
An extended abstract of this paper appears in ACMCCS ’19. This is the full version.

Succinct Arguments for Bilinear Group Arithmetic:
Practical Structure-Preserving Cryptography

Russell W. F. Lai

Friedrich-Alexander University

Erlangen-Nuremberg

Giulio Malavolta

Carnegie Mellon University

Viktoria Ronge

Friedrich-Alexander University

Erlangen-Nuremberg

ABSTRACT
In their celebratedwork,GrothandSahai [EUROCRYPT’08, SICOMP’

12] constructed non-interactive zero-knowledge (NIZK) proofs for

general bilinear group arithmetic relations, which spawned the en-

tire subfieldof structure-preservingcryptography.This branchof the

theory of cryptography focuses onmodular design of advanced cryp-

tographic primitives. Although the proof systems of Groth and Sahai

are a powerful toolkit, their efficiency hits a barrier when the size of

the witness is large, as the proof size is linear in that of the witness.

In this work, we revisit the problem of proving knowledge of

general bilinear group arithmetic relations in zero-knowledge.

Specifically, we construct a succinct zero-knowledge argument for

such relations, where the communication complexity is logarithmic

in the integer and source group components of thewitness. Our argu-

ment has public-coin setup and verifier and can therefore be turned

non-interactive using the Fiat-Shamir transformation in the random

oraclemodel. For the special case of non-bilinear group arithmetic re-

lationswithonly integerunknowns,oursystemcanbe instantiated in

non-bilinear groups. Inmany applications, our argument system can

serve as a drop-in replacement of Groth-Sahai proofs, turning exist-

ing advanced primitives in the vast literature of structure-preserving

cryptography into practically efficient systems with short proofs.

KEYWORDS
succinct arguments, structure-preserving cryptography

1 INTRODUCTION
Non-interactive zero-knowledge proofs (NIZK) have been shown

to be an extremely versatile and powerful tool in the construction

of secure cryptographic protocols and have been the objective

of a large body of research in the theory of cryptography. The

seminal result of Blum, Feldman, and Micali [11] showed that

all languages in NP admit a polynomial-time NIZK, assuming

the existence of trapdoor permutations. This has spawned a very

fruitful line of research that explores the feasibility of generic NIZKs

under stronger definitions [51] and different assumptions [31]. The

de-facto methodology to build such systems is to consider a specific

NP-complete problem, e.g., Circuit Satisfiability, and build a proof

system for it. This approach however comes at the intrinsic cost of

transforming the statement via an NP-reduction, which is typically

a very expensive step and is often the efficiency bottleneck.

1.1 NIZK for Bilinear Group Arithmetic
Motivated by this shortcoming and seeking for practically efficient

system, many works have focused on designing NIZKs for specific

(and practically relevant) languages, such as NIZKs for the knowl-

edge of discrete logarithms [53], proofs of plaintext knowledge [16],

range proofs [14] and many others. The most prominent example

in this area is the breakthrough result of Groth and Sahai [32, 33],

who constructed efficient non-interactive witness-indistinguishable

(NIWI) and NIZK
1
proof systems for algebraic relations in bilinear

groups, a recurrent structure in the design of group-based crypto-

graphicobjects [12, 26, 52].TheGroth-Sahai (GS)proofswere thefirst

examples of practically efficient systems for an expressive language

and had a tremendous impact: The whole subfield of structure-
preserving cryptography (e.g., [1–3, 15, 22, 42, 44]) specializes in
designing basic cryptographic primitives (e.g., digital signatures
and encryption schemes) that consists exclusively of bilinear group

operations, and compose themwith Groth-Sahai proofs to construct

more advanced primitives (e.g., group signatures, anonymous

credentials). The advantages of this modular approach are twofold:

(1) It allows one to avoid the high cost of NP reductions needed

for using general purpose NIZK.

(2) It allows one to modularly compose cryptographic building

blocks to construct larger systems, reducing the necessity

for ad-hoc (and error-prone) solutions.

While GS proofs offer a very powerful toolkit, their efficiency hits

a barrier when proving statements with large witnesses: The size of

a proof grows linearly with the size of the underlying witness. This

issue becomes especially relevant when the proof is required to be

published on a bulletin board (e.g., a blockchain) of limited capacity

and the proof size influences themonetary cost of making it publicly

available. As an example, consider the scenario where a user wants

to prove the knowledge of n message-signature pairs, where the

signatures are possibly under different public keys. The combination

of structure-preserving signatures and GS proofs would lead to

proofs of size linear in n. We stress that the dependency on the

witness size is not an artifact of GS proofs but seems to be inherent

for all system based on standard (falsifiable) assumptions [24].

In this work we revisit the question of efficient zero-knowledge

for bilinear group arithmetics and we propose an efficient argument
system for such relations. In contrast to a proof, an argument is

only computationally sound (i.e., an unbounded prover could prove
potentially wrong statements). On the brighter side, the relaxation

in soundness allows to construct succinct non-interactive arguments

(SNARG) [39, 49], whose size can be sublinear in the size of the

corresponding witness.

1.2 Our Contributions
Argument for Bilinear Group Arithmetic Relations. LetG1,G2,Gt

be cyclic groups of order q equipped with a pairing e :G1×G2→Gt .
We propose a zero-knowledge succinct argument system without

trusted setup for bilinear group arithmetics. A bilinear group

1
They construct NIZK for only a special subclass of relations.

1

arithmetic circuit

C :Zℓ0q ×G
ℓ1
1
×Gℓ2

2
×Gℓtt →Z

n0

q ×G
n1

1
×Gn2

2
×Gntt

consists of fan-in 2 Zq multiplication gates, exponentiation gates

for sources groups (G1,G2) and target groupGt , and pairing gates,
while linear operations are “for free” (see Section 2.5). Our argument

system allows one to prove succinctly and in zero-knowledge that

an assignment (expressed as a vector of integers and group elements)

satisfies any given bilinear group arithmetic circuit and its outputs.

As for GS proofs, a main advantage of our system with respect

to generic solutions is that it can directly handle bilinear group

operations without using NP-reductions. The distinguishing feature

of our approach, however, is that the size of the proof is logarithmic

in the size of the (Zq ,G1,G2) components of the witness. Unlike

GS proofs, our system also supports statements whose witnesses

have aGt component. For those applications, our proof size is still

logarithmic in the Zq ,G1, andG2 witness components, while being

linear in the dimension of theGt component
2
.

Our argument satisfies the strong notion of extended witness em-

ulation [30, 45] and special honest-verifier zero-knowledge. It has a

public coin verifier and can be compiled to a non-interactive publicly-

verifiable argument using the Fiat-Shamir transformation [20].

The common inputs of the prover and the verifier can be sampled

with public coins, which means that no trusted party is required to

initialize the system. Instead the public parameters can be sampled

in a verifiable way using, e.g., a random oracle. The soundness

of the system is shown against the generalized discrete logarithm
representation assumption: Loosely speaking, the assumption states

that given a matrix of uniform group elements
3 ([A0]t ,[A1]2,[A2]1),

it is hard to find a non-trivial relation (a0,[a1]1,[a2]2) such that
[A0]t a0+[A1]2[a1]1+[A2]1[a2]2= [0]t .

We show that, for a certain regime of parameters, such an assump-

tion is implied by the symmetric external Diffie-Hellman (SXDH)

assumption.We refer the reader to Section 2.2 for a precise statement.

Argument for Non-Bilinear Group Arithmetic Relations. As a spe-
cial case, our technique can be applied to prove the satisfiability of

non-bilineargrouparithmetic circuitswithonlyZq inputs. In this set-
ting, our argument system does not perform any pairing operations

and therefore can be instantiatedwith non-bilinear groups, in which

operations are generally more efficient than those in blinear groups.

In more detail, letG be a cyclic group of order q. Our argument

system allows one to prove the satisfiability of a (non-bilinear)

group arithmetic circuit

C :Zℓ0q →Z
n0

q ×G
nt .

1.3 Technical Overview
At a technical level, our system follows the general structure of

existing systems for arithmetic circuit satisfiability [13, 14], and

is based on the interplay of structure-preserving additively homo-

morphic commitments [3], linear compressions of bilinear group

operations, and succinct arguments for generalized inner-product

2
This limitation seems to be inherent to our settings due to the fact that compress-

ing structure-preserving commitments to target group elements are, in general,

impossible [4].

3
For a fixed generator of Gi , denoted by [1]i , we denote by [a]i the element in Gi
whose discrete logarithm base [1]i is a ∈ Zq . This notation extends naturally to

matrices of group elements. We refer to Section 2.1 for details.

relations
4
. Specifically, our contributions can be broken down into

four main components.

1.3.1 Compressing Group Arithmetic Relations: We characterize

a bilinear group arithmetic circuit as a system of generalized inner

product relations, and use random linear combinations to compress

the system into a smaller system of just 4 generalized inner product

relations. The resulting system is of the form

⟨aL+βL,α0◦aR+βR ⟩=ζ0 (type Zq)

⟨[a1]1,α1◦aR+β1⟩= [ζ1]1 (typeG1)

⟨α2◦aL+β2,[a2]2⟩= [ζ2]2 (typeG2)〈
aL,

[
βt

at

]
t

〉
+⟨αt ◦[a1]1,[a2]2⟩= [ζt]t (typeGt)

where variables written in Greek are constants (i.e., the statement to

be proven), while those in Latin are the unknowns (i.e., the witness).

1.3.2 Argument for Group Arithmetic Satisfiability: A crucial

property of the above compression technique is that the witness

of the simplified system can be derived deterministically from the

original witness of group arithmetic satisfiability, and is valid for

any compressed system derived from independent randomness.

With this observation, we give a brief overview of our construction

of an argument system for group arithmetic satisfiability, which

we will refer to as the “outer protocol” for conciseness.

In the outer protocol, the prover derives the witness of the

compressed system deterministically from the original witness,

and commits to them using structure-preserving additively

homomorphic commitments. It also commits to an equal amount

of masking elements, which will be used to mask the witness when

the (combined) commitments are opened later.

The verifier then sends sufficient randomness to the prover, so

that they can both compress the original system into a simpler

system of 4 generalized inner product relations described above.

With the compressed system specified, the prover proceeds to

encode the components of the generalized inner product relations

and their masks into inner products between (vector-valued)

polynomials, and commits to the coefficients of these polynomials.

For example, consider the “type-G1” relation

⟨[a1]1,α1◦aR+β1⟩= [ζ1]1.
The prover encodes [a1]1 and its mask into a “left-polynomial”

[l(X)]1, and encodes α1 ◦ aR + β1 and its mask into a “right-

polynomial” r(X). Suppose that [a1]1 is encoded as the coefficient

of the monomial X in [l(X)]1, and α1 ◦ aR + β1 is encoded as the

coefficient of the monomialX 2
in r(X). Then the value [ζ1]1 would

be encoded in the coefficient of X 3
in the “product-polynomial”

[p(X)]1 = ⟨[l(X)1],r(X)⟩. We remark that the encodings presented

in this paper are chosen for conceptual simplicity and clarity of

presentation, and are not necessarily the most compact.

The verifier then instructs the prover to evaluate these polynomi-

als at a random point x . With the knowledge of ([l(x)]1,r(x),[p(x)]1),
the verifier can check that [p(x)]1= ⟨[l(x)1],r(x)⟩, and [ζ1]1 is indeed
encoded in theX 3

term of [p(X)]1.
In a naive instantiation of the outer protocol, the prover would

have to communicate vectors such as [l(x)]1 and r(x), which are

4
For example, a generalized inner-product relation with Gt output is of the form

⟨[at]t ,a0 ⟩+ ⟨[a1]1,[a2]2 ⟩= [ζ]t .

2

of the same length as the corresponding witness components such

as [a1]1 and aR respectively. To achieve succinct communication,

the prover would instead run another protocol, not necessarily

zero-knowledge, to prove that [p(x)]1= ⟨[l(x)1],r(x)⟩ and the com-

mitment of ([l(x)1],r(x)) is valid. Such a protocol is described below.

1.3.3 Generalized Inner-ProductArguments: Theabove steps reduce
the task of proving the satisfiability of a bilinear group arithmetic

circuit in zero-knowledge to that of proving the knowledge of simple

inner-product relations across integers and group elements without

zero-knowledge. To complete the picture, we present a family of

succinct arguments (which we refer to as “inner protocols” for

conciseness) to prove statements of the following form: There exists

a tuple of three n-dimensional vectors (a0,[a1]1,[a2]2) such that

[p]t = [A0]t ·a0+[A1]2 ·[a1]1+[A2]1 ·[a2]2
[c]t = ⟨a0,[β]t ⟩+⟨[a1]1,[a2]2⟩

(1)

(2)

where (1) ensures the commitment is valid and (2) ensures the inner

product relation. Furthermore ([A0]t ,[A1]2,[A2]1,[β]t ,[p]t ,[c]t) are
public elements.

The protocol proceeds in ⌈logn⌉ rounds where the dimensions of

the witnesses are progressively halved by splitting the vectors and

summing the two halfs, multiplied by a random scalar chosen by

the verifier. In the last step of the recursion, theO(1)-dimensional

witness is given in plain and the above relation is recomputed by

the verifier. The argument is made non-interactive by sampling the

challenges through a random oracle.

Our inner protocols are inspired by a recent work that considers

similar relations in the settings of integer arithmetics [14], whichwe

generalize to support pairing-product relations. One of the concep-

tual differences is thatwe allowpart of the input to the inner-product,

e.g., [β]t , to be public. This seemingly unimportant technicality is

crucial for the succinctness of our proofs. Otherwise, wewould need

to pad the Gt witness component to be as long as the component

in other groups, which ruins succinctness as structure-preserving

commitments ofGt elements cannot be compressing [4].

1.3.4 Performance Evaluation: Our work in this paper focuses on
achieving logarithmic proof size. For a general group arithmetic

circuitC , our argument system produces (zero-knowledge) proofs

with O(log |C |) + 3ℓt elements (in Zq , G1, G2 or Gt combined),

where |C | does not count linear operations and ℓt is the number

of secret Gt inputs. For GS proofs, which only support a restrict

class of group arithmetic circuits which do not have Gt -input, a
(witness-indistinguishable) proof is of sizeO(|C |). Both systemshave

prover and verifier time linear in the size of the circuit, i.e.,O(|C |).
To substantiate our claims we implemented our argument system

and we compared its concrete efficiency with that of an existing

implementation of GS proofs for proving the following language

as an example:

L∗n = {([λ]1,[ζ]t) :∃[a]2 s.t. ⟨[λ]1,[a]2⟩= [ζ]t }
This type of relations captures several important applications

of arguments for group arithmetic. For example, it captures the

knowledge of correct decryption for the KSW predicate encryption

scheme [37]
5
. More specifically, the prover wants to prove its

5
The KSW scheme is originally described in symmetric composite order pairing groups.

To compare our argument and GS proofs for proving relations about KSW, we can

knowledge of a secret key{
[k]2,[k1,i]2,[k2,i]2

}ℓ
i=1

which correctly decrypts a ciphertext(
[c ′]t ,[c]1,

{
[c1,i]1,[c2,i]1

}ℓ
i=1

)
to the message [m]t , i.e.,

[c]1[k]2+
ℓ∑
i=1
[c1,i]1[k1,i]2+

ℓ∑
i=1
[c2,i]1[k2,i]2= [m]t −[c

′]t .

In our argument system, a proof for a statement in L∗ consists of

6logn + 6 total number of elements, while a GS proof consists of

2n+2 or 3n+3 total number of elements depending on the settings.

To compare the concrete prover and verifier efficiency, we

instantiate both our argument system and GS proofs in two settings:

1) a “type A1” composite-order curve in the JPBC library; and 2) a

Barreto-Naehrig prime-order curve. With almost no effort given

to optimizing our implementation, the prover time and verifier time

of our system over the type A1 curve are only 3 and 2 times longer

than those of GS proofs respectively, for sufficiently large witness

length n ≥ 32. Over the Barreto-Naehrig curve, while our prover

time is quite a bit longer, our verifier time is 0.6 times shorter when

n ≥ 8. We note that these constant factors of overhead are well in

range of what can be improved by existing optimization techniques

(e.g., [14]). Another potential route to efficiency improvement is

to modify the outer protocol to use a more compact encoding of

inner-product relations into coefficients of polynomials.

1.4 Applications
Our argument system offers a general purpose tool for expressive

relations: Any statement that can be encoded as a bilinear group

arithmetic circuit admits an efficient and short proof in our frame-

work. Our system can be seen as a drop-in replacement for GS proofs

in many applications, especially for those cases where communi-

cation efficiency and proof size are of the essence. We stress that

our proof system does not require a trusted setup and it is therefore

suited formany real-life scenarios. In the followingwe exemplify the

utility of our system by highlighting a few applications of interest.

1.4.1 Structure-Preserving Signatures. One of the motivating

examples of the field of structure-preserving cryptography is

the design of signature schemes where one can efficiently prove

the knowledge of a signature. Roughly speaking, in a structure-

preserving signature (SPS) scheme, both messages and signatures

consist of group elements, and signature verification can be done

by checking pairing product equations.

Our argument system allows one to prove the knowledge

of a tuple of n SPS signatures on different messages and under

(possibly) different public keys. The size of the resulting proof grows

logarithmically with n. This feature becomes especially useful when

the signatures are stored on a public ledger, such as a blockchain,

where allocating space is costly for all participants.

As an example, many blockchains implement multi-signature

addresses, where parties can spend coins only if the transaction

is signed from all public-keys belonging to that address. Our

framework allows one to give a succinct proof for any SPS scheme

in an efficient way.

either instantiate both systems in such groups, or first transform the KSW scheme to

the prime-order setting [5], and instantiate the systems in prime-order groups.

3

Due to the generality of our approach, our framework is also

applicable to a variety of SPS schemes with extra features, such

as linearly homomorphic signatures [43] and signatures on

equivalence classes [35].

1.4.2 Attribute-Based Encryption. Attribute-Based Encryption

(ABE) [26, 52] and Predicate Encryption (PE) [37] allow a manager

to distribute keys for certain predicates. Everyone can encrypt a

message with respect to a set of attributes. Decryption is possible

if and only if the attributes encoded in the ciphertext satisfy the

policy encoded in the key. PE offers the additional guarantee that

the attributes are hidden.

ABE and PE have been the subject of a large body of research

and most of the efficient schemes are based on bilinear maps. These

schemes are natural candidates for composing with our argument

system:We can, e.g., provewell-formedness of ciphertexts computed

with respect to large sets of (possibly secret) attributes, or the

knowledge of a key that correctly decrypts a certain ciphertext. The

proof scales logarithmically with the statement (e.g., the number

of attributes) being certified.

1.4.3 Attribute-Based Authentication. As an application of indepen-
dent interest, our systemallowsus to efficiently prove the knowledge

of attribute-based signatures (ABS) [46] based on bilinearmaps. ABS

enriches the syntax of standard digital signatures, allowing a signer,

with a certified set of attributes, to sign messages with predicates

that are satisfied by its attributes. ABS are useful in many contexts,

such as attribute-based authentication and disclosure of secrets.

Our argument can be used as a cheaper alternative to GS proofs to

prove the knowledge of signatures for complex access structures.

1.5 RelatedWork
The past decade has seen an impressive development of succinct

arguments for general NP relations. Different approaches achieve

different trade-offs.We stress that although these argument systems

support proving general NP relations, none of them can handle

(bilinear) group arithmetic relations natively without relying on

expensive reductions to the supported NP complete language (e.g.,

circuit satisfiability).

DirectApproach. Groth [28] gave a construction of a succinct argu-
ment for proving boolean circuits based on the DPAIR-assumption.

Bootle et al. [13] and Bulletproof [14] express the satisfiability of

an arithmetic circuit into a system of inner-product relations, and

construct a succinct argument by recursively proving inner-product

relations in the discrete-logarithm setting. The resulting proofs are

of size logarithmic in the size of the verification circuit. Hyrax [55]

follows a similar paradigm except that it achieves a milder form of

succinctness: The size of the proof depends linearly on the depth of

the verification circuit and logarithmically on its width. Ligero [6]

builds sublinear proofs frommulti-party computation protocols.

PCP/IOP-Based Approach. Pioneered by Kilian [39] and Mi-

cali [48, 49], a seriesofwork (e.g., [6, 8, 9]) focusesonbuildingsuccinct
arguments by combining an information-theoretic proof system,

such as probabilistically checkable proofs (PCP) or in general inter-

active oracle proofs (IOP) [10], with a cryptographic compiler, such

as a Merkle-tree [47] or in general a (sub)vector commitment [40].

Linear PCP-BasedApproach. Abeautiful line ofwork (e.g., [23, 29])
builds SNARGs frombilinear pairing and linear PCPs. These schemes

typically feature very short proofs and very efficient verifier, but

has the intrinsic drawback of requiring a trusted setup.

2 PRELIMINARIES
Let λ ∈N denote the security parameter. Let poly (λ) and negl (λ)
denote the set of polynomials and negligible functions in λ
respectively. For a positive integer n, [n] := {1,2,...,n }.

2.1 Additive Notation for Group Operations
Let G1,G2,Gt be cyclic groups of order q equipped with a pairing

e :G1×G2→Gt . For each i ∈ {1,2}, we fix a generator of Gi and
denote it by [1]i . The element [1]t := [1]1 · [1]2 is then a generator

of Gt , where the operation · is defined below. For all i ∈ {1,2,t }
the identity element in Gi is denoted by [0]i . The notation [a]i
denotes a group element in Gi with discrete logarithm a ∈ Zq
with respect to [1]i . Group operations are written additively, i.e.,
[a]i+[b]i := [a+b]i . Given an exponent x ∈Zq , and a group element

[a]i ∈ Gi , the exponentiation of [a]i to the power x is written as

[ax]i :=x · [a]i = [a]i ·x . Given [a]1 ∈G1 and [b]2 ∈G2, the pairing
between them is written as [ab]t := [a]1 · [b]2 = [b]2 · [a]1. The
notation is extended naturally to vectors (denoted by bold symbols)

and matrices (denoted by uppercase letters) of group elements, and

the matrix-vector products, inner products, and Hadamard products

(denoted by ◦) between them. For instance, ifA∈Zm×nq andB ∈Zn×kq ,

then [A]1 ∈G
m×n
1

and [B]2 ∈G
n×k
2

. Furthermore, [A]1[B]2 := [AB]t .

2.2 Hardness Assumptions
We state a generalized version of all the assumptions which we will

rely on throughout this work.

Definition 2.1 (Generalized Discrete Logarithm Representation
Assumption). Let m ≥ 1 and n0,n1,n2 ≥ 0 be not all zero. The

(m,n0,n1,n2)-GDLR assumption is said to hold in the bilinear groups

(G1,G2,Gt ,q,e) if for any PPT adversaryA,

Pr


[B0]t a0+[B1]2[a1]1+[B2]1[a2]2= [0]t

∧ (a0,a1,a2), (0,0,0) :
Bi ← $Zm×niq , ∀i ∈ {0,1,2}

(a0,[a1]1,[a2]2)←A
(
G1,G2,Gt ,q,e,
[B0]t ,[B1]2,[B2]1

)

≤negl (λ).

The following lemma shows that without loss of generality we

can assume that n0=0. Due to space constraints, we defer the proof
to Appendix A.1.

Lemma2.2. Letq be such that 1/q=negl (λ). If the (m,0,n0+n1,n2)-
GDLR assumption holds, so does the (m,n0,n1,n2)-GDLR assumption.

We next discuss the case n1 = 0 or n2 = 0. The (m,0,n1,0)-GDLR
assumption is implied by the double-pairing (DBP) assumption

overG1 for anym≥ 1 and any n1 ≥ 2. Similarly, (m,0,0,n2)-GDLR as-

sumption is implied by the DBP assumption overG2 (also called the
“reverse DBP assumption”) for anym≥ 1 and any n2 ≥ 2 not all zero.

4

The DBP assumption overG1 (resp.G2) is implied by the decisional

Diffie-Hellman (DDH) assumption overG1 (resp.G2) (see, e.g., [3]).
Next,westudy thecasen1>0andn2>0. IfG1=G2 (socalled “type-

I pairing”) or if there exists an efficient homomorphism φ :G2→G1
(so called “type-II pairing”), then for anym≥ 2 and any n1+n2 ≥ 2,
the (m,0,n1,n2)-GDLR assumption is implied by the simultaneous

double pairing (SDP) assumption overG1, which is in turn implied

by the decisional linear assumption (DLin) overG1 (see, e.g., [17]).
We are not aware of any work that explicitly treats the general

(m, n0, n1, n2)-GDLR assumption in the case where no efficient

homomorphism between G1 and G2 is known (type-III pairing).

Indeed, most pairing based assumptions consider problems defined

by elements in one source group (sayG1) and / or the target group
Gt , while the solution consists of elements in the other source

group G2. In the following, we show that the (m,n0,n1,n2)-GDLR
assumption is implied by the symmetric external Diffie-Hellman

(SXDH) assumption, which states that the DDH assumption holds

in bothG1 andG2. For the proof we refer to Appendix A.2.

Theorem 2.3. Let q be such that 1/q = negl (λ). Letm ≥ 2 and
n0,n1,n2 ≥ 0 be not all zero. The (m,n0,n1,n2)-GDLR assumption holds
if the SXDH assumption holds.

2.3 Commitment Schemes
Our constructions make use of various additively homomorphic

commitments to elements in different domains. In some cases we

require a commitment scheme to be both hiding and binding, while

in some other cases we require only binding. All of the schemes

that we consider in this work require using randomly sampled

group elements as the public parameters of the scheme (henceforth

referred to as the “basis” of the commitment). We stress that such

a procedure can be done with public coins, e.g., using a random

oracle, resulting in schemes without trusted setup.

2.3.1 Committing to Zq elements. We use the Pedersen commit-

ment scheme [50] for Zq elements. Given the public parameters

pp= ([д]1,[bT]1) ∈G1×Gℓ
1
for some ℓ ∈N, and some randomness

r ∈Zq , the commitment to the vector a∈Zℓq is computed as

Com(0)pp (a;r) := [д]1r+[b
T]1a.

Clearly, the Pedersen commitment is additively homomorphic

in the sense that

Com(0)pp (a;r)+Com
(0)
pp (a

′
;r ′)=Com(0)pp (a+a

′
;r+r ′).

If the randomnessr is chosenuniformly fromZq , thenCom
(0)
pp (a;r)

perfectly hides a. Lastly, if pp is sampled uniformly, then Com(0)pp
is computationally binding under discrete logarithm assumption

overG1.

2.3.2 Committing to G1 or G2 elements. We use a variant of the

scheme of Abe et al. [3] for committing toG1 orG2 elements (but

not both). We describe below the scheme for G1. The scheme for

G2 is analogous and is omitted.

Given the public parameters pp= ([д]t ,[bT]2) ∈Gt ×Gℓ
2
for some

ℓ ∈N, and some randomness r ∈Zq , the commitment to the vector

[a]1 ∈Gℓ
1
is computed as

Com(1)pp ([a]1;r) := [д]t r+[b
T]2[a]1.

Clearly, the commitment scheme is additively homomorphic in

the sense that

Com(1)pp ([a]1;r)+Com
(1)
pp ([a

′]1;r
′)=Com(1)pp ([a]1+[a

′]1;r+r
′).

If the randomness r is chosen uniformly from Zq , then

Com(1)pp ([a]1;r) perfectly hides [a]1. Lastly, if the public parameters

pp are sampled uniformly, thenCom(1)pp is computationally binding

under the (1,1,ℓ,0)-GDLR assumption.

2.3.3 Committing to Gt Elements. We use a “key-less” variant of

the ElGamal encryption scheme [19] as a commitment scheme for

Gt elements. Given the public parameters ([д]t ,[b]t) ∈Gt ×Gℓt for
some ℓ ∈N, and some randomness r ∈ Zq , the commitment to the

vector [a]t ∈Gℓt is computed as

Com(t)pp ([a]t ;r) :=
(
[д]t r

[b]t r+[a]t

)
.

This commitment scheme is also additively homomorphic in the

sense that

Com(t)pp ([a]t ;r)+Com
(t)
pp ([a

′]t ;r
′)=Com(t)pp ([a]t +[a

′]t ;r+r
′).

The ElGamal commitment is perfectly binding. If the public

parameters are chosen uniformly, thenCom(t)pp is computationally

hiding under the DDH assumption overGt .
Unlike the previous commitment schemeswhere a commitment to

a length-ℓ vector consists of a single group element, a commitment to

a vector of ℓGt elements consists of ℓ+1Gt elements. The linear de-

pendency of the vector length is however close to optimal: Abe, Har-

alambiev, and Ohkubo [4] have shown that a structure-preserving

commitment to an ℓ-dimensional vector ofGt elements has sizeΩ(ℓ).

“Basis” of Commitments. We call the vector b in the public

parameters the “basis” for the commitment. To emphasize the basis b
being used, we sometimes write it instead of pp in the subscript, i.e.,

Com(t)b ([a]t ;r).
Note that b is written without the bracket [·]t just for clarity. The

knowledge of [b]t suffices to compute a commitment.

2.3.4 Committing to Zq ,G1, andG2 Elements Simultaneously. Our
constructions require an (additively) homomorphic commitment

scheme which allows to commit to Zq , G1, and G2 elements

simultaneously. For this purpose, we introduce the following

commitment scheme, which is essentially a combination of the

commitment schemes by Pedersen [50] (for Zq elements) and

Abe et al. [3] (forG1 andG2 elements).

Thepublicparametersareof the formpp= ([b]t ,[B0]t ,[B1]2,[B2]1)
where b ∈ Z2q , and Bi ∈ Z

2×ℓi
q for some ℓi ∈ N for all i ∈ {0,1,2}.

Given the public parameters pp, and some randomness r ∈Zq , the

commitment to the vectors a0 ∈Z
ℓ0
q , [a1]1 ∈G

ℓ1
1
, and [a2]2 ∈G

ℓ2
2
is

computed as

Com(mix)
pp (a0,[a1]1,[a2]2;r)

:=[b]t ·r+[B0]t a0+[B1]2[a1]1+[B2]1[a2]2.
This commitment is again additively homomorphic in the sense that

Com(mix)
pp (a0,[a1]1,[a2]2;r)+Com

(mix)
pp (a′

0
,[a′

1
]1,[a′2]2;r

′)

=Com(mix)
pp (a0+a′0,[a1]1+[a

′
1
]1,[a2]2+[a′2]2;r+r

′).

Assuming that pp are sampled uniformly, the commitment

scheme is computationally hiding under the DDH assumption over

5

Gt , and computationally binding under the (2,ℓ0+1,ℓ1,ℓ2)-GDLR

assumption.

“Basis” of the Commitment. To emphasize the “basis” B0, B1, and
B2 used for the commitment, we sometimes write them instead of

pp in the subscript, i.e.,
Com(mix)

B0,B1,B2

(a0,[a1]1,[a2]2;r).
Note that B0, B1 and B2 are written without the brackets [·]t , [·]2
and [·]1 respectively just for clarity. The knowledge of [B0]t , [B1]2,
and [B2]1 suffices to compute a commitment.

We state a simple fact about the relation between Hadamard

products and matrix products, which will be useful for “changing

the bases” of commitments.

Fact 1. Let B ∈ Zm×nq and α , a ∈ Znq . Then B(α ◦ a) =(
B◦(1mαT)

)
a.

Fact 2 (Changing Bases). Extending Fact 1, we have
Com(mix)

B0,B1,B2

(α0◦a0,α1◦[a1]1,α2◦[a2]2;r)

=Com(mix)

B0◦(12αT
0
),B1◦(12αT

1
),B2◦(12αT

2
)
(a0,[a1]1,[a2]2;r).

2.4 Arguments of Knowledge
In the following we give a formal characterization of argument

systems and the corresponding properties. All the definitions are

taken (almost) in verbatim from [14].

Definition 2.4 (Arguments). An argument system for a relation

R is a triple of PPT algorithms (Setup,P,V) with the following

syntax. On input 1
λ
the setup algorithm Setup produces a common

reference string crs. The prover P interacts with the verifierV to

produce a transcript tr= ⟨P(crs,stmt,wit),V(crs,stmt)⟩, where ⟨.⟩
denotes the interaction between P andV . After such interaction,

V should be able to decide whether (crs,stmt,wit) ∈R. In this case,
we say that tr is accepting.

Definition 2.5 (Perfect completeness). An argument system

(Setup, P, V) has perfect completeness if for all non-uniform

polynomial time algorithmsA

Pr


(crs,stmt,wit)<R ∨

tr is accepting

��������
crs←Setup(1λ)
(stmt,wit)←A(crs)
tr←⟨P(crs,stmt,wit),

V(crs,stmt)⟩

 =1.
Definition 2.6 (Computational Witness-Extended Emulation). An

argument system (Setup,P,V) has witness-extended emulation if

for all deterministic polynomial time P∗ there exists an expected

polynomial time emulator E such that for all pairs of adversaries

A1,A2 there exists a negligible function negl (λ) such that��������������
Pr

A1(tr)=1

��������
crs←Setup(1λ),

(stmt,wit)←A2(crs),
tr←⟨P∗(crs,stmt,wit),

V(crs,stmt)⟩

−
Pr


A1(tr)=1∧
(tr is accepting

⇒(crs,stmt,wit′) ∈R)

������ crs←Setup(1λ),
(stmt,wit)←A2(crs),
(tr,wit′)←EO(crs,stmt)



��������������
≤negl (λ)

where the oracle is given by O = ⟨P∗(crs,stmt,wit),V(crs,stmt)⟩,
and permits rewinding to a specific point and resuming with

fresh randomness for the verifier from this point onwards. If the

adversariesA1 andA2 are restricted to run in polynomial time, then

we say (Setup,P,V) has computational witness-extended emulation.

Definition 2.7 (Public coin). An argument system (Setup,P,V)
is called public coin if the Setup algorithm is executed using public

randomness and all messages sent from the verifier to the prover are

chosen uniformly at random and independently of the prover’s mes-

sages, i.e., the challenges correspond to the verifier’s randomness ρ.

Definition 2.8 (Computational Special Honest-Verifier Zero-Knowl-
edge). A public-coin argument system (Setup,P,V) is computation-
ally special honest-verifier zero knowledge (SHVZK) for R if there ex-

ists a probabilistic polynomial time simulatorS such that for all PPT
adversariesA1 and non-uniform polynomial time algorithmsA2��������������

Pr


(crs,stmt,wit) ∈R∧
A1(tr)=1

��������
crs←Setup(1λ),

(stmt,wit,ρ)←A2(crs),
tr←⟨P(crs,stmt,wit),
V(crs,stmt;ρ)⟩


− Pr

(crs,stmt,wit) ∈R∧
A1(tr)=1

������ crs←Setup(1λ),
(stmt,wit,ρ)←A2(crs),

tr←S(stmt,ρ)



��������������
≤negl (λ).

2.5 Encoding Group Arithmetic Circuits
Consider a circuit

C :Zℓ0q ×G
ℓ1
1
×Gℓ2

2
×Gℓtt →Z

n0

q ×G
n1

1
×Gn2

2
×Gntt

which consists of fan-in 2Zq multiplication gates,Gi exponentiation
gates for i ∈ {1,2,t }, and pairing gates. Linear operations in Zq ,G1,
G2 and Gt respectively are performed “for free” in the sense that

an input to a multiplication, exponentiation, or pairing gate can be a

linear combination of the outputs from other gates of the compatible

type. We call such a circuit a (bilinear) group arithmetic circuit.

Let C be a group arithmetic circuit withm0 Zq multiplication

gates,mi Gi exponentiation gates for i ∈ {1,2,t }, andm12 pairing

gates. The satisfiability ofC for a given output is equivalent to the

existence of a solution of a system of equations of the following

form, where unknowns are written in Latin and constants in Greek:

∀i ∈ [m0],
〈
aL,α0,i ◦aR

〉
=0 (3)

∀i ∈ [m1],
〈
[a1]1,α1,i ◦aR

〉
= [0]1 (4)

∀i ∈ [m2],
〈
α2,i ◦aL,[a2]2

〉
= [0]2 (5)

∀i ∈ [nt],

〈
aE ,i ,

[
βt
at

]
t

〉
+
〈
αt ,i ◦[a1]1,[a2]2

〉
= [ζt ,i]t (6)

∀i ∈ [q0],
〈
aL,βR,i

〉
+
〈
βL,i ,aR

〉
+

nt∑
j=1

〈
aE , j ,βE ,i , j

〉
=ζ0,i (7)

∀i ∈ [q1],
〈
[a1]1,β1,i

〉
= [ζ1,i]1 (8)

∀i ∈ [q2],
〈
β2,i ,[a2]2

〉
= [ζ2,i]2 (9)

In the above, for each i ∈ [m0], Equation (3) encodes the input-

output relation of the i-th Zq multiplication gate as follows. The

vector aL (resp. aR) consists of, among other values, the concatena-

tionof all left-inputs (resp. right-inputs) to allZq multiplicationgates.

aR also consists of the concatenation of all outputs of all Zq multipli-

cation gates. The public vectorα0,i consists of mostly zeros, except

for the positions corresponding to the right-input and output of the

6

i-th Zq multiplication gate, which are set to 1 and −1 respectively.

For example, suppose that the circuitC specifies that the i-thZq mul-

tiplication gate multiplies the k1-th entries of aL and aR to get the

k2-th entry of aR . Then aL would have thek2-th entry set to 1 (which
will be enforced by Equation (7)), andα0,i is a vector with the k1-th
entry being 1, the k2-th entry being −1, and zero everywhere else.

Similarly, Equations (4) and (5) encode the input-output relations

ofG1 andG2 exponentiation gates respectively.
The treatment for Gt relations is somewhat different, as the

prover of the satisfiability ofC eventually needs to commit to the

Gt unknowns, and the commitment string has to be as long as the

number of Gt unknowns. The encoding is therefore designed to

minimize the number ofGt unknowns in the relations. Concretely,
for i ∈ [nt] (one per Gt output), Equation (6) encodes the relation

between the i-thGt output ofC , theGt inputs toC , and other values
which are either public or can be committed to succinctly. The

vector aE ,i consists of the concatenation of all Zq -inputs to allGt
exponentiation gates contributing to the i-thGt -output ofC . The
vector [βt]t consists of the concatenation of allGt -inputs to allGt
exponentiation gates with constantGt -input. The vector [at]t con-
sists of the concatenation of allGt -inputs to allGt exponentiation
gates with variable Gt -input. The vectors [a1]1 and [a2]2 consist
of, among other values, all theG1 andG2 inputs to the pairing gates.
The vector αt ,i selects which elements of [a1]1 and [a2]2 should
be paired. Finally, the value [ζt ,i]t denotes the i-thGt -output ofC .

For each i ∈ [q0]where q0 ≤ 4m0+2m1+2m2+2m12+mtnt , Equa-
tion (7) encodes the i-th linear relation between the Zq unknowns.

Similarly, Equation (8) encode the linear relations between theG1
andG2 elements respectively, where q1,q2 ≤ 2m0+m1+m2+m12.

Note that all vectors are padded so that they have the appropriate

lengths for the inner products.

2.6 Encoding Compression
The goal of the paper is to design an argument system for the

satisfiability of group arithmetic circuits. One way of doing so is to

design a systemwhere the prover convinces the verifier that a system

of equations of the form defined above can be satisfied. However, the

form of the system is unwieldy. In the following, we recall standard

techniques of compressing the systems into much smaller ones.

2.6.1 Compressing Relations of the Same Type of Gates. Using
well-known random linear combination techniques

6
, to convince

a verifier that, say, Equation (3) holds for all i ∈ [m0], it suffices for

the prover to show that the relation obtained by a random linear

combination of them0 equations holds, where the randomness used

for the linear combination is chosen by the verifier. Applying the

6
A naive option is to use uniformly random linear combinations, which require a large

number of fresh randomness. Alternatively, one can use linear combinations where

the coefficients are distinct (multivariate) monomials, e.g., xm
1
,xm−1

1
x2,xm−2

1
x 2

2
, ...,

and the variables x1,x2, ... are chosen uniformly at random.

technique to all equations, we obtain a system of the following form:

⟨aL,α0◦aR ⟩=0 (10)

⟨[a1]1,α1◦aR ⟩= [0]1 (11)

⟨α2◦aL,[a2]2⟩= [0]2 (12)〈
aE ,

[
βt
at

]
t

〉
+⟨αt ◦[a1]1,[a2]2⟩= [ζt]t (13)

⟨aL,βR ⟩+⟨βL,aR ⟩+⟨aE ,βE ⟩+
nt∑
j=1

〈
aE , j ,βE , j

〉
=ζ0 (14)

⟨[a1]1,β1⟩= [ζ1]1 (15)

⟨β2,[a2]2⟩= [ζ2]2 (16)

In the above,α0 is the result of a random linear combination of{
α0,1,...,α0,m0

}
. The vectors α1,α2,β1, and β2 are defined analo-

gously. The way of obtaining aE , the β ’s, and αt is slightly more

complicated. First, a randomlinear combinationofEquation (6) isper-

formed over

{
aE ,i

}
i and

{
αt ,i

}
i to obtain aE andαt respectively.

Note that aE is a new “dummy” unknownZq vector, whose integrity

must be guaranteed by inducing additional (linear) relations. These

relations can bewritten in a form similar to that of Equation (7), with

the new unknown aE . The extended Equation (7) is then combined

using a random linear combination to obtain Equation (14).

2.6.2 Further Compressing Relations over the Same Group. To
further simplify the system of relations that the prover has to prove,

the prover and the verifier can compress the above system again by

performing random linear combination over equations in the same

group. By doing so, we end up with a system of 4 equations: 1 over

each of Zq ,G1,G2, andGt . In addition to this, we append the vector

aE to aL (which results in a new and longer aL), separate
{
aE ,i

}
i

into two parts, and append the parts to aL and aR respectively so

that |aL |= |aR |. The constant vectors encoding the constraints are
also appended accordingly. The system is of the following form:

⟨aL+βL,α0◦aR+βR ⟩=ζ0 (type Zq)

⟨[a1]1,α1◦aR+β1⟩= [ζ1]1 (typeG1)

⟨α2◦aL+β2,[a2]2⟩= [ζ2]2 (typeG2)〈
aL,

[
βt

at

]
t

〉
+⟨αt ◦[a1]1,[a2]2⟩= [ζt]t (typeGt)

Taking all transformations into account, the length of the witness

components are (overestimatedly) |aL | = |aR | = |[a1]1 | = |[a2]2 | ≤
2m0+m1+m2+m12+mtnt and |at |=ℓt .

2.6.3 A Formal Description. Putting everything together, sup-

pose that a prover wishes to prove its knowledge about the

input (x0, [x1]1, [x2]2, [xt]t) such that C(x0, [x1]1, [x2]2, [xt]t) =
(y0, [y1]1, [y2]2, [yt]t). A crucial observation is that, through-

out the compression process, the satisfying assignment

(aL,aR ,[a1]1,[a2]2,[at]t) of the final linear system is uniquely deter-

mined by the circuitC and its assignment (x0,[x1]1,[x2]2,[xt]t), re-
gardless of the randomness used in the random linear combinations.

To formally describe the above compressionprocedures,wedefine

the following algorithmsCompressStatement,WitnessLength and

CompressWitness.

• CompressWitness(C, x0, [x1]1, [x2]2, [xt]t) = wit: This
deterministic algorithm inputs a group arithmetic circuitC

7

with its inputs, and outputs the tuple

wit= (aL,aR ,[a1]1,[a2]2,[at]t)
which corresponds to a satisfying assignment to the system

of linear equations.

• WitnessLength(C,y0, [y1]1, [y2]2, [yt]t) → (ℓ(mix), ℓt): This

deterministic algorithm inputs a group arithmetic circuitC
with its outputs, and outputs the tuple (ℓ(mix),ℓt) specifying

the lengthof thewitness. Specifically, it holds that |aL |= |aR |=
|a1 |= |a2 |=ℓ(mix) ≤ 2m0+m1+m2+m12+mtnt , and |at |=ℓt .
• CompressStatement(C,y0, [y1]1, [y2]2, [yt]t) → stmt: This
probabilistic algorithm inputs a group arithmetic circuit C
with its outputs, and outputs the tuple

stmt= (α0,α1,α2,αt ,βL,βR ,β1,β2,[βt]t ,ζ0,[ζ1]1,[ζ2]2,[ζt]t)

which specifies the system of linear equations defined

in Section 2.6.2.

By construction, ifC(x0,[x1]1,[x2]2,[xt]t)= (y0,[y1]1,[y2]2,[yt]t)
and wit = CompressWitness(C,x0,[x1]1,[x2]2,[xt]t), then for any

stmt ∈CompressStatement(C,y0,[y1]1,[y2]2,[yt]t), it must be the

case thatwit is a satisfying assignment to the linear system defined

by stmt.
Conversely, if wit is a satisfying assignment for the lin-

ear system defined by stmt for sufficiently many
7 stmt ∈

CompressStatement(C, y0, [y1]1, [y2]2, [yt]t) sampled with inde-

pendent randomness, then one can recover the original witness

(x0, [x1]1, [x2]2, [xt]t) from wit (otherwise it would lead to the

contradiction that an over-determined linear system of equations

has more than one solution). If we considerC of polynomial size,

then polynomially many independent randomnesses are sufficient.

3 ARGUMENT FORGROUPARITHMETIC
(OUTER PROTOCOL)

We construct an interactive argument for the satisfiability of group

arithmetic circuits. Following the structure of [13, 14], we first

describe a naive protocol, called the outer protocol, which will

have communication complexity linear in the size of the circuit.

In Section 4,we present a family of efficient protocols for generalized

inner product relations, called the inner protocols, which can be

composed with the outer protocol to obtain an argument system

with communication logarithmic in the circuit size.

3.1 Construction
Formally, we present an interactive argument for the following

languageL:

L :=

{
(C,y0,[y1]1,[y2]2,[yt]t) :∃(x0,[x1]1,[x2]2,[xt]t) s.t.
C(x0,[x1]1,[x2]2,[xt]t)= (y0,[y1]1,[y2]2,[yt]t)

}
where the circuits C are group arithmetic circuits defined

in Section 2.5.

(Public-Coin) Setup.
• Compute (ℓ(mix),ℓt)=

WitnessLength(C,y0,[y1]1,[y2]2,[yt]t)
• Sample pp

0
← $G2

1
(for committing to 1 Zq element).

7
It suffices for the witness to satisfy a number of statements equal to the number of

random coefficients used to derive a compressed statement, which is polynomial in the

size of the original statement. For example, using the multivariate monomial technique,

a number equal to the number of distinct monomials suffices.

• Sample ppi ← $Gt ×G3−i for i ∈ {1,2} (for committing to 1

Gi element).

• Sample ppt ← $G2t (for committing to 1Gt element).

• Sample b ← $ Zq and bt ← $ Zℓtq (for committing to ℓt Gt
elements).

• Sample b(mix) ← $Z2q , Bi ← $Z
2×ℓ(mix)

q for i ∈ {L,R,1,2} (for
committing to mixed elements).

• Output pp :=

({
ppi

}
i ∈ {0,1,2,t },([b]t ,[bt]t),

([b(mix)]t ,[BL]t ,[BR]t ,[B1]2,[B2]1)

)
.

Main Protocol.

• P: Compute (aL,aR ,[a1]1,[a2]2,[at]t)=
CompressWitness(C,x0,[x1]1,[x2]2,[xt]t).

• P: Commit to the witness (aL, aR , [a1]1, [a2]2, [at]t) by
computing the following:

– [âL]t =Com
(mix)

BL
(aL ;rL)

– [âR]t =Com
(mix)

BR
(aR ;rR)

– [â1]t =Com
(mix)

B1

([a1]1;r1)

– [â2]t =Com
(mix)

B2

([a2]2;r2)

– [ât]t =Com
(t)
bt
([at]t ;rt)

The randomness used in all commitments are sampled

uniformly from Zq .
• P: Sample masking elements (one masking element per

element in the witness, denoted by s with the appropriate

subscripts and brackets) from the appropriate domains, and

commit to the masking elements by computing:

– [ŝ0]t =Com
(mix)

BL ∥BR

((
sL,0
sR,0

)
;s0

)
– [ŝ1]t =Com

(mix)

BR ,B1

(sR,1,[s1,1]1;s1)

– [ŝ2]t =Com
(mix)

BL ,B2

(sL,2,[s2,2]1;s2)

– [ŝ(mix)
t]t =Com

(mix)

BL ,B1,B2

(
sL,t ,[s1,t]1,[s2,t]2;s

(mix)
t

)
– [ŝ(t)t]t =Com

(t)
bt

(
[st]t ;s

(t)
t

)
The randomness used in all commitments are sampled

uniformly from Zq .
• P→V: Send all the commitments(

[âL]t ,[âR]t ,[â1]t ,[â2]t ,[ât]t ,
[ŝ0]t ,[ŝ1]t ,[ŝ2]t ,[ŝ

(mix)
t]t ,[ŝ

(t)
t]t

)
.

• V: Sample the randomness θ (uniformly at random from the

appropriate domain) to be used inCompressStatement.
• P←V: Send θ .

• P,V: Compute

©­«
α0,α1,α2,αt ,
βL,βR ,β1,β2,

[βt]t ,ζ0,[ζ1]1,[ζ2]2,[ζt]t

ª®¬
←CompressStatement(C,y0,[y1]1,[y2]2,[yt]t ;θ).

• P: (Encoding type Zq relation) Prepare the coefficients of the

polynomials (inX0)

l0(X0) := (aL+βL)·X0+sL,0

r0(X0) := (α0◦aR+βR)·X 2

0
+α0◦sR,0

p0(X0) := ⟨l0(X0),r0(X0)⟩ :=

3∑
i=0

p0,iX
i
0

Note that p0,3= ⟨aL+βL,α0◦aR+βR ⟩=ζ0 (known byV).

8

• P: (Encoding typeG1 relation) Prepare the coefficients of the

polynomials (inX1)

[l1(X1)]1 := [a1]1 ·X1+[s1,1]1

r1(X1) := (α1◦aR+β1)·X 2

1
+α1◦sR,1

[p1(X1)]1 := ⟨[l1(X1)]1,r1(X1)⟩ :=

3∑
i=0
[p1,i]1X

i
1

Note that [p1,3]1= ⟨[a1]1,α1◦aR+β1⟩= [ζ1]1.
• P: (Encoding typeG2 relation) Prepare the coefficients of the

polynomials (inX2)

l2(X2) := (α2◦aL+β2)·X 2

2
+α2◦sL,2

[r2(X2)]2 := [a2]2 ·X2+[s2,2]1

[p2(X2)]2 := ⟨l2(X2),[r2(X2)]2⟩ :=

3∑
i=0
[p2,i]2X

i
2

Note that [p2,3]2= ⟨α2◦aL+β2,[a2]2⟩= [ζ2]2.
• P: (Encoding typeGt relation) Prepare the coefficients of the

polynomials (inXt)

lt ,0(Xt) :=aL ·Xt +sL,t

[rt ,t (Xt)]t :=
(
[rt ,t ,0(Xt)]t
[rt ,t ,1(Xt)]t

)
:=

(
[βt]t
[at]t

)
·X 4

t +

(
[0]t
[st]t

)
[lt ,1(Xt)]1 :=αt ◦[a1]1 ·X 2

t +αt ◦[s1,t]1

[rt ,2(Xt)]2 := [a2]2 ·X 3

t +[s2,t]2

[pt (Xt)]t :=
〈
lt ,0(Xt),[rt ,t (Xt)]t

〉
+
〈
[lt ,1(Xt)]1,[rt ,2(Xt)]2

〉
:=

5∑
i=0
[pt ,i]tX

i
t

Note that [pt ,5]2=

〈
aL,

[
βt
at

]
t

〉
+⟨αt ◦[a1]1,[a2]2⟩= [ζt]t .

• P: Commit to those coefficients of the polynomials p0(X0),

[p1(X1)]1, [p1(X1)]1, and [pt (Xt)]t which are not constant.

That is, the prover computes the following:

– [p̂0,i]1=Com
(0)
pp

0

(p0,i ;z0,i) for i ∈ {0,1,2}

– [p̂1,i]t =Com
(1)
pp

1

([p1,i]1;z1,i) for i ∈ {0,1,2}

– [p̂2,i]t =Com
(2)
pp

2

([p2,i]2;z2,i) for i ∈ {0,1,2}

– [p̂t ,i]t =Com
(t)
ppt ([pt ,i]t ;zt ,i) for i ∈ {0,1,...,4}

As always, the randomness used in all commitments are

sampled uniformly from Zq .
• P→V: Send all the commitments({
[p̂0,i]1

}
2

i=0,
{
[p̂1,i]t

}
2

i=0,
{
[p̂2,i]t

}
2

i=0,
{
[p̂t ,i]t

}
4

i=0

)
.

• V: Sample challenges x0, x1, x2, and xt uniformly from Zq .
• P←V: Send (x0,x1,x2,xt).

• P: Compute the openings of the homomorphically evaluated

commitments. That is, the prover computes the following:

e0=s0+rL ·x0+rR ·x
2

0

e1=s1+r1 ·x1+rR ·x
2

1

e2=s2+r2 ·x2+rL ·x
2

2

e
(mix)
t =s

(mix)
t +rL ·xt +r1 ·x

2

t +r2 ·x
3

t

e
(t)
t =s

(t)
t +rt ·x

4

t

fi =
2∑
j=0

zi , j ·x
j
i , ∀i ∈ {0,1,2}

ft =
4∑
i=0

zt ,i ·x
i
t

(˜l0,r̃0,p̃0)= (l0(x0),r0(x0),p0(x0))

(˜[l1]1,r̃1,[p̃1]1)= ([l1(x1)]1,r1(x1),[p1(x1)]1)

(˜l2,[r̃2]2,[p̃2]2)= (l2(x2),[r2(x2)]2,[p2(x2)]2)(
˜lt ,0,[r̃t ,t ,1]t ,

˜lt ,1]1,[r̃t ,2]2,[p̃t]t

)
=

(
lt ,0(xt),[rt ,t ,1(xt)]t ,

[lt ,1(xt)]1,[rt ,2(xt)]2,[pt (xt)]t

)
• P→V: Send all the openings:©­­­­«

e0,f0,˜l0,r̃0,p̃0,
e1,f1,[˜l1]1,r̃1,[p̃1]1,
e2,f2,˜l2,[r̃2]2,[p̃2]2,

e
(mix)
t ,e

(t)
t ,ft ,

˜lt ,0,[r̃t ,t ,1]t ,[˜lt ,1]1,[r̃t ,2]2,[p̃t]t

ª®®®®¬
(17)

• V: Compute [r̃t ,t ,0]t = [βt]t ·x4t .

• V: Set [r̃t ,t]t :=
(
[r̃t ,t ,0]t
[r̃t ,t ,1]t

)
.

• V: (Checking type Zq relation) Let

(B′L,0,B
′
R,0) :=(BL ∥BR ◦(1

2(α ◦−1
0
)T)) (18)

[p0]t :=−[b(mix)]t ·e0+[ŝ0]t +
(
[âL]t +[B′L,0]t βL

)
·x0

+
(
[âR]t +[B′R,0]t βR

)
·x2
0

(19)

Check the following :

[p0]t
?

= [B′L,0]t
˜l0+[B′R,0]t r̃0 (20)

p̃0
?

=
〈
˜l0,r̃0

〉
(21)

Com(0)pp
0

(p̃0;f0)
?

=

2∑
i=0
[p̂0,i]1 ·x

i
0
+Com(0)pp

0

(ζ0;0)·x
3

0
(22)

• V: (Checking typeG1 relation) Let

(B′
1,1,B

′
R,1) := (BR ◦(1

2(α ◦−1
1
)T),B1) (23)

[p1]t :=−[b(mix)]t ·e1+[ŝ1]t +[â1]t ·x1

+([âR]t +[B′1,1]t β1)·x
2

1
(24)

Check the following :

[p1]t
?

= [B′
1,1]t r̃1+[B

′
R,1]2[

˜l1]1 (25)

[p̃1]1
?

=
〈
[˜l1]1,r̃1

〉
(26)

Com(1)pp
1

([p̃1]1;f1)
?

=

2∑
i=0
[p̂1,i]t ·x

i
1
+Com(1)pp

1

([ζ1]1;0)·x
3

1
(27)

9

• V: (Checking typeG2 relation) Let

(B′L,2,B
′
2,2) := (BL◦(1

2(α ◦−1
2
)T),B2) (28)

[p2]t :=−[b(mix)]t ·e2+[ŝ2]t +[â2]t ·x2

+([âL]t +[B′L,2]t β2)·x
2

2
(29)

Check the following :

[p2]t
?

= [B′L,2]t
˜l2+[B′2,2]1[r̃2]2 (30)

[p̃2]2
?

=
〈
˜l2,[r̃2]2

〉
(31)

Com(2)pp
2

([p̃2]2;f2)
?

=

2∑
i=0
[p̂2,i]t ·x

i
2
+Com(2)pp

2

([ζ2]2;0)·x
3

2
(32)

• V: (Checking typeGt relation) Let

(B′L,t ,B
′
1,t ,B

′
2,t) := (BL,B1◦(1

2(α ◦−1t)T),B2) (33)

[pt]t :=−[b(mix)]t ·e
(mix)
t

+[ŝ(mix)
t]t +[âL]t ·xt +[â1]t ·x2t +[â2]t ·x

3

t (34)

Check the following :[
0

r̃t ,t ,1

]
t

?

=−

[
д
bt

]
t
e
(t)
t +[ŝ

(t)
t]t +[ât]t ·x

4

t (35)

[pt]t
?

= [B′L,t]t
˜lt ,0+[B′1,t]2[˜lt ,1]1+[B

′
2,t]1[r̃t ,2]2 (36)

[p̃t]t
?

=
〈
˜lt ,0,[r̃t ,t]t

〉
+
〈
[˜lt ,1]1,[r̃t ,2]2

〉
(37)

Com(t)ppt ([p̃t]t ;ft)
?

=

4∑
i=0
[p̂t ,i]t ·x it +Com

(t)
ppt ([ζt]t ;0)·x

5

t (38)

• V: Output 1 if all the above checks are passed. Otherwise

output 0.

In Appendix B we give a concise summary of the message flow of

the protocol.

3.2 Security
In the followingwe show that our scheme is computationally honest-

verifier zero-knowledge and has computational witness-extended

emulation. We recall that the scheme can be made non-interactive

via the standard Fiat-Shamir transformation [20].

Theorem 3.1. The interactive argument described above is per-
fectly complete. If Com(0), Com(1), Com(2), Com(t), and Com(mix)

are computationally hiding, then it is computationally special
honest-verifier zero-knowledge.

For the proof we refer to Appendix B.1

Theorem 3.2. IfCom(0),Com(1),Com(2),Com(t), andCom(mix)

are computationally binding, and the (2,n0,n1,n2)-GDLR assumption
holds for n0,n1,n2=poly (λ), then the interactive argument described
above has computational witness-extended emulation.

For the proof we refer to Appendix B.2

3.3 Achieving Logarithmic Communication
We show how to modify the naive protocol above, such that it can

be composed with the inner protocols described in Section 4 to yield

a succinct protocol.

In Equation (17) of the naive protocol, the prover has to send the

vectors (
˜l0,r̃0,[˜l1]1,r̃1,˜l2,[r̃2]2,

˜lt ,0,[r̃t ,t ,1]t ,[˜lt ,1]1,[r̃t ,2]2

)
whose total size are linear in the size of the witness.

To achieve logarithmic communication, the prover would instead

send the commitments of the vectors

[p0]t := [B′L,0]t
˜l0+[B′R,0]t r̃0

[p1]t := [B′R,1]t r̃1+[B
′
1,1]2[

˜l1]1

[p2]t := [B′L,2]t
˜l2+[B′2,2]1[r̃2]2

[pt]t := [B′L,t]t
˜lt ,0+[B′1,t]2[˜lt ,1]1+[B

′
2,t]1[r̃t ,2]2

where the bases are defined in Equations (18), (23), (28) and (33).

Correspondingly, instead of having the verifier V check the

equations such as Equations (20) and (21) for type Zq relation in

plain, the prover P and the verifierV engage in the inner protocol

described in Section 4.1. To check Equations (25), (26), (30) and (31)

for type G1 and G2 relations, they engage in the inner protocols

described in Section 4.2. Finally, to check Equations (36) and (37),

they run the protocol in Section 4.3. As we will show in Section 4, all

these inner protocols have logarithmic communication complexity,

so does the composed protocol.

Note that the commitments ([p0]t , [p1]t , [p2]t , [pt]t) need not

be hiding and the inner protocols need not be zero-knowledge, as

the committed vectors are sent in plain in Equation (17). Due to the

witness-extended emulation property of the inner protocols, the

composed protocol still has witness-extended emulation.

4 ARGUMENTS FORGENERALIZED
INNER PRODUCTS (INNER PROTOCOLS)

In this section, we present a family of arguments for generalized

inner product relations (inner protocols).

4.1 Protocol for Type Zq Inner Products
As a warm-up, we present the protocol for “type Zq” inner products.
While this protocol follows with minor modifications from existing

work, its presentation is instrumental to familiarizewith thenotation

and for a more incremental exposition of the subsequent arguments.

Specifically, we give a succinct argument for the following language

L0B

{
([B0∥B1]t ,[p]t ,c) s.t. ∃(a0,a1) :
[p]t = [B0]t a0+[B1]t a1∧c= ⟨a0,a1⟩

}
where [B0∥B1]t ∈G

2×2n
t , [p]t ∈G2t , a0 ∈ Z

n
q , and a1 ∈ Znq . Similarly

as what done in [14], we actually design a protocol for the following

related language

˜L0B

{
([B0∥B1∥b]t ,[p]t) s.t.∃(a0,a1) :
[p]t = [B0]t a0+[B1]t a1+[b]t ⟨a0,a1⟩

}
where [b]t ← $G2t . An argument system for

˜L0 can be shown to

imply an argument for L0 via a simple conversion similar to that

in [14]. The protocol consists of a parallel execution of the inner

product argument in [14], as our commitment to the witness now

consists of 2 elements instead of 1.

Protocol 1.
• If n=1, then P simply sends (a0,a1).V outputs 1 if

[p]t = [B0]t a0+[B1]t a1+[b]t · ⟨a0,a1⟩.

10

• Else set ñ=n/2 and parse B0,B1,a0,a1 as
B00∥B01=B0 B10∥B11=B1

(aT
00
∥aT

01
)=aT

0
(aT
10
∥aT

11
)=aT

1

where B00,B01,B10,B11 ∈Z
2×ñ
q and a00,a01,a10,a11 ∈Zñq .

• P: Compute

– cLB ⟨a00,a11⟩
– cRB ⟨a01,a10⟩
– [l]t B [B01]t a00+[B10]t a11+[b]t ·cL
– [r]t B [B00]t a01+[B11]t a10+[b]t ·cR
• P→V: Send ([l]t ,[r]t).
• V: Sample x ← $Zq .
• P←V: Send x .
• P,V: Compute

– [B̃0]t B [B00]t ·x−1+[B01]t ·x
– [B̃1]t B [B10]t ·x+[B11]t ·x−1

– [p̃]t B [l]t ·x2+[p]t +[r]t ·x−2

• P: Compute

– ã0Ba00 ·x+a01 ·x−1

– ã1Ba10 ·x−1+a11 ·x
• P, V: Recursively engage in Protocol 1 on the statement(
[B̃0∥B̃1∥b]t ,[p̃]t

)
with (ã0,ã1) as the witness.

Theorem 4.1. If the (2, 2n, 0, 0)-GDLR assumption holds, then
Protocol 1 has computational witness-extended emulation.

For the proof we refer to Appendix C.1.

4.2 Protocol for TypeG1 andG2 Inner Products
Generalizing Protocol 1, we now present an argument for “type-G1”
inner product relations. The protocol for “type-G2” relations can
be obtained analogously, and is omitted. Specifically, for type-G1,
we give a succinct argument for the following language

L1B

{
([B1]2,[B0]t ,[p]t ,[c]1) s.t.∃([a1]1,a0) :
[p]t = [B1]2[a1]1+[B0]t a0∧[c]1= ⟨[a1]1,a0⟩

}
where [B1]2 ∈G

2×n
2

, [B0]t ∈G
2×n
t , [p]t ∈G2t , [a1]1 ∈G

n
1
, and a0 ∈Znq .

This is done by describing an argument for the following related

language

˜L1B

{
([B1∥b]2,[B0]t ,[p]t) s.t.∃([a1]1,a0) :
[p]t = [B1]2[a1]1+[B0]t a0+[b]2⟨[a1]1,a0⟩

}
where [b]2 ← $G2

2
. The two can be shown to be equivalent (except

with negligible probability) via a standard transformation. The pro-

tocol follows the sameblueprint as the argument described above, ex-

cept that it generalizes modular exponentiations to pairing products.

Protocol 2.
• If n=1, then P simply sends ([a1]1,a0).V outputs 1 if

[p]t = [B1]2 ·[a1]1+[B0]t a0+[b]2 · ⟨[a1]1,a0⟩.
• Else set ñ=n/2 and parse B1,B0,a1,a0 as

B00∥B01=B0 B10∥B11=B1

(aT
00
∥aT

01
)=aT

0
(aT
10
∥aT

11
)=aT

1

where B00,B01,B10,B11 ∈Z
2×ñ
q and a00,a01,a10,a11 ∈Zñq .

• P: Compute

– [cL]1B ⟨[a10]1,a01⟩
– [cR]1B ⟨[a11]1,a00⟩
– [l]t B [B11]2[a10]1+[B00]t a01+[b]2 ·[cL]1
– [r]t B [B10]2[a11]1+[B01]t a00+[b]2 ·[cR]1

• P→V: Send ([l]t ,[r]t).
• V: Sample x ← $Zq .
• P←V: Send x .
• P,V: Compute

– [B̃0]t B [B00]t ·x+[B01]t ·x−1

– [B̃1]2B [B10]2 ·x−1+[B11]2 ·x
– [p̃]t B [l]t ·x2+[p]t +[r]t ·x−2

• P: Compute

– ã0Ba00 ·x−1+a01 ·x
– [ã1]1B [a10]1 ·x+[a11]1 ·x−1

• P, V: Recursively engage in Protocol 2 on the statement(
[B̃1∥b]2,[B̃0]t ,[p̃]t

)
with ([ã0]1,ã1) as the witness.

Theorem 4.2. If the (2, n, n, 0)-GDLR assumption holds, then
Protocol 2 has computational witness-extended emulation.

For the proof we refer to Appendix C.2.

4.3 Protocol for TypeGt Inner Products
We further generalize the technique in Protocol 2 to obtain a

succinct argument for the following language

Lt B


([B1]2,[B2]1,[B0]t ,[p]t ,[at]t ,[c]t) s.t.∃([a1]1,[a2]2,a0) :
[p]t = [B1]2[a1]1+[B2]1[a2]2+[B0]t a0
∧[c]t = ⟨[a1]1,[a2]2⟩+⟨a0,[at]t ⟩


where [B1]2 ∈G

2×n
2

, [B2]1 ∈G
2×n
1

, [B0]t ∈G
2×n
t , [p]t ∈G2t , [c] ∈Gt ,

[a1]1 ∈ Gn
1
, [a2]2 ∈ Gn

2
, a0 ∈ Znq , and [at]t ∈ Gnt . An important

difference of Lt from the other similar languages is that, part of

the input, i.e., [at]t , to the inner product is given in the clear: This
allows us to handle relations in Gt without compromising the

overall communication complexity.

Protocol 3.
• If n=1, then P simply sends ([a1]1,[a2]2,a0).V outputs 1 if

– [p]t = [B1]2 ·[a1]1+[B2]1 ·[a2]2+[B0]t ·a0 and
– [c]t = ⟨[a1]1,[a2]2⟩+⟨a0,[at]t ⟩
• Else set ñ=n/2 and parse B0,B1,B2,a0,a1,a2,at as

B00∥B01=B0 B10∥B11=B1 B20∥B21=B2

(aT
10
∥aT

11
)=aT

1
(aT
20
∥aT

21
)=aT

2

(aT
00
∥aT

01
)=aT

0
(aTt0∥a

T
t1)=a

T
t

where B00,B01,B10,B11,B21,B21 ∈ Z
2×ñ
q and a10,a11,a20,a21,

a00,a01,at0,at1 ∈Zñq .
• P: Compute

– [cL]t B ⟨[a10]1,[a21]2⟩+⟨a00,[at1]t ⟩
– [cR]t B ⟨[a11]1,[a20]2⟩+⟨a01,[at0]t ⟩
– [l]t B [B01]2[a10]1+[B10]1[a21]2+[B21]t a00
– [r]t B [B00]2[a11]1+[B11]1[a20]2+[B20]t a01
• P→V: Send ([l]t ,[r]t ,[cL]t ,[cR]t).
• V: Sample x ← $Zq .
• P←V: Send x .
• P,V: Compute

– [B̃1]2B [B10]2 ·x−1+[B11]2 ·x
– ˜[B2]1B [B20]1 ·x+[B21]1 ·x

−1

– ˜[B0]t B [B00]t ·x
−1+[B01]t ·x

– [p̃]t B [l]t ·x2+[p]t +[r]t ·x−2

– [c̃]t B [cL]t ·x2+[c]t +[cR]t ·x−2

– [ãt]t B [at0]t ·x−1+[at1]t ·x
11

Outer Protocol Inner Zq Protocol

G
1/2 Gt Pairing G

1/2 Gt Pairing

Prover 16·lmix +6 16·lmix +9·lt +29 14·lmix +6 – 18·log(lmix) –

Verifier 2·lmix +6 21lmix +8·lt +46 9·lmix +4 – (4·lmix +4)·log(lmix)+5 –

InnerG
1/2 Protocol InnerGt Protocol

G
1/2 Gt Pairing G

1/2 Gt Pairing

Prover – (10·lmix +8)·log(lmix) – – (11·lmix +8)·log(lmix) 5·lmix ·log(lmix)

Verifier 1 (4·lmix +4)·log(lmix)+4 1 – 13·lmix ·log(lmix)+2 5

Table 1: Number of operations with respect to the compressed witness length (ℓ(mix),ℓt)

• P: Compute

– [ã0]1B [a10]1 ·x+[a11]1 ·x−1

– [ã1]2B [a20]2 ·x−1+[a21]2 ·x
– ã2Ba00 ·x+a01 ·x−1

• P, V: Recursively engage in Protocol 3 on the statement(
[B̃1]2,[B̃2]1[B̃0]t ,[p̃]t ,[ãt]t ,[c̃]t

)
with ([ã1]1,[ã2]2,ã0) as the

witness.

Theorem 4.3. If the (2, n, n, n)-GDLR assumption holds, then
Protocol 3 has computational witness-extended emulation.

For the proof we refer to Appendix C.3.

5 PERFORMANCE EVALUATION
We first count the proof size of our argument system and GS

proofs for general statements. A (zero-knowledge) proof in our

system consists of 16logℓ(mix)+3ℓt +71 total number of elements

(combining the counts in Zq , G1, G2, and Gt), where ℓ(mix) ≤

2m0+m1+m2+m12+mtnt . For GS proofs, which can only support
statements with ℓt =0, a (witness-indistinguishable) proof consists

of 2(ℓ0+ℓ1+ℓ2)+4(n0+q0+q1+q2)+6(n1+n2)+8nt total number of

elements (combining the counts inZq ,G1, andG2) in the asymmetric

pairingsetting, and3(ℓ0+ℓ1+ℓ2)+6(n0+q0+q1+q2)+9(n1+n2+nt)
total number of elements in the symmetric pairing setting. Note that

q0 ≤ 4m0+2m1+2m2+2m12+mtnt and q1,q2 ≤ 2m0+m1+m2+m12.

Table 1 counts the number of exponentiations inG1,G2 andGt
and pairing operations needed in the protocols, with respect to

the length of the compressed witness (ℓ(mix),ℓt). Here we assume

G1 = G2 or at least the cost of exponentiation in both groups

are approximately the same. Therefore we add up the number of

exponentiations inG1 andG2.
For concrete performance evaluation we have implemented our

constructionandcompared itwithanexisting implementation
8
ofGS

NIZK proofs [32], which adopts some of the optimizations suggested

in subsequentwork [18, 25, 27]. Both implementations arewritten in

Java and are based on the JPBC-Library
9
. We also slightly modified

the GS proofs implementation so that it takes equal advantage of

the optimization done in the JPBC-Library as our implementation.

We instantiate both schemes over two different elliptic curves.

The first is a “type A1” curve supported in the JPBC-Library, which

8
https://github.com/gijsvl/groth-sahai

9
http://gas.dia.unisa.it/projects/jpbc/

specifies a tuple of symmetric pairing groups, where the order of the

groups is a product of three 517-bit primes
10
. Although in this setting

we are working with symmetric pairing groups, i.e., G1 = G2, for
the clarity of presentation we will still denote left- and right-inputs

to a pairing gate with the notation [·]1 and [·]2 respectively.

Our second choice is a tuple of prime-order asymmetric pairing

groups chosen from the well-studied Barreto-Naehrig (BN) [7]

family with a 256-bit order. The expected security is 128-bit.

All experiments are performed with an Intel(R) Xeon(R) Gold

6132 CPU@ 2.60GHz processor, without parallelization. Numerical

figures are obtained by averaging over those in ten independent

instances.

5.1 Choice of Statements to be Proven
For a meaningful comparison between our scheme and GS proofs,

we need a family of languages parameterized by the length of the

witness.We choose the following simple languageL∗n as an example:

L∗n := {([λ]1,[ζ]t) :∃[a]2 s.t. ⟨[λ]1,[a]2⟩= [ζ]t }

The length n of the witness is assumed to be a power of 2.

The language L∗n is natural in many applications. For example,

it captures the knowledge of a valid opening of a commitment in

a commitment scheme of [3]. It also captures the knowledge of

a decryption key of the KSW predicate encryption scheme [38,

Appendix B], with respect to which the decryption of a given

ciphertext is correct. We elaborate more on the latter example.

In the KSW scheme, an attribute-based secret key consists of a

set of group elements{
[k]2,[k1,i]2,[k2,i]2

}ℓ
i=1.

Given a ciphertext(
[c ′]t ,[c]1,

{
[c1,i]1,[c2,i]1

}ℓ
i=1

)
10
This choice of the bit-length of the primes appears in the documentation of the

JPBC, without mentioning the expected security level. According to [34], 882-bit

primes corresponds to an expected 128-bit security. An educated guess is that 517-bit

primes offer 80-bit security. The reason of choosing a low bit-length is such that

we can produce experimental results in a reasonable time, since the operations in

composite-order groups are much more expensive than their prime-order counterparts.

Nevertheless, the concrete choice does not affect the relative efficiency between our

implementation and that of GS proofs. We stress that however our choice does not

serve as a recommendation for parameters for deployed systems.

12

https://github.com/gijsvl/groth-sahai
http://gas.dia.unisa.it/projects/jpbc/

2
1

2
3

2
5

2
7

2
9

2
11

2
3

2
6

2
9

2
12

2
15

Witness length n

S
i
z
e
i
n
T
o
t
a
l
N
u
m
b
e
r
o
f
E
l
e
m
e
n
t
s

Proof Size

SizeGS

SizeOurs

2
1

2
3

2
5

2
7

2
9

2
11

10
0

10
1

10
2

10
3

10
4

Witness length n
T
i
m
e
i
n
s

Proof Time

ProverGS

ProverOurs

2
1

2
3

2
5

2
7

2
9

2
11

10
0

10
1

10
2

10
3

Witness length n

T
i
m
e
i
n
s

Verification Time

VerifierGS

VerifierOurs

Figure 1: Comparison with Type A1 Curve with 3 517-bit primes

2
1

2
3

2
5

2
7

2
9

2
2

2
4

2
6

2
8

2
10

Witness length n

S
i
z
e
i
n
T
o
t
a
l
N
u
m
b
e
r
o
f
E
l
e
m
e
n
t
s

Proof Size

SizeGS

SizeOurs

2
1

2
3

2
5

2
7

2
9

10
−1

10
0

10
1

10
2

10
3

Witness length n

T
i
m
e
i
n
s

Proof Time

ProverGS

ProverOurs

2
1

2
3

2
5

2
7

2
9

10
0

10
1

10
2

Witness length n
T
i
m
e
i
n
s

Verification Time

VerifierGS

VerifierOurs

Figure 2: Comparison with BNCurve of 256-bit order

and a message [m]t , proving correct decryption is to prove the

knowledge of a secret key which satisfies

[c]1[k]2+
ℓ∑
i=1
[c1,i]1[k1,i]2+

ℓ∑
i=1
[c2,i]1[k2,i]2= [m]t −[c

′]t .

The KSW predicate encryption scheme is originally described

over composite-order symmetric pairing groups, where G1 = G2.
Subsequent works transformed it into schemes in the prime-order

asymmetric pairing group setting (e.g., [5]). Note that operations
in composite-order groups are generally much slower than their

counterparts in prime-order groups.

We consider the settings where the length of the attribute ℓ of of

the form ℓ= (n−1)/2 for somen=2k . By padding an identity element

[0]1 to the statement, we obtain a language in the form ofL∗n .

5.2 Efficiency Comparison
In Figures 1 and 2 we illustrate the prover and verifier time for the

two different settings respectively. In all graphs, the x-axes describe

the witness length n inG2 elements, while the y-axes describe the

proof size in total number of combined elements or the time in

seconds to generate / verify a proof.

Our (zero-knowledge) proof consists of 2 Zq , 1G2, and (6logn+3)
Gt elements. A (witness-indistinguishable) GS proof consists of 2

G1 and 2n G2 elements in the BN setting, and 3n+3G1/G2 elements

in the type A1 setting.

For both schemes and in both settings, it is clear that the prover

(resp. verifier) time is linear in the witness length, and is increasing

with the same rate.

Over the type A1 curve, our prover is between 3 to 4 times slower

than that of GS proof, while the verificaiton time is only 2 to 3 times

longer, for witness length n≥ 25.
Over the BN curve, our prover is around 40 times slower while

for verification our scheme only takes about 60% of the time the GS

verification needs. We suspect that the difference in prover time

is due to specific optimizations for operations in BN curves.

In our implementation we make no use of optimization tricks

such as multi-exponentition nor batch verification suggested in

the literature (e.g., [14]). Our evaluation shows clearly that even

with a very naive implementation our scheme achieves comparable

time efficiency with existing systems while the proof length is

significantly shorter.

ACKNOWLEDGMENTS
We thank the anonymous referees for their valuable comments and

helpful suggestions. This work is supported in part by the German

13

Research Foundation under Grant No.: 272573906 and 393541319.

This work is also supported in part by the state of Bavaria at the

Nuremberg Campus of Technology (NCT), and by a gift from DOS

Networks and Ripple. NCT is a research cooperation between the

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the

Technische Hochschule Nürnberg Georg Simon Ohm (THN).

REFERENCES
[1] Masayuki Abe. 2015. Structure-Preserving Cryptography. In Advances in Cryptol-

ogy - Asiacrypt 2015 (Lecture Notes in Computer Science), Vol. 9452. 1. https://www.

iacr.org/archive/asiacrypt2015/94520356/94520356.pdf Abstract of invited talk.

[2] Masayuki Abe, Georg Fuchsbauer, Jens Groth, KristiyanHaralambiev, andMiyako

Ohkubo. 2010. Structure-Preserving Signatures and Commitments to Group

Elements. In CRYPTO 2010 (LNCS), Tal Rabin (Ed.), Vol. 6223. Springer, Heidelberg,
209–236. https://doi.org/10.1007/978-3-642-14623-7_12

[3] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and

Miyako Ohkubo. 2016. Structure-Preserving Signatures and Commitments

to Group Elements. Journal of Cryptology 29, 2 (April 2016), 363–421.

https://doi.org/10.1007/s00145-014-9196-7

[4] Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. 2012. Group

to Group Commitments Do Not Shrink. In EUROCRYPT 2012 (LNCS), David
Pointcheval and Thomas Johansson (Eds.), Vol. 7237. Springer, Heidelberg,

301–317. https://doi.org/10.1007/978-3-642-29011-4_19

[5] Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek

Kumarasubramanian, Manoj Prabhakaran, and Amit Sahai. 2015. On the

Practical Security of Inner Product Functional Encryption. In PKC 2015
(LNCS), Jonathan Katz (Ed.), Vol. 9020. Springer, Heidelberg, 777–798.

https://doi.org/10.1007/978-3-662-46447-2_35

[6] Scott Ames, Carmit Hazay, Yuval Ishai, andMuthuramakrishnan Venkitasubrama-

niam. 2017. Ligero: Lightweight Sublinear ArgumentsWithout a Trusted Setup. In

ACMCCS2017, BhavaniM.Thuraisingham,DavidEvans, TalMalkin, andDongyan

Xu (Eds.). ACM Press, 2087–2104. https://doi.org/10.1145/3133956.3134104

[7] Paulo S. L. M. Barreto andMichael Naehrig. 2006. Pairing-Friendly Elliptic Curves

of Prime Order. In SAC 2005 (LNCS), Bart Preneel and Stafford Tavares (Eds.),

Vol. 3897. Springer, Heidelberg, 319–331. https://doi.org/10.1007/11693383_22

[8] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, andMichael Riabzev. 2018. Scalable,

transparent, and post-quantum secure computational integrity. Cryptology

ePrint Archive, Report 2018/046. https://eprint.iacr.org/2018/046.

[9] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,

Madars Virza, and Nicholas P. Ward. 2019. Aurora: Transparent Suc-

cinct Arguments for R1CS. In EUROCRYPT 2019, Part I (LNCS), Yuval

Ishai and Vincent Rijmen (Eds.), Vol. 11476. Springer, Heidelberg, 103–128.

https://doi.org/10.1007/978-3-030-17653-2_4

[10] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. 2016. In-

teractive Oracle Proofs. In TCC 2016-B, Part II (LNCS), Martin Hirt

and Adam D. Smith (Eds.), Vol. 9986. Springer, Heidelberg, 31–60.

https://doi.org/10.1007/978-3-662-53644-5_2

[11] Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-Interactive Zero-

Knowledge and Its Applications (Extended Abstract). In 20th ACM STOC. ACM
Press, 103–112. https://doi.org/10.1145/62212.62222

[12] Dan Boneh and Matthew K. Franklin. 2001. Identity-Based Encryption from

the Weil Pairing. In CRYPTO 2001 (LNCS), Joe Kilian (Ed.), Vol. 2139. Springer,

Heidelberg, 213–229. https://doi.org/10.1007/3-540-44647-8_13

[13] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.

2016. Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete

Log Setting, See [21], 327–357. https://doi.org/10.1007/978-3-662-49896-5_12

[14] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions

andMore, See [36], 315–334. https://doi.org/10.1109/SP.2018.00020

[15] Jan Camenisch, Kristiyan Haralambiev, Markulf Kohlweiss, Jorn Lapon, and

Vincent Naessens. 2011. Structure Preserving CCA Secure Encryption and

Applications, See [41], 89–106. https://doi.org/10.1007/978-3-642-25385-0_5

[16] JanCamenisch andVictor Shoup. 2003. PracticalVerifiableEncryption andDecryp-

tion of Discrete Logarithms. In CRYPTO 2003 (LNCS), Dan Boneh (Ed.), Vol. 2729.
Springer, Heidelberg, 126–144. https://doi.org/10.1007/978-3-540-45146-4_8

[17] Julien Cathalo, Benoît Libert, and Moti Yung. 2009. Group Encryption:

Non-interactive Realization in the Standard Model. In ASIACRYPT 2009
(LNCS), Mitsuru Matsui (Ed.), Vol. 5912. Springer, Heidelberg, 179–196.

https://doi.org/10.1007/978-3-642-10366-7_11

[18] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn.

2012. Malleable Proof Systems and Applications. Cryptology ePrint Archive,

Report 2012/012. http://eprint.iacr.org/2012/012.

[19] TaherElGamal. 1985. APublicKeyCryptosystemandaSignature SchemeBasedon

Discrete Logarithms. IEEE Transactions on Information Theory 31 (1985), 469–472.

[20] Amos Fiat andAdi Shamir. 1987. How toProveYourself: Practical Solutions to Iden-

tification andSignature Problems. InCRYPTO’86 (LNCS), AndrewM.Odlyzko (Ed.),

Vol. 263. Springer, Heidelberg, 186–194. https://doi.org/10.1007/3-540-47721-7_12

[21] Marc Fischlin and Jean-Sébastien Coron (Eds.). 2016. EUROCRYPT 2016, Part II.
LNCS, Vol. 9666. Springer, Heidelberg.

[22] Georg Fuchsbauer. 2011. Commuting Signatures and Verifiable Encryption.

In EUROCRYPT 2011 (LNCS), Kenneth G. Paterson (Ed.), Vol. 6632. Springer,

Heidelberg, 224–245. https://doi.org/10.1007/978-3-642-20465-4_14

[23] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013.

Quadratic Span Programs and Succinct NIZKs without PCPs. In EUROCRYPT 2013
(LNCS), Thomas Johansson and Phong Q. Nguyen (Eds.), Vol. 7881. Springer,

Heidelberg, 626–645. https://doi.org/10.1007/978-3-642-38348-9_37

[24] Craig Gentry and Daniel Wichs. 2011. Separating succinct non-interactive

arguments from all falsifiable assumptions. In 43rd ACMSTOC, Lance Fortnow and

SalilP.Vadhan (Eds.).ACMPress, 99–108. https://doi.org/10.1145/1993636.1993651

[25] Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. 2010. Groth-

Sahai Proofs Revisited. In PKC 2010 (LNCS), Phong Q. Nguyen and

David Pointcheval (Eds.), Vol. 6056. Springer, Heidelberg, 177–192.

https://doi.org/10.1007/978-3-642-13013-7_11

[26] VipulGoyal, Omkant Pandey,Amit Sahai, andBrentWaters. 2006. Attribute-Based

Encryption for Fine-Grained Access Control of Encrypted Data. In ACMCCS 2006,
Ari Juels, Rebecca N.Wright, and Sabrina De Capitani di Vimercati (Eds.). ACM

Press, 89–98. https://doi.org/10.1145/1180405.1180418 Available as Cryptology

ePrint Archive Report 2006/309.

[27] Jens Groth. 2006. Simulation-Sound NIZK Proofs for a Practical Language

and Constant Size Group Signatures. In ASIACRYPT 2006 (LNCS), Xue-

jia Lai and Kefei Chen (Eds.), Vol. 4284. Springer, Heidelberg, 444–459.

https://doi.org/10.1007/11935230_29

[28] Jens Groth. 2011. Efficient Zero-Knowledge Arguments from Two-Tiered

Homomorphic Commitments, See [41], 431–448. https://doi.org/10.1007/978-

3-642-25385-0_23

[29] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments, See

[21], 305–326. https://doi.org/10.1007/978-3-662-49896-5_11

[30] Jens Groth and Yuval Ishai. 2008. Sub-linear Zero-Knowledge Argument for

Correctness of a Shuffle, See [54], 379–396. https://doi.org/10.1007/978-3-540-

78967-3_22

[31] Jens Groth, Rafail Ostrovsky, and Amit Sahai. 2006. Perfect Non-interactive Zero

Knowledge for NP. In EUROCRYPT 2006 (LNCS), Serge Vaudenay (Ed.), Vol. 4004.
Springer, Heidelberg, 339–358. https://doi.org/10.1007/11761679_21

[32] Jens Groth and Amit Sahai. 2008. Efficient Non-interactive Proof Systems for

Bilinear Groups, See [54], 415–432. https://doi.org/10.1007/978-3-540-78967-3_24

[33] J. Groth and A. Sahai. 2012. Efficient Noninteractive Proof Sys-

tems for Bilinear Groups. SIAM J. Comput. 41, 5 (2012), 1193–1232.

https://doi.org/10.1137/080725386 arXiv:https://doi.org/10.1137/080725386

[34] Aurore Guillevic. 2013. Comparing the Pairing Efficiency over Composite-Order

and Prime-Order Elliptic Curves. In ACNS 13 (LNCS), Michael J. Jacobson Jr.,

Michael E. Locasto, PaymanMohassel, and Reihaneh Safavi-Naini (Eds.), Vol. 7954.

Springer, Heidelberg, 357–372. https://doi.org/10.1007/978-3-642-38980-1_22

[35] Christian Hanser and Daniel Slamanig. 2014. Structure-Preserving Signatures

on Equivalence Classes and Their Application to Anonymous Credentials. In

ASIACRYPT 2014, Part I (LNCS), Palash Sarkar and Tetsu Iwata (Eds.), Vol. 8873.
Springer, Heidelberg, 491–511. https://doi.org/10.1007/978-3-662-45611-8_26

[36] IEEE S&P 2018 2018. 2018 IEEE Symposium on Security and Privacy. IEEEComputer

Society Press.

[37] Jonathan Katz, Amit Sahai, and Brent Waters. 2008. Predicate Encryption

Supporting Disjunctions, Polynomial Equations, and Inner Products, See [54],

146–162. https://doi.org/10.1007/978-3-540-78967-3_9

[38] Jonathan Katz, Amit Sahai, and Brent Waters. 2013. Predicate Encryption

Supporting Disjunctions, Polynomial Equations, and Inner Products. Journal of
Cryptology 26, 2 (April 2013), 191–224. https://doi.org/10.1007/s00145-012-9119-4

[39] Joe Kilian. 1992. A Note on Efficient Zero-Knowledge Proofs and Ar-

guments (Extended Abstract). In 24th ACM STOC. ACM Press, 723–732.

https://doi.org/10.1145/129712.129782

[40] Russell W. F. Lai and Giulio Malavolta. 2019. Subvector Commitments with

Application to Succinct Arguments. In CRYPTO 2019, Part I (LNCS), Alexandra
Boldyreva and Daniele Micciancio (Eds.), Vol. 11692. Springer, 530–560.

[41] DongHoon Lee andXiaoyunWang (Eds.). 2011. ASIACRYPT 2011. LNCS, Vol. 7073.
Springer, Heidelberg.

[42] Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. 2013. Linearly

Homomorphic Structure-Preserving Signatures and Their Applications. In

CRYPTO 2013, Part II (LNCS), Ran Canetti and Juan A. Garay (Eds.), Vol. 8043.

Springer, Heidelberg, 289–307. https://doi.org/10.1007/978-3-642-40084-1_17

[43] Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. 2015. Linearly

homomorphic structure-preserving signatures and their applications. Designs,
Codes and Cryptography 77, 2-3 (2015), 441–477.

[44] Benoît Libert, Thomas Peters, and Moti Yung. 2015. Short Group Signa-

tures via Structure-Preserving Signatures: Standard Model Security from

Simple Assumptions. In CRYPTO 2015, Part II (LNCS), Rosario Gennaro

14

https://www.iacr.org/archive/asiacrypt2015/94520356/94520356.pdf
https://www.iacr.org/archive/asiacrypt2015/94520356/94520356.pdf
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/s00145-014-9196-7
https://doi.org/10.1007/978-3-642-29011-4_19
https://doi.org/10.1007/978-3-662-46447-2_35
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/11693383_22
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-642-25385-0_5
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/978-3-642-10366-7_11
http://eprint.iacr.org/2012/012
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-20465-4_14
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1007/978-3-642-13013-7_11
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1137/080725386
http://arxiv.org/abs/https://doi.org/10.1137/080725386
https://doi.org/10.1007/978-3-642-38980-1_22
https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/s00145-012-9119-4
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-642-40084-1_17

and Matthew J. B. Robshaw (Eds.), Vol. 9216. Springer, Heidelberg, 296–316.

https://doi.org/10.1007/978-3-662-48000-7_15

[45] Yehuda Lindell. 2003. Parallel Coin-Tossing and Constant-Round Secure

Two-Party Computation. Journal of Cryptology 16, 3 (June 2003), 143–184.

https://doi.org/10.1007/s00145-002-0143-7

[46] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. 2011. Attribute-Based

Signatures. In CT-RSA 2011 (LNCS), Aggelos Kiayias (Ed.), Vol. 6558. Springer,
Heidelberg, 376–392. https://doi.org/10.1007/978-3-642-19074-2_24

[47] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption

Function. In CRYPTO’87 (LNCS), Carl Pomerance (Ed.), Vol. 293. Springer,

Heidelberg, 369–378. https://doi.org/10.1007/3-540-48184-2_32

[48] Silvio Micali. 1994. CS Proofs (Extended Abstracts). In 35th FOCS. IEEE Computer

Society Press, 436–453. https://doi.org/10.1109/SFCS.1994.365746

[49] Silvio Micali. 2000. Computationally Sound Proofs. SIAM J. Comput. 30, 4 (Oct.
2000), 1253–1298. https://doi.org/10.1137/S0097539795284959

[50] Torben P. Pedersen. 1992. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. In CRYPTO’91 (LNCS), Joan Feigenbaum (Ed.), Vol. 576.

Springer, Heidelberg, 129–140. https://doi.org/10.1007/3-540-46766-1_9

[51] Amit Sahai. 1999. Non-Malleable Non-Interactive Zero Knowledge and Adaptive

Chosen-Ciphertext Security. In 40th FOCS. IEEE Computer Society Press, 543–553.

https://doi.org/10.1109/SFFCS.1999.814628

[52] Amit Sahai and Brent R. Waters. 2005. Fuzzy Identity-Based Encryption. In

EUROCRYPT 2005 (LNCS), Ronald Cramer (Ed.), Vol. 3494. Springer, Heidelberg,

457–473. https://doi.org/10.1007/11426639_27

[53] Claus-Peter Schnorr. 1990. Efficient Identification and Signatures for Smart

Cards. In CRYPTO’89 (LNCS), Gilles Brassard (Ed.), Vol. 435. Springer, Heidelberg,
239–252. https://doi.org/10.1007/0-387-34805-0_22

[54] NigelP. Smart (Ed.). 2008. EUROCRYPT2008. LNCS,Vol. 4965. Springer,Heidelberg.
[55] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.

2018. Doubly-Efficient zkSNARKs Without Trusted Setup, See [36], 926–943.

https://doi.org/10.1109/SP.2018.00060

A PROOFS FORHARDNESS ASSUMPTION
A.1 Proof of Lemma 2.2

Proof. Let A be a PPT adversary against the (m, n0, n1, n2)-
GDLR assumption. We construct a PPT adversary B against the

(m,0,n0+n1,n2)-GDLR assumption.

B receives an (m, 0, n0 + n1, n2)-GDLR instance defined

by (G1, G2, Gt , q, e, [B
′
1
]2, [B

′
2
]1) where B′

1
∈ Z

m×(n0+n1)
q

and B′
2
∈ Zm×n2

q . It parses [B′
1
]2 as [B′

0
∥B1]2, samples R0 ∈

Zn0×n0

q , and computes [B0]t := [B′
0
]2[R0]1. It then runs A on

(G1,G2,Gt ,q,e,[B0]t ,[B1]2,[B
′
2
]1).

Clearly, (G1,G2,Gt ,q,e,[B0]t ,[B1]2,[B2]1) is distributed identically
as a random (m,n0,n1,n2)-GDLR instance. Therefore, by assumption,

with non-negligible probability,A outputs (a0,[a1]1,[a2]2) not all
zero such that

[B0]t a0+[B1]2[a1]1+[B2]1[a2]2= [0]t .
Suppose this is the case, by construction we have

[B′
1
]2

[
R0a0
a1

]
1

+[B′
2
]1[a2]2= [0]t .

Since (a0, [a1]1, [a2]2) is not all zero, the probability that([
R0a0
a1

]
1

,[a2]2

)
is zero is at most 1/q which is negligible. □

A.2 Proof of Theorem 2.3
Proof. By Lemma 2.2, it suffices to prove that the (m,0,n1,n2)-

GDLR assumption holds. We focus on the case n1,n2 ≥ 1. The other
cases can be proven analogously.

By the SXDH assumption, the following distributions D1 and

D2 are computationally indistinguishable:

D1 :=

{ (
G1,G2,Gt ,q,e,
[B1]2,[B2]1

)
:Bi ← $Zm×niq , i ∈ {1,2}

}

D2 :=


(
G1,G2,Gt ,q,e,
[B1]2,[B2]1

)
:

bi ← $Zmq , i ∈ {1,2}

ri ← $Zniq , i ∈ {1,2}

Bi :=bi rTi , i ∈ {1,2}


From this observation, we can construct a PPT adversary B

against the (m,0,1,1)-GDLR assumption given a PPT adversaryA
against the (m,0,n1,n2)-GDLR assumption.

B receives the (m,0,1,1)-GDLR instance defined by ([b1]2,[b2]1)
where bi ← $Zmq for i ∈ {1,2}. It samples ri ← $Zniq for i ∈ {1,2},

and computes ([B1]2,[B2]1)= ([b1]2rT
1
,[b2]1rT

2
). It then runsA to

solve the (m,0,n1,n2)-GDLR instance defined by ([B1]2,[B2]1). From
the above observation, this instance is indistinguishable to a random

(m,0,n1,n2)-GDLR instance.

Suppose A outputs ([a1]1, [a2]2) not all zero such that

[B1]2[a1]1+ [B2]1[a2]2 = [0]t . Let ([a1]1,[a2]2) = (rT
1
[a1]1,rT

2
[a2]2).

By construction,wehave [b1]2[a1]1+[b2]1[a2]2= [0]t . Furthermore,

since ([a1]1,[a2]2) is not all zero, the probability that ([a1]1,[a2]2) is
all zero is at most 1/q, which is negligible. Therefore B successfully

solves the (m,0,1,1)-GDLR instance.

However, note that for a random (m,0,1,1)-GDLR instance, the

matrix

(
b1 b2

)
has full rank (=2) with overwhelming probability.

Therefore the only solution to [b1]2[a1]1 + [b2]1[a2]2 = [0]t is

([0]1, [0]2), which is not a valid solution to the (m, 0, 1, 1)-GDLR
instance. We can thus conclude that the adversary B, and hence

A, cannot exist. □

B PROOFS FOROUTER PROTOCOL
For a clearer presentation of the security proofs, we recall the

message flow of the above protocol:

(1) P→V:

(
[âL]t ,[âR]t ,[â1]t ,[â2]t ,[ât]t ,
[ŝ0]t ,[ŝ1]t ,[ŝ2]t ,[ŝ

(mix)
t]t ,[ŝ

(t)
t]t

)
(2) P←V: θ

(3) P→V:

({
[p̂0,i]1

}
2

i=0,
{
[p̂1,i]t

}
2

i=0,
{
[p̂2,i]t

}
2

i=0,
{
[p̂t ,i]t

}
4

i=0

)
(4) P←V: (x0,x1,x2,xt)
(5) P→V:©­­­­«

e0,f0,˜l0,r̃0,p̃0,
e1,f1,[˜l1]1,r̃1,[p̃1]1,
e2,f2,˜l2,[r̃2]2,[p̃2]2,

e
(mix)
t ,e

(t)
t ,ft ,

˜lt ,0,[r̃t ,t ,1]t ,[˜lt ,1]1,[r̃t ,2]2,[p̃t]t

ª®®®®¬
B.1 Proof of Theorem 3.1

Proof. Perfect completeness is straightforward. To prove compu-

tational special honest-verifier zero-knowledge, we construct a sim-

ulatorS which, on input (C,y0,[y1]1,[y2]2,[yt]t) does the following:

• Let θ,x0,x1,x2,xt be given by the adversary.
• Compute©­«

α0,α1,α2,αt ,
βL,βR ,β1,β2,

[βt]t ,ζ0,[ζ1]1,[ζ2]2,[ζt]t

ª®¬
←CompressStatement(C,y0,[y1]1,[y2]2,[yt]t ;θ).

• Sample the commitments ([âL]t ,[âR]t ,[â1]t ,[â2]t ,[ât]t) by
committing to random elements of the appropriate length

and type using uniform randomness.

15

https://doi.org/10.1007/978-3-662-48000-7_15
https://doi.org/10.1007/s00145-002-0143-7
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1109/SP.2018.00060

• Sample the commitments({
[p̂0,i]1

}
2

i=0,
{
[p̂1,i]t

}
2

i=0,
{
[p̂2,i]t

}
2

i=0,
{
[p̂t ,i]t

}
4

i=0

)
by committing to random elements of the appropriate length

and type using uniform randomness. Specifically, sample

uniformly random({
p0,i ,z0,i

}
2

i=0,
{
[p1,i]1,z1,i

}
2

i=0,{
[p2,i]2,z2,i

}
2

i=0,
{
[pt ,i]t ,zt ,i

}
4

i=0

)
and compute

– [p̂0,i]1=Com
(0)
pp

0

(p0,i ;z0,i) for i ∈ {0,1,2}

– [p̂1,i]t =Com
(1)
pp

1

([p1,i]1;z1,i) for i ∈ {0,1,2}

– [p̂2,i]t =Com
(2)
pp

2

([p2,i]2;z2,i) for i ∈ {0,1,2}

– [p̂t ,i]t =Com
(t)
ppt ([pt ,i]t ;zt ,i) for i ∈ {0,1,...,4}

• Compute

(
p̃0,[p̃1]1,[p̃2]2,[p̃t]t ,f0,f1,f2,ft

)
as follows:

p̃0=
2∑
i=0

p0,i ·x
i
0
+ζ0 ·x

3

0

[p̃1]1=
2∑
i=0
[p1,i]1 ·x

i
1
+[ζ1]1 ·x

3

1

[p̃2]2=
2∑
i=0
[p2,i]2 ·x

i
2
+[ζ2]2 ·x

3

2

[p̃t]t =
4∑
i=0
[pt ,i]t ·x it +[ζt]t ·x

5

t

fi =
2∑
j=0

zi , j ·x
j
i , ∀i ∈ {0,1,2}

ft =
4∑
i=0

zt ,i ·x
i
t

• Sample e0,e1,e2,e
(mix)
t ,e

(t)
t ← $Zq .

• Compute [r̃t ,t ,0]t = [βt]t ·x4t .
• Sample

˜l0, r̃0, [˜l1]1, r̃1, ˜l2, [r̃2]2, ˜lt ,0, [r̃t ,t ,1]t , [˜lt ,1]1, [r̃t ,2]2
uniformly at random from the appropriate domain subject

to the following linear constraints:

p̃0=
〈
˜l0,r̃0

〉
[p̃1]1=

〈
[˜l1]1,r̃1

〉
[p̃2]2=

〈
˜l2,[r̃2]2

〉
[p̃t]t =

〈
˜lt ,0,

(
[r̃t ,t ,0]t
[r̃t ,t ,1]t

)〉
+
〈
[˜lt ,1]1,[r̃t ,2]2

〉

• Compute the following:

(B′L,0∥B
′
R,0)= (BL ∥BR ◦(1

2(α ◦−1
0
)T))

[p0]t = [B′L,0]t
˜l0+[B′R,0]t r̃0

(B′R,1,B
′
1,1)= (BR ◦(1

2(α ◦−1
1
)T),B1)

[p1]t = [B′R,1]t r̃1+[B
′
1,1]2[

˜l1]1

(B′L,2,B
′
2,2)= (BL◦(1

2(α ◦−1
2
)T),B2)

[p2]t = [B′L,2]t
˜l2+[B′2,2]1[r̃2]2

(B′L,t ,B
′
1,t ,B

′
2,t)= (BL,B1◦(1

2(α ◦−1t)T),B2)

[pt]t = [B′L,t]t
˜lt ,0+[B′1,t]2[˜lt ,1]1+[B

′
2,t]1[r̃t ,2]2

• Compute

(
[ŝ0]t ,[ŝ1]t ,[ŝ2]t ,[ŝ

(mix)
t]t ,[ŝ

(t)
t]t

)
as:

[ŝ0]t =[p0]t +[b(mix)]t ·e0−
(
[âL]t +[B′L,0]t βL

)
·x0

−

(
[âR]t +[B′R,0]t βR

)
·x2
0

[ŝ1]t =[p1]t +[b(mix)]t ·e1−[â1]t ·x1

−([âR]t +[B′R,1]t β1)·x
2

1

[ŝ2]t =[p2]t +[b(mix)]t ·e2−[â2]t ·x2

−([âL]t +[B′L,2]t β2)·x
2

2

[ŝ(mix)
t]t = [pt]t +[b(mix)]t ·e

(mix)
t −[âL]t ·xt

−[â1]t ·x2t −[â2]t ·x
3

t

[ŝ(t)t]t =
[

0

r̃t ,t ,1

]
t
+

[
b
bt

]
t
e
(t)
t −[ât]t ·x

4

t

Note that

(
[ŝ0]t ,[ŝ1]t ,[ŝ2]t ,[ŝ

(mix)
t]t ,[ŝ

(t)
t]t

)
are appropriately

structured as commitments.

• Output the simulated transcript.

Weanalyze the distributionof the transcripts output by the simulator.

First note that the commitments ([âL]t ,[âR]t ,[â1]t ,[â2]t ,[ât]t) and({
[p̂0,i]1

}
2

i=0,
{
[p̂1,i]t

}
2

i=0,
{
[p̂2,i]t

}
2

i=0,
{
[p̂t ,i]t

}
4

i=0

)
are computationally indistinguishable from their real counter-

part since Com(0), Com(1), Com(2), Com(t), and Com(mix)
are

computationally hiding. The remaining parts of the simulated

transcripts distribute identically as their counterparts in real

accepting transcripts. □

B.2 Proof of Theorem 3.2
Proof. We would like to show that for any adversaryA produc-

ing transcripts with an honest verifier, there exists an extractor E

which produces 1) transcripts which are indistinguishable to those

produced by A, and 2) witnesses if the transcripts are accepting.

Part 1 is trivial since E is given access to an oracle which outputs

transcripts produced by A. We focus on part 2 and construct an

extractor E as follows.

E runsA on sufficiently many uniformly chosen θ (sufficient in

the context of Section 2.6.3), and 6 uniformly chosen (x0,x1,x2,xt).
This produces polynomially many transcripts. By assumption, we

have that with non-negligible probability, all polynomially many

transcripts are accepting. Furthermore, for any value of θ , with

16

overwhelming probability, we have that all 6 values ofxi are distinct,
for all i ∈ {0,1,2,t }. Suppose that both events happen.
In the following, we first analyze the 6 transcripts for one fixed

θ . Let ©­«
α0,α1,α2,αt ,
βL,βR ,β1,β2,

[βt]t ,ζ0,[ζ1]1,[ζ2]2,[ζt]t

ª®¬
←CompressStatement(C,y0,[y1]1,[y2]2,[yt]t ;θ).

Since all 6 transcripts are accepting, we have

[B′L,0]t
˜l0+[B′R,0]t r̃0=−[b

(mix)]t ·e0+[ŝ0]t

+
(
[âL]t +[B′L,0]t βL

)
·x0

+
(
[âR]t +[B′R,0]t βR

)
·x2
0

[B′R,1]t r̃1+[B
′
1,1]2[

˜l1]1=−[b(mix)]t ·e1+[ŝ1]t

+[â1]t ·x1+([âR]t +[B′R,1]t β1)·x
2

1

[B′L,2]t
˜l2+[B′2,2]1[r̃2]2=−[b

(mix)]t ·e2+[ŝ2]t

+[â2]t ·x2+([âL]t +[B′L,2]t β2)·x
2

2

[B′L,t]t
˜lt ,0+[B′1,t]2[˜lt ,1]1+[B

′
2,t]1[r̃t ,2]2

=−[b(mix)]t ·e
(mix)
t +[ŝ(mix)

t]t

+[âL]t ·xt +[â1]t ·x2t +[â2]t ·x
3

t[
0

r̃t ,t ,1

]
t
=−

[
b
bt

]
t
e
(t)
t +[ŝ

(t)
t]t +[ât]t ·x

4

t

Com(0)pp
0

(p̃0;f0)=
2∑
i=0
[p̂0,i]1 ·x

i
0
+Com(0)pp

0

(ζ0;0)·x
3

0

Com(1)pp
1

([p̃1]1;f1)=
2∑
i=0
[p̂1,i]t ·x

i
1
+Com(1)pp

1

([ζ1]1;0)·x
3

1

Com(2)pp
2

([p̃2]2;f2)=
2∑
i=0
[p̂2,i]t ·x

i
2
+Com(2)pp

2

([ζ2]2;0)·x
3

2

Com(t)ppt ([p̃t]t ;ft)=
4∑
i=0
[p̂t ,i]t ·x it +Com

(t)
ppt ([ζt]t ;0)·x

5

t

for all 6 distinct values of x0, x1, x2, and xt respectively. Through
Gaussian elimination, we can obtain the following:

• openings of [âL]t , [âR]t , [ât]t , and [ŝ0]t with respect to

Com(mix)

BL ∥BR

• openings of [âR]t , [â1]t , and [ŝ1]t with respect toCom
(mix)

(BR ,B1)

• openings of [âL]t , [â2]t , and [ŝ2]t with respect toCom
(mix)

(BL ,B2)

• openings of [âL]t , [â1]t , [â2]t , and [ŝ
(mix)
t]t with respect to

Com(mix)

(BL ,B1,B2)

• openings of [ât]t and [ŝ
(t)
t]t with respect toCom

(t)
bt

• openings of [p̂0,i]1 with respect toCom
(0)
pp

0

for i ∈ {0,1,2}

• openings of [p̂1,i]t with respect toCom
(0)
pp

1

for i ∈ {0,1,2}

• openings of [p̂2,i]t with respect toCom
(0)
pp

2

for i ∈ {0,1,2}

• openings of [p̂t ,i]t with respect toCom
(0)
ppt for i ∈ {0,1,...,4}

We examine the openings of [âL]t with respect to Com(mix)

BL ∥BR
,

Com(mix)

(BL ,B2)
, and Com(mix)

(BL ,B1,B2)
respectively. Note that only BL is

common in all three bases. Under the GDLR assumption, the only

non-zero component in the openings of [âL]t corresponds to the
basis BL . We therefore obtain an opening of [âL]t with respect to

Com(mix)

BL
. Similarly, we can obtain the following:

• an opening of [âR]t with respect toCom
(mix)

BR
• an opening of [â1]t with respect toCom

(mix)

B1

• an opening of [â2]t with respect toCom
(mix)

B2

Summarizing the above, we obtain the following

• [âL]t =Com
(mix)

BL
(a†L ;r

†

L)

• [âR]t =Com
(mix)

BR
(a†R ;r

†

R)

• [â1]t =Com
(mix)

B1

([a†
1
]1;r
†
1
)

• [â2]t =Com
(mix)

B2

([a†
2
]2;r
†
2
)

• [ât]t =Com
(t)
bt

(
[a†t]t ;r

†
t

)
• [ŝ0]t =Com

(mix)

BL ∥BR

((
s†L,0
s†R,0

)
;s†
0

)
• [ŝ1]t =Com

(mix)

BR ,B1

(s†R,1,[s
†
1,1]1;s

†
1
)

• [ŝ2]t =Com
(mix)

BL ,B2

(s†L,2,[s
†
2,2]2;s

†
2
)

• [ŝ(mix)
t]t =Com

(mix)

BL ,B1,B2

(
s†L,t ,[s

†
1,t]1,[s

†
2,t]2;s

†(mix)
t

)
• [ŝ(t)t]t =Com

(t)
bt

(
[s†t]t ;s

†(t)
t

)
• [p̂0,i]1=Com

(0)
pp

0

(p†
0,i ;z

†
0,i) for i ∈ {0,1,2}

• [p̂1,i]t =Com
(1)
pp

1

([p†
1,i]1;z

†
1,i) for i ∈ {0,1,2}

• [p̂2,i]t =Com
(2)
pp

2

([p†
2,i]2;z

†
2,i) for i ∈ {0,1,2}

• [p̂t ,i]t =Com
(t)
ppt ([p

†
t ,i]t ;z

†
t ,i) for i ∈ {0,1,...,4}

where the values with superscript † are known by our extractor.

Note that the openings of(
[âL]t ,[âR]t ,[â1]t ,[â2]t ,[ât]t ,
[ŝ0]t ,[ŝ1]t ,[ŝ2]t ,[ŝ

(mix)
t]t ,[ŝ

(t)
t]t

)
for any (θ,x0,x1,x2,xt) should be identical, since otherwise one

could break the binding properties of the commitments. Similarly,

for each θ , the openings of({
[p̂0,i]1

}
2

i=0,
{
[p̂1,i]t

}
2

i=0,
{
[p̂2,i]t

}
2

i=0,
{
[p̂t ,i]t

}
4

i=0

)
(dependent on θ) should be identical for all values of (x0,x1,x2,xt).

In what follows, we argue that wit† := (a†L,a
†

R ,[a
†
1
]1,[a

†
2
]2,[a

†
t]t)

is a valid witness to the system of linear equations specified

by

©­«
α0,α1,α2,αt ,
βL,βR ,β1,β2,

[βt]t ,ζ0,[ζ1]1,[ζ2]2,[ζt]t

ª®¬ for all values of θ . Suppose that is

the case, then we can extract a witness (x0, [x1]1, [x2]2, [xt]t) of
(C,y0,[y1]1,[y2]2,[yt]t) according to the discussion in Section 2.6.3.

We now put back the above expressions of({
[p̂0,i]1

}
2

i=0,
{
[p̂1,i]t

}
2

i=0,
{
[p̂2,i]t

}
2

i=0,
{
[p̂t ,i]t

}
4

i=0

)
17

to the verification equations

[B′L,0]t
˜l0+[B′R,0]t r̃0=−[b

(mix)]t ·e0+[ŝ0]t

+
(
[âL]t +[B′L,0]t βL

)
·x0

+
(
[âR]t +[B′R,0]t βR

)
·x2
0

[B′R,1]t r̃1+[B
′
1,1]2[

˜l1]1=−[b(mix)]t ·e1+[ŝ1]t

+[â1]t ·x1+([âR]t +[B′R,1]t β1)·x
2

1

[B′L,2]t
˜l2+[B′2,2]1[r̃2]2=−[b

(mix)]t ·e2+[ŝ2]t

+[â2]t ·x2+([âL]t +[B′L,2]t β2)·x
2

2

[B′L,t]t
˜lt ,0+[B′1,t]2[˜lt ,1]1+[B

′
2,t]1[r̃t ,2]2

=−[b(mix)]t ·e
(mix)
t +[ŝ(mix)

t]t

+[âL]t ·xt +[â1]t ·x2t +[â2]t ·x
3

t[
0

r̃t ,t ,1

]
t
=−

[
b
bt

]
t
e
(t)
t +[ŝ

(t)
t]t +[ât]t ·x

4

t

We examine the first verification equation. By rearranging the terms,

we obtain a discrete logarithm representation of the identity element

with basis [b∥BL ∥BR]. By the GDLR assumption, this representation

must be trivial (all zero). Applying the same argument to the other

verification equations, we conclude that the following relations

hold for all 5 values of (x0,x1,x2,xt):

˜l0= (a
†

L+βL)·x0+s
†

L,0

r̃0= (α0◦a
†

R+βR)·x
2

0
+α0◦s

†

R,0

[˜l1]1= [a
†
1
]1 ·x1+[s

†
1,1]1

r̃1= (α1◦a
†

R+β1)·x
2

1
+α1◦s

†

R,1

˜l2= (α2◦a
†

L+β2)·x
2

2
+α2◦s

†

L,2

[r̃2]2= [a
†
2
]2 ·x2+[s

†
2,2]2

˜lt ,0=a
†

L ·xt +s
†

L,t

[r̃t ,t ,1]t = [a
†
t]t ·x

4

t +[s
†
t]t

[˜lt ,1]1=αt ◦[a
†
1
]1 ·x

2

t +αt ◦[s
†
1,t]1

[r̃t ,2]2= [a
†
2
]2 ·x

3

t +[s
†
2,t]2

Note that the left-hand-side of the above system depend on the

value of (x0,x1,x2,xt). For example, for the 5 distinct values of x0,

we have 5 (possibly) distinct values of
˜l0.

Similarly, we put back the expressions of

({
[p̂0,i]1

}
2

i=0,
{
[p̂1,i]t

}
2

i=0,
{
[p̂2,i]t

}
2

i=0,
{
[p̂t ,i]t

}
4

i=0

)

to the verification equations

Com(0)pp
0

(p̃0;f0)=
2∑
i=0
[p̂0,i]1 ·x

i
0
+Com(0)pp

0

(ζ0;0)·x
3

0

Com(1)pp
1

([p̃1]1;f1)=
2∑
i=0
[p̂1,i]t ·x

i
1
+Com(1)pp

1

([ζ1]1;0)·x
3

1

Com(2)pp
2

([p̃2]2;f2)=
2∑
i=0
[p̂2,i]t ·x

i
2
+Com(2)pp

2

([ζ2]2;0)·x
3

2

Com(t)ppt ([p̃t]t ;ft)=
4∑
i=0
[p̂t ,i]t ·x it +Com

(t)
ppt ([ζt]t ;0)·x

5

t

and can conclude that

p̃0=
2∑
i=0

p†
0,ix

i
0
+ζ0x

3

0
[p̃1]1=

2∑
i=0

p†
1,ix

i
1
+[ζ1]1x

3

1

[p̃2]2=
2∑
i=0

p†
2,ix

i
2
+[ζ2]2x

3

2
[p̃t]t =

5∑
i=0

p†t ,ix
i
t +[ζt]tx

5

t

Combining the above, we obtain the following system of relations〈
(a†L+βL)·x0+s

†

L,0,(α0◦a
†

R+βR)·x
2

0
+α0◦s

†

R,0

〉
=

2∑
i=0

p†
0,ix

i
0
+ζ0x

3

0〈
[a†
1
]1 ·x1+[s

†
1,1]1,(α1◦a

†

R+β1)·x
2

1
+α1◦s

†

R,1

〉
=

2∑
i=0

p†
1,ix

i
1
+[ζ1]1x

3

1〈
(α2◦a

†

L+β2)·x
2

2
+α2◦s

†

L,2,[a
†
2
]2 ·x2+[s

†
2,2]2

〉
=

2∑
i=0

p†
2,ix

i
2
+[ζ2]2x

3

2〈
a†L ·xt +s

†

L,t ,

[
βt
a†t

]
t
·x4t +

[
0
s†t

]
t

〉
+
〈
αt ◦[a

†
1
]1 ·x

2

t +αt ◦[s
†
1,t]1,[a

†
2
]2 ·x

3

t +[s
†
2,t]2

〉
=

5∑
i=0

p†t ,ix
i
t +[ζt]tx

5

t

Note that each of the above relations can be interpreted as a degree-5

polynomial (in some xi) which has 6 distinct roots. Each polynomial

thereforemust be a zero polynomial.We can therefore conclude that〈
a†L+βL,α0◦a

†

R+βR
〉
=ζ0〈

[a†
1
]1,α1◦a

†

R+β1
〉
= [ζ1]1〈

α2◦a
†

L+β2,[a
†
2
]2

〉
= [ζ2]2〈

a†L,
[
βt
a†t

]
t

〉
+
〈
αt ◦[a

†
1
]1,[a

†
2
]2

〉
= [ζt]t

exactly as we desired. □

18

C PROOFS FOR INNER PROTOCOLS
C.1 Proof of Theorem 4.1

Proof. Let n=2i be the length of the vectors. We show this via

an induction over i . For the base case (n = 1), the prover simply

sends a0 and a1 to the verifier. This is trivially witness-extended

emulatable since (a0, a1) is given in clear. We now describe an

algorithm that given black-box access to the prover extracts a

valid witness for a given statement ([B0∥B1∥b]t ,[p]t), with all but
negligible probability.

The algorithm obtains ([l]t ,[r]t) by the prover and rewinds it with
four uniformly sampled (x1,x2,xt ,x4) ← $Z4q . By induction hypothe-

sis, there exists an efficient extractor that outputs (a(i)
0
,a(i)
1
) such that

[p̃]t =[l]t ·x2i +[p]t +[r]t ·x
−2
i

=[B̃0]t a
(i)
0
+[B̃1]t a

(i)
1
+[b]t

〈
a(i)
0
,a(i)
1

〉
=
(
[B00]t ·x

−1
i +[B01]t ·xi

)
·a(i)
0

+
(
[B10]t ·xi+[B11]t ·x

−1
i

)
·a(i)
1
+[b]t

〈
a(i)
0
,a(i)
1

〉
for all i ∈ {1,2,3,4}. Define (v1,v2,vt) such that

3∑
i=1

vix
2

i =1

3∑
i=1

vi =0
3∑
i=1

vix
−2
i =0

and use them as the coefficients to compute, via a linear

combination, (a(l)
0
,a(l)
1
,c(l)) such that

[l]t = [B0]t ·a
(l)
0
+[B1]t ·a

(l)
1
+[b]t ·c(l).

Use the same procedure to compute

[r]t =[B0]t ·a
(r)
0
+[B1]t ·a

(r)
1
+[b]t ·c(r) and

[p]t =[B0]t ·a
(p)
0
+[B1]t ·a

(p)
1
+[b]t ·c(p).

Substituting with the equation above, we obtain for all i ∈ {1,2,3,4}
the following relation

[l]t ·x2i +[p]t +[r]t ·x
−2
i

=[B0]t ·(a
(l)
0
x2i +a

(r)
0
x−2i +a

(p)
0
)

+[B1]t ·(a
(l)
1
x2i +a

(r)
1
x−2i +a

(p)
1
)

+[b]t ·(c(l)x2i +c
(r)x−2i +c

(p))

=
(
[B00]t ·x

−1
i +[B01]t ·xi

)
·a(i)
0

+
(
[B10]t ·xi+[B11]t ·x

−1
i

)
·a(i)
1

+[b]t
〈
a(i)
0
,a(i)
1

〉
.

Then the following equations

a(i)
0
·x−1i =a

(l)
00
x2i +a

(r)
00
x−2i +a

(p)
00

a(i)
0
·xi =a

(l)
01
x2i +a

(r)
01
x−2i +a

(p)
01

a(i)
1
·xi =a

(l)
10
x2i +a

(r)
10
x−2i +a

(p)
10

a(i)
1
·x−1i =a

(l)
11
x2i +a

(r)
11
x−2i +a

(p)
11〈

a(i)
0
,a(i)
1

〉
=c(l)x2i +c

(r)x−2i +c
(p)

must hold unless a non-trivial discrete logarithm relation among the

basis [B0]t ,[B1]t ,[b]t is revealed. Therefore, with all but negligible
probability, we have that

a(l)
00
x3i +(a

(p)
00
−a(l)

01
)xi+(a

(r)
00
−a(p)

01
)x−1i −a

(r)
01
x−3i =0 (39)

and

a(l)
11
x3i +(a

(p)
11
−a(l)

10
)xi+(a

(r)
11
−a(p)

10
)x−1i −a

(r)
10
x−3i =0 (40)

Since (x1,x2,xt ,x4) are distinct with all but negligible probability

Equation 39 and 40 are satisfied only if all the coefficients are 0. This

allows us to simplify the above system to

a(i)
0
=a(p)

00
·xi+a

(p)
01
·x−1i

a(i)
1
=a(p)

11
·xi+a

(p)
10
·x−1i〈

a(i)
0
,a(i)
1

〉
=c(l)x2i +c

(r)x−2i +c
(p).

Substituting we have

c(l)x2i +c
(r)x−2i +c

(p)=
〈
a(p)
00
,a(p)
11

〉
x2i +

〈
a(p)
0
,a(p)
1

〉
+
〈
a(p)
01
,a(p)
10

〉
x−2i

which implies, since (x1,x2,xt ,x4) are distinct with all but negligible
probability, that

c(p)=
〈
a(p)
0
,a(p)
1

〉
as desired. Note that the extractor runs in time 4

log(n) = n2 and it
is therefore efficient. □

C.2 Proof of Theorem 4.2
Proof. Let n=2i be the length of the vectors. We show this via

an induction over i . For the base case (n = 1), the prover simply

sends a0 and [a1]1 to the verifier. This is trivially witness-extended
emulatable since ([a1]1,a0) is given in clear. We now describe an

algorithm that given black-box access to the prover extracts a valid

witness for a given statement ([B1∥b]2, [B0]t , [p]t), with all but

negligible probability.

The algorithm obtains ([l]t , [r]t) by the prover and rewinds it

with four uniformly sampled (x1,x2,xt ,x4) ← $Z4q . By induction hy-

pothesis, there exists an efficient extractor that outputs ([a(i)
1
]1,a
(i)
0
)

such that

[p̃]t =[l]t ·x2i +[p]t +[r]t ·x
−2
i

=[B̃0]2[a
(i)
1
]1+[B̃1]t a

(i)
0
+[b]2

〈
[a(i)
1
]1,a
(i)
0

〉
=
(
[B10]2 ·x

−1
i +[B11]2 ·xi

)
·[a(i)

1
]1

+
(
[B00]t ·xi+[B01]t ·x

−1
i

)
·a(i)
0
+[b]2

〈
[a(i)
1
]1,a
(i)
0

〉
for all i ∈ {1,2,3,4}. Define (v1,v2,vt) such that

3∑
i=1

vix
2

i =1

3∑
i=1

vi =0
3∑
i=1

vix
−2
i =0

and use them as the coefficients to compute, via a linear

combination, [a(l)
1
]1,a
(l)
0
,[c(l)]1) such that

[l]t = [B1]2 ·[a
(l)
1
]1+[B0]t ·a

(l)
0
+[b]2 ·[c(l)]1.

Use the same procedure to compute

[r]t =[B1]2 ·[a
(r)
1
]1+[B0]t ·a

(r)
0
+[b]2 ·[c(r)]1 and

[p]t =[B1]2 ·[a
(p)
1
]1+[B0]t ·a

(p)
0
+[b]2 ·[c(p)]1.

19

Substituting with the equation above, we obtain for all i ∈ {1,2,3,4}
the following relation

[l]t ·x2i +[p]t +[r]t ·x
−2
i

=[B1]2 ·([a
(l)
1
]1x

2

i +[a
(r)
1
]1x
−2
i +[a

(p)
1
]1)

+[B0]t ·(a
(l)
0
x2i +a

(r)
0
x−2i +a

(p)
0
)

+[b]2 ·([c(l)]1x2i +[c
(r)]1x

−2
i +[c

(p)]1)

=
(
[B10]2 ·x

−1
i +[B11]2 ·xi

)
·[a(i)

1
]1

+
(
[B00]t ·xi+[B01]t ·x

−1
i

)
·a(i)
0
+[b]2

〈
[a(i)
1
]1,a
(i)
0

〉
.

Then the following equations

a(i)
0
·xi =a

(l)
00
x2i +a

(r)
00
x−2i +a

(p)
00

a(i)
0
·x−1i =a

(l)
01
x2i +a

(r)
01
x−2i +a

(p)
01

[a(i)
1
]1 ·x

−1
i = [a

(l)
10
]1x

2

i +[a
(r)
10
]1x
−2
i +[a

(p)
10
]1

[a(i)
1
]1 ·xi = [a

(l)
11
]1x

2

i +[a
(r)
11
]1x
−2
i +[a

(p)
11
]1〈

[a(i)
1
]1,a
(i)
0

〉
= [c(l)]1x

2

i +[c
(r)]1x

−2
i +[c

(p)]1

must hold unless a non-trivial discrete logarithm relation among

the basis [B1∥b]2,[B0]t is revealed. Therefore, with all but negligible
probability, we have that

[a(l)
10
]1x

3

i +([a
(p)
10
]1−[a

(l)
11
]1)xi

+([a(r)
10
]1−[a

(p)
11
]1)x
−1
i −[a

(r)
11
]1x
−3
i =0 (41)

and

a(l)
01
x3i +(a

(p)
01
−a(l)

00
)xi+(a

(r)
01
−a(p)

00
)x−1i −a

(r)
00
x−3i =0 (42)

Since (x1,x2,xt ,x4) are distinct with all but negligible probability

Equation 41 and 42 are satisfied only if all the coefficients are 0. This

allows us to simplify the above system to

a(i)
0
=a(p)

01
·xi+a

(p)
00
·x−1i

[a(i)
1
]1= [a

(p)
10
]1 ·xi+[a

(p)
11
]1 ·x

−1
i〈

[a(i)
1
]1,a
(i)
0

〉
= [c(l)]1x

2

i +[c
(r)]1x

−2
i +[c

(p)]1.

Substituting we have

[c(l)]1x
2

i +[c
(r)]1x

−2
i +[c

(p)]1

=
〈
[a(p)
10
]1,a
(p)
01

〉
x2i +

〈
[a(p)
0
]1,a
(p)
1

〉
+
〈
[a(p)
11
]1,a
(p)
00

〉
x−2i

which implies, since (x1,x2,xt ,x4) are distinct with all but negligible
probability, that

[c(p)]1=
〈
[a(p)
1
]1,a
(p)
0

〉
as desired. Note that the extractor runs in time 4

log(n) = n2 and it
is therefore efficient. □

C.3 Proof of Theorem 4.3
Proof. Let n=2i be the length of the vectors. We show this via

an induction over i . For the base case (n=1), the prover simply sends

([a1]1, [a2]2,a0) to the verifier. This is trivially witness-extended

emulatable since the witness is given in clear. We now describe an

algorithm that given black-box access to the prover extracts a valid

witness for a given statement ([B1]2, [B2]1, [B0]t , [p]t , [at]t , [c]t),
with all but negligible probability.

The algorithm obtains ([l]t ,[r]t ,[cL]t ,[cR]t) by the prover and

rewinds it with four uniformly sampled (x1,x2,xt ,x4) ← $Z4q . By

induction hypothesis, there exists an efficient extractor that outputs

([a(i)
1
]1,[a

(i)
2
]2,a
(i)
0
) such that

[p̃]t =[l]t ·x2i +[p]t +[r]t ·x
−2
i

=[B̃0]2[a
(i)
1
]1+[B̃1]1[a

(i)
2
]2+[B̃2]t a

(i)
0

=
(
[B00]2 ·x

−1
i +[B01]2 ·xi

)
·[a(i)

1
]1

+
(
[B10]1 ·xi+[B11]1 ·x

−1
i

)
·[a(i)

2
]2

+
(
[B20]1 ·x

−1
i +[B21]1 ·xi

)
·a(i)
0

and, for all i ∈ {1,2,3,4},

[c̃]t = [cL]t ·x
2

i +[c]t +[cR]t ·x
−2
i

=
〈
[a(i)
0
]1,[a

(i)
1
]2

〉
+
〈
a(i)
2
,[ãt]t

〉
where [ãt]t = [at0]t ·x−1+[at1]t ·xi . Define (v1,v2,vt) such that

3∑
i=1

vix
2

i =1

3∑
i=1

vi =0
3∑
i=1

vix
−2
i =0

and use them as the coefficients to compute, via a linear combination,

([a(l)
1
]1,[a

(l)
2
]2,a
(l)
0
) such that

[l]t = [B1]2 ·[a
(l)
1
]1+[B2]1 ·[a

(l)
2
]2+[B0]t ·a

(l)
0
.

Use the same algorithm as above to compute ([a(r)
1
]1,[a

(r)
2
]2,a
(r)
0
)

and ([a(p)
1
]1, [a

(p)
2
]2, a

(p)
0
) that satisfy the analogous constraint.

Substituting with the equation above, we obtain for all i ∈ {1,2,3,4}
the following relation

[l]t ·x2i +[p]t +[r]t ·x
−2
i

=[B1]2 ·([a
(l)
1
]1x

2

i +[a
(r)
1
]1x
−2
i +[a

(p)
1
]1)

+[B2]1 ·([a
(l)
2
]2x

2

i +[a
(r)
2
]2x
−2
i +[a

(p)
2
]2)

+[B0]t ·(a
(l)
0
x2i +a

(r)
0
x−2i +a

(p)
0
)

=
(
[B00]2 ·x

−1
i +[B01]2 ·xi

)
·[a(i)

1
]1

+
(
[B10]1 ·xi+[B11]1 ·x

−1
i

)
·[a(i)

2
]2

+
(
[B20]1 ·x

−1
i +[B21]1 ·xi

)
·a(i)
0
.

Then the following equations

[a(i)
1
]1 ·x

−1
i = [a

(l)
10
]1x

2

i +[a
(r)
10
]1x
−2
i +[a

(p)
10
]1

[a(i)
1
]1 ·xi = [a

(l)
11
]1x

2

i +[a
(r)
11
]1x
−2
i +[a

(p)
11
]1

[a(i)
2
]2 ·xi = [a

(l)
20
]2x

2

i +[a
(r)
20
]2x
−2
i +[a

(p)
20
]2

[a(i)
2
]2 ·x

−1
i = [a

(l)
21
]2x

2

i +[a
(r)
21
]2x
−2
i +[a

(p)
21
]2

a(i)
0
·x−1i =a

(l)
00
x2i +a

(r)
00
x−2i +a

(p)
00

a(i)
0
·xi =a

(l)
01
x2i +a

(r)
01
x−2i +a

(p)
01

must hold unless a non-trivial discrete logarithm relation among the

basis [B1]2,[B2]1,[B0]t is revealed. Therefore, with all but negligible
probability, we have that

[a(l)
10
]1x

3

i +([a
(p)
10
]1−[a

(l)
11
]1)xi

+([a(r)
10
]1−[a

(p)
11
]1)x
−1
i −[a

(r)
11
]1x
−3
i =0 (43)

20

and

[a(l)
21
]2x

3

i +([a
(p)
21
]2−[a

(l)
20
]2)xi (44)

+([a(r)
21
]2−[a

(p)
20
]2)x
−1
i −[a

(r)
20
]2x
−3
i =0 (45)

and

a(l)
00
x3i +(a

(p)
00
−a(l)

01
)xi

+(a(r)
00
−a(p)

01
)x−1i −a

(r)
01
x−3i =0. (46)

Since (x1,x2,xt ,x4) are distinct with all but negligible probability

Equation 43, 45, and 46 are satisfied only if all the coefficients are

0. This allows us to simplify the above system to

[a(i)
1
]1= [a

(p)
10
]1 ·xi+[a

(p)
11
]1 ·x

−1
i

[a(i)
2
]2= [a

(p)
21
]2 ·xi+[a

(p)
20
]2 ·x

−1
i

a(i)
0
=a(p)

00
·xi+a

(p)
01
·x−1i .

Substituting we have

[c̃]t =[cL]t ·x
2

i +[c]t +[cR]t ·x
−2
i

=
〈
[a(i)
1
]1,[a

(i)
2
]2

〉
+
〈
a(i)
0
,[ãt]t

〉
=
〈
[a(p)
10
]1 ·xi+[a

(p)
11
]1 ·x

−1
i ,[a

(p)
21
]2 ·xi+[a

(p)
20
]2 ·x

−1
i

〉
+
〈
a(p)
00
·xi+a

(p)
01
·x−1i ,[at1]t ·xi+[at0]t ·x

−1
i

〉
=
(〈
[a(p)
10
]1,[a

(p)
21
]2

〉
+
〈
a(p)
00
,[at1]t

〉)
·x2i

+
〈
[a(p)
0
]1,[a

(p)
1
]2

〉
+
〈
a(p)
2
,[at]t

〉
+

(〈
[a(p)
11
]1,[a

(p)
20
]2

〉
+
〈
a(p)
01
,[at0]t

〉)
·x−2i

which implies, since (x1,x2,xt ,x4) are distinct with all but negligible
probability, that

[c]t =
〈
[a(p)
0
]1,[a

(p)
1
]2

〉
+
〈
a(p)
2
,[at]t

〉
as desired. Note that the extractor runs in time 4

log(n) = n2 and it
is therefore efficient. □

21

	Abstract
	1 Introduction
	1.1 NIZK for Bilinear Group Arithmetic
	1.2 Our Contributions
	1.3 Technical Overview
	1.4 Applications
	1.5 Related Work

	2 Preliminaries
	2.1 Additive Notation for Group Operations
	2.2 Hardness Assumptions
	2.3 Commitment Schemes
	2.4 Arguments of Knowledge
	2.5 Encoding Group Arithmetic Circuits
	2.6 Encoding Compression

	3 Argument for Group Arithmetic (Outer Protocol)
	3.1 Construction
	3.2 Security
	3.3 Achieving Logarithmic Communication

	4 Arguments for Generalized Inner Products (Inner Protocols)
	4.1 Protocol for Type Zq Inner Products
	4.2 Protocol for Type G1 and G2 Inner Products
	4.3 Protocol for Type Gt Inner Products

	5 Performance Evaluation
	5.1 Choice of Statements to be Proven
	5.2 Efficiency Comparison

	Acknowledgments
	References
	A Proofs for Hardness Assumption
	A.1 Proof of lemma:n0is0
	A.2 Proof of thm:gdlr

	B Proofs for Outer Protocol
	B.1 Proof of thm:outerzk
	B.2 Proof of thm:outersoundness

	C Proofs for Inner Protocols
	C.1 Proof of thm:inner1
	C.2 Proof of thm:inner2
	C.3 Proof of thm:inner3

