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Abstract. Let X ∈ Zn×m, with each entry independently and iden-
tically distributed from an integer Gaussian distribution. We consider
the orthogonal lattice Λ⊥(X) of X, i.e., the set of vectors v ∈ Zm
such that Xv = 0. In this work, we prove probabilistic upper bounds
on the smoothing parameter and the (m − n)-th minimum of Λ⊥(X).
These bounds improve and the techniques build upon prior works of
Agrawal, Gentry, Halevi and Sahai [Asiacrypt’13], and of Aggarwal and
Regev [Chicago J. Theoret. Comput. Sci.’16].
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1 Introduction

A rank-d Euclidean lattice Λ is a discrete subgroup of (Rm,+) spanned by the
columns of a matrix B ∈ Rm×d via integer linear combinations. The columns of
B form a Z-basis of Λ. Understanding geometric properties of high-dimensional
lattices is a central topic in various areas of mathematics and computer sci-
ence [22]. Among the most important invariants of a lattice are its so-called
successive minima λ1(Λ), . . . , λd(Λ), where λi is the smallest r ∈ R such that
Λ has i linearly independent vectors of Euclidean norms ≤ r. Another impor-
tant invariant, closely related to the minima, is the smoothing parameter ηε(Λ).
Informally, it quantifies the smallest standard deviation s needed for a discrete
Gaussian distribution over Λ to behave essentially like a continuous one up to
a statistical error ε. Formally, the smoothing parameter ηε(Λ) is the minimal
s > 0 such that the Gaussian mass

∑
x∈Λ∗ exp(−πs2 ‖x‖) is at most 1 + ε. (The

dual lattice Λ? of Λ with basis B is B(BtB)−1Zd.) Introduced by Micciancio
and Regev in 2004, the smoothing parameter has been used as a central tool
in reductions between lattice problems [18] and in lattice-based cryptography.
Also, the notion of smoothing parameter can be found in communication theory
under the name ‘flatness factor’ [6].



In this work, we consider the successive minima and the smoothing param-
eter of random orthogonal lattices. For X ∈ Zn×m with m > n, the orthog-
onal lattice Λ⊥(X) is a set of all vectors v ∈ Zm that belong to the (right)
kernel of X. In cryptography, orthogonal lattices first appeared as a cryptana-
lytic tool in attacking several cryptographic constructions [20,21,10]. Years later,
when lattices have turned into a major build block in designing cryptographic
primitives, orthogonal lattices were used in various constructions such as cryp-
tographic multilinear maps [2], traitor-tracing schemes [17] and inner product
functional encryption [3].

Given X ∈ Zn×m, one can find a basis of Λ⊥(X) by a Hermite Normal
Form computation (see, e.g., [13]). Concretely: let U ∈ Zm×m be a unimodular
transformation that brings X into HNF, i.e., X · U = XHNF. Note that the last
m− r columns of XHNF are zero vectors, where r ≤ n is the rank of X; viewing
U as a block matrix U = [U1|U2] for U2 ∈ Zm×(m−r), one can show that the
columns of U2 form a basis of Λ⊥(X). Similarly, Nguyen and Stern [20] show
how to obtain a short basis of Λ⊥(X) by LLL-reducing [16] the lattice spanned
by the columns of [cX t|Im]t with some sufficiently large scalar c.

We study the (m− n)-th minimum and the smoothing parameter of the or-
thogonal rank-(m − n) lattice Λ⊥(X), where each entry of X is independently
and identically distributed according to an integer Gaussian distribution (for our
parameters, the matrixX has rank r = n with overwhelming probability). In par-
ticular, we obtain probabilistic upper bounds on ηε(Λ

⊥(X)) and λm−n(Λ⊥(X)).

Prior results. Consider the following process: sample a1, . . . , am uniformly in
Z/qZ for some integer q > 1; sample z1, . . . , zm small Gaussian integers. Then,
conditioned on the ai’s, the value

∑
i aizi mod q “looks like” a uniform ele-

ment of Z/qZ. This statement, due to [12, Lemma 4.2], is a variant of the
leftover hash lemma [15] (LHL for short), and its proof crucially relies on the
smoothing parameter of the lattice corresponding to the kernel of the map
z ∈ Zm 7→ 〈z,a〉 mod q. With a motivation stemming from a cryptographic
multilinear map construction [11], Agrawal, Gentry, Halevi and Sahai [2] con-
sidered the following variation: instead of starting from the finite set Z/qZ, they
consider a matrix X ∈ Zn×m with entries sampled from an integer Gaussian
distribution and focus on the closeness between the distribution of the vector
Xz and a discrete Gaussian distribution, for an appropriately chosen Gaussian
multiplier z and conditioned over X. The main novelty was to replace the fi-
nite support Z/qZ by the infinite support Z. This question can be answered by
considering the smoothing parameter of the lattice Λ⊥(X). Let us denote by
DZn,S the n-dimensional zero-centered discrete Gaussian distribution over Zn
with parameter a full column-rank matrix S with n columns (the probability of
a vector k ∈ Zn is proportional to exp(−π‖kt(StS)−1k‖)) and by DZn,s the case
when S = sIn. The following probabilistic bound is proved in [2]:

ηε(Λ
⊥(X)) ≤ O(mn

√
ln(m/ε)),
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where X ← (DZn,s)
m, s > ηε(Zn) and m = Ω(n ln(ns)).56 This statement holds

with probability ≥ 1 − 2−Ω(n) over the choice of X. They obtain a LHL over
lattices as a direct consequence of this result: for parameters satisfying the same
conditions and if the above smoothing parameter bound holds, the statistical
distance7 between the distributions Xz (conditioned on X) and DZm,s′X t is at
most ε, when z is sampled from DZm,s′ for s′ ≥ ηε(Λ⊥(X)).

Our objective here is to obtain a sufficient condition on s′ which is as mild
as possible. Note that improving the upper bound on ηε(Λ

⊥(X)) directly leads
to a milder condition on s′.

Following [2], Aggarwal and Regev [1] gave another bound on the smoothing
parameter of Λ⊥(X). Namely, they showed that

ηε(Λ
⊥(X)) ≤ O

(
ns ·

√
ln(ns) · ln(m) · ln(m/ε)

)
,

with probability ≥ 1 − 2−Ω(n) over the choice of X ← (DZn,s)
m. The bound

holds for s > ηε(Zn) and m = Ω(n ln(ns)). The bound of [1] is lower for large m
and small s, while the result of [2] is preferable for large s and small m.

Our results. Our first result is an improved upper bound on ηε(Λ
⊥(X)).

Theorem 1. Let n be an integer growing to infinity, ε > 0, s ≥ Ω(
√
n) and

m = Ω(n ln s). Then, we have

Pr
X←(DZn,s)

m

[
ηε(Λ

⊥(X)) ≤ O
(√

(n+ lnm) · ln(m/ε)
)]
≥ 1− 2−Ω(n).

Moreover, for any ε ≤ e−(m−n),

Pr
X←(DZn,s)

m

[
ηε(Λ

⊥(X)) ≤ O
(√

ln(1/ε)
)]
≥ 1− 2−Ω(n).

Note that the second probabilistic upper bound is lower than the first, but
is not applicable for every ε > 0. It holds for ε ≤ e−(m−n) and, for larger values
of ε, only the first bound applies. The reason why there are two possibilities
for the upper bound stems from the two uncomparable relations between the
smoothing parameter and the first minimum of the dual lattice Λ⊥(X)? for the
Euclidean and infinity norms (see Lemmas 5 and 6).

A proof for this theorem can be found in Section 3. Our result improves
over both bounds of [2] and [1] when s = Ω(

√
n) and m is sufficiently large.

In particular, the minimum of our two upper bounds is smaller by an Ω(
√
n)

factor for the above ranges of m and s, is independent of s and depends at
most logarithmically in m. However, our result requires s = Ω(

√
n) (which is

5 Note that an equivalent description of the distribution for X would be X ←
(DZ,s)

n×m. Our choice follows prior works.
6 We recall that ηε(Zn) = O(

√
ln(n/ε)) (see Section 2).

7 The statistical distance between two distributions X and Y is half their `1-distance,
i.e., ∆(X,Y ) := 1

2
‖X − Y ‖1 = 1

2

∑
ω∈Ω |X(ω)− Y (ω)|.
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a consequence of our proof technique, in particular, Lemma 12), so for small
values of s, the prior results of [2] and [1] remain the best known upper bounds
on ηε(Λ

⊥(X)). As an immediate corollary to Theorem 1, we obtain a tighter
version the leftover hash lemma over lattices (see Corollary 1). We summarise
our results and compare them with previous works in Table 1.

For applications, it is useful to keep in mind the following parameter set with
respect to n: ε = 2−Θ(n), s = nΘ(1) and m = Θ(n lnn). For these parameters,

Theorem 1 yields ηε(Λ
⊥(X)) ≤ Õ(n) with probability ≥ 1−2−Ω(n). For the same

parameters, the probabilistic bounds from [2] and [1] are ηε(Λ
⊥(X)) ≤ Õ(n3)

and ηε(Λ
⊥(X)) ≤ Õ(n3/2s), respectively.

Agrawal et al. [2] Aggarwal-Regev [1] This work

s Ω(ηε(Zn)) Ω(ηε(Zn)) Ω(
√
n)

m Ω(n ln(ns)) Ω(n ln(ns)) Ω(n ln s)

ηε(Λ
⊥(X)) O

(
mn
√

ln m
ε

)
O
(
ns
√

ln(ns) ln(m) ln m
ε

) O
(√

(n+ lnm) · ln m
ε

)
or O

(√
ln 1

ε

)
Table 1: Probabilistic upper bounds on ηε(Λ

⊥(X)) for X ← (DZn,s)
m together

with requirements on s and m needed for the bounds to hold. The two cases in
the last table entry depend on the range of ε, see Theorem 1.

.

Our second main result is an upper bound on the (m−n)-th minimum of the
orthogonal lattice Λ⊥(X). Note that we could use our result of Theorem 1 to
obtain an upper bound on λm−n(Λ⊥(X)) via the relation λm−n(Λ) ≤

√
m− n ·

ηε(Λ), which holds for any rank-(m − n) lattice Λ and any ε ∈ (0, 1/2)) (see
Lemma 7). Below we state the result, which gives a better bound for a large set of
parameters. In particular, for many ranges of s andm, it improves over the bound
λm−n(Λ⊥(X)) ≤ O(ns

√
ln(m) ln(ns)) from [1], and the bound λm−n(Λ⊥(X)) ≤

O(mn) from [2].

Theorem 2. Let n be an integer growing to infinity, s ≥ Ω(
√
n) and m satis-

fying m = Ω(n ln s) and m ≤ 2n/2. Then, we have

Pr
X←(DZn,s)m

[
λm−n(Λ⊥(X)) ≤ O(n ln s)

]
≥ 1− 2−Ω(n).

This theorem is proven in Section 4. An interesting fact to be noticed from
this result is that, with overwhelming probability, the lattice Λ⊥(X) contains
(m − n) linearly independent vectors whose norms do not depend on m — a
parameter which can be as large as 2n/2. On the other hand, our statement
holds even when taking m as small as Θ(n · ln s). We summarise our results and
compare them with previous works in Table 2.
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Agrawal et al. [2] Aggarwal-Regev [1] This work

s Ω(ηε(Zn)) Ω(ηε(Zn)) Ω(
√
n)

m Ω(n ln(ns)) Ω(n ln(ns)) Ω(n ln s) and ≤ 2n/2

λm−n(Λ⊥(X)) O(mn) O
(
ns
√

ln(ns) ln(m)
)

O(n ln s)

Table 2: Probabilistic upper bounds on λm−n(Λ⊥(X)) for X ← (DZn,s)
m to-

gether with requirements on s and m needed for the bounds to hold.

.

1.1 Techniques

The bound on the smoothing parameter is obtained via a chain of relations
between successive minima of different lattices and the smoothing parameter
of Λ⊥(X). Well-known transference relations between the smoothing parameter
of a lattice and the first minimum of its dual lead us to study λ1(Λ⊥(X)?).
Namely, in order to obtain our result on ηε(Λ

⊥(X)), we bound λ1(Λ⊥(X)?)
from below in both Euclidean and infinity norms.

To obtain these lower bounds, we consider the lattice Λq(X) ⊆ Zm – the
full-rank lattice spanned by the rows of X and qZm (in other words, we consider
the so-called Construction A lattice of X, see [8, Chapter 5]). Following [2],
our objective is to obtain a probabilistic lower bound on the norms of vec-
tors from Λq(X) \ X tZn. Note that this implies a probabilistic lower bound
on λn+1(Λq(X)), as the vector space X tQn has dimension at most n.

At the heart of both proofs, ours and the one from [2], is a counting argument
that allows to bound the norms of lattice vectors of the form X tz mod q ∈
Λq(X) \X t ·Zn. The counting argument is divided into several cases depending
on the norm of z. One source of improvement in our result is a more fine-grained
division of these cases as well as a tighter treatment of interchange between
different norms.

Once we have a lower bound on the norms of vectors from Λq(X) \ X tZn,
we relate the smallest norm of such vectors to λ1(Λ⊥(X)?). This is where our
approach differs most from [2]. The intuition behind the relation is the following:
observe that for a sufficiently large q, the lattice 1

qΛq(X) can be thought of as an

approximation to Λ⊥(X)?, in the sense that any u ∈ Λ⊥(X)? can be expressed
as a vector in 1

qΛq(X) plus a small element in the row-span of X. Our lower

bound on norms of vectors in Λq(X) \ X t · Zn and a Gaussian tail bound give
a lower bound on λ1(Λ⊥(X)?). This is in contrast to [2], which at this step
invokes Banaszczyk’s transference theorem [5] in order to relate λn+1(Λq(X))
and λm−n(Λq(X)?). Then, using the inclusion Λ⊥(X) ⊆ 1

qΛq(X)?, Agrawal et

al. obtain their lower bound on λ1(Λ⊥(X)?).
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Summing up the above description, we:

1. obtain a (probabilistic) lower bound on ‖b‖ for b ∈ Λq(X)\X tZn, improving
the result of [2] by an Ω(n) factor (see Theorem 5);

2. relate the shortest norm of b ∈ Λq(X)\X tZn to λ1(Λ⊥(X)?) (see Lemma 14);
3. apply known relations (Lemma 5 or Lemma 6, depending on the norm)

between the first minimum of Λ⊥(X)? and ηε(Λ
⊥(X)).

Our second result, stated in Theorem 2, gives an upper bound on the (m−n)-
th minimum of Λ⊥(X). The main ingredient in the proof is an observation that
we can subdivide, column-wise, a ‘wide’ matrix X ∈ Zn×m (here m is potentially
much larger than n) into m

m′ smaller matrices Xi ∈ Zn×m′ , and obtain short
vectors in each Λ⊥(Xi), which are also short vectors in Λ⊥(X). (For the sake of
simplicity, we assume here that m′ divides m.)

X1 X2 · · ·

m

V1 0 0 U1 0

0 V2 0 −U2 U2

0 0 . . . 0 −U3

m′ − n

m− n

=

0

Fig. 1: Technique used in bounding λm−n(Λ⊥(X)). For each i, the matrix Vi ∈
Zm′×m′−n consists of m′ − n short linearly independent vectors orthogonal to
Xi, the matrix consisting of the first m′ columns of X. The vectors making up Vi
are chosen so that they reach the first (m′ − n) successive minima of Λ⊥(Xi).
Another n

(
m
m′ − 1

)
short orthogonal to X vectors are obtained using matrices

Ui ∈ Zm′×n that satisfy XiUi = In and whose columns have small norms.

As a first step, we obtain an upper bound on λm′−n(Λ⊥(Xi)) for all i.
Such an upper bound on λm′−n(Λ⊥(Xi)) is a corollary of our lower bound
on λn+1(Λq(X)) and Banaszczyk’s transference theorem [5]. Thus, we obtain
m
m′ (m

′ − n) relatively short vectors of dimension m′. Note that each such vec-
tor can be ‘padded’ with enough 0’s in a way that the resulting m-dimensional
vector belongs to Λ⊥(X). The latter is illustrated in Figure 1 as follows: the
columns of each matrix Vi are linearly independent vectors reaching the minima
of Λ⊥(Xi), the columns containing them in the center matrix in Figure 1 are
short linearly independent vectors in Λ⊥(X).

The second step consists in obtaining n
(
m
m′ − 1

)
additional short vectors

(linearly independent with the previous ones), by applying a result due Ag-
garwal and Regev [1], which gives a probabilistic upper bound on the norm of
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the columns of a matrix U ∈ Zm×n such that XU = In. Hence, for each Xi,
there exist Ui ∈ Zm′×n such that XiUi = In. Stacking the pairs (Ui,−Ui+1) as
illustrated in Figure 1, we obtain the missing short vectors from Λ⊥(X).

1.2 Open problems

Our upper bound the last minimum of the lattice Λ⊥(X) improves the prior ones,
but may not be the tightest possible. In fact, we suspect it is not sharp. The
Gaussian matrix X ← (DZn,s)

m has rank n with overwhelming probability (see
Lemma 9 below). Using the fact that det(Λ⊥(X)) ≤ det(X tZn) (see, e.g., [19,
p. 30]) and Minkowski’s theorem, we have∏

i∈[m−n]

λi(Λ
⊥(X)) ≤

√
m− nm−n · det(X tZn).

Then, by applying a Gaussian tail bound, all the columns of X t have norms ≤
s
√
m with overwhelming probability. If we assume that the successive minima

are essentially the same, we obtain from Hadamard’s inequality that

∀i ≤ m− n, λi(Λ
⊥(X)) ≤

√
m− n · (s

√
m)

n
m−n .

Consider now m = Θ(n lnn) and s ≤ poly(n), and assume the above inequality
is essentially tight. Then it suggests that the minimum λm−n(Λ⊥(X)) should

be Θ̃(
√
n). However, Theorem 2 only states that λm−n(Λ⊥(X)) ≤ Õ(n). This

gap possibly stems from our counting arguments in Lemma 11 and Lemma 13.
Indeed, we impose there that all points in an n-dimensional cube satisfy some
property with a success probability that is exponentially close to 1. It could be
the case that by weakening our constraints on the probabilities, e.g., by asking
for a failure at most n−ω(1), we could achieve sharper estimations for smaller
parameters. However, it does not seem straightforward, because we also rely on
union bounds over sets of exponential sizes.

On the other hand, for exponentially small ε, we also expect the smoothing
parameter to be essentially the same as the minima. This would heuristically
give ηε(Λ

⊥(X)) = Θ̃(
√
n) when m = Θ(n lnn) and s ≤ poly(n). Theorem 1

provides a Õ(
√
n) bound for these parameters.

2 Preliminaries

We let ln denote the natural logarithm. We use ‖·‖ for the Euclidean norm, and ‖·
‖∞ for the infinity norm. The set of integers {1, . . . ,m} is denoted by [m]. Bold
letters will be used for vectors and capital letters for matrices. We write ei for the
canonical unit vectors of Zm, 0m×n for the zero matrix of dimensions m×n, 0m
for the zero-vector of dimension m and 1m for the vector with all m entries equal
to 1. For an integer q > 2, we use [v]q to denote the modular reduction of all the
entries of v into the interval [− q2 ,

q
2 ). We also write J− q2 ,

q
2Jn:= Zn∩[− q2 ,

q
2 )n. The

7



transpose and inverse of a matrix X are written as X t and X−1, respectively. The
kernel of a matrix X ∈ Rn×m seen as linear maps is denoted ker(X). For a vector
subspace V ⊆ Rd and a vector x ∈ Rd, we let π(x, V ) denote the orthogonal
projection of x onto V . The orthogonal of a vector space E is denoted E⊥.

For a distribution D, we write x← D to say that x is sampled from D. For
two distributions D,D′ over a common support Ω, their statistical distance is
defined as ∆(D,D′) = 1

2

∑
ω∈Ω |D(ω)−D′(ω)|. Lastly, we will need the following

version of Hoeffding’s inequality.

Lemma 1 (Hoeffding’s inequality). Let X1, . . . , Xm be independent random
variables such that 0 ≤ Xi ≤ 1 for all i. Let Sm = X1 + · · ·+Xm. Then for any
t > 0, we have

Pr
[
|Sm − E[Sm]| ≥ t

]
≤ 2 exp

(
− 2t2/m

)
.

2.1 Lattices

A lattice is a discrete additive subgroup of Rm, for some integer m ≥ 1. A set of
linearly independent vectors B = {b1, . . . ,bd} ⊂ Rm that generates a lattice via
integer linear combinations is called a basis, and we write the lattice generated
by B as

L(B) :=
{
Bz =

∑
i∈[d]

zibi : z ∈ Zd
}
.

The rank of this lattice is d and its embedding dimension is m. When d = m,
we say that the lattice has full rank. For i ∈ [d], the i-th successive minimum
λi(L) is defined as

λi(L) := inf{r : dim(Span(L ∩ B(r))) ≥ i},

where B(r) denotes the closed zero-centered Euclidean ball of radius r. We use
the notation λ∞i (L) when we consider the infinity norm.

Any lattice L ⊆ Rm has a dual lattice L?. It consists of all the vectors in
Span(L) that are orthogonal to L modulo 1, namely:

L? := {y ∈ Span(L) : ∀x ∈ L, 〈x,y〉 ∈ Z}.

Note that L?? = L. The following is a transference theorem as it allows to link
the minima of a given lattice to those of its dual.

Theorem 3 ([5]). For any rank-d lattice L ⊆ Rm, and for all i ∈ [d], we have

1 ≤ λi(L) · λd−i+1(L?) ≤ d.

8



Several families of lattices are considered in this work.

Definition 1. Let m > n ≥ 1 and q ≥ 2 be integers. Let X ∈ Zn×m.

1. The orthogonal lattice Λ⊥(X) is the integral lattice whose vectors are or-
thogonal to the rows of X, i.e.,

Λ⊥(X) := {v ∈ Zm : Xv = 0}.

2. The lattice Λq(X) ⊆ Zm is the full-rank lattice spanned by the rows of X
and the vectors qei, i.e.,

Λq(X) := {X tz + qy : z ∈ Zn,y ∈ Zm}.

3. The lattice Λ⊥q (X) ⊆ Rm is the dual of Λq(X) scaled up by a factor of q,
i.e.,

Λ⊥q (X) := {v ∈ Rm : ∀u ∈ Λq(X), 〈v,u〉 ∈ qZ}.

We note that if X is of full row rank (over the integers), then Λ⊥(X) has
rank m − n. It is a standard fact that if q is prime, then Λ⊥q (X) = {v ∈ Zm :
Xv = 0 mod q}. Note that it always has rank m. Finally, we want to stress that
the dual of Λ⊥(X) is not the lattice X tZn.

Definition 2 (Orthogonal projection). Let L be a lattice and E ⊆ Rm be a
vector subspace. The orthogonal projection of L onto E is:

π(L,E) = {v1 ∈ E : ∃ v2 ∈ E⊥,v1 + v2 ∈ L}.

Note that π(L,E) is a finitely generated additive subgroup in Rm, but not nec-
essarily a lattice.The next lemma is standard (see, e.g., [7, Lemma 3.4]).

Lemma 2. Let E ⊆ Rm be a vector space. For any lattice L ∈ Rm such that
π(L?, E) is a lattice, we have

L ∩ E =
(
π(L?, E)

)
?.

Lemma 3. Let X ∈ Zn×m and Λ⊥(X)? be the dual lattice of Λ⊥(X). We have

Λ⊥(X)? = (Zm +X tRn) ∩ ker(X).

Proof. Any r ∈ π(Zm, ker(X)) can be written as r = k − X t(XX t)−1Xk, for
some k ∈ Zm. It follows that π(Zm, ker(X)) ⊆ 1

det(XX t) ·Z
m, hence π(Zm, ker(X))

is a lattice. Now, we apply Lemma 2 with L = Zm and E = ker(X) to obtain

Λ⊥(X)? = (Zm ∩ ker(X))? = π(Zm, ker(X)) = (Zm +X tRn) ∩ ker(X).

In the last equation, we use the fact that (ker(X))⊥ = X tRn.

9



2.2 Lattice Gaussian distributions and the smoothing parameter

For a rank-n matrix S ∈ Rm×n and vector c ∈ Rn, the Gaussian function on Rn
centered at c with covariance matrix StS is defined as:

∀x ∈ Rn, ρS,c(x) = exp(−π(x− c)t(StS)−1(x− c)).

Given a rank-d lattice L ⊂ Rm, the discrete Gaussian distribution with sup-
port L, covariance parameter S and shift c is defined as:

∀x ∈ L,DL,S,c(x) =
ρS,c(x)

ρS,c(L)
,

where ρS,c(L) =
∑

x∈L ρS,c(x). When S = sIn for some real s > 0, we write ρs,c,
resp. DL,s,c, the associated (spherical) function, resp. distribution, and we omit
the subscript c when it is 0.

We will make use of the following tail bound for discrete Gaussians [5]. This
precise formulation is borrowed from [9, Lemma 2.13].

Lemma 4. For any rank-d lattice L, s > 0 and t ≥ 1, we have

Pr
v←DL,s

[
‖v‖ > s · t

√
d

2π

]
≤ exp

(
−d

2
(t− 1)2

)
.

We will use the following consequence of the Poisson summation formula:

ρS(Λ) = det(Λ?) ·
√

det(StS) · ρS(StS)−1(Λ?),

for any rank-d lattice Λ and any matrix S ∈ Rm×n of rank n. The definition
of the smoothing parameter is motivated by the Poisson summation formula.
Given ε > 0 and a lattice L, the smoothing parameter ηε(L) is defined as the
smallest real s > 0 such that ρ1/s(L

? \{0}) ≤ ε. We recall below standard upper
bounds on this parameter, involving lattice minima.

Lemma 5 ([23, Lemma 3.5]). For any rank-d lattice L and ε > 0, we have

ηε(L) ≤

√
1
π ln(2d(1 + 1

ε ))

λ∞1 (L?)
.

Lemma 6 ([24, Lemma 2.6], [5, Lemma 1.5]). For any rank-d lattice L and
ε ∈ (0, e−d], we have

ηε(L) ≤

√
ln( 1

ε )

λ1(L?)
.

First, Lemma 5 and Lemma 6 differ in terms of the norm considered for the first
minimum of the dual lattice. Second, these lemmas give different smoothing
parameter bounds for different ε-regimes: depending on the smallness of ε, one
of the lemmas may give a tighter statement than the other. In particular, in
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our results, we will obtain a probabilistic lower bound on λ1(L?) for a rank-d
orthogonal lattice L that is larger than a lower bound on λ∞1 (L?) by a factor
quasi-linear in

√
d. It follows that for small ε (e.g., ε = 2−o(d)), Lemma 6 is

preferable to Lemma 5. When ε is large, Lemma 6 may not be applicable, whereas
Lemma 5 still provides a bound.

The smoothing parameter of a lattice can alternatively be bounded using the
last minimum of the (primal) lattice.

Lemma 7 ([4, Lemma 2.13] and [18, Lemma 3.3]). For any rank-d lattice L
and ε ∈ (0, 1/2), we have

λd(L)√
d
≤ ηε(L) ≤ λd(L) ·

√
1

π
ln

(
2d

(
1 +

1

ε

))
.

2.3 Properties of smoothed Gaussians

The first lemma states that the Gaussian mass of a subset of a lattice L does
not differ too much from the Gaussian mass of a small shift of it.

Lemma 8 ([2, Lemma 6]). Fix a rank-d lattice L ⊆ Rd, ε ∈ (0, 1), c > 2, and
s ≥ (1 + c)ηε(L). Then, for any subset T ⊆ L and for any v ∈ L, we have

DL,s(T )−DL,s(T − v) ≤ erf(p(1 + 4/c)/2)

erf(2p)
· 1 + ε

1− ε
,

where p = ‖v‖
√
π

s , and erf(·) is the error function.

The following lemma implies that an integral lattice, generated by the columns
sampled from a discrete Gaussian distribution over Zn, spans all of Zn with over-
whelming probability, if the standard deviation of this distribution is sufficiently
large. It also provides information on the matrix that maps X to the canonical
basis of Zn.

Lemma 9 (Adapted from [1, Lemma 4.2]). Let n ≥ 100 and ε ∈ (0, 1
1000 ).

Further, let s,m be such that s ≥ 9ηε(Zn), m ≥ 44n ln(ns).Then, we have

Pr
X←(DZn,s)m

[
∃U ∈ Zm×n:XU = In and max

i
‖ui‖ ≤ 2

√
44n ln(sn)

]
≥ 1− 2−n,

where the ui’s are the columns of U .

We now state the leftover hash lemma involving Gaussians over infinite domains,
the topic of study of [2].

Lemma 10 ([2, Lemma 10]). Let m > n ≥ 1 be integers and ε ∈ (0, 1/3). Let
X ∈ Zn×m such that the columns of X span all of Zn. If s′ ≥ ηε(Λ

⊥(X)), then
we have

∆(X ·DZm,s′ , DZm,s′X t) ≤ 2ε.

11



3 Smoothing parameter of the orthogonal lattice

This section is devoted to proving our first main result: a tighter upper bound
on the smoothing parameter of Λ⊥(X), where the columns of X ∈ Zn×m are
chosen from the discrete Gaussian DZn,s. In the rest of this article, we view all
other parameters as functions of n. We stress that Theorem 4 below differs from
Theorem 1 in that the asymptotic notations are made explicit by specifying the
constants. In this section and the next, we keep these constants explicit. We
do not claim that they are optimal in some sense: we provide them to help the
reader follow the proofs.

Theorem 4. Let n ≥ 60, ε > 0, s ≥ 20
√
n, and m ≥ 1355n ln s. Then, we have

Pr
X←(DZn,s)

m

[
ηε(Λ

⊥(X)) ≤ 77
√

(n+ lnm) · ln(2m/ε)
]
≥ 1− 2−Ω(n).

For any ε ≤ e−(m−n), we also have

Pr
X←(DZn,s)

m

[
ηε(Λ

⊥(X)) ≤ 96
√

ln(1/ε)
]
≥ 1− 2−Ω(n).

We now give an informal description of the proof strategy. The first part of the
proof is similar to the proof presented in [2]: we first embed the lattice X tZn into
a full rank q-ary lattice Λq(X) by “adding” all the vectors qei to X tZn (where
the ei’s are the canonical basis vectors). If q is set sufficiently large, then the
short vectors in Λq(X) should come only from the rows of X (with overwhelming
probability) and thus be common to the short vectors of X tZn. Starting from
this intuition, the authors of [2] provide a lower bound on the norms of the
vectors not belonging to the row span of X. We improve their bound by an
Ω(n) factor by using tighter arguments on several estimations during the proof.
This lower bound also gives a lower bound on λn+1(Λq(X)) since X tQn spans
an vector space of dimension at most n. We also observe that a lower bound on
the infinity norms of vectors in Λq(X) \ X tZn can be derived from the proof,
without relying on a loose norm equivalence.

The second part of the proof differs from the one of [2]: we observe that we can
directly relate the (n+1)-th minimum of Λq(X) to the first minimum of Λ⊥(X)?.
This avoids relying twice on a transference argument, as in [2], which allows us
to save another Ω(

√
n) factor. The final result on the smoothing parameter is

then a consequence of Lemmas 5 and 6.
As a direct corollary of Theorem 4, we obtain the following leftover hash

lemma over lattices.

Corollary 1. Let n ≥ 100, ε ∈ (0, 1/1000), s ≥ 20
√
n and m > 1355n ln s. Let

s′ ≥ 77
√

(n+ lnm) · ln(2m/ε). Then, we have

Pr
X←(DZn,s)m

[
∆(X ·DZm,s′ , DZm,s′X t) ≤ 2ε

]
≥ 1− 2−Ω(n).

If moreover ε ≤ e−(m−n), then the same result holds with s′ ≥ 96
√

ln(1/ε).
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Proof. Using Lemma 9 with the parameters as in the statement, the columns
of X span Zn with probability 1−2−Ω(n). Now, from Theorem 4, these parame-
ters also ensure that with probability at least 1−2−Ω(n), we have ηε(Λ

⊥(X)) ≤ s′.
Finally, Lemma 10 states that when the columns of X span Zn and s′ is chosen
such that ηε(Λ

⊥(X)) ≤ s′, we have ∆(X ·DZm,s′ , DZm,s′X t) ≤ 2ε.

3.1 Short vectors in the Construction A lattice of a Gaussian
matrix

This section deals with short vectors in Λq(X) \X tZn. More precisely, we prove
the following theorems.

Theorem 5. Let n ≥ 60, q ≥ 2, m ≥ 335n ln q be integers, and s ≥ 20
√
n.

Then, we have

Pr
X←(DZn,s)m

[
∃b ∈ Λq(X) \X tZn : ‖b‖ < q

48

]
≤ 2−Ω(n).

As the vector space X tQn has dimension at most n, the above also gives a
lower bound to λn+1(Λq(X)). We are also able to obtain a similar statement for
the infinity norm. This result does not follow from just using the equivalence of
norms and Theorem 5.

Theorem 6. Let n ≥ 7, q ≥ 2, m ≥ 20n ln q be integers, and s ≥ 20
√
n. Then,

we have

Pr
X←(DZn,s)m

[
∃b ∈ Λq(X) \X tZn : ‖b‖∞ <

q

48
√
n+ lnm

]
≤ 2−Ω(n).

For the sake of readability, we split the proofs into several lemmas. The
theorems follow from these lemmas and their proofs are given at the end of this
subsection. We now give an overview of the proofs of the lemmas.

Recall that Λq(X) is a lattice spanned by the rows of X and the vectors qei.In
particular, it contains the integer span of the rows of X, which is of dimension
at most n. The purpose of the following lemmas is to prove that every vector in
Λq(X) that is not in the linear span of the rows of X, is of Euclidean norm Ω(q).
In order to show this, we look at the vectors of the form [X tz]q ∈ Λq(X) \X tZn
for z ∈ Zn. This is indeed enough as any vector in Λq(X) can be written X tz+qy
for some z ∈ J− q2 ,

q
2Jn and y ∈ Zm. To obtain a lower bound on the norms of

such vectors, we divide the proof into two cases depending on the norm of z.
In the first lemma, we prove for a “short” z that, with all but probabil-

ity 2−Ω(n), the vector [X tz]q belongs to the row-span of X. This part of our
proof differs from the one of [2] as we bypass norm equivalence between Eu-
clidean and infinity norms. The second lemma deals with the other ranges of z:
we obtain a lower bound on the entries of [X tz]q by first proving a probabilistic
lower bound on [〈x , z〉]q taken over a Gaussian vector x. For a “large” z, the
proof is identical to the proof of [2]. This is detailed in the proof of Lemma 12.
Finally, we extend this argument from a vector x to a matrix X using Hoeffding’s
inequality. This part of the proof is also new.
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Lemma 11. Let m,n, q ≥ 2 be integers. Then we have

Pr
[
∃ z ∈ Zn with ‖z‖ < q

4s
√
n+ lnm

: [X tz]q ∈ Λq(X) \X tZn
]
≤ 2−n,

where the probability is taken over X ← (DZn,s)
m.

Proof. Each row xi is distributed as DZn,s. Let t =
√

2π(1 + (lnm)/n) + 1.

Lemma 4 gives that PrX [‖xi‖ > st
√
n/2π] ≤ 2−n/m. When this does not occur,

we have, for any integer vector z with ‖z‖ ≤ q

4s
√
n+lnm

≤ q
√
2π

2st
√
n

:

|〈z,xi〉| ≤ ‖z‖ · ‖xi‖ <
q

2
.

The result follows by union bound over i ∈ [m].

We now consider longer z’s. We show that the probability that their inner
product with a Gaussian vector is quite smaller than q is bounded away from 1
by a constant.

Lemma 12. Let m,n ≥ 7 and q ≥ 2 be integers and s ≥ 20
√
n. For any

z ∈ J− q2 ,
q
2Jn such that ‖z‖ ≥ q

4s
√
n+lnm

, we have

Pr
x←DZn,s

[
|[〈x, z〉]q| <

q

48
√
n+ lnm

]
≤ 0.95.

We first outline the main ideas of the proof. For a fixed z, our concern is the
vectors x ∈ Zn whose inner-products with z are “small” when reduced modulo q:
they lead to vectors in the lattice X tZn that are shorter than what we would
expect. Thus, we shall call them “Badz” vectors. Then we show that a suitably
chosen translation maps any “Badz” vector x to a “Goodz” vector x′, such that
the inner-product between x′ and z is “large”. This proof technique is borrowed
from [2]; however, we refine it by splitting the ranges of ‖z‖ further and finding
a better translation map for medium ‖z‖. In either case, the translation vectors
turn out to be short enough to argue that the probabilities of sampling a “Badz”
x and a “Goodz” x are relatively close. From there, we readily obtain an upper
bound on the probability that x is “Badz”. Below we quantify the terms “large”
and “short”, “Badz” and “Goodz”, and provide formal arguments.

Proof. Fix a z as in the statement and define the set of “Badz” vectors as

Badz :=

{
x ∈ Zn : |[〈z,x〉]q| <

q

48
√
n+ lnm

}
.

We also define Goodz = Zn \ Badz, i.e., vectors outside the set Badz will be

considered as “good”.

Case 1: “Medium” z, i.e., q

4s
√
n+lnm

≤ ‖z‖ < q
2s .
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We let µ = d s
6
√
n
e. If x ∈ Badz, then we can obtain a Goodz vector using the

injective map
Badz −→ Goodz

x 7−→ x + µ
⌈
2z
√
n

‖z‖

⌉
,

where the ceiling is taken coordinate-wise. Now, we show that the map indeed
sends Badz to Goodz. First, we note that 〈z, d2z

√
n/‖z‖e〉 ≥ 0, because a and

dae have the same sign for any a ∈ R. Also, by the choice of µ, we have

0 ≤ µ
〈
z,

⌈
2z
√
n

‖z‖

⌉ 〉
≤ µ

∑
i∈[n]

(
|zi| ·

2|zi|
√
n

‖z‖
+ |zi|

)
≤ 2

s

6
√
n

(2‖z‖
√
n+ ‖z‖

√
n)

<
q

2
,

where for the second inequality we use the fact that s > 6
√
n, and, for the last

inequality, the fact that ‖z‖ < q
2s . Combining this with the fact that |[a+ b]q| ≥

|[a]q| − |[b]q| for all a, b ∈ R, we obtain for x ∈ Badz that∣∣∣∣∣
[〈

z,x + µ

⌈
2z
√
n

‖z‖

⌉ 〉]
q

∣∣∣∣∣ ≥ µ 〈z,
⌈

2z
√
n

‖z‖

⌉ 〉
− |[〈z,x〉]q|.

Since ‖z‖ ≥ q

4s
√
n+lnm

and |[〈z,x〉]q| ≤ q

48
√
n+lnm

, we have

µ
〈
z,

⌈
2z
√
n

‖z‖

⌉ 〉
− |[〈z,x〉]q| ≥ µ

∑
i∈[n]

(
|zi| ·

2|zi|
√
n

‖z‖
− |zi|

)
− q

48
√
n+ lnm

≥ s

6
√
n

(2‖z‖
√
n− ‖z‖

√
n)− q

48
√
n+ lnm

≥ q

48
√
n+ lnm

.

This implies that x + µ
⌈
2z
√
n

‖z‖

⌉
∈ Goodz.

Now, we want to apply Lemma 8 with v = µd2z
√
n/‖z‖e. For this, we

bound ‖v‖ from above. Using that dae2 ≤ (|a|+ 1)2 for any a ∈ R, we have∥∥∥∥⌈2z
√
n

‖z‖

⌉∥∥∥∥2 ≤ ∑
i∈[n]

(
2
√
n|zi|
‖z‖

+ 1

)2

=

∥∥∥∥2
√
n|z|
‖z‖

+ 1n

∥∥∥∥2,
where |z| = (|z1|, . . . , |zn|). This gives us

‖v‖ = µ

∥∥∥∥⌈2z
√
n

‖z‖

⌉∥∥∥∥ ≤ µ(∥∥∥∥2
√
n|z|
‖z‖

∥∥∥∥+ ‖1n‖
)

≤ 2s

6
√
n
· 3
√
n = s.
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Now, we apply Lemma 8 with parameters L = Zn, ε = 1/1000, c = 14, v =
µd2z

√
n/‖z‖e and p = ‖v‖

√
π/s ≤

√
π. The assumption of Lemma 8 is indeed

satisfied for these parameters. This gives that

Pr
x

[x ∈ Badz]− Pr
x

[x ∈ Goodz] ≤
erf(p(1 + 4

c )/2)

erf(2p)
· 1 + ε

1− ε
≤ 0.9.

Since we always have that Prx[x ∈ Badz] + Prx[x ∈ Goodz] = 1, it holds that

Prx[x ∈ Badz] ≤ 1+0.9
2 . We conclude that Prx

[
|[〈x, z〉]q| < q

48
√
n+lnm

]
≤ 0.95.

Case 2: “Long” z, i.e., z ∈ J− q2 ,
q
2Jn and ‖z‖ ≥ q

2s .

This part of the proof is the same as in [2, Lemma 11]. We reproduce it for
the sake of completeness. Consider a “long” z, i.e., ‖z‖ ≥ q

2s , which implies
‖z‖∞ ≥ q

2s
√
n

. We modify the mapping defined in Case 1 from Badz to Goodz

vectors by letting µ := min{dse, b q
2‖z‖∞ c} and defining:

Badz → Goodz

x 7→ x + µeimax
,

where imax is the index of a largest entry in z (in absolute value).
We now prove that the map indeed sends Badz to Goodz. We have µ‖z‖∞ ≤
q

2‖z‖∞ ‖z‖∞ ≤
q
2 . Therefore, it holds that

|[〈z,x + µeimax
〉]q| = |[〈z,x〉 ± µ‖z‖∞]q| ≥ µ‖z‖∞ − |[〈z,x〉]q|.

First, assume that µ = dse. Using the facts that ‖z‖∞ > q
2s
√
n

and |[〈z,x〉]q| <
q

48
√
n+lnm

for x ∈ Badz, we obtain

µ‖z‖∞ − |[〈z,x〉]q| > s
q

2s
√
n
− q

48
√
n+ lnm

>
q

48
√
n+ lnm

.

Now, assume that µ =
⌊

q
2‖z‖∞

⌋
. If ‖z‖∞ ≤ q

6 , then we have µ ≥ q
2‖z‖∞ − 1 ≥

q
6‖z‖∞ . Else, if q

6 < ‖z‖∞ ≤
q
2 , then we have µ =

⌊
q

2‖z‖∞

⌋
≥ 1 ≥ q

6‖z‖∞ . Hence

µ ≥ q
6‖z‖∞ holds in both cases. For x ∈ Badz, this implies that

µ‖z‖∞ − |[〈z,x〉]q| >
q

6‖z‖∞
· ‖z‖∞ −

q

48
√
n+ lnm

>
q

48
√
n+ lnm

.

In both cases, we have |[〈z,x + µeimax
〉]q| > q

48
√
n+lnm

.

We apply Lemma 8 with parameters L = Zn, ε = 1/1000, c = 35, and
v = µeimax . The assumption of Lemma 8 is indeed satisfied for these parameters.

Note that ‖v‖ = µ < s + 1, and p := ‖v‖
√
π

s < s+1
s

√
π < 20

√
n+1

20
√
n

√
π < 1.02

√
π.

Similarly to the previous case it follows that Prx[x ∈ Badz]−Prx[x ∈ Goodz] ≤
0.9. Hence, we obtain Prx[x ∈ Bad] ≤ 0.95.
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Using Lemma 12 and Hoeffding’s bound, we can now show that with over-
whelming probability over the choice of X, there are more than n + lnm en-
tries of [X tz]q that have magnitude larger than q

48
√
n+lnm

for any not too short

z ∈ J− q2 ,
q
2Jn. This implies the following result.

Lemma 13. Let n ≥ 60, q ≥ 2, m ≥ 335n ln q be integers, and s ≥ 20
√
n.Then,

we have

Pr

[
∀ z ∈

r
−q

2
,
q

2

rn
with ‖z‖ ≥ q

4s
√
n+ lnm

: ‖[X tz]q‖ ≥
q

48

]
> 1− 2 · 2−0.001m,

where the probability is taken over X ← (DZn,s)
m.

Proof. Fix z with ‖z‖ ≥ q

4s
√
n+lnm

. For i ∈ [m], consider independent binary

random variables Yi, defined over the choice of the columns xi of X:{
Yi = 1 if |[〈xi, z〉]q| ≥ q

48
√
n+lnm

,

Yi = 0 otherwise.

From Lemma 12, it follows that PrX [Yi = 1] ≥ 0.05. Therefore by linearity of
expectation, we have E

[∑
i Yi
]
≥ 0.05m. Using Hoeffding’s bound (Lemma 1)

with t = 0.05m− (n+ lnm), we obtain

Pr
[
|
∑
i

Yi − E[
∑
i

Yi]| ≥ 0.05m− (n+ lnm)
]

≤ 2 exp
(
− 2

(0.05m− (n+ lnm))2

m

)
.

Hence, for m ≥ 200(n+ lnm) (which is implied by the condition m ≥ 335n ln q),
we have

Pr
X

[∑
i

Yi < n+ lnm

]
≤ Pr

X

[
0.05m−

∑
i

Yi ≥ 0.05m− (n+ lnm)

]

≤ 2 exp

(
−2

(0.05m− (n+ lnm))2

m

)
≤ 2 exp(−0.004m).

The inequality above holds for any z ∈ J− q2 ,
q
2Jn with ‖z‖ ≥ q

4s
√
n+lnm

. Using

the lower bound on m, m ≥ 335n ln q, we conclude that

Pr
[
∃ z ∈

r
−q

2
,
q

2

rn
with ‖z‖ ≥ q

4s
√
n+ lnm

:
∑
i

Yi < n+ lnm
]

< 2qn · e−0.004m

< 2 · e−0.001m.

Since
∑
i Yi ≥ n+ lnm implies that ‖[X tz]q‖ ≥ q

48 , the result follows.
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We are now in a position to prove our first main results.

Proof of Theorem 5. The choice of parameters allows us to use both Lemma 11
and Lemma 13. Their combination tells us that, with all but probability 2−Ω(n)

over the choice of X, there does not exist any vector z ∈ J− q2 ,
q
2Jn for which

[X tz]q /∈ X tZn and ‖[X tz]q‖ < q
48 . This gives the first result.

Proof of Theorem 6. We show that if v ∈ Λq(X)\X tZn, then ‖v‖∞ ≥ q

48
√
n+lnm

with overwhelming probability. For z ∈ J− q2 ,
q
2Jn and ‖z‖ ≥ q

4s
√
n+lnm

, we have

from Lemma 12 that Prx[|[〈x, z〉]q| < q

48
√
n+lnm

] ≤ 0.95. It follows that

Pr
X

[∥∥[X tz]q
∥∥
∞ <

q

48
√
n+ lnm

]
≤ 0.95m ≤ e−0.05m.

By the union bound, we obtain

Pr
X

[
∃ z : ‖[X tz]q‖∞ <

q

48
√
n+ lnm

]
≤ qn · e−0.05m = 2−Ω(n).

Combining the above with Lemma 11, we conclude that with all but probability
2−Ω(n) over the choice of X, there does not exist any vector z ∈ J− q2 ,

q
2Jn for

which [X tz]q /∈ X tZn and ‖[X tz]q‖∞ < q

48
√
n+lnm

. This completes the proof.

3.2 Using the dual of Λ⊥(X)

We want to find an upper bound on the smoothing parameter of Λ⊥(X). Using
Lemma 5, such a bound comes from a lower bound on the minimum of the dual
lattice of Λ⊥(X). We now relate the (n + 1)-th minimum of the lattice Λq(X)
and the norms of the shortest vectors in Λ⊥(X)?. For the proof below, it is useful
to recall that Λ⊥(X)? = (Zm +X tRn) ∩ ker(X), as showed in Lemma 3.

Lemma 14. Let n ≥ 60 and s ≥ 20
√
n. Let q and m be integers satisfying

m ≥ 335n ln q and that q ≥ 96sn
√
m We have

Pr
X←(DZn,s)m

[
λ∞1 (Λ⊥(X)?) ≥ 1

96
√
n+ lnm

]
≥ 1− 2−Ω(n),

Pr
X←(DZn,s)m

[
λ1(Λ⊥(X)?) ≥ 1

96

]
≥ 1− 2−Ω(n).

Proof. Let u be any vector in Λ⊥(X)?. From Lemma 3, we can write u = k+X ty,
for some k ∈ Zm and y ∈ Rn. Let z ∈ Rn with ‖z‖∞ < 1

q such that y = y′ + z

and y′ ∈ 1
qZ

n. Thus, we can write u = v +X tz, where v = k +X ty′ ∈ 1
qΛq(X).

Assume now that u is a non-zero vector of Λ⊥(X)?. We show by contradiction
that v cannot be in the row-span of X. Assume on the contrary that v ∈ X tQn.
Then, on the one hand, this implies that u ∈ X tRn = (kerX)⊥. On the other
hand, we have u ∈ kerX by definition of Λ⊥(X)?. Then we must have u = 0m,
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which contradicts the choice of u as a non-zero vector of Λ⊥(X)?. In particular,
from Theorems 5 and 6,we see that ‖v‖∞ ≥ 1

48
√
n+lnm

and ‖v‖ ≥ 1
48 with

probability at least 1− 2−Ω(n).

Now, we let u be such that ‖u‖∞ = λ∞1 (Λ⊥(X)?) and we compare it to ‖v‖∞,
for v defined as above. Applying Lemma 4 with t =

√
2π, we obtain that with

probability greater than 1− 2−n, the rows of X t have Euclidean norms smaller
than s

√
n. It follows that ‖X tz‖∞ ≤ max(‖xi‖) · ‖z‖ ≤ sn

q . By the triangular

inequality, we have ‖v‖∞ ≤ ‖u‖∞ + ‖X tz‖∞, from which we deduce that

‖u‖∞ ≥ ‖v‖∞ −
sn

q

with all but probability at most 2−n. We then deduce using Theorem 6 and the
assumptions on m and q that

‖v‖∞ −
sn

q
≥ 1

48
√
n+ lnm

− sn

q
≥ 1

96
√
n+ lnm

,

also with probability greater than 1− 2−Ω(n).

Let now u be such that ‖u‖ = λ1(Λ⊥(X)?), and v be as defined above. By

norm equivalence, we have ‖X tz‖ ≤
√
m‖X tz‖∞ ≤ sn

√
m

q except with probabil-

ity at most 2−n. As above, we deduce that ‖u‖ ≥ ‖v‖− sn
√
m

q . Using Theorem 5
and the second assumption on q, we obtain

‖v‖ − sn
√
m

q
≥ 1

48
− sn

√
m

q
≥ 1

96
,

except with probability at most 2−Ω(n).

Finally, we complete the proof of our first main result.

Proof (Theorem 4). Let q = d96sn
√
me. With this choice, it turns out that

any m satisfying m ≥ 1355n ln s also satisfies m ≥ 335n ln(97sn
√
m). By Lem-

mas 5 and 14,we obtain that, with all but probability 2−Ω(n),

ηε(Λ
⊥(X)) ≤

√
1
π ln (2(m− n)(1 + 1

ε ))

λ∞1 (Λ⊥(X)?)
≤ 96

√
(n+ lnm) ·

ln (2(m− n)(1 + 1
ε ))

π
.

Alternatively, for any ε ≤ 2−(m−n), we can use Lemmas 6 and 14 to obtain
that (with all but probability 2−Ω(n))

ηε(Λ
⊥(X)) ≤

√
ln(1/ε)

λ1(Λ⊥(X)?)
≤ 96

√
ln(1/ε).

This completes the proof.
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4 Last minimum of Λ⊥(X)

In this section we present our second result: an upper bound on the (m− n)-th
minimum of the orthogonal lattice Λ⊥(X).

The question of finding an upper bound on λm−n(Λ⊥(X)) was addressed
in [2] and later in [1], with the aim of obtaining an upper bound on the smoothing
parameter of Λ⊥(X). In particular, Agrawal et al. in [2] first give a lower bound
on λn+1(Λq(X)), then use Banaszczyk’s theorem (Theorem 3) to obtain an upper
bound on λm−n(Λ⊥q (X)). Finally, they argue that this is also an upper bound

on λm−n(Λ⊥(X)). Aggarwal and Regev in [1] present a more direct approach to
bound λm−n(Λ⊥(X)). In all cases, these bounds on the last minimum of Λ⊥(X)
were used as a way to bound its smoothing parameter (our approach in Section 3
is in some sense more direct).

We shall need the following lemma, obtained by combining Theorem 5 with
Theorem 3.

Lemma 15. Let n ≥ 60, s ≥ 20
√
n and m ≥ 1400n ln s.Then, we have:

Pr
X←(DZn,s)m

[
λm−n(Λ⊥(X)) ≤ 48m

]
≥ 1− 2−Ω(n).

Proof. Let q be the smallest prime such that q ≥ 96sm3/2. By [14], there exists
a prime in the range (96sm3/2, 192sm3/2), hence we have q < 192sm3/2.8 We
apply Theorem 5 to conclude that λn+1(Λq(X)) ≥ q

48 with overwhelming proba-
bility. From Theorem 3 with i = n+1, it follows that λm−n(Λ⊥q (X)) ≤ 48m. This

implies that Λ⊥q (X) contains m − n linearly independent vectors v1, . . . ,vm−n
such that ‖v1‖ ≤ ‖v2‖ ≤ · · · ≤ ‖vm−n‖ ≤ 48m. As q is prime, we have
that Xvj = 0 mod q for all j ∈ [m− n] (see the discussion after Definition 1).

Now, we show that vj ∈ Λ⊥(X) for all j ∈ [m−n], i.e., that Xvj = 0 over the
integers. Thanks to Lemma 4 with t =

√
2π, the rows of X have norms bounded

by s
√
m with probability greater than 1−2−Ω(n). Therefore, for any j ∈ [m−n],

we have

‖X · vj‖∞ = max
i
|〈xi,vj〉| ≤ max

i
‖xi‖ · ‖vj‖ ≤ 48sm

3
2

with overwhelming probability. Our choice of q implies that ‖X · vj‖∞ < q/2,
hence the equality X · vj = 0 holds over Z. The result follows.

We now consider the case of a wide matrix X, i.e. with very large m. We split
it into t matrices of smaller dimensions n×mi for i ∈ [t], where mi is independent
of m and is large enough to satisfy the conditions of Lemma 15. For simplicity,
one could think of mi’s being all equal assuming that m is divisible by mi. In
general, we may not be able to divide m into large enough and equal pieces.

8 In fact, the following stronger result is proved in [14]: the number of primes in the
interval (x− xα, x) is at least xα

log x
for α < 7/12. To simplify our statements, we use

a looser bound.
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This is why our Xi’s may have different numbers of columns. Using Lemma 15,
we show that every orthogonal lattice defined by such small matrices has mi−n
linearly independent vectors of norm at most 48mi. By padding these vectors
with zeros appropriately (see Figure 2), we thus find

∑
i∈[t](mi − n) short and

linearly independent vectors in Λ⊥(X). To show that there are, in fact, more
short vectors in this lattice, we apply Lemma 9. We can “stack” the U -matrices
from this lemma (see Figure 2) to obtain other short vectors orthogonal to X.
Thus, in total we obtain m − n short linearly independent vectors in Λ⊥(X)
whose norms can be bounded independently from m.

n

m1 m2

X1 X2
V1 0 U1

0 V2 −U2

m1 +m2 − n

m1 +m2

· =

0

m1 +m2 − n

Fig. 2: Given a wide matrix X = [X1|X2] ∈ Zn×(m1+m2), we first obtain m1 +
m2 − n linearly independent short vectors in Λ⊥([X1|X2]). These correspond to
the columns [V1

t|0]t and [0|V2t]t. The n other missing short vectors are obtained
via stacking Ui matrices satisfying XiUi = In, as depicted.

Theorem 7. Let n ≥ 100 and s ≥ 20
√
n. Let m such that 2801n ln s ≤ m ≤

2n/2.Then, we have

Pr
X←(DZn,s)m

[
λm−n(Λ⊥(X)) ≤ O (n ln(ns))

]
≥ 1− 2−Ω(n).

The “O(·)” constant can be worked out from the proof. Concretely, the term
O(n ln(ns)) may be replaced by 134400n ln(ns).

Proof. We divide our wide matrix X into smaller matrices with appropriate
numbers of columns. For m ≥ 2801n ln s, we can divide the matrix X into at
least two blocks of at least m′ = d1400n ln se columns.

We start by splitting X into t smaller matrices Xi ∈ Zn×mi such that mi ∈
[m′, 2m′] for all i ∈ [t]. We look at X as a block-matrix X = [X1|X2| . . . |Xt],
where Xi ← (DZn,s)

mi for all i ∈ [t]. We apply Lemma 15 to each block Xi. The
lattice Λ⊥(Xi) has mi−n linearly independent vectors vi1, . . . ,v

i
mi−n such that

‖vi1‖ ≤ ‖vi2‖ ≤ . . . ≤ ‖vimi−n‖ ≤ 48mi ≤ 96m′,
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with probability 1 − 2−Ω(n). It follows that we have
∑
i∈[t](mi − n) = m − tn

linearly independent vectors in Λ⊥(X) of the form:

vij = [0m1+···+mi−1
‖vij‖0mi+1+···+mt ]

t,

for j ∈ [mi−n] and i ∈ [t]. Our goal is to have more (m−n, to be precise) short
linearly independent vectors in Λ⊥(X).

Let i ∈ [t]. By Lemma 9, with probability greater than 1−2−n, there exists a
matrix Ui ∈ Zmi×n such that XiUi = In with columns of norms ≤ 2

√
44n ln(ns).

When this event occurs, we have Let i ∈ [t]. By Lemma 9, with probability
greater than 1 − 2−n, there exists a matrix Ui ∈ Zmi×n such that XiUi = In
with columns of norms ≤ 2

√
44n ln(ns). When this event occurs, we have

Xi · [Vi|Ui] = [0n×(mi−n)|In],

where Vi is the mi × (mi − n) matrix whose columns are v̄i1, v̄
i
2 · · · , v̄imi−n.

With probability ≥ 1 − t2−n (which is ≥ 1 − 2−Ω(n) by assumption on m),
we can write:

[
X1 X2 X3 . . . Xt

]
·


V1 0 0 . . . 0 U1 0 . . . 0
0 V2 0 . . . 0 −U2 U2 . . . 0
0 0 V3 . . . 0 0 −U3 . . . 0
...

. . .
. . .

0 0 0 . . . Vt 0 0 . . . −Ut

 = 0m×(m−n).

Now, we argue that the columns of the matrix built from the Ui’s and Vi’s
are linearly independent. First, for each i, the columns of [Vi|Ui] are linearly
independent since they satisfy Xi · [Vi|Ui] = [0m1−n|Im1

], and since the columns
of Vi are linearly independent. This implies that for every i, the “block row”
[0| . . . |0|Vi|0| . . . |0| − Ui| . . .] has rank exactly mi. If one re-orders the block
columns appropriately, the matrix has a “block triangular” shape. Its rank is
m1 + . . .+mt−1 +mt − n = m− n.

Overall, we obtain m−n linearly independent vectors in Λ⊥(X), with norms
≤ O(n ln(ns)), with probability ≥ 1− 2−Ω(n).
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