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Abstract
We improve the fundamental security threshold of eventual consensus Proof-of-Stake (PoS) blockchain

protocols under longest-chain rule, re�ecting for the �rst time the positive e�ect of rounds with concurrent honest
leaders. Current analyses of these protocols reduce consistency to the dynamics of an abstract, round-based block
creation process that is determined by three probabilities:

• pA, the probability that a round has at least one adversarial leader;
• ph, the probability that a round has a single honest leader; and
• pH, the probability that a round has multiple, but honest, leaders.

We present a consistency analysis that achieves the optimal threshold ph +pH > pA. This is a �rst in the literature
and can be applied to both the simple synchronous setting and the setting with bounded delays. Moreover,
we achieve the optimal consistency error e−Θ(k) where k is the con�rmation time. We also provide an e�cient
algorithm to explicitly calculate these error probabilities in the synchronous setting.

All existing consistency analyses either incur a penalty for rounds with concurrent honest leaders, or treat
them neutrally. Speci�cally, the consistency analyses in Ouroboros Praos (Eurocrypt 2018) and Genesis (CCS
2018) assume that the probability of a uniquely honest round exceeds that of the other two events combined (i.e.,
ph−pH > pA); the analyses in Sleepy Consensus (Asiacrypt 2017) and SnowWhite (Fin. Crypto 2019) assume that
a uniquely honest round is more likely than an adversarial round (i.e., ph > pA). In addition, previous analyses
completely break down when uniquely honest rounds become less frequent, i.e., ph < pA. These thresholds
determine the critical trade-o� between the honest majority, network delays, and consistency error.

Our new results can be directly applied to improve the consistency guarantees of the existing protocols. We
complement these results with a consistency analysis in the setting where uniquely honest slots are rare, even
letting ph = 0, under the added assumption that honest players adopt a consistent chain selection rule.

1 Introduction
Proof-of-Stake (PoS) blockchain protocols have emerged as a viable alternative to resource-intensive Proof-of-
Work (PoW) blockchain protocols such as Bitcoin and Ethereum. These PoS protocols are organized in rounds
(which we call slots in this paper); their most critical algorithmic component is a leader election procedure which
determines—for each slot—a subset of participants with the authority to add a block to the blockchain. Existing
security analyses of these protocols are logically divided into two components: the �rst reasons about the properties
of the leader election process, the second reasons about the combinatorial properties of the blockchains that can
be produced by an idealized leader schedule in the face of adaptive adversarial control of some participants. An
attractive side e�ect of this structure is that the combinatorial considerations can be treated independently of
other aspects of the protocol. A recent article of Blum et al. [3] gave an axiomatic treatment of this combinatorial
portion of the analysis which we extend in this paper.

These common combinatorial arguments can be formulated with very little information about the leader
election process. Speci�cally, current analyses focus on three parameters:
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• ph, the probability that a slot is uniquely honest, having a single honest leader;

• pH, the probability that a slot ismultiply honest, having multiple, but honest, leaders; and

• pA, the probability that a slot has at least one adversarial leader.

Our major contribution is a generic, rigorous guarantee of consistency under the most desirable assumption1
ph + pH > pA that achieves optimal consistency error exp(−Θ(k)) as a function of con�rmation time k. Our
analysis can be directly applied to existing protocols to improve their consistency guarantees.

To contrast this with existing literature, the analysis of Ouroboros Praos [5] and Ouroboros Genesis [1] require
the threshold assumption ph − pH > pA to achieve the optimal consistency error of e−Θ(k). Note how multiply
honest slots actually detract from security, appearing negatively in the basic security threshold. The consistency
analyses in SnowWhite [2] and Sleepy Consensus [10] assume an improved threshold ph > pA; however, they
only establish a consistency error bound of e−Θ(

√
k). Note here that multiply honest slots appear neutrally. All

existing analyses break down if ph < pA, i.e., when the uniquely honest slots are less probable than the adversarial
slots.

Multiply honest slots may arise by design, e.g., when each player checks privately whether he is a leader. They
may also occur naturally in the non-synchronous setting when the time between the broadcast of two blocks is
exceeded by network delay—in this case the party issuing the later block may not be aware of the earlier block
which can result the two blocks sharing the same chain history, a de facto incidence of multiple honest leaders.
The role of these slots is rather delicate: while it is good for the system to have many honest blocks, concurrent
blocks can help the adversary in creating two long, diverging blockchains that might jeopardize the consistency
property. Our new analysis shows that this second e�ect can be mitigated, achieving consistency error bound of
e−Θ(k) under the (tight) assumption ph + pH > pA.

Our results and contributions. As described above, we show for the �rst time that PoS blockchain protocols
using the longest-chain rule can achieve a consistency error of e−Θ(k) under the desirable condition ph + pH > pA.
This improves the security guarantee of all “longest chain rule” PoS protocols such as Praos [5], Genesis [1], and
Snow White [2] (we remark that other PoS protocols such as Algorand [9] operate in a di�erent setting where
explicit participation bounds are assumed and forks can be prevented). We discuss our results in more detail
before turning to the model and proofs.

Our analysis in the simple synchronous model achieves the same asymptotic error bound as in [4]—the tightest
result in the literature—under a much weaker assumption, namely ph + pH > pA. Thus PoS protocols can in fact
achieve consistency with ph < pA, a regime beyond reach of all previous analyses. When uniquely honest slots
are rare (i.e., when ph is very small), our bound has the desired dependence on ph. Moreover, when pH = 0 (i.e.,
all honest slots are in fact uniquely honest), we exactly recover the bound in [4]. We also give an algorithm to
explicitly compute the probability that a given slot encounters a consistency violation under the idealized leader
election mechanism. The time and space required by this algorithm is cubic in the length of the protocol execution.

Next, we consider a variant model where the honest players use a consistent tie-breaking rule when selecting
the longest chain. (I.e., when a �xed set of blockchains of equal length are presented to a collection of honest
players, they all select the same chain. In previous models, the adversary had the right to break such ties by
in�uencing network delivery.) Assuming ph + pH > pA, we prove that the consistency error bound in this model
is identical to the e−Θ(k) bound in [4] even when ph = 0. No existing analysis survives in this regime.

∆-synchronous setting. In the ∆-synchronous communication setting, all messages are delivered with at most
a ∆ delay. Our results mentioned above can be transferred to this setting using the ∆-synchronous to synchronous
reduction approach used in the Ouroboros Praos analysis [5]. Thus, we can achieve a consistency error probability
of e−Θ(k) in this setting as well. This analysis is presented in Section 8.

1Consistency is unachievable in the case ph + pH < pA. See [7] for a detailed discussion of the honest majority assumption.
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Atechnical overview. We initiallywork in the synchronous communicationmodel and extend the synchronous
combinatorial framework of [3] to accommodate multiply honest slots.

First, our analysis focuses on a combinatorial event called a “Catalan slot.”2 Catalan slots are honest slots c
with the property that any interval containing c possesses strictly more honest slots—with any number of honest
leaders—than adversarial ones. The analysis of [2] and [10] introduced this basic concept, though they counted
only uniquely honest slots. In comparison with their analysis, then, our treatment has two important advantages:
�rst of all, we let multiply honest slots count in the analysis and, additionally, we achieve strikingly stronger error
bounds: speci�cally, we achieve optimal settlement error of exp(−�(k)) rather than exp(−�(

√
k)).

A Catalan slot c acts as a barrier for the adversary in that if an honest blockchain from a slot ℎ < c is padded
with adversarial blocks and presented to an honest observer at slot c + 1, the observer will never adopt this
blockchain. As a result, the chains adopted by this honest observer must contain some block from slot c. Note that
this is true even if c is multiply honest. A critical observation is that a slot is Catalan if and only if all competitive
blockchains in future slots contain at least one block from this slot. Thus, if a Catalan slot c is uniquely honest,
all blockchains that are eligible to be adopted by future honest players must contain the (only) honest block
issued from slot c. We call this the “Unique Vertex Property” (UVP). Note how the UVP is reminiscent of the
“Common Pre�x Property” (CP) in the literature. Thus, together, the UVP and Catalan slots act as a conduit
between consistency violations and the underlying stochastic process.

Our major technical challenge is to bound the probability that Catalan slots are infrequent. Here we break
away entirely from the analysis of [2] and approach the question using the theory of generating functions and
stochastic dominance. We �nd an exact generating function for a related event and use this, by dominance, to
control the undesirable event that a long window of slots is devoid of Catalan slots. This yields asymptotically
optimal settlement bounds.

Finally, it follows from the discussion above that if two consecutive slots are Catalan then any subsequent
honest block must contain, in its pre�x, a block from each of these slots. In a setting where all honest players use
a consistent longest-chain selection rule, we show that both slots have UVP as well. Since Catalan slots can be
multiply honest, PoS protocols can achieve a consistency error bound of e−Θ(k) in this model even if ph = 0.

In a separate line of reasoning, in Section 6, we generalize the fork-theoretic framework of Blum et al. [3] for
the multi-leader setting. Here, we characterize the UVP in terms of the so-called “relative margin,” a combinatorial
property of a given slot. We describe an adversary who optimally attacks the UVP of all slots, simultaneously.
Next, we prove a recurrence relation for relative margin. Suppose each slot is independently and identically
chosen (by the leader election mechanism) to be either uniquely honest, multiply honest, or adversarial. The
recurrence relation mentioned above then leads to an algorithm to explicitly compute the probability that a given
slot encounters a consistency violation; see Section 6.6. In contrast, the Catalan slot-centric characterization of
the UVP gives us only an asymptotic bound on this probability. It can be concluded that the fork-framework, after
all, is expressive enough to capture consistency violations in the multi-leader setting.

Outline. We specify our model in Section 2 and focus on a speci�c consistency property called “k-settlement.”
This section also contains our main theorems; the proofs are deferred to Section 4. In Section 3, we describe
ampli�cations to the fork framework of [3] in order to explore the relationship between Catalan slots and the UVP.
In Section 4, we present two bounds on the stochastic events of interest, e.g., the rarity of a Catalan slot; these
bounds lead to short proofs of the main theorems. The proofs of these bounds are presented next in Section 5
which contains all of our probabilistic arguments.

Section 6 contains an alternative treatment of the UVP via fork-theoretic notions of [3]. Along the way, it
describes an optimal adversary who simultaneously attacks the consistency of all slots. It also describes an
algorithm to compute explicit values for the probability of consistency violations. The proofs of two important
theorems from this section are presented subsequently in Section 7.

Our treatment of the ∆-synchronous setting is presented in Section 8. In Section 9, we treat the traditional
Common Pre�x (CP) violations using our bounds on the UVP.

2The name is a nod to the Catalan number in combinatorics: The nth Catalan number Cn is the number of strings w ∈ {0, 1}2n so that
every pre�x x of w satis�es #0(x) ≥ #1(x).
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In Appendix A, we characterize common pre�x violations in the presence of multiply honest slots using
“balanced forks” from [3] (and, importantly, without using Catalan slots).

2 The model and our main theorems
We study the behavior of the elementary longest-chain rule algorithm, carried out by a collection of participants:

• In each round, each participant collects all valid blockchains from the network; if a participant is a leader in
the round, he adds a block to the longest chain and broadcasts the result.

Here, “valid” indicates that any block appearing in the chain was indeed issued by a leader from the associated
slot; in the PoS setting, this property is guaranteed with digital signatures.

We begin by studying this algorithm in the simple, synchronous model posited by Blum et. al [3]. The model
adopts a synchronous communication network in the presence of a rushing adversary: in particular,

A0. Any message broadcast by an honest participant at the beginning of a particular slot is received by the
adversary �rst, who may decide strategically and individually for each recipient in the network whether to
inject additional messages and in which order all messages are to be delivered prior to the conclusion of the
slot.

See the comments prior to Section 2.1 for further discussion of this network assumption. A variant of this
adversarial message-ordering is presented in Section 2.3. The ∆-synchronous communication model is handled in
Section 8.

Given this, it is easy to describe the behavior of the longest-chain rule when carried out by a group of honest
participants with the extra guarantee that exactly one is elected as leader in a slot: Assuming that the system is
initialized with a common “genesis block” corresponding to sl0, the players observe a common, linearly growing
blockchain:

0 1 2 …

Here node i represents the block broadcast by the leader of slot i and the arrows represent the direction of increasing
time.

The blockchain axioms: Informal discussion. The introduction of adversarial participants or multiple slot
leaders complicates the family of possible blockchains that could emerge from this process. To explore this in the
context of our protocols, we work with an abstract notion of a blockchain which ignores all internal structure. We
consider a �xed assignment of leaders to time slots, and assume that the blockchain uses a proof mechanism to
ensure that any block labeled with slot slt was indeed produced by a leader of slot slt; this is guaranteed in practice
by appropriate use of a secure digital signature scheme.

Speci�cally, we treat a blockchain as a sequence of abstract blocks, each labeled with a slot number, so that:

A1. The blockchain begins with a �xed “genesis” block, assigned to slot sl0.

A2. The (slot) labels of the blocks are in strictly increasing order.

It is further convenient to introduce the structure of a directed graph on our presentation, where each block is
treated as a vertex; in light of the �rst two axioms above, a blockchain is a path beginning with a special “genesis”
vertex, labeled 0, followed by vertices with strictly increasing labels that indicate which slot is associated with the
block.

0 2 4 5 7 9

The protocols of interest call for honest players to add a single block during any slot. In particular:
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A3. Let k ≥ 1 be an integer. If a slot slt was assigned to k honest players but no adversarial players, then k blocks
are created—during the entire protocol—each having the label slt.

Recall that blockchains are immutable in the sense that any block in the chain commits to the entire previous
history of the chain; this is achieved in practice by including with each block a collision-free hash of the previous
block. These properties imply that any chain that includes a block issued by an honest player must also include
that block’s associated pre�x in its entirety.

As we analyze the dynamics of blockchain algorithms, it is convenient to maintain an entire family of
blockchains at once. As a matter of bookkeeping, when two blockchains agree on a common pre�x, we can
glue together the associated paths to indicate this, as shown below.

0 2 4 5
7 9

8 9

When we glue together many chains to form such a diagram, we call it a “fork”—the precise de�nition appears
below. Observe that while these two blockchains agree through the vertex (block) labeled 5, they contain (distinct)
vertices labeled 9; this re�ects two distinct blocks associated with slot 9 which, in light of the axiom above, may be
produced by either an adversarial participant assigned to slot 9 or two honest participants, both assigned to slot 9.

Finally, as we assume that messages from honest players are delivered before the next slot begins, we note a
direct consequence of the longest chain rule:

A4. If two honestly generated blocks B1 and B2 are labeled with slots sl1 and sl2 for which sl1 < sl2, then the
length of the unique blockchain terminating at B1 is strictly less than the length of the unique blockchain
terminating at B2.

Recall that the honest participant(s) assigned to slot sl2 will be aware of the blockchain terminating at B1 that was
broadcast by an honest player in slot sl1 as a result of synchronicity; according to the longest-chain rule, B2 must
have been placed on a chain that was at least this long. In contrast, not all participants are necessarily aware of all
blocks generated by dishonest players, and indeed dishonest players may often want to delay the delivery of an
adversarial block to a participant or show one block to some participants and show a completely di�erent block to
others.

Characteristic strings, forks, and the formal axioms. Note that with the axioms we have discussed above,
whether or not a particular fork diagram (such as the one just above) corresponds to a valid execution of the
protocol depends on how the slots have been awarded to the parties by the leader election mechanism. We
introduce the notion of a “characteristic” string as a convenient means of representing information about slot
leaders in a given execution.

De�nition 1 (Characteristic string). Let sl1, … , sln be a sequence of slots. A characteristic string w is an element
of {h, H, A}n. The string w is consistent with a particular execution of a blockchain protocol on these slots if for each
t ∈ [n], (i) ifwt = A, the slot slt is assigned to at least one adversarial participant, (ii) ifwt = h, the slot slt is assigned
to a unique, honest participant, and (iii) if wt = H, the slot slt is assigned to at least one honest participant and no
adversarial participants.

Observe that when an execution corresponds to a characteristic stringw, it also corresponds to any string obtained
from w by replacing h symbols with H symbols.

For two strings x and w on the same alphabet, we write x ≺ w if and only if x is a strict pre�x of w. Similarly,
we write x ⪯ w if and only if either x = w or x ≺ w. The empty string " is a pre�x to any string. If wt ∈ {h, H}, we
say that “slt is honest” and otherwise, we say that “slt is adversarial.” With this discussion behind us, we set down
the formal object we use to re�ect the various blockchains adopted by honest players during the execution of a
blockchain protocol. This de�nition formalizes the blockchains axioms discussed above.
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Figure 1: A fork F for the characteristic string w = hAhAhHAAH; vertices appear with their labels and honest
vertices are highlighted with double borders. Note that the depths of the (honest) vertices associated with the
honest indices of w are strictly increasing. Note, also, that this fork has three disjoint paths of maximum depth. In
addition, two honest vertices have label 6 and two more have label 9, indicating the fact that two honest leaders
are associated with each of the (honest) slots 6 and 9. Honest vertices with the same label are concurrent and,
therefore, cannot extend each other. Note that the two honest vertices with label 6 extend di�erent vertices with
the same depth. This is allowed since any tie in the longest-chain rule is broken by the adversary.

De�nition 2 (Fork). Let w ∈ {h, H, A}n, P = {i ∶ wi = h}, and Q = {j ∶ wj = H}. A fork for the string w consists of
a directed and rooted tree F = (V, E) with a labeling l ∶ V → {0, 1, … , n}. We insist that each edge of F is directed
away from the root vertex and further require that

(F1) the root vertex r has label l(r) = 0;

(F2) the labels of vertices along any directed path are strictly increasing;

(F3) each index i ∈ P is the label of exactly one vertex of F and each index j ∈ Q is the label of at least one vertex of
F; and

(F4) for any indices i, j ∈ P ∪ Q, if i < j then the depth of a vertex with label i is strictly less than the depth of a
vertex with label j.

If F is a fork for the characteristic string w, we write F ⊢ w. The conditions (F1)–(F4) are analogues of the
axioms A1–A4 above. The formal re�ection of axiom A3 by condition (F3) deserves further comment: We have
chosen a de�nition of characteristic string that does not indicate the number of honest victories in cases where
there may be many; in particular, the symbol Hmay be associated with any positive number of (honest) vertices
in the fork. Indeed, we even permit a fork to have a single honest vertex associated with such a symbol, which
enlarges the class of forks under consideration for a particular characteristic string. This strengthens our results
by e�ectively giving the adversary the option to treat H symbols as h symbols. See Fig. 1 for an example fork.

A �nal notational convention: If F ⊢ x and F̂ ⊢ w, we say that F is a pre�x of F̂, written F ⊑ F̂, if x ⪯ w and F
appears as a consistently-labeled subgraph of F̂. (Speci�cally, each path of F appears, with identical labels, in F̂.)

Let w be a characteristic string. The directed paths in the fork F ⊢ w originating from the root are called tines;
these are abstract representations of blockchains. (Note that a tine may not terminate at a leaf of the fork.) We
naturally extend the label function l for tines: i.e., l(t) ≜ l(v) where the tine t terminates at vertex v. The length
of a tine t is denoted by length(t).

Viable tines. The longest-chain rule dictates that honest players build on chains that are at least as long as all
previously broadcast honest chains. It is convenient to distinguish such tines in the analysis: speci�cally, a tine
t of F is called viable if its length is no smaller than the depth of any honest vertex v for which l(v) ≤ l(t). A
tine t is viable at slot s if the length of the portion of t appearing over slots 0, … , s is no smaller than the depths
of any honest vertices labeled from these slots. (As noted, the properties (F3) and (F4) together imply that an
honest observer at slot s will only adopt a viable tine.) The honest depth function d ∶ P ∪ Q → [n], de�ned as
d(i) = maxt∈F {length(t) ∶ l(t) = i}, gives the largest depth of the (honest) vertices associated with an honest slot;
by (F4), d(⋅) is strictly increasing.
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The (D, T; s, k)-settlement game

1. A characteristic string w ∈ {h, H, A}T is drawn from D. (This re�ects the results of the leader election
mechanism.)

2. Let A0 ⊢ " denote the initial fork for the empty string " consisting of a single node corresponding to the
genesis block.

3. For each slot slt, t = 1, … , T in increasing order:

(a) (Honest slot.) This case pertains to wt ∈ {h, H}. If wt = h then A sets k = 1. If wt = H then A chooses
an arbitrary integer k ≥ 1. The challenger is then given k and the fork At−1 ⊢ w1…wt−1. He must
determine a new fork Ft ⊢ w1…wt by adding k new vertices (all labeled with t) to At−1. Each new
vertex is added at the end of a maximum-length path in At−1. If there are multiple candidatesa for this
path,Amay break the tie. If k ≥ 2, multiple vertices (all with label t) may be added at the end of the
same path.

(b) (Adversarial slot.) If wt = A, this is an adversarial slot. Amay set Ft ⊢ w1…wt to be an arbitrary fork
for which At−1 ⊑ Ft.

(c) (Adversarial augmentation.) A determines an arbitrary fork At ⊢ w1… ,wt for which Ft ⊑ At.

Recall that F ⊑ F′ indicates that F′ contains, as a consistently-labeled subgraph, the fork F.

A wins the settlement game if slot s is not k-settled in some fork At, t ≥ s + k.
aIt is possible that all maximum-length tines are honest. In the settlement game considered in [4], at least one of these tines was adversarial.

2.1 Slot settlement and the Unique Vertex Property
We are now ready to explore the power of an adversary in this setting who has corrupted a (perhaps evolving)
coalition of the players. We focus on the possibility that such an adversary can violate the consistency of the honest
players’ blockchains. In particular, we consider the possibility that, at some time t, the adversary conspires to
produce two maximum-length blockchains that diverge prior to a previous slot s ≤ t; in this case honest players
adopting the longest-chain rule may clearly disagree about the history of the blockchain after slot s. We call such a
circumstance a settlement violation.

To express this in our abstract language, let F ⊢ w be a fork corresponding to an execution with characteristic
string w. Such a settlement violation induces two viable tines t1, t2 with the same length that diverge prior to a
particular slot of interest. We record this below.

De�nition 3 (Settlement with parameters s, k ∈ ℕ). Let n ∈ ℕ and let w be a characteristic string of length n. Let
t ∈ [s + k, n] be an integer, ŵ ⪯ w, |ŵ| = t, and let F be any fork for ŵ. We say that a slot s is not k-settled in F if F
contains two maximum-length tines C1, C2 that “diverge prior to s,” i.e., they either contain di�erent vertices labeled
with s, or one contains a vertex labeled with s while the other does not. Otherwise, we say that slot s is k-settled in F.
We say that slot s is k-settled in w if, for each t ≥ s + k, it is k-settled in every fork F ⊢ ŵ where ŵ ⪯ w, |ŵ| = t.

De�nition 4 (Bottleneck Property (BP) and Unique Vertex Property (UVP)). Let w ∈ {h, H, A}T be a characteristic
string. A slot s ∈ [T] is said to have the bottleneck property in w if, for any fork F ⊢ w and any k ≥ s + 1, every tine
viable at the onset of slot k contains, as its pre�x, some vertex with label s. Slot s is said to have the Unique Vertex
Property if, for any fork F ⊢ w, there is a unique vertex u ∈ F with label s so that for any k ≥ s + 1, all tines viable
at the onset of slot k contain, as their common pre�x, the vertex u.

Thus if a uniquely honest slot in w has the bottleneck property, it has the UVP as well. As a consistency
property, UVP has several advantages over slot settlement. First, it easily implies the slot settlement property: let
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w ∈ {h, H, A}T , s ∈ [T], and k ∈ [T − s].

If a slot t ∈ [s, s + k] has UVP in w then s is k-settled in w. (1)

In addition, UVPhas a straightforward characterization using “Catalan slots” (see Theorem 3) and “relativemargin”
(see Lemma 1); these characterizations are amenable to stochastic analysis. Finally, since UVP is structurally
reminiscent of the traditional common pre�x (CP) violations, UVP easily implies CP. The analogous statement
“settlement implies CP,” however, requires a lengthy proof both in [3] and in our framework. See Appendix A for
details.

2.2 Adversarial attacks on settlement time; the settlement game
To clarify the relationship between forks and the chains at play in a canonical blockchain protocol, we de�ne a
game-based model below that explicitly describes the relationship between forks and executions. By design, the
probability that the adversary wins this game is at most the probability that a slot s is not k-settled.

Consider the (D, T; s, k)-settlement game (presented in the box), played between an adversary A and a chal-
lenger C with a leader election mechanism modeled by an ideal distribution D. Intuitively, the game should
re�ect the ability of the adversary to achieve a settlement violation; that is, to present two maximum-length
viable blockchains to a future honest observer, thus forcing them to choose between two alternate histories which
disagree on slot s. The challenger plays the role(s) of the honest players during the protocol.

It is important to note that the game bestows the player A with the power to choose the number of honest
vertices in a multiply honest slot. Note that this setting makes the player strictly more powerful and, importantly,
implies that the game is completely determined by the choices made byA (i.e., the actions of the challenger are
deterministic). Consequently, in De�nition 5, we can use a single, implicit universal quanti�er over all strategies
A; no choices of the challenger are actually necessary to fully describe the game.

De�nition 5 (Settlement insecurity). LetD be a distribution on {h, H, A}T . Let w ∼ D be the string used in the �rst
step of a (D, T; s, k)-settlement game G. The (s, k)-settlement insecurity ofD is de�ned as

Ss,k[D] ≜ max
ŵ⪯w

|ŵ|≥s+k

max
F⊢ŵ

Pr [ F has two maximum-length tines
that diverge prior to slot s ] .

Note that the probability in the right-hand side is the same as the probability thatA wins G.

Note that in typical PoS settings the distributionD is determined by the combined stake held by the adversarial
players, the leader election mechanism, and the dynamics of the protocol. The most common case (as seen in
Snow White [2], Ouroboros [8], and Ouroboros Praos [5]) guarantees that the characteristic string w = w1…wT is
drawn from an i.i.d. distribution for which Pr[wi = A] ≤ (1 − �)∕2 for some � ∈ (0, 1); here the constant (1 − �)∕2
is directly related to the stake held by the adversary. Some settings involving adaptive adversaries (e.g., Ouroboros
Praos [5]) yield a weaker martingale-type guarantee that Pr[wi = A ∣ w1, … , wi−1] ≤ (1 − �)∕2. We can easily
handle both types of distributions in our analysis since the former distribution “stochastically dominates” the
latter. As a rule, we denote the probability distribution associated with a random variable using uppercase script
letters.

De�nition 6 (Stochastic dominance). Let X and Y be random variables taking values in some setΩ endowed with
a partial order ≤. We say that X stochastically dominates Y, written Y ⪯ X, ifX(A) ≥ Y(A) for allmonotone sets
A ⊆ Ω, where a setA ⊆ Ω is called monotone if a ∈ A implies a′ ∈ A for all a ≤ a′. As a special case, whenΩ = ℝ,
Y ⪯ X if Pr[X ≥ Λ] ≥ Pr[Y ≥ Λ] for every Λ ∈ ℝ. We extend this notion to probability distributions in the natural
way.

Throughout the paper, we adopt the following partial order on {h, H, A}T: If T = 1, de�ne h < H < A. Otherwise,
for two strings xa, yb ∈ {h, H, A}T , |a| = |b| = 1, xa ≤ yb if and only if x ≤ y and a ≤ b. When x ≤ y, one might
say that y is “more adversarial” than x: indeed, if F ⊢ x and x ≤ y then F ⊢ y so that any settlement violation for
x induces a settlement violation for y.

8



De�nition 7 ((�, ph)-Bernoulli condition). LetT ∈ ℕ, � ∈ (0, 1), andpℎ ∈ [0, (1+�)∕2]. De�nepA = (1−�)∕2 and
pH = 1 − pA − ph. A random variable w = w1…wT taking values in {h, H, A}T is said to satisfy the (�, ph)-Bernoulli
condition if eachwi , i ∈ [T], is independent and identically distributed as follows: Pr[wi = �] = p� for � ∈ {h, H, A}.
The distribution of w is also said to satisfy the (�, ph)-Bernoulli condition.

We frequently use the notation pH and pA in the context of such a random variable when � and ph can be inferred
from context.

Theorem 1 (Main theorem). Let �, ph ∈ (0, 1) and s, k, T ∈ ℕ. Let ℬ be a distribution on length-T characteristic
strings satisfying the (�, ph)-Bernoulli condition. Then Ss,k[ℬ] ≤ exp

(
−k ⋅ Ω(min(�3, �2ph)

)
. Furthermore, letW be

a distribution on {h, H, A}T so thatW ⪯ ℬ. Then Ss,k[W] ≤ Ss,k[ℬ]. (Here, the asymptotic notation hides constants
that do not depend on � or k.)

Note that the quantity ph above cannot be zero. We present the proof in Section 4. In Section 6, we give a
characterization of the UVP which allows us to explicitly compute Ss,k[ℬ]; see Theorem 5 and Section 6.6.

Analysis in the∆-synchronous setting. The security game abovemost naturallymodels a blockchain protocol
over a synchronous network with immediate delivery (because each “honest” play of the challenger always builds
on a fork that contains the fork generated by previous honest plays). However, the model can be easily adapted to
protocols in the ∆-synchronous model by applying the ∆-reduction mapping of [5] (which is speci�cally designed
to lift the synchronous analysis to the ∆-synchronous setting). These details appear in Section 8.

Public leader schedules. One attractive feature of thismodel is that it gives the adversary full information about
the future schedule of leaders. The analysis of some protocols indeed demand this (e.g., Ouroboros, Snow White).
Other protocols—especially those designed to o�er security against adaptive adversaries (Praos, Genesis)—in fact
contrive to keep the leader schedule private. Of course, as our analysis is in the more di�cult “full information”
model, it applies to all of these systems.

Bootstrappingmulti-phase algorithms; stake shift. Weremark that several existing proof-of-stake blockchain
protocols proceed in phases, each of which is obligated to generate the randomness (for leader election, say) for
the next phase based on the current stake distribution. The blockchain security properties of each phase are then
individually analyzed—assuming clean randomness—which yields a recursive security argument; in this context
the game outlined above precisely re�ects the single phase analysis.

2.3 A consistent longest-chain selection rule
Let us modify axiom A0 as follows:

A0′. In addition to axiom A0, an arbitrary but consistent longest-chain tie-breaking rule is used by all honest
participants.

As a consequence, if two honest participants observe the same set of blockchains of maximum length, they will
extend the same blockchain.

De�nition 8 (Bivalent characteristic string). Let sl1, … , sln be a sequence of slots. A bivalent characteristic string
w is an element of {H, A}n de�ned for a particular execution of a blockchain protocol on these slots so that for t ∈ [n],
wt = A if slt is assigned to an adversarial participant, and wt = H otherwise.

The de�nition of a fork for a bivalent characteristic string is identical to De�nition 2 (somewhat simpli�ed as a
bivalent string does not contain any h symbol). Also note that the (�, 0)-condition from De�nition 7 is well-de�ned
for bivalent characteristic strings.

Let w be a bivalent characteristic string, F a fork for w, and F′ a fork for wH so that F ⊑ F′ and any honest
vertex in F′ ⧵ F has label |w| + 1. If F contains a maximum-length adversarial tine, there is no guarantee that two
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honest observers at slot |w| + 1 will agree on the longest chain: the adversary may chose to expose the adversarial
chain to one and not the other. In this case, we say that F has a tie for the longest-chain rule—or, in short, that F
has an LCR tie. When there is no LCR tie (that is, no maximum-length adversarial tine), all honest slot leaders at
slot |w| + 1 necessarily extend the same honest tine determined by the consistent longest-chain tie-breaking rule.

Theorem 2 (Main theorem; consistent tie-breaking). Let � ∈ (0, 1) and s, k, T ∈ ℕ. Let ℬ be a distribution on
length-T bivalent characteristic strings satisfying the (�, 0)-Bernoulli condition. LetW be a distribution on {H, A}T so
thatW ⪯ ℬ. Then Ss,k[W] ≤ Ss,k[ℬ] ≤ exp

(
−k ⋅ Ω(�3(1 + O(�)))

)
. (Here, the asymptotic notation hides constants

that do not depend on � or k.)

The proof is deferred to Section 4. Note that the theorem above states that a PoS protocol can achieve optimal
consistency error evenwith a leader election scheme that produces no uniquely honest slots. In contrast, Theorem 1
requires a non-zero probability for uniquely honest slots.

3 Unique Vertex Property via Catalan slots
As we have outlined before, if slot t in a characteristic string w has the Unique Vertex Property (UVP) then the
slots s = 1, … , t are settled in every fork for w. The goal of this section is to characterize when a slot has the UVP.
(In Section 6, we show an alternative way to characterize the UVP; see Lemma 1.)

We start with laying down some structural properties of forks. Next, we de�ne the so-called Catalan slots and
show that if a slot is Catalan then in every fork, all su�ciently long blockchains must contain a block from that slot.
Next, we show that this implication is actually an equivalence. Finally, we revisit the above implication assuming
that the honest players use a consistent longest-chain tie-breaking rule.

3.1 Viable blockchains
A vertex of a fork is said to be honest if it is labeled with an index i such that wi ∈ {h, H}; otherwise, it is said to be
adversarial.

De�nition 9 (Tines, length, and height). Let F ⊢ w be a fork for a characteristic string. A tine of F is a directed
path starting from the root. For any tine t we de�ne its length to be the number of edges in the path, and for any
vertex v we de�ne its depth to be the length of the unique tine that ends at v. If a tine t1 is a strict pre�x of another
tine t2, we write t1 ≺ t2. Similarly, if t1 is a non-strict pre�x of t2, we write t1 ⪯ t2. The longest common pre�x of two
tines t1, t2 is denoted by t1 ∩t2. That is, l(t1 ∩t2) = max{l(u) ∶ u ⪯ t1 and u ⪯ t2}. The height of a fork (as is usual
for a tree) is the length of the longest tine, denoted by height(F).

Let F ⊢ xy and two tines t1, t2 ∈ F are disjoint over y. We say that these tines are y-disjoint; equivalently, we
also say that t1 is y-disjoint with t2.

When an adversary builds a fork, it is natural to imagine that he “grows” an existing fork by adding new
vertices and edges.

De�nition 10 (Fork pre�xes). Let w, x ∈ {h, H, A}∗ so that x ⪯ w. Let F, F′ be two forks for x and w, respectively.
We say that F is a pre�x of F′ if F is a consistently labeled subgraph of F′. That is, all vertices and edges of F also
appear in F′ and the label of any vertex appearing in both F and F′ is identical. We denote this relationship by
F ⊑ F′.

When speaking about a tine that appears in both F and F′, we place the fork in the subscript of relevant properties.
For any string x (on any alphabet) and a symbol � in that alphabet, de�ne #�(x) as the number of appearances

of � in x. When a characteristic string w ∈ {h, H, A}T is �xed from the context, we extend this notation to sub-
intervals of [T] in a natural way: For integers i, j ∈ [T], i ≤ j, let I = [i, j] ⊂ [T] be a closed interval and de�ne
#�(I) = #�(wi …wj) for � ∈ {h, H, A}. A characteristic string w is called hH-heavy if #h(w) + #H(w) > #1(x);
otherwise, it is called A-heavy. For a given characteristic string w of length T, an interval I = [i, j] ⊆ [T] is called
A-heavy if the substring wi …wj is A-heavy.
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Adversarial extensions. Let x, y be two characteristic strings and |y| ≥ 0. Let F be a fork for x and let B be an
honest tine in F. We say that B has an adversarial extension if there is a fork F′ ⊢ xy, F ⊑ F′ and an adversarial
tine t ∈ F′ so that B ≺ t and B is the last honest vertex on t. Note that t can be made disjoint with any F-tine over
the interval [l(B) + 1, l(t)].

Viable adversarial extensions and A-heaviness. Let w ∈ {h, H, A}T, s ∈ [T + 1], and F ⊢ w1…ws−1 an
arbitrary fork. Let B ∈ F be an honest vertex and t a maximum-length honest tine in F. Consider the following
statements:

(a) B has an adversarial extension viable at the onset of slot s.

(b) The interval I = [l(B) + 1, s − 1] is A-heavy.

(c) length(t) = #h(I) + #H(I) + length(B).

Fact 1. (a)⟹ (b). In addition, if we assume (c), then (b)⟹ (a).

Proof.

(a) implies (b). Let F′ ⊢ w1…ws−1 be a fork so that F ⊑ F′ and B has an adversarial extension t′ ∈ F′ viable at
the onset of slot s. Considering the interval I, the longest honest tine in F′ grows by at least #h(I) + #H(I)
vertices. Since the viable tine t′ contains only adversarial vertices from the interval I, it follows that #A(I)
must be at least #h(I) + #H(I). Hence, I is A-heavy.

(c) and (b) implies (a). Since I is A-heavy, I contains at least #h(I) + #H(I) = length(t) − length(B) adversarial
slots. Thus, we can augment B by adding length(t) − length(B) adversarial vertices from these slots so that
the resulting adversarial extension is viable at the onset of slot s.

Corollary 1. Let w be a characteristic string, F be any fork for w, and let t be any tine in F. Let B1 and B2 be two
honest vertices on t such that (i)l(B1) < l(B2), (ii) t contains only adversarial vertices from I = [l(B1)+1, l(B2)−1],
and (iii) t contains at least one vertex from I. Then I is A-heavy.

Proof. By assumption, the honest vertex B2 builds on some adversarial tine t′ that is viable at the onset of slot
l(B2) and, importantly, contains B1 as its last honest vertex. By Fact 1, the interval I is A-heavy.

3.2 Catalan slots and the UVP
Below, we de�ne the so-called Catalan slots and show, in Theorems 3 and 4, that certain Catalan slots have the
UVP.

De�nition 11 (Catalan slot). Let w ∈ {h, H, A}T be a characteristic string and let s ∈ [T] be an integer. s is called a
left-Catalan slot in w if, for any integer l ∈ [s], the interval [l, s] is hH-heavy inw. s is called a right-Catalan slot in
w if, for any integer r ∈ [s, T], the interval [s, r] is hH-heavy in w. Finally, s is called a Catalan slot in w if it is both
left- and right-Catalan in w.

Observe that a left- or right-Catalan slot must be honest. In addition, the slot before a left-Catalan (resp., after
a right-Catalan) slot must be honest as well. Thus the slots adjacent to a Catalan slot must be honest. A Catalan
slot c acts as a barrier for adversarial tine extensions in that in any fork, every tine viable at the onset of slot c + 1
must be honest.

Fact 2. Letw ∈ {h, H, A}T be a characteristic string and s a left-Catalan slot inw. In any fork forw, every viable tine
at the onset of slot s + 1 is an honest tine from slot s.
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Proof. Let � be the longest tinewith label s. (� is an honest tine. If s is a uniquely honest slot, � is unique. Otherwise,
� is unique up to tie-breaking among equally-long tines.) We claim that all adversarial tines t ∈ F, l(t) ≤ s − 1 are
strictly shorter than �. Suppose, towards a contradiction, that t is a viable adversarial tine at the onset of slot s + 1,
i.e., l(t) ≤ s−1 and length(t) ≥ length(�). Let B be the last honest vertex on t; necessarily, l(B) < s. According to
Fact 1, the interval [l(B) + 1, s] is A-heavy. But this contradicts the assumption that s is a left-Catalan slot. Hence
the adversarial tine t cannot be viable.

Observation 1. If s is a Catalan slot for w, Fact 2 implies that in every fork for w, an honest slot leader at slot
s + 1 always builds on top of an honest tine with label s; this tine, in fact, will have the maximum length among
all tines with label s.

Fact 3. Let w ∈ {h, H, A}T be a characteristic string. If an honest slot in w has the bottleneck property then it is a
Catalan slot.

Proof. Let s ∈ [T] be an honest slot in w. We will prove the contrapositive: namely, that if s is not Catalan then s
does not have the bottleneck property.

Suppose s is not a Catalan slot. Then there must be some a, b ∈ [T] so that I = [a, b] is the largest A-heavy
interval which includes s. Necessarily, either b = T, or b + 1must be an honest slot. Likewise, either a = 1, or
a − 1must be an honest slot.

Let F be a fork for w1…wb and let u ∈ F, l(u) = a − 1 be an honest tine. (If a = 1, we can take u as the root
vertex.) Let t be a maximum-length honest tine in F and assume that length(t) = length(u)+#h(I)+#H(I). Since
I is A-heavy, Fact 1 states that it is possible to augment u into an adversarial extension t′ viable at the onset of slot
b + 1. As t′ will not contain any vertex from the honest slot s, s does not have the bottleneck property in w.

The following theorem shows that a uniquely honest Catalan slot has the UVP.

Theorem 3. Let w ∈ {ℎ,H,A}T be a characteristic string. Let s ∈ [T] be a uniquely honest slot in w. Slot s is
Catalan in w if and only if it has the UVP in w.

Proof. (The reverse implication.) Since s has the UVP it satis�es the (weaker) bottleneck property. By Fact 3, the
honest slot s must be Catalan.

(The forward implication.) By assumption, slot s has a unique honest leader. Let � be the unique honest tine at
slot s. By Fact 2, the honest tine � is the only viable tine at the onset of slot s + 1. If s = T then � is the only viable
tine at the onset of slot T + 1. Now suppose s ≤ T − 1. As s is a Catalan slot, slots s and s + 1must be honest. Let t
be a viable tine at the onset of some slot k, k ≥ s + 2. We claim that � must be a pre�x of t.

Suppose, for a contradiction, that t does not contain � as its pre�x. Let B1 be the last honest vertex on t such
that l(B1) ≤ s − 1. (If s = 1 or no such vertex can be found, take B1 as the root vertex.) Likewise, let B2 be the �rst
honest vertex, if it exists, on t such that l(B2) ∈ [s + 1, k − 1].

Suppose B2 exists. If l(B2) = s + 1 then, by Observation 1, B2 builds on �, contradicting our assumption that �
is not a pre�x of t. Otherwise, suppose l(B2) ∈ [s + 2, k − 1]. Let I be the interval [l(B1) + 1, l(B2) − 1]. Clearly, I
contains s. If t contains any adversarial vertex between B1 and B2 then, by Corollary 1, I must be A-heavy; but this
contradicts the assumption that s is a Catalan slot. Otherwise, B2 builds on top of B1 and, in particular, B1 must
be viable at the onset of slot l(B2) ≥ s + 1. Since l(�) = s, this means length(B1) ≥ length(�). However, since
l(B1) < s, by the monotonicity of the honest-depth function d(⋅), length(�) ≥ 1+ length(B1). This contradicts the
inequality above.

Now suppose B2 does not exist. We claim that t is an adversarial tine. To see why, note that if t were honest
and l(t) ≥ s + 1 then there would have been a B2. Since s is a uniquely honest slot and � is not a pre�x of t by
assumption, l(t) ≠ s if t is honest.

Finally, if t is honest and l(t) ≤ s − 1 then, by Fact 2, t cannot be viable at the onset of slot s + 1 since s is
Catalan. Since s + 1 is an honest slot, honest tines with label s + 1 will be strictly longer than t and, therefore,
t cannot be viable at the onset of slot k ≥ s + 2 either. We conclude that t must be an adversarial tine viable at
the onset of slot k. By Fact 1, the interval I = [l(B1) + 1, k − 1]must be A-heavy. However, since I contains s, it
contradicts the fact that s is a Catalan slot.

It follows that every viable tine t ∈ F, l(t) ≥ s + 1must contain � as its pre�x.
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The following theorem shows that under axiom A0′, two consecutive Catalan slots imply that the �rst slot has
the UVP.
Theorem 4. Let w ∈ {H, A}T be a bivalent characteristic string and axiom A0′ is satis�ed. Let s ∈ [2, T] be an
integer such that s and s − 1 are two honest slots in w. The following statements are equivalent: (i) Slots s, s − 1
are Catalan. (ii) If s ≤ T − 1, both s and s − 1 have the UVP. Otherwise, slot T − 1 has the UVP but slot T has the
bottleneck property.

Proof. Since the slots s, s − 1 satisfy the (weaker) bottleneck property, Fact 3 implies that they must be Catalan
slots. This proves (ii) implies (i).

Now let us prove that (i) implies (ii). Slots s, s − 1 are Catalan. Let Vs (resp. Vs+1) be the set of all viable tines
at the onset of slot s (resp. slot s + 1). Since s − 1 (resp. s) is a Catalan slots, we use Fact 2 and conclude that Vs
(resp. Vs+1) can contain only maximum-length honest tines t, l(t) = s − 1 (resp. l(t) = s). Let us ∈ Vs be the
unique vertex determined by the consistent tie-breaking rule when applied to the set Vs. De�ne us+1 ∈ Vs+1 in an
analogous way for the set Vs+1.

Let k ∈ [s + 1, T + 1] be an integer. We wish tho show that for every tine t viable at the onset of slot k, the
following holds: (i) if s ≤ T − 1 then us ≺ us+1 ⪯ t, and (ii) if s = T then uT−1 ≺ t where l(t) = T.

All tines at the honest slot s build upon us. If s = T, we are done. Otherwise, i.e., if s ≤ T − 1, let � = us+1 and
note that us ≺ us+1 = �. If k = s + 1, we are done since by Fact 2, every tine at the honest slot k will build upon �.

It remains to reason about the case s ≤ T − 2 and k ≥ s + 2. Consider a tine t which is viable at the onset of
slot k. (All we know about t’s label is that l(t) ≤ k − 1.) We claim that � ≺ t. Suppose, towards a contradiction,
that � is not a pre�x of t. Let B1 be the last honest vertex on t such that l(B1) ≤ s − 1. (If no such vertex can be
found, take B1 as the root vertex.) Likewise, let B2 be the �rst honest vertex on t such that l(B2) ∈ [s + 1, k − 1].

Below, we show that every choice for B1, B2 leads to a contradiction and, therefore, � must be a pre�x of t. If
B2 exists then, by construction, l(B1) < s < l(B2) ≤ k − 1. If l(B2) = s + 1 then, as we have argued earler, B2
must have built on �. This contradicts our assumption that � is not a pre�x of t. Otherwise, suppose l(B2) ≥ s + 2.
Let I be the interval [l(B1) + 1, l(B2) − 1] and note that I contains s. There can be two scenarios. If t contains an
adversarial vertex between B1 and B2 then, by Corollary 1, I must be A-heavy; but this contradicts the assumption
that s is a Catatan slot. Otherwise, B2 builds on top of B1 and, in particular, B1 must be viable at the onset of slot
l(B2) ≥ s + 1. Since l(�) = s, this means length(B1) ≥ length(�). However, since l(B1) < s, by the monotonicity
of the honest-depth function d(⋅), length(�) ≥ 1 + length(B1). This contradicts the inequality above.

If B2 does not exist then we claim that t is an adversarial tine. To see why, note that if t were honest and
l(t) ≥ s + 1 then there would have been a B2. If t were honest with l(t) = s, t ≠ � then t would not be viable
at the onset of slot s + 2. This is because s is a Catalan slot and as such, each vertex from slot s + 1 builds on
�, length(�) ≥ length(t). Hence tines viable at the onset of slot s + 2must have length at least 1 + length(�) >
length(t). Finally, if t is honest and l(t) ≤ s − 1 then, by Fact 2, t cannot be viable at the onset of slot s + 1 since s
is Catalan. Since s + 1 is an honest slot, honest tines with label s + 1 will be strictly longer than t and, therefore,
t cannot be viable at the onset of slot k ≥ s + 2 either. We conclude that t must be an adversarial tine viable at
the onset of slot k. By Fact 1, the interval I = [l(B1) + 1, k − 1]must be A-heavy. However, since I contains s, it
contradicts the fact that s is a Catalan slot.

4 Main theorems via tail bounds for Catalan slots
In the previous section, we explored the structural connection between the UVP and Catalan slots. In this
section, we present two bounds on the stochastic event “Catalan slots are rare.” Speci�cally, Bound 1 concerns
uniquely honest Catalan slots and complements Theorem 3; Bound 2 concerns two consecutive Catalan slots and
complements Theorem 4. We defer the proofs till the next section and prove the main theorems below.

Recall the (�, ph)-Bernoulli condition from 7.
Bound 1. Let T, s, k ∈ ℕ, T ≥ s+k and �, qh ∈ (0, 1). Letw be a characteristic string satisfying the (�, qh)-Bernoulli
condition and let y = ws …ws+k−1. Then

Pr
w
[w does not contain a uniquely honest Catalan slot in y] ≤ exp

(
−k ⋅ Ω(min(�3, �2qh))

)
.
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In particular, when qh = (1+ �)∕2, the bound above coincides with the bound in [3]; it follows that the current
analysis subsumes their result.

Bound 2. Let T, s, k ∈ ℕ, T ≥ s + k and � ∈ (0, 1). Let w be a bivalent characteristic string satisfying the (�, 0)-
Bernoulli condition and let y = ws …ws+k−1. Then

Pr
w
[w does not contain two consecutive Catalan slots in y] ≤ exp

(
−k ⋅ Ω(�3(1 + O(�)))

)
.

Proof of Theorem 1. We consider the distribution ℬ �rst. Write w = xyz, |x| = s − 1. Recall that Ss,k[ℬ] =
Prw∼ℬ[s is not k-settled in w]. Theorem 3 and Equation (1) implies that if w contains a uniquely honest Catalan
slot c ∈ [s, s + k] then slot s must be k-settled in w. In fact, by virtue of Fact 2, it su�ces to take c ∈ [s, s + k − 1],
i.e., |x| ≤ c ≤ |xy|. Thus the probability above is bounded by Bound 1 which renames ph = qh. This proves the
�rst inequality.

Now let us prove the second inequality. For any player playing the settlement game, let C be the set of strings
on which the player wins. Clearly, C is monotone with respect to the partial order ≤ de�ned on {h, H, A}T (see
below De�nition 6). To see why, note that if the player wins on a speci�c string w, he can certainly win on any
string w′ so that w ≤ w′. By assumption,W ⪯ ℬ. It follows from De�nition 6 that PrW [w] ≤ Prℬ[w] for any w in
the monotone set C. By referring to the de�nition of settlement insecurity (see De�nition 5), we conclude that
Ss,k[W] ≤ Ss,k[ℬ].

Proof of Theorem 2. This proof is identical to the proof of Theorem 1 except that we need to refer to Theorem 4
in lieu of Theorem 3 and Bound 2 in lieu of Bound 1.

5 Proofs of Bounds 1 and 2
As a rule, we denote the probability distribution associated with a random variable using uppercase script letters.
Observe that if Y ⪯ X and Z is independent of both X and Y, then Z + Y ⪯ Z + X. In addition, for any
non-decreasing function u de�ned on Ω, Y ⪯ X implies u(Y) ≤ u(X).

Generating functions. We reserve the term generating function to refer to an “ordinary” generating function
which represents a sequence a0, a1, … of non-negative real numbers by the formal power series A(Z) = ∑∞

t=0 atZ
t .

We denote the above correspondence as {at} ⟷ A(Z). When A(1) = ∑
t at = 1 we say that the generating

function is a probability generating function; in this case, the generating function A can naturally be associated
with the integer-valued random variable A for which Pr[A = k] = ak. If the probability generating functions A
and B are associated with the random variables A and B, it is easy to check that A ⋅ B is the generating function
associated with the convolution A + B (where A and B are assumed to be independent). Translating the notion of
stochastic dominance to the setting with generating functions, we say that the generating function A stochastically
dominates B if

∑
t≤T at ≤

∑
t≤T bt for all T ≥ 0; we write B ⪯ A to denote this state of a�airs. If B1 ⪯ A1 and

B2 ⪯ A2 then B1 ⋅ B2 ⪯ A1 ⋅ A2 and �B1 + �B2 ⪯ �A1 + �A2 (for any �, � ≥ 0). Moreover, if B ⪯ A then it can
be checked that B(C) ⪯ A(C) for any probability generating function C(Z), where we write A(C) to denote the
composition A(C(Z)).

Finally, we remark that if A(Z) is a generating function which converges as a function of a complex Z for
|Z| < R for some non-negative R, R is called the radius of convergence of A. It follows from Theorem 2.19 in [12]
that limk→∞ |ak|Rk = 0 and that |ak| = O(R−k). In addition, if A is a probability generating function associated
with the random variable A then it follows that Pr[A ≥ T] = O(R−T).

5.1 Proof of Bound 1
Let p = (1 − �)∕2 and q = (1 + �)∕2 so that q − p = �. Let qH = q − qh. Let B denote the event that w does not
contain a uniquely honest Catalan slot in y. We would like to bound Prw[B] from above.
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De�ne the processW = (Wt ∶ t ∈ ℕ),Wt ∈ {±1} asWt = 1 if and only if wt = A. Let S = (St ∶ t ∈ ℕ), St =∑
i≤tWi be the position of the particle at time t. Thus S is a random walk on ℤ with � negative (i.e., downward)

bias. By convention, setW0 = S0 = 0.

Case 1: x is an empty string. In this case, we write w = yz so that |y| = k. Let ct be the probability that
t is the �rst uniquely honest Catalan slot in w with c0 = 0, and consider the probability generating function
{ct}⟷ C(Z) = ∑∞

t=0 ctZ
t. Controlling the decay of the coe�cients ct su�ces to give a bound on Pr[B], i.e., the

probability that y does not contain a Catalan slot, because this probability is at most 1 −∑k−1
t=0 ct =

∑∞
t=k ct. To

this end, we develop a closed-form expression for a related probability generating function Ĉ(Z) = ∑
t ĉtZ

t which
stochastically dominates C(Z). Recall that this means that for any k,∑t≥k ck ≤

∑
t≥k ĉk. Finally, bound the latter

sum by using the analytic properties of Ĉ(Z).
Treating the random variablesW1, … as de�ning a (negatively) biased randomwalk, de�ne D (resp. A) to be the

generating function for the descent stopping time (resp. the ascent stopping time) of the walk; this is the �rst time
the random walk, starting at 0, visits −1 (resp. +1). The natural recursive formulation of these descent time yield
simple algebraic equations for the descent generating function, D(Z) = qZ +pZD(Z)2 and A(Z) = pZ + qZA(Z)2,
and from this we may conclude

D(Z) = (1 −
√
1 − 4pqZ2)∕2pZ ,

A(Z) = (1 −
√
1 − 4pqZ2)∕2qZ .

Note that while D is a probability generating function, A is not: according to the classical “gambler’s ruin” analysis,
the probability that a negatively-biased random walk starting at 0 ever rises to 1 is exactly p∕q; thus A(1) = p∕q.

Recall that a slot is Catalan in w if and only if it is both left-Catalan and right-Catalan. A slot is left-Catalan if
the walk S descends to a new low at that slot. In addition, the same slot (say s) is right-Catalan if the walk never
reaches to that level in future, i.e., Ss ≥ Si , i ≥ s + 1. The probability of this event is 1 − A(1) = 1 − p∕q = �∕q,
conditioned on the fact thatWs = −1.

Assume that the walk is now at its historical minimum. (It may or may not be a new minimum.) We can think
of the generating function C(Z) as a search procedure for �nding the �rst uniquely honest Catalan slot. Let v be
the �rst symbol we observe. Let E(Z) be the generating function for a walk which makes an ascent with certainty
and then descends again to its historical minimum. We claim that

C(Z) = pZD(Z)C(Z) + qhZ ⋅ �∕q + qhZ ⋅ p∕q ⋅ E(Z)C(Z) + qHZC(Z)

=
(qh�∕q)Z

1 −
(
pZD(Z) + (qhp∕q)ZE(Z) + qHZ

) . (2)

Here is the explanation. Regarding the value of v, there can be four alternatives for the walk which is currently at
its historical minimum:

(i) With probability p, we have v = A and the walk moves up. Then we wait till the walk makes a �rst descent
and restart.

(ii) With probability qh ⋅ �∕q, we have v = h and the walk diverges below. Hence our search has succeeded and
we stop.

(iii) With probability qh ⋅ (1 − �∕q) = qhp∕q, we have v = h and the walk returns to the origin from below. Then
we wait for the walk to match its minimum again before we can restart. Note that E(Z) is the generating
function for this “guaranteed ascent then match minimum” walk.

(iv) With probability qH, we have v = H and the walk moves down. Since we will reach a new minimum, we
restart.

15



Since E(1) = 1 by assumption, p + (qhp∕q) + qH = 1 − qh(1 − p∕q) = 1 − qh�∕q. It follows that C(1) =
(qh�∕q)∕(1 − (1 − qh�∕q)) = 1; hence C(Z) is a probability generating function.

Instead of working directly with E(Z), we can work with a generating function Ê(Z) which is identical to
E(Z) for the initial ascending part but di�ers in the descending part. Speci�cally, in the descending part, the
walk represented by Ê(Z) descends as many levels as the number of steps it took to return to the origin. Clearly,
E(Z) ⪯ Ê(Z) ≜ A(ZD(Z))∕A(1). Here, an individual term in A(ZD(Z)) = ∑

i aiZ
iD(Z)i has the interpretation “if

the �rst ascent took i steps then immediately descend i levels.” Since A(Z) is not a probability generating function,
we have to normalize it by A(1) to make sure that the ascent happens with certainty. Writing

F(Z) ≜ pZD(Z) + qhZA(ZD(Z)) + qHZ ,

note that

C(Z) ⪯ Ĉ(Z) ≜ (qh�∕q)Z∕(1 − F(Z)) . (3)

Since F(1) = p + qhp∕q + qH = 1 − qh(1 − p∕q) = 1 − qh�∕q, we have Ĉ(1) = 1, i.e., Ĉ(Z) is a probability
generating function. It remains to establish a bound on the radius of convergence of Ĉ. A su�cient condition
for the convergence of Ĉ(z) for some z ∈ ℝ is that all generating functions appearing in the de�nition of Ĉ(z)
converge at z and that F(z) ≠ 1.

The generating functions D(z) and A(z) converge when the discriminant 1 − 4pqz2 is positive; equivalently
|z| < 1∕

√
1 − �2 = 1 + �2∕2 + O(�4). In addition, conditioned on the convergence of A(z) and D(z), we can check

that
A(z) < 1∕2qz and D(z) < 1∕2pz . (4)

On the other hand, the convergence of F(z) depends on the convergence of D(z) and A(zD(z)). The convergence
of A(zD(z)) is likewise determined by the positivity of its discriminant, i.e.,

1 − (1 − �2) (z ⋅
1 −

√
1 − (1 − �2)z2
(1 − �)z )

2

> 0 .

The inequality above implies that if A(zD(z)) converges when

|z| < R1 ≜
((
2∕

√
1 − �2 − 1∕(1 + �)

)
∕(1 + �)

)1∕2
,

where

R1 = 1 + �3∕2 + O(�4) ≈ exp
(
�3(1 + O(�))∕2

)
. (5)

Note that the radius of convergence of A(ZD(Z)) is smaller than that of A(Z) or D(Z).
We can check that when F(z) converges, it satis�es

F(z) ≤ F(|z|) .

The claim is trivial for z = 0. Otherwise, note that D(z) is an odd function and hence, zD(z) = |z| D(|z|). Thus,
for the claim to hold, we need only show that z (qhA(zD(z)) + qH) ≤ |z| (qhA(|z|D(|z|)) + qH). But the right-hand
side equals |z| (qhA(zD(z)) + qH) and A(x) > 0 for real x > 0, we can divide both sides by qhA(zD(z)) + qH. The
reduced inequality becomes z∕|z| ≤ 1. However, z∕|z| = ±1 for any non-zero real z. Therefore, it su�ces for us
to require that F(z) ≠ 1 for z > 0.

We can also check that
F(z) is convex and increasing for z ∈ [0, R1) . (6)

To see why, note that since z2 is convex in z, (1−4pqz2) is concave. Since square root is non-decreasing and convex
for positive z,

√
1 − 4pqz2 is concave and consequently, −

√
1 − 4pqz2 is convex. Since 1∕z2 is convex, it follows
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that D(z) and, by a similar reasoning, A(z) are convex. Next, observe that A(zD(z)) converges for z ∈ [0, R1) and
hence it is also convex in z. Thus F(z) turns out to be a convex combination of convex functions; it follows that
F(z) is convex for z ∈ (0, R1). In addition, since F(0) = 0 and F(1) > 0, F(z)must be increasing as well.

Let
R2 be the solution to the equation F(z) = 1, z > 0 .

Then Ĉ(z) would converge for |z| < R ≜ min(R1, R2). It remains to characterize R2 in terms of � and qh. Note that
R1 < 2 as long as � ≤ 0.97. Since the �nal bounds will be only asymptotic in �, it su�ces for us to consider small �.
That is to say, we consider the case where 0 < z < R1 < 2, i.e., z − 1 < 1.

If we express F(z) as its power series around z = 1, we can check that

F(1) = 1 − �qh∕q ,

F′′(1) = 1 − �
�5

(
qh(1 + 3�) + qH�2

)
, and

F′(1) = p(1 + 1∕�) + qh(p∕q)
(
1 + (1 + 1∕�)∕�

)
+ qH .

Since F′′(1) > 0 and F(z) is convex and increasing, the �rst-order approximation

f(z) = (1 − �qh∕q) + F′(1)(z − 1) (7)

is a lower bound for F(z) when 1 ≤ z < R1. The approximation error at any z ∈ (1, 2) is F(z) − f(z) = O(ℎ(z))
where we de�ne

ℎ(z) ≜ F′′(1)(z − 1)2 .
Since the bounds we develop will have either O(⋅) or Ω(⋅) in the exponent, it su�ces to ensure that R2 = Θ(R∗2).
In the exposition below, we will only develop approximations R∗2 satisfying R2 = (1 − �)R∗2 for a small positive
constant � ∈ (0, 1).

In the special case qH = 0, F(Z) simpli�es as F(Z) = pZD(Z) + qZA(ZD(Z)). Note that F(Z) converges when
A(ZD(Z)) does and it is not hard to check that F(z) < 1. Speci�cally, we know that F(z) converges when z ∈ [0, R1)
and when it does, we claim that F(z) < 1. Speci�cally, when z ∈ [0, 1], F(z) ≤ F(1) = 1 − �qh∕q = 1 − � < 1
since � < 1. On the other hand, we can check that D(z) is convex for z ≥ 0 and, in particular, the �rst order
approximation 1 + (z − 1)∕� around z = 1 is a lower bound for D(z), z ≥ 1. It follows that D(z) ≥ 1 for z ∈ [1, R1).
Consequently, F(z) ≤ pZD(Z)+qzA(zD(z)) ⋅D(z) = pzD(z)+qxA(x) < 1∕2+1∕2 = 1where we write x = zD(z)
and use (4). Thus the radius of convergence of Ĉ is R1 if qH = 0.

The remainder of the exposition considers the general case 0 < qh < q. Let the solution to the equation
f(z) = 1 be denoted by

R∗2 ≜ 1 + �(qh∕q)∕F′(1) .

If qh is small, q = (1 + �)∕2, p + � = q and p∕q3 ∈ [1, 4], we can check that

ℎ(R∗2) = O
⎛
⎜
⎝

pq
�3 ⋅ (

�2qℎ∕q
p(1 + �) + �q)

2⎞
⎟
⎠
= O(

�q2h ⋅ pq
q2 (p + �)2 )

= O(
�q2h ⋅ p
q3 ) = O(�q2h) ,

i.e., it vanishes. Thus f(z) is a good approximation for F(z). It follows that F′(1) ≈ p(1 + 1∕�) + q = q∕� and,
therefore,

R∗2 ≈ 1 + (�qh∕q)∕(q∕�) = 1 + qh(�∕q)2 ≈ exp(�2qh∕q2) = eO(�2qh)

since q ∈ (1∕2, 1). (Although we have an asymptotic notation, it is important that we have the right exponent on
qh.)

If, on the contrary, qh = O(1) but � vanishes then F′(1) will be dominated by its second term; that is to say,
F′(1) ≈ qh(p∕q) (1 + (1 + 1∕�)∕�) = O(qh∕�2) and, therefore,

R∗2 ≈ 1 + O
(
(�qh∕q)∕(qh∕�2)

)
= 1 + O(�3) = eO(�3)
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since q ≈ 1∕2.
Recall that R1 = exp

(
O(�3(1 + O(�)))

)
. It follows that Ĉ(z) converges for |z| less than

R = exp
(
O(min(�3, �2qh))

)
. (8)

Recall that if the radius of convergence of Ĉ is exp(�) then ĉk = O(e−�k). Hence, Pr[B] is a geometric sum and
it is at most O(e−�k) as well. We conclude that

Pr
w
[B] ≤ O

(
e−k lnR

)
= exp

(
−k ⋅ Ω(min(�3, �2qh))

)
.

Case 2: x is non-empty. Next, let us consider the case when x ≠ ", i.e., |x| ≥ 1. Letm = |x| and writew = xyz
where |y| = k. Recall the processes (Wt) and (St) de�ned on w and, in addition, de�neM = (Mt ∶ t ∈ ℕ),Mt =
min0≤i≤t Si and X = (Xt ∶ t ∈ ℕ), Xt = St −Mt. By convention, setM0 = X0 = 0. Thus Xt denotes the height of
the walk S, at time t, with respect to its minimumMt.

For a �xed value ℎ = Xm, the relevant generating function would be D(Z)ℎĈ. Hence the �nal generating
function we seek is

C̃(Z) ≜
∞∑

ℎ=0
Pr[Xm = ℎ] ⋅ D(Z)ℎĈ(Z)

whose tth coe�cient is the probability that t is a Catalan slot in y.
Note that X = (Xt) is an �-downward biased random walk on non-negative integers with a re�ective barrier

at −1. Speci�cally, for any ℎ ∈ ℕ, Pr[Xt = ℎ ∣ Xt−1 = ℎ − 1] = p and Pr[Xt = ℎ − 1 ∣ Xt−1 = ℎ] = Pr[Xt =
0 ∣ Xt−1 = 0] = q. In [4, Lemma 6.1], it is proved that the distribution of Xm is stochastically dominated by the
distribution of X∞, written X∞ and de�ned, for k = 0, 1, 2, …, as

X∞(k) = Pr[X∞ = k] ≜ ( 2�
1 + �) ⋅ (

1 − �
1 + �)

k
= (1 − �)�k (9)

where � ≜ (1 − �)∕(1 + �). Let
{X∞(k)}⟷ X∞(Z) =

1 − �
1 − �Z .

It follows that C̃(Z) is dominated by

∞∑

ℎ=0
X∞(ℎ)D(Z)ℎĈ(Z) = X∞(D(Z))Ĉ(Z) =

(1 − �)Ĉ(Z)
1 − �D(Z) .

Let ⋆ denote the quantity above. For it to converge, we need to check that D(Z) should never converge to 1∕�.
Since the radius of convergence of D(Z)—which is (1 − �2)−1∕2—is strictly less than (1 + �)∕(1 − �) for � > 0, we
conclude that⋆ converges if both D(Z) and Ĉ(Z) converge. The radius of convergence of⋆would be the smaller of
the radii of convergence of D(Z) and Ĉ(Z). We already know from the previous analysis that Ĉ(Z) has the smaller
radius of convergence of these two; therefore, the bound on Prw[B] from the previous case holds for |x| ≥ 0.

5.2 Proof of Bound 2
Let p = (1 − �)∕2 and q = 1 − p; thus q − p = �. Let B denote the event that w does not contain two consecutive
Catalan slots in y. We would like to bound Prw[B] from above.

De�ne the processW = (Wt ∶ t ∈ ℕ),Wt ∈ {±1} asWt = 1 if and only if wt = A. Let S = (St ∶ t ∈ ℕ), St =∑
i≤tWi be the position of the particle at time t. Thus S is a random walk on ℤ with � negative (i.e., downward)

bias. By convention, setW0 = S0 = 0.
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Case 1: x is an empty string. In this case, we write w = yz so that |y| = k. Let mt denote the probability
that t is the �rst index so that both t and t + 1 are Catalan slots in w, withm0 = 0, and consider the probability
generating function {mt}⟷ M(Z) = ∑∞

t=0mtZt. Controlling the decay of the coe�cientsmt su�ces to give a
bound on Pr[B], i.e., the probability that y does not contain two consecutive Catalan slots, because this probability
is at most 1 − ∑k−1

t=0 mt =
∑∞

t=kmt. To this end, we develop a closed-form expression for a related probability
generating function M̂(Z) = ∑

t m̂tZt which stochastically dominatesM(Z). Recall that this means that for any
k,∑t≥kmk ≤

∑
t≥k m̂k. Finally, bound the latter sum by using the analytic properties of M̂(Z).

Recall the “�rst ascent” and “�rst descent” generating functions A(Z) and D(Z) from the proof of Bound 1.
We wish to devise the generating function for the �rst occurrence of a left-Catalan slot immediately followed
by a right-Catalan slot. To that end, note that D(Z) is the generating function for the �rst left-Catalan slot. The
generating function for the �rst right-Catalan slot can be devised as follows. Consider the walk S starting at the
origin. With probability q(1 − p∕q) = �, the walk will immediately descend a step and never return to the origin.
But this means S1 ≤ St, t ≥ 2 and hence the �rst slot is a right-Catalan slot and we are done. Otherwise, i.e., with
probability 1 − �, the walk makes a (guaranteed) return to the origin in future. In this case, we will have to restart
our search for the next consecutive Catalan slots but, before that, we will have to ensure that we are in a “safe
position.” In particular, we can safely restart our search if Speci�cally, if the current position (i.e., level) of the
walk is at its historical minimum, we can restart our search by applying D(Z) to �nd the next left-Catalan slot.
Thus an “epoch” begins with a guaranteed return and ends when the walk descends to a new level for the �rst
time. Let E(Z) be the generating function of an epoch. Thus we can write

M(Z) = D(Z) ⋅ {� + (1 − �)E(Z)M(Z)}

= �D(Z)
1 − (1 − �)E(Z)

. (10)

An epoch can have two shapes. If an epoch starts with an up-step (i.e., an “up” shape), it is easy to see that the
epoch ends as soon as the walk returns to the origin from above and, importantly, that the walk will (eventually)
return to the origin with probability one. However, if the epoch starts with a down-step (i.e., a “down” shape), we
have to “remember” the lowest level l touched by the walk in its way to its (sure) ascent to the origin and then
descend l levels to end the epoch. In particular, we have to ensure that we return to the origin with probability
one.

A generating function of a stopping time of a random walk is ill suited to “remember” its historical mini-
mum/maximum. However, it can remember the length of the walk for free. Thus, instead of working directly
with E(Z), we work with a generating function Ê(Z) which is identical to E(Z) for the up shape but di�ers in the
down shape. Speci�cally, in the down shape, the walk represented by Ê(Z) descends as many levels as the number
of steps it took to return to the origin. Clearly, E ⪯ Ê where

Ê(Z) ≜ pZD(Z) + qZA(ZD(Z))∕A(1) .
Here, the �rst term denotes the “return to origin from above” shape. An individual term in A(ZD(Z)) =∑

t atZ
tD(Z)t has the interpretation “if the �rst ascent took t steps then follow it by descending t levels.” Since

A(Z) is not a probability generating function, we have to normalize it by A(1) to denote that the ascent happens
with certainty. This implies,

M(Z) ⪯ M̂(Z) ≜ �D(Z)
1 − (1 − �)Ê(Z)

It remains to establish a bound on the radius of convergence of M̂. A su�cient condition for the convergence
of M̂(z) for some z ∈ ℝ is that all generating functions appearing in the de�nition of M̂ converge at z and that
(1 − �)Ê(Z) ≠ 1.

By retracing our footsteps as in the proof of Bound 1, we can see that D(z), A(z), and A(zD(z)) converge when
|z| satis�es (5). Moreover, since D(Z) is a probability generating function, it follows that Ê(Z) is stochastically
dominated by pZD(Z) + qZA(ZD(Z))∕A(1) ⋅ D(Z). Therefore, when Ê(z) converges for some z, it satis�es

Ê(z) ≤ pzD(z) + (q∕p)(qzD(z))A(zD(z))
< 1∕2 + (q∕p)∕2
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since A(1) = p∕q, pzD(z) < 1∕2, and qxA(x) < 1∕2 for any z, x so that A(x) and D(z) converge, respectively.
Therefore, (1 − �)Ê(z) = 2pÊ(z) < p + q = 1. It follows that M̂(z) converges for |z| < 1 + �3∕2 + O(�4) ≤
exp(�3∕2 + O(�4)). Recall that if the radius of convergence of M̂ is exp(�) then Pr[B] is O(1) ⋅ e−�k. We conclude
that

Pr
w
[B] ≤ O(1) ⋅ e−�3(1+O(�))k∕2 . (11)

Case 2: x is non-empty. This part of the proof is the same as the |x| ≥ 1 case in the proof of Bound 1. The only
di�erence is that Ĉ(Z) and C̃(Z) would be replaced by M̂(Z) and M̃(Z), respectively, where

M̃(Z) ⪯
∞∑

ℎ=0
X∞(ℎ)D(Z)ℎM̂(Z) .

We conclude that the bound in (11) holds when |x| ≥ 0.

6 An optimal online adversary against slot settlement
In this section, we introduce additional elements of the fork framework from Blum et al. [3], most notably the
notions of “reach” and “relative margin.” We show that relative margin is just as expressive as the Catalan slots for
characterizing slot settlement. Next, we prove a recurrence relation for relative margin; it can be used to compute
the probability that a given slot is k-settled, when the symbols of the characteristic string are i.i.d . Finally, we
present an adversary who, given a characteristic string one symbol at a time, optimally attacks the settlement of
all slots at once.

6.1 Closed forks, reach, and extensions
De�nition 12 (Closed fork). A fork F is closed if every leaf is honest. For convenience, we say the trivial fork is
closed.

Closed forks have two nice properties that make them especially useful in reasoning about the view of honest
parties. First, all honest observers will select a unique longest tine from this fork (since all longest tines in a closed
fork are honest, honest parties are aware of all previous honest blocks, they observe the longest chain rule, and
they employ the same consistent tie-breaking rule). Second, closed forks intuitively capture decision points for
the adversary. The adversary can potentially show many tines to many honest parties, but once an honest node
has been placed on top of a tine, any adversarial blocks beneath it are part of the public record and are visible to
all honest parties. For these reasons, we will often �nd it easier to reason about closed forks than arbitrary forks.

The next few de�nitions are the start of a general toolkit for reasoning about an adversary’s capacity to build
highly diverging paths in forks, based on the underlying characteristic string.

De�nition 13 (Gap, reserve, and reach). For a closed fork F ⊢ w and its unique longest tine t̂, we de�ne the gap
of a tine t to be gap(t) = length(t̂) − length(t). Furthermore, we de�ne the reserve of t, denoted reserve(t), to be the
number of adversarial indices in w that appear after the terminating vertex of t. More precisely, if v is the last vertex
of t, then

reserve(t) = |{ i ∣ wi = 1 and i > l(v)}| .
These quantities together de�ne the reach of a tine: reach(t) = reserve(t) − gap(t).

The notion of reach can be intuitively understood as a measure of the resources available to our adversary in
the settlement game. Reserve tracks the number of slots in which the adversary has the right to issue new blocks.
When reserve exceeds gap (or equivalently, when reach is nonnegative), such a tine could be extended—using
a sequence of dishonest blocks—until it is as long as the longest tine. Such a tine could be o�ered to an honest
player who would prefer it over, e.g., the current longest tine in the fork. In contrast, a tine with negative reach is
too far behind to be directly useful to the adversary at that time.
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De�nition 14 (Maximum reach). For a closed fork F ⊢ w, we de�ne �(F) to be the largest reach attained by any
tine of F, i.e.,

�(F) = max
t

reach(t) .

Note that �(F) is never negative (as the longest tine of any fork always has reach at least 0). We overload this notation
to denote the maximum reach over all forks for a given characteristic string:

�(w) = max
F⊢w

F closed

[
max
t

reach(t)
]
.

Reach of vertices is always non-increasing as we move down a tine. That is, if B1, B2, … are vertices on the same
tine in the root-to-leaf order, then reach(Bi) ≤ reach(Bi+1). The inequality is strict if Bi+1 is honest. Consequently,
the reach of an adversarial tine is no more than the reach of the last honest vertex in that tine. In any fork, the
reach of a maximum-length tine is always non-negative. Hence, an honest tine with the maximum length over all
honest tines will always have a non-negative reach. Thanks to the monotonicity of the honest-depth function
d(⋅), if there are multiple honest tines having the (same) maximum length among all honest tines, they must have
the same label. Therefore, if ℎ is the last honest slot in w and t a maximum-length honest tine with label ℎ, then
reach(t) ≥ 0.

Non-negative reach, A-heaviness, and viable adversarial extensions. Let w ∈ {h, H, A}T, s ∈ [T + 1], and
F ⊢ w1…ws−1 an arbitrary fork. Let B ∈ F be an honest vertex and t a maximum-length tine in F. Consider the
following statements:

(a) B has an adversarial extension viable at the onset of slot s.

(b) reachF(B) is non-negative.

(c) The interval I = [l(B) + 1, s − 1] is A-heavy.

(d) length(t) = #h(I) + #H(I) + length(B).

Fact 4. (a)⟹ (b)⟹ (c). In addition, if we assume (d), then (c)⟹ (b)⟹ (a).

Fact 4 can be seen as a re�nement of Fact 1 when F is a closed fork.

Proof.

(a) implies (b). An adversarial extension of B contains only adversarial vertices from I. If this extension is viable
at the onset of slot s, #A(I) must be at least gapF(B). Since reserveF(B) = #A(I), we have reachF(B) =
reserveF(B) − gapF(B) ≥ 0.

(b) implies (c). By assumption, reachF(B) = reserveF(B) − gapF(B) ≥ 0. t contains at least #h(I) + #H(I)
vertices from the interval I; hence, gapF(B) ≥ #h(I) + #H(I). Since reserveF(B) = #A(I), it follows that
#A(I) ≥ #h(I) + #H(I).

(d) and (c) implies (b). Since I is A-heavy, reserveF(B) = #A(I) ≥ #h(I) + #H(I). However, since (d) holds, the
latter quantity equals length(t)−length(B) = gapF(B). It follows that reachF(B) = reserveF(B)−gapF(B) ≥
0.

(d) and (b) implies (a). I contains at least gapF(B) adversarial slots. We can use these slots augment B into an
adversarial tine t′ of length at least length(t). Thus t′ will be viable at the onset of slot s.

Observe that for any characteristic string x, one can extend (i.e., augment) a closed fork pre�x F ⊢ x into a
larger closed fork F′ ⊢ x0 so that F ⊑ F′. A conservative extension is a minimal extension in that it consumes the
least amount of reserve (cf. De�nition 13), leaving the remaining reserve to be used in future. Extensions and, in
particular, conservative extensions play a critical role in the exposition that follows.
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De�nition 15 (Extensions). Let w ∈ {h, H, A}∗ be a characteristic string and F a closed fork for w. Let F′ be a
closed fork for wb, b ∈ {h, H} so that F ⊑ F′. We say that F′ is an extension of F if every honest vertex in F′ either
belongs to F or has label |w| + 1. Let � ∈ F′ be an honest vertex with l(�) = |w| + 1 and let s be the longest honest
pre�x of �. (Necessarily, s ∈ F.) We say that � is an extension of s. The new tine � is a conservative extension if
height(F′) = height(F) + 1.

Since F′ is closed, all longest tines in F′ are honest and they have label |w| + 1. Let t̂ be the unique longest
honest tine in F′ under the consistent longest-chain selection rule in AxiomA0′. Now consider a tine � ∈ S. Since
� is honest, it follows that length(�) ≥ 1 + height(F) = 1 + length(s) + gapF(s) where s ∈ F is the longest honst
pre�x of �. The root-to-leaf path in F′ that ends at � contains at least gapF(s) adversarial vertices u ∈ F′ so that
l(u) ∈ [l(s) + 1, |w|] and u ∉ F. If � is a conservative extension, the number of such vertices is exactly gapF(s).

Fact 5 (Extensions and reach). Let b ∈ {h, H}. Let F ⊢ w and F′ ⊢ wb be closed forks so that F ⊑ F′ and F′ is
obtained from F via one ormore extensions � ∈ F′, l(�) = |w|+1. Then reachF′(t) ≤ reachF(t)−1 for every t ∈ F.
If all these extensions are conservative, then reachF′(t) = reachF(t) − 1 for every t ∈ F. Furthermore, a conservative
extension � satis�es reachF′(�) = 0.

The above fact follows from the claims below.

Claim 1. Let b ∈ {h, H}. Consider a closed fork F ⊢ w and some closed fork F′ ⊢ wb such that F ⊑ F′. If t ∈ F
then reachF′(t) ≤ reachF(t) − 1. The inequality becomes and equality if F′ is obtained via conservative extensions
from F.

Proof. We know that reachF′(t) = reserveF′(t) − gapF′(t). From F to F′, the length of the longest tine increases
by at least one, and the length of t does not change. It follows that gapF′(t) ≥ gapF(t) + 1. The inequality
becomes an equality if F′ is obtained from F via only conservative extensions. The reserve of t does not change,
because there are no new As in the characteristic string. Therefore, reachF′(t) = reserveF′(t) − gapF′(t) ≤
reserveF(t) − gapF(t) − 1 = reachF(t) − 1.

Claim 2. Conservative extensions have reach zero.

Proof. Let b ∈ {h, H}. Consider closed forks F ⊢ w, F′ ⊢ wb such that F ⊑ F′. Let t ∈ F′ be a conservative
extension. This means t is honest, l(t) = |w| + 1, and t is a longest tine in F′. The last statement implies
gapF′(t) = 0. Since reserveF′(t) = 0, it follows that reachF′(t) = reserveF′(t) − gapF′(t) = 0.

6.2 Relative margin
De�nition 16 (The ∼x relations). For two tines t1 and t2 of a fork F, we write t1 ∼ t2 when t1 and t2 share an
edge; otherwise we write t1 ≁ t2. We generalize this equivalence relation to re�ect whether tines share an edge over a
particular su�x of w: for w = xy we de�ne t1 ∼x t2 if t1 and t2 share an edge that terminates at some node labeled
with an index in y; otherwise, we write t1 ≁x t2 (observe that in this case the paths share no vertex labeled by a slot
associated with y). We sometimes call such pairs of tines disjoint (or, if t1 ≁x t2 for a stringw = xy, disjoint over y).
Note that ∼ and ∼" are the same relation.

De�nition 17 (Margin). Themargin of a fork F ⊢ w, denoted �(F), is de�ned as

�(F) = max
t1≁t2

(
min{reach(t1), reach(t2)}

)
, (12)

where this maximum is extended over all pairs of disjoint tines of F; thus margin re�ects the “second best” reach
obtained over all disjoint tines. In order to study splits in the chain over particular portions of a string, we generalize
this to de�ne a “relative” notion of margin: If w = xy for two strings x and y and, as above, F ⊢ w, we de�ne

�x(F) = max
t1≁xt2

(
min{reach(t1), reach(t2)}

)
.

Note that �"(F) = �(F).
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For convenience, we once again overload this notation to denote the margin of a string. �(w) refers to the maxi-
mum value of �(F) over all possible closed forks F for a characteristic string w:

�(w) = max
F⊢w,
F closed

�(F) .

Likewise, if w = xy for two strings x and y we de�ne

�x(y) = max
F⊢w,
F closed

�x(F) .

Note that, at least informally, disjoint tines with large reach are of natural interest to an adversary who wants
to build an x-balanced fork, since such a fork contains two (partially disjoint) long tines. It is easy to see that if
w = xx′y and �xx′(y) is negative then �x(x′y) is negative as well.

The theorem below shows how to recursively compute �x(y) for a given decomposition w = xy.

Theorem 5. Let " be the empty string and b ∈ {h, H}. Then �(") = 0 and, for all nonempty strings w ∈ {h, H, A}∗

�(wA) = �(w) + 1 , and �(wb) = {0 if �(w) = 0,
�(w) − 1 otherwise.

(13)

Furthermore, for any strings x, y ∈ {h, H, A}*, �x(") = �(x),

�x(yA) = �x(y) + 1 , and �x(yb) =
⎧

⎨
⎩

0 if �(xy) > �x(y) = 0 ,
0 if �(xy) = �x(y) = 0 and b = H ,
�x(y) − 1 otherwise.

(14)

The proof of Theorem 5 is given in Section 7. Letw be a characteristic string and letm, k ∈ ℕ so thatm+k ≤ |w|.
Let x ≺ w, |x| = m−1 and xy ⪯ w, |xy| ≥ m+k. If the symbols inw are independent and identically distributed,
the recursive formulation in (14) implies an algorithm—which takes time and space O(|w|3)— for computing
the probability that �x(y) ≥ 0. But this is exactly the probability that slotm is not k-settled, according to (1) and
Lemma 1 below. In Section 6.6, we describe this algorithm in more detail and compile some explicit values for
this probability.

6.3 Balanced forks, settlement violations, and relative margin
A natural structure we can use to reason about settlement times (see De�nition 3) is that of a “balanced fork.”

De�nition 18 (Balanced fork). A fork F is balanced if it contains a pair of tines t1 and t2 for which t1 ≁ t2 and
length(t1) = length(t2) = height(F). We de�ne a relative notion of balance as follows: a fork F ⊢ xy is x-balanced
if it contains a pair of tines t1 and t2 for which t1 ≁x t2 and length(t1) = length(t2) = height(F).

Thus, balanced forks contain two completely disjoint, maximum-length tines, while x-balanced forks contain
two maximum-length tines that may share edges in x but must be disjoint over the rest of the string. See Figures 2
and 3 for examples of balanced forks.

A fundamental question arising in typical blockchain settings is how to determine settlement time, the delay
after which the contents of a particular block of a blockchain can be considered stable. The existence of a balanced
fork is a precise indicator for “settlement violations” in this sense. Speci�cally, consider a characteristic string xy
and a transaction appearing in a block associated with the �rst slot of y (that is, slot |x| + 1). One clear violation of
settlement at this point of the execution is the existence of two chains—each of maximum length—which diverge
prior to y; in particular, this indicates that there is an x-balanced fork F for xy. Let us record this observation
below.3

3A balanced fork in [3] had the property that at least one maximum-length tine was adversarial. But this is not true in our setting since we
allow multiply honest slots.

23



w = h

1

A

2

h

3

A

4

h

5

A

6

0

Figure 2: A balanced fork
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Figure 3: An x-balanced fork, where x = hh

Observation 2. Let s, k ∈ ℕ be given and letw be a characteristic string. Slot s is not k-settled for the characteristic
string w if there exist a decomposition w = xyz, where |x| = s − 1 and |y| ≥ k + 1, and an x-balanced fork for xy.

In particular, to provide a rigorous k-slot settlement guarantee—which is to say that the transaction can be
considered settled once k slots have gone by—it su�ces to show that with overwhelming probability in choice of
the characteristic string determined by the leader election process (of a full execution of the protocol), no such
forks are possible. Speci�cally, if the protocol runs for a total of T time steps yielding the characteristics string
w = xy (wherew ∈ {0, 1}T and the transaction of interest appears in slot |x|+1 as above) then it su�ces to ensure
that there is no x-balanced fork for xŷ, where ŷ is an arbitrary pre�x of y of length at least k + 1. Note that for
systems adopting the longest chain rule, this condition must necessarily involve the entire future dynamics of the
blockchain. We remark that our analysis below will in fact let us take T = ∞.

Let w be a characteristic string. Writing w = xy, consider any tine-pair (tx, t�) in a fork F ⊢ w so that
reachF(t�) = �(F) and tx is y-disjoint with t�. Observe that if �x(y) < 0 then reachF(tx) < 0.

Fact 6. Let xy ∈ {h, H, A}∗ be a characteristic string. There is no x-balanced fork for xy if and only if �x(y) < 0.

Proof sketch. If a fork F ⊢ xy satis�es �x(F) ≥ 0, it contains two y-disjoint tines t1, t2, each with a non-negative
reach, so thatmin(reach(t1), reach(t2)) = �x(F). As reserve(ti) ≥ gap(ti) for i ∈ {1, 2}, we can extend these tines
using only new adversarial vertices so that both these extensions have the maximum length in the augmented
fork. Thus the augmented fork is x-balanced.

On the other hand, if a forkF ⊢ xy is x-balanced, theremust be two y-disjointmaximum-length tines t1, t2 ∈ F.
As the gap of a maximum-length tine is zero, we must have reach(ti) = reserve(ti) ≥ 0 for i ∈ {1, 2}. It follows
that �x(y) ≥ �x(F) ≥ mini reach(ti) ≥ 0.

6.4 Relative margin to characterize the UVP
Let w be a characteristic string. Recall that in Theorem 3, we showed that whether a slot has the UVP in w— a
structural property of the forks for w— is characterized by the “Catalan-ness” of the said slot. Below, we show
that relative margin has the same expressive power as the Catalan slots in terms of characterizing the UVP.

Lemma 1. Let T ∈ ℕ,w ∈ {h, H, A}T , and s ∈ [T] so that ws = h. Let x = w1…ws−1. Slot s has the UVP in w if
and only if for every pre�x xy ⪯ w, �x(y) < 0.

Proof.

The⟸ direction. Suppose that for every pre�x xy ⪯ w where |y| ≥ 1, we have �x(y) < 0. We wish to show that
s has the UVP in w.
Let F be any fork for xy and let t ∈ F, l(t) ≤ s − 1 be an honest tine. Since it is disjoint with any tine in F
over the su�x y, reach(t) < 0 and, by Fact 4, t does not have an adversarial extension t′ ∈ F, t ≺ t′ that
is viable at the onset of slot |xy| + 1. Therefore, if a tine in F is viable at the onset of slot |xy| + 1, it must
contain an honest vertex with label at least s. However, since an honest vertex builds only on top of a viable
tine, it follows that any viable tine must contain the unique honest vertex with label s.
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The⟹ direction. Suppose s has the UVP in w. Let k ∈ [s, T] be an integer and write w = xyz with |xy| = k.
(Note that y1 = ws.) We wish to show that �x(y) < 0.
Let F be any fork for xy. Since slot s belongs to y, F cannot contain two tines such that (i) both tines are
viable at the onset of slot |xy| + 1 and, at the same time, (ii) disjoint over the length of y since they must
contain the unique vertex with label s. In particular, F cannot be x-balanced. As F was an arbitrary fork
for xy, no fork for xy can be x-balanced for our choice of k. We use Fact 6 to conclude that �x(y)must be
negative.

6.5 An optimal online adversary against slot settlement
Let w be a characteristic string. For a �xed decomposition w = xy, there is an adversary4 who builds a fork
F ⊢ xy so that the �x(F) is at least as large as the right-hand side of (14). However, in light of Lemma 1, if an
adversary wants to violate the settlement of all possible slots of w at once, he needs to produce a fork F for w so
that �x(F) ≥ 0 for every pre�x x ⪯ w. In Figure 4, we describe a strategyA∗ which does even better: it produces a
fork F so that �x(F) = �x(y) for every pre�x x ⪯ w.

A∗ builds a fork for w = w1…wn+1 in an online fashion, i.e., it scans w once, from left to right, maintains a
fork Fn after scanning the �rst n symbols, and augments Fn by conservatively extending zero-reach tine(s) using
label n + 1. Speci�cally, if wn+1 = A, A∗ does nothing. If wn+1 = h, it (obviously) makes a single extension. Now
suppose wn+1 = H. It still makes a single extension if either Fn contains exactly one zero-reach tine or Fn’s reach
is positive. Otherwise, if �(Fn) = 0 and there are at least two zero-reach tines in Fn,A∗ extends two zero-reach
tines that diverge earliest in Fn.

The strategy A∗

Let n be a non-negative integer, w ∈ {h, H, A}n, and wn+1 ∈ {h, H, A}. If n = 0, set F0 ⊢ " as the trivial
fork comprising a single vertex. Otherwise, let Fn be the closed fork built recursively by A∗ for the
string w. If wn+1 = A, output Fn (as a fork for wwn+1). Otherwise, let Z and R be the set of zero-reach
tines and maximum-reach tines in Fn, respectively.

1. Identify a set S as follows: If |Z| = 1 then set S = Z. Otherwise, let r1 ∈ R, z1 ∈ Z be two tines
so that l(r1 ∩ z1) = min{l(r ∩ z) ∶ r ∈ R, z ∈ Z} and set

S = {{z1} if wn+1 = h or �(Fn) ≥ 1 ,
{z1, r1} otherwise .

2. Conservatively extend each tine in S using label n + 1. Let Fn+1 ⊢ wwn+1 be the new closed fork.
Output Fn+1.

Figure 4: Optimal online adversary A∗

De�nition 19 (Canonical fork). A canonical fork for w ∈ {h, H, A}∗ is a closed fork F ⊢ w so that �(F) = �(w)
and, for all pre�xes x ≺ w, �x(F) = �x(y). If |w| = 0, F is the unique fork with a single (honest) vertex and no edge.

It is not obvious whether a canonical fork always exists or whether it can be found algorithmically. The
theorem below gives us the assurance:

4Speci�cally, let w′ = xyb where b ∈ {h, H, A}. This strategy recursively builds a closed fork F ⊢ xy. Then, upon encountering b, it
augments F by making zero, one, or two conservative extensions, as follows: If b = A, it does nothing. If b = h, it extends a zero-reach tine if
possible; otherwise,it extends a maximum-reach tine. If b = H, it extends a pair of tines that witness �x(F). By following the arguments in [4],
one can show that if �x(F) = �x(y) then �x(F′) is at least as large as the right-hand side in (14).
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Theorem 6. Let w ∈ {h, H, A}∗. The strategyA∗ in Figure 4 outputs a canonical fork for w.

That is, for every characteristic string w there is a fork F ⊢ w so that for every pre�x x ⪯ w, �x(F) = �x(y).
Note that if one’s objective is to create a fork which contains many early-diverging tine-pairs (that witness large
relative margins), a canonical fork is the best one can hope for. This is whyA∗ is called an optimal online adversary.
The proof of Theorem 6 is given in Section 7.

6.6 An algorithm to compute exact settlement probabilities
Letm, k ∈ ℕ, � ∈ (0, 1], andph ∈ (0, (1+�)∕2]. LetT = m+k, � = (1−�)∕2, andpH = 1−�−ph. Letw ∈ {h, H, A}T
such that the symbols wi , i ∈ [T] are i.i.d. with Pr[wi = A] = �, Pr[wi = h] = ph, and Pr[wi = H] = pH. Write
w as w = xy where |x| = m, |y| = k. The recursive de�nition of relative margin (cf. Theorem 5) implies an
algorithm for computing the probability Pr[�x(y) ≥ 0] in O(T3) time and space.

In typical circumstances, however, it is more interesting to establish an explicit upper bound on Pr[�x(y) ≥ 0]
where |x| → ∞; this corresponds to the case where the distribution of the initial reach �(x) is the dominant
distribution X∞ in (9). Due to dominance, X∞(m) serves as an upper bound on �(x) for any �nitem = |x|. For
this purpose, one can implicitly maintain a sequence of matricesMt, t = 0, 1, 2, … , k such thatM0(r, r) = X∞(r)
for all 0 ≤ r ≤ 2k and the invariant

Mt(r, s) = Pr
y∶|y|=t

[�(xy) = r and �x(y) = s]

is satis�ed for every integer t ∈ [1, k], r ∈ [0, 2k], and s ∈ [−2k, 2k]. Here,M(i, j) denotes the entry at the ith
row and jth column of a matrixM. Observe thatMt(r, s) can be computed solely from the relevant neighboring
cells ofMt−1, that is, from the valuesMt−1(r ± 1, s ± 1). Of course, only the transitions approved by (14) should be
considered.

Finally, one can compute Pr[�x(y) ≥ 0] by summingMk(r, s) for r, s ≥ 0. This is precisely the probability that,
given a characteristic string xy where |x| → ∞, the slot |x| + 1 incurs a |y|-settlement violation. Table 1 (on
page 27) contains these probabilities for various values of �, |y|, and ph.

AC++ implementation of the above algorithm is publicly available at https://github.com/saad0105050/multihonest-
code [11].

7 Proofs of Theorem 5 and Theorem 6
The proof of Theorem 5 is presented in two parts. Let w ∈ {h, H, A}∗. First, for a given decomposition w = xy, we
prove an upper bound on �x(y). Next, considering the fork F ⊢ w built by the strategy Adversary∗ (see Figure 4),
we show that for every decomposition w = xy, �x(F) is at least as large as the upper bound proven in the �rst
part; thus F is canonical.

As a warm-up, we start with the following claim.

Claim 3. �(") = 0. For any x, y ∈ {h, H, A}∗, �x(") = �(x), �(xyA) = �(xy) + 1, and �x(yA) = �x(y) + 1.

Proof. The only possible fork for the empty string " contains a single honest vertex with reserve and gap both zero;
hence �(") = 0.

Let F be a closed fork for the characteristic string xy. Let t�, tx ∈ F be the two tines that witness �x(F), i.e.,
reach(t�) = �(F), reachF(tx) = �x(F), and t�, tx are disjoint over y.

In the base case, where y = ", observe that any two tines of F are disjoint over y. Moreover, a single tine t ∈ F
is disjoint with itself over the empty su�x ". Therefore, the relative margin �x(")must be at least �(x). As �x(F)
can be no more than �(x), it follows that �x(") = �(x).

Now consider a pair of closed forks F ⊢ xy and F′ ⊢ xyA such that F ⊑ F′ and x, y ∈ {h, H, A}∗. We must
have F′ = F since F′ is closed. In addition, for any tine t ∈ F, reachF′(t) = reachF(t) + 1 since the reserve
has increased by one but the gap is unchanged (as no new tine is added). Therefore, �(xyA) = �(xy) + 1 and
�x(yA) = �x(y) + 1.
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Table 1: Exact probabilities of k-settlement violations where the symbols h, H, A are independent and identically
distributed as Pr[A] = � ∈ (0, 0.5) and Pr[H] = 1 − � − Pr[h].

Pr[h]
1 − �

k �
0.01 0.10 0.20 0.30 0.40 0.49

1.0

100 5.70E-054 5.10E-018 2.28E-008 8.00E-004 1.37E-001 9.05E-001
200 1.64E-106 9.82E-035 1.61E-015 1.60E-006 3.36E-002 8.73E-001
300 4.70E-159 1.89E-051 1.14E-022 3.25E-009 8.52E-003 8.50E-001
400 1.35E-211 3.64E-068 8.02E-030 6.59E-012 2.18E-003 8.29E-001
500 1.02E-264 3.90E-085 4.00E-037 1.10E-014 5.16E-004 8.05E-001

0.9

100 9.75E-052 1.24E-017 3.24E-008 9.27E-004 1.44E-001 9.08E-001
200 3.04E-102 4.95E-034 2.96E-015 2.03E-006 3.60E-002 8.77E-001
300 9.46E-153 1.98E-050 2.71E-022 4.50E-009 9.30E-003 8.53E-001
400 2.95E-203 7.91E-067 2.48E-029 9.96E-012 2.43E-003 8.33E-001
500 1.83E-254 1.63E-083 1.54E-036 1.78E-014 5.80E-004 8.08E-001

0.8

100 6.16E-048 4.13E-017 5.10E-008 1.11E-003 1.53E-001 9.11E-001
200 7.58E-095 4.61E-033 6.58E-015 2.73E-006 3.91E-002 8.81E-001
300 9.32E-142 5.14E-049 8.48E-022 6.78E-009 1.04E-002 8.57E-001
400 1.15E-188 5.74E-065 1.09E-028 1.68E-011 2.77E-003 8.38E-001
500 1.94E-236 3.02E-081 9.16E-036 3.28E-014 6.70E-004 8.12E-001

0.5

100 4.80E-028 6.53E-014 6.21E-007 2.80E-003 1.99E-001 9.26E-001
200 2.46E-055 6.31E-027 6.40E-013 1.31E-005 5.86E-002 8.98E-001
300 1.26E-082 6.10E-040 6.60E-019 6.19E-008 1.76E-002 8.77E-001
400 6.46E-110 5.90E-053 6.81E-025 2.92E-010 5.33E-003 8.59E-001
500 1.28E-138 1.75E-066 3.65E-031 9.61E-013 1.39E-003 8.31E-001

0.25

100 1.22E-012 3.13E-008 8.94E-005 1.65E-002 3.17E-001 9.48E-001
200 1.51E-024 1.06E-015 9.36E-009 3.36E-004 1.25E-001 9.27E-001
300 1.86E-036 3.62E-023 9.80E-013 6.86E-006 4.94E-002 9.10E-001
400 2.30E-048 1.23E-030 1.03E-016 1.40E-007 1.96E-002 8.96E-001
500 5.06E-062 7.72E-039 4.06E-021 1.66E-009 6.20E-003 8.65E-001

0.01

100 3.77E-001 4.91E-001 6.38E-001 7.95E-001 9.31E-001 9.97E-001
200 1.42E-001 2.41E-001 4.08E-001 6.34E-001 8.72E-001 9.95E-001
300 5.37E-002 1.18E-001 2.61E-001 5.06E-001 8.17E-001 9.94E-001
400 2.03E-002 5.81E-002 1.67E-001 4.04E-001 7.66E-001 9.92E-001
500 7.89E-005 3.23E-003 2.71E-002 1.40E-001 4.83E-001 9.54E-001

7.1 An upper bound on relative margin
Proposition 1. Let w, x, y ∈ {h, H, A}∗ and b ∈ {h, H}, Then

�(xyb) ≤ {0 if �(xy) = 0 ,
�(xy) − 1 otherwise.

(15)

Furthermore,

�x(yb) ≤
⎧

⎨
⎩

0 if �(xy) > �x(y) = 0 ,
0 if �(xy) = �x(y) = 0 and b = H ,
�x(y) − 1 otherwise.

(16)

Proof. Suppose F′ ⊢ xyb is a closed fork such that �(xyb) = �(F′) and �x(yb) = �x(F′). Let t�, tx ∈ F′ be a pair
of y-disjoint tines such that reachF′(t�) = �(F′) and reachF′(tx) = �x(F′). (If there are multiple candidates for t�

27



or tx, select the one with the smallest ≤� rank.) Let F ⊢ xy be the unique closed fork such that F ⊑ F′. Note that
while F′ is obtained from one or more extensions of F-tines, these extensions are not necessarily conservative.
Recall that reachF′(t) ≤ 0 for any tine t ∈ F′, l(t) = |xy| + 1.

Proving (15). Let A be the set of all F′-tines with label |xy| + 1. Let � ∈ A be the �rst tine in the ≤�
ordering so that reach(�) = maxt∈A{reachF′(t)}. By Fact 5, reachF′(�) ≤ 0 and, in addition, for any t ∈ F,
reachF′(t) ≤ reachF(t) − 1. Let t̂ be the maximum-reach tine in F with the smallest ≤� rank.

If �(F) = 0 then reachF′(t) < 0 for all t ∈ F. Hence t� = � and, consequently, �(xyb) ≤ 0. If �(F) ≥ 2 then
t� ∈ F and, therefore, �(xyb) = reachF′(t�) ≤ �(F) − 1 ≤ �(xy) − 1. If �(F) = 1 and t� ∈ F then, as before,
�(xyb) = reachF′(t̂) = reachF(t̂) − 1 = �(F)−1 ≤ �(xy)−1. If �(F) = 1 and t� ∉ F then, as we have seen before,
�(xyb) = reachF′(�) ≤ 0 = �(F) − 1 ≤ �(xy) − 1. Thus we have proved (15).

Proving (16). If l(t�) = |xy| + 1 then we are done: by our preceding argument, reachF′(t�) ≤ 0. On the other
hand, Note that t� ∉ F since, by Fact 5, reach of any F tine can only decrease t� must have been an extension of a
maximum-reach F-tine.

Case 1: �(xy) > 0 and �x(y) = 0. We wish to show that �x(yb) ≤ 0. Suppose (toward a contradiction) that
�x(yb) > 0. Then neither t� nor tx is a conservative extension because, as we proved in Claim 2, conservative
extensions have reach zero. This means that t� and tx existed in F, and their F-reach was strictly greater than
their F′-reach (by Claim 1). Because t� and tx are disjoint over y0, they must also be disjoint over y; therefore,
�x(F) must be at least min(reachF(t�), reachF(tx)). It follows that 0 = �x(y) ≥ min(reachF(t�), reachF(tx)) >
min(reachF′(t�), reachF′(tx)) = �x(F′) = �x(yb). The last term is strictly positive by assumption and hence, a
contradiction ensues.

Case 2: �(xy) = 0. We wish to show that (i) �x(yb) ≤ 0 if b = H and �x(y) = 0, and (ii) �x(yb) ≤ �x(y) − 1
otherwise. First, we claim that t� must arise from an extension. Suppose, toward a contradiction, that t� is not
an extension, i.e., t� ∈ F. The fact that t� achieves the maximum reach in F′ implies that t� has a non-negative
reach since the longest honest tine always achieves reach zero. Furthermore, Claim 1 states that all F-tines see
their reach decrease. Therefore, t� ∈ F must have had a strictly positive reach. But this contradicts the central
assumption of the case, i.e., that �(xy) = 0. Therefore, we conclude that t� ∈ F′ ⧵ F.

Let s ∈ F be the tine-pre�x of t� ∈ F′ so that t� is an extension of s. Observe that reachF(s) must be
non-negative since otherwise, s could not have been extended. In fact, our assumption �(xy) = 0 implies that
reachF(s) = 0. In addition, since tx and t� are disjoint over yb, so are tx and s.

If b = h, t� is the only extension in F′ and hence tx must be in F. Consequently,min(reachF(s), reachF(tx)) ≤
�x(y). Because reachF(s) = 0 and reachF(tx) ≤ �(xy) = 0, it follows that reachF(tx) ≤ �x(y). Finally, since
tx ∈ F, Claim 1 tells us that reachF′(tx) < reachF(tx). Taken together, these two inequalities show that
�x(yb) = reachF′(tx) < reachF(tx) ≤ �x(y). The last inequality follows since s and tx are disjoint over y
and reachF(s) = 0 = �(xy). We conclude that �x(yb) ≤ �x(y) − 1.

If b = H and �x(y) < 0, we claim that tx ∈ F. To see why, note that as tx is yb-disjoint with t�, it must extend
some F-tine t that is y-disjoint with t�. However, as �x(y) < 0, tmust have negative reach and hence cannot
be extended into tx; this is a contradiction. Therefore, tx ∈ F and we can apply the argument in the “b = h”
case above to conclude that �x(yb) ≤ �x(y) − 1.

If b = H and �x(y) = 0, then there are two alternatives depending on whether tx is an extension. If tx is not an
extension, we can apply the argument in the “b = h” case above and conclude that �x(yb) ≤ �x(y)−1 = −1.
On the other hand, if tx ∉ F, both tx and t� are extensions and, by Fact 5,max(reachF′(tx), reachF′(t�)) ≤ 0.
In addition, Fact 5 states that for all t ∈ F, reachF′(t) < reachF(t) ≤ �(xy) = 0. We conclude that
�x(yb) ≤ 0.
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Case 3: �(xy) > 0 and �x(y) ≠ 0. Wewish to show that �x(yb) ≤ �x(y)−1 or, equivalently, that �x(yb) < �x(y).
We will break this case into two sub-cases.

If both t�, tx ∈ F, then �x(yb) = reachF′(tx) < reachF(tx) ≤ �x(y). Here, the �rst inequality follows from Fact 5
and the second inequality follows from the fact that tx, t� is y-disjoint and reach(tx) is at most reach(t�) by
design.

Otherwise, at least one of tx, t� arose from an extension. Since reachF′(tx) ≤ reachF′(t�) by design, it follows that
reachF′(tx) ≤ 0 as the reach of an extension is at most zero. If �x(y) > 0 then we are done: �x(yb) ≤ 0 <
�x(y). On the other hand, suppose �x(y) < 0. Recall the tine s mentioned before. As tx is y-disjoint with s
and �x(y) is negative by assumption, reachF(tx) is at most �x(y). We conclude that �x(yb) = reachF′(tx) <
reachF(tx) ≤ �x(y) where the inequality follows from Fact 5.

7.2 A∗ simultaneously maximizes all relative margins
Proposition 2. Letw ∈ {h, H, A}∗ and b ∈ {h, H, A}. Assume that Theorem 6 holds for characteristic strings of length
|w|. Let F′ be the fork built byA∗ for the characteristic string wb. Then

�(F′) ≥
⎧

⎨
⎩

�(xy) + 1 if b = A ,
0 if b ∈ {h, H} and �(xy) = 0 ,
�(xy) − 1 otherwise .

(17)

Furthermore, for any decomposition w = xy, |y| ≥ 0,

�x(F′) ≥

⎧
⎪
⎨
⎪
⎩

�x(y) + 1 if b = A ,
0 if b ∈ {h, H} and �(xy) > �x(y) = 0 ,
0 if b = H and �(xy) = �x(y) = 0 ,
�x(y) − 1 otherwise.

(18)

Proof. Let w′ = wb. Let F and F′ be the forks built by A∗ for the characteristic string w and wb, respectively, so
that F ⊑ F′. By assumption, F is a canonical fork for w; this means �(F) = �(w) and for all x ≺ w, �x(F) = �x(y).
It will be helpful for the reader to recall Fact 5 before proceeding.

Proving (17). We wish to show that �(F′) satis�es (17). If b = A then, by construction, F′ = F. The symbol
b = A increases the reserve of every tine by one. Thus �(F′) = �(F) + 1 = �(xy) + 1. Now suppose b ∈ {h, H}.
Since all tines � ∈ F′ with label |xy|+1 are conservative extensions, reachF′(�) = 0 and the F′-reach of all F-tines
decreases by one. Let t be a maximum-reach tine in F; since F is canonical, reachF(t) = �(F) = �(xy). Therefore,
�(F′) ≥ reachF′(t) = reachF(t) − 1 = �(xy) − 1. If �(F) = 0 then this inequality can be tightened, as follows.
As all F-tines have negative F′-reach, any maximum-reach F′-tine must be one of the extensions; it follows that
�(F′) = 0. Thus we have proved (17).

Proving (18). Let w = xy be an arbitrary decomposition; this x remains �xed for the remainder of the proof.
(Note that A∗ is unaware of this decomposition.)

Let �x, ��x ∈ F′ be two yb-disjoint tines so that reachF′(��x) = �(F′), reachF′(�x) = �x(F′), and, of all
yb-disjoint tine pairs in F′ that attain this requirement, these two tines diverge the earliest. We say that the tines
�x, ��x witness �x(F′).

Designate the witness tines tx, t�x ∈ F in the same way as we have designated �x, ��x ∈ F′; speci�cally, w, y,
and F would substitute w′, yb, and F′ in the recipe above. By assumption, F is a canonical fork for xy. Therefore,
�(F) = reachF(t�x) = �(xy), tx is y-disjoint with t�x, and �x(F) = reachF(tx) = �x(y). We wish to show that
�x(F′) satis�es (18).
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If b = A then, by construction, F′ = F and, therefore, tx and t�x are yb-disjoint in F′. Note that the F′-reach
of every F-tine is one plus its F-reach. Therefore, �x(F′) ≥ min(reachF′(t�x), reachF′(tx)) = reachF′(tx) =
reachF(tx) + 1 = �x(y) + 1.

If b ∈ {h, H}, all tines in F′ with label |w| + 1 arise from conservative extensions. Since the tines tx, t�x are yb-
disjoint in F′, it follows that �x(F′) ≥ min(reachF′(tx), reachF′(t�x)) ≥ reachF′(tx) = reachF(tx) − 1 = �x(y) − 1.
Here, the �rst inequality follows from the de�nition of relative margin and the second one from the fact that
reach(tx) ≤ reach(t�x) by assumption. The �rst equality follows from Fact 5 and the second one follows from our
assumption that the tines t�x, tx ∈ F witness �x(F) = �x(y).

However, we can tighten the above inequality when �x(y) is zero, as follows. Recall the sets Z, S, R, the
zero-reach tine z1, and the maximum-reach tine r1 from Figure 4. Also recall that z1, of all zero-reach tines,
diverges earliest from any maximum-reach tine. As reachF(z1) = �x(F) = �x(y) = 0, it follows that z1 and r1
must be y-disjoint. Let �1 ∈ F′ be the conservative extension of z1.

If �(xy) ≥ 1 and �x(y) = 0 then �1 is the only new extension in F′ and it has reach zero in F′. Note that
reachF′(r1) = reachF(r1) − 1 = �(F) − 1 ≥ 0 since �(F) = �(xy) ≥ 1 by assumption. It follows that
�x(F′) ≥ min(reachF′(�1), reachF′(r1)) ≥ reachF′(�1) = 0.

If �(xy) = 0 and �x(y) = 0 then Z = R and |Z| ≥ 2. If b = h, �1 is the only tine in F′ with the maximum reach,
zero. Note that reachF′(r1) = reachF(r1) − 1 = �(F) − 1 ≥ −1. Since �1 and r1 are yb-disjoint, it follows
that �x(F′) ≥ min(reachF′(�1), reachF′(r1)) ≥ reachF′(r1) ≥= −1.
On the other hand, if b = H then F′ contains two new conservative extensions, �1 and �2, both with label
|xy| + 1, where z1 ≺ �1 and r1 ≺ �2. These extensions, therefore, are yb-disjoint and have zero reach. It
follows that �x(F′) ≥ 0.

Note that if we want (18) to hold only for a given pre�x x ⪯ w (a scenario pertinent in [4]), the adversary A∗

(which produces a canonical fork) would be an overkill. Instead, we can use a simpler, pre�x-aware adversary
such as the one mentioned at the outset of Section 6.5; let us call this strategy A. In addition, instead of assuming
Theorem 6, it su�ces to assume Proposition 2 inductively for all strings of length |w|. Let F be the fork built by A
for the string w = xy. In conjunction with Proposition 1, this would imply “�(F) = �(w) and �x(F) = �x(y),” a
critical property used inside the above proof. We omit further details.

7.3 Proof of Theorem 5 and Theorem 6
Proof of Theorem 5. Let w ∈ {h, H, A}∗. If w = " then, by Claim 3, �(") = 0. If |w| ≥ 1, (13) is implied by the
combination of Claim 3, (15) and (17).

Let w = xy be an arbitrary decomposition. We proceed by induction on |y|. If |y| = 0 then Claim 3 implies
that �x(") = �(x). Otherwise, (14) is implied by the combination of Claim 3, (16) and (18).

Proof of Theorem 6. The proof is by induction on |w|. If w is the empty string ", the only fork F ⊢ " is the
trivial fork containing a single (honest) root vertex. By Claim 3, F satis�es �(") = 0 and �"(") = �(") = 0.

Now, let n be a non-negative integer and letw be a characteristic string of length n+1. Assume that Theorem 6
holds for all characteristic strings of length 0, 1, … , n. Note that this assumption satis�es the premise in Proposi-
tion 2. A combined application of Claim 3, Proposition 1, and Proposition 2 implies Theorem 6 for |w| = n + 1.

8 The semi-synchronous setting
We set the stage by stating the ∆-synchronous model.
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De�nition 20 (Semi-synchronous characteristic string). Let sl1, … , sln be a sequence of slots. A semi-synchronous
characteristic string w is an element of {h, H, A, ⟂}n de�ned for a particular execution of a blockchain protocol on
these slots so that for t ∈ [n], wt =⟂ if slt was assigned to no participants; otherwise, wt = A if slt was assigned to
an adversarial participant; otherwise, wt = h if slt was assigned to a single honest participant; otherwise wt = H.

In the ∆-synchronous setting, axiom A4 is replaced by
A4∆. In a ∆-synchronous execution, if two honestly generated blocks B1 and B2 are labeled with slots sl1 and sl2

for which sl1 + ∆ < sl2, the length of the unique blockchain terminating at B1 is strictly less than the length
of the unique blockchain terminating at B2.

De�nition 21 (∆-Fork). Letw ∈ {h, H, A, ⟂}n, ∆ ∈ {0, 1, 2, …}, P = {i ∶ wi = h}, andQ = {j ∶ wj = H}. A∆-fork for
the semi-synchronous stringw consists of a directed and rooted tree F = (V, E) with a labeling l ∶ V → {0, 1, … , n}.
We insist that each edge of F is directed away from the root vertex. We require conditions (F1)–(F3) fromDe�nition 2
and

(F4∆) for any indices i, j ∈ P ∪Q, if i + ∆ < j then the depth of a vertex with label i is strictly less than the depth of a
vertex with label j.

If F is a ∆-fork for the semi-synchronous characteristic string w, we write F ⊢∆ w. A ∆-fork generalizes
a synchronous fork in De�nition 2 since the latter is a ∆-fork with ∆ = 0. We sometimes emphasize this fact
by writing F′ ⊢0 w′ where w′ is a synchronous characteristic string and F′ is a synchronous fork. Note that
condition (F4∆) is a direct analogue of axiomA4∆. (We already know that conditions (F1)–(F3) are direct analogues
of axioms A1– A3.)
De�nition 22 (Reduction map). For ∆ ∈ ℕ, we de�ne the function �∆ ∶ {⟂, h, H, A}∗ → {h, H, A}∗ inductively as
follows: �∆(") = " and for w ∈ {⟂, h, H, A}∗,

�∆(bw) =
⎧

⎨
⎩

�∆(w) if b =⟂ ,
b�∆(w) if b ∈ {h, H} and {⟂, A}∆ ⪯ w ,
A�∆(w) otherwise .

(19)

Note that in the above de�nition, ifw′ = �∆(w) andA = {i ∶ wi ≠⟂} then |A| = |w′|. Also note that the reduction
�∆ implicitly de�nes, for each w, a bijective, increasing function � ∶ A → [|w′|]. Note that �∆ turns an h or H
symbol in w into an A symbol in w′ with a constant probability. Therefore, for any slot t in w, the reduction map
�∆ ampli�es the probability that the slot �(t) in w′ = �∆(w) is adversarial.
De�nition 23 (∆-settlement with parameters s, k ∈ ℕ). Let n ∈ ℕ and let w ∈ {⟂, h, H, A}n. Let t ∈ [s + k, n] be
an integer, ŵ ⪯ w, |ŵ| = t, and let F be any ∆-fork for ŵ. We say that a slot s is not (k, ∆)-settled in F if F contains
two maximum-length tines C1, C2 so that at least one of these tines contains a vertex with label s, both tines contain
at least k vertices after slot s, and the label of their last common vertex is at most s − 1. Otherwise, we say that slot s
is (k, ∆)-settled in F. We say that slot s is (k, ∆)-settled in w if, for each t ≥ s + k, it is (k, ∆)-settled in every ∆-fork
F ⊢ ŵ where ŵ ⪯ w, |ŵ| = t.

Note that in the above de�nition, we truncated k trailing blocks from a tine whereas in De�nition 3, we
truncated from a tine all trailing blocks corresponding to the last k slots. Note that this change of perspective is
necessary since w may contain ⟂ symbols, i.e., empty slots.
Theorem 7 (Main theorem; ∆-synchronous setting). Let f, � ∈ (0, 1) and ∆ ∈ {0, 1, 2, …}. Let s, k, T ∈ ℕ so that
T ≥ s + k + ∆. Write p⟂ = 1 − f and � = (1 − f)∆. Let pA ∈ [0, f) so that pA, f, �, and � satisfy

pA�∕f + (1 − �) ≤ (1 − �)∕2 . (20)
Let ph ∈ (0, f −pA] and write pH = f−pA−ph. Letw ∈ {⟂, h, H, A}T be a random variable so that eachwi , i ∈ [T],
is independent and identically distributed as follows: Pr[wi = �] = p� for � ∈ {h, H, A, ⟂}. Letℬ be the distribution
of w. Then

Pr
w
[slot s is not (k, ∆)-settled in w] ≤ exp (−k ⋅ Ω(min(�3, �2ph�∕f)) +

�(1 + ∆)
1 − � ) .

(Here, the asymptotic notation hides constants that do not depend on � or k.)
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The main observation for proving the theorem above is that a ∆-settlement violation in w, implies a certain
combinatorial event (parameterized by ∆) in a pre�x of �∆(w). Speci�cally, we can analyze the latter event using
techniques developed in proving Theorem 1.

A comment on consistent chain selection. Assuming axiom A0′ is satis�ed, it is easy to prove an analogue
of Theorem 2 in the ∆-synchronous setting; we need only use Bound 2 in lieu of Bound 1. The resulting bound on
the probability of a (k, ∆)-settlement violation would be

exp (−k ⋅ Ω(�3) + �(1 + ∆)
1 − � ) .

We omit further details.

Road-map for the proof. Let w ∈ {⟂, h, H, A}∗, w′ = �∆(w), n = |w|, andm = |�∆|. Our roadmap forward is
as follows:

1. Show that there is a bijection between ∆-forks for w and synchronous forks for w′. In particular, for each ∆-
fork F ⊢∆ w there is an isomorphic synchronous fork F′ ⊢0 w′ and a bijective map {i ∈ [n] ∶ wi ≠⟂} → [m].
This is shown in Proposition 3.

2. Show that if w violates ∆-settlement then some pre�x b ≺ �∆(w) violates a suitably-de�ned combinatorial
event B∆. It is important that we can analyze this event using the techniques and results we have already
established. This is done in Lemma 2.

3. Since the decisions made by �∆ at each slot depends on the ∆ future slots, the distribution of the last few
symbols of �∆(w)will be “distorted” no matter howw is distributed. Assumingw has i.i.d. symbols, we need
to show that the symbols in the aforementioned pre�x b ≺ �∆(w) are i.i.d. as well. This is done in Lemma 4.

4. Obtain a bound on Pr[B∆] in Bound 3 and proceed to prove Theorem 7.

8.1 Structural properties of the reduction map
An important property of the reduction w′ = �∆(w) is that it readily provides a bijection between ∆-forks for w
and synchronous forks for w′.

Proposition 3. Let w ∈ {⟂, h, H, A}∗ and w′ = �∆(w). Then, for every ∆-fork F ⊢ w there is a synchronous fork
F′ ⊢0 w′ which is isomorphic to F. F′ is called the image of F under �∆.

Proof sketch. Let F′ be a copy of F. Establish the natural bijectionm ∶ V(F) → V(F′) given by the copying proess,
i.e., u ↦ m(u), and relabel the vertices as

l(m(u)) = �(l(u)) for each vertex u ∈ F . (21)

Set r(F′) = m(r(F)) and l(r(F′)) = 0. It su�ces to check that F′ ⊢0 w′, i.e., F′ is a valid (synchronous) fork for
w′. Speci�cally, if there are two honest slots ℎ1, ℎ2 in w within a distance ∆ of each other, then the former honest
slot is mapped to an adversarial slot in w′. Therefore, in F′, an honest vertex is aware of all honest vertices with
smaller labels.

Next, we show that a ∆-settlement violation in w implies a combinatorial event in �∆(w)⌊∆ ∈ {h, H, A}∗. It
follows that we can use our existing stochastic techniques to bound ∆-settlement violations on w.

Let w′ ∈ {h, H, A}∗ be a characteristic string. De�ne bi ∈ {±1} as bi = 1 i� w′
i = A. Let S = (Si)|w

′|
i=0 be a simple

biased walk on ℤ de�ned as S0 = 0, Si = Si−1 + bi .

Lemma 2. Letw ∈ {⟂, h, H, A}∗, ∆, s, k ∈ ℕ so that |x| = s and xs ≠⟂. Letw′ = �∆(w) and writew′ = x′y′z′a′ so
that |a′| = ∆ and |y′| ≥ 2k. Recall the simple biased walk S = (Si) onw′ de�ned above. Let E denote the event that
a slot c′ in y′ is Catalan in x′y′z′ and Sc′+k+i ≤ Sc′ − ∆ for all i ≥ 0. If E occurs then s is (|y′|, ∆)-settled in w.
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Proof. Let � be the bijection described after De�nition 22. Note that |x′| = �(s). Assume that E occurs. Thus y′
contains a uniquely honest slot c′ which is Catalan in x′y′z′. Note that S|w′| ≤ S|x′y′z′| + ∆ ≤ (Sc − ∆) + ∆ ≤ Sc′
where the second inequality follows from the assumption that E occurs. It follows that c′ is Catalan in w′ as well.
Therefore, by Theorem 3, c′ has the UVP in w′. Let c be the integer satisfying c′ = �(c).

Let b ⪯ xyz, |b| ≥ |xy| and b′ = �∆(b) ⪯ x′y′z′. (Necessarily, |b′| ≥ |x′y′|.) Since the reduction map gives
an isomorphism between every ∆-fork for b and its unique image (which is a synchronous fork for b′) under the
reduction �∆, it follows that c has the UVP in w.

For any ∆-fork F ⊢∆ b, let u ∈ F, l(u) = c be the unique vertex contained by every tine t ∈ F viable at the
onset of any slot after c. Consider all tines � ∈ F so that � has at least |y′| vertices with label at least s + 1. and
� is viable at the onset of slot l(�) + 1. Since l(�) ≥ |xy| ≥ c, it follows that u ⪯ �. Thus all these tines � agree
about slot s since s < c = l(u). In particular, if F contains two maximum-length tines �1, �2, each with at least |y′|
vertices after slot s, then they would agree about slot s. In fact, l(�1 ∩�2) ≥ c > s. Hence smust be (|y′|, ∆)-settled
in F and, since F was arbitrary, s must be (|y′|, ∆)-settled in w.

8.2 Stochastic properties of the reduction map
It turns out that if the bits in w are i.i.d. then so are the bits in a suitable pre�x of �∆(w) albeit with a slightly
di�erent distribution (which accounts for the absence of the empty slots). Speci�cally, for any string x = x1x2…
on any alphabet and any k ∈ ℕ, de�ne x⌊k ≜ x1…x|x|−k.

Proposition 4. Let T ∈ ℕ,w = w1…wT ∈ {⟂, h, H, A}T be a sequence of i.i.d. symbols, and de�ne p� ≜ Pr[w1 = �]
for each � ∈ {⟂, h, H, A}. Let x = �∆(w) and let l = |x|. Write f = 1 − p⟂ and � = (1 − f)∆. Then the symbols in
the string x⌊∆ are i.i.d. with

Pr[xi = h] = ph ⋅ �∕f ,
Pr[xi = H] = pH ⋅ �∕f , and
Pr[xi = A] = 1 − � + pA ⋅ �∕f

(22)

for each i ∈ [l − ∆].

Proof. First let us pretend for a moment that T = ∞; then l = ∞ as well. Let us write the in�nite sequence w as a
concatenation of segments of ⟂s punctuated by a single non-⟂ symbol. That is, write w = b0e1b1e2b2… where, for
i = 0, 1, …, bi =⟂∗ and ei ∈ {h, H, A}. The reduction map �∆ translates a segment eibi into a symbol zi as follows:

zi = {A if ei = A or |bi| ≤ ∆ − 1
ei if ei ∈ {h, H} and |bi| ≥ ∆ .

In particular, the segments eibi as well as the events that determine the value of an zi are disjoint. Therefore, the
symbols in the in�nite sequence z1z2… = �∆(w1ww …) are independent and identically distributed.

If T is �nite, however, the last ∆ symbols of x = �∆(w) are “distorted” in that the translated symbols in this
region will be more favored to be As. However, since the last ∆ symbols of x must correspond to at least ∆ trailing
symbols of w, it follows that x1…xl−∆ is a pre�x of z1z2… .

It remains to compute the probabilities. Let q� = Pr[zi = �] for any i and � ∈ {h, H, A}. Then qh = ph∕(1 −
p⟂)p∆⟂ = ph�∕f, qH = pH�∕f, and qA = 1−(qh+qH) = 1−(ph+pH)�∕f = 1−(f−pA)�∕f = 1−�+pA�∕f.

The �nal ingredient to proving Theorem 7 is a tail bound for (the complement of) the event E in Lemma 2.

Bound 3. Let T, s, k ∈ ℕ, T ≥ s + 2k + ∆ and �, qh ∈ (0, 1) so that the characteristic string w′ ∈ {h, H, A}T satis�es
the (�, qh)-Bernoulli condition. Write w′ = x′y′z′ so that y′ = ws …ws+2k−1. Let G denote the event that w′ has
a Catalan slot c which belongs to y′1…y

′
k . Condition on G. Let ∆ ∈ ℕ and recall the simple biased random walk

S = (Si) on w′ de�ned above Lemma 2. Let B∆ be the event that Sc+k+i ≥ Sc − ∆ for some i ≥ 0. Then for large k,

Pr
w
[B∆ ∣ G] ≤ exp (−k ⋅ Ω(�2) + �(1 + ∆)

1 − � ) . (23)
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Proof. For simplicity, write p = qA, and q = qh +qH. Conditioned on G, Sc ≥ Sc+i for all i ≥ 1. Let y = y′[c + 1 ∶
c + k] so that |y| = k. Moreover, #A(y) ≤ #h(y) +#H(y). Let fi(k), i = 0, 1, … be the probability that Sc+k = Sc − i.
Thus we wish to upper-bound f(∆, k) ≜ ∑∆

i=0 fj(k).
Write a = EA(y) and ℎ = k − a and suppose ℎ − a = j for some j = 0, 1, 2, … . Hence, for a �xed j, we have

ℎ = (k + j)∕2 and a = (k − j)∕2. In addition, k and j has the same parity. Thus,

fj(k) =
( k
(k + j)∕2

)
p(k−j)∕2q(k+j)∕2 =

( k
(k + j)∕2

)
(pq)k∕2(q∕p)j∕2 ≤

( k
k∕2

)
(pq)k∕2(q∕p)j∕2

= O(1) ⋅ 2k
√
�k

⋅ (1 − �2)k2−k ⋅ (q∕p)j∕2 = O(1) ⋅ (1 − �2)k∕2
√
k

⋅ (q∕p)j∕2

since p = (1 − �)∕2 and q = (1 + �)∕2. It follows that

f(∆, k) =
∆∑

j=0
fj(k) ≤

O(1)
√
k
⋅ (1 − �2)k∕2

∆∑

j=0
(q∕p)j∕2 ≤ O(1)

√
k
⋅ exp(−k�2∕2) ⋅ (1 + ∆)(q∕p)∆∕2 .

Since

(q∕p)1∕2 = (1 + �
1 − �)

1∕2
= (1 + 2�

1 − �)
1∕2

≤ exp(�∕(1 − �)) ,

we have

f(∆, k) ≤ O(1 + ∆)
√
k

⋅ exp
(
−k�2∕2 + (1 + ∆)�∕(1 − �)

)
.

Note that for �xed � and ∆, f(∆, k) decreases geometrically in k. Thus Pr[B∆ ∣ Gc] =
∑

t≥k f(∆, t) is no more than
the quantity in (23).

8.3 Proof of Theorem 7
The symbols in w are independent and identically distributed. Write w′ = �∆(w), w′ = x′y′z′a′, |a′| = ∆ and
|y′| ≥ 1 + ∆. Let k be an integer so that |y′| = 2k. Recall the random walk S = (Si) on w′ de�ned above
Lemma 2. Let G1 denote the (good) event that a slot c′ in y′ is Catalan in x′y′z′. Let G2 denote the (good) event
that Sc′+k+i ≤ Sc′ − ∆ for all i ≥ 0. By Lemma 2, G1 ∩ G2 implies A. (Here, ⋅ denotes the complement.) The
contrapositive of the above statement gives us

Pr[A] ≤ Pr[G1] + Pr[G2 ∣ G1] . (24)

The terms on the right-hand side can be bounded from above using Bounds 1 and 3, respectively, provided
the symbols in x′y′z′ are i.i.d. with Pr[x′1 = A] = (1 − �)∕2. Let us check whether this condition holds. We have
f = 1 − p⟂ and � = (1 − f)∆. Proposition 4 states that the symbols of x′y′z′ are i.i.d. with distribution given
by (22). For each � ∈ {h, H, A} we write p′� = Pr[x′1 = �].

The condition (20) can be equivalently stated as 1−(1−pA∕f)� = (1−�)∕2. We check that p′A = 1−(p′h+p
′
H) =

1 − (ph + pH)�∕f = 1 − (f − pA)�∕f = 1 − (1 − pA∕f)� = (1 − �)∕2 and, consequently, p′h + p′H = (1 + �)∕2.
Hence we can directly apply Bound 3 on the terms in the right-hand side of (24) to conclude that

Pr[A] ≤ exp (−k
(
Ω(min(�3, �2qh))

)
+ �(1 + ∆)

1 − � ) .

The claim involving the distributionW follows from the analogous claim in Theorem 1.
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9 The common pre�x property
For the sake of simplicity, assume the synchronous communication model from Section 2.2; the ∆-synchronous
setting can be handled in the same way as delineated in Sections 8 and 8.

The common pre�x property with parameter k asserts that, for any slot index s, if an honest observer at slot
s + k adopts a blockchain C, the pre�x C[0 ∶ s] will be present in every honestly-held blockchain at or after slot
s + k. (Here, C[0 ∶ s] denotes the pre�x of the blockchain C containing only the blocks issued from slots 0, 1, … , s.)

We translate this property into the framework of forks. Consider a tine t of a fork F ⊢ w. The trimmed tine
t⌊k is de�ned as the portion of t labeled with slots {0, … , l(t) − k}. For two tines, we use the notation t1 ⪯ t2 to
indicate that the tine t1 is a pre�x of tine t2.

De�nition 24 (Common Pre�x Property with parameter k ∈ ℕ). Let w be a characteristic string. A fork F ⊢ w
satis�es k-CPslot if, for all pairs (t1, t2) of viable tines F for which l(t1) ≤ l(t2), we have t⌊k1 ⪯ t2. Otherwise, we say
that the tine-pair (t1, t2) is a witness to a k-CPslot violation. Finally, w satis�es k-CPslot if every fork F ⊢ w satis�es
k-CPslot.

If a string w does not possess the k-CPslot property, we say that w violates k-CPslot. Observe that traditionally
(cf. [6]), the truncated chain is de�ned in terms of deleting a su�x of (block-)length k from C. We denote this
traditional version of the common pre�x property as the k-CP property. Note, however, that a k-CP violation
immediately implies a k-CPslot violation; hence, bounding the probability of a k-CPslot violation is su�cient to
rule out both events.

Connection with the UVP. Note that if w admits a k-CPslot violation, then there must be a fork F containing
two distinct viable tines t1, t2, l(t1) ≤ l(t2) so that l(t1) − l(t1 ∩ t2) ≥ k + 1. Then t1 must contain a vertex
v, l(t1 ∩ t2) < l(v) ≤ l(t1) − k so that v does not belong to t2. If every substring x of w with |x| ≥ k, contained a
slot with the UVP then we would never have a k-CPslot violation. Therefore,

w violates
k-CPslot ⟹

w has a substring y, |y| ≥ k so
that no slot indexed by y has

the UVP in w.
(25)

Recall that a uniquely honest Catalan slot has the UVP. This fact allows us to bound the probability of common
pre�x violations by reasoning only about Catalan slots.5

Theorem 8 (Main theorem; CP version). Let �, ph ∈ (0, 1) and T, k ∈ ℕ, T ≥ k. Let w be a length-T characteristic
string satisfying the (�, ph)-Bernoulli condition. Then

Pr
w
[w violates k-CP] ≤ Pr

w
[w violates k-CPslot] ≤ T ⋅ exp

(
−k ⋅ Ω(min(�3, �2ph))

)
.

Next, suppose that axiom A0′ is satis�ed. If w is a length-T bivalent characteristic string satisfying the (�, 0)-
Bernoulli condition then

Pr
w
[w violates k-CP] ≤ Pr

w
[w violates k-CPslot] ≤ T ⋅ exp

(
−k ⋅ Ω(�3(1 + O(�)))

)
.

Proof. (The �rst claim.) Let s ∈ [T − k]. Let "k be the probability that y = ws …ws+k−1 contains no slot with
the UVP in w. Then, recalling (25), we can apply a union bound over all substrings of w of length at least k to
get Pr[w violates k-CPslot] ≤ T ∑

r≥k "r where the factor T represents a summation over all s ∈ [T − k + 1]. By
Theorem 3, if a substring y of w does not contain a slot with the unique vertex property in w, y cannot contain a

5One can also prove Theorem 8 by directly showing—as is done in [3]—that a k-CPslot violation implies a k-settlement violation and then
appealing to Theorem 1. The proof of the implication turns out to be quite long and complicated compared to the short proof above; see
Appendix A. A positive side of this this alternate proof, however, is that it shows how arguments in [3] can be adapted to our generalized fork
framework.
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uniquely honest slot that is Catalan in w. Therefore, "k is no more than the error probability from Bound 1. Since
"k decreases exponentially in k, we can write

Pr[w violates k-CPslot] ≤ T ⋅ O(1) ⋅ "k .

This proves the second inequality. The �rst inequality follows since, in a given characteristic string, a k-CP
violation implies a k-CPslot violation.

(The second claim.) The proof in this case is identical to the preceding argument except that we need to refer
to Theorem 4 in lieu of Theorem 3 and Bound 2 in lieu of Bound 1.

The ∆-synchronous setting. A k-CP violation in a ∆-fork for a string w ∈ {⟂, h, H, A}∗ would imply a k-CP
violation in the corresponding synchronous fork in the string �∆(w) ∈ {h, H, A}∗ and, consequently, a k-CPslot
violation in �∆(w). We omit further details.
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A CP violations and balanced forks with concurrent honest leaders
Balanced forks played a critical role in the analysis of [3]. Speci�cally, a balanced forkwas equivalent to a settlement
violation in their setting and a CP violation would also imply a balanced fork. In the current analysis, we have
analyzed settlement and CP violations through their connections with the UVP and Catalan slots; thus balanced
forks are not necessary in our analysis. However, it is instructive to see whether the statement “a CP violation
implies a balanced fork” still holds in our model and, importantly, how the existing proof needs to be modi�ed.

Thus the the goal of this section is to prove Theorem 9 below which would yield an alternative proof of
Theorem 8 without using the Catalan slots. However, the simplicity of the proof of Theorem 8 in Section 9
demonstrates the expressive power of the UVP and Catalan slots compared to relative margin and balanced forks.

A k-CPslot violation implies a k-settlement violation. Let w be a characteristic string, written w = xy, and
let F be a fork for w. Recall that a slot s = |x| + 1 is not k-settled if and only if F contains two maximum-length
tines that diverge prior to s, i.e., F is x-balanced (see De�nition 18).

De�nition 25 (Slot divergence). Letw ∈ {h, H, A}∗ and let F be a fork forw. De�ne the slot divergence of two tines
t1, t2 ∈ F as

divslot(t1, t2) ≜ l(t1) − l(t1 ∩ t2) where l(t1) ≤ l(t2) . (26)

We can generalize this notion for forks and characteristic strings as follows: divslot(F) ≜ maxt1,t2∈F divslot(t1, t2) and
divslot(w) ≜ maxF⊢w divslot(F).

By de�nition, a k-CPslot violation implies the existence of a fork with a slot divergence at least k+1. Theorem 9
below shows that a if a fork has a slot divergence at least k + 1 then there is a balanced fork for a pre�x of the same
characteristic string so that two maximum-length tine diverge prior to last k slots. Therefore, a k-CPslot violation
implies an (s, k)-settlement violation for some slot s.

Theorem 9. Let k, T ∈ ℕ. Let w ∈ {h, H, A}T be a characteristic string so that divslot(w) ≥ k + 1. Then there is a
decomposition w = xyz and a fork F̂ ⊢ xy, where |y| ≥ k, so that F̂ is x-balanced.

Recall that l(t) is the slot index of the last vertex of tine t. De�ne A ≜ ⋃
F⊢w AF where, for a given fork F ⊢ w,

de�ne
AF ≜ {(�1, �2) ∶

�1, �2 are two viable tines in the fork F,
l(�1) ≤ l(�2), and divslot(�1, �2) ≥ k + 1 } .

Notice that there must be a tine-pair (t1, t2) ∈ A which satis�es the following two conditions:

divslot(t1, t2) is maximal over A , (27)

|l(t2) − l(t1)| is minimal among all tine-pairs in A for which (27) holds , (28)

and

For a �xed t2, the tine t1 has the maximum length over all tines t′1, l(t
′
1) = l(t1)

such that (t′1, t2) satis�es (27) and (28) . (29)

(Note that t1, t2 are not uniquely identi�ed.) The tines t1, t2 will play a special role in our proof; let F be a fork
containing these tines.

Recall given a characteristic string w ∈ {h, H, A}∗, a uniquely honest slot contains the symbol h, a multiply
honest slot contains the symbol H, and an adversarial slot contains the symbol A. We call a slot honest if it contains
either an h or an H; otherwise, we call it an adversarial slot.
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The pre�x x, fork Fx, and vertex u. Let u denote the last vertex on the tine t1 ∩ t2, as shown in the diagram
below, and let � ≜ l(u) = l(t1 ∩ t2). Let x ≜ w1, … , w� and let Fx be the fork-pre�x of F supported on x. We
will argue that � must be a uniquely honest slot and, in addition, that Fx must contain a unique longest tine tu
terminating at the vertex u. We will also identify a substring y, |y| ≥ k such that w can be written as w = xyz.
Then we will construct a balanced fork F̃y ⊢ y by modifying the subgraph of F supported on y. We will �nish the
proof by constructing an x-balanced fork by suitably appending F̃y to Fx.

u

t1

t2

�must be a uniquely honest slot. Weobserve, �rst of all, that the slot � can neither be adversarial normultiply
honest: otherwise it is easy to construct a fork F′ ⊢ w and a pair of tines in F′ that violate (27). Speci�cally,
construct F′ from F by adding a new vertex u′ to F for which l(u′) = l(u), adding an edge to u′ from the vertex
preceding u, and replacing the edge of t1 following u with one from u′; then the other relevant properties of the
fork are maintained, but the slot divergence of the resulting tines has increased by at least one. (See the diagram
below.)

u

u′
t1

t2

Fx has a unique, longest (and honest) tine tu. A similar argument implies that the fork Fx has a unique
vertex of depth depth(u): namely, u itself. In the presence of another vertex u′ (of Fx) with depth depth(u),
“redirecting” t1 through u′ (as in the argument above) would likewise result in a fork with a larger slot divergence.
To see this, notice that l(u′)must be strictly less than l(u) since l(u) is an honest slot (which means u is the only
vertex at that slot). Thus l(⋅) would indeed be increasing along this new tine (resulting from redirecting t1). As �
is the last index of the string x, this additionally implies that Fx has no vertices of depth exceeding depth(u). Let
tu ∈ Fx be the tine with l(tu) = �.

The honest tine tu is the unique longest tine in Fx . (30)

Identifying y. Let � denote the smallest honest index ofw for which � ≥ l(t2), with the convention that if there
is no such index we de�ne � = T + 1. Thus � ≥ l(t2) ≥ l(t1). These indices, � and �, distinguish the substrings
y = w�+1…w�−1 and z = w� …wT; we will focus on y in the remainder of the proof. Since the function l(⋅) is
strictly increasing along any tine, observe that

|y| = (� − 1) − (� + 1) + 1 = � − � − 1 ≥ (l(t1) − l(u)) − 1 ≥ (k + 1) − 1 = k .

Hence y has the desired length and it su�ces to establish that it is forkable.6

Honest indices in xy have small depths. The minimality assumption (28) implies that any honest index ℎ
for which ℎ < � has depth no more thanmin(length(t1), length(t2)): speci�cally, we claim that

ℎ < � ⟹ d(ℎ) ≤ min(length(t1), length(t2)) . (31)
6In Blum et al. [3], |y| was at least k + 1. The di�erence is due to the fact that in their analysis, a slot with multiple vertices was necessarily

adversarial.
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To see this, consider an honest indexℎ, ℎ < � and a tine tℎ forwhichl(tℎ) = ℎ. Ifl(t2) is honest thenℎ < � = l(t2).
Otherwise, ℎ < l(t2) < � since l(t2) is adversarial. In any case, ℎ < l(t2) and, since t2 is viable, it follows
immediately that d(ℎ) ≤ length(t2). Similarly, if ℎ < l(t1) then d(ℎ) ≤ length(t1) since t1 is viable as well.

Now consider the case ℎ = l(t1). We claim that

If ℎ = l(t1) < � then d(ℎ) = length(t1) . (32)

We can rule out the case ℎ = l(t1) = l(t2) since if this happens, l(t2) is honest and � = l(t2), contradicting our
assumption that ℎ < �. Thus, it must be the case that ℎ = l(t1) < l(t2). In this case, the claim follows trivially if
l(t1) is a uniquely honest slot. Otherwise, let t be a tine with the maximum length among all tines labeled with the
multiply honest slot ℎ = l(t1) < l(t2). We wish to show that length(t1) = length(t). There are four contingencies
to consider; the �rst three of these lead to contradictions and for the last one, we get length(t1) = d(ℎ) = length(t).

• If (t, t2) ∉ A, divslot(t, t2) is at most k. Since divslot(t1, t2) is at least k + 1, t must share a vertex with t2 after
slot l(u). But this means l(t ∩ t1) = l(u) and divslot(t, t1) = divslot(t1, t2) ≥ k + 1. As a result, (t, t1) ∈ A.
However, this violates (28) since |l(t) − l(t1)| = 0 < |l(t2) − l(t1)| by assumption.

• If (t, t2) is in A and l(t ∩ t1) < l(u), then divslot(t, t1) > divslot(t1, t2), violating (27).

• If (t, t2) is in A and l(t ∩ t1) = l(u), this means t is disjoint with t1 after l(u). Then (28) is violated since
divslot(t, t1) = divslot(t1, t2) but |l(t) − l(t1)| = 0 < |l(t2) − l(t1)| by assumption.

• If (t, t2) is in A and l(t ∩ t1) > l(u), this means t shares a vertex with t1 after l(u). Then divslot(t, t2) =
divslot(t1, t2) and |l(t2)−l(t1)| = |l(t2)−l(t)|. By (29), length(t1) ≥ length(t); hence length(t1) = length(t)
since by assumption, t has the maximum length among all tines with label l(t1). Hence length(t1) = d(ℎ).

The remaining case for proving (31), i.e., when l(t1) < ℎ < l(t2), can be ruled out by the argument below.

There is no honest index between l(t1) and l(t2). We claim that

There is no honest index ℎ satisfying l(t1) < ℎ < l(t2) . (33)

The claim above is trivially true if l(t1) = l(t2). Otherwise, suppose (toward a contradiction) that ℎ is an honest
index satisfying l(t1) < ℎ < l(t2). Let tℎ be an honest tine at slot ℎ. The tine-pair (t1, tℎ)may or may not be in A.
We will show that both cases lead to contradictions.

• If (t1, tℎ) is inA and l(t1∩tℎ) ≤ l(u), divslot(t1, tℎ) is at least divslot(t1, t2). In fact, due to (27), this inequality
must be an equality. However, the assumption l(t1) < ℎ < l(t2) contradicts (28).

• If (t1, tℎ) is in A and l(t1 ∩ tℎ) > l(u), it follows that divslot(tℎ, t2) > divslot(t1, t2). As the latter quantity is
at least k + 1, (tℎ, t2)must be in A. The preceding inequality, however, contradicts (27).

• If (t1, tℎ) ∉ A, divslot(t1, tℎ) is at most k. As divslot(t1, t2) is at least k + 1, tℎ and t1 must share a vertex after
slot l(u). Since l(t1) < ℎ < l(t2) by assumption, divslot(tℎ, t2) > divslot(t1, t2) ≥ k + 1 and, as a result,
(tℎ, t2) ∈ A. However, the strict inequality above violates (27).

We conclude that (33)—and thus (31)—is true. (Note that in the above argument, all we needed was that tℎ is a
viable tine since in all cases, tℎ appears in a tine-pair in A. Thus (33) can be generalized as saying “there is no fork
for w with a viable tine t so that l(t1) < l(t) < l(t2).”)

A fork F⊳u⊲ where all long tines go through u. In light of the remarks above, we observe that the fork F
may be “pinched” at u to yield an essentially identical fork F⊳u⊲ ⊢ w with the exception that all tines of length
exceeding depth(u) pass through the vertex u. Speci�cally, the fork F⊳u⊲ ⊢ w is de�ned to be the graph obtained
from F by changing every edge of F directed towards a vertex of depth depth(u) + 1 so that it originates from u.
To see that the resulting tree is a well-de�ned fork, it su�ces to check that l(⋅) is still increasing along all tines
of F⊳u⊲. For this purpose, consider the e�ect of this pinching on an individual tine t terminating at a particular
vertex v—it is replaced with a tine t⊳u⊲ de�ned so that:
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• If length(t) ≤ depth(u), the tine t is unchanged: t⊳u⊲ = t.

• Otherwise, length(t) > depth(u) and t has a vertex v of depth depth(u) + 1; note that l(v) > l(u) because
Fx contains no vertices of depth exceeding depth(u). Then t⊳u⊲ is de�ned to be the path given by the tine
terminating at u, a (new) edge from u to v, and the su�x of t beginning at z. (As l(v) > l(u) this has the
increasing label property.)

Thus the tree F⊳u⊲ is a legal fork on the same vertex set; note that the depths of vertices in F and F⊳u⊲ are identical.

Constructing a fork Fy ⊢ y containing two long tines. By excising the tree rooted at u from this pinched
fork F⊳u⊲, we may extract a fork for the string w�+1…wT . Speci�cally, consider the induced subgraph Fu⊲ of
F⊳u⊲ given by the vertices {u} ∪ {v ∶ depth(v) > depth(u)}. By treating u as a root vertex and suitably de�ning the
labels lu⊲ of Fu⊲ so that lu⊲(v) = l(v) − l(u), this subgraph has the de�ning properties of a fork for w�+1…wT .
In particular, considering that � is honest, it follows that each honest index ℎ > � has depth d(ℎ) > length(u) and
hence any vertex with label ℎ is also present in Fu⊲. For a tine t of F⊳u⊲, we let tu⊲ denote the su�x of this tine
beginning at u, which forms a tine in Fu⊲. (If length(t) ≤ depth(u), we de�ne tu⊲ to consist solely of the vertex
u.) Considering t1u⊲ and t2u⊲, let ťi , i ∈ {1, 2} be the longest pre�x of tiu⊲ so that ťi is labeled by a slot in y. Since
the tines t1u⊲, t2u⊲ are disjoint in Fu⊲, so are ť1, ť2.

Recall that that y is as a pre�x of w�+1…wT . Let ℎ∗ be the largest honest index in y. Let Fy denote the subtree
of Fu⊲, with the same root as Fu⊲, containing the following tines: ť1, ť2, and all tines tu⊲ ∈ Fu⊲ ⧵ {ť1, ť2} so that
l(tu⊲) is drawn from y and

length(tu⊲) ≤ d(ℎ∗) . (34)
Note that the length of every honest tine labeled by y is at most d(ℎ∗); hence, thanks to (31), Fy contains all honest
tines from Fu⊲ that have labels in y. Note, in addition, that the tines ť1 and ť2 are consistently labeled in Fy . Thus
Fy satis�es all properties of a legal fork.

Having de�ned Fy , we claim that

min
(
length(ť1), length(ť2)

)
≥ d(ℎ∗) . (35)

Let i ∈ {1, 2}. If l(ti) < � then ťi = tiu⊲ and, by (31), length(ťi) = length(tiu⊲) ≥ d(ℎ∗). Othereise, we have
l(ti) = � which means l(ti) is an honest slot. Thus tiu⊲ must be an honest tine, building directly on top of the
viable tine ťi . Therefore, we have length(ťi) ≥ d(ℎ∗).

Constructing a balanced fork F̃y ⊢ y. If length(ť1) = length(ť2), set F̃y = Fy and, due to (34) and (35), the
fork F̃y ⊢ y must be balanced. Otherwise, let a, b ∈ {1, 2}, a ≠ b be two integers so that length(ťa) > length(ťb).
We modify Fy by deleting some trailing nodes from ťa so that the surviving pre�x—let it be denoted by t̃a—has
the same length as ťb. That is, we achieve

length(t̃a) = length(ťb) = min
(
length(ť1), length(ť2)

)
.

Let F̃y be the resulting fork. Equations (34) and (35) imply that F̃y has at least two maximum-length tines (i.e., t̃a
and ťb) and therefore, it is balanced. It remains to show that the longer tine, ťa, has su�ciently many trailing
adversarial vertices so that after deleting them, we obtain length(t̃a) = length(ťb). (If we had to delete an honest
vertex in this process, F̃y may have violated property (F3) in the de�nition of a fork.) Let ℎa be the label of the last
honest vertex on ťa. Thanks to (35), we have length(ťa) > length(ťb) ≥ d(ℎ∗) ≥ d(ℎa). Hence all vertices in ťa
with labels in [ℎa +1, l(ťa)]must be adversarial; we can safely delete | length(ťa)− length(ťb)| of these adversarial
vertices.

An x-balanced fork F̂ ⊑ F. Let us identify the root of the fork F̃y with the vertex u of Fx and let F̂ be the
resulting graph (after “gluing” the root of F̃y to u). By (30), it is easy to see that the fork F̂ ⊑ F is indeed a valid fork
on the string xy. Moreover, F̂ is x-balanced since F̃y is balanced. The claim in Theorem 9 follows immediately
since |y| ≥ k.
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