademlia [40], a
DHT design that is typically used for e�cient lookup procedures.
Kadcast, however, makes use of Kademlia’s overlay structure to
enable an e�cient broadcast. In the following, we describe the
overlay construction and the broadcast algorithm as the two main
building blocks of our approach. Moreover, we introduce means to
improve the performance, reliability, and resilience of Kadcast.

3.1 Overlay Construction
Kademlia is an UDP-based peer-to-peer protocol in which nodes
form a structured overlay network. Nodes in the network are ad-
dressed by unique L-bit binary node identi�ers, in the following
denoted as ID, which are generated upon joining the network.
The ID determines a node’s position in a binary routing tree that
builds the foundation of Kademlia’s structured peer-to-peer overlay.
An example of such a tree for a 4-bit address space is shown in the
upper part of Figure 2. Please note that this tree is never actually
constructed and serves as a mental model only. Peers, however, still
use their local state to traverse the network structure e�ciently,
yielding a message complexity of O(logN). Therefore, nodes main-
tain routing state and organize known nodes in so-called k-buckets,
storing triplets (ip_addr, port, ID). Each bucket is a list of the k
least recently seen nodes that have a certain distance, in relation
to the node identi�er ID. The factor k is a system-wide parameter
which determines the routing state and the lookup complexity.

1

1

1

1 0

0

1 0

0

1

1 0

0

1 0

0

1

1

1 0

0

1 0

0

1

1 0

0

1 0

h = 0 h = 1 h = 2 h = 3

B0 B1

h = 0

B2

h = 0

h = 0h = 1

B3

h = 0 h = 1

h = 0

h = 0

h = 0h = 1h = 2

Figure 2: Example broadcast initiated by node 1111 (β = 1).
Colors indicate node distances in the spanning tree, relative
to the initiator.

Characteristically, Kademlia’s notion of distance is based on the
non-euclidean XOR-metric, calculated by applying the ⊕-operation
on two node identi�ers and interpreting the result as an integer
number, i.e.,

d(x,y) = (x ⊕ y)10.

This means, that for node identi�ers of length L, a node ID0 holds
buckets Bi , i = 0 . . . L − 1, whereby bucket Bi holds the node
information of k nodes with IDj so that 2i ≤ d(ID0, IDj) < 2i+1. It
follows that the node space covered by each bucket is exponential
with i . This can be illustrated by that fact that, since the XOR-metric
is unidirectional, the bucket B0 only holds one speci�c node of
distance one, while BL−1 covers a possible node space of 2L−1 nodes.
The buckets can be thought of holding up to k nodes belonging
to a series of subtrees with identi�ers whose binary pre�xes do
not match the nodes’ pre�x, i.e., also not containing the node itself.
For example, given the fully populated tree shown in Figure 2, the
4 buckets of node ID0 = 1111 would hold nodes from the ranges
1110, 110*, 10**, and 0***, respectively. If a node wants to add a
new entry to a given bucket that already holds k entries, it employs
a least recently used (LRU) drop policy. Before dropping an entry
from the list, the peer will send a PING message (see Figure 3) to
see whether the respective node is still reachable. Only if the node
is not reachable anymore, it will be dropped. This way, the protocol
favors older, more stable nodes over fresh ones. It thereby also
circumvents an eviction bias towards fresh, potentially malicious
peers, which hardens the network against security issues, such as
the eclipse attacks described in [28].

When a node �rst joins the network, it has to know the address
of at least one bootstrapping node. It therefore sends PINGmessages
to known nodes to check whether they are actually online. Addi-
tionally, PING transmits the sending node’s routing information to
the recipient, thereby distributing its existence in the network. In
fact, similar patterns can be found throughout the protocol, where

3

TY
PE

PING:

SENDER_ID ID_NONCE

TY
PE

PONG:

SENDER_ID ID_NONCE

TY
PE

FIND_NODE:

SENDER_ID TARGET_ID

TY
PE

NODES:

SENDER_ID COUNT NODE_TUPLES

TY
PE

CHUNK:

SENDER_ID BLOCK_ID CHUNK_ID BCAST_HEIGHT CHUNK_DATA

TY
PE

REQUEST_BLOCK:

SENDER_ID BLOCK_ID

0 1 33 37 0 1 33 37

0 1 33 65 0 1 33 35

0 1 33 65 69 71

0 1 33 65

Figure 3: Kadcast message types.

every seenmessage updates not only the sender’s but also the recipi-
ent’s buckets. This soft-state approach makes for a very lightweight
overlay membership management.

After the initial bootstrapping step, each Kadcast node begins
discovering the network to update its routing information, which
it repeats periodically throughout its lifetime. Initially, the joining
node looks up its own ID, which returns a set of nodes closely
positioned to its own network location. Moreover, each node peri-
odically refreshes every bucket it has not seen some activity from
in the last hour: for each such bucket, it picks a random ID with
appropriate distance and performs a look up to populate its buckets
with fresh routing information.

The lookup procedure allows a node to retrieve a set of k nodes
closest to a speci�c ID in the address space. The procedure of �nding
the k closest nodes is carried out by iteratively narrowing down
the search space and issuing FIND_NODE messages (see Figure 3) to
nodes which are closer to the ID. To this end, (1) the node looks up
the α closest nodes regarding the XOR-metric in its own buckets. (2)
It queries these α nodes for the ID by sending FIND_NODEmessages.
(3) The queried nodes respond with a set of k nodes they believe to
be closest to ID. (4) Based on the acquired information, the node
builds a new set of closest nodes and iteratively repeats steps (1)-(3),
until an iteration does not yield any nodes closer than the already
known ones anymore.

Like the bucket size k , α is a globally known parameter deter-
mining the redundancy (and hence also the overhead) of the lookup
procedure. At the same time, these parameters in�uence the lookup
latency, as the parallel nature of the lookup procedure optimizes the
needed delay. Typical parameter values are k ∈ [20, 100] and α = 3.
As the Kadcast protocol is not used to store and retrieve values, it
does not incorporate other message types found in Kademlia.

3.2 Block Propagation
As described before, most blockchain networks rely on TCP-based
transport protocols for block propagation, which ensure the reliable
transmission of arbitrarily large data. In contrast, the Kadcast proto-
col is UDP-based. While this allows for a lightweight protocol with
reduced message complexity, it also entails that it has to handle

Algorithm 1 Redundant broadcasting algorithm.
Require: broadcast height h,

chunk data c ,
set of known chunks C ,
redundancy factor β
if c ∈ C then abort
C ← C ∪ {c}
for i = 0→ h − 1 do

R ← randomly_select (β,Bi)
for all r ∈ R do

send_chunk(r ,d, i)
end for

end for

block data serialization and reliable transmission on the applica-
tion layer. Therefore, when the propagation of a block is initiated,
Kadcast �rst segments its data in packet-sized chunks that are then
distributed in the network via corresponding messages (see Fig-
ure 3) and according to the broadcast procedure (cf. Algorithm 1),
which is a modi�ed version of the algorithm in [13].

Kademlia’s bucket logic partitions the identi�er space in subtrees
whose sizes depend on their distance to the current node. The
Kadcast protocol makes use of this fact to generate a spanning
tree that allows for an e�cient broadcast operation: the algorithm
delegates broadcast responsibilities for subtrees with decreasing
heighth to other nodes, which recursively repeat the process within
their delegated area. Therefore, when a miner initiates the block
broadcast, it is responsible for the entire tree with height h = L.
The miner picks a random peer from each bucket and delegates
broadcast responsibilities by sending CHUNK messages, which carry
the data and her routing information. It assigns a new height h,
which e�ectively determines the receiver’s broadcast responsibility.
When a node receives a CHUNK, it repeats the process in a store-and-
forward manner: it bu�ers the data, picks a random node from its
buckets up to (but not including) height h, and forwards the CHUNK
with a smaller value for h accordingly.

This means, with every step, another set of nodes is designated
to be responsible for chunk delivery in their respective subtrees. A
simple example for L = 4 can be seen in Figure 2: node ID0 = 1111
initiates a broadcast in the network, and sends four CHUNKmessages
with heightsh = 0 . . . 3 to one random node picked from each of the
respective buckets Bi , i = 0 . . . 3. The receiving nodes repeat this
procedure, again issuing messages to nodes from bucket numbers
less then their assigned height. Hence, the broadcast operation is
performed on decreasing subtree sizes, and therefore guaranteed to
terminate in O(logn) steps. Upon receipt of all chunks required to
rebuild a block, the node follows Bitcoin’s typical block veri�cation
procedure before continuing the broadcast operation.

3.3 Reliability of Block Delivery
If we assume constant transmission times, honest network partici-
pants, and no packet loss in the underlying network, the propaga-
tion method just discussed would result in an optimal broadcast
tree. In this scenario, every node receives the block exactly once and

4

hence no duplicate messages would be induced by this broadcast-
ing operation. Unfortunately, we cannot make these assumptions
and have to consider packet losses, adversarial failures, as well as
random failures during transmission.

In the example of Figure 2, if a chunk on its way to node 0000
is corrupted or this node refuses to forward a chunk, the whole
bucket B3, i.e., the right half of the tree, would not receive the
block. That is, in the worst case, a single transmission failure could
result in a network coverage of �fty percent only. Therefore, our
the broadcast algorithm is improved and secured by two di�erent
approaches, which both introduce redundancy.

3.3.1 Improving Broadcast Reliability and Performance. First, in-
stead of having a single delegate per bucket, we select β delegates.
This severely increases the probability that at least one out of the
multiple selected nodes is honest and reachable. It therefore pro-
tects the broadcasting operation against random and adversarial
node failures on the propagation path. Moreover, this parallelized
broadcasting method improves the propagation performance in
terms of latency: nodes with the best connection receive the trans-
mitted chunk �rst and will proceed to propagate the chunks in the
bucket. As this repeats on every hop, and Kadcast nodes ignore
duplicate chunks, only the fastest routes are used for block delivery.

Secondly, since the internet protocol (IP) only promises best-
e�ort datagram delivery, Kadcast has to consider transmission fail-
ures due to corrupted and/or dropped packets on every hop of the
propagation. To increase the reliability of its data transport, Kad-
cast therefore employs a forward error correction scheme based
on RaptorQ [38] codes. The adoption of this scheme allows Kad-
cast nodes to recover transmitted block data after the reception of
any s source symbols out of n encoding symbols, which are trans-
mitted via CHUNK messages. As this results in more transmitted
data overall, an overhead of n − s additionally transmitted sym-
bols per block transmission is introduced. The FEC overhead factor
can be adjusted through the parameter f = n−s

s . Utilizing FEC
gives the receiver the ability to correct errors without the need
for retransmissions, which lead to additional delay. We therefore
optimize our protocol in terms of latency and accept an additional
overhead. However, in order to allow nodes to recover from the
rare case that block delivery fails entirely, and to enable the initial
bootstrapping of the blockchain, the Kadcast protocol incorporates
a simple REQUEST_BLOCK message (cf. Figure 3) that allows nodes
to query others for speci�c blocks, and is answered by the corre-
sponding CHUNK messages.

In the following, we analyze and discuss our methods for im-
proved broadcast reliability.

3.3.2 Analysis of Parallelized Broadcast. Kadcast implements broad-
cast redundancy by parallelizing the algorithm. To this end, we
introduce the system parameter β , which describes how many dis-
tinct delegates per bucket should be selected (and thus how many
nodes per bucket should receive a copy of the block). This improved
algorithm can be seen in Algorithm 1. Please note that for β = 1,
Algorithm 1 describes the “optimal” broadcast from Section 3.2.

Along the lines of [13], wemodel the block propagation reliability
as the expected node coverage of the broadcast operation, which
is based on the average probability of transmission failures. Thus,
given the failure probability ϵ and β = 1, a single broadcast chunk

β = 1 β = 1, FEC β = 3 β = 3, FEC

0.00

0.25

0.50

0.75

1.00

0.000 0.001 0.002 0.003 0.004 0.005

Co
ve
ra
ge

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15

Co
ve
ra
ge

Packet Loss

Figure 4: Broadcast reliability (block size of 1MB, L = 160,
and FEC overhead factor f = 0.15.

would reach its next hop with probability p = 1 − ϵ . The expected
number of nodes receiving this chunk can therefore be expressed
byM = (1 + p)L , assuming a balanced distribution tree of height L,
which is highly plausible due to the uniform random distribution
of node identi�ers. It follows that the ratio of covered nodes is

m =
M

2L
=

(
1 + p
2

) L
.

Note however that this expression models the transmission of a sin-
gle chunk without redundancy only. In order to express the coverage
of a redundant block broadcast, we need to extent this model.

Therefore, we model the parallel execution of our algorithm as
the probability that at least one of the redundantly sent chunks is
successfully delivered, i.e.,pβ = 1−ϵβ . Moreover, letX be a random
variable expressing the number of received chunks. The probability
that we receive all s chunks of a block is thus pb = P(X = s) = ps ,
which induces a block failure probability of ϵb = 1−pb . Accordingly,
the probability to deliver a block with redundancy β is given by
pb ,β = 1−ϵβb . These observations yield an expected block coverage
ratio of

mb ,β =

(1 + pb ,β
2

) L
.

In the upper part of Figure 4, we analyze the expected broadcast
coverage for di�erent packet loss rates and β ∈ {1, 3}. We assumed
a block size of 1MB and identi�er length L = 160. We observe that
even the smallest packet loss makes the probability of delivering
a block drop immediately, rendering the chance of covering the
identi�er space virtually impossible (see Figure 4). While a redun-
dancy factor β = 3 has a positive impact on the block propagation,
it is not su�cient to guarantee the reliable transmission of entire
blocks over a lossy channel. However, the parallelized broadcast
is necessary to compensate adversarial and random node failures,
and to improve the propagation performance, as discussed before.

5

3.3.3 Analysis of FEC-based Block Delivery. Using the RaptorQ
forward error correction, a Kadcast node has to successfully receive
s or more arbitrary symbols out of the n transmitted in order to
recover a full block, an event which can be modeled by a binomial
distribution, i.e.,

pb ,f = P(X ≥ s) = 1 − P(X < s) = 1 −
s−1∑
i=0

p.

Figure 4 clearly shows the improved propagation reliability o�ered
by introducing forward error correction with 20% redundancy (f =
0.15): the approach keeps the coverage ratio at 100% until around a
packet loss rate of 9%. This is quite a number for Internet standards
and is even enough to cover the large packet loss rates exhibited by
connections towards mainland China.2 However, this can still be
improved by combining the approach with redundancy, i.e., β > 1.
In this case, the success probability is pb ,β ,f = 1 − (1 − pb ,f)β ,
which is shown for β = 3 in Figure 4 as well. The combination of
FEC and parallelization ensures full network coverage, even if on
average 12% packets are lost during transmission.

The analysis results highlight that FEC is a favorable way to
ensure reliable transmission of data over an unreliable network
infrastructure: it allows to signi�cantly increase the reliability of
the broadcast while introducing a relatively small linear overhead.
In contrast, the overhead introduced with increasing the replica-
tion factor β introduces a larger increase in messaging complexity.
However, broadcast redundancy is still required in cases where the
weak point is not just an unreliable network link, but a malicious
node obstructing block delivery.

4 KADCAST SECURITY
As discussed earlier, fast and fair block propagation may be consid-
ered security-critical for the consensus layer of blockchain-based
systems. However, the peer-to-peer network and the block prop-
agation mechanism can also be attack vectors of system security.
In the following, we discuss the security properties of the Kadcast
network itself and its broadcast mechanism.

4.1 Threat Model and Mitigation Strategies
The Kadcast design is based on the time-tested and well-studied
structured network design of Kademlia [40]. Numerous previous
entries study Kademlia’s security properties, its behavior when
attacked by a range of adversaries, and designs improving on its
security [10, 55]. In the following, we discuss the most prevalent ad-
versarial threats to the security of peer-to-peer networks in general
and Kadcast in particular.

4.1.1 Sybil a�acks. The notion of a Sybil attack [16] describes
the possibility of a single adversary to embody a large number of
network entities by forging additional identities. By doing so, the
adversary aims to out-number the honest nodes participating in
a distributed system, e�ectively increasing the share of malicious
nodes f in the system.Moreover, a Sybil attack is especially enticing
when the forged identities can be used to trick the system and enable
unwanted behavior. In systems based on the Kademlia overlay, Sybil
2Kaiser et al. describe that, induced by the Chinese “Great Firewall”, connections
exhibit 6.9% packet loss, which leads to arti�cially delayed block propagation of
Chinese Bitcoin miners [31].

attacks may be used to generate a lot of identities that can �ll up
a victim’s buckets [36, 53]. The ability to run this kind of attack is
often a prerequisite to be able to run an Eclipse attack (see next
section) on Kademlia-based systems.

In the case of Kadcast, if an adversary can forge arbitrary IDs,
she may easily be able to position herself close to a target, thereby
increasing the likelihood of receiving lookups and broadcasts from
this target. This may enable the adversary to simply refuse block
delivery and thereby obstruct the block propagation, which we
discuss further in Section 4.2. Hence, we observe that the ability to
create valid node identi�ers at arbitrary positions in the network is
detrimental to the security of the system.

The Kadcast protocol employs a number of countermeasures
in order to increase its resilience to Sybil attacks. For one, the
node identi�ers are generated by hashing the IP addresses of the
nodes, i.e., ID = H (addr), which ensures a one-to-one mapping
between identi�er and network node. This property is validated
by other Kadcast nodes by exchanging PING and PONG messages,
i.e., they only accept new identi�ers if the node is reachable via the
respective address. Note, that this procedure also raises the bar for
IP spoo�ng attacks immensely. Moreover, by using a cryptographic
hash function, the proposed generation method ensures that the
identi�er space is covered randomly but uniformly, making it hard
for an adversary to generate identi�ers at a speci�c distance from
a target node.

Additionally, the Kadcast protocol can easily be extended to
incorportate cryptographic puzzles as Sybil protection, similar to [3,
6, 58]. Along the lines of proof-of-work mining, Kadcast follows a
simple scheme: a joining node has to �nd a nonce, so that the hash
of concatenation of its identi�er and nonce adheres to a certain
di�culty level. This is, the binary value of the hash has to be less
than the chosen di�culty target, i.e., H (ID | | ID_NONCE) < tdif f ,
where tdif f is a global parameter of the system. Every node that
receives a new node identi�er validates this property before it
inserts the new node to its buckets. It can run the validation quickly,
while the node generation can take quite some time, depending
on the chosen parameter tdif f . Thereby, the inclusion of this hash
puzzle scheme seriously impairs the ability of adversary to quickly
generate a large number of node identi�ers. Moreover, additional
e�ective countermeasures encompass stricter bucket policies which
enforce a certain degree of diversity from an AS-level and/or subnet
perspective [2, 24].

4.1.2 Eclipse a�acks. All peer-to-peer networks rely on some kind
of routing scheme that allow nodes to decide where to forward data
or which nodes to query for a speci�c data item. However, these
routing decisions are made on the basis of an underlying data struc-
ture, the routing table. Eclipse attacks describe a family of attacks
on peer-to-peer networks in which the adversary manipulates the
routing tables of its targets to contain only nodes controlled by the
adversary. Once she isolated her target from the rest of the network,
the adversary is in full control of the data streams coming from and
to the target node. This may be used by the adversary to completely
block data delivery, selectively obstruct data transmission, or even
foist spurious data.

In blockchain networks, Eclipse attacks are a serious threat, since
they could be used to monopolize the connections of a target node

6

and then further exploit the protocol. They have been shown to
enable double-spending and sel�ng-mining attacks [28, 39]. In the
past, Eclipse attacks on the Kademlia protocol have been studied
in literature [36, 37, 53]. These studies show that, if an adversary
would come to control a large number of node identi�ers, she may
try to �ood all buckets of a target node with addresses of nodes
in her control. This technique could be used to isolate Kadcast
nodes from the rest of the network. The Kadcast protocol however
includes strong Sybil protection to mitigate this possibility. More-
over, Kadcast follows a bucket eviction policy, which favors older,
more stable nodes over newly acquired node addresses. This policy
impedes the adversaries capability of supplying all nodes known
to the victim. In conclusion, by safeguarding the node identi�ers
through the means of IP binding and cryptographic puzzles, as well
as applying rigorous bucket policies, Kadcast follows best practices
for Sybil and Eclipse protection [39].

4.1.3 Denial-of-Service a�acks. Broadcast protocols aim to distrib-
ute information to all nodes in the network. This inherent asym-
metry immediately raises the question on whether they allow an
adversary to �ood the network with arbitrary data, i.e., how sus-
ceptible they are to denial-of-service (DoS) attacks. In order to
avoid these kind of attacks, blockchains like Bitcoin employ a store-
and-forward propagation policy: each block a node receives is �rst
stored and validated (i.e., check the proof of work), before it is
announced to neighbors. This way, an adversary trying to �ood
the network with fake block data would have to solve a proof-of-
work hash puzzle for each of the forged blocks, making it a very
unattractive attack vector. The Kadcast protocol adapts this DoS
protection: every node �rst validates received blocks before they
are forwarded in the broadcast tree.

Additionally, previous work [56] highlighted that node operators
have become targets of DDoS in the past. In the worst case, this
results to a node failure, which possibly impairs the broadcast
operation, as we discuss further in the following sections.

4.2 Obstruction of Block Delivery
Kadcast relies on the responsiveness and compliance of delegate
nodes. An adversary however may have an interest to obstruct
the block delivery. To this end, she could position herself on the
distribution path during the broadcast operation, and refuse to
comply when chosen as delegate. In the following, we will elaborate
and analyze this general attack vector.

First, an adversary may try to prevent a speci�c node from pub-
lishing a new block. In order to intercept outgoing blocks generated
by a target node, an adversary needs to �ll every bucket of the
target with malicious nodes. We assume that an adversary is able
to spawn M out of N nodes, but cannot cheat the placement mech-
anism, i.e., has to hash node identi�ers like everyone else, resulting
in a uniform coverage of the identi�er space. In fact, this is a very
conservative assumption, since we neglect the previously discussed
bucket �lling and eviction policies that would heavily skew this
towards stable and honest nodes. Moreover, for the sake of censor-
ing outgoing blocks, all buckets are equally attractive targets, since
the covered space does not only determine the amount of a�ected
nodes, but in equal manner the probability to be selected by the
target’s broadcast operation. For example, as the bucket size in a

network of N nodes can be estimated to be

bs ,i =

⌊
2i

2L
· N

⌋
,

a successful attack on the transmission to bucket BL−1 may lead to
only a coverage of N /2 nodes. However, the required number of
nodes in this bucket space is also proportionally harder to acquire
for the adversary. Due to Kadcast’s parallel route selection, it be-
comes highly unlikely that all β nodes per bucket are picked from
the adversary’s pool. In particular, when the adversary can acquire
control of M nodes, we can assume that the same share, ϵ = M/N ,
describes the situation in every bucket and hence determines the
failure probability of a single broadcast operation. Accordingly,
this would result in a parallelized broadcast failure probability of
pϵ = (M/N)

β , which exponentially decreases with the redundancy
factor β , as we discussed and analyzed in Section 3.3.1.

The more interesting case is an adversary trying to interfere
with the block delivery to a speci�c node. As discussed before, a
true Eclipse attack is unfeasible in the Kadcast network, since it
strictly applies best practices and enforces a uniform coverage of
the identi�er space. However, in the following we analyze security
of block delivery when faced with an adversary that is able to spawn
a certain amount of network nodes, i.e., attempting a Sybil attack.
In order to calculate the probability of successful block delivery
in face of such an attacker, we model the broadcast operation as
a simple Markov chain, which is depicted in Figure 5. The block
propagation starts in an arbitrary distance i from the target. For
instance, if the origin would fall in bucket B2, the model only needs
to consider the operations in height two or smaller. The broadcast
operation succeeds, when the block is delivered to the target node,
and only honest nodes were visited during path traversal.

The initial state in the Markov model is si , and without loss of
generality we can assume it to start at sL−1, the state representing
broadcast in the largest bucket. From state i , the Kadcast algorithm
can delegate the targeted node directly and transition to the success
state sd with probability

pd ,i = 1 −
(
bs ,i − 1
bs ,i

) β
.

Alternatively, the algorithm chooses some other node in the bucket
with probability pd ,i . The chosen node may be either honest or ma-
licious. If it is honest (again, probability ph = 1−pϵ = 1−(M/N)β),
the broadcast operation continues and the model transitions to
state si−1. If it is malicious, it would obstruct the block delivery,
and hence the model transitions to the fail state sf with probability
ph = 1 − ph . Once in the success or fail state, the fate of the broad-
cast operation is decided, hence the Markov model reaches a steady
state after a maximum of L − 1 state transitions.

We implemented theMarkov chain model utilizing the R package
markovchain [51], and simulated the success probability of block
propagation for di�erent shares of malicious nodes ϵ and redun-
dancy factors β . As these simulations assume the source to be in the
bucket of highest distance (L− 1), they yield worst-case estimations
for the steady-state success probability. The results are shown in
Table 1; even for adversaries that control 10 % of network nodes,
Kadcast delivers block with more than 99 % probability. Moreover,
by adjusting the redundancy factor, Kadcast is able to deliver blocks

7

Table 1: Markov Simulation Results

Parameters Results

N M ϵ β pϵ pd

11000 1000 0.1 3 0.00075 0.993
12000 2000 0.2 3 0.0046 0.957
13000 3000 0.3 3 0.0122 0.888
11000 1000 0.3 5 0.00065 0.994
15000 5000 0.5 5 0.0041 0.963

sd

sL−2sL−1

sf

. . . s0

1.0

1.0

p d

pd · ph

p
d
· p
h

p d

pd · ph

p
d
·p

h

pd · ph

1.0

Figure 5: Markov chain model.

with more than 96% probability in a highly adversarial environment
where 50 % of nodes are controlled by the adversary.

4.3 Security Implications of Network-Layer
Properties

One of the central ideas of blockchain-based systems is that valid
blocks extend the blockchain and eventually lead to a global con-
sensus, as long as the majority of peers are honest and follow the
protocol [42]. However, this is based on the assumption that peers
receive new blocks soon after their creation. In this regard, re-
cent analytical works [26, 34, 45] focussing on the consensus layer
proved that the consistency guarantees of blockchain protocols
only hold when blocks are delivered in a timely fashion.

In an early study, Decker andWattenhofer highlighted the impor-
tance of the block propagation delay for the security of the Bitcoin
system [15]. They showed that block propagation in Bitcoin’s un-
structured overlay network follows a long-tailed distribution in
which 5% of the peers wait more than 40 seconds for new blocks.
The authors could show that the delay increases the probability of
blockchain forks.

Eyal and Sirer discovered the feasibility of sel�sh mining attacks
on the Bitcoin protocol [21]. They show that a malicious miner
could gain an advantage by withholding mined blocks. The main
idea is to let other miners “waste” their computational power on
an old block, while the sel�sh miner (secretly) mines a new block.
When other miners �nd and propagate a block solution, the sel�sh

miner quickly broadcasts its secret block and therefore still has a
chance to “win the race” for the longest chain. The success of this
attack, however, heavily depends on the attacker’s mining power
and the network share it can reach with its secret block before any
concurrent block. Thus, reducing the propagation delay would also
reduce the attack surface for sel�sh mining attacks, as the time
window sel�sh miners have to react becomes smaller.

Recently, the impact of block propagation on Bitcoin’s resilience
towards sel�sh mining and double spending [32] attacks was fur-
ther investigated by Gervais et al. [27]. The authors show that the
occurrence of stale blocks, i.e., blocks that do not get included in the
�nal longest chain and therefore do not contribute to its security,
can have severe negative consequences for the performance and the
security of proof-of-work-based blockchain systems. Their results
suggest that the stale block rate is in�uenced by the propagation
delay, and that it heavily depends on the employed propagation
algorithm.

We therefore conclude that a central goal of any block distribu-
tion algorithm should be to e�ciently make use of the available
resources and to minimize the propagation delay as it has a positive
e�ect on the security and fairness of blockchain-based systems.

5 EVALUATION
In this section, we evaluate the block distribution performance,
broadcast reliability and e�ciency, as well as the security impact
of the Kadcast protocol on an empirical basis. For this, we gathered
data from a comprehensive network simulation study, which are
discussed in the following.

5.1 Simulation Model
Our network simulation study is based on a new simulator for
blockchain networks, which we now introduce.

5.1.1 bns - Blockchain Network Simulator. In order to capture the
networking aspects of blockchain networks in general and to evalu-
ate the characteristics of the Kadcast design in particular, we imple-
mented bns, a new blockchain network simulation whose architec-
ture is able to incorporate interchangeable networking modules and
network topology models. The simulation is based on ns-3 [48], an
advanced event-discrete network simulator, which allows to model
the networking protocols to a high degree of detail and enables
time-independent simulations. In the simulation framework, we
developed a prototype application implementing a rudimentary
blockchain node logic, which runs on network nodes that are con-
nected according to one of the network topology models. Moreover,
the application is able utilize one of the implemented networking
stacks, i.e., the UDP-based Kadcast networking protocol, as well as
an instantiation of the TCP-based VanillaCast networking stack for
comparison. The bns simulator allows to easily setup and analyze
large-scale network simulations for a large set of adaptable parame-
ters for the consensus layer, such as block sizes, block intervals, and
simulation time, as well as networking layer parameters, such as
network size, network topology, number of miners, unsolicited or
header-based block relay, etc. We make the simulator source code
publicly available to the research community.3

3The source code can be retrieved from https://gitlab.tubit.tu-berlin.de/rohrer/
bns-public.

8

https://gitlab.tubit.tu-berlin.de/rohrer/bns-public
https://gitlab.tubit.tu-berlin.de/rohrer/bns-public

Kadcast VanillaCast VanillaCast Unsolicited 1 2 4

F(
x)

0.00

0.25

0.50

0.75

1.00

0 2500 5000 7500 10000

Propagation Delay (ms)

10 min., 1 MB, Hub-and-Spoke

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500

Propagation Delay (ms)

15 sec., 0.025 MB, Hub-and-Spoke

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000

Propagation Delay (ms)

10 min., 1, 2, 4 MB, Hub-and-Spoke

Kadcast VanillaCast VanillaCast Unsolicited

St
al
e
Ra

te

0.00

0.03

0.05

0.08

0.10

1 2 3 4 5 VC VC Uns.

β

10 min., 1 MB, Hub-and-Spoke

0.01

0.02

0.03

1 2 3 VC

β

15 sec., 0.025 MB, Hub-and-Spoke

0.00

0.04

0.08

0.12

1 2 4

Block Size (MB)

10 min., 1, 2, 4 MB, Hub-and-Spoke

Figure 6: Block propagation delay and resulting stale rates for Bitcoin-like and Ethereum-like parametrizations, as well as for
simulation scenarios with higher block size limits.

5.1.2 Simulator Parametrization. The parameters that fuel our
blockchain simulation are mainly chosen in reference to the Bitcoin
network. For example, the simulator draws its block size distribu-
tion from uniform random sampling over Bitcoin’s daily average
block sizes of the last year. Moreover, the mining di�culty is con-
sidered a network-wide �xed parameter, set to Bitcoin’s current
value. Likewise, we simulate 16 mining nodes con�gured with a cer-
tain hash power, according to the currently deployed mining pools
found in the Bitcoin network [5]. Please note that these 16 mining
pools in sum contribute approximately the total hash power. Based
on the individual hash power, each miner samples the next mining
events from an exponential distribution function, which simulates
a Poisson process in accordance to the target block interval. As a
result, we get a realistic model of block generation in blockchain
networks and at the same time are able to simulate competing
mining nodes and their block propagation in the network.

While our evaluation is based on a number of di�erent setups,
the results described are based on scenarios simulating the min-
ing process in networks with N = 500 nodes. Every scenario was
repeated 30 times for di�erent seed values to ensure statistical sig-
ni�cance of the conducted measurements. During the three hour
simulation time, the 16 miners generated blocks and initiated broad-
cast operations employing one of the two networking stacks, i.e.,
VanillaCast or Kadcast. In the Kadcast case, if not stated otherwise,
the results are based on the parameters k = 100 and α = 3. In
order to evaluate the protocol behavior under di�erent network

conditions, we furthermore implemented two network topology
models, which we now discuss in detail.

5.1.3 Hub-and-Spoke Topology Model. As a baseline for the proto-
col evaluation, we use a simple hub-and-spoke topology where all
nodes are connected to one central node representing “the Internet”.
Our assumption is that the Internet is not a bottleneck and there-
fore set the hub’s link capacities to 100Gbps and client bandwidth
to 50Mbps. Moreover, we sample link latencies from the publicly
available data set of measured end-to-end median latencies in the
Bitcoin network [43]. The hub-and-spoke model is a typical setup
for the assessment of peer-to-peer overlays, and while it captures
network e�ects, it does not rely on additional assumptions about
the underlying topology. This creates an idealized simulation sce-
nario that gives us the capability to assess the networking stacks
based on a neutral, common ground.

5.1.4 Geographic Topology Model. As a counterpart to the ideal-
ized the hub-and-spoke model, we created a more topology model
based on geographic clustering of nodes. Again, we aligned the
basic model with the Bitcoin network, as we retrieved the publically
available node list from the Bitnodes website [4], which yields a
node distribution for the seven interconnected geographic clusters:
North America, South America, Europe, Asia, Africa, China, and
Oceania. Simulated nodes are distributed accordingly and are con-
nected to their respective regional hubs. For each of the regions, we
parametrized link latency distributions with measurements from

9

the iPlane [29] dataset and upload and download bandwidth distri-
butions with broadband data from Speedtest.net [52]. In order to
consider the �ndings of [31], we furthermore modeled China as a
separate region and appointed a packet loss rate of 6.9 % to links in
the region. Note that since we do not consider hosted nodes with
server-grade connections, the geographic topology model captures
a heavily resource-restricted environment that enables simulations
in more complex network scenarios which foster a high degree of
network e�ects.

5.2 Protocol Evaluation
In order to show the bene�ts of the Kadcast protocol in di�erent en-
vironments, we created simulation scenarios with parametrizations
mimicking Bitcoin (10 min. block interval and 1MB block size limit)
and Ethereum (15 sec. block interval, proportionally smaller block
size limit of 25 KB [19]). Moreover, in light of the debates on block
size limits in the Bitcoin community, we additionally analyzed the
block propagation for increased block size limits of 2MB and 4MB.

5.2.1 Block Propagation Delay. As a �rst study, we investigated
the performance of Kadcast compared to di�erent instantiations
of VanillaCast. The upper half of Figure 6 shows the block propa-
gation delay to reach 90% of all nodes as cumulative distribution
function F (x): as expected, the block distribution time depends
on the block size limit, that is, larger blocks take longer to propa-
gate. The Kadcast protocol, however, delivers blocks signi�cantly
faster compared to VanillaCast in all cases. For example, Kadcast
exhibits a mean propagation time of 2,500ms to deliver blocks with
a 1MB block size limit (Bitcoin-like scenario, left plot), 4,312ms
faster than VanillaCast, and even 5,242ms faster than unsolicited
VanillaCast block propagation, which interestingly experiences ad-
ditional queueing delay and other network e�ects stemming from
its increased overhead. Compared to both cases, request-response
and unsolicited VanillaCast, this amounts to 30 % faster block prop-
agation in the Bitcoin-like scenario. Furthermore, Kadcast’s per-
formance really excels in the case of smaller intervals and smaller
block sizes: in the Ethereum-like scenario (middle plot), Kadcast
is able to deliver blocks on average more than 90 % faster than the
VanillaCast baseline.

The improved propagation speed is also re�ected by an overall
faster network coverage: while it takes VanillaCast in the Bitcoin
case 8,461ms to reach 90% of the network (and unsolicited even
9645ms), Kadcast is able to reach the same number of nodes more
than 50% faster, at 3,784ms. In the Ethereum case, Kadcast again
fares even better and covers 90 % of the network 90% faster than
the unstructured VanillaCast networking layer. For the larger block
sizes of 2MB and 4MB (right plot), Kadcast was also able to deliver
blocks more than 50% faster on average and in total.

The results highlight that Kadcast is able to immensely speedup
the block distribution in current blockchain systems, and that while
it scales for larger block sizes, it meets the requirements of networks
with quicker block intervals in particular.

5.2.2 Impact on Consensus Stability. The e�ect of the quicker block
propagation is re�ected in the median stale rate, i.e., rate of blocks
that are mined, but do not become part of the �nal blockchain. As

f 0 0.05 0.1 0.15 None

0.00

5.00

10.00

15.00

20.00

1 2 3 4 5 VC VC Uns.

O
ve
rh
ea
d
Ra

tio

10 min., 1 MB, Hub-and-Spoke

0.00

5.00

10.00

15.00

1 2 3 4 5 VC VC Uns.

O
ve
rh
ea
d
Ra

tio

10 min., 1 MB, Geo

β

Figure 7: Overhead ratios for Hub-and-Spoke and geo-
graphic topologies, and parametrizations for f and β .

increased blockchain forks and wasted mining power weaken con-
sensus security, the stale rate is an indicator for how the networking
layer impacts security [27].

The boxplots in the lower half of Figure 6 show the stale rate in
dependence of di�erent choices for the redundancy parameter β :
in the Bitcoin-like scenario Kadcast achieves a median stale rate
of zero, barring the occasional outliers. This is comparable to the
VanillaCast and unsolicited VanillaCast cases, which exhibit similar
behavior. However, in the case of a decreased block interval, the
ratio of propagation delay to block interval gets much larger, result-
ing in an overall increased stale rate. In this Ethereum-like scenario,
VanillaCast exhibits a median stale rate of 0.017, which Kadcast
is able to divide in half, achieving an overall median stale rate of
0.0085. Additionally, the in�uence of the performance increase for
higher β values is visible, leading even to a median stale rate of
0.0073 for β = 3. The simulations with larger block size limits in-
dicate that the additional stress on the network layer negatively
impacts consensus security: while VanillaCast and Kadcast can re-
tain a median stale rate of zero, the number of outliers increase in
both cases. While Kadcast still fares better in the 2MB case, Vanil-
laCast exhibits better stale rates in the 4MB scenarios, which su�er
from more network e�ects, as we discuss further in Section 5.4.

In summary, the improved block propagation of Kadcast leads to
a median stale rate that is comparable and often better than Vanil-
laCast. This indicates that the consensus security of blockchain
systems could bene�t from employing the Kadcast protocol, espe-
cially networks with lower block intervals, such as Ethereum. More-
over, since blocks reach a larger share of the network much faster,
the adoption of Kadcast could help to mitigate time-dependent
adversarial mining strategies, such as sel�sh mining [21].

5.2.3 Broadcast E�iciency. In order to con�rm the adjustability and
e�ciency of the Kadcast protocol, we recorded the total amount of
tra�c ttotal produced during our simulation time. Furthermore, we
accumulated the block sizes of all blocks generated during this time,
tblocks. As all blocks need to be transmitted to each node at least

10

ϵ

0

0.1

0.2

0.3

0.4

0.5

0.4

0.6

0.8

1.0

1 2 3 4 5 VC

Co
ve
ra
ge

10 min., 1 MB, Hub-and-Spoke

0.0

0.2

0.4

0.6

1 2 3 4 5 VC

St
al
e
Ra

te

10 min., 1 MB, Hub-and-Spoke

β

Figure 8: Network coverage and stale rate, when a share ϵ of
adversarial nodes is introduced to the network.

once, the minimum amount of tra�c for the broadcast operation
can be calculated as N · tblocks. Accordingly, we de�ne the overhead
ratio as ro = (ttotal − N · tblocks)/(N · tblocks), which describes how
much additional tra�c was generated during a simulation run,
including all signaling messages.

The upper part of Figure 7 shows the results in the Hub-and-
Spoke scenarios for di�erent parametrizations of the redundancy
parameters β and f : we observe that Kadcast’s overhead increases
linearly with β and f . We also note that for β = 1, Kadcast’s
overhead ratio is below the relay-response based VanillaCast, and
that for β = 5 it is comparable to unsolicited VanillaCast. This
shows the adjustability of the Kadcast approach, which allows for
a fast, unsolicited block relay with controllable overhead.

5.3 Protocol Behavior under Attack
We moreover empirically evaluated how the Kadcast protocol fares
in the face of an adversary obstructing block delivery. For this,
we set up simulation scenarios in which a fraction ϵ of nodes
were marked as adversarial and henceforth would cease to forward
blocks. The upper part of Figure 8 shows the network coverage
in dependence of ϵ and β : while Kadcast of course reaches 100%
network coverage for ϵ = 0, its block propagation is severely hin-
dered when malicious nodes are introduced and no redundancy
exists (β = 1). However, the e�ect of the redundancy factor β is
also clearly visible, ensuring 99 % coverage for β = 3 when ϵ ≤ 0.3
and for β = 5, when the share of malicious nodes would be even
higher.

Interestingly, while VanillaCast’s network coverage is not im-
paired by the introduction of adversarial nodes, it does exhibit
degraded propagation performance due to the almost fragmented
network. In fact, the resulting stale rates of both protocols are very
similar, when confronted with such a powerful adversary (cf. lower
part of Figure 8). The results show that, with a reasonably chosen
set of parameters, Kadcast is resilient to a large amount of adver-
sarial nodes and compares to the currently deployed VanillaCast
networking layer.

5.4 Protocol Behavior in Complex and
Resource-Restricted Environments

Additionally, in order to evaluate the Kadcast protocol in more
complex networking environments, we reproduced the previously
introduced scenarios in the resource restricted geographic topology
model. Due to the lower bandwidths, larger latencies, packet losses,
and more complex structure of this model, much more network
e�ects come into play here. However, the results shown in Fig-
ure 9 follow the same tendencies as discussed before: in general,
Kadcast provides much faster block propagation than VanillaCast.
And again, it does especially well in the Ethereum-like networking
scenarios with smaller, higher frequency blocks.

Nevertheless, the results also show that Kadcast exhibits de-
graded performance when facing a congested networking environ-
ment. In the lower part of Figure 7, we can already see the �rst
signs of congestion: for β > 3, the overhead ratio stagnates, indi-
cating that packet losses occur. In Figure 9, the results for the 4MB
block size limit clearly show a signi�cantly increased propagation
delay. Similar congestion e�ects can be seen for the unsolicited
VanillaCast, where high overhead even in the 1MB case forces the
network tra�c to a standstill at times.

The degraded network performance is also re�ected by higher
stale rates for networking protocols. However, as the e�ect is more
taxing on the protocols with unsolicited block propagation, it high-
lights the robustness of the request-response and TCP-based Vanil-
laCast in heavily congested networks. In particular, we therefore
hold the introduction of a suitable congestion control mechanism
to the Kadcast protocol as an important avenue of future research,
especially if blockchain networks such as Bitcoin would opt to
incorporate larger, more bandwidth hungry blocks. However, as
our simulation results show degraded performance for larger block
sizes and in congested networks for all networking stacks, the com-
munity should on the contrary think about reducing block sizes and
intervals. We deem this to be generally preferable from a network-
ing perspective, since it would lead to more uniform tra�c patterns
and e�ectively would help reduce network e�ects during peak traf-
�c �ows. Thereby, it also would alleviate network bottlenecks and
foster decentralization.

6 RELATEDWORK
In recent years, a large body of work proposed improvements for
blockchain networks. Orthogonal to our approach, a number of con-
tributions deal with transaction privacy. For example, Venkatakr-
ishnan et al. and Fanti et al. propose protocol redesigns that im-
proves anonymity of transaction propagation in the Bitcoin net-
work [22, 57]. We, in contrast, are mainly concerned with block
propagation.

The Graphene protocol [44] proposes amore e�cient block trans-
mission that augments the concept of compact blocks. Similarly, the
recently proposed Velocity protocol [9] uses FEC on top of the exist-
ing network architecture. While improving on some aspects, such
as the messaging overhead of the current block delivery method in
Bitcoin, these protocols do not fundamentally change the prevalent
block propagation model.

Third-party relay networks, such as the FIBRE network [25]
or bloXroute [35] are supposed to improve the block distribution.

11

Kadcast VanillaCast VanillaCast Unsolicited 1 2 4

F(
x)

0.00

0.25

0.50

0.75

1.00

0 500000 1000000 1500000

Propagation Delay (ms)

10 min., 1 MB, Geo

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000

Propagation Delay (ms)

15 sec., 0.025 MB, Geo

0.00

0.25

0.50

0.75

1.00

0 500000 1000000 1500000 2000000

Propagation Delay (ms)

10 min., 1, 2, 4 MB, Geo

Kadcast VanillaCast VanillaCast Unsolicited

St
al
e
Ra

te

0.00

0.20

0.40

0.60

1 2 3 4 5 VC VC Uns.

β

10 min., 1 MB, Geo

0.00

0.20

0.40

0.60

1 2 3 VC

β

15 sec., 0.025 MB, Geo

0.00

0.20

0.40

0.60

0.80

1 2 4

Block Size (MB)

10 min., 1, 2, 4 MB, Geo

Figure 9: Block propagation delay and resulting stale rates for Bitcoin-like and Ethereum-like parametrizations, as well as for
simulation scenarios with higher block size limits in the geographic network topology model.

While the emergence of these proposals clearly show the urgency
of the problem, we deem them orthogonal to the goal of improving
the peer-to-peer networks of blockchain systems themselves. First
results however suggest [27] that a separate relay network has a
negligible e�ect over switching to a faster, i.e., unsolicited block
propagation scheme. Moreover, since such networks require central
and manual coordination, they do not meet the blockchain design
goals of decentralization.

A number of projects provide simulation frameworks for the
Bitcoin network. The Shadow simulator, for example, was extended
to incorporate the Bitcoin Core logic [30, 41]. Shadow focuses on
simulating accurate application behavior by executing the appli-
cation’s actual source code. The simulation developed by Gervais
et al., on the other hand, abstracts from the actual Bitcoin imple-
mentation and models its network behavior based on simplifying
assumptions [27]. For example, the authors assume a network mod-
el that is congruent to the overlay’s TCP connections, which does
not capture network e�ects. Moreover, both simulators were not
developed with interchangeable networking stacks in mind.

Beyond cryptocurrencies, contributions focusing on the broad-
cast in structured peer-to-peer networks are also relevant for our
work. El-Ansary et al. [17] realize a perfect broadcasting operation
based on the overlay structure of the Chord [54] peer-to-peer dis-
tributed hash table. Furthermore, a number of entries are concerned
with the broadcasting operation in Kademlia [40]-based overlay
networks [13, 46, 47]. Of these contributions, we highlight the work

by Czirkos and Hosszú [13], as parts of Kadcast are based on the
proposed scheme. However, to the best of our knowledge, we are
�rst to adopt and evaluate a broadcasting algorithm based on a
structured peer-to-peer network in the setting of a real-world ap-
plication with respective additional requirements, e.g., in terms of
security.

7 CONCLUSION
In this work, we presented Kadcast, a new protocol for fast, e�cient,
and secure block propagation for the Bitcoin network. While this
initial entry focused on improving the block distribution, other
operations could immensely bene�t from Kadcast’s superior perfor-
mance and low overhead. Finally, we hope to initiate a discussion
about alternative transport protocols in the blockchain space.

REFERENCES
[1] 2002. IPTPS ’02: Proceedings of the 1st International Workshop on Peer-to-Peer

Systems (2002-03).
[2] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. 2017. Hijacking Bitcoin:

Routing Attacks on Cryptocurrencies. 375–392.
[3] Ingmar Baumgart and Sebastian Mies. 2007. S/Kademlia: A practicable approach

towards secure key-based routing. In ICPADS ’07: Proceedings of the 13th Interna-
tional Conference on Parallel and Distributed Systems (2007-12). 1–8.

[4] bitnodes. 2019. Homepage. Retrieved May 21, 2019 from https://bitnodes.earn.
com

[5] blockchain.info. 2018. Hashrate Distribution. Retrieved May 6, 2018 from
https://blockchain.info/pools?timespan=4days

[6] Nikita Borisov. 2006. Computational Puzzles as Sybil Defenses. In P2P ’06: Pro-
ceedings of the 6th IEEE International Conference on Peer-to-Peer Computing (2006).

12

https://bitnodes.earn.com
https://bitnodes.earn.com
https://blockchain.info/pools?timespan=4days

171–176.
[7] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In

OSDI ’99: Proceedings of the 3rd USENIX Symposium on Operating Systems Design
and Implementation (1999-02). 173–186.

[8] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker.
2003. Making gnutella-like p2p systems scalable. In SIGCOMM ’03: Proceedings
of the 2003 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (2003-08). 407–418.

[9] Nakul Chawla, HansWalter Behrens, Darren Tapp, Dragan Boscovic, and K Selçuk
Candan. 2019. Velocity: Scalability Improvements in Block Propagation Through
Rateless Erasure Coding. In ICBC ’19: Proceedings of the 1st International Confer-
ence on Blockchain and Cryptocurrency (2019-05).

[10] Thibault Cholez, Isabelle Chrisment, and Olivier Festor. 2009. Evaluation of
Sybil Attacks Protection Schemes in KAD. In AIMS ’09: Proceedings of the 3rd
International Conference on Autonomous Infrastructure, Management and Security
(2009). 70–82.

[11] Matt Corallo. 2016. BIP 152: Compact Block Relay. https://github.com/bitcoin/
bips/blob/master/bip-0152.mediawiki

[12] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed E.
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song,
and Roger Wattenhofer. 2016. On Scaling Decentralized Blockchains - (A Position
Paper). In BITCOIN ’16: Proceedings of the 3rd Workshop on Bitcoin Research (2016-
02). 106–125.

[13] Zoltán Czirkos and Gábor Hosszú. 2013. Solution for the broadcasting in the
Kademlia peer-to-peer overlay. 57, 8 (2013), 1853–1862.

[14] Suhas Daftuar. 2015. BIP 130: sendheaders message. https://github.com/bitcoin/
bips/blob/master/bip-0130.mediawiki

[15] Christian Decker and Roger Wattenhofer. 2013. Information propagation in the
bitcoin network. In P2P ’13: Proceedings of the 13th IEEE International Conference
on Peer-to-Peer Computing (2013-09). 1–10.

[16] John R. Douceur. 2002. The Sybil Attack, See [1], 251–260.
[17] Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif Haridi. 2003. E�-

cient Broadcast in Structured P2P Networks. In IPTPS ’03: Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems (2003). 304–314.

[18] Ethereum Project. 2014. A next-generation smart contract and decentralized
application platform. https://github.com/ethereum/wiki/wiki/White-Paper

[19] Etherscan.io. 2019. Ethereum Block Size History. Retrieved May 24, 2019 from
https://etherscan.io/chart/blocksize

[20] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse. 2016.
Bitcoin-NG: A Scalable Blockchain Protocol. In NSDI ’16: Proceedings of the 13th
USENIX Symposium on Networked Systems Design and Implementation (2016-03).
45–59.

[21] Ittay Eyal and Emin Gün Sirer. 2014. Majority is not enough: Bitcoin mining is
vulnerable. In FC ’14: Proceedings of the 18th International Conference on Financial
Cryptography and Data Security (2014-03). 436–454.

[22] Giulia C. Fanti, Shaileshh Bojja Venkatakrishnan, Surya Bakshi, Bradley Denby,
Shruti Bhargava, Andrew Miller, and Pramod Viswanath. 2018. Dandelion++:
Lightweight Cryptocurrency Networking with Formal Anonymity Guarantees.
2, 2 (2018), 29:1–29:35.

[23] Giulia C. Fanti and Pramod Viswanath. 2017. Deanonymization in the Bitcoin P2P
Network. In NIPS ’17: Proceedings of 30th Annual Conference on Neural Information
Processing Systems (2017-12).

[24] Sebastian Feld, Mirco Schönfeld, and Martin Werner. 2014. Analyzing the De-
ployment of Bitcoin’s P2P Network under an AS-level Perspective. In ANT ’14:
Proceedings of the 5th International Conference on Ambient Systems, Networks and
Technologies (2014-06). 1121–1126.

[25] Fast Internet Bitcoin Relay Engine (FIBRE). 2017. Homepage. Retrieved August
1, 2017 from http://bitcoin�bre.org

[26] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Back-
bone Protocol: Analysis and Applications. In EUROCRYPT ’15: Proceedings of the
34th International Conference on the Theory and Applications of Cryptographic
Techniques (2015-04). 281–310.

[27] Arthur Gervais, Ghassan Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritz-
dorf, and Srdjan Capkun. 2016. On the Security and Performance of Proof of
Work Blockchains. In CCS ’16: Proceedings of the 23nd ACM SIGSAC Conference
on Computer and Communications Security (2016-10).

[28] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse
Attacks on Bitcoin’s Peer-to-Peer Network. In USENIX Security ’15: Proceedings
of the 24th USENIX Security Symposium (2015-08). 129–144.

[29] iPlane. 2019. An Information Plane for Distributed Services. web.eecs.umich.
edu/~harshavm/iplane/.

[30] Rob Jansen and Nicholas Hopper. 2012. Shadow: Running Tor in a Box for
Accurate and E�cient Experimentation. In NDSS ’12: Proceedings of the Network
and Distributed System Security Symposium (2012).

[31] Ben Kaiser, Mireya Jurado, and Alex Ledger. 2018. The Looming Threat of China:
An Analysis of Chinese In�uence on Bitcoin. abs/1810.02466 (2018).

[32] Ghassan O. Karame, Elli Androulaki, and Srdjan Capkun. 2012. Double-spending
Fast Payments in Bitcoin. In CCS ’12: Proceedings of the 19th ACM Conference on

Computer and Communications Security (2012-10). 906–917.
[33] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. InCRYPTO ’17:
Proceedings of the 37th Conference on Advances in Cryptology (2017-08). 357–388.

[34] Lucianna Ki�er, Rajmohan Rajaraman, and Abhi Shelat. 2018. A Better Method to
Analyze Blockchain Consistency. In CCS ’18: Proceedings of the 25nd ACM SIGSAC
Conference on Computer and Communications Security (2018-10). 729–744.

[35] Uri Klarman, Soumya Basu, Aleksandar Kuzmanovic, and Emin Gün Sirer. 2018.
bloXroute: A Scalable Trustless Blockchain Distribution NetworkWHITEPAPER.

[36] Michael Kohnen, Mike Leske, and Erwin P. Rathgeb. 2009. Conducting and
Optimizing Eclipse Attacks in the Kad Peer-to-Peer Network. In NETWORK-
ING ’09: Proceedings of the 8th International IFIP-TC 6 Networking Conference
(2009). 104–116.

[37] Thomas Locher, David Mysicka, Stefan Schmid, and Roger Wattenhofer. 2010.
Poisoning the Kad Network. In ICDCN ’10: Proceedings of the 11th International
Conference on Distributed Computing and Networking (2010). 195–206.

[38] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder. 2011. Rap-
torQ Forward Error Correction Scheme for Object Delivery. RFC 6330 (Proposed
Standard). , 69 pages. https://www.rfc-editor.org/rfc/rfc6330.txt

[39] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. 2018. Low-Resource Eclipse
Attacks on Ethereum’s Peer-to-Peer Network. 2018 (2018), 236.

[40] Petar Maymounkov and David Mazières. 2002. Kademlia: A Peer-to-Peer Infor-
mation System Based on the XOR Metric, See [1], 53–65.

[41] Andrew Miller and Rob Jansen. 2015. Shadow-Bitcoin: Scalable Simulation via
Direct Execution of Multi-Threaded Applications. In CSET ’15: Proceedings of the
8th Workshop on Cyber Security Experimentation and Test (2015-08).

[42] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.
[43] Karlsruhe Institute of Technology DSN. 2018. Bitcoin Monitoring. Retrieved

April 26, 2018 from https://dsn.tm.kit.edu/bitcoin/
[44] A. Pinar Ozisik, Gavin Andresen, George Bissias, Amir Houmansadr, and

Brian Neil Levine. 2017. Graphene: A New Protocol for Block Propagation
Using Set Reconciliation. In CBT ’17: Proceedings of the 1st International Workshop
on Cryptocurrencies and Blockchain Technology (2017-09). 420–428.

[45] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the Blockchain
Protocol in Asynchronous Networks. In EUROCRYPT 17: Proceedings of the 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques (2017). 643–673.

[46] Antonio Delgado Peris, José M. Hernández, and Eduardo Huedo. 2012. Evaluation
of the Broadcast Operation in Kademlia. In HPCC ’12: 14th IEEE International
Conference on High Performance Computing and Communication (2012). 756–763.

[47] Antonio Delgado Peris, José M. Hernández, and Eduardo Huedo. 2016. Evaluation
of alternatives for the broadcast operation in Kademlia under churn. 9, 2 (2016),
313–327.

[48] ns-3 Network Simulator. 2018. Homepage. Retrieved May 5, 2018 from https:
//www.nsnam.org

[49] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. 2016. SPECTRE: A Fast
and Scalable Cryptocurrency Protocol. 2016 (2016), 1159.

[50] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure High-Rate Transaction
Processing in Bitcoin. In FC ’15: Proceedings of the 19th International Conference
on Financial Cryptography and Data Security (2015-01). 507–527.

[51] Giorgio Alfredo Spedicato. 2017. Discrete Time Markov Chains with R. The R
Journal 9, 2 (2017), 84–104.

[52] Speedtest.net. 2019. Global Index. https://www.speedtest.net/global-index.
[53] Moritz Steiner, Taou�k En-Najjary, and Ernst W. Biersack. 2007. Exploiting KAD:

possible uses and misuses. 37, 5 (2007), 65–70.
[54] Ion Stoica, Robert Tappan Morris, David R. Karger, M. Frans Kaashoek, and Hari

Balakrishnan. 2001. Chord: A scalable peer-to-peer lookup service for internet
applications. In SIGCOMM ’01: Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (2001).
149–160.

[55] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. 2011. A survey of
DHT security techniques. 43, 2 (2011), 8:1–8:49.

[56] Marie Vasek, Micah Thornton, and Tyler Moore. 2014. Empirical analysis of
denial-of-service attacks in the Bitcoin ecosystem. In BITCOIN ’14: Proceedings of
the 1st Workshop on Bitcoin Research (2014-03). 57–71.

[57] Shaileshh Bojja Venkatakrishnan, Giulia C. Fanti, and Pramod Viswanath. 2017.
Dandelion: Redesigning the Bitcoin Network for Anonymity. (2017).

[58] Vivek Vishnumurthy, Sangeeth Chandrakumar, and Emin Gun Sirer. 2003. Karma:
A secure economic framework for peer-to-peer resource sharing. In P2PEcon ’03:
Proceedings of the 1st Workshop on Economics of Peer-to-Peer Systems (2003-06).

[59] Gavin Wood. 2014. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. http://gavwood.com/Paper.pdf

13

https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0130.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0130.mediawiki
https://github.com/ethereum/wiki/wiki/White-Paper
https://etherscan.io/chart/blocksize
http://bitcoinfibre.org
web.eecs.umich.edu/~harshavm/iplane/
web.eecs.umich.edu/~harshavm/iplane/
https://www.rfc-editor.org/rfc/rfc6330.txt
https://dsn.tm.kit.edu/bitcoin/
https://www.nsnam.org
https://www.nsnam.org
https://www.speedtest.net/global-index
http://gavwood.com/Paper.pdf

A BITCOIN’S PEER-TO-PEER NETWORK
The backbone of Bitcoin is an unstructured peer-to-peer network:
every peer establishes 8 outgoing TCP connections to a random
set of neighbor peers. Some peers additionally accept incoming
connections (by default up to 117).4 Once a peer established a
TCP connection to another peer, it initiates a handshake and starts
exchanging address (ADDR) messages in order to advertise itself to
the network and to update its peer cache. Next, the joining peer
proceeds to fetch blocks missing from its current local state of the
blockchain.

When a peer issues new transactions, it announces them through
inventory (INV) messages that are periodically broadcast in the net-
work: every peer sends INV messages to each of its neighboring
peers in intervals corresponding to a Poisson process. At the time
of writing, the default average interval between messages is set
to be 5 seconds. This arti�cial delay was introduced to improve
the privacy properties of the system, as observing the origin of a
transaction allows to link it to the IP address of the sender and
thereby enables deanonymization attacks.5 Each peer receiving an
INV message checks if it knows the announced transactions and
retrieves missing data items by sending a corresponding GETDATA
request, which is answered by TX messages. After the peer veri�ed
the received transactions, it continues the broadcast by adding them
to the queued inventory messages. Up until Bitcoin Core v0.12.0,
inventory messages were also the default way to announce new
blocks in the network. Peers receiving such messages would then
request block headers via GETHEADERS and block data via GETDATA
messages. These would be answered by HEADERS and BLOCK mes-
sages, respectively. Note that the delay just described does not
a�ect the inventory-based block propagation, since INV messages
containing blocks are sent right away.

With the update to protocol version 70012, a new default method
for block propagation was introduced [14]: after the initial hand-
shake, each peer signals its support for the new propagationmethod
by sending a SENDHEADERSmessage. From this point on, new blocks
are announced directly via the HEADERS message, which reduces
the messaging overhead and propagation delays. Note that when
more than one block has to be announced, Bitcoin Core falls back
to the old INVmethod. Additionally, the option for compact block re-
lay [11] allows a peer to request block announcements to be sent in
a more bandwidth e�cient manner. In particular, it allows the peer
to only retrieve transaction data it is missing from an announced
block, which can severely reduce the bandwidth overhead of block
propagation, but is prone to induce an additional latency overhead.

B ETHEREUM’S PEER-TO-PEER NETWORK
The notion of smart contracts is no alien concept to Bitcoin: trans-
actions can do more than transferring funds from one address to
another. In fact, Bitcoin transactions hold bytecode, which is exe-
cuted by all peers validating the transaction. The code determines

4Note that we only consider full nodes, i.e., peers running the Bitcoin Core software
and holding a full copy of the blockchain.
5Note that this method of obscuring the origin of a transaction replaced the trickling
method and was introduced with Bitcoin Core version 0.12.0. However, as Fanti and
Viswanath highlight in [23], the new method does not improve much on the old: both
exhibit rather poor anonymity properties.

whether to commit a state transition, making the network one large
distributed state machine.

While this perception is sort of an afterthought in Bitcoin, the
Ethereum [18, 59] project is a blockchain-based platform specif-
ically dedicated to the distributed execution of Turing-complete
smart contracts. Even though the scope of Ethereum is di�erent, the
blockchain design and the corresponding network protocols share
more than a few similarities with Bitcoin. Interestingly, Ethereum’s
peer management is based on Kademlia, which is used to populate
a peer lookup table. However, for block and transaction propaga-
tion Ethereum uses an unstructured TCP-based overlay network,
very similar to Bitcoin. Each peer maintains a limited number of
connections, currently MaxPeers = 25, of which dMaxPeer/2e = 13
are outbound connections.6 Just like in Bitcoin, the contract code
is �rst propagated in the form of a transaction broadcast: each peer
receiving a transaction directly forwards it to all neighbors who
do not already know about it. When smart contract transactions
reach a miner, they are validated (i.e., executed) and consolidated
to blocks. These are then again broadcast, whereby blocks are only
directly forwarded to subset of

√
n neighbors, and are otherwise

advertised via inventory messages. A peer receiving an advertise-
ment waits 500ms before further advertising the block. All peers
in the network accept the longest known chain of blocks7 as the
currently valid blockchain.

We observe that Ethereum is indeed built on a hybrid network-
ing stack that utilizes Kademlia primitives for peer discovery, but
still relies on an unstructured overlay for information propagation.
Even though most of the network operations resemble those of
Bitcoin, Ethereum makes use of unsolicited transaction and block
propagation, which is probably needed to allow for much tighter
block synchronization intervals demanded by Ethereum’s short
block time of approximately 15 s. This suggests on the one hand
that Ethereum may have worse privacy guarantees than Bitcoin,
which introduces an arti�cial transaction propagation delay to ob-
fuscate the distance of an observer to the source of the transaction.
On the other hand, unsolicited relaying increases the bandwidth
overhead of the broadcast procedure. While we did not recreate
every detail of the Ethereum network, the experiments with smaller
block intervals clearly suggest that the Ethereum peer-to-peer net-
work may especially bene�t from Kadcast’s improved performance
and e�ciency.

6There are a number of di�erent implementations. Here, we consider geth, the most
prevalent Ethereum software.
7In contrast to claims in [59], Ethereum does not implement GHOST [50] as chain
selection policy, but still relies the longest-chain policy while rewarding miners of
stale blocks if they include appropriate uncle blocks [27].

14

	Abstract
	1 Introduction
	2 Blockchain Networks
	2.1 VanillaCoin: A Paradigmatic Blockchain
	2.2 Information Dissemination in Blockchain Networks

	3 The Kadcast Protocol
	3.1 Overlay Construction
	3.2 Block Propagation
	3.3 Reliability of Block Delivery

	4 Kadcast Security
	4.1 Threat Model and Mitigation Strategies
	4.2 Obstruction of Block Delivery
	4.3 Security Implications of Network-Layer Properties

	5 Evaluation
	5.1 Simulation Model
	5.2 Protocol Evaluation
	5.3 Protocol Behavior under Attack
	5.4 Protocol Behavior in Complex and Resource-Restricted Environments

	6 Related Work
	7 Conclusion
	References
	A Bitcoin's Peer-to-Peer Network
	B Ethereum's Peer-to-Peer Network

