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Abstract. Forward secrecy is an important feature for modern cryptographic sys-
tems and is widely used in secure messaging such as Signal and WhatsApp as well
as in common Internet protocols such as TLS, IPSec, or SSH. The benefit of forward
secrecy is that the damage in case of key-leakage is mitigated. Forward-secret encryp-
tion schemes provide security of past ciphertexts even if a secret key leaks, which is
interesting in settings where cryptographic keys often reside in memory for quite a
long time and could be extracted by an adversary, e.g., in cloud computing. The recent
concept of puncturable encryption (PE; Green and Miers, IEEE S&P’15) provides a
versatile generalization of forward-secret encryption: it allows to puncture secret keys
with respect to ciphertexts to prevent the future decryption of these ciphertexts.
We introduce the abstraction of allow-list/deny-list encryption schemes and classify
different types of PE schemes using this abstraction. Based on our classification, we
identify and close a gap in existing work by introducing a novel variant of PE which
we dub Dual-Form Puncturable Encryption (DFPE). DFPE significantly enhances
and, in particular, generalizes previous variants of PE by allowing an interleaved
application of allow- and deny-list operations.
We present a construction of DFPE in prime-order bilinear groups, discuss a direct
application of DPFE for enhancing security guarantees within Cloudflare’s Geo Key
Manager, and show its generic use to construct forward-secret IBE and forward-secret
digital signatures.

Keywords: Puncturable Encryption · Forward Secrecy.

1 Introduction

Leakage of secret keys is a major security risk in modern systems and cryptographic proto-
cols. For example, key-leakage can be a significant problem in secure messaging applications
such as Signal or WhatsApp, but also in other well-known Internet protocols such as TLS,
IPSec, or SSH. Those applications typically address this risk by providing the property of
forward secrecy. Forward secrecy mitigates the problems associated to the leakage of a long-
term secret key in the sense that the confidentiality of the data encrypted in old ciphertexts
is still protected after a key is leaked. However, key-leakage is problematic far beyond the
aforementioned applications. One of the prime examples of key-leakage being an important
risk is when decryption keys are kept in software or trusted execution environments (TEEs)
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like ARM’s TrustZone or the increasingly popular SGX by Intel. Such scenarios are typically
found within heavily virtualized environments such as cloud computing. In such settings, it
is well known that the shared resources introduce the danger of information leakage, i.e.,
extracting decryption keys held in shared memory, e.g., via co-located virtual machines con-
trolled by an attacker [RTSS09, ZJRR12, ZJRR14]. At the same time, microarchitectural
attacks such as cache attacks (against TEEs) are getting increasingly sophisticated and more
devastating (cf. [SG20]). While rotating keys frequently helps to reduce the risk, frequently
deploying new keys becomes impractical if the frequency gets too high.

Concrete example. We will illustrate this problem by a concrete practical example. As
the use of TLS for securing communication on the Internet grows, content distribution
networks (CDNs) such as Cloudflare face a new issue: all of their endpoints terminating
TLS connections deployed in colocations all over the world need access to the secret keys
associated to the certificate (i.e., public key) to guarantee low latency. As those secret keys
belong to the customers, they need to provide the keys to the CDNs or deploy solutions
such as Keyless SSL3, where customers are required to run their own keyserver answering
signing requests from the CDN. The latter comes at the cost of higher latency if users are not
close to the location of the key server. The former—while providing better latency for users
worldwide—faces a different issue: due to various differences in local laws or other regulations
surrounding the use of secret keys, customers might not be interested in having their keys
exposed to certain locations and areas. Systems like Cloudflare’s Geo Key Manager4 tackle
this issue by giving customers the control on the locations their secret keys are stored when
shared with Cloudflare. Effectively, customers are able put whole regions on allow-lists,
e.g., Europe or the US. At the same time, they are able to put multiple colocations within
those regions, e.g., London in Europe, on deny-lists. Finally, they are also able to directly
put colocations on the allow-list that are not inside the regions already on allow-lists, e.g.,
Singapore.

Since the customer’s secret keys are highly sensitive, such a system profits from strong
security including forward secrecy. The currently deployed solution does not provide forward
secrecy, a feature that helps to put the distributed keys at a much lower risk. Looking ahead,
with our approach, adding areas to allow-lists, colocations within these areas on deny-lists,
as well as allow-listing single colocations is efficiently possible and adds forward secrecy on
top.

Fine-grained forward-secrecy. We will follow the approach of restricting (or customizing)
the capabilities of secret keys held in memory via cryptographic means to achieve fine-grained
forward secrecy. Arguably, this still does not entirely eliminate the problem of key-leakage.
Yet, it helps to significantly reduce the damage if key-leakage happens, and, at the same
time, removes the requirement to frequently rotate keys. While forward secrecy can be
efficiently obtained in interactive protocols, it is more involved for non-interactive primitives.
In the past, forward secrecy has been studied for various non-interactive primitives such as
digital signatures [BM99], identification schemes [AABN02], public-key encryption [CHK03],
symmetric cryptography [BY03], and proxy re-encryption [DKL+18a]. The basic idea is to
discretize time into intervals and to have a fixed public key over a potentially long period of
time. However, the secret key “evolves” over time such that a leaked secret key in interval
i is no longer useful for any interval j < i. In particular, for public-key encryption, this

3 https://www.cloudflare.com/ssl/keyless-ssl/
4 https://blog.cloudflare.com/introducing-cloudflare-geo-key-manager/
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guarantees that all ”old” ciphertexts can no longer be decrypted. Obviously, if the switches
between intervals happen too frequently, it requires good synchronization, whereas for longer
time intervals a looser synchronization (which is desirable) is sufficient. Nevertheless, in any
case, the achieved forward-secrecy property is very coarse grained, i.e., switching the interval
essentially destroys access to all old ciphertexts.

Green and Miers [GM15] introduced the cryptographic concept of puncturable encryption
(PE) as a versatile generalization of forward-secret public-key encryption for asynchronous
messaging. The idea here is to provide a more fine-grained forward-secrecy property that
allows a secret key to be “punctured” on specific ciphertexts (or tags associated to them) in
a way that the resulting decryption key will then no longer be useful to decrypt ciphertexts
on which the key has been punctured over time. Following these initial works, a number
of alternative PE schemes [GHJL17, DJSS18, SSS+20, SDLP20, CRSS20] as well as some
variations of PE schemes with different puncturing capabilities [DKL+18b, WCW+19] have
been proposed.

Allow-list/deny-list encryption schemes. To provide a comprehensive classification of
different cryptographic primitives (and mostly PE schemes), we introduce allow-/deny-list
(ALDL) encryption. It represents a very simple abstraction of encryption mechanisms main-
taining allow and deny lists. Here, ciphertexts and decryption keys are linked to both allow
and deny lists in a certain way. Allow lists incorporate positive tags while deny lists have
negative tags. A ciphertext can carry two tags—a positive and negative tag—that are de-
termined during the encryption procedure. Decryption keys can be associated to several
positive and negative tags. For example, a ciphertext with a positive tag t+ and negative
tag t− can be decrypted by a secret key that is associated to t+ but not to t−. More gener-
ally this means that a decryption key that is linked to a positive tag is able to decrypt the
ciphertext if that ciphertext has the positive tag attached. On the other hand, a decryption
key that is associated to a negative tag is not able to decrypt ciphertexts that have those
negative tags attached.

On a high level, this has interesting applications and subsumes several cryptographic
primitives as shown in Table 1. For example, an identity-based encryption (IBE) [BF01,
Coc01] scheme can be seen as an ALDL encryption scheme where an allow list can contain
an identity, i.e., an id. Ciphertexts and secret keys are associated to a certain id (i.e., a
positive tag) from the allow list. If the id of the ciphertext matches the secret-key id, then
decryption works.

Furthermore, a PE scheme can be seen as an ALDL encryption scheme where the deny
list contains a set of tags. A ciphertext is associated to a certain negative tag and decryption
keys are associated to a deny list of negative tags. Now, when the tag of the ciphertext is
on the deny list, then decryption is not successful while all other ciphertexts with tags not
on the deny list can be successfully decrypted. An interesting application is forward-secret
zero round-trip time (0-RTT) key-exchange [GHJL17, DJSS18].

Recently, Derler et al. [DKL+18b] and Wei et al. [WCW+19] proposed the new forward-
secret primitives called fully PE (FuPE) and forward-secret puncturable IBE (fs-PIBE),
respectively, that can be abstracted by ALDL encryption in the following sense. Within
FuPE, ciphertexts are associated to a positive and negative tag while decryption keys can
be first associated to several negative tags in a deny list and a final positive tag in an
allow list. In fs-PIBE on the other hand, ciphertexts are also associated to a positive and a
negative tag while decryption keys can be first associated to one positive tag in the allow
list and afterwards to several negative tags inserted to a deny list. FuPE realized the first
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forward-secret proxy re-encryption (PRE) scheme while fs-PIBE has been shown to have
applications to Cloud e-mails. In these approaches, the order of inserting tags to the allow
and deny lists plays a crucial role.

In our work, we want to enhance those capabilities even further. In particular, our work
allows to first associate the secret key with several negative tags in a deny list, then with
a positive tag in the allow list, and afterwards with several further negative tags again in
the deny list, which yields new applications areas not yet covered by existing approaches.
Our enhancement gives more flexibility and more fine-grained forward secrecy enhancing
techniques from prior works. In Table 1, we compare all discussed approaches.

ALDL Variant 1. Action 2. Action 3. ActionPrimitiveApplications

1. AL (1) – – IBE E-mail (e.g, [BF01])

2. DL (∞) – – PE Key exchange (e.g, [GM15, GHJL17])

3a. AL (1) DL (∞) – fs-PIBE
Cloud e-mail, weak forward-secret IBE
(e.g., [WCW+19])

3b. DL (∞) AL (1) – FuPE Forward-secure PRE (e.g., [DKL+18b])

4. (this work) DL (∞) AL (1) DL (∞) DFPE
Enhanced Geo Key Manager, forward-
secret IBE and signatures

Table 1: Overview of allow-list (AL)/deny-list (DL) encryption variants with actions per-
formed on the allow and deny lists and in which order. We use 1 to denote support for a
single tag and ∞ to indicate many tags in arbitrary order. We further list cryptographic
primitives and applications abstracted by the ALDL-encryption variants.

Our contribution. We propose a versatile variant of puncturable encryption dubbed dual-
form puncturable encryption (DFPE), which extends recent works on PE that are not ex-
pressive enough to achieve our goals. We carefully adapt the PE techniques envisioned by
Green and Miers [GM15] and Günther, Hale, Jager, and Lauer [GHJL17] to equip PE with
interleaved negative and positive puncturing. While the concept of Fully PE (FuPE) due to
Derler et al. [DKL+18a, DKL+18b] is related to our solution, it is not sufficient. In their
work, positively punctured keys can no longer be negatively punctured. In contrast to Der-
ler et al.—who can instantiate their FuPE scheme from any Hierarchical Identity-Based
Encryption (HIBE) [GS02] scheme—we require novel tools and in particular the concept of
tagged HIBEs (THIBEs), a generalization of HIBEs. Our ideas on THIBEs are related to
the work of Abdalla, Kiltz, and Neven [AKN07], but with different goals.

Dual-Form Puncturable Encryption (DFPE): Loosely speaking, DFPE allows to puncture
secret keys on negative tags (like within PE), i.e., a key punctured on a negative tag can no
longer decrypt ciphertexts under this tag, but in addition a secret key can be customized to a
given positive tag once and then further punctured negatively. Keys customized to a positive
tag can only decrypt ciphertexts to this positive tag and whose negative tags are distinct
from the ones the key was punctured on. We introduce the concept of DFPE and rigorously
model its security requirements. For concrete instantiations of DFPE, we introduce a gen-
eralization of HIBEs called tagged HIBEs (THIBEs) along with a suitable security model
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and which we instantiate using ideas underlying the Boneh-Boyen-Goh (BBG) [BBG05a]
HIBE. Since it requires some modifications and tweaks to provide the features required by
a THIBE scheme, we provide a careful proof of security of our THIBE. A main benefit of
starting from the BBG HIBE is that the size of the ciphertexts in our THIBE is constant.
Finally, we show how DFPE can be generically constructed from any THIBE and provide a
proof-of-concept implementation of our concrete DFPE scheme.

Enhancing Cloudflare’s Geo Key Manager: We show how the currently used approach based
on a combination of both pairing-based identity-based broadcast encryption (IBBE) [Del07]
and identity-based revocation (IBR) [ALdP11], which so far does not provide forward-
secrecy, can be instantiated using DFPE as a single primitive. Thereby, it supports the
required functionality of adding areas to allow-lists, colocations within these areas on deny-
lists, allow-listing single colocations is efficiently possible, and at the same time adds forward
secrecy on top while achieving comparable parameter sizes.

Cryptographic applications: We demonstrate that DFPE is a versatile cryptographic tool
by generically instantiating other primitives. This immediately yields (new) constructions
thereof. In particular, we show how to generically construct forward-secure IBE [YFDL04],
thereby—to the best of our knowledge—obtaining the first fs-IBE scheme with compact
ciphertexts, as well as forward-secure signatures [BM99, Kra00, IR01, AABN02]. Espe-
cially, the latter turned out to be an interesting primitive in the context of distributed
ledgers [DGKR18, GW19, DN19, DGNW20, DGKR18].

Outline. In Section 2, we provide preliminaries for our work. In Section 3, we define tagged
HIBEs (THIBEs) and its CPA- and CCA-based security notions. In Section 3, we present
Dual-Form Puncturable Encryption (DFPE) and give a construction from THIBEs. We
conclude with applications in Section 5.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let κ ∈ N be the security parameter. For
a finite set S, we denote by s ← S the process of sampling s uniformly from S. For an
algorithm A, let y ← A(κ, x) be the process of running A on input (κ, x) with access to
uniformly random coins and assigning the result to y. (If not given explicitly, we assume
that κ is implicitly given as input.) To make the random coins r explicit, we write A(κ, x; r).
We say an algorithm A is probabilistic polynomial time (PPT) if the running time of A is
polynomial in κ. A function f is negligible if its absolute value is smaller than the inverse
of any polynomial (i.e., if ∀c∃k0∀κ ≥ k0 : |f(κ)| < 1/κc). We may write q = q(κ) if we mean
that the value q depends polynomially on κ.

Pairings. Let G1, G2, GT be cyclic groups of order p. A pairing e : G1 × G2 → GT is a
map that is bilinear (i.e., for all g1, g

′
2 ∈ G1 and g2, g

′
2 ∈ G2, we have e(g1 · g′1, g2) =

e(g1, g2) · e(g′1, g2) and e(g1, g2 · g′2) = e(g1, g2) · e(g1, g′2), non-degenerate (i.e., for gen-
erators g1 ∈ G1, g2 ∈ G2, we have that e(g1, g2) ∈ GT is a generator), and efficiently
computable. Let BGen be a PPT algorithm that, on input a security parameter κ, outputs
BG = (p,G1, G2, GT , e, g1, g2) for generators g1 and g2 of G1 and G2, respectively, and
Θ(κ)-bit prime p.

q-wBDHI assumption. We recall the q-wBDHI [BBG05a] assumptions ported to Type-3
groups [CM11]. We define the advantage of an adversary D with respect to q-wBDHI as
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Advq-wBDHI
BGen,D (κ) :=

∣∣∣Pr[D(pp, e(g1, g
r
2)α

(q+1)

) = 1]− Pr[D(pp, e(g1, g
r
2)u) = 1]

∣∣∣,
where BG ← BGen(1κ), and pp = (BG, gα1 , g

α2

1 , . . . , gα
q

1 , gα2 , g
r
1, g

r
2), for α, r, u ← Zp. We

say the q-wBDHI assumption holds if Advq-wBDHI
BGen,A is a negligible function in the security

parameter κ for all PPT adversaries A.

3 Tagged Hierarchical Identity-Based Encryption

Hierarchical identity-based encryption (HIBE) [HL02, GS02, BBG05a] organizes identities
in a tree where identities at some level can delegate secret keys to its descendant entities,
but cannot decrypt ciphertexts intended for other higher-level identities. A tagged HIBE
(THIBE) is a generalization of HIBEs where secret keys can be tagged and ciphertexts are
tagged (a concept related to [AKN07] but adapted to different goals in our work). Correctness
now ensures that untagged secret keys are capable of decrypting (tagged) ciphertexts if the
identities match while tagged secret keys can only decrypt (tagged) ciphertexts correctly if
the identities and the tag match. The distinguishing feature between HIBEs and THIBEs
is that delegated secret keys on any hierarchy can be tagged and, afterwards, even further
delegated. In a certain sense, through tagging, secret keys can be further restricted on the
same hierarchy level and beyond in their decryption capabilities.

3.1 Definition, Correctness, and Security Notions of THIBEs

Before constructing THIBEs, we first present our THIBE definition and continue with its
correctness property as well as its security notions.

Definition 1 (THIBE). For some hierarchy parameter ` ∈ N, a tagged hierarchical identity-
based encryption (THIBE) scheme THIBE with message space M, tag space T , and identity
space ID≤`, consists of the PPT algorithms (Gen,Del,Tag,Enc,Dec):

Gen(1κ, `) : output a keypair (pk, skεε). (We assume that pk is given as input to Del,Tag,
and Dec implicitly; let ε /∈ ID ∪ T be a distinguished element associated to non-tagged or
non-delegated secret keys.)

Del(sktid′ , id) : output a secret key sktid if id ′ ∈ ID`
′−1 is a prefix of id ∈ ID`

′
, for some

`′ ∈ [`] else output sktid′ .
Tag(skεid , t) : output a secret key sktid if t ∈ T , else output skεid .
Enc(pk,M, id , t) : for message M ∈M, identity id ∈ ID≤`, and tag t ∈ T , output a cipher-

text Ctid .

Dec(skt
′

id′ , C
t
id) : output M ∈M∪ {⊥}.

Correctness of THIBE. Essentially, correctness follows the HIBE correctness (i.e., a secret
key can decrypt a ciphertext if the identity in such key is a prefix of the identity associated
to the ciphertext), but we additionally require that the tag in the ciphertext matches the
tag in the secret key as well.

More formally, for all κ, ` ∈ N, all (pk, skεε) ← Gen(1κ, `), all M ∈ M, all id , id ′ ∈
ID≤` ∪ {ε} where id ′ ∈ ID`

′−1 is a prefix of id ∈ ID`
′
, for some `′ ∈ [`], all t ∈ T ∪ {ε}, all

sktid ← Tag(skεid , t), all sktid ← Del(sktid′ , id), all t′ ∈ T all Ct
′

id ← Enc(pk,M, id , t′), we have

that Dec(sktid , C
t′

id) = M if t = t′.
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THIBE-IND-CPA and THIBE-IND-CCA security notions. A THIBE scheme is

THIBE-IND-CPA-secure or THIBE-IND-CCA-secure if and only if any PPT adversary A
succeeds in the following experiments only with probability at most negligibly larger than
1/2.

First, A receives an honestly generated pk. Let Ext(·, ·, ·) be a key-extraction oracle
that, given skεε, an identity id ∈ ID≤`, and a tag t ∈ T ∪ {ε}, outputs a secret key sktid via
iteratively running Del to compute skεid and, afterwards, returning Tag(skεid , t). Furthermore,
let Dec′ be a decryption oracle that, given skεε and a ciphertext Ctid , outputs Dec(sktid , C

t
id),

where sktid ← Ext(skεε, id , t). During the experiment, Amay adaptively query the Ext(skεε, ·, ·)-
oracle for corresponding secret key skεε to pk. Only for THIBE-IND-CCA security, A has
access to the decryption oracle Dec′. At some point, A outputs two equal-length messages
M0,M1 and receives a target ciphertext Ct

∗

id∗ ← Enc(pk,Mb, id
∗, t∗) in return, for uniform

b ← {0, 1}. Eventually, A outputs a guess b∗. We say that A is valid if and only if A never
queried the Ext-oracle on a prefix of id∗ for tag t ∈ {t∗, ε}, and only outputs equal-length
messages. For THIBE-IND-CCA security, A is only valid if it additionally did not query
Dec′ on the challenge ciphertext. We say that any valid A succeeds if b = b∗. More formally,
the experiments are given in Experiment 1.

Experiment Expthibe-ind-TTHIBE,A (1κ, `)

(pk, skεε)← Gen(1κ, `)

(M0,M1, id
∗, t∗, state)← AExt(skεε,·,·) ,Dec′(skεε, ·) (pk)

b←$ {0, 1}
C∗ ← Enc(pk,Mb, id

∗, t∗)

b∗ ← AExt(skεε,·,·) ,Dec′(skεε, ·) (state, C∗)
if b = b∗ return then 1, else return 0

Experiment 1: THIBE-IND-T-security for THIBE: T ∈ {CPA, CCA}.

Definition 2. For any PPT adversary A, we define the advantage function as

Advthibe-ind-T
THIBE,A (1κ, `) :=

∣∣∣∣Pr
[
Expthibe-ind-TTHIBE,A (1κ, `) = 1

]
− 1

2

∣∣∣∣ ,
for integer ` ∈ N, for T ∈ {CPA, CCA}.

3.2 Constructing Tagged Hierarchical Identity-Based Encryption

We present our construction of a THIBE. The scheme construction closely follows the con-
struction of the Boneh-Boyen-Goh (BBG) HIBE [BBG05a], but has one additional distin-
guished element in the secret keys (used for positive puncturings later in our DFPE con-
struction). This element is not related to any hierarchy level and can be embedded into the
secret key at any stage. In Scheme 1, we formally construct our THIBE.

Correctness of THIBE. Correctness essentially follows from the correctness of the Boneh-
Boyen-Goh HIBE [BBG05a]; in particular, see that decryption succeeds for matching se-

cret keys sktid =: (a0, a1, . . . ) = (hα · (h0 ·
∏`′

i=1 h
idi
i · gH(t))r, gr2) and ciphertexts Ctid =:
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Gen(1κ, `) : Generate a bilinear group BG := (p, e,G1, G2, GT , g1, g2) ← BGen(1κ), set M := GT ,
set T := {0, 1}κ, and set ID := Zp, sample g, h, h0, h1, . . . , h` ← G1, choose α, r ← Zp, set
pk := (BG, H, g, h, h0, h1, . . . , h`, g

α
2 ), for hash function H : T 7→ Zp (modelled as RO in the

security proof) where H(ε) := 0, and skεε := (hα · hr0, gr2 , hr1, . . . , hr` , gr).

Del(sktid′ , id) : For id =: (id1, . . . , id`′+1) and `′ := |id ′|, if id 6= (id ′, id`′+1), then return sktid′ .

Otherwise, if t = ε, parse sktid′ =: (a0, a1,K`′+1, . . . ,K`, g
′). Sample r′ ← Zp and return(

a0 ·K
id`′+1

`′+1 ·
(
h0 ·

∏|`′+1|
i=1 hidi

i

)r′
, a1 · gr

′
2 , (Ki · hr

′
i )`′+1<i≤`, g

′ · gr
′
)
.

Otherwise, if t 6= ε, parse sktid′ =: (a0, a1,K`′+1, . . . ,K`). Sample r′ ← Zp and return(
a0 ·K

id`′+1

`′+1 ·
(
h0 ·

∏`′+1
i=1 hidi

i

)r′
· gH(t)·r′ , a1 · gr

′
2 , (Ki · hr

′
i )`′+1<i≤`

)
.

Tag(skεid , t) : If t = ε, return skεid . Otherwise, set `′ := |id | and id =: (id1, . . . , id`′). Parse skεT =:

(a0, a1,K`′+1, . . . ,K`, g
′). Sample r′ ← Zp and return(

a0 · g′H(t) ·
(
h0 ·

∏`′

i=1 h
idi
i

)r′
· gH(t)·r′ , a1 · gr

′
2 , (Ki · hr

′
i )`′<i≤`

)
.

Enc(pk,M, id , t) : Set `′ := |id | and id =: (id1, . . . , id`′). Sample s← Zp, and return

(C1, C2, C3) :=
(
e(h, gα2 )s ·M, gs2,

(
h0 ·

∏`′

i=1 h
idi
i

)s
· gH(t)·s

)
.

Dec(skt
′

id′ , C
t
id) : If id ′ 6= id or t′ 6= t, return ⊥. Otherwise, parse sktid′ as (a0, a1, . . .) and

(C1, C2, C3) := Ctid . Return M ′ := C1 · e(C3, a1) · e(a0, C2)−1.

Scheme 1: Construction of THIBE.

(C1, C2, C3) = (e(h, gα2 )s ·M, gs2, (h0 ·
∏`′

i=1 h
idi
i · gH(t))s), for id =: (id1, . . . , id `′):

C1 ·
e(C3, a1)

e(a0, C2)
= e(h, gα2 )s ·M ·

e((h0 ·
∏`′

i=1 h
idi
i · gH(t))s, gr2)

e(hα · (h0 ·
∏`′

i=1 h
idi
i · gH(t))r, gs2)

= M.

Theorem 1. If the q-wBDHI assumption holds, then THIBE defined in Scheme 1 is THIBE-
IND-CPA-secure in the random-oracle (RO) model. Concretely, for any valid PPT adversary
A with at most qk = qk(κ) key queries, there is a distinguisher D on q-wBDHI with q = `+1,
such that

Advthibe-sind-cpa
THIBE,A (1κ, `) ≤ qk ·Advq-wBDHI

BGen,D (1κ),

for group generator BGen and number of RO-queries qk = qk(κ).

Proof. We show the THIBE-IND-CPA security of THIBE for any valid PPT adversary A in
two games where:

Game 0. Game 0 is the THIBE-IND-CPA experiment.
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Game 1. Game 1 is defined as Game 0 except that the encrypted message is a uniformly
random group element independent of the (challenge) bit b.

We prove that Game 0 and Game 1 are indistinguishable, by presenting a reduction that uses
a q-wBDHI challenger to interpolate between the two games. The proof follows the argumen-
tation of the proof for the BBG HIBE scheme under the q-wBDHI assumption [BBG05a]
transformed to the Type-3 pairing setting.

Essentially, due to the fact that the THIBE-construction is slightly different compared to
the BBG-HIBE construction, we have to carefully argue that our construction is THIBE-
IND-CPA secure under the q-wBDHI assumption. Nevertheless, many similarities to the
proof of the BBG-HIBE can be found and, hence, we will focus on the differences in more
detail (while of course point out the similarities).

The main difference is that we have a special element, namely a tag-associated group
element, that needs some extra care. However, as it turns out, this element can be handled
as all the identity-basis group elements and is retrieved from the assumption as well. We are
able to setup the public key with the correct distribution as well as answer the Ext-queries
consistently. Essentially, this distinguishing tag-based element is handled as the “leaf” target
identity in the BBG HIBE proof.

We follow the proof line of BBG [BBG05b, Proof of Theorem 3.1] in the following sense:
BBG show a weaker variant where the adversary has to commit to the target (hierarchical)
identity before seeing the public key (i.e., identity id∗ and tag t∗ in our case). This is often
referred to as selective security and can be easily lifted to adaptive security (which we
actually model within the THIBE-IND-CPA experiment where the public key is retrieved
first by the adversary before it commits to the target identity and tag) by relying on the
random-oracle (RO) model. (We refer to BBG [BBG05a] and later works [GW19, DN19,
DGNW20] that all use similar techniques to prove adaptive security of their schemes in the
RO model.)

For our purpose, it suffices to use the hash function H as the tag function for fixed-
length tags mapped to Zp (with restriction for H(ε) := 0). We want to show that each PPT
adversary A with at most qk = qk(κ) extraction queries on the THIBE-IND-CPA security
of THIBE yields a PPT distinguisher D for the q-wBDHI assumption, for q = `+ 1.

The distinguisher D is given as input

(pars := (BG, y1 := gα1 , y2 := gα
2

1 , . . . , y`+1 := gα
`+1

1 , gα2 , g
r
1, g

r
2), T ),

with g1, g2 is given by the bilinear group parameters BG = (p,G1, G2, GT , g1, g2) and T

equals either e(g1, g
r
2)α

`+2

or is a uniform element in GT .
A outputs the target (hierarchical) identity id∗ = (id∗1, . . . , id

∗
`′) ∈ (Zp)`

′
, for `′ ∈ [`],

and target tag t∗. If `′ < `, pad id∗ with ` − `′ zeroed part-identities such that |id∗| = `
and we can assume id∗ = (id∗1, . . . , id

∗
` ) as done in the BBG proof. The hash evaluation

H(t∗) ∈ Zp will be set as the (` + 1)-th “identity.” The public key pk is sampled similarly
to the BBG proof, i.e., set h := y`+1 · gγ1 , for γ ← Zp, and h′i := gγi1 /y`−i+2, for all γi ← Zp,
i ∈ [`+ 1]. Furthermore, set g := h′1 and h0 := gγ01 ·

∏`
i=1 y

id∗i
`−i+2 · y

H(t∗)
1 , for some γ0 ← Zp.

The public key
pk := (BG, H, g, h, h0, h1 := h′`+1, . . . , h` := h′2, g

α
2 )

is sent to A.
Note that D does not know the secret key skεε corresponding to pk; implicitly the secret

key is set to skεε = (hα · hr′0 , gr
′

2 , h
r′

1 , . . . , h
r′

` , g
r′) = (g

α(α`+1+γ)
1 · hr′0 , . . . ) for some r′ ∈ Zp as
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in the BBG proof. Hence, we embed the tag as H(t∗) and the target identity id∗ in the h0
group element, where essentially key material cannot be computed for the target tag t∗ and
identity id∗ by the distinguisher D.

Extraction-oracle queries in the reduction are answered as in the BBG proof for “identity
vector” ((id i)i∈[`′′], t), for some `′′ ∈ [`] (we note that there exists a smallest k ∈ [`′′] such
that idk 6= id∗k if t = t∗ 6= ε due to the validity of A in querying Ext we assume here). As
long as id∗k is part of the vector, we can even allow t = t∗ 6= ε. If no such k exist, then
t 6= t∗ is queried (again, due to the validity of A we assume here) and there still exists at

least one element which involves gα
`+2

1 that cannot be computed by D. For all other queries,

gα
`+2

1 cancels out due to the partitioning argument (the same way as in the BBG proof) and
extraction queries can be computed.

At some point, A outputs two equal-length messages M0,M1, D samples b← {0, 1}, and
sends the challenge ciphertext

C∗ :=
(
Mb · T · e(gα1 , (gr2)γ), gr2, g

r(γ0+
∑`

i=1 id∗i ·γi+H(t∗)·γ`+1)
1

)
to A.

Eventually, A outputs a guess b∗ on b. If b∗ = b, then D outputs 1 (i.e., guesses T =

e(g1, g
r
2)α

`+2

), else outputs 0 (i.e., guesses that T is uniformly random in GT ).

Analysis of the reduction. The public key pk as well as all secret keys (that are re-

turned after querying the Ext-oracle) are distributed correctly. If T = e(g1, g
r
2)α

`+2

, the
ciphertext C∗ is a valid encryption of Mb; otherwise, i.e., if T is uniformly random in
GT , then C∗ is independent of b. If relying on the RO model (to achieve adaptive secu-
rity), a multiplicative factor of qk (which is the number of RO queries) is introduced (cf.
[BBG05a, GW19, DN19, DGNW20]). Let S0 and S1 be the events that D outputs 1 to its

Advq-wBDHI
BGen,D -challenger in Game 0 and Game 1, respectively. Consequently, we have that

Pr[S0] = Advthibe-ind-cpa
THIBE,A (1κ, `)/qk + 1/2 and Pr[S1] = 1/2. Hence, for Advq-wBDHI

BGen,D (1κ) =

|Pr[D(pars, e(g1, g
r
2)α

`+2

) = 1]− Pr[D(pars, e(g1, g
r
2)u) = 1]|, this yields

Advq-wBDHI
BGen,D (1κ) ≥ |Pr[S0]− Pr[S1]| = Advthibe-ind-cpa

THIBE,A (1κ, `)/qk,

with q = `+ 1, which concludes the proof.

THIBE-IND-CCA security. We now discuss how to obtain THIBE-IND-CCA security
for our construction THIBE by applying the well-known Fujisaki-Okamoto transform [FO99].
Basically, the encryption algorithm will encrypt as its message (M, r) with M the original
message and r a sufficiently large randomly sampled bit string (this requires an injective
encoding (M, r) into the message space of the THIBE scheme). The THIBE-encryption is
de-randomized and uses as random coins H(r) where H is a hash function modeled as a
random oracle (RO) to obtain the ciphertext Ctid . The decryption algorithm applies the
original decryption algorithm from the THIBE-IND-CPA-secure THIBE scheme to receive
(M ′, r′). Then, it re-encrypts (M ′, r′) using random coins H(r,M ′) to obtain the ciphertext

C
t

id . If it holds that Ctid = C
t

id , it outputs M ′ and otherwise it outputs ⊥.

Corollary 1. If the q-wBDHI assumption holds, then THIBE defined in Scheme 1 is THIBE-
IND-CCA-secure in the RO model. Concretely, for any valid PPT adversary A with at most
qk = qk(κ) key queries, there is a distinguisher D on q-wBDHI with q = `+ 1, such that

Advthibe-sind-cca
THIBE,A (1κ, `) ≤ qk · qc ·Advq-wBDHI

BGen,D (1κ),

for group generator BGen and number of RO-queries qk = qk(κ) and qc = qc(κ).
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4 Dual-Form Puncturable Encryption

Puncturable encryption (PE) has been introduced by Green and Miers in [GM15] and sub-
sequently used and refined in several works, e.g., in [CHN+16, CRRV17, GHJL17, DJSS18,
DKL+18b]. We recall, that a PE scheme is a public-key encryption scheme where each ci-
phertext can be encrypted with respect to one (or more tags). PE features an additional
puncturing algorithm that takes a secret key and a tag t as input and produces an updated
secret key. This updated secret key is able to decrypt all ciphertexts except those tagged with
t and (updated) secret keys can be iteratively “punctured” on distinct tags. (In our general-
ized allow-/deny-list encryption concept, this will correspond to our secret-key manipulation
with respect to a deny list.)

Despite being slightly different in their concrete formulation (e.g., some schemes allow
single tags, others multiple tags), existing PE schemes all provide the same basic idea in
their functionality, i.e., that they allow to puncture secret keys in a way that they can no
longer decrypt certain ciphertexts. A notable difference is in the formulation of Fully PE
(FuPE) from Derler et al. [DKL+18a] where secret keys can be punctured with respect to
so-called negative tags (resembling the functionality of PE) and in addition to so-called
positive tags. If a secret key is punctured with respect to a positive tag, then it can only
decrypt ciphertexts that are tagged with respect to the corresponding positive tag. Although
this approach adds more flexibility, it still lacks an important feature, namely, once keys are
positively punctured, they can no longer be negatively punctured. Mapped to the application
that we have in mind, this means that derived FuPE keys will loose the key-manipulation
property (a versatile feature that we want to enable). To mitigate this problem and to make
the concepts of PE more comprehensible, we introduce the new notion of Dual-Form PE
(DFPE) which enables the negative-puncturing features of keys after those keys have already
been positively punctured.

4.1 Definition, Correctness, and Security Notions of DFPE

Before constructing DFPE, we first present our DFPE definition and continue with its
correctness property as well as its security notions.

Definition 3 (DFPE). A Dual-Form Puncturable Encryption (DFPE) scheme DFPE with
message space M, positive and negative tag spaces T+ and T−, respectively, consists of the
PPT algorithms (Gen,NPunc,PPunc,Enc,Dec):

Gen(1κ, `−) : key generation, on input a unary security parameter 1κ ∈ N and maximum
number of negative tags `− ∈ N, outputs public and secret keys (pk, skεε). (We assume that
pp implicitly determines M, T+, and T−; we consider ε to be not part of the positive and
negative tag spaces.)

NPunc(sk
t+
T , t−) : negative puncturing, on input a secret key sk

t+
T with T ⊂ T− ∪ {ε} and

t+ ∈ T+ ∪ {ε}, and a tag t− ∈ T−, outputs sk
t+
T∪{t−}.

PPunc(skεT , t+) : positive puncturing, on input a secret key skεT and positive tag t+ ∈ T+,

outputs a key sk
t+
T .

Enc(pk,M, t−, t+) : encryption, on input a public key pk, a message M ∈M, a negative tag

t− ∈ T−, and a positive tag t+ ∈ T+, outputs a ciphertext C
t+
t− . (We note that t+ and t−

are publicly retrievable given the ciphertext and the public key pk.)
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Dec(sk
t′+
T , C

t+
t− ) : on input a secret key sk

t′+
T and a ciphertext C

t+
t− , outputs M ∈M if t− /∈ T

and t′+ = t+; else output ⊥.

Correctness of DFPE. Essentially, correctness ensures that even if a secret key is nega-
tively punctured and afterwards positively punctured, or vice versa, decryption succeeds if
the resulting secret key matches the positive tag of the ciphertext and the negative tag of
the ciphertext was not already punctured.

More formally, for all κ, `− ∈ N, all (pk, skεε) ← Gen(1κ, `−), all T ⊂ T− ∪ {ε}, all

t− ∈ T−, all t+ ∈ T+ ∪ {ε}, all arbitrarily interleaved runs of sk
t+
T∪{t−} ← NPunc(sk

t+
T , t−),

all t′+ ∈ t+ and sk
t+
T ← PPunc(skεT , t

′
+), all M ∈ M, all C

t′+
t− ← Enc(pk,M, t−, t

′
+), we have

that Dec(sk
t′+
T , C

t′+
t− ) = M if t− /∈ T .

DFPE-IND-CPA and DFPE-IND-CCA security notions. We define security notions
for DFPE, dubbed DFPE-IND-CPA and DFPE-IND-CCA. A DFPE scheme is DFPE-IND-
CPA-secure or DFPE-IND-CCA-secure if any PPT adversary A succeeds in the following
experiment only with probability at most negligibly larger than 1/2. First, public and secret
keys (pk, skεε) are honestly generated. During the experiments, A may adaptively query a
Ext(skεε, ·, ·)-oracle, while for the DFPE-IND-CCA experiment, A may adaptively query a
Dec′(skεε, ·)-oracle additionally:

Ext(skεε, T, t+), on input secret key skεε, negative-tag set T ⊂ T−, and positive tag t+ ∈
T+ ∪ {ε}, outputs sk

t+
T ← PPunc(skεT`

, t+), for iteratively punctured secret key skεTi
←

NPunc(skεTi−1
, ti−1), for all pairwise-different tags (t0, . . . , t`−1) ∈ (T )` with ` := |T | and

i ∈ [`] in arbitrary order. (It allows the positive tag t+ = ε but not the negative-tag set
T = {ε} nor the empty set T = ∅ as input.)

Dec′(skεε, C
t+
t− ), on input secret key skεε and ciphertext C

t+
t− , derives skt+ε ← PPunc(skεε, t+)

and outputs M ← Dec(skt+ε , C
t+
t− ). (The oracle does not allow a ciphertext input associated

to the tags t− = ε and t+ = ε.)

The public key pk is given to A. A outputs equal-length messages (M0,M1), a target negative
tag t∗− ∈ T−, and a target positive tag t∗+ ∈ T+. The target challenge ciphertext C∗ ←
Enc(pk,Mb, t

∗
−, t
∗
+), for uniform b← {0, 1}, is given to A. Eventually, A outputs a guess b∗,

and succeeds, i.e., the experiment outputs 1, if the equation b = b∗ holds.
We say that A is valid if and only if A has not queried the Ext-oracle to obtain keys such

that the challenge ciphertext can be trivially decrypted; for the DFPE-IND-CCA case, we
additionally require that A did not query Dec′-oracle with the challenge ciphertext. More
concretely, if any valid PPT A succeeds only with probability at most negligibly larger

than 1/2, then we say an DFPE scheme is DFPE-IND-CPA and DFPE-IND-CCA secure,
respectively. In Experiment 2, we formally state the security experiments.

Definition 4. We define the advantage of an adversary A in the DFPE-IND-T experiment
Expdfpe-ind-TDFPE,A (1κ, `−) as

Advdfpe-ind-T
DFPE,A (1κ, `−) :=

∣∣∣Pr
[
Expdfpe-ind-TDFPE,A (1κ, `−) = 1

]
− 1

2

∣∣∣.
We say a DFPE scheme DFPE is DFPE-IND-T-secure for T ∈ {CPA, CCA}, if Advdfpe-ind-T

DFPE,A

(1κ, `−) is a negligible function in κ for all valid PPT A.
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Experiment Expdfpe-ind-TDFPE,A (1κ, `−)

(pk, skεε)← Gen(1κ, `−)

(M0,M1, t
∗
−, t
∗
+, st)← AExt(skεε,·,·) ,Dec′(skεε, ·) (pk)

b← {0, 1}
C∗ ← Enc(pk,Mb, t

∗
−, t
∗
+)

b∗ ← AExt(skεε,·,·) ,Dec′(skεε, ·) (st, pk, C∗)
if b = b∗ return 1, else return 0

Experiment 2: DFPE-IND-T-security for DFPE: T ∈ {CPA, CCA}.

��HHskε

sk1t0

sk11

sk111

t7

sk110

t6

sk10

sk101

t5

sk100

t4

��ZZsk0

sk01t0

sk011

t3

sk010

t2

��HHsk00

sk001t0

t1

��XXsk000

�Zt0

Figure 1. Example of a DFPE secret key that has been punctured on t0. The secret key

sk
t+
t0 has the boxed elements (sk001t0 , sk01t0 , sk

1
t0).

4.2 Constructing Dual-Form Puncturable Encryption

Subsequently, we present a construction of a DFPE scheme based on pairings. Unfortunately,
we cannot instantiate our DFPE scheme directly from HIBEs as done in prior work on
PE [GHJL17] and Fully PE [DKL+18a, DKL+18b]. The reason is that we want to allow
puncturings even after secret keys were extracted for a specific positive tag such that those
keys can be further restricted with respect to negative tags. Realizing this generically from
HIBEs stays unknown, but we use tagged HIBEs (THIBEs) to construct DFPE-IND-CCA-
secure DFPE. This allows to fulfill the needs for our applications we have in mind not being
achieved before by FuPE. By applying THIBEs, we are able to instantiate our DFPE scheme
using Type-3 bilinear groups as they represent the state-of-the-art regarding efficiency and
similarity of the security levels of the base and target groups.

To construct a DFPE scheme from THIBEs, we implicitly arrange negative tags of the
DFPE scheme associated to secret keys in a complete binary tree, i.e., the nodes represent
a prefix bit representation of the negative tag and, hence, the root of the tree is associated

with keys skt
+

ε of the DFPE. In Figure 1, we give an example with a secret key punctured
on a negative tag t0.

We define an additional PPT helper algorithm Trunc to prune the tree to output a
punctured secret key that corresponds to a given set of tags. This is reminiscent of prior
works, e.g., [CHK03, GHJL17, DJSS18, DKL+18a].

Intuition of Trunc. Essentially, Trunc takes the current tree configuration as provided in
the secret key (i.e., which tags are already punctured and, hence, how the tree is pruned for
such tags). It further receives a negative tag t− that will be punctured. Trunc first finds all
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elements from the root to the associated leaf of tag t−. (Since those elements can be used
to derive a secret key for tag t−.) It delegates the key elements on that path such that no
ancestor elements for t− are available anymore and keeps the other key elements. The result
is a pruned tree that excludes secret-key material for t− for the new set of punctured tags
T ∪{t−}. The concrete PPT algorithms works as follows (see that the positive tag t+ is not
touched in Trunc).

Trunc(sk
t+
T , t−) : on input keys (skT,1, . . . , skT,m) := sk

t+
T , for some integer m, output a punc-

tured secret key according to t− = (t1, . . . , t`) as follows:
1a. let skT,i be the secret key part associated to the unique node which is associated to a

prefix of t−. (Such unique element always exists, otherwise t− would have been punc-
tured already.) Derive delegated secret keys hanging from the path to t− by iteratively
calling Del on all prefixes of t− starting from the node associated to skT,i and set

sk′T := (sk′T,≤m, sk
′
T,m+1, sk

′
T,m+2, . . . ), where sk′T,≤m is the same as sk

t+
T , but without

skT,i, and sk′T,m+1, sk
′
T,m+2, . . . are those derived delegated keys via Del hanging from

the path to t−; else,
1b. if there exist a leaf associated to a t−-secret key skT,i, for i ∈ [m], then set sk

t+
T∪{t−} :=

sk′T,≤m, where sk′T,≤m is the same as sk
t+
T , but without the leaf-associated secret key

skT,i.

2. Output sk
t+
T∪{t−}.

Concrete construction of DFPE. The intuition of the concrete DFPE construction is as
follows. Key generation returns the public-secret key pair of the THIBE key generation as
its initial public and secret keys. The negative and positive tag spaces are set to T− =
|ID`| (i.e., corresponding to a leaf in the tree) and T+ = T (i.e., corresponding to THIBE’s
tags), respectively. Negative puncturing takes a secret key, runs Trunc to truncate the tree,
and returns the punctured secret key (according to the pruned-tree configuration). Positive
puncturing takes a secret key and a positive tag t+, and punctures all part secret keys with
t+ using Tag. Encryption takes the public key, negative and positive tags, and the message
to return the output of THIBE’s encryption algorithm. Decryption finds the associated secret
key part such that the negative tag t− of the ciphertext is matched (i.e., if t− was not yet
punctured in the secret key, then such key material is available). Furthermore, if the positive
tag t+ of the secret key matches the positive tag of the ciphertext, then decryption returns
the output of THIBE’s decryption algorithm.

More formally, let THIBE = (THIBE.Gen,THIBE.Del,THIBE.Tag,THIBE.Enc,THIBE.Dec)
with message space MTHIBE, identity space ID≤`, and tag space T be a THIBE scheme.
We present our DFPE scheme DFPE = (Gen,NPunc,PPunc,Enc,Dec) with message space
M :=MTHIBE, negative tag space T− := ID`, and positive tag space T+ := T in Scheme 2
and further show that it satisfies correctness and the DFPE-IND-CCA security notion.

Correctness of DFPE. Correctness essentially follows from the correctness of THIBE; in
particular, see that if t− /∈ T , then there exist a part-secret key that is capable of decrypting
the ciphertext. A proof of the following theorem is deferred to Appendix B.

Theorem 2. If THIBE is a THIBE-IND-CCA-secure THIBE, then DFPE defined in Scheme 2
is DFPE-IND-CCA-secure. Concretely, for any valid PPT adversary A, there is an adver-
sary D on the THIBE-IND-CCA-security, such that

Advdfpe-ind-cca
DFPE,A (1κ, `−) ≤ Advthibe-sind-cca

THIBE,D (1κ, `−),
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Gen(1κ, `) : Return (pk, skεε)← THIBE.Gen(1κ, `). (We assume that the negative tag space T− is of

size |ID`| for simplicity.)

NPunc(sk
t+
T , t−) : Return sk

t+
T∪{t−}

← Trunc(sk
t+
T , t−).

PPunc(skεT , t+) : Compute sk
t+
ti
← THIBE.Tag(skεti , t+), for all skεT =: (skεt1 , . . . , sk

ε
tm), for some

integer m, and output sk
t+
T := (sk

t+
ti

)i∈[m].

Enc(pk,M, t−, t+) : Return C
t+
t− ← THIBE.Enc(pk,M, t−, t+).

Dec(sk
t′+
T , C

t+
t− ) : Parse sk

t′+
T =: (. . . , sk

t′+
t′−
, . . .) such that t′− is a prefix of t−, run sk

t′+
t− ←

THIBE.Del(sk
t′+
t′−
, t), and return M := THIBE.Dec(sk

t′+
t− , C

t+
t− ). (Note that if t− /∈ T , such prefix

always exists.)

Scheme 2: DFPE-IND-CCA-secure DFPE scheme DFPE.

for some integer `− ∈ N.

4.3 Implementation and Evaluation

We have implemented our DFPE-IND-CPA-secure DFPE scheme as presented in Section 4.2
in Python 3.8 based on pyrelic5 using the BN254 curve that yields a security level of around
100 bit [MSS16, BD19] with the relic pairing library version 0.5.0 [AGM+]. The measure-
ments were performed on a laptop with an Intel Core i7-8650U @ 1.9 GHz running Ubuntu
20.04. In Table 2, we present the average runtime over 100 runs each and sizes of public keys,
secret keys and ciphertexts using negative tag spaces of size 248, 264, and 280 for a random
message, respectively. From Table 2, one can see that the algorithms Gen, Enc, Dec, and

Tags Gen Enc Dec PPunc NPunc |pk| |skεε| max |skidT | |C|

2` G O(`)G 2P O(`)G O(`2)G G2 (`+ 2)G1, G2 O(`2)G1,O(`)G2 G1, G2

248 2.0 2.7 0.4 2.3 110.2 64 1664 78336 96

264 2.6 3.4 0.4 3.0 192.0 64 2176 137216 96

280 3.1 4.1 0.4 3.7 292.6 64 2688 212480 96

Table 2: Performance estimation and evaluation: exponentiations in G1 and G2 are denoted
as G, pairings as P . Runtime in ms and sizes in bytes.

PPunc are very efficient. The benchmarks of the Dec algorithm assumes that no additional
key extraction is necessary. Thus, the runtime of the decryption is independent of the size of
the parameter space. The NPunc algorithm needs less than a second for all levels, but is still
the slowest algorithm overall.6 However, (negative) puncturing is often an offline operation
and thus our performance results are perfectly acceptable.

5 https://github.com/sebastinas/pyrelic, commit 264e6396
6 It is a central open issue in the context of PE to make these algorithms more efficient.
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Furthermore, we can observe that the size of ciphertexts do not depend on the size of
the negative tag space. In the random oracle model, the basis elements stored in the public
key can be derived via the random oracle, so its size can be made independent of the tag
space. The size of the secret key depends both on the tag space as well as the performed
puncturings. Depending on the exact choice of tags, punctured secret keys can grow up to
at most 78 MB, 137 MB and 212 MB, respectively.

5 Applications

5.1 Cloudflare’s Geo Key Manager

Let us now continue the discussion on Cloudflare’s Geo Key Manager7 in more detail. The
currently used system combines pairing-based constructions of identity-based broadcast en-
cryption (IBBE) [Del07] as well as identity-based revocation (IBR) [ALdP11] schemes with
compact ciphertexts in the following way: first, the private key8 sk is secret shared in two
shares sk1 and sk2. Using the IBBE scheme, the first share, sk1 is encrypted with respect to
the allowed regions. The second share, sk2 is encrypted with the IBR scheme revoking access
for all denied colocations. Now, if a colocation receives the two ciphertexts, it can recover the
encrypted shares only if it is within the allowed region and not one of the denied colocations.
Otherwise, it can only recover at most one of the shares. For adding allowed colocations not
already contained within one of those allowed areas, sk is additionally encrypted with the
IBBE scheme for all allowed colocations. So overall, ciphertexts contain two constant-size
IBBE ciphertexts and a constant-size IBR ciphertext. We can obtain the same functionality
also from only using DFPE. In addition, we also obtain the important property of forward
secrecy.

Using DFPE. The idea is to allow the regions using the positive tags and deny colocations
by puncturing on unique negative tags assigned to each colocation. Indeed, assume that
(pk, skεε) is Cloudflare’s DFPE key-pair. Next, Cloudflare would derive keys for each region
by using the name of the region as positive tag in the DFPE scheme, e.g., obtaining skEU

ε

for Europe. Each colocation is assigned a unique negative tag and they receive the secret
key for the region additionally punctured on that tag, e.g., skEU

London for the European data
center in London. If customers now want to store their secret key, they encrypt the key
for each allowed region using the region as positive tag and the denied colocations of the
corresponding region as negative tags. If a colocation needs to access the key, it can only
decrypt if one of the ciphertexts was encrypted for the region and that particular ciphertext
was not tagged with one of the positive tags of the colocation. They are unable to decrypt the
other ciphertexts, since they do not have access to the positively tagged keys. For denying
colocations in allowed regions, we follow the same approach, but encrypt the ciphertext
including all negative tags of the region’s colocations without the ones being allowed.

Achieving forward secrecy. Since DFPE allows to puncture on multiple negative tags, we
can additionally obtain forward secrecy as an important new feature: we can partition the tag
space into one part containing the colocation tags, and another part identifying time periods
by viewing this part as ordered sequence. Thereby, the customers can specify a time epoch as
additional negative tag, say t = 2021-02 for ciphertexts decryptable in February 2021. Once

7 https://blog.cloudflare.com/geo-key-manager-how-it-works
8 Technically, an encryption key for sk, but that does not make a difference.
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the month passed, all colocations puncture the secret keys on the month’s tag, and are then
no longer able to decrypt those ciphertexts. The time periods can be designed in such a way,
that they match the renewal periods of certificates. For example, Let’s Encrypt [ABC+19]
certificates are renewed every three months, and their certbot reference client generates
new secret keys during certificate renewal.

We note that when switching to DFPE, each colocation only has to manage one DFPE
secret key instead of an IBBE and an IBR secret key and DFPE easily achieves both allowing
and denying of areas and colocations with one single primitive, respectively, while at the same
time it additionally provides forward-secrecy. The approach of using DFPE, however, comes
at the cost of having the size of the ciphertexts depend linearly on the number of allowed
areas instead of 3 ciphertexts when using IBBE and IBR. When considering continents, the
number of regions is very small (< 10), thus our ciphertext size can be considered quasi-
constant. Also note that the combined IBBE and IBR ciphertext requires 576 bytes9 using
the same curve, which corresponds to six regions in the DFPE-based approach. Therefore,
when considering the continents as regions, we obtain ciphertexts that are at most the same
size and, thus, forward secrecy is achieved without additional cost. Additionally, Cloudflare
only needs to send the ciphertexts for specific regions to their colocations. Hence, colocations
only have to store a single ciphertext. We note that the number of negative tags (denied
colocations together with the epoch) does not influence the ciphertext size.

5.2 Cryptographic Primitives

Forward-Secret Identity-Based Encryption. Interestingly, although there are some
works on forward-secret IBE [CRF+11, SPB13, LL17], they all consider a very weak model
in which the master secret key stays constant and, hence, the private key generator (PKG)
is able to generate user keys for arbitrary time periods and, thus, inherently invalidating
an important aspect of forward secrecy. We are only aware of a dedicated construction of a
forward-secret hierarchical IBE (HIBE) by Yao et al. [YFDL04], which also yields a forward-
secret IBE as a special case. This works also considers forward-secrecy for the master secret
key. As we will show, DFPE generically yields forward-secret IBE and, thus, offering new
instantiations thereof. In particular, to the best of our knowledge, using the concrete DFPE
construction, this leads to the first fs-IBE scheme with compact ciphertexts. We recall the
definition of an fs-IBE scheme and its security in Appendix A.

fs-IBE construction. Having a DFPE scheme allows to construct an fs-IBE scheme by
mapping time intervals to negative tags. The only syntactical difference is that the NPunc
and PPunc algorithms of DFPE are mapped to the Update and Ext algorithms of fs-IBE. In
particular, when we are at a time interval i in the fs-IBE scheme, this corresponds to secret
keys that are punctured with respect to tag set T = {1, . . . , i− 1} in the DFPE scheme and
moving from time interval i to interval i+ 1 corresponds to puncturing the secret key at tag
i, i.e., T := T ∪ {i}. It is straightforward to show the following:

Corollary 2. If the DFPE scheme provides DFPE-IND-T-security, then the resulting fs-IBE
scheme provides fs-IBE-IND-T-security, for T ∈ {CPA,CCA}.

Forward-Secret Signatures. Forward-secret signatures [BM99, Kra00, IR01, AABN02]
are a primitive that has recently found interest in distributed ledgers [DGKR18, GW19,
DN19, DGNW20].

9 https://rwc.iacr.org/2018/Slides/Sullivan.pdf
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Having a DFPE scheme and, in particular, a fs-IBE scheme, we can generically construct
a forward-secret signature scheme. The idea is simply to adopt the Naor-transform [BF01],
which converts any IBE-IND-CPA secure IBE scheme into an EUF-CMA secure signature
scheme. We first briefly recall this transform: We consider an IBE scheme and the master
secret key sk acts as the signing key. Let id = m, the message to be signed, then skm

extracted with sk for identity m acts as the signature for m. The signature verification is
done by checking if skm functions properly as a correct IBE decryption key for identity m by
encrypting a random plaintext and checking if decryption yields to the original plaintext.

The basic idea of this transform applied to the forward-secret setting is as follows. We
start with the master secret key skεε as initial signing key and to develop the signing key over
time, we update the secret key to the next time period, i.e., to update the signing key from
interval i to interval i+ 1 we run skεi+1 ← Update(skεi , ε, i). Now, within every time interval
i one uses the current signing key with the above Naor-transform. One straightforwardly
obtains:

Corollary 3. If the fs-IBE scheme provides fs-IBE-IND-CPA-security, then the signature
scheme obtained via the Naor-transform provides EUF-CMA-security.

Using our DFPE from Section 4.2 in the above compiler, this yields forward-secret signatures
with the same efficiency as in recent work [DN19, GW19, DGNW20].
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Experiment Expfs-ibe-ind-Tfs-IBE,A (κ, `−)

pp← Setup(κ, `−), (pk, skεε)← Gen(pp)

(M0,M1, i
∗, id∗, st)← AExt(skεε,·,·) ,Dec′(skεε, ·) (pk)

b← {0, 1}
C∗ ← Enc(pk,Mb, i

∗, id∗)

b∗ ← AExt(skεε,·,·) ,Dec′(skεε, ·) (st, pk, C∗)
if b = b∗ return 1, else return 0

Experiment 3: fs-IBE-IND-T-security for fs-IBE: T ∈ {CPA, CCA}.

A Forward-Secure Identity-Based Encryption

Definition 5 (fs-IBE). A forward-secure identity-based encryption (fs-IBE) scheme with
message spaceM and identity space ID consists of the PPT algorithms (Setup,Gen,Ext,Update,
Enc,Dec):

Setup(κ, `−) : On input security parameter κ and maximum number of time periods `− and
outputs public parameters pp.

Gen(pp, id , N) : On input public parameters parameter pp (which is in implicit input to all
algorithms) and the total number of time periods, outputs a master keypair (pk, skεε).

Ext(skεj , id , i) : On input a master secret key skεj and identity id and a time period i with

i ≥ j output a secret key skidi .
Update(skidi , id , i) : On input a (master) secret key skidi , identity id and time period i output

a secret key skidi+1.
Enc(pk,M, id , i) : On input a master public key pk, message M ∈ M identity id ∈ ID and

time period i, outputs a ciphertext Cid
i for identity id and time period i.

Dec(skid
′

i , Cid
i , i) : On input a secret key skid

′

i and a ciphertext Cid
i , outputs M ∈M∪ {⊥}.

We require that for all κ, `− ∈ N, all N ∈ N, all pp ← Setup(κ, `−), all (pk, skεε) ←
Gen(pp, N), all I ⊂ [N ], all i, j ∈ I, i ≥ j, all id ∈ ID, all skidi ← Ext(skεj , id , i),

all skidi+1 ← Update(skidi , id , i), all M ∈ M, all Cid
i ← Enc(pk,M, id , i), we have that

Dec(skidi , C
id
i ) = M . Now, we define the security which we require for an fs-IBE scheme

in Experiment 3. We call an adversary A valid if for the challenge messages M0,M1 ∈ M
and |M0| = |M1|, it does not query Ext with id∗ for time period i∗ or with id = ε for any
time period j ≤ i∗, nor does it query C∗ to the Dec′ oracle in case of CCA security. Note
that the decryption oracle Dec′ determines id and i from the given ciphertext Cid , then runs
skidi ← Ext(skεε, id , i) and returns Dec(skidi , C

id
i ).

B Proof of Theorem 2

Proof. We prove this theorem by an efficient reduction, i.e., an adversary A against the
DFPE-IND-CCA-security of the DFPE scheme can be transformed into a successful THIBE-
IND-CCA-adversary D on THIBE as follows:
– D is started on pk, `, and itself starts the DFPE-IND-CCA-security experiment with
`− := |ID|`, sets T− := ID`, T+ := ID,M :=MTHIBE, and obtains (M0,M1, t

∗
+, t
∗
−)←

A(pk).

21



– Ext-queries by A are answered as follows. On input T ⊂ T− and t+ ∈ T+∪{ε}, D uses the
Trunc-mechanism to determine those (hierarchical) “identities” such that those are not
a prefix of t∗−. For those “identities”, D queries its Ext-oracle to receive the part-secret
keys. After all part-secret keys are queried, D return them to A. (Note that validity
requires that if t− /∈ T , then t+ /∈ {t∗+, ε}. If t− ∈ T , then we can allow t+ ∈ {t∗+, ε}.)

– Dec′-queries are forwarded by D to its own Dec′-oracle where the answered are returned
to A.

– D forwards (M0,M1, t
∗
+, t
∗
−) to its own challenger and receives a challenge ciphertext C∗

in return which is forwarded to A.
– D forwards the A-guess b∗ to its own challenger.

All values are consistently distributed. It follows that if A has a non-negligible advantage in
the DFPE-IND-CCA-security experiment, then D has a non-negligible advantage in winning
the THIBE-IND-CCA-security experiment. ut
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