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On Analysis of Lightweight Stream Ciphers
with Keyed Update

Orhun Kara, and Muhammed F. Esgin

Abstract—As the need for lightweight cryptography has grown even more due to the evolution of the Internet of Things, it has become
a greater challenge for cryptographers to design ultra lightweight stream ciphers in compliance with the rule of thumb that the internal
state size should be at least twice as the key size to defend against generic Time-Memory-Data Tradeoff (TMDT) attacks. However,
Recently in 2015, Armknecht and Mikhalev sparked a new light on designing keystream generators (KSGs), which in turn yields stream
ciphers, with small internal states, called KSG with Keyed Update Function (KSG with KUF), and gave a concrete construction named
Sprout. But, currently, security analysis of KSGs with KUF in a general setting is almost non-existent. Our contribution in this paper is
two-fold. 1) We give a general mathematical setting for KSGs with KUF, and for the first time, analyze a class of such KSGs, called
KSGs with Boolean Keyed Feedback Function (KSG with Boolean KFF), generically. In particular, we develop two generic attack
algorithms applicable to any KSG with Boolean KFF having almost arbitrary output and feedback functions where the only requirement
is that the secret key incorporation is biased. We introduce an upper bound for the time complexity of the first algorithm. Our extensive
experiments validate our algorithms and assumptions made thereof. 2) We study Sprout to show the effectiveness of our algorithms in
a practical instance. A straightforward application of our generic algorithm yields one of the most successful attacks on Sprout.

Index Terms—Lightweight Cipher, Keystream generator, Stream cipher, Time-Memory-Data tradeoff, Keyed Update Function,
Symmetric Encryption, Sprout.
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1 INTRODUCTION

CONSIDERING a resource-constrained device such as an
RFID tag or a wireless sensor, a crucial dilemma arises

between energy/power management and data security such
as confidentiality. This dilemma introduces a real challenge
to design lightweight cryptographic algorithms (those with
extremely small costs in area, power, energy consumption,
etc.) to be deployed in resource-constrained devices.

We see many examples of recent ultra lightweight block
ciphers such as PRESENT [1], KTANTAN [2], LED [3],
Piccolo [4], Midori [5], SIMON/SPECK [6] and their new
variant Simeck [7]. The current technology is adequate to
design secure ultra lightweight block ciphers (we can simply
consider those ciphers as having hardware area cost less
than 1000 GEs). However, there is almost no modern ultra
lightweight stream cipher. The main reason behind this
phenomena lies on a design principle about the internal
state size of stream ciphers imposed due to the tradeoff
attacks [8], [9], [10]. This principle states that the internal
state size of a stream cipher must be at least 2κ bits to
provide a κ-bit security level.

Armknecht and Mikhalev [11] proposed a new key-
stream model for stream ciphers at FSE 2015, called
keystream generators (KSGs) with Keyed Update Function
(KUF), where the secret key is used in the state update to
claim the resistance against the conventional tradeoff attacks
while using a small internal state. The ideas in [11] are
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embodied in a stream cipher, called Sprout. Sprout may
be considered as one of the first modern ultra lightweight
stream ciphers in academia with its hardware area cost
less than 1000 GEs. Even though this first attempt with
Sprout was broken shortly after its introduction (see, for ex-
ample, [12], [13]), the proposed idea immediately attracted
great attention from cryptology community (see Section 1.1).
However, a detailed security analysis of KSGs with KUF
has not been provided up until now, leaving several open
questions about the security of KSGs with KUF.

This paper contributes to filling this gap in instantiation
of the ideas presented in [11] by studying the security of
keystream generators with keyed update functions in a
mathematical setting. More precisely, we first set a math-
ematical framework for KSGs with KUF and, for the first
time, mount two generic internal state recovery attacks
on a family of keystream generators with KUF, which we
call keystream generators with Boolean Keyed Feedback Function
(KSGs with Boolean KFF). The main concepts along with
the core of our attacks are given in Section 2, Section 3
and Section 4. We introduce a new tradeoff attack, which
makes use of special states, called weak states, in Section 5.
The complexity analyses of our attacks are given in Section
6. We validate our assumptions and results regarding our
generic attacks through extensive experiments (Section 7).
Then, we take Sprout as an instantiation of a KSG with
Boolean KFF, and apply our generic attacks to it (Section
8). Our improved generic attack performs as efficient as the
best known attacks on Sprout [13], [14].

1.1 Related work
The security of a generic KSG with KUF is addressed for the
first time in this work. All the previous works are related
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TABLE 1
Comparison of attacks on Sprout. The time complexities are given as

number of encryptions and the number of table lookups (TLs), if exists.
We assume 221-bit keystream is produced in one minute on a standard
PC as done in [13]. d indicates the data complexity and also the order
of weak states. It is always possible to update these states at least d
times independent of the key and their cardinality is roughly 280−d.

Time Data Memory
[12] 270 negl. 246

[15] 275 negl. negl.
Sec. 3 in [16] 270 negl. negl.
Sec. 5 in [16] 266.7 242 negl.

Guess&Determine in [13] 268 negl. negl.
TMDT attack in [13] 2d TLs + 271−d 2d 286−d

TMDT attack in [14] 2d−3 TLs + 280−d 2d 286−d

Sec. 2 of this work 2d TLs + 278−d 2d 286−d

Sec. 3 of this work 2d TLs + 271−d 2d 286−d

to the analysis of a specific example, in particular, Sprout.
There has been several works published in a short time
related to the analysis of Sprout [12], [13], [14], [15], [16].
However, the security of the new approach Sprout’s design
philosophy brings has been left open.

Once realized that Sprout can be broken, a successor
of Sprout is proposed in [17]. The new cipher, Plantlet, is
very similar to Sprout and one of the differences is that the
internal state size is a bit larger. One crucial difference is
also that the bias in the secret key’s incorporation into the
feedback is fixed (i.e., the guess capacity, given in Definition
3, is set to one-half). Therefore, even though Plantlet also
falls into our definition of KSGs with Boolean KFF, our
attacks do not work on it.

Another recent lightweight stream cipher is Lizard [18].
It also has a Grain-like structure like Sprout and Plantlet.
However, Lizard has a rather different design approach,
referred as FP (1)−mode, as opposed to the one followed in
Sprout and Plantlet. The key is not used in the state update
function. Thus, Lizard does not fall into the class of KSGs
with KUF.

The most successful attacks mounted on Sprout are the
tradeoff attacks by Zhang and Gong [14] and by Esgin and
Kara [13]. We have detected a flaw in preparing the tradeoff
tables in Zhang and Gong attack in [14] and have introduced
a fixed version with the accurate workloads. We compare
these two attacks in more detail in Section 9. An overview
of the complexities of the attacks on Sprout are given in
Table 1. As can be seen from Table 1, Zhang-Gong attack is
29 times slower than Esgin-Kara attack for the same amount
of data and memory.

Generating multiple output bits from a given internal
state of Sprout has been exploited in some previous works
[12], [13], [14]. We generalize this property and call it the
output capacity as given in Definition 4. On the other hand,
this property plays a minor role in our attack and our
internal state recovery attacks are independent of the output
generation function.

1.2 Overview of our main contribution

We analyze KSGs with Boolean KFF where the key-dependent
part of the Keyed Update Function (KUF) is a Boolean

function. That is, only one bit of the output of KUF depends
on the key. The remaining feedback values, if exist, are
deduced from only the internal state.

Our focus is mainly on the internal state recovery, which
is the dominant part of our attack. Given an internal state
candidate, the goal at each iteration is the same: either de-
termine the next feedback value from the output (determine
case) or check the state and then guess the next feedback
value as both 0 and 1 (check-and-guess case). This means
that the whole internal state is known at each iteration
and the only unknown to be captured is the next feedback
value. Any internal state can be checked through our new
algorithms, Algorithm 2.1 or Algorithm 3.1, if it can produce
a given output without knowing the key when the feedback
function produces predictable output bits on average (i.e.,
with probability > 0.5). Hence, what we exploit mainly
is the biased incorporation of key bits into the feedback
function during internal state updates. Simply put, we call
the advantage of guessing a feedback value from a given
internal state alone as the guess capacity (see Definition 3).
The generic attacks work when the average guess capacity
is larger than one-half.

It is possible to recover the correct internal state without
knowing the key if the register is clocked enough number
of times at each test, thanks to the guess capacity. The
exact feedback values are determined after recovering the
internal state. The last step is solving a system of equations
generated by the outputs of the feedback functions in order
to recover the key. The details are given in Section 2, Section
3 and Section 4.

Both Algorithm 2.1 and Algorithm 3.1 are generic attacks
and do not exploit the internal structures of output func-
tions, feedback functions, their input sizes or tap points.
So, the attacks can successfully be applied to any KSGs
with Boolean KFF (see Definition 2 for a formal description)
having average guess capacities higher than one-half. Partic-
ularly, Algorithm 2.1 and Algorithm 3.1 can be mounted on
Sprout even if its output function or tap points are modified.

Furthermore, we introduce a concept of weak internal
states so as to minimize the number of internal states to
be examined through Algorithm 2.1 or Algorithm 3.1, and
establish a tradeoff between data, time and memory com-
plexities. A weak state, in simple terms, is a state that can
be updated and hence can produce the output up to some
degree without the key. We roughly call the number of
possible consequent update steps which are independent of
the key as the weakness order, d. We show that the efficiency
of the tradeoff is relevant to d.

We analyze the complexity of Algorithm 2.1 theoretically
and conduct several experiments to verify the theoretical
results, and compare the performance of Algorithm 2.1 and
Algorithm 3.1. Theorem 1 gives a lower bound for the
success rate of Algorithm 2.1. Our experiments show that
the success rates are much higher than those indicated by
Theorem 1 (see Figure 2) and the time complexity can be
reduced to its half to achieve the same success rate claimed
in Theorem 1 (see Table 3). We also show that the perfor-
mance of Algorithm 3.1 is equivalent to the performance
of Algorithm 2.1 when there is no deviation among the
guess capacities of individual states from the average guess
capacity. One remarkable result is that the time complexity
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of Algorithm 3.1 gets much better as the deviation gets
higher (see Figure 2 and Table 3).

To give a concrete example of our method, we apply the
generic attack on Sprout as a KSG with Boolean KFF. The
asymptotic complexities of Algorithm 2.1 and Algorithm 3.1
are the same and equivalent to that of the tradeoff attack in
[13]. However, in practice, Algorithm 3.1 is as fast as the
attack in [13] and Algorithm 2.1 is roughly 31 times slower.
The workloads can be in practical limits for some values of
d as given in Table 1. Our internal state recovery algorithms
are generic and do not exploit the internal structures of
the building blocks of Sprout. For instance, it is possible to
extract the feedback value from the first output bit it appears
in the backward iteration of Sprout1 since the feedback value
is incorporated as a linear term. This property is exploited
in [13], [14] whereas Algorithm 2.1 and Algorithm 3.1 still
work well without this property.

2 INTERNAL STATE RECOVERY ATTACK

In this section, we present an internal state recovery attack
to a family of KSGs with KUF, which forms the core of our
contribution together with its improved version in Section
3. Armknecht and Mikhalev give a definition of a generic
keystream generator (KSG) with Keyed Update Function
(KUF) [11]. We repeat it in Definition 1. Note that the initial-
ization phase is discarded since our attack is independent
of that part. First, we introduce some notations to be used
throughout the paper.
• s - internal state size of a KSG
• t - clock-cycle
• St - internal state of a KSG at clock-cycle t. When the

clock-cycle is not emphasized, t is omitted.
• zt - keystream bit at clock-cycle t
• fF , fB - Boolean keyed feedback functions in forward and

backward directions, respectively (Defn. 2)
• Prg - average guess capacity (Defn. 3)
• Prd - the probability of determining the next feedback

value from output (Defn. 5)
• θ - output capacity (Defn. 4)
• d - the number of feedback values that can be computed

independent of the secret key for weak states (Defn. 6)
• #MM - the number of mismatches (see Section 2)
• αter - the (maximum) number of clocks iterated until

Algorithm 2.1 or Algorithm 3.1 terminates
• αthr - threshold value used by Algorithm 2.1
• Prthr - threshold probability used by Algorithm 3.1

Definition 1 ( [11]). A keystream generator (KSG) with Keyed
Update Function (KUF) consists of the following functions.
• An update function F : K×S → S such that FK : S → S

is bijective for any K ∈ K (i.e., registers are nondegenerate),
and

• A Boolean output function G : S → GF (2)

where K = GF (2)k is the key space and S = GF (2)s is the
internal state space.

A KSG with KUF can also be clocked in backward
direction since FK : S → S is bijective. We denote the

1. We generalize this concept and call it determine probability. See
Definition 5.

update function in backward direction by B : K × S → S
and BK : S → S . Then, FK ◦ BK = BK ◦ FK = id where id
denotes the identity function. Our focus is on a specific class
of KSGs with KUF described in the following definition.

Definition 2. A KSG with KUF is called a KSG with Boolean
KFF (Keyed Feedback Function) if
• The update function F and the output function G are

executed once for each one-bit output generation, and
• Only a single bit of the output of F(K,S) depends on the

key. Similarly, only a single bit of the output of B(K,S) in
the backward direction depends on the key.

The key bits incorporated into the update function F(K,S) along
with the state bits form a Boolean function fF (K,S). We call
fF (K,S) the keyed feedback function of the KSG in forward
direction. Similarly, we call fB(K,S) the keyed feedback function
of the KSG in backward direction.

The family of KSGs with KUF analyzed in this paper
is the model given in Definition 2. The details of neither
the feedback function nor the output function is important
for the internal state recovery attacks given in Algorithm 2.1
and Algorithm 3.1. We concentrate only on the key-dependent
feedback value. Thus, we mean the output of fF (K,S) (or
fB(K,S) in backward direction) when we say “feedback
value” in the rest of the paper. The following definition
plays a crucial role in our attacks.

Definition 3. For a given KSG with Boolean KFF having s-
bit internal state, k-bit key, and fF and fB as its Boolean keyed
feedback functions, we define the guess capacity of an internal
state S in the forward direction as

Prg(S)f =
1

2
+

∣∣∣∣#{K : fF (K,S) = 0}
2k

− 1

2

∣∣∣∣ ,
and in the backward direction as

Prg(S)b =
1

2
+

∣∣∣∣#{K : fB(K,S) = 0}
2k

− 1

2

∣∣∣∣ .
We define the average guess capacity over all the states as

Prg =
1

2
+ 2−s

∑
S

∣∣∣∣#{K : fF (K,S) = 0}
2k

− 1

2

∣∣∣∣ .
That is, Prg is the average probability of guessing an

arbitrary feedback value fF (K,S) correctly for a known
arbitrary internal state S and an unknown key K. Note that
Prg should be greater than 1/2 in order for our attacks to be
successful.

Remark 1. A definition for the average guess capacity in the
backward direction is omitted since it is simply equal to the
average guess capacity in the forward direction. This fact is due to
the observation that the guess capacity of an internal state in the
forward direction is equal to the guess capacity of its successor in
the backward direction.

One more property of KSGs with Boolean KFF related
to our attack is the latency of a feedback value (in either
forward or backward direction) being incorporated into the
output function.

Definition 4. For a KSG with Boolean KFF, define θf as the
largest integer such that the output bits zt+1, . . . , zt+θf can be
computed from the current state St without any state updates in
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forward direction (i.e., independent of the key). Similarly, define θb
as the largest integer such that the output bits zt−1, . . . , zt−θb can
be computed from the current state St without any state updates
in backward direction. Also, define θ = θf + θb. We call θf as the
output capacity in forward direction, θb as the output capacity in
backward direction and θ as the output capacity.

Coupled with the fact that the output bit zt can always
be produced from any given state St, one can compute θ+1
bits from any given state independent of the key.

Furthermore, from Definition 4, it is clear that for any
state St, the next feedback value in forward direction
fbt+1 := fF (K,St) can appear at the output at clock-cycle
t+ 1 + θf the earliest. Otherwise, the computation of zt+θf
from St without any state updates would not be guaranteed.
Moreover, no other next feedback value (fbt+2, fbt+3, . . .)
can appear in zt+1+θf (i.e., the only possible unknown
in zt+1+θf is fbt+1) since St+1 can produce zt+1+θf by
definition. Similar arguments can be made in backward
iterations. These arguments suggest another means of com-
puting the next feedback value through the output bit and
pave the way for the following definition of the probability
of determining the feedback value from the output.

Definition 5. We define Prf as the probability of flipping the
output bit zt+1+θf over all states St when the feedback value
fbt+1 = fF (K,St) is flipped while keeping St unchanged. We
also define Prb analogously in backward direction. We call Prf
and Prb as the probabilities of determining the next feedback value
in forward and backward directions, respectively. Let their maxi-
mum be Prd = max{Prf ,Prb}. We call Prd as the probability
of determining the next feedback value.

Note that Prd indicates the probability of determining
the feedback value from the output when the internal state
is known. One can determine the feedback value fbt+1 from
the output for the state St if flipping fbt+1 causes a change
in the corresponding output bit.

Making use of these definitions, we now introduce a
generic internal state recovery attack on KSGs with Boolean
KFF. Without loss of generality, we assume Prd = Prf and
explain all the attacks in the forward iteration of a cipher.

Algorithm 2.1 is an internal state recovery procedure that
checks if there exists a correct state (i.e., a state produc-
ing a given keystream sequence) in a set of given states.
The algorithm proceeds as follows. The feedback values
fbt+1, fbt+2, . . . , fbt+e are predicted for a given state St
one by one. At a particular step i, we examine if a feedback
value fbt+i can be determined from the output bit zt+i+θf
through Algorithm 2.2. Otherwise, we check if the current
state St+i−1 can generate the output bit zt+i+θf and guess
fbt+i through Algorithm 2.3.

We make use of the guess capacity of a state to check if
the feedback value is the expected one. An unexpected value
is considered as a mismatch. We expect much fewer number
of mismatches for a correct state whereas the number of
mismatches for a wrong state is expected to be half of the
total number of iterations.

Algorithm 2.1 continues on recovering the next feedback
values for each examined state while keeping counts of
their number of mismatched feedback values. The counting
procedure lasts from the t-th clock up to (t + αter − 1)-th

Algorithm 2.1 Internal State Recovery
1: Input: Non-empty set of internal state candidates,

S; keystream {zt+1+θf , . . . , zt+θf+αter}; the maximum
number of clocks for each test, αter; average guess
capacity, Prg ; miss event probability ε

2: Set εter =
√
− ln ε
2αter

3: Set αthr = bαter(1− Prg +εter)c
4: Initialize CUR and NEW as two empty sets
5: Load all the states in S into CUR
6: Set #MM(S) of each state S in CUR as zero
7: Make a copy of each state S in CUR as the root of S
8: // Initially the root of each state S is itself

9: for each clock i from t to (t+ αter − 1) do
10: for each state S in CUR do
11: Compute Prg(S)f
12: if Prg(S)f = 0.5 then
13: Set fbsugg = 0
14: // 0 is set as the default. It may also

be set as 1 or chosen randomly each time.

15: else
16: Set fbsugg as the feedback value of S sug-

gested through the keyed feedback function
17: // Since Prg(S)f > 0.5, the feedback value

can be predicted with probability > 0.5

18: end if
19: if the feedback value fbi+1 of S is possible to

determine from the output bit zi+1+θf then
20: Run Determine Procedure (Algorithm 2.2)
21: // fbi+1 is determined, S and #MM(S)

are updated and loaded into NEW

22: else
23: Run Check-and-guess Procedure (Algorithm 2.3)
24: // If S produces the correct output bit,

both possible next states are loaded into NEW

with their corresponding mismatch counts

25: end if
26: end for
27: Terminate if NEW is empty and give no output
28: Copy NEW to CUR
29: Empty NEW
30: end for
31: Output: the roots in CUR as the candidates for the

correct state at clock t

Algorithm 2.2 Determine Procedure
1: Determine the feedback value as fbdet from the corre-

sponding output bit
2: Update S by clocking it with the feedback value fbdet
3: if fbsugg 6= fbdet (it is a mismatch) then
4: Increment #MM(S) by one
5: end if
6: if #MM(S) ≤ αthr then
7: Add updated S with #MM(S) and its root to NEW
8: end if
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Algorithm 2.3 Check-and-guess Procedure
1: if the output of S is not equal to the actual output at the

corresponding clock then
2: Do nothing (Eliminate the state)
3: else
4: Make two copies S0, S1 of S
5: Set #MM(S0) = #MM(S1) := #MM(S)
6: Set the feedback value to 0 for S0 and update S0

7: Set the feedback value to 1 for S1 and update S1

8: if fbsugg = 0 then
9: Increment #MM(S1) by one

10: else
11: Increment #MM(S0) by one
12: end if
13: if #MM(S0) ≤ αthr then
14: Add S0 along with #MM(S0) to NEW and set

the root of S as its root
15: end if
16: if #MM(S1) ≤ αthr then
17: Add S1 along with #MM(S1) to NEW and set

the root of S as its root
18: end if
19: end if

Fig. 1. Example iteration of Algorithm 2.1.

clock for each state as long as the state is not eliminated due
to exceeding a threshold for the number of mismatches.

We expect approximately αter(1−Prg) mismatches for a
correct state and αter/2 mismatches for a wrong state. Note
that αter(1−Prg) can be much smaller than αter/2 for large
values of Prg . We denote the number of mismatches for a
state S by #MM(S). One can choose a proper threshold
value αthr such that αter(1 − Prg) ≤ αthr ≤ αter/2 and
eliminate any state whose number of mismatches exceeds
αthr . The value αthr is determined in order to fine-tune the
miss event and false alarm probabilities. We investigate this
adjustment theoretically in Theorem 1 and experimentally
in Section 7.

Example iteration of Algorithm 2.1

Let us give a toy example of how Algorithm 2.1 iterates.
We define a simple keystream generator consisting of two
registers: an 8-bit NFSR Nt = (nt0, . . . , n

t
7) and an 8-bit

LFSR Lt = (lt0, . . . , l
t
7) (a toy version of Sprout [11]). Let

St = (Nt, Lt). LFSR runs by itself using the update function
lt+1
7 = lt0 ⊕ lt3 ⊕ lt4 ⊕ lt5, and NFSR is updated by a function
nt+1
7 = lt0⊕nt6⊕n0kt⊕nt1nt2 where kt is the key bit. Finally,

the output at time t is produced as zt = lt6n
t
7 ⊕ nt6. It is easy

to see that this cipher is a KSG with Boolean KFF.
Note that nt+1

7 = zt+1 ⊕ nt7 when lt7 = 1. Hence, we
can determine the next feedback value fbt+1 = nt+1

7 from
the output bit zt+1, with probability 1/2 (when lt7 = 1).
That is, Prf = 1/2. When lt7 = 0, then zt+1 = nt7,
meaning that we can check if the current state at clock-cycle
t can generate the output at t + 1. Here, observe also that
θf = 0 as nt7 is incorporated into the output zt. Further-
more, Prg(St)f = 1 when nt0 = 0, and Prg(St)f = 1/2
otherwise. Hence, the average guess capacity Prg = 0.75.
We give an example iteration of Algorithm 2.1 for the state
St = ((1, 0, 1, 1, 1, 0, 1, 0), (1, 1, 1, 0, 1, 0, 1, 1)) for 6 clocks as
given in Figure 1 and trace it step-by-step in detail below.
• t : lt7 = 1, determine case: nt+1

7 = zt+1 ⊕ nt7 = 0.
• t+ 1 : lt+1

7 = 1, determine case: nt+2
7 = zt+2 ⊕ nt+1

7 = 0.
• t+ 2 : lt+2

7 = 0, check-and-guess case: It produces the
correct next output. Hence, make two copies of the state
with the feedback values as 0 and 1 (see Figure 1).

• t+ 3 : lt+3
7 = 1, determine case for both states: nt+4

7 = 1
for the first state and nt+4

7 = 0 for the second state.
• t+ 4 : lt+4

7 = 0, check-and-guess case: Eliminate the
second state as it cannot produce the next output. Make
two copies of the other with feedback values 0 and 1.

• t+ 5 : lt+5
7 = 0, check-and-guess case: Eliminate the first

state as it cannot produce the next output. Make two
copies of the other with feedback values 0 and 1.

Consider the NFSR updates from 10111010 to 10000111 (the
state on the right bottom in Figure 1). The feedback values
are 0, 0, 0, 1, 1, 1. On the other hand, the suggested feedback
values are 0, 0, 0, 0, 0, 0. Hence, the number of mismatches
#MM = 3 for this case.

3 IMPROVED INTERNAL STATE RECOVERY

We introduce another algorithm in this section for internal
state recovery of a KSG with Boolean KFF. This algorithm is
similar to Algorithm 2.1, but outruns Algorithm 2.1 when
there are more states deviating from the average guess
capacity. The comparisons can be found in Section 7.

The main tool to distinguish a wrong state from a
right state in Algorithm 2.1 is counting the number of
mismatches. However, we introduce a new notion threshold
probability, Prthr, to distinguish a wrong state from a right
state in Algorithm 3.1. Instead of counting the number of
mismatches in each clocking of the keystream of a state,
we recursively multiply the check probability, PrCh(S), of the
state with (1 − Prg(S)f ) in case of a mismatch. We expect
that the check probability of a wrong state will converge
to zero much faster than the check probability of a right
state since a wrong state is expected to produce much more
mismatches. The notion of Prthr is introduced to measure
how fast the check probability of a state converges to zero.
The check probability of a wrong state is expected to fall
below Prthr immediately.

Determining the feedback from the output value in
Algorithm 3.2 is similar to that in Algorithm 2.2. The
only difference is that the value of PrCh(S) is updated
iteratively instead of counting the number of mismatches.
The update procedure consists of multiplying PrCh(S) with
(1 − Prg(S)f ) in case of a mismatch. The check-and-guess
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Algorithm 3.1 Improved Internal State Recovery
1: Input: S; {zt+1+θf , . . . , zt+θf+αter}; αter; Prthr
2: Initialize CUR and NEW as two empty sets
3: Load all the states in S into CUR
4: Set PrCh(S) of each state S in CUR as 1
5: Make a copy of each state S in CUR as the root of S
6: for each clock i from t to (t+ αter − 1) do
7: for each state S in CUR do
8: Compute Prg(S)f
9: if Prg(S)f = 0.5 then

10: Set fbsugg = 0
11: else
12: Set fbsugg as the feedback value of S sug-

gested through the keyed feedback function
13: end if
14: if the feedback value fbi+1 of S is possible to

determine from output bit zi+1+θf then
15: Run Determine Procedure (Algorithm 3.2)
16: else
17: Run Check-and-guess Procedure (Algorithm 3.3)
18: end if
19: end for
20: Terminate if NEW is empty and give no output
21: Copy NEW to CUR
22: Empty NEW
23: end for
24: Output: the roots in CUR at clock t

Algorithm 3.2 Determine Procedure
1: Determine the feedback value as fbdet from the corre-

sponding output
2: Update S by clocking it with the feedback value fbdet
3: if fbsugg 6= fbdet (it is a mismatch) then
4: PrCh(S) = PrCh(S) · (1− Prg(S)f )
5: end if
6: if PrCh(S) ≥ Prthr then
7: Add updated S with PrCh(S) and its root to NEW
8: end if

procedure is modified analogously for the improved attack
as given in Algorithm 3.3.

One can check that Algorithm 2.1 and Algorithm 3.1 are
equivalent when the guess capacities of all the states are
equal. For each mismatch, we have PrCh(S) = PrCh(S) ·
(1 − Prg(S)f ) = PrCh(S) · (1 − Prg) and hence taking
Prthr = (1 − Prg)

αthr will result in the same miss event
and false alarm probabilities with the same complexity.

The state on the right bottom of Figure 1 of the example
in Section 2 has a mismatch at t + 4 with Prg(S)f = 1.
Therefore, it is instantly eliminated through Algorithm 3.1,
and only the state on the left bottom proceeds forward.

The performance of Algorithm 3.1 gets better with the
amount of states deviating from the average guess capacity.
A concrete example is the cipher Sprout. Algorithm 3.1 is
much faster than Algorithm 2.1 when mounted on Sprout
(see Section 8.2).

Algorithm 3.3 Check-and-guess Procedure
1: if the output of S is not equal to the actual output then
2: Do nothing (Eliminate the state)
3: else
4: Make two copies S0, S1 of S
5: Set PrCh(S0) = PrCh(S1) := PrCh(S)
6: Set the feedback value to 0 for S0 and update S0

7: Set the feedback value to 1 for S1 and update S1

8: if fbsugg = 0 then
9: PrCh(S1) = PrCh(S1) · (1− Prg(S)f )

10: else
11: PrCh(S0) = PrCh(S0) · (1− Prg(S)f )
12: end if
13: if PrCh(S0) ≥ Prthr then
14: Add S0 along with PrCh(S0) to NEW and set the

root of S as its root
15: end if
16: if PrCh(S1) ≥ Prthr then
17: Add S1 along with PrCh(S1) to NEW and set the

root of S as its root
18: end if
19: end if

4 KEY RECOVERY PHASE

This phase depends heavily on the structure of feedback
function of the concrete cipher on which the attack is
mounted. The internal state recovery phase gives us the
correct internal state at a certain clock t. However, we still
do not know the key. Moreover, the correct state may have
several subsequent state candidates produced by Algorithm
2.1 since we make guesses and several descendants of the
correct state may be proposed during the subsequent clocks.
Hence, we may not know the exact feedback values.

Let us assume we need e feedback values
fbt+1, . . . , fbt+e to recover the key partially from the
correct state St so that the remaining key bits can be
deduced by an exhaustive search with an ignorable
workload. Note that the parameter e depends on the
structure of a specific cipher. After obtaining the correct
internal state St at time t via Algorithm 2.1, we are
supposed to solve three issues for the key recovery.

1) Recover the correct internal state St+e at clock t+ e,
2) Compute the exact feedback values fbt+1, . . . , fbt+e, and
3) Extract information about the key from the feedback

values.

Run Algorithm 2.1 once more just for St. This time, keep
all the candidates for the descendants of St at clock t + e,
and save the feedback values for each surviving descendant.
These are possible by slightly modifying Algorithm 2.1.

Run Algorithm 2.1 once again by defining all the de-
scendants of St at clock t + e as input states. Algorithm 2.1
gives the correct state for St+e among all the descendants
of St. Hence, we recover the correct state at time t + e and
all the feedback values from time t to t + e − 1, namely
fbt+1, . . . , fbt+e. The last step is to extract information
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about the key from the system of equations

fF (K,St) = fbt+1

:

fF (K,St+e−1) = fbt+e

for the unknown key K. The feedback function fF for a
lightweight stream cipher is expected to be algebraically
simple and the system will be easy to solve. The solving
procedure depends on the concrete design. However, in
the worst case, if fF is too complicated then one may
guess the key bits incorporated into fF at a given clock.
Most probably, fF does not take all the key bits as input.
Hence, one may mount a divide-and-conquer attack. We
have referenced to Algorithm 2.1 throughout this section,
but similar arguments hold for Algorithm 3.1 as well.

In the case of Sprout, Round Key Function is so simple
that recovering the key from the correct internal state is
computationally trivial (see Section 8 for details). Even
we do not need to recover St+e, thanks to its very high
determine probability in backward direction (Prb = 1 for
Sprout). We refer the reader for a key recovery attack on
Sprout to [13].

5 CONVERTING STATE RECOVERY TO TRADEOFF

A critical question now is which states will be given as an
input to Algorithm 2.1 or Algorithm 3.1. A trivial answer is
to input all possible internal state candidates, which corre-
sponds to exhaustively searching all the states. To tackle this
problem, we introduce a tradeoff attack so as to minimize
the time complexity.

If there are internal states that can produce many output
bits independent of the key, then we can acquire these states
together with their outputs in a precomputation and run
Algorithm 2.1 or Algorithm 3.1 to check their validity in
the online phase. In this way, we can optimize time, data
and memory workloads. Therefore, we are interested in the
capacity of clocking a state without the key and introduce
the concept of weak internal states.

Definition 6. For a given KSG with Boolean KFF, a state St at a
clock-cycle t is called a weak state of order d in forward direction
if St+1, . . . , St+d can be computed from St without knowing the
key (independently from the key). Analogously, a state St is called
a weak state of order d in backward direction if St−1, . . . , St−d
can be computed from St without knowing the key.

It is straightforward from the definition that a weak state
of order d is also a weak state of order r for any r ≤ d. Also,
for a weak state St of order d in forward direction, St+i
is a weak state of order d − i in forward direction and a
weak state of order i in backward direction for any i ≤ d.
Hence, without loss of generality, it is enough to consider
weak states of order d in backward direction.

As mentioned before, any state can produce (θ + 1)-bit
output without any state updates. On the other hand, a
weak state of order d can produce (d + θ + 1)-bit output
without knowledge about the key.

Now, the tradeoff attack works as follows. All weak
internal states of order d (in backward direction) with their
(d + θ + 1)-bit outputs are loaded in a table in the offline

phase, sorted according to the outputs. The goal is then
to recover a weak internal state in keystream generation
and then check its correctness through Algorithm 2.1 or
Algorithm 3.1. The online phase of the tradeoff attack is
summarized in Algorithm 5.1 and we describe the offline
phase next.

Algorithm 5.1 Online Phase of the Tradeoff Attack
for each d+ θ + 1 bit output part (zt−d−θb , . . . , zt+θf ) do

Load all the precomputed states producing
(zt−d−θb , . . . , zt+θf ) into a set S

Run Algorithm 2.1 (with αter, Prg and ε) or Algorithm
3.1 (with αter and Prthr) for the set S and the output
zt+1+θf , . . . , zt+θf+αter .

// S can be divided into multiple sets and the

algorithm can be run for each set in case there is

not enough memory.

if there is a correct state captured then
Return the state as output and terminate

end if
end for

5.1 Offline Phase

Let T be a KSG with Boolean KFF with an internal state
size of s bits and 2sd weak internal states of order d. Find
all the weak states of order d (in backward direction) and
load them in a table with their (d + θ + 1)-bit outputs. The
tables are sorted with respect to the outputs. The resulting
memory complexity is 2sd .

The most generic way of executing the offline phase
is just trying all the internal states and determining the
weak states of order. Note that no information about the
key is needed for preparing the table since producing the
(d+ θ+1)-bit output is possible for the weak states without
knowing the key. The complexity of preparing the table is
2s attempts at worst, which consists of iterating over all the
internal states where each attempt is at most (d + θ + 1)
clocks of the cipher. It is possible that one may exploit
special properties of a concrete design of T to improve the
time complexity of the offline phase as in the case of the
cipher Sprout [13]. The low sampling resistance in Sprout
is exploited and a system of specific nonlinear equations,
whose solutions yield the weak states of the cipher, is
solved. The offline phase in TMDT attack in [13] is around
240 encryptions or less, which is much faster than 280, where
the internal state size of Sprout is 80 bits.

Some states may be weak of larger order, making it
possible to produce more than (d + θ + 1) bits of output.
These extra output bits can also be loaded for such states as
a further improvement of the attack. However, we disregard
this improvement to give the generic concept of the attack.

6 COMPLEXITY ANALYSIS

Let T be a KSG with Boolean KFF with an internal state
size of s bits, which is expected to be small for a lightweight
stream cipher. We give the complexity numbers with respect
to the weakness order d. One can take d = 0 and the number
of weak states of order d to be 2sd = 2s for the case when



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2851239, IEEE
Transactions on Computers

8

there are no weak states, including in Theorem 1. We assume
that the weak states of T are uniformly distributed with
respect to any given (d + θ + 1)-bit output2. That is, the
probability that a (d + θ + 1)-bit output is produced by a
weak state is 2sd−s. So, if we have 2s−sd output pieces, we
expect one of them to be produced by a weak state and
this weak state is captured. Hence, the data complexity is
roughly 2s−sd + d + θ bits (considering the (d + θ + 1)-bit
pieces where each consecutive piece overlaps in d+ θ bits).

For each output piece, we check if there is any weak state
in the table producing it. These weak states are examined to
see if they can further produce the output bits in forward
direction consistently. There may be insufficient amount of
output bits, particularly, for the pieces at the end. In this
case, such states can be examined in backward direction or
can simply be ignored.

There are roughly 2sd−d−θ−1 weak states that produce a
given (d + θ + 1)-bit output (zt−d−θb , . . . , zt+θf ). Among
Prd ·2sd−d−θ−1 of those states, we expect the feedback
values to be determined from the (t + θf + 1)-th out-
put. The remaining (1 − Prd) · 2sd−d−θ−1 weak states go
into the check-and-guess procedure. Altogether, we expect
2sd−d−θ−1 states to survive after each clock. That is, we ex-
pect roughly the same number of remaining states through
these determine or check-and-guess procedures.

An arbitrary wrong state produces mismatches at
roughly half of the clocks it is iterated through. So, we
expect a wrong state to be eliminated in roughly 2αthr
clocks for a threshold αthr . Therefore, testing all of them
costs αthr ·2sd−θ−d clocks on average for one specific output.
There are 2s−sd output pieces to be examined. Hence, the
total number of clockings during the internal state recovery
phase is αthr · 2s−d−θ. Theorem 1 suggests a lower bound
for αter, the maximum number of clocks to be iterated, and
αthr to recover the right state and to eliminate all the wrong
states through Algorithm 2.1.

Theorem 1. Let Prg be the guess capacity of a given KSG with
Boolean KFF having internal state size s and output capacity θ.
We make the following list of assumptions.

• Prg > 1
2 and there is at least one weak state of order d

occurring in the keystream generation.
• The probability that a given output is produced by a weak

state is equal to the probability of choosing a weak state
randomly among all the states2.

• The probability that a mismatch occurs for a wrong state is
one-half and the average probability of an occurrence of a
mismatch for correct states at a given clock is 1 − Prg for a
fixed key, independent of mismatch occurrence at other clocks.

For a given 0 < ε < 1, if αter is greater than or equal to

1

(2Prg −1)2

(√
−2 ln ε+

√
2 ln 2 · (s− θ − d− 1)

)2

,

then the success rate of the attack in Algorithm 5.1 using Algo-
rithm 2.1 is at least 1 − ε and the number of false alarms is less
than one in total.

2. This assumption is required for determining how much data is
needed. The attack still works without this assumption, and even better
by prioritizing the analysis of the most probable weak states.

Proof. We want the miss event probability
αter∑

i=αthr+1

(
αter
i

)
(1− Prg)

i Pr(αter−i)g

to be less than ε. Let us take

αter ≥
1

(2Prg −1)2

(√
−2 ln ε+

√
2 ln 2 · (s− θ − d− 1)

)2

.

Then, we can write

ln 2 · (s− θ − d− 1)

2
≤ αter

(
Prg −

1

2
−

√
− ln ε

2αter

)2

since the value

1

2Prg −1

(√
−2 ln ε+

√
2 ln 2 · (s− θ − d− 1)

)
is the largest root of the equation

(
Prg −

1

2

)2

x− 2

(
Prg −

1

2

)(√− ln ε

2

)
√
x

+
− ln ε

2
− ln 2 · (s− θ − d− 1)

2

with the unknown parameter x. So, if we take εter =√
− ln ε
2αter

, the miss event probability is bounded above
by exp(−2ε2terαter) by Hoeffding’s inequality where dxe
is the smallest integer greater than or equal to x. But,
exp(−2ε2terαter) = ε. So, the success probability is at least
1 − ε. On the other hand, αthr = bαter(1− Prg +εter)c
where bxc is the greatest integer less than or equal to x.
Then, the false alarm probability for one state is given as

2−αter
αthr∑
i=0

(
αter
i

)
≤ exp

(
−2(αter/2− αthr)

2

αter

)
(1)

by Hoeffding’s inequality. Also, plugging

αthr ≤ αter(1− Prg +εter)

in Inequality 1, we obtain an upper bound for the false alarm
probability for one wrong state as

exp(−2αter(Prg −1/2− εter)2).

There are 2s−θ−d−1 states in total to be examined. So, the
average number of false alarms is bounded above by

2
s−θ−d−1−2αter log2 e

(
Prg − 1

2−
√
− ln ε
2αter

)2
which is less than one when its exponent is a negative
number. Recalling our assumption for the lower bound for
αter, we get

ln 2 · (s− θ − d− 1)

2
≤ αter

(
Prg −

1

2
−

√
− ln ε

2αter

)2

.

Hence, the average number of false alarms is less than one.

Theorem 1 gives us a lower bound for αter to promise
a success rate of at least 1 − ε. Indeed the lower bound is
not sharp enough and can be further improved. We have
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TABLE 2
Some examples of αter for different ε, Prg , d, s and θ parameters.

ε Prg d s θ αter
0.10 0.75 10 80 2 555.40
0.10 0.55 40 80 2 8663.65
0.45 0.75 10 80 2 475.35
0.45 0.55 40 80 2 7099.13
0.10 0.90 40 80 2 135.37

conducted several experiments and have shown that it is
not necessary to take αter as large as the value that Theorem
1 dictates. See Section 7 for a comparison of experimental
results with the theoretical results. Besides, Theorem 1 sug-
gests an average time complexity for Algorithm 2.1 since it
proposes a bound for the value αter , and αthr is set by αter.

Corollary 1. With the assumptions as in Theorem 1, the average
time complexity of Algorithm 5.1 using Algorithm 2.1 is bounded
above by 2sd−θ−d · (αthr +1) for a required success rate of 1− ε
where αthr is set in Algorithm 2.1.

Proof. We should set αter to be larger than or equal to

1

(2Prg −1)2
(
√
−2 ln ε+

√
2 ln 2 · (s− θ − d− 1))2

to have a success rate of at least 1 − ε by Theorem 1. Then,
αthr is determined by αter as

αthr = bαter(1− Prg +εter)c

where εter =
√
− ln ε
2αter

. Theorem 1 ensures a success rate of
at least 1 − ε for this value of αthr . Also, the probability
that a wrong state produces a mismatch for each feedback is
one-half. So, around αthr+1 mismatches are expected when
a wrong state is clocked roughly 2(αthr + 1) times. So, we
expect a wrong state to be eliminated in 2(αthr+1) clocks on
average as the number of mismatches exceeds the threshold.
For a given output, we have 2sd−θ−d−1 wrong states and the
time complexity of testing all of them through Algorithm 2.1
is on average 2sd−θ−d · (αthr+1) clocks. On the other hand,
we have 2s−sd output pieces for the outer loop of Algorithm
5.1. Therefore, the average time complexity is (αthr + 1) ·
2s−d−θ clockings.

Remark 2. We assumed that a wrong state produces roughly
αter
2 mismatches. This is indeed the expected value if each iteration

of a wrong state is also a wrong state. However, it may turn out
that a wrong state becomes a correct state after several clocks.
However, such cases are too rare and can be ignorable. We have
done several experiments and have never witnessed such a case.
This case can be considered as a technical detail of the attack that
may be overcome straightforwardly.

The success rate and the false alarm probabilities do
not depend on the number of weak states. Some numerical
examples of αter values are given in Table 2. These αter
values are those in the worst-case, and we observe better
numbers in the experiments.

7 EXPERIMENTS

In this section, we provide the results of the extensive
experiments to verify our assumptions and results from

previous sections. Adapting the notation in Theorem 1,
we have chosen s = 16 and θ = d = 0 for all the
experiments. So, we have no weak states in our examples.
In order to set a Prthr value for Algorithm 3.1, we usually
use Prthr = (1 − Prg)

αthr unless otherwise indicated. We
use the term deviation (abbreviated as dev.) to indicate, for
example, that if deviation is 1/8, then guess capacity for a
state is Prg −1/8 with probability one-half, and it is Prg +1/8
elsewhere.

We have taken long enough randomly generated keys (of
a thousand bits) for the experiments so as to ensure that no
additional bias is introduced due to the periodic reuse of the
key bits. The way key is incorporated into the feedback is as
follows. Randomly generate a binary array, arr, where the
probability of encountering a zero in one half is (Prg −dev)
and that in the other half is (Prg +dev). Then, an index is
calculated at each clock for the state update where the MSB
of the index is determined by a cell in the internal state, and
the rest of the bits are determined by some (distinct) bits
from the key. Finally, arr[index] is output as the output of
KFF. For example, if Prg = 3/4 and dev = 1/4, then an
array of length 8 could be [0, 0, 1, 1, 0, 0, 0, 0].

The experimental success rate is calculated by repeatedly
(at least 1000 times) inputting a correct state along with its
corresponding keystream sequence into the algorithm (the
key and the initial state from which the keystream is gen-
erated are chosen randomly every time) and calculating the
percentage of how many times it is output as a candidate.
We only count the cases where the root iterates as the correct
state at each clock.

To summarize, our experiments show that the exper-
imental success rate with the parameters chosen as in
Theorem 1 is always higher than the theoretical success
rate. Moreover, we have seen that the theoretical success
rate can be reached experimentally (while upper-bounding
the average number of false alarms by 1) even when αthr
suggested by Theorem 1 is halved. This means that the time
complexity can be decreased by a factor of about two. Fur-
ther experiments show that Algorithm 3.1 performs better as
the deviation increases whereas Algorithm 2.1 is not affected
by the deviation, as expected. Because Algorithm 2.1 does
not exploit the individual guess capacities of each state.

Focusing on Figure 2, we can easily see that both Algo-
rithm 2.1 and Algorithm 3.1 always perform better than 1−ε
value as indicated by Theorem 1. Another important result
from this figure is that the success rate of Algorithm 3.1
becomes much better as the deviation increases. We see that
Algorithm 2.1 is not affected by the deviation and both of
the algorithms behave similarly when there is no deviation.

Table 3 can be used to compare the time complexities
of Algorithms 2.1 and Algorithm 3.1. It is easy to see that
one can achieve higher success rates with a lower time
complexity using Algorithm 3.1 rather than Algorithm 2.1.
We note that although αthr values are not given in Table
3, we have verified that average number of clocks iterated
for a wrong state in Algorithm 2.1 is about 2 · (αthr + 1) as
expected (see Corollary 1). Furthermore, if we set ε = 0.10
in Theorem 1, then we get αthr = 299. This means that one
would need to run about 600 clocks on average for each
state to achieve a 90% success rate according to Theorem 1.
However, if we look at Table 3, one can achieve a greater
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Fig. 2. Comparison of Algorithm 2.1 and Algorithm 3.1 for various ε
values with different deviations. We have done a curve fitting as a
degree-3 polynomial in the graphs and the rates are in percentages.
Very few false alarms in total (almost always none for individual tests)
were encountered.

TABLE 3
Average number of clocks (denoted as Avg. Clocks) iterated for a

wrong state with respect to different αter and dev. values. Prg = 5/8.
Exp. SR denotes experimental success rate, and Alg and Dev are

used as abbreviations for Algorithm and Deviation, respectively. αthr
are chosen to have no false alarm and Prthr = (1− Prg)αthr .

αter Dev. Exp. SR
(Alg-2.1, Alg-3.1)

Avg. Clocks
(Alg-2.1, Alg-3.1)

200 1/16 (32.1, 33.1) (143.9, 140.9)
200 1/8 (30.7, 55.8) (144.1, 135.0)
250 1/16 (41.3, 49.0) (185.9, 182.1)
250 1/8 (42.1, 68.9) (185.9, 175.1)
300 1/16 (60.4, 66.5) (230.0, 225.8)
300 1/8 (60.4, 82.1) (229.8, 216.3)
350 1/16 (78.7, 82.9) (276.1, 270.3)
350 1/8 (75.5, 91.9) (275.7, 259.0)
400 1/16 (83.8, 87.8) (319.4, 314.5)
400 1/8 (84.0, 95.9) (319.4, 300.9)
450 1/16 (89.2, 93.6) (363.3, 357.7)
450 1/8 (90.4, 97.6) (362.9, 342.5)
500 1/16 (94.4, 96.8) (409.6, 402.6)
500 1/8 (95.3, 99.6) (409.1, 386.1)

success rate by iterating about 260 clocks on average using
Algorithm 3.1, which implies a speed-up of a factor greater
than 2. We witnessed a similar situation with different
parameters as well. Thus, it seems likely to reduce the time
complexity indicated by Theorem 1 by half, especially as the
deviation gets higher.

8 APPLICATION TO SPROUT

In this part, we place Sprout into the mathematical setting of
a KSG with Boolean KFF and apply our generic algorithms
to it. We give a quick overview of Sprout and refer the reader
to [11] for further details.

8.1 Sprout as a KSG with Boolean KFF

Sprout [11] is one of the recent lightweight stream ciphers,
whose design rationale is highly affected by Grain family
[19]. An 80-bit key is used to update the internal state
which consists of a 40-bit LFSR and a 40-bit NFSR. A 70-bit
IV is used to initialize registers. The details of the update
functions and the output function are not important for
the application of Algorithm 2.1 or Algorithm 3.1 since
we do not exploit their internal structures. Our attacks are
generic and we only investigate the guess capacity, the
output capacity and the determine probabilities of Sprout
to introduce our attacks.

Sprout is a KSG with Boolean KFF since it has two
feedback bits for each clock as key-dependent one for the
N register (NFSR) and key-independent one for the L
register (LFSR). L register is updated by itself and key is
not incorporated into L.

What is important for our purposes is that the round key
function outputs a bit as k∗t = ktmod 80 · δt where δt is a bit
calculated as an XOR sum of some bits from the registers.
Now, the weak states of order d for Sprout are those where
δt vanishes for d consecutive clocks. This means that the key
bits are ignored starting at clock t − 9 until (t + d − 10)-th
clock. As a result, the number of weak states of order d is
around 280−d.
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TABLE 4
Experimental results for a simulation of Sprout for αter = 101.

CSR: Calculated Success Rate using the formula∑αthr
i=0 (1− Prg)i Pr

αter−i
g , ANC: Avarege Number of Clockings for

examining one state. Alg: Algorithm.

CSR ANC (Alg-2.1) ANC (Alg-3.1) αthr (Alg-2.1)
99.5% 121.7 4 60
77.5% 57.7 4 28

Let us denote Nt := (nt0, n
t
1, . . . , n

t
39) as the state value

of the nonlinear register NFSR at clock t. Prf = 1/4 and
Prb = 1 for Sprout since nt38 appears in a term of degree
3 and nt1 appears linearly in the output function whereas
nt0 and nt39 do not affect the output at all. This also implies
that θb = θf = 1. Therefore, for any given state of Sprout,
it is possible to produce 3 bits of output without any state
updates. More interestingly, the guess capacity is one for the
states where δt = 0 and one-half for the states where δt = 1.
Hence, the average guess capacity Prg = 0.75.

8.2 Generic Attacks on Sprout
In this section, we illustrate the generic attacks through
Algorithm 2.1 and Algorithm 3.1 on Sprout. Recall that
the weak states of order d are those where δt = 0 for d
consecutive clocks and d+3 bits of output can be produced.

One mismatch is enough for a wrong state with
Prg(S)f = 1 to be eliminated by Algorithm 3.1 since the
probability PrCh(S) drops to zero immediately in that case.
We expect this to happen in 4 clocks on average since half
of the states have a guess capacity one and the probability
of entering into a check-and-guess procedure is one-half.
Hence, the average number of clocks through Algorithm 3.1
for a wrong state of Sprout is 4.

Taking ε = 0.01, if we load the weak states of order
d, then αter > 4(

√
2 · ln 2

√
77− d + 3.03)2 by Theorem 1.

In particular, αter = 414 and αthr = 134 for d = 40. So,
the average time complexity will be at most 2 · 134 · 237 ≈
245 Sprout clockings for recovering a correct internal state
with Algorithm 2.1. Thus, Algorithm 2.1 is at most 67 times
slower than the attack in [13] and at least 7.6 times faster
than the attack in [14] according to Theorem 1.

We have simulated Sprout with a register where the
guess capacity is one-half for half of the states and one for
the remaining half. The results verify our conclusions from
previous sections. Algorithm 3.1 can eliminate a wrong state
in approximately 4 clocks, meaning that Algorithm 3.1 is as
fast as the best attack given in [13]. Similarly, a wrong state
can be eliminated in roughly 121.7 clocks by Algorithm 2.1
as given in Table 4, which is roughly 31 times slower when
we consider the success rate as 99%. So, Algorithm 3.1 is
roughly 29 times and Algorithm 2.1 is roughly 16,5 times
faster than the attack in [14].

It is worth emphasizing that both Algorithm 2.1 and
Algorithm 3.1 are generic attacks and can successfully be
applied not only to Sprout but also to any KSG with Boolean
KFF having a guess capacity greater than one-half. Still, the
best attack in terms of computational complexity on Sprout
is achieved with Algorithm 3.1. Furthermore, the attacks in
[13], [14] makes use of the fact that Prd = 1 in backward
direction. However, we have shown that the complexities

of our generic internal state recovery attacks do not depend
on the value Prd. So, these attacks would still work even
though Sprout would be fixed so that Prd is strictly less
than one whereas the attacks in [13], [14] would not work.

9 COMPARISON OF TRADEOFF ATTACKS

After [20] appeared in IACR’s e-print and presented at SAC
2015 [13], Zhang and Gong described another TMD tradeoff
attack on Sprout at Asiacrypt 2015 [14]. Both attacks are
based on checking if one of the weak states of order d + 3
is used in keystream generation where the weak states are
determined and loaded in tables in the precomputation.
However, the Asiacrypt paper imposes additional condi-
tions on the weak states. In this section, we give a detailed
comparison of the TMD tradeoff attack in [13] (Esgin-Kara
attack), the one in [14] (Zhang-Gong attack).

Let T , TP ,M and D denote the online time, the precom-
putation time, the memory and the data complexities of an
attack, respectively. The comparison is done with respect to
the attack given in Section 4 of [14], which details the attack
on Sprout.

In [14], two parameters x and y are defined as the
number of forward and backward clockings in the attack,
respectively. It is easy to see that these parameters satisfy the
relation d = x+ y. Thus, we use d instead of x+ y. First, we
provide the time/data/memory workloads of Zhang-Gong
attack (for d ≥ 30) as given in [14]:
• T = 270.66−d encryptions + 2d+6 TLs,
• TP = 274−d,
• M = Count(|C ′|) · 271−d ·

[
61 + Count(d)

Count(|C′|) (2d− 58)
]
,

• D = 2d+9.
The special states loaded in the tables and then examined
are the middle states in [14]. That is, the states are stored for
time t and δi being equal to 0 for i = t − y, . . . , t + x − 1
is assumed. That’s why checking each state during the
key recovery attack in backward direction does not end in
approximately 4 clocks, but rather does in y + 4 clocks.
So, either the online time complexity increases by a factor
of around 22 for y ≥ 12 or there is an additional time
complexity in the precomputation in order to wind back
the registers to their corresponding states at time t − y.
The latter process can be considered more efficient as it is
run in the offline phase. Then, an additional workload of
y · 26 · 271−d · 2−8.33 = y · 268.67−d encryptions3 must be
added to the precomputation.

Furthermore, the memory complexity of Zhang-Gong
attack is disputable. From [14], it seems thatM is decreased
by a factor less than 4 for the same D in comparison to
Esgin-Kara attack. The following is quoted from [14]:

“As for the memory, we need Count(|C ′|) × 213 tables
TC′,i, each having 258−x−y rows in the first column to store
61-bit “special” states ... and 258−x−y × Count(|C|)

Count(|C′|) rows in
the second column to store the corresponding output bits.”

The internal states are stored in the first column and
the second column contains sub-rows each storing output
bits with respect to different counter arrays involved in
output generation. Therefore, it is not possible to store the

3. One clock of Sprout is equivalent to 2−8.33 encryptions of the
cipher as shown in [13].
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tables sorted with respect to the outputs. So, the memory
workload decreases by a factor of about four but at the cost
of making (linear-time) searches in unsorted tables. This will
increase the workload of table lookups enormously, making
the attack extremely inefficient. This fact is not mentioned
in [14].

If the tables are sorted, then the total number of rows
in all the tables become equal in both of the attacks, which
implies that the memory complexities are equivalent in both
attacks. Table 1 summarizes the actual complexities, where
we naturally assume that the tables are sorted.

One can consider Zhang-Gong attack as a special case
of Esgin-Kara attack: Impose any additional 9-bit condition
on the states to be collected such that a 3-bit part of this
condition is observable by the output. Moreover, do not use
a 3-bit part of the condition when solving the system of
equations. The same complexities as those given in Table 1
are obtained in this case.

To sum up, the additional artificial conditions imposed
in [14] render the attack cumbersome. Indeed, it can be seen
from Table 1 that Zhang-Gong attack is roughly 29 times
slower than Esgin-Kara attack with the same amount of
data or requires 29 times more data with the same time
complexity. The same result can be seen from Table 3 of
Zhang and Gong’s work [14].

10 CONCLUSION AND DISCUSSION

We have studied the security of KSGs with KUF in a math-
ematical framework. Several open problems await further
research. The bound for αter given in Theorem 1 for Algo-
rithm 2.1 is not sharp. A theoretical statement proving that
Algorithm 3.1 is faster than Algorithm 2.1 is also another
open issue. We do not exploit the probability of determine
and may be further improved by leveraging particular
values. The natural question is whether it is possible to
introduce a new attack that works even if the guess capacity
is equal to one-half. One concrete example to be studied for
such a case is the recent cipher Plantlet [17].
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