
CrypTFlow2: Practical 2-Party Secure Inference
Deevashwer Rathee
Microsoft Research
t-dee@microsoft.com

Mayank Rathee
Microsoft Research

t-may@microsoft.com

Nishant Kumar
Microsoft Research

nishant.kr10@gmail.com

Nishanth Chandran
Microsoft Research

nichandr@microsoft.com

Divya Gupta
Microsoft Research

divya.gupta@microsoft.com

Aseem Rastogi
Microsoft Research

aseemr@microsoft.com

Rahul Sharma
Microsoft Research

rahsha@microsoft.com

ABSTRACT

We present CrypTFlow2, a cryptographic framework for secure
inference over realistic Deep Neural Networks (DNNs) using secure
2-party computation. CrypTFlow2 protocols are both correct – i.e.,
their outputs are bitwise equivalent to the cleartext execution – and
efficient – they outperform the state-of-the-art protocols in both
latency and scale. At the core of CrypTFlow2, we have new 2PC
protocols for secure comparison and division, designed carefully to
balance round and communication complexity for secure inference
tasks. Using CrypTFlow2, we present the first secure inference
over ImageNet-scale DNNs like ResNet50 and DenseNet121. These
DNNs are at least an order of magnitude larger than those con-
sidered in the prior work of 2-party DNN inference. Even on the
benchmarks considered by prior work, CrypTFlow2 requires an
order of magnitude less communication and 20×-30× less time than
the state-of-the-art.

KEYWORDS

Privacy-preserving inference; deep neural networks; secure two-
party computation

1 INTRODUCTION

The problem of privacy preserving machine learning has become
increasingly important. Recently, there have been many works that
have made rapid strides towards realizing secure inference [4, 6, 13,
17, 19, 22, 31, 43, 48, 49, 51, 55, 57]. Consider a server that holds the
weights𝑤 of a publicly known deep neural network (DNN), 𝐹 , that
has been trained on private data. A client holds a private input 𝑥 ;
in a standard machine learning (ML) inference task, the goal is for
the client to learn the prediction 𝐹 (𝑥,𝑤) of the server’s model on
the input 𝑥 . In secure inference, the inference is performed with
the guarantee that the server learns nothing about 𝑥 and the client
learns nothing about the server’s model 𝑤 beyond what can be
deduced from 𝐹 (𝑥,𝑤) and 𝑥 .

A solution for secure inference that scales to practical ML tasks
would open a plethora of applications based on MLaaS (ML as a
Service). Users can obtain value from ML services without worry-
ing about the loss of their private data, while model owners can
effectively monetize their services with no fear of breaches of client
data (they never observe private client data in the clear). Perhaps
the most important emerging applications for secure inference are
in healthcare where prior work [4, 45, 55] has explored secure in-
ference services for privacy preserving medical diagnosis of chest
diseases, diabetic retinopathy, malaria, and so on.

Secure inference is an instance of secure 2-party computation
(2PC) and cryptographically secure general protocols for 2PC have
been known for decades [32, 63]. However, secure inference for
practical ML tasks, e.g., ImageNet scale prediction [24], is challeng-
ing for two reasons: a) realistic DNNs use ReLU activations1 that
are expensive to compute securely; and b) preserving inference
accuracy requires a faithful implementation of secure fixed-point
arithmetic. All prior works [6, 31, 43, 48, 49, 51] fail to provide effi-
cient implementation of ReLUs. Although ReLUs can be replaced
with approximations that are more tractable for 2PC [22, 31, 49],
this approach results in significant accuracy losses that can degrade
user experience. The only known approaches to evaluate ReLUs
efficiently require sacrificing security by making the untenable
assumption that a non-colluding third party takes part in the proto-
col [7, 45, 50, 56, 61] or by leaking activations [12]. Moreover, some
prior works [45, 49–51, 61] even sacrifice correctness of their fixed-
point implementations and the result of their secure execution can
sometimes diverge from the expected result, i.e. cleartext execution,
in random and unpredictable ways. Thus, correct and efficient 2PC
protocols for secure inference over realistic DNNs remain elusive.

1.1 Our Contributions

In this work, we address the above two challenges and build
new semi-honest secure 2-party cryptographic protocols for secure
computation of DNN inference. Our new efficient protocols enable
the first secure implementations of ImageNet scale inference that
complete in under a minute! We make three main contributions:

First, we give new protocols for millionaires’ andDReLU2 that
enable us to securely and efficiently evaluate the non-linear
layers of DNNs such as ReLU, Maxpool and Argmax.
Second, we provide new protocols for division. Together with
new theorems that we prove on fixed-point arithmetic over
shares, we show how to evaluate linear layers, such as convo-
lutions, average pool and fully connected layers, faithfully.
Finally, by providing protocols that can work on a variety
of input domains, we build a system3 CrypTFlow2 that sup-
ports two different types of Secure and Correct Inference (SCI)
protocols where linear layers can be evaluated using either ho-
momorphic encryption (SCIHE) or through oblivious transfer
(SCIOT).

We now provide more details of our main contributions.

1ReLU(𝑥) is defined as max(𝑥, 0) .
2DReLU is the derivative of ReLU, i.e., DReLU(𝑥) is 1 if 𝑥 ≥ 0 and 0 otherwise.
3Implementation is available at https://github.com/mpc-msri/EzPC.

1

https://github.com/mpc-msri/EzPC

New millionaires’ and DReLU protocols. Our first main techni-
cal contribution is a novel protocol for the well-knownmillionaires’

problem [63], where parties 𝑃0 and 𝑃1 hold ℓ−bit integers 𝑥 and
𝑦, respectively, and want to securely compute 𝑥 < 𝑦 (or, secret
shares of 𝑥 < 𝑦). The theoretical communication complexity of
our protocol is ≈ 3× better than the most communication efficient
prior millionaires’ protocol [21, 29, 32, 62, 63]. In terms of round
complexity, our protocol executes in log ℓ rounds (e.g. 5 rounds for
ℓ = 32 bits); see Table 1 for a detailed comparison and [21] for a
detailed overview of the costs of other comparison protocols.

Using our protocol for millionaires’ problem, we build new and
efficient protocols for computing DReLU for both ℓ−bit integers
(i.e., Z𝐿 , 𝐿 = 2ℓ) and general rings Z𝑛 . Our protocol for DReLU
serves as one of the main building blocks for non-linear activations
such as ReLU and Maxpool, as well as division over both input do-
mains. Providing support for ℓ−bit integers Z𝐿 as well as arbitrary
rings Z𝑛 , allows us to securely evaluate the linear layers (such as
matrix multiplication and convolutions) using the approaches of
Oblivious Transfer (OT) [8, 51] as well as Homomorphic Encryption
(HE) [30, 43, 49], respectively. This provides our protocols great
flexibility when executing over different network configurations.
Since all prior work [43, 48, 49, 51] for securely computing these
activations rely on Yao’s garbled circuits [63], our protocols are
much more efficient in both settings. Asymptotically, our ReLU
protocol over Z𝐿 and Z𝑛 communicate ≈ 8× and ≈ 12× less bits
than prior works [43, 48, 49, 51, 62, 63] (see Table 2 for a detailed
comparison). Experimentally, our protocols are at least an order of
magnitude more performant than prior protocols when computing
ReLU activations at the scale of ML applications.

Fixed-point arithmetic. The ML models used by all prior works
on secure inference are expressed using fixed-point arithmetic; such
models can be obtained from [39, 42, 45, 52]. A faithful implemen-
tation of fixed-point arithmetic is quintessential to ensure that the
secure computation is correct, i.e., it is equivalent to the cleartext
computation for all possible inputs. Given a secure inference task
𝐹 (𝑥,𝑤), some prior works [45, 49–51, 61] give up on correctness
when implementing division operations and instead compute an
approximation 𝐹 ′(𝑥,𝑤). In fixed-point arithmetic, each multipli-
cation requires a division by a power-of-2 and multiplications are
used pervasively in linear-layers of DNNs. Moreover, layers like
average-pool require division for computing means. Loss in correct-
ness is worrisome as the errors can accumulate and 𝐹 ′(𝑥,𝑤) can
be arbitrarily far from 𝐹 (𝑥,𝑤). Recent work [49] has shown that
even in practice the approximations can lead to significant losses
in classification accuracy.

As our next contribution, we provide novel protocols to compute
division by power-of-2 as well as division by arbitrary integers
that are both correct and efficient. The inputs to these protocols
can be encoded over both ℓ−bit integers Z𝐿 as well as Z𝑛 , for arbi-
trary 𝑛. To the best of our knowledge, the only known approach to
compute division correctly is via garbled circuits which we com-
pare with in Table 3. While garbled circuits based protocols require
communication which is quadratic in ℓ or log𝑛, our protocols are
asymptotically better and incur only linear communication. Con-
cretely, for average pool with 7 × 7 filters and 32-bit integers, our
protocols have ≈ 54× less communication.

Scaling to practical DNNs. These efficient protocols, help us se-
curely evaluate practical DNNs like SqueezeNet on ImageNet scale
classification tasks in under a minute. In sharp contrast, all prior
works on secure 2-party inference ([4, 6, 13, 17, 19, 22, 31, 43, 48,
49, 51, 55, 57]) has been limited to small DNNs on tiny datasets like
MNIST and CIFAR. While MNIST deals with the task of classifying
black and white handwritten digits given as 28× 28 images into the
classes 0 to 9, ImageNet tasks are much more complex: typically
224× 224 colored images need to be classified into thousand classes
(e.g., agaric, gyromitra, ptarmigan, etc.) that even humans can find
challenging . Additionally, our work is the first to securely evaluate
practical convolutional neural networks (CNNs) like ResNet50 and
DenseNet121; these DNNs are at least an order of magnitude larger
than the DNNs considered in prior work, provide over 90% Top-5
accuracy on ImageNet, and have also been shown to predict lung
diseases from chest X-ray images [45, 65]. Thus, our work provides
the first implementations of practical ML inference tasks running
securely. Even on the smaller CIFAR scale DNNs, our protocols
require an order of magnitude less communication and 20×-30×
less time than the state-of-the-art [49] (see Section 7.2).

OT vs HE. Through our evaluation, we also resolve the OT vs HE
conundrum: although the initial works on secure inference [48, 51]
used OT-based protocols for evaluating convolutions, the state-of-
the-art protocols [43, 49], which currently provide the best pub-
lished inference latency, use HE-based convolutions. HE-based
secure inference has much less communication than OT but HE
requires more computation. Hence, at the onset of this work, it was
not clear to us whether HE-based convolutions would provide us
the best latency for ImageNet-scale benchmarks.

To resolve this empirical question, we implement two classes of
protocols, SCIOT and SCIHE, in CrypTFlow2. In SCIOT, inputs are
in Z𝐿 (𝐿 = 2ℓ , for a suitable choice of ℓ). Linear layers such as ma-
trix multiplication and convolution are performed using OT-based
techniques [8, 51], while the activations such as ReLU, Maxpool
and Avgpool are implemented using our new protocols over Z𝐿 . In
SCIHE, inputs are encoded in an appropriate prime field Z𝑛 (similar
to [43, 49]). Here, we compute linear layers using homomorphic
encryption and the activations using our protocols over Z𝑛 . In both
SCIOT and SCIHE faithful divisions after linear layers are performed
using our new protocols over corresponding rings. Next, we eval-
uate ImageNet-scale inference tasks with both SCIOT and SCIHE .
We observe that in a WAN setting, where communication is a bot-
tleneck, HE-based inference is always faster and in a LAN setting
OT and HE are incomparable.

1.2 Our Techniques

Millionaires’. Our protocol for securely computing the million-
aires’ problem (the bit 𝑥 < 𝑦) is based on the following observation
(first made in [29]). Let 𝑥 = 𝑥1 | |𝑥0 and 𝑦 = 𝑦1 | |𝑦0 (where | | denotes
concatenation and 𝑥1, 𝑦1 are strings of the same length). Then,

4Here we state the communication numbers for GMW [32] for a depth-optimized cir-
cuit. The circuit that would give the best communication would still have a complexity
of > 2𝜆ℓ and would additionally pay an inordinate cost in terms of rounds, namely ℓ .
5Couteau [21] presented multiple protocols; we pick the one that has the best commu-
nication complexity.

2

Layer Protocol Comm. (bits) Rounds

Millionaires’
on {0, 1}ℓ

GC [62, 63] 4𝜆ℓ 2
GMW4/GSV [29, 32] ≈ 6𝜆ℓ log ℓ + 3

SC35[21] > 3𝜆ℓ ≈ 4 log∗ 𝜆
This work (𝑚 = 4) < 𝜆ℓ + 14ℓ log ℓ

Millionaires’
example
ℓ = 32

GC [62, 63] 16384 2
GMW/GSV [29, 32] 23140 8

SC3 [21] 13016 15
This work (𝑚 = 7) 2930 5
This work (𝑚 = 4) 3844 5

Table 1: Comparison of communication with prior work for

millionaires’ problem. For our protocol, 𝑚 is a parameter.

For concrete bits of communication we use 𝜆 = 128.

Layer Protocol Comm. (bits) Rounds
ReLU for
Z2ℓ

GC [62, 63] 8𝜆ℓ − 4𝜆 2
This work < 𝜆ℓ + 18ℓ log ℓ + 2

ReLU for
general Z𝑛

GC [62, 63] 18𝜆𝜂 − 6𝜆 2
This work < 3

2𝜆(𝜂 + 1) + 31𝜂 log𝜂 + 4
ReLU for
Z2ℓ , ℓ = 32

GC [62, 63] 32256 2
This work 3298 7

ReLU for
Z𝑛 , 𝜂 = 32

GC [62, 63] 72960 2
This work 5288 9

Table 2: Comparison of communication with garbled cir-

cuits for ReLU. We define 𝜂 = ⌈log𝑛⌉. For concrete bits of

communication we use 𝜆 = 128.

Layer Protocol Comm. (bits) Rounds
Avgpool𝑑
Z2ℓ

GC [62, 63] 2𝜆(ℓ2 + 5ℓ − 3) 2
This work < (𝜆 + 21) · (ℓ + 3𝛿) log(ℓ𝛿) + 4

Avgpool𝑑
Z𝑛

GC [62, 63] 2𝜆(𝜂2 + 9𝜂 − 3) 2
This work < (32𝜆 + 34) · (𝜂 + 2𝛿) log(𝜂𝛿) + 6

Avgpool49
Z2ℓ , ℓ = 32

GC [62, 63] 302336 2
This work 5570 10

Avgpool49
Z𝑛, 𝜂 = 32

GC [62, 63] 335104 2
This work 7796 14

Table 3: Comparison of communication with garbled cir-

cuits for Avgpool𝑑 . We define 𝜂 = ⌈log𝑛⌉ and 𝛿 = ⌈log(6 · 𝑑)⌉.
For concrete bits of communication we use 𝜆 = 128. Choice
of 𝑑 = 49 corresponds to average pool filter of size 7 × 7.

𝑥 < 𝑦 is the same as checking if either 𝑥1 < 𝑦1 or 𝑥1 = 𝑦1 and
𝑥0 < 𝑦0. Now, the original problem is reduced to computing two
millionaires’ instances over smaller length strings (𝑥1 < 𝑦1 and
𝑥0 < 𝑦0) and one equality test (𝑥1 = 𝑦1). By continuing recursively,
one could build a tree all the way where the leaves are individual
bits, at which point one could use 1-out-of-2 OT-based protocols
to perform the comparison/equality. However, the communication
complexity of this protocol is still quite large. We make several
important modifications to this approach. First, we modify the tree
so that the recursion is done log(ℓ/𝑚) times to obtain leaves with
strings of size𝑚, for a parameter𝑚. We then use 1-out-of-2𝑚 OT
to compute the comparison/equality at the leaves, employing the
lookup-table based approach of [25]. Second, we observe that by
carefully setting up the receiver’s and sender’s messages in the

OT protocols for leaf comparisons and equality, multiple 1-out-
of-2𝑚 OT instances can be combined to reduce communication.
Next, recursing up from the leaves to the root, requires securely
computing the AND functionality6 that uses Beaver bit triples [8].
We observe that the same secret value is used in 2 AND instances.
Hence, we construct correlated pairs of bit triples using 1-out-of-8
OT protocols [44] to reduce this cost to 𝜆 + 8 bits (amortized) per
triple, where 𝜆 is the security parameter and typically 128. Some
more work is needed for the above technique to work efficiently for
the general case when𝑚 does not divide ℓ or ℓ/𝑚 is not a power
of 2. Finally, by picking𝑚 appropriately, we obtain a protocol for
millionaires’ whose concrete communication (in bits) is nearly 5
times better than prior work.

DReLU. Let 𝑎 be additively secret shared as 𝑎0, 𝑎1 over the ap-
propriate ring. DReLU(𝑎) is 1 if 𝑎 ≥ 0 and 0 otherwise; note that
𝑎 ≥ 0 is defined differently for ℓ−bit integers and general rings.
Over Z𝐿 , where values are encoded using 2’s complement notation,
DReLU(𝑎) = 1 ⊕ MSB(𝑎), where MSB(𝑎) is the most significant
bit of 𝑎. Moreover,MSB(𝑎) = MSB(𝑎0) ⊕MSB(𝑎1) ⊕ carry. Here,
carry = 1 if 𝑎′0 + 𝑎

′
1 ≥ 2ℓ−1, where 𝑎′0, 𝑎

′
1 denotes the integer repre-

sented by the lower ℓ − 1 bits of 𝑎0, 𝑎1. We compute this carry bit
using a call to our millionaires’ protocol. Over Z𝑛 , DReLU(𝑎) = 1
if 𝑎 ∈ [0, ⌈𝑛/2⌉). Given the secret shares 𝑎0, 𝑎1, this is equivalent to
(𝑎0 +𝑎1) ∈ [0, ⌈𝑛/2⌉) ∪ [𝑛, ⌈3𝑛/2⌉) over integers. While this can be
naïvely computed by making 3 calls to the millionaires’ protocol,
we show that by carefully selecting the inputs to the millionaires’
protocol, one can do this with only 2 calls. Finally, we set things
up so that the two calls to millionaires’ have correlated inputs that
reduces the overall cost to ≈ 1.5 instances of millionaires’ over Z𝑛 .

Division and Truncation. As a technical result, we provide a cor-
rect decomposition of division of a secret ring element in Z𝐿 or Z𝑛
by a public integer into division of secret shares by the same public
integer and correction terms (Theorem 4.1). These correction terms
consist of multiple inequalities on secret values. As a corollary, we
also get a much simpler expression for the special case of trunca-
tion, i.e., dividing ℓ-bit integers by a power-of-2 (Corollary 4.2). We
believe that the general theorem as well as the corollary can be
of independent interest. Next, we give efficient protocols for both
general division (used for Avgpool, Table 3) as well as division by a
power-of-2 (used for multiplication in fixed-point arithmetic). The
inequalities in the correction term are computed using our new
protocol for millionaires’ and the division of shares can be done
locally by the respective parties. Our technical theorem is the key
to obtaining secure implementation of DNN inference tasks that
are bitwise equivalent to cleartext fixed-point execution.

1.3 Other Related Work

Perhaps the first work to consider the secure computation of ma-
chine learning inference algorithms was that of [14]. SecureML [51]
was the first to consider secure neural network inference and train-
ing. Apart from the works mentioned earlier, other works include

6This functionality takes as input shares of bits 𝑥, 𝑦 from the two parties and outputs
shares of 𝑥 AND 𝑦 to both parties.

3

those that considered malicious adversaries [20, 36, 64] (for sim-
pler ML models like linear models, regression, and polynomials)
as well as specialized DNNs with 1 or 2 bit weights [4, 55, 57]. Re-
cently, [26] gave protocols for faithful truncation (but not division)
over ℓ-bit integers and prime fields in various adversarial settings.
For 2-party semi-honest setting, our protocols have up to 20× less
communication for the truncations required in our evaluation.

1.4 Organisation

We begin with the details on security and cryptographic primi-
tives used in Section 2 on preliminaries. In Section 3 we provide our
protocols for millionaires’ (Section 3.1) andDReLU (Section 3.2, 3.3),
over both Z𝐿 and general ring Z𝑛 . In Section 4, we present our
protocols for division and truncation. We describe the various com-
ponents of DNN inference in Section 5 and show how to construct
secure protocols for all these components given our protocols from
Sections 3 and 4.We present our implementation details in Section 6
and our experiments in Section 7. Finally, we conclude and discuss
future work in Section 8.

2 PRELIMINARIES

Notation. For a setW, 𝑤
$←W denotes sampling an element

𝑤 , uniformly at random fromW. [ℓ] denotes the set of integers
{0, · · · , ℓ −1}. Let 1{𝑏} denote the indicator function that is 1 when
𝑏 is true and 0 when 𝑏 is false.

2.1 Threat Model and Security

We provide security in the simulation paradigm [18, 32, 47]
against a static semi-honest probabilistic polynomial time (PPT)
adversaryA. That is, a computationally bounded adversaryA cor-
rupts either 𝑃0 or 𝑃1 at the beginning of the protocol and follows
the protocol specification honestly. Security is modeled by defin-
ing two interactions: a real interaction where 𝑃0 and 𝑃1 execute
the protocol in the presence of A and the environmentZ and an
ideal interaction where the parties send their inputs to a trusted
functionality that performs the computation faithfully. Security
requires that for every adversary A in the real interaction, there
is an adversary S (called the simulator) in the ideal interaction,
such that no environmentZ can distinguish between real and ideal
interactions. Many of our protocols invoke multiple sub-protocols
and we describe these using the hybrid model. This is similar to a
real interaction, except that sub-protocols are replaced by the in-
vocations of instances of corresponding functionalities. A protocol
invoking a functionality F is said to be in “F -hybrid model.”

2.2 Cryptographic Primitives

2.2.1 Secret Sharing Schemes. Throughout this work, we use 2-out-
of-2 additive secret sharing schemes over different rings [11, 59].
The 3 specific rings that we consider are the field Z2, the ring Z𝐿 ,
where 𝐿 = 2ℓ (ℓ = 32, typically), and the ring Z𝑛 , for a positive
integer 𝑛 (this last ring includes the special case of prime fields used
in the works of [43, 49]). We let Share𝐿 (𝑥) denote the algorithm
that takes as input an element 𝑥 in Z𝐿 and outputs shares over
Z𝐿 , denoted by ⟨𝑥⟩𝐿0 and ⟨𝑥⟩𝐿1 . Shares are generated by sampling
random ring elements ⟨𝑥⟩𝐿0 and ⟨𝑥⟩𝐿1 , with the only constraint that
⟨𝑥⟩𝐿0 + ⟨𝑥⟩

𝐿
1 = 𝑥 (where + denotes addition in Z𝐿). Additive secret

sharing schemes are perfectly hiding, i.e., given a share ⟨𝑥⟩𝐿0 or ⟨𝑥⟩𝐿1 ,
the value 𝑥 is completely hidden. The reconstruction algorithm
Reconst𝐿 (⟨𝑥⟩𝐿0 , ⟨𝑥⟩

𝐿
1) takes as input the two shares and outputs

𝑥 = ⟨𝑥⟩𝐿0 + ⟨𝑥⟩
𝐿
1 . Shares (along with their corresponding Share ()

and Reconst () algorithms) are defined in a similar manner for Z2
and Z𝑛 with superscripts 𝐵 and 𝑛, respectively. We sometimes refer
to shares over Z𝐿 and Z𝑛 as arithmetic shares and shares over Z2
as boolean shares.

2.2.2 Oblivious Transfer. Let
(𝑘
1
)
-OTℓ denote the 1-out-of-𝑘 Obliv-

ious Transfer (OT) functionality [16] (which generalizes 1-out-of-2
OT [27, 54]). The sender’s inputs to the functionality are the 𝑘
strings𝑚0, · · · ,𝑚𝑘−1, each of length ℓ and the receiver’s input is
a value 𝑖 ∈ [𝑘]. The receiver obtains 𝑚𝑖 from the functionality
and the sender receives no output. We use the protocols from [44],
which are an optimized and generalized version of the OT exten-
sion framework proposed in [9, 41]. This framework allows the
sender and receiver, to “reduce” 𝜆𝑐 number of oblivious transfers
to 𝜆 “base” OTs. We also use the notion of correlated 1-out-of-2
OT [5], denoted by

(2
1
)
-COTℓ . In our context, this is a functionality

where the sender’s input is a ring element 𝑥 and the receiver’s
input is a choice bit 𝑏. The sender receives a random ring element
𝑟 as output and the receiver obtains either 𝑟 or 𝑥 + 𝑟 as output
depending on 𝑏. The protocols for

(𝑘
1
)
-OTℓ [44] and

(2
1
)
-COTℓ [5]

execute in 2 rounds and have total communication7 of 2𝜆 + 𝑘ℓ and
𝜆 + ℓ , respectively. Moreover, simpler

(2
1
)
-OTℓ has a communication

of 𝜆 + 2ℓ bits [5, 41].

2.2.3 Multiplexer and B2A conversion. The functionality F𝑛MUX
takes as input arithmetic shares of 𝑎 over 𝑛 and boolean shares of
choice bit 𝑐 from 𝑃0, 𝑃1, and returns shares of 𝑎 if 𝑐 = 1, else returns
shares of 0 over the same ring. A protocol for F𝑛MUX can easily be im-
plemented by 2 simultaneous calls to

(2
1
)
-OT𝜂 and communication

complexity is 2(𝜆 + 2𝜂), where 𝜂 = ⌈log𝑛⌉.
The functionality F𝑛B2A (for boolean to arithmetic conversion)

takes boolean (i.e., over Z2) shares as input and gives out arithmetic
(i.e., over Z𝑛) shares of the same value as output. It can be realized
via one call to

(2
1
)
-COT𝜂 and hence, its communication is 𝜆 + 𝜂. For

completeness, we provide the protocols realizing F𝑛MUX as well as
F𝑛B2A formally in Appendix A.3 and Appendix A.4, respectively.

2.2.4 Homomorphic Encryption. A homomorphic encryption of 𝑥
allows computing encryption of 𝑓 (𝑥) without the knowledge of the
decryption key. In this work, we require an additively homomorphic
encryption scheme that supports addition and scalar multiplication,
i.e. multiplication of a ciphertext with a plaintext. We use the addi-
tively homomorphic scheme of BFV [15, 28] (the scheme used in the
recent works of Gazelle [43] and Delphi [49]) and use the optimized
algorithms of Gazelle for homomorphic matrix-vector products and
homomorphic convolutions. The BFV scheme uses the batching
optimization [46, 60] that enables operation on plaintext vectors
over the field Z𝑛 , where 𝑛 is a prime plaintext modulus of the form
2𝐾𝑁 + 1, 𝐾 is some positive integer and 𝑁 is scheme parameter
that is a power-of-2.

7The protocol of
(𝑘
1
)
-OTℓ [44] incurs a communication cost of 𝜆 + 𝑘ℓ . However, to

achieve the same level of security, their security parameter needs to be twice that of(2
1
)
-COTℓ . In concrete terms, therefore, we write the cost as 2𝜆 + 𝑘ℓ .

4

3 MILLIONAIRES’ AND DReLU PROTOCOLS

In this section, we provide our protocols formillionaires’ problem
and DReLU(𝑎) when the inputs are ℓ bit signed integers as well as
elements in general rings of the form Z𝑛 (including prime fields).
Our protocol for millionaires’ problem invokes instances of FAND
that take as input boolean shares of values 𝑥,𝑦 ∈ {0, 1} and returns
boolean shares of 𝑥 ∧ 𝑦. We discuss efficient protocols for FAND in
Appendix A.1 and A.2.

3.1 Protocol for Millionaires’

In the Yao millionaires’ problem, party 𝑃0 holds 𝑥 and party 𝑃1
holds 𝑦 and they wish to learn boolean shares of 1{𝑥 < 𝑦}. Here, 𝑥
and 𝑦 are ℓ-bit unsigned integers. We denote this functionality by
F ℓMILL. Our protocol for F

ℓ
MILL builds on the following observation

that was also used in [29].

1{𝑥 < 𝑦} = 1{𝑥1 < 𝑦1} ⊕ (1{𝑥1 = 𝑦1} ∧ 1{𝑥0 < 𝑦0}) , (1)

where, 𝑥 = 𝑥1 | |𝑥0 and 𝑦 = 𝑦1 | |𝑦0.

Intuition. Let 𝑚 be a parameter and 𝑀 = 2𝑚 . First, for ease of
exposition, we consider the special case when 𝑚 divides ℓ and
𝑞 = ℓ/𝑚 is a power of 2. We describe our protocol for millionaires’
problem in this setting formally in Algorithm 1. We use Equa-
tion 1 above, recursively log𝑞 times to obtain 𝑞 leaves of size𝑚 bits.
That is, let 𝑥 = 𝑥𝑞−1 | | . . . | |𝑥0 and 𝑦 = 𝑦𝑞−1 | | . . . | |𝑦0 (where every
𝑥𝑖 , 𝑦𝑖 ∈ {0, 1}𝑚). Now, we compute the shares of the inequalities
and equalities of strings at the leaf level using

(𝑀
1
)
-OT1 (steps 9 and

10, resp.). Next, we compute the shares of the inequalities (steps 14
& 15) and equalities (step 16) at each internal node upwards from
the leaf using Equation 1. Value of inequality at the root gives the
final output.

Correctness and security. Correctness is shown by induction on
the depth of the tree starting at the leaves. First, by correctness
of

(𝑀
1
)
-OT1 in step 9, ⟨lt0, 𝑗 ⟩𝐵1 = ⟨lt0, 𝑗 ⟩𝐵0 ⊕ 1{𝑥 𝑗 < 𝑦 𝑗 }. Similarly,

⟨eq0, 𝑗 ⟩𝐵1 = ⟨eq0, 𝑗 ⟩𝐵0 ⊕ 1{𝑥 𝑗 = 𝑦 𝑗 }. This proves the base case.
Let 𝑞𝑖 = 𝑞/2𝑖 . Also, for level 𝑖 of the tree, parse 𝑥 = 𝑥 (𝑖) =

𝑥
(𝑖)
𝑞𝑖−1 | | . . . 𝑥

(𝑖)
0 and 𝑦 = 𝑦 (𝑖) = 𝑦

(𝑖)
𝑞𝑖−1 | | . . . 𝑦

(𝑖)
0 . Assume that for

𝑖 it holds that lt𝑖, 𝑗 = ⟨lt𝑖, 𝑗 ⟩𝐵0 ⊕ ⟨lt𝑖, 𝑗 ⟩
𝐵
1 = 1{𝑥 (𝑖)

𝑗
< 𝑦

(𝑖)
𝑗
} and

⟨eq𝑖, 𝑗 ⟩𝐵0 ⊕ ⟨eq𝑖, 𝑗 ⟩
𝐵
1 = 1{𝑥 (𝑖)

𝑗
= 𝑦
(𝑖)
𝑗
} for all 𝑗 ∈ {0, . . . , 𝑞𝑖 − 1}.

Then, we prove the same for 𝑖 + 1 as follows: By correctness of
FAND, for 𝑗 ∈ {0, . . . , 𝑞𝑖+1 − 1}, ⟨lt𝑖+1, 𝑗 ⟩𝐵0 ⊕ ⟨lt𝑖+1, 𝑗 ⟩

𝐵
1 = lt𝑖,2𝑗+1 ⊕

(lt𝑖,2𝑗 ∧ eq𝑖,2𝑗+1) = 1{𝑥 (𝑖)2𝑗+1 < 𝑦
(𝑖)
2𝑗+1} ⊕ (1{𝑥

(𝑖)
2𝑗 < 𝑦

(𝑖)
2𝑗 } ∧1{𝑥

(𝑖)
2𝑗+1 =

𝑦
(𝑖)
2𝑗+1}) = 1{𝑥 (𝑖+1)

𝑗
< 𝑦

(𝑖+1)
𝑗
} (using Equation 1). The induction

step for eq𝑖+1, 𝑗 holds in a similar manner, thus proving correctness.
Given uniformity of ⟨lt0, 𝑗 ⟩𝐵0 , ⟨eq0, 𝑗 ⟩

𝐵
0 for all 𝑗 ∈ {0, . . . , 𝑞 − 1}, se-

curity follows easily in the (
(𝑀
1
)
-OT1, FAND)-hybrid.

General case. When 𝑚 does not divide ℓ and 𝑞 = ⌈ℓ/𝑚⌉ is not a
power of 2, we make the following modifications to the protocol.
Since 𝑚 does not divide ℓ , 𝑥𝑞−1 ∈ {0, 1}𝑟 , where 𝑟 = ℓ mod𝑚.8
When doing the compute for 𝑥𝑞−1 and 𝑦𝑞−1, we perform a small

8Note that 𝑟 =𝑚 when𝑚 divides ℓ .

Algorithm 1 Millionaires’, Πℓ,𝑚MILL:

Input: 𝑃0, 𝑃1 hold 𝑥 ∈ {0, 1}ℓ and 𝑦 ∈ {0, 1}ℓ , respectively.
Output: 𝑃0, 𝑃1 learn ⟨1{𝑥 < 𝑦}⟩𝐵0 and ⟨1{𝑥 < 𝑦}⟩𝐵1 , respectively.

1: 𝑃0 parses its input as 𝑥 = 𝑥𝑞−1 | | . . . | |𝑥0 and 𝑃1 parses its input
as 𝑦 = 𝑦𝑞−1 | | . . . | |𝑦0, where 𝑥𝑖 , 𝑦𝑖 ∈ {0, 1}𝑚 , 𝑞 = ℓ/𝑚.

2: Let𝑀 = 2𝑚 .
3: for 𝑗 = {0, . . . , 𝑞 − 1} do
4: 𝑃0 samples ⟨lt0, 𝑗 ⟩𝐵0 , ⟨eq0, 𝑗 ⟩

𝐵
0

$← {0, 1}.
5: for 𝑘 = {0, . . . , 𝑀 − 1} do
6: 𝑃0 sets 𝑠 𝑗,𝑘 = ⟨lt0, 𝑗 ⟩𝐵0 ⊕ 1{𝑥 𝑗 < 𝑘}.
7: 𝑃0 sets 𝑡 𝑗,𝑘 = ⟨eq0, 𝑗 ⟩𝐵0 ⊕ 1{𝑥 𝑗 = 𝑘}.
8: end for

9: 𝑃0 & 𝑃1 invoke an instance of
(𝑀
1
)
-OT1 where 𝑃0 is the

sender with inputs {𝑠 𝑗,𝑘 }𝑘 and 𝑃1 is the receiver with input 𝑦 𝑗 .
𝑃1 sets its output as ⟨lt0, 𝑗 ⟩𝐵1 .

10: 𝑃0 & 𝑃1 invoke an instance of
(𝑀
1
)
-OT1 where 𝑃0 is the

sender with inputs {𝑡 𝑗,𝑘 }𝑘 and 𝑃1 is the receiver with input 𝑦 𝑗 .
𝑃1 sets its output as ⟨eq0, 𝑗 ⟩𝐵1 .

11: end for

12: for 𝑖 = {1, . . . , log𝑞} do
13: for 𝑗 = {0, . . . , (𝑞/2𝑖) − 1} do
14: For 𝑏 ∈ {0, 1}, 𝑃𝑏 invokes FAND with inputs ⟨lt𝑖−1,2𝑗 ⟩𝐵𝑏

and ⟨eq𝑖−1,2𝑗+1⟩𝐵𝑏 to learn output ⟨temp⟩𝐵
𝑏
.

15: 𝑃𝑏 sets ⟨lt𝑖, 𝑗 ⟩𝐵𝑏 = ⟨lt𝑖−1,2𝑗+1⟩𝐵𝑏 ⊕ ⟨temp⟩𝐵
𝑏
.

16: For 𝑏 ∈ {0, 1}, 𝑃𝑏 invokes FAND with inputs ⟨eq𝑖−1,2𝑗 ⟩𝐵𝑏
and ⟨eq𝑖−1,2𝑗+1⟩𝐵𝑏 to learn output ⟨eq𝑖, 𝑗 ⟩𝐵𝑏 .

17: end for

18: end for

19: For 𝑏 ∈ {0, 1}, 𝑃𝑏 outputs ⟨ltlog𝑞,0⟩𝐵𝑏 .

optimization and use
(𝑅
1
)
-OT1 in steps 9 and 10, where 𝑅 = 2𝑟 .

Second, since 𝑞 is not a power of 2, we do not have a perfect binary
tree of recursion and we need to slightly change our recursion/tree
traversal. In the general case, we construct maximal possible perfect
binary trees and connect the roots of the same using the relation in
Equation 1. Let 𝛼 be such that 2𝛼 < 𝑞 ≤ 2𝛼+1. Now, our tree has
a perfect binary sub-tree with 2𝛼 leaves and we have remaining
𝑞′ = 𝑞 − 2𝛼 leaves. We recurse on 𝑞′. In the last step, we obtain our
tree with 𝑞 leaves by combining the roots of perfect binary tree
with 2𝛼 leaves and tree with 𝑞′ leaves using Equation 1. Note that
value at the root is computed using ⌈log𝑞⌉ sequential steps starting
from the leaves.

3.1.1 Optimizations. We reduce the concrete communication com-
plexity of our protocol using the following optimizations that are
applicable to both the special and the general case.

Combining two
(𝑀
1
)
-OT1 calls into one

(𝑀
1
)
-OT2: Since the

input of 𝑃1 (OT receiver) to
(𝑀
1
)
-OT1 in steps 9 and 10 is same,

i.e.𝑦 𝑗 , we can collapse these steps into a single call to
(𝑀
1
)
-OT2

where 𝑃0 and 𝑃1 input {(𝑠 𝑗,𝑘 | |𝑡 𝑗,𝑘)}𝑘 and 𝑦 𝑗 , respectively. 𝑃1
sets its output as (⟨lt0, 𝑗 ⟩𝐵1 | |⟨eq0, 𝑗 ⟩

𝐵
1). This reduces the cost

from 2(2𝜆 +𝑀) to (2𝜆 + 2𝑀).
5

Realizing FAND efficiently: It is well-known that FAND can
be realized using Beaver bit triples [8]. For our protocol, we
observe that the 2 calls to FAND in steps 14 and 16 have a
common input, ⟨eq𝑖−1,2𝑗+1⟩𝐵𝑏 . Hence, we optimize communi-
cation of these steps by generating correlated bit triples (⟨𝑑⟩𝐵

𝑏
,

⟨𝑒⟩𝐵
𝑏
, ⟨𝑓 ⟩𝐵

𝑏
) and (⟨𝑑 ′⟩𝐵

𝑏
, ⟨𝑒⟩𝐵

𝑏
, ⟨𝑓 ′⟩𝐵

𝑏
), for 𝑏 ∈ {0, 1}, such that

𝑑 ∧ 𝑒 = 𝑓 and 𝑑 ′ ∧ 𝑒 = 𝑓 ′. Next, we use
(8
1
)
-OT2 to generate

one such correlated bit triple (Appendix A.2) with communi-
cation 2𝜆 + 16 bits, giving the amortized cost of 𝜆 + 8 bits per
triple. Given correlated bit triples, we need 6 additional bits
to compute both FAND calls.
Removing unnecessary equality computations: As observed
in [29], the equalities computed on lowest significant bits are
never used. Concretely, we can skip computing the values
eq𝑖,0 for 𝑖 ∈ {0, . . . , log𝑞}. Once we do this optimization, we
only need a single call to FAND instead of 2 correlated calls
for the leftmost branch of the tree. We use the

(16
1
)
-OT2 →

2 ×
(4
1
)
-OT1 reduction to generate 2 regular bit triples from

[25] (Appendix A.1) with communication of 2𝜆 + 32 bits. This
gives us amortized communication of 𝜆 + 16 bits per triple
and we need 4 additional bits to realize FAND. Overall, we get
a reduction in total communication by 𝑀 (for the leaf) plus
(𝜆 + 2) · ⌈log𝑞⌉ (for leftmost branch) bits.

3.1.2 Communication Complexity. In our protocol, we communi-
cate in protocols forOT (steps 9&10) and FAND (steps 14&16). With
above optimizations, we need 1 call to

(𝑀
1
)
-OT1, (𝑞 − 2) calls to(𝑀

1
)
-OT2 and 1 call to

(𝑅
1
)
-OT2 which cost (2𝜆 +𝑀),

(
(𝑞 − 2) · (2𝜆 +

2𝑀)
)
and (2𝜆 + 2𝑅) bits, respectively. In addition, we have ⌈log𝑞⌉

invocations of FAND and (𝑞 − 1 − ⌈log𝑞⌉) invocations of corre-
lated FAND. These require communication of (𝜆 + 20) · ⌈log𝑞⌉ and
(2𝜆+22) · (𝑞−1− ⌈log𝑞⌉) bits. This gives us total communication of
𝜆(4𝑞− ⌈log𝑞⌉ −2) +𝑀 (2𝑞−3) +2𝑅 +22(𝑞−1) −2⌈log𝑞⌉ bits. Using
this expression for ℓ = 32 we get least communication for𝑚 = 7
(Table 1). We note that there is a trade-off between communication
and computational cost of OTs used and we discuss our choice of
𝑚 for our experiments in Section 6.

3.2 Protocol for DReLU for ℓ-bit integers

In Algorithm 2, we describe our protocol for F int,ℓ
DReLU that takes as

input arithmetic shares of𝑎 and returns boolean shares ofDReLU(𝑎).
Note thatDReLU(𝑎) = (1⊕MSB(𝑎)), whereMSB(𝑎) is themost sig-
nificant bit of 𝑎. Let arithmetic shares of 𝑎 ∈ Z𝐿 be ⟨𝑎⟩𝐿0 = msb0 | |𝑥0
and ⟨𝑎⟩𝐿1 = msb1 | |𝑥1 such that msb0,msb1 ∈ {0, 1}. We compute
the boolean shares ofMSB(𝑎) as follows: Let carry = 1{(𝑥0 +𝑥1) >
2ℓ−1 − 1}. Then, MSB(𝑎) = msb0 ⊕ msb1 ⊕ carry. We compute
boolean shares of carry by invoking an instance of F ℓ−1MILL.

Correctness and security.By correctness ofF ℓ−1MILL,Reconst
𝐵 (⟨carry⟩𝐵0 ,

⟨carry⟩𝐵1) = 1{(2ℓ−1−1−𝑥0) < 𝑥1} = 1{(𝑥0+𝑥1) > 2ℓ−1−1}. Also,
Reconst𝐵 (⟨DReLU⟩𝐵0 , ⟨DReLU⟩

𝐵
1) = msb0 ⊕ msb1 ⊕ carry ⊕ 1 =

MSB(𝑎) ⊕ 1. Security follows trivially in the F ℓ−1MILL hybrid.

Communication complexity In Algorithm 2, we communicate the
same as in Πℓ−1MILL, that is < (𝜆 + 14) (ℓ − 1) by using𝑚 = 4.

Algorithm 2 ℓ-bit integer DReLU, Πint,ℓ
DReLU:

Input: 𝑃0, 𝑃1 hold ⟨𝑎⟩𝐿0 and ⟨𝑎⟩𝐿1 , respectively.
Output: 𝑃0, 𝑃1 get ⟨DReLU(𝑎)⟩𝐵0 and ⟨DReLU(𝑎)⟩𝐵1 .

1: 𝑃0 parses its input as ⟨𝑎⟩𝐿0 = msb0 | |𝑥0 and 𝑃1 parses its input as
⟨𝑎⟩𝐿1 = msb1 | |𝑥1, s.t. 𝑏 ∈ {0, 1},msb𝑏 ∈ {0, 1}, 𝑥𝑏 ∈ {0, 1}ℓ−1.

2: 𝑃0 & 𝑃1 invoke an instance of F ℓ−1MILL, where 𝑃0’s input is 2
ℓ−1 −

1 − 𝑥0 and 𝑃1’s input is 𝑥1. For 𝑏 ∈ {0, 1}, 𝑃𝑏 learns ⟨carry⟩𝐵
𝑏
.

3: For 𝑏 ∈ {0, 1}, 𝑃𝑏 sets ⟨DReLU⟩𝐵
𝑏
= msb𝑏 ⊕ ⟨carry⟩𝐵𝑏 ⊕ 𝑏.

Algorithm 3 Simple Integer ring DReLU, Πring,𝑛
DReLUsimple :

Input: 𝑃0, 𝑃1 hold ⟨𝑎⟩𝑛0 and ⟨𝑎⟩𝑛1 , respectively, where 𝑎 ∈ Z𝑛 .
Output: 𝑃0, 𝑃1 get ⟨DReLU(𝑎)⟩𝐵0 and ⟨DReLU(𝑎)⟩𝐵1 .

1: 𝑃0 & 𝑃1 invoke an instance of F 𝜂MILL with 𝜂 = ⌈log𝑛⌉, where
𝑃0’s input is

(
𝑛 − 1 − ⟨𝑎⟩𝑛0

)
and 𝑃1’s input is ⟨𝑎⟩𝑛1 . For𝑏 ∈ {0, 1},

𝑃𝑏 learns ⟨wrap⟩𝐵
𝑏
as output.

2: 𝑃0 & 𝑃1 invoke an instance of F 𝜂+1MILL, where 𝑃0’s input is(
𝑛 − 1 − ⟨𝑎⟩𝑛0

)
and 𝑃1’s input is

(
(𝑛 − 1)/2 + ⟨𝑎⟩𝑛1

)
. For 𝑏 ∈

{0, 1}, 𝑃𝑏 learns ⟨lt⟩𝐵
𝑏
as output.

3: 𝑃0 & 𝑃1 invoke an instance of F 𝜂+1MILL, where 𝑃0’s input is(
𝑛 + (𝑛 − 1)/2 − ⟨𝑎⟩𝑛0

)
and 𝑃1’s input is ⟨𝑎⟩𝑛1 . For 𝑏 ∈ {0, 1},

𝑃𝑏 learns ⟨rt⟩𝐵
𝑏
as output.

4: For 𝑏 ∈ {0, 1}, 𝑃𝑏 invokes F 2
MUX with input

(
⟨lt⟩𝐵

𝑏
⊕ ⟨rt⟩𝐵

𝑏

)
and

choice ⟨wrap⟩𝐵
𝑏
to learn ⟨𝑧⟩𝐵

𝑏
.

5: For 𝑏 ∈ {0, 1}, 𝑃𝑏 outputs ⟨𝑧⟩𝐵
𝑏
⊕ ⟨lt⟩𝐵

𝑏
⊕ 𝑏.

3.3 Protocol for DReLU for general Z𝑛

We describe a protocol for F ring,𝑛
DReLU that takes arithmetic shares

of 𝑎 over Z𝑛 as input and returns boolean shares of DReLU(𝑎). For
integer rings Z𝑛 , DReLU(𝑎) = 1 if 𝑎 < ⌈𝑛/2⌉ and 0 otherwise. Note
that this includes the case of prime fields considered in the works of
[43, 49]. Below, we formally discuss the case of rings of odd number
of elements and omit the analogous case of even rings. We first
describe a (simplified) protocol for DReLU over Z𝑛 in Algorithm 3
with protocol logic as follows: Let arithmetic shares of 𝑎 ∈ Z𝑛 be
⟨𝑎⟩𝑛0 and ⟨𝑎⟩𝑛1 . Define wrap = 1{⟨𝑎⟩𝑛0 + ⟨𝑎⟩

𝑛
1 > 𝑛− 1}, lt = 1{⟨𝑎⟩𝑛0 +

⟨𝑎⟩𝑛1 > (𝑛 − 1)/2} and rt = 1{⟨𝑎⟩𝑛0 + ⟨𝑎⟩
𝑛
1 > 𝑛 + (𝑛 − 1)/2}. Then,

DReLU(𝑎) is (1 ⊕ lt) if wrap = 0, else it is (1 ⊕ rt). In Algorithm 3,
steps 1,2,3, compute these three comparisons using FMILL. Final
output can be computed using an invocation of F 2

MUX.
Optimizations. We describe an optimized protocol for F ring,𝑛

DReLU in
Algorithm 4 that reduces the number of calls to FMILL to 2. First,
we observe that if the input of 𝑃1 is identical in all three invo-
cations, then the invocations of OT in Algorithm 1 (steps 9&10)
can be done together for the three comparisons. This reduces the
communication for each leaf OT invocation in steps 9&10 by an
additive factor of 4𝜆. To enable this, 𝑃0, 𝑃1 add (𝑛 − 1)/2 to their
inputs to F 𝜂+1MILL in steps 1,3 (𝜂 = ⌈log𝑛⌉). Hence, 𝑃1’s input to

6

Algorithm 4 Optimized Integer ring DReLU, Πring,𝑛
DReLU:

Input: 𝑃0, 𝑃1 hold ⟨𝑎⟩𝑛0 and ⟨𝑎⟩𝑛1 , respectively, where 𝑎 ∈ Z𝑛 . Let
𝜂 = ⌈log𝑛⌉.

Output: 𝑃0, 𝑃1 get ⟨DReLU(𝑎)⟩𝐵0 and ⟨DReLU(𝑎)⟩𝐵1 .

1: 𝑃0 & 𝑃1 invoke an instance of F 𝜂+1MILL, where 𝑃0’s input is(
3(𝑛 − 1)/2 − ⟨𝑎⟩𝑛0

)
and 𝑃1’s input is (𝑛 − 1)/2 + ⟨𝑎⟩𝑛1 . For

𝑏 ∈ {0, 1}, 𝑃𝑏 learns ⟨wrap⟩𝐵
𝑏
as output.

2: 𝑃0 sets 𝑥 =

(
2𝑛 − 1 − ⟨𝑎⟩𝑛0

)
if ⟨𝑎⟩𝑛0 > (𝑛 − 1)/2, else 𝑥 =(

𝑛 − 1 − ⟨𝑎⟩𝑛0
)
.

3: 𝑃0 & 𝑃1 invoke an instance of F 𝜂+1MILL, where 𝑃0’s input is 𝑥 and

𝑃1’s input is
(
(𝑛 − 1)/2 + ⟨𝑎⟩𝑛1

)
. For 𝑏 ∈ {0, 1}, 𝑃𝑏 learns ⟨xt⟩𝐵

𝑏

as output.
4: 𝑃0 samples ⟨𝑧⟩𝐵0

$← {0, 1}.
5: for 𝑗 = {00, 01, 10, 11} do
6: 𝑃0 parses 𝑗 as 𝑗0 | | 𝑗1 and sets 𝑡 𝑗 = 1 ⊕ ⟨xt⟩𝐵0 ⊕ 𝑗0.
7: if ⟨𝑎⟩𝑛0 > (𝑛 − 1)/2 then
8: 𝑃0 sets 𝑠 ′𝑗 = 𝑡 𝑗 ∧ (⟨wrap⟩

𝐵
0 ⊕ 𝑗1).

9: else

10: 𝑃0 sets 𝑠 ′𝑗 = 𝑡 𝑗 ⊕ ((1 ⊕ 𝑡 𝑗) ∧ (⟨wrap⟩
𝐵
0 ⊕ 𝑗1))

11: end if

12: 𝑃0 sets 𝑠 𝑗 = 𝑠 ′𝑗 ⊕ ⟨𝑧⟩
𝐵
0

13: end for

14: 𝑃0 & 𝑃1 invoke an instance of
(4
1
)
-OT1 where 𝑃0 is the

sender with inputs {𝑠 𝑗 } 𝑗 and 𝑃1 is the receiver with input
⟨xt⟩𝐵1 | |⟨wrap⟩

𝐵
1 . 𝑃1 sets its output as ⟨𝑧⟩

𝐵
1 .

15: For 𝑏 ∈ {0, 1}, 𝑃𝑏 outputs ⟨𝑧⟩𝐵
𝑏
.

F 𝜂+1MILL is (𝑛 − 1)/2 + ⟨𝑎⟩𝑛1 in all invocations and 𝑃0’s inputs are(
3(𝑛 − 1)/2 − ⟨𝑎⟩𝑛0

)
,
(
𝑛 − 1 − ⟨𝑎⟩𝑛0

)
,
(
2𝑛 − 1 − ⟨𝑎⟩𝑛0

)
in steps 1,2,3,

respectively.
Next, we observe that one of the comparisons in step 2 or step 3

is redundant. For instance, if ⟨𝑎⟩𝑛0 > (𝑛 − 1)/2, then the result
of the comparison lt = ⟨𝑎⟩𝑛0 + ⟨𝑎⟩

𝑛
1 > (𝑛 − 1)/2 done in step 2

is always 1. Similarly, if ⟨𝑎⟩𝑛0 ≤ (𝑛 − 1)/2, then the result of the
comparison rt = 1{⟨𝑎⟩𝑛0 + ⟨𝑎⟩

𝑛
1 > 𝑛 + (𝑛 − 1)/2} done in step 3 is

always 0. Moreover, 𝑃0 knows based on her input ⟨𝑎⟩𝑛0 which of the
two comparisons is redundant. Hence, in the optimized protocol,
𝑃0 and 𝑃1 always run the comparison to compute shares of wrap
and one of the other two comparisons. Note that the choice of
which comparison is omitted by 𝑃0 need not be communicated to
𝑃1, since 𝑃1’s input is same in all invocations of FMILL. Moreover,
this omission does not reveal any additional information to 𝑃1 by
security of FMILL. Finally, 𝑃0 and 𝑃1 can run a

(4
1
)
-OT1 to learn the

shares of DReLU(𝑎). Here, 𝑃1 is the receiver and her choice bits
are the shares learnt in the two comparisons. 𝑃0 is the sender who
sets the 4 OT messages based on her input share, and two shares
learnt from the comparison protocol. We elaborate on this in the
correctness proof below.

Correctness and Security. First, by correctness of F 𝜂+1MILL (step 1),
wrap = Reconst𝐵 (⟨wrap⟩𝐵0 , ⟨wrap⟩

𝐵
1) = 1{⟨𝑎⟩𝐿0 + ⟨𝑎⟩

𝐿
1 > 𝑛 −

1}. Let 𝑗∗ = ⟨xt⟩𝐵1 | |⟨wrap⟩
𝐵
1 . Then, 𝑡 𝑗∗ = 1 ⊕ xt. We will show

that 𝑠 ′
𝑗∗ = DReLU(𝑎), and hence, by correctness of

(4
1
)
-OT1, 𝑧 =

Reconst𝐵 (⟨𝑧⟩𝐵0 , ⟨𝑧⟩
𝐵
1) = DReLU(𝑎). We have the following two

cases.
When ⟨𝑎⟩𝐿0 > (𝑛 − 1)/2, lt = 1, and DReLU(𝑎) = wrap∧ (1 ⊕ rt).

Here, by correctness ofF 𝜂+1MILL (step 3), xt = Reconst𝐵 (⟨xt⟩𝐵0 , ⟨xt⟩
𝐵
1) =

rt. Hence, 𝑠 ′
𝑗∗ = 𝑡 𝑗

∗ ∧ (⟨wrap⟩𝐵0 ⊕ 𝑗
∗
1) = (1 ⊕ rt) ∧ wrap.

When ⟨𝑎⟩𝐿0 ≤ (𝑛 − 1)/2, rt = 0, DReLU(𝑎) is 1 ⊕ lt if wrap = 0,
else 1. It can be written as (1⊕ lt) ⊕ (lt∧wrap). In this case, by cor-
rectness of F 𝜂+1MILL (step 3), xt = Reconst𝐵 (⟨xt⟩𝐵0 , ⟨xt⟩

𝐵
1) = lt. Hence,

𝑠 ′
𝑗∗ = 𝑡 𝑗

∗ ⊕ ((1⊕𝑡 𝑗∗)∧ (⟨wrap⟩𝐵0 ⊕ 𝑗
∗
1)) = (1⊕ lt) ⊕ (lt∧wrap). Since

⟨𝑧⟩𝐵0 is uniform, security follows in the (F 𝜂+1MILL,
(4
1
)
-OT1)-hybrid.

Communication complexity. With the above optimization, the over-
all communication complexity of our protocol for DReLU in Z𝑛
is equivalent to 2 calls to Π

𝜂+1
MILL where 𝑃1 has same input plus

2𝜆 + 4 (for protocol for
(4
1
)
-OT1). Two calls to Π

𝜂+1
MILL in this case

(using𝑚 = 4) cost < 3
2𝜆(𝜂 + 1) + 28(𝜂 + 1) bits. Hence, total com-

munication is < 3
2𝜆(𝜂 + 1) + 28(𝜂 + 1) + 2𝜆 + 4. We note that the

communication complexity of simplified protocol in Algorithm 3 is
approximately 3 independent calls to Π𝜂MILL, which cost 3(𝜆𝜂+14𝜂)
bits, plus 2𝜆 + 4 bits for F 2

MUX. Thus, our optimization gives almost
2× improvement.

4 DIVISION AND TRUNCATION

We present our results on secure implementations of division in
the ring by a positive integer and truncation (division by power-
of-2) that are bitwise equivalent to the corresponding cleartext
computation. We begin with closed form expressions for each of
these followed by secure protocols that use them.

4.1 Expressing general division and truncation

using arithmetic over secret shares

Let idiv : Z × Z→ Z denote signed integer division, where the
quotient is rounded towards −∞ and the sign of the remainder is
the same as that of divisor. We denote division of a ring element by
a positive integer using rdiv : Z𝑛 × Z→ Z𝑛 defined as

rdiv(𝑎, 𝑑) ≜ idiv(𝑎𝑢 − 1{𝑎𝑢 ≥ ⌈𝑛/2⌉} · 𝑛,𝑑) mod 𝑛, (2)

where the integer 𝑎𝑢 ∈ {0, 1, . . . , 𝑛 − 1} is the unsigned representa-
tion of 𝑎 ∈ Z𝑛 lifted to integers and 0 < 𝑑 < 𝑛. For brevity, we use
𝑥 =𝑛 𝑦 to denote 𝑥 mod 𝑛 = 𝑦 mod 𝑛.

Theorem 4.1. (Division of ring element by positive integer). Let

the shares of 𝑎 ∈ Z𝑛 be ⟨𝑎⟩𝑛0 , ⟨𝑎⟩
𝑛
1 ∈ Z𝑛 , for some 𝑛 = 𝑛1 ·𝑑 +𝑛0 ∈ Z,

where 𝑛0, 𝑛1, 𝑑 ∈ Z and 0 ≤ 𝑛0 < 𝑑 < 𝑛.

Let the unsigned representation of 𝑎, ⟨𝑎⟩𝑛0 , ⟨𝑎⟩
𝑛
1 in Z𝑛 lifted to inte-

gers be 𝑎𝑢 , 𝑎0, 𝑎1 ∈ {0, 1, . . . , 𝑛 − 1}, respectively, such that 𝑎0 =

𝑎10 · 𝑑 + 𝑎
0
0 and 𝑎1 = 𝑎11 · 𝑑 + 𝑎

0
1, where 𝑎

1
0, 𝑎

0
0, 𝑎

1
1, 𝑎

0
1 ∈ Z and

0 ≤ 𝑎00, 𝑎
0
1 < 𝑑 . Let 𝑛′ = ⌈𝑛/2⌉ ∈ Z. Define corr, 𝐴, 𝐵, 𝐶 ∈ Z

7

as follows:

corr =


−1 (𝑎𝑢 ≥ 𝑛′) ∧ (𝑎0 < 𝑛′) ∧ (𝑎1 < 𝑛′)
1 (𝑎𝑢 < 𝑛′) ∧ (𝑎0 ≥ 𝑛′) ∧ (𝑎1 ≥ 𝑛′)
0 otherwise

,

𝐴 = 𝑎00 + 𝑎
0
1 − (1{𝑎0 ≥ 𝑛

′} + 1{𝑎1 ≥ 𝑛′} − corr) · 𝑛0 .
𝐵 = idiv(𝑎00 − 1{𝑎0 ≥ 𝑛

′} · 𝑛0, 𝑑) + idiv(𝑎01 − 1{𝑎1 ≥ 𝑛
′} · 𝑛0, 𝑑)

𝐶 = 1{𝐴 < 𝑑} + 1{𝐴 < 0} + 1{𝐴 < −𝑑}
Then, we have:

rdiv(⟨𝑎⟩𝑛0 , 𝑑) + rdiv(⟨𝑎⟩
𝑛
1 , 𝑑) + (corr · 𝑛

1 + 1 −𝐶 − 𝐵) =𝑛 rdiv(𝑎, 𝑑) .

The proof of the above theorem is presented in Appendix C.

4.1.1 Special Case of truncation for ℓ bit integers. The expression
above can be simplified for the special case of division by 2𝑠 of ℓ-bit
integers, i.e., arithmetic right shift with 𝑠 (≫ 𝑠), as follows:

Corollary 4.2. (Truncation for ℓ-bit integers). Let the shares

of 𝑎 ∈ Z𝐿 be ⟨𝑎⟩𝐿0 , ⟨𝑎⟩
𝐿
1 ∈ Z𝐿 . Let the unsigned representation of

𝑎, ⟨𝑎⟩𝐿0 , ⟨𝑎⟩
𝐿
1 in Z𝐿 lifted to integers be 𝑎𝑢 , 𝑎0, 𝑎1 ∈ {0, 1, . . . , 2ℓ − 1},

respectively, such that 𝑎0 = 𝑎10 · 2
𝑠 + 𝑎00 and 𝑎1 = 𝑎

1
1 · 2

𝑠 + 𝑎01, where
𝑎10, 𝑎

0
0, 𝑎

1
1, 𝑎

0
1 ∈ Z and 0 ≤ 𝑎

0
0, 𝑎

0
1 < 2𝑠 . Let corr ∈ Z be defined as in

Theorem 4.1. Then, we have:

(𝑎0 ≫ 𝑠) + (𝑎1 ≫ 𝑠) + corr · 2ℓ−𝑠 + 1{𝑎00 + 𝑎
0
1 ≥ 2𝑠 } =𝐿 (𝑎 ≫ 𝑠) .

Proof. The corollary follows directly from Theorem 4.1 as fol-
lows: First, (𝑎 ≫ 𝑠) = rdiv(𝑎, 2𝑠). Next, 𝑛 = 2ℓ , 𝑛1 = 2ℓ−𝑠 , and
𝑛0 = 0. Using these, we get𝐴 = 𝑎00 +𝑎

0
1, 𝐵 = 0 and𝐶 = 1{𝐴 < 2𝑠 } =

1{𝑎00 + 𝑎
0
1 < 2𝑠 }. □

4.2 Protocols for division

In this section, we describe our protocols for division in different
settings. We first describe a protocol for the simplest case of trun-
cation for ℓ-bit integers followed by a protocol for general division
in Z𝑛 by a positive integer (Section 4.2.2). Finally, we discuss an-
other simpler case of truncation, which allows us to do better than
general division for rings with a special structure (Section 4.2.3).

4.2.1 Protocol for truncation of ℓ-bit integer. Let F int,ℓ,𝑠
Trunc be

the functionality that takes arithmetic shares of 𝑎 as input and
returns arithmetic shares of 𝑎 ≫ 𝑠 as output. In this work, we
give a protocol (Algorithm 5) that realizes the functionality F int,ℓ,𝑠

Trunc
correctly building on Corollary 4.2.
Intuition. Parties 𝑃0 & 𝑃1 first invoke an instance of F int,ℓ

DReLU (where
one party locally flips its share of DReLU(𝑎)) to get boolean shares
⟨𝑚⟩𝐵

𝑏
ofMSB(𝑎). Using these shares, they use a

(4
1
)
-OTℓ for calcu-

lating ⟨corr⟩𝐿
𝑏
, i.e., arithmetic shares of corr term in Corollary 4.2.

Next, they use an instance of F 𝑠MILL to compute boolean shares of
𝑐 = 1{𝑎00 + 𝑎

0
1 ≥ 2𝑠 }. Finally, they compute arithmetic shares of 𝑐

using a call to F 𝐿B2A (Algorithm 7).

Correctness and Security. For any 𝑧 ∈ Z𝐿 ,MSB(𝑧) = 1{𝑧𝑢 ≥ 2ℓ−1},
where 𝑧𝑢 is unsigned representation of 𝑧 lifted to integers. First, note
thatReconst𝐵 (⟨𝑚⟩𝐵0 , ⟨𝑚⟩

𝐵
1) = 1⊕Reconst𝐵 (⟨𝛼⟩𝐵0 , ⟨𝛼⟩

𝐵
1) = MSB(𝑎)

by correctness of F int,ℓ
DReLU. Next, we show that Reconst𝐿 (⟨corr⟩𝐿0 ,

⟨corr⟩𝐿1) = corr, as defined in Corollary 4.2. Let 𝑥𝑏 = MSB(⟨𝑎⟩𝐿
𝑏
)

Algorithm 5 Truncation, Πint,ℓ,𝑠
Trunc :

Input: For 𝑏 ∈ {0, 1}, 𝑃𝑏 holds ⟨𝑎⟩𝐿
𝑏
, where 𝑎 ∈ Z𝐿 .

Output: For 𝑏 ∈ {0, 1}, 𝑃𝑏 learns ⟨𝑧⟩𝐿
𝑏
s.t. 𝑧 = 𝑎 ≫ 𝑠 .

1: For 𝑏 ∈ {0, 1}, let 𝑎𝑏 , 𝑎0𝑏 , 𝑎
1
𝑏
∈ Z be as defined in Corollary 4.2.

2: For 𝑏 ∈ {0, 1}, 𝑃𝑏 invokes F int,ℓ
DReLU with input ⟨𝑎⟩𝐿

𝑏
to learn

output ⟨𝛼⟩𝐵
𝑏
. Party 𝑃𝑏 sets ⟨𝑚⟩𝐵

𝑏
= ⟨𝛼⟩𝐵

𝑏
⊕ 𝑏.

3: For 𝑏 ∈ {0, 1}, 𝑃𝑏 sets 𝑥𝑏 = MSB(⟨𝑎⟩𝐿
𝑏
).

4: 𝑃0 samples ⟨corr⟩𝐿0
$← Z2ℓ .

5: for 𝑗 = {00, 01, 10, 11} do
6: 𝑃0 computes 𝑡 𝑗 = (⟨𝑚⟩𝐵0 ⊕ 𝑗0 ⊕ 𝑥0) ∧ (⟨𝑚⟩

𝐵
0 ⊕ 𝑗0 ⊕ 𝑗1) s.t.

𝑗 = (𝑗0 | | 𝑗1).
7: if 𝑡 𝑗 ∧ 1{𝑥0 = 0} then
8: 𝑃0 sets 𝑠 𝑗 =𝐿 −⟨corr⟩𝐿0 − 1.
9: else if 𝑡 𝑗 ∧ 1{𝑥0 = 1} then
10: 𝑃0 sets 𝑠 𝑗 =𝐿 −⟨corr⟩𝐿0 + 1.
11: else

12: 𝑃0 sets 𝑠 𝑗 =𝐿 −⟨corr⟩𝐿0 .
13: end if

14: end for

15: 𝑃0 & 𝑃1 invoke an instance of
(4
1
)
-OTℓ , where 𝑃0 is the sender

with inputs {𝑠 𝑗 } 𝑗 and 𝑃1 is the receiver with input ⟨𝑚⟩𝐵1 | |𝑥1
and learns ⟨corr⟩𝐿1 .

16: 𝑃0 & 𝑃1 invoke an instance of F 𝑠MILL with 𝑃0’s input as 2
𝑠−1−𝑎00

and 𝑃1’s input as 𝑎01. For 𝑏 ∈ {0, 1}, 𝑃𝑏 learns ⟨𝑐⟩𝐵
𝑏
.

17: For 𝑏 ∈ {0, 1}, 𝑃𝑏 invokes an instance of F 𝐿B2A (𝐿 = 2ℓ) with
input ⟨𝑐⟩𝐵

𝑏
and learns ⟨𝑑⟩𝐿

𝑏
.

18: 𝑃𝑏 outputs ⟨𝑧⟩𝐿
𝑏
= (⟨𝑎⟩𝐿

𝑏
≫ 𝑠) + ⟨corr⟩𝐿

𝑏
· 2ℓ−𝑠 + ⟨𝑑⟩𝐿

𝑏
, 𝑏 ∈ {0, 1}.

for 𝑏 ∈ {0, 1}, and let 𝑗∗ = (⟨𝑚⟩𝐵1 | |𝑥1). Then, 𝑡 𝑗∗ = (⟨𝑚⟩
𝐵
0 ⊕ ⟨𝑚⟩

𝐵
1 ⊕

𝑥0) ∧ (⟨𝑚⟩𝐵0 ⊕ ⟨𝑚⟩
𝐵
1 ⊕ 𝑥1) = (MSB(𝑎) ⊕ 𝑥0) ∧ (MSB(𝑎) ⊕ 𝑥1). Now,

𝑡 𝑗∗ = 1 implies that we are in one of the first two cases of expression
for corr – which case we are in can be checked using 𝑥0 (steps 7
& 9). Now it is easy to see that 𝑠 𝑗∗ = −⟨corr⟩𝐿0 + corr = ⟨corr⟩

𝐿
1 .

Next, by correctness ofF 𝑠MILL, 𝑐 = Reconst𝐵 (⟨𝑐⟩𝐵0 , ⟨𝑐⟩
𝐵
1) = ⟨𝑐⟩

𝐵
0 ⊕

⟨𝑐⟩𝐵1 = 1{𝑎00 + 𝑎
0
1 ≥ 2𝑠 }. Given boolean shares of 𝑐 , step 17, cre-

ates arithmetic shares of the same using an instance of F 𝐿B2A. Since
⟨corr⟩𝐿0 is uniformly random, security of our protocol is easy to see
in (F int,ℓ

DReLU,
(4
1
)
-OTℓ , F 𝑠MILL, F

𝐿
B2A)-hybrid.

Communication complexity. Πint,ℓ,𝑠
Trunc involves a single call each to

F int,ℓ
DReLU,

(4
1
)
-OTℓ , F 𝐿B2A and F 𝑠MILL. Hence, communication required

is < 𝜆ℓ + 2𝜆 + 19ℓ+ communication for F 𝑠MILL that depends on
parameter 𝑠 . For ℓ = 32 and 𝑠 = 12, our concrete communication is
4310 bits (using𝑚 = 7 for Π12

MILL as well as Π
31
MILL inside Π

int,32
DReLU)

as opposed to 24064 bits for garbled circuits.

4.2.2 Protocol for division in ring. Let F ring,𝑛,𝑑
DIV be the func-

tionality for division that takes arithmetic shares of 𝑎 as input and
returns arithmetic shares of rdiv(𝑎, 𝑑) as output. Our protocol builds
on our closed form expression from Theorem 4.1. We note that ℓ-bit
integers is a special case of Z𝑛 and we use the same protocol for

8

division of an element in Z𝐿 by a positive integer.

Intuition. This protocol is similar to the previous protocol for trun-
cation and uses the same logic to compute shares of corr term. Most
non-trivial term to compute is𝐶 that involves three signed compar-
isons over Z. We emulate these comparisons using calls to F int,𝛿

DReLU
where 𝛿 is large enough to ensure that there are no overflows or
underflows. It is not too hard to see that −2𝑑 + 2 ≤ 𝐴 ≤ 2𝑑 − 2
and hence, −3𝑑 + 2 ≤ 𝐴 − 𝑑,𝐴,𝐴 + 𝑑 ≤ 3𝑑 − 2. Hence, we set
𝛿 = ⌈log 6𝑑⌉. Now, with this value of 𝛿 , the term𝐶 can we re-written
as (DReLU(𝐴 − 𝑑) ⊕ 1) + (DReLU(𝐴) ⊕ 1) + (DReLU(𝐴 + 𝑑) ⊕ 1),
which can be computed using three calls to F int,𝛿

DReLU (Step 19) and
F𝑛B2A (Step 20) each. Finally, note that to compute 𝐶 we need arith-
metic shares of𝐴 over the ring ZΔ, Δ = 2𝛿 . And this requires shares
of corr over the same ring. Hence, we compute shares of corr over
both Z𝑛 and ZΔ (Step 15). Due to space constraints, we describe
the protocol formally in Appendix D along with its communication
complexity. Also, Table 3 provides theoretical and concrete com-
munication numbers for division in both Z𝐿 and Z𝑛 , as well as a
comparison with garbled circuits.

4.2.3 Truncation in rings with special structure. It is easy to
see that truncation by 𝑠 in general rings can be done by performing
a division by 𝑑 = 2𝑠 . However, we can omit a call to F int,𝛿

DReLU and
F𝑛B2A when the underlying ring and 𝑑 satisfy a relation. Specifically,
if we have 2 · 𝑛0 ≤ 𝑑 = 2𝑠 , then 𝐴 is always greater than equal
to −𝑑 , where 𝑛0, 𝐴 ∈ Z are as defined in Theorem 4.1. Thus, the
third comparison (𝐴 < −𝑑) in the expression of𝐶 from Theorem 4.1
can be omitted. Moreover, this reduces the value of 𝛿 needed and
𝛿 = ⌈log 4𝑑⌉ suffices since −2𝑑 ≤ 𝐴 − 𝑑,𝐴 ≤ 2𝑑 − 2.

Our homomorphic encryption scheme requires 𝑛 to be a prime
of the form 2𝐾𝑁 + 1 (Section 2.2.4), where 𝐾 is a positive integer
and 𝑁 ≥ 8192 is a power-of-2. Thus, we have 𝑛0 = 𝑛 mod 2𝑠 = 1
for 1 ≤ 𝑠 ≤ 14. For all our benchmarks, 𝑠 ≤ 12 and we use this
optimization for truncation in SCIHE.

5 SECURE INFERENCE

We give an overview of all the layers that must be computed
securely to realize the task of secure neural network inference.
Layers can be broken into two categories - linear and non-linear.
An inference algorithm simply consists of a sequence of layers
of appropriate dimension connected to each other. Examples of
linear layers include matrix multiplication, convolutions, Avgpool
and batch normalization, while non-linear layers include ReLU,
Maxpool, and Argmax.

We are in the setting of secure inference where the model owner,
say 𝑃0, holds the weights. When securely realizing each of these
layers, we maintain the following invariant: Parties 𝑃0 and 𝑃1 be-
gin with arithmetic shares of the input to the layer and after the
protocol, end with arithmetic shares (over the same ring) of the
output of the layer. This allows us to stitch protocols for arbitrary
layers sequentially to obtain a secure computation protocol for any
neural network comprising of these layers. Semi-honest security of
the protocol will follow trivially from sequential composibility of

individual sub-protocols [18, 32, 47]. For protocols in SCIOT, this
arithmetic secret sharing is over Z𝐿 ; in SCIHE, the sharing is over
Z𝑛 , prime 𝑛. The inputs to secure inference are floating-point num-
bers, encoded as fixed-point integers in the ring (Z𝐿 or Z𝑛); for
details see Appendix E.

5.1 Linear Layers

5.1.1 Fully connected layers and convolutions. A fully connected
layer in a neural network is simply a product of two matrices - the
matrix of weights and the matrix of activations of that layer - of
appropriate dimension. At a very high level, a convolutional layer
applies a filter (usually of dimension 𝑓 × 𝑓 for small integer 𝑓) to the
input matrix by sliding across it and computing the sum of element-
wise products of the filter with the input. Various parameters are
associated with convolutions - e.g. stride (a stride of 1 denotes that
the filter slides across the larger inputmatrix beginning at every row
and every column) and zero-padding (which indicates whether the
matrix is padded with 0s to increase its dimension before applying
the filter). When performing matrix multiplication or convolutions
over fixed-point values, the values of the final matrix must be scaled
down appropriately so that it has the same scale as the inputs to
the computation. Hence, to do faithful fixed-point arithmetic, we
first compute the matrix multiplication or convolution over the
ring (Z𝐿 or Z𝑛) followed by truncation, i.e., division-by-2𝑠 of all the
values. In SCIOT, multiplication and convolutions over the ring Z𝐿
are done using oblivious transfer techniques and in SCIHE these
are done over Z𝑛 using homomorphic encryption techniques that
we describe next followed by our truncation method.

OT based computation. The OT-based techniques for multiplica-
tion are well-known [8, 23, 51] andwe describe them briefly for com-
pleteness. First consider the simple case of secure multiplication of 𝑎
and 𝑏 in Z𝐿 where 𝑃0 knows 𝑎 and 𝑃0 and 𝑃1 hold arithmetic shares
of 𝑏. This can be done by invoking

(2
1
)
-COT𝑖 for 𝑖 ∈ {1, . . . , ℓ} re-

quiring communication equivalent to ℓ instances of
(2
1
)
-COT ℓ+1

2
.

Using this, multiplying two matrices 𝐴 ∈ Z𝑀,𝑁
𝐿

and 𝐵 ∈ Z𝑁,𝐾
𝐿

such that 𝑃0 knows 𝐴 and 𝐵 is arithmetically secret shared re-
quires𝑀𝑁𝐾ℓ instances of

(2
1
)
-COT ℓ+1

2
. This can be optimized with

structured multiplications inside a matrix multiplication by com-
bining all the COT sender messages when multiplying with the
same element, reducing the complexity to that of 𝑁𝐾ℓ instances of(2
1
)
-COT𝑀 (ℓ+1)

2
. Finally, we reduce the task of secure convolutions

to secure matrix multiplication similar to [45, 50, 61].

HE based computation. SCIHE uses techniques from Gazelle [43]
and Delphi [49] to compute matrix multiplications and convolu-
tions over a field Z𝑛 (prime 𝑛), of appropriate size. At a high level,
first, 𝑃1 sends an encryption of its arithmetic share to 𝑃0. Then, 𝑃0
homomorphically computes on this ciphertext using weights of the
model (known to 𝑃0) to compute an encryption of the arithmetic
share of the result and sends this back to 𝑃1. Hence, the commu-
nication only depends on the input and output size of the linear
layer and is independent of the number of multiplications being
performed. Homomorphic operations can have significantly high
computational cost - to mitigate this, we build upon the output rota-
tions method from [43] for performing convolutions, and reduce its

9

number of homomorphic rotations. At a very high level, after per-
forming convolutions homomorphically, ciphertexts are grouped,
rotated in order to be correctly aligned, and then packed using
addition. In our work, we divide the groups further into subgroups
that are misaligned by the same offset. Hence the ciphertexts within
a subgroup can first be added and the resulting ciphertext can then
be aligned using a single rotation as opposed to subgroup-size many
rotations in [43]. We refer the reader to Appendix F for details.

Faithful truncation. To correctly emulate fixed-point arithmetic,
the value encoded in the shares obtained from the above methods
needs to be divided-by-2𝑠 , where 𝑠 is the scale used. For this we
invoke F int,ℓ,𝑠

Trunc in SCIOT and F ring,𝑛,2𝑠
DIV in SCIHE for each value of

the resulting matrix. With this, result of secure implementation of
fixed-point multiplication and convolutions is bitwise equal to the
corresponding cleartext execution. In contrast, many prior works
on 2PC [49, 51] and 3PC [45, 50, 61] used a local truncation method
for approximate truncation based on a result from [51]. Here, the
result can be arbitrarily wrong with a (small) probability 𝑝 and with
probability 1 − 𝑝 the result can be wrong in the last bit. Since 𝑝
grows with the number of truncations, these probabilistic errors
are problematic for large DNNs. Moreover, even if 𝑝 is small, 1-
bit errors can accumulate and the results of cleartext execution
and secure execution can diverge; this is undesirable as it breaks
correctness of 2PC.

5.1.2 Avgpool𝑑 . The function Avgpool𝑑 (𝑎1, · · · , 𝑎𝑑) over a pool
of 𝑑 elements 𝑎1, · · · , 𝑎𝑑 is defined to be the arithmetic mean of
these 𝑑 values. The protocol to compute this function works as
follows: 𝑃0 and 𝑃1 begin with arithmetic shares (e.g. over Z𝐿 in
SCIOT) of 𝑎𝑖 , for all 𝑖 ∈ [𝑑]. They perform local addition to obtain
shares of𝑤 =

∑𝑑
𝑖=1 𝑎𝑖 (i.e., 𝑃𝑏 computes ⟨𝑤⟩𝐿

𝑏
=
∑𝑑
𝑖=1⟨𝑎𝑖 ⟩𝐿𝑏). Then,

parties invoke F ring,𝐿,𝑑
DIV on inputs ⟨𝑤⟩𝐿

𝑏
to obtain the desired output.

Correctness and security follow in the F ring,𝐿,𝑑
DIV −hybrid model.

Here too, unlike [49], our secure execution of average pool is bitwise
equal to the cleartext version.

5.2 Nonlinear Layers

5.2.1 ReLU. Note that ReLU(𝑎) = 𝑎 if 𝑎 ≥ 0, and 0 otherwise.
Equivalently, ReLU(𝑎) = DReLU(𝑎) · 𝑎. For Z𝐿 , first we compute
the boolean shares of DReLU(𝑎) using a call to F int,ℓ

DReLU and then
we compute shares of ReLU(𝑎) using a call to multiplexer F 𝐿MUX
(Section 2.2.3). We describe the protocol for ReLU(𝑎) over Z𝐿 for-
mally in Algorithm 8, Appendix B (the case of Z𝑛 follows in a
similar manner). For communication complexity, refer to Table 2
for comparison with garbled circuits and Appendix B for details.

5.2.2 Maxpool𝑑 andArgmax𝑑 . The functionMaxpool𝑑 (𝑎1, · · · , 𝑎𝑑)
over 𝑑 elements 𝑎1, · · · , 𝑎𝑑 is defined in the following way. Define
gt(𝑥,𝑦) = 𝑧, where𝑤 = 𝑥−𝑦 and 𝑧 = 𝑥 , if𝑤 > 0 and 𝑧 = 𝑦, if𝑤 ≤ 0.
Define 𝑧1 = 𝑎1 and 𝑧𝑖 = gt(𝑎𝑖 , 𝑧𝑖−1), recursively for all 2 ≤ 𝑖 ≤ 𝑑 .
Now, Maxpool𝑑 (𝑎1, · · · , 𝑎𝑑) = 𝑧𝑑 .

We now describe a protocol such that parties begin with arith-
metic shares (over Z𝐿) of 𝑎𝑖 , for all 𝑖 ∈ [𝑑] and end the protocol with
arithmetic shares (over Z𝐿) ofMaxpool𝑑 (𝑎1, · · · , 𝑎𝑑). For simplic-
ity, we describe how 𝑃0 and 𝑃1 can compute shares of 𝑧 = gt(𝑥,𝑦)
(beginning with the shares of 𝑥 and 𝑦). It is easy to see then how

they can compute Maxpool𝑑 . First, parties locally compute shares
of𝑤 = 𝑥 − 𝑦 (i.e., 𝑃𝑏 computes ⟨𝑤⟩𝐿

𝑏
= ⟨𝑥⟩𝐿

𝑏
− ⟨𝑦⟩𝐿

𝑏
, for 𝑏 ∈ {0, 1}).

Next, they invoke F int,ℓ
DReLU with input ⟨𝑤⟩𝐿

𝑏
to learn output ⟨𝑣⟩𝐵

𝑏
.

Now, they invoke F 𝐿MUX with input ⟨𝑤⟩𝐿
𝑏
and ⟨𝑣⟩𝐵

𝑏
to learn output

⟨𝑡⟩𝐿
𝑏
. Finally, parties output ⟨𝑧⟩𝐿

𝑏
= ⟨𝑦⟩𝐿

𝑏
+ ⟨𝑡⟩𝐿

𝑏
. The correctness

and security of the protocol follows in a straightforward manner.
Computing Maxpool𝑑 is done using 𝑑 − 1 invocations of the above
sub-protocol in 𝑑 − 1 sequential steps.

Argmax𝑑 (𝑎1, · · · , 𝑎𝑑) is defined similar toMaxpool𝑑 (𝑎1, · · · , 𝑎𝑑),
except that its output is an index 𝑖∗ s.t. 𝑎𝑖∗ = Maxpool𝑑 (𝑎1, · · · , 𝑎𝑑).
Argmax𝑑 can be computed securely similar toMaxpool𝑑 (𝑎1, · · · , 𝑎𝑑).

6 IMPLEMENTATION

We implement our cryptographic protocols in a library and inte-
grate them into the CrypTFlow framework [1, 45] as a new crypto-
graphic backend. CrypTFlow compiles high-level TensorFlow [3]
inference code to secure computation protocols using its frontend
Athos, that are then executed by its cryptographic backends. We
modify the truncation behavior of Athos in support of faithful fixed-
point arithmetic. We start by describing the implementation of our
cryptographic library, followed by the modifications that we made
to Athos.

6.1 Cryptographic backend

To implement our protocols, we build upon the
(2
1
)
-OTℓ imple-

mentation from EMP [62] and extend it to
(𝑘
1
)
-OTℓ using the proto-

col from [44]. Our linear-layer implementation in SCIHE is based on
SEAL/Delphi [2, 58] and in SCIOT is based on EMP. All our protocol
implementations are multi-threaded.

Oblivious Transfer.

(𝑘
1
)
-OTℓ requires a correlation robust func-

tion to mask the sender’s messages in the OT extension protocol,
and we use AESRK256 (re-keyed AES with 256-bit key)9 to instantiate
it as in [23, 25]. We incorporated the optimizations from [33, 34]
for AES key expansion and pipelining these AESRK256 calls. This leads
to roughly 6× improvement in the performance of AESRK256 calls,
considerably improving the overall execution time of

(𝑘
1
)
-OTℓ (e.g.

2.7× over LAN for
(16
1
)
-OT8).

Millionaires’ protocol. Recall that𝑚 is a parameter in our proto-
col Πℓ,𝑚MILL. While we discussed the dependence of communication
complexity on𝑚 in Section 3.1.2, here we discuss its influence on
the computational cost. Our protocol makes ℓ/𝑚 calls to

(𝑀
1
)
-OT2

(after merging steps 9&10), where 𝑀 = 2𝑚 . Using OT extension
techniques, generating an instance of

(𝑀
1
)
-OT2 requires 6 AESFK256

and (𝑀+1) AESRK256 evaluations. Thus, the computational cost grows
super-polynomially with𝑚. We note that for ℓ = 32, even though
communication is minimized for𝑚 = 7, empirically we observe
that 𝑚 = 4 gives us the best performance under both LAN and
WAN settings (communication in this case is about 30% more than
when𝑚 = 7 but computation is ≈ 3× lower).

9There are two types ofAES inMPC applications - fixed-key (FK) and re-keyed (RK) [10,
35]. While the former runs key schedule only once and is more efficient, the latter
generates a new key schedule for every invocation and is required in this application.

10

Implementing linear layers in SCIHE. To implement the linear
layers in SCIHE, we build upon the Delphi implementation [2, 49],
that is in turn based on the SEAL library [58]. We use the code for
fully connected layers as it is from [2]. For convolution layers, we
parallelize the code, employ modulus-switching [58] to reduce the
ciphertext modulus (and hence ciphertext size), and implement the
strided convolutions proposed in Gazelle [43]. These optimizations
resulted in significant performance improvement of convolution
layers. E.g. for the first convolution layer10 of ResNet50, the runtime
decreased from 306s to 18s in the LAN setting and communication
decreased from 204 MiB to 76 MiB.

6.2 CrypTFlow integration

We integrate SCIOT and SCIHE as new cryptographic backends
into the CrypTFlow framework [1, 45]. CrypTFlow’s TensorFlow
frontend Athos outputs fixed-point DNNs that use 64-bit integers
and sets an optimal scale using a validation set. CrypTFlow required
a bitwidth of 64 to ensure that the probability of local truncation
errors in its protocols is small (Section 5.1.1). Since our protocols
are correct and have no such errors, we extend Athos to set both the
bitwidth and the scale optimally by autotuning on the validation set.
The bitwidth and scale leak information about the weights and this
leakage is similar to the prior works on secure inference [43, 45, 48–
51, 61].

Implementing faithful truncations using Πint,ℓ,𝑠
Trunc requires the par-

ties to communicate. We implement the following peephole op-
timizations in Athos to reduce the cost of these truncation calls.
Consider a DNN having a convolution layer followed by a ReLU
layer. While truncation can be done immediately after the convolu-
tion, moving the truncation call to after the ReLU layer can reduce
the cost of our protocol Πint,ℓ,𝑠

Trunc . Since the values after ReLU are
guaranteed to be all positive, the call to F int,ℓ

DReLU within it (step 2
in Algorithm 5) now becomes redundant and can be omitted. Our
optimization further accounts for operations that may occur be-
tween the convolutions and ReLU, say a matrix addition. Moving
the truncation call from immediately after convolution to after
ReLU means the activations flowing into the addition operation are
now scaled by 2𝑠 , instead of the usual 𝑠 . For the addition operation
to then work correctly, we scale the other argument of addition
by 𝑠 as well. These optimizations are fully automatic and need no
manual intervention.

7 EXPERIMENTS

We empirically validate the following claims:
• In Section 7.1, we show that our protocols for computing
ReLU activations are more efficient than state-of-the-art gar-
bled circuits-based implementations (Table 4). Additionally,
our division protocols outperforms garbled circuits when
computing average pool layers.
• On the DNNs considered by prior work on secure inference,
our protocols can evaluate the non-linear layers much more
efficiently and decrease the total time (Table 5) as well as the
online time (Table 6).

10Layer parameters: image size 230 × 230, filter size 7 × 7, input channels 3, output
channels 64, and stride size 2 × 2

0

5

10

15

20

25

30

35

40

45

50

55

60

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 2 4 6 8 10 12 14 16 18 20

La

ye
rs

 in
 O

ur
 B

en
ch

m
ar

ks

Im
pr

ov
em

en
t o

ve
r G

C

ReLUs (in powers of 2)

need more# Layers

Z2` -LAN

Zn-LAN

Z2` -WAN

Zn-WAN

Figure 1: The left y-axis shows (
GC Time

Our Time
). The right y-axis

shows the total number of ReLU layers corresponding to

each layer size in our benchmark set. The legend entries de-

note the input domain and the network setting.

• We show the first empirical evaluation of 2-party secure
inference on ImageNet-scale benchmarks (Section 7.3). These
results show the trade-offs between OT and HE-based secure
DNN inference (Table 7).

We start with a description of our experimental setup and bench-
marks, followed by the results.

Experimental Setup. We ran our benchmarks in two network
settings, namely, a LAN setting with both machines situated in
West Europe, and a transatlantic WAN setting with one of the
machines in East US. The bandwidth between the machines is 377
MBps and 40 MBps in the LAN and the WAN setting respectively
and the echo latency is 0.3ms and 80ms respectively. Each machine
has commodity class hardware: 3.7 GHz Intel Xeon processor with
4 cores and 16 GBs of RAM.

Our Benchmarks. We evaluate on the ImageNet-scale bench-
marks considered by [45]: SqueezeNet [40], ResNet50 [37], and
DenseNet121 [38]. To match the reported accuracies, we need 37-
bit fixed-point numbers for ResNet50, whereas 32 bits suffice for
DenseNet121 and SqueezeNet (Appendix I). Recall that our division
protocols lead to correct secure executions and there is no accuracy
loss in going from cleartext inference to secure inference. Appen-
dix G provides a brief summary of these benchmarks.

7.1 Comparison with Garbled Circuits

We compare with EMP-toolkit [62], the state-of-the-art library
for Garbled Circuits (GC). Figure 1 shows the improvement of our
ReLU protocols over GC in both LAN and WAN settings. On the x-
axis, which is in log-scale, the number ofReLUs range from 20 to 220.
The histogram shows, using the right y-axis, the cumulative number
of layers in our benchmarks (SqueezeNet, ResNet50, DenseNet121)
which require the number of ReLU activations given on the x-axis.
We observe that these DNNs have layers that compute between 213
and 220 ReLUs. For such layers, we observe (on the left y-axis) that

11

Benchmark Garbled Circuits Our Protocols
LAN WAN Comm LAN WAN Comm

SqueezeNet 26.4 265.6 7.63 3.5 33.3 1.15
ResNet50 136.5 1285.2 39.19 16.4 69.4 5.23

DenseNet121 199.6 1849.3 56.57 24.8 118.7 8.21
(a) over Z2ℓ

Benchmark Garbled Circuits Our Protocols
LAN WAN Comm LAN WAN Comm

SqueezeNet 51.7 525.8 16.06 5.6 50.4 1.77
ResNet50 267.5 2589.7 84.02 28.0 124.0 8.55

DenseNet121 383.5 3686.2 118.98 41.9 256.0 12.64
(b) over Z𝑛

Table 4: Performance comparison with Garbled Circuits for

ReLU layers. Runtimes are in seconds and comm. in GiB.

our protocols are 2×–25× faster than GC – the larger the layers
the higher the speedups, and gains are larger in the WAN settings.
Specifically, for WAN and > 217 ReLUs, the speedups are much
higher than the LAN setting. Here, the cost of rounds is amortized
over large layers and the communication cost is a large fraction
of the total runtime. Note that our implementations perform load-
balancing to leverage full-duplex TCP.

Next, we compare the time taken by GC and our protocols in
computing the ReLU activations of our benchmarks in Table 4. Our
protocol over Z𝐿 is up to 8× and 18× faster than GC in the LAN and
WAN settings respectively, while it is ≈ 7× more communication
efficient. As expected, our protocol over Z𝑛 has even better gains
over GC. Specifically, it is up to 9× and 21× faster in the LAN and
WAN settings respectively, and has ≈ 9× less communication.

We also performed a similar comparison of our protocols with
GC for the Avgpool layers of our benchmarks, and saw up to 51×
reduction in runtime and 41× reduction in communication. We
report the concrete performance numbers and discuss the results
in more detail in Appendix H.

7.2 Comparison with Delphi

In this section, we compare with Delphi [49], which is the cur-
rent state-of-the-art for 2-party secure DNN inference that outper-
forms [12, 13, 17, 19, 22, 31, 43, 48, 56] in total time as well as the
time taken in online phase. It uses garbled circuits for non-linear
layers, and we show that with our protocols, the time taken to
evaluate the non-linear layers can be decreased significantly.

For a fair evaluation, we demonstrate these improvements on the
benchmarks of Delphi [49], i.e., the MiniONN (CIFAR-10) [48] and
ResNet32 (CIFAR-100) DNNs with ReLU activations (as opposed
to the ImageNet-scale benchmarks for which Delphi has not been
optimized). Similar to Delphi, we perform these computations with
a bitwidth of 41 in the LAN setting.

In Table 5, we report the performance of Delphi for evaluating
the linear and non-linear components of MiniONN and ResNet32
separately, along with the performance of our protocols for the
same non-linear computation11. The table shows that the time to
evaluate non-linear layers is the bulk of the total time and our

11Our non-linear time includes the cost of correct truncation.

Benchmark Metric Linear Non-linear
Delphi Ours Improvement

MiniONN
Time 10.7 30.2 1.0 30.2×
Comm. 0.02 3.15 0.28 12.3×

ResNet32
Time 15.9 52.9 2.4 22.0×
Comm. 0.07 5.51 0.59 9.3×

Table 5: Performance comparison with Delphi [49] for non-

linear layers. Runtimes are in seconds and comm. in GiB.

Benchmark Linear Non-linear
Delphi Ours Improvement

MiniONN < 0.1 3.97 0.32 12.40×
ResNet32 < 0.1 6.99 0.63 11.09×

Table 6: Performance comparison with Delphi [49] for on-

line runtime in seconds.

protocols are 20×–30× faster in evaluating the non-linear layers.
Also note that we reduce the communication by 12× on MiniONN,
and require 9× less communication on ResNet32.

Next, we compare the online time of our protocols with the
online time of Delphi in Table 6. In the online phase, linear layers
take negligible time and all the time is spent in evaluating the non-
linear layers. Here, our protocols are an order of magnitude more
efficient than Delphi.

7.3 Evaluation on practical DNNs

With all our protocols and implementation optimizations in
place, we demonstrate the scalability of CrypTFlow2 by efficiently
running ImageNet-scale secure inference. Table 7 shows that both
our backends, SCIOT and SCIHE, are efficient enough to evaluate
SqueezeNet in under aminute and scale toResNet50 andDenseNet121.

In the LAN setting, for both SqueezeNet andDenseNet121, SCIOT
performs better than SCIHE by at least 20% owing to the higher
compute in the latter. However, the quadratic growth of communi-
cation with bitlength in the linear-layers of SCIOT can easily drown
this difference if we go to higher bitlengths. Because ResNet50,
requires 37-bits (compared to 32 in SqueezeNet and DenseNet121)
to preserve accuracy, SCIHE outperforms SCIOT in both LAN and
WAN settings. In general for WAN settings where communication
becomes the major performance bottleneck, SCIHE performs bet-
ter than SCIOT: 2× for SqueezeNet and DenseNet121 and 4× for
ResNet50. Overall, with CrypTFlow2, we could evaluate all the 3
benchmarks within 10 minutes on LAN and 20 minutes on WAN.
Since CrypTFlow2 supports both SCIOT and SCIHE, one can choose
a specific backend depending on the network statistics [17, 53] to
get the best secure inference latency. To the best of our knowledge,
no prior system provides this support for OT and HE-based secure
DNN inference.

8 CONCLUSION AND FUTUREWORK

We have presented secure, efficient, and correct implementations
of practical 2-party DNN inference that outperform prior work [49]
by an order of magnitude in both latency and scale. We evaluate the
first secure implementations of ImageNet scale inference, a task that
previously required 3PC protocols [7, 45] (which provide weaker
security guarantees) or leaking intermediate computations [12]. In

12

Benchmark Protocol LAN WAN Comm

SqueezeNet
SCIOT 44.3 293.6 26.07
SCIHE 59.2 156.6 5.27

ResNet50
SCIOT 619.4 3611.6 370.84
SCIHE 545.8 936.0 32.43

DenseNet121
SCIOT 371.4 2257.7 217.19
SCIHE 463.2 1124.7 35.56

Table 7: Performance of CrypTFlow2 on ImageNet-scale

benchmarks. Runtimes are in seconds and comm. in GiB.

the future, we would like to consider ImageNet scale secure train-
ing. Even though we can run inference on commodity machines,
for training we would need protocols that can leverage specialized
compute and networking hardware. Like all prior work on 2PC for
secure DNN inference, CrypTFlow2 only considers semi-honest
adversaries. In the future, we would like to consider malicious ad-
versaries. Another future direction is to help the server in hiding
𝐹 from the client when computing a classifier 𝐹 (𝑥,𝑤). Like [43],
SCIHE can hide some aspects of 𝐹 : the filter sizes, the strides, and
whether a layer is convolutional or fully connected. Thus, SCIHE
hides more information than OT-based tools [48] but reveals more
information than FHE-based tools [13, 31]. We are exploring ap-
proaches to hide more information about 𝐹 while incurring minimal
overhead.

REFERENCES

[1] 2020. CrypTFlow: An End-to-end System for Secure TensorFlow Inference.
https://github.com/mpc-msri/EzPC.

[2] 2020. Delphi: A Cryptographic Inference Service for Neural Networks. https:
//github.com/mc2-project/delphi.

[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A.
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. CoRR abs/1603.04467 (2016). https://arxiv.org/abs/1603.04467

[4] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J. Kusner, and Adrià Gascón. 2019.
QUOTIENT: Two-Party Secure Neural Network Training and Prediction. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications

Security, CCS 2019, London, UK, November 11-15, 2019. 1231–1247.
[5] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.

More efficient oblivious transfer and extensions for faster secure computation. In
2013 ACM SIGSAC Conference on Computer and Communications Security, CCS’13,

Berlin, Germany, November 4-8, 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung (Eds.). ACM, 535–548. https://doi.org/10.1145/2508859.2516738

[6] Marshall Ball, Brent Carmer, Tal Malkin, Mike Rosulek, and Nichole Schimanski.
2019. Garbled Neural Networks are Practical. IACR Cryptology ePrint Archive

2019 (2019), 338. https://eprint.iacr.org/2019/338
[7] Assi Barak, Daniel Escudero, Anders Dalskov, and Marcel Keller. 2019. Secure

Evaluation of Quantized Neural Networks. Cryptology ePrint Archive, Report
2019/131. https://eprint.iacr.org/2019/131.

[8] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.
In Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings. 420–
432.

[9] Donald Beaver. 1996. Correlated Pseudorandomness and the Complexity of Pri-
vate Computations. In Proceedings of the Twenty-Eighth Annual ACM Symposium

on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996,
Gary L. Miller (Ed.). ACM, 479–488. https://doi.org/10.1145/237814.237996

[10] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. 2013.
Efficient Garbling from a Fixed-Key Blockcipher. In 2013 IEEE Symposium on

Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. IEEE Computer
Society, 478–492. https://doi.org/10.1109/SP.2013.39

[11] G. R. Blakley. 1979. Safeguarding cryptographic keys. In Managing Requirements

Knowledge, International Workshop on. IEEE Computer Society, Los Alamitos, CA,
USA, 313. https://doi.org/10.1109/AFIPS.1979.98

[12] Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir Wierzyn-
ski. 2019. nGraph-HE2: A High-Throughput Framework for Neural Network
Inference on Encrypted Data. In Proceedings of the 7th ACM Workshop on En-

crypted Computing & Applied Homomorphic Cryptography, WAHC@CCS 2019,

London, UK, November 11-15, 2019, Michael Brenner, Tancrède Lepoint, and Kurt
Rohloff (Eds.). ACM, 45–56. https://doi.org/10.1145/3338469.3358944

[13] Fabian Boemer, Yixing Lao, Rosario Cammarota, and Casimir Wierzynski. 2019.
nGraph-HE: A Graph Compiler for Deep Learning on Homomorphically En-
crypted Data. In Proceedings of the 16th ACM International Conference on Com-

puting Frontiers, CF 2019, Alghero, Italy, April 30 - May 2, 2019. 3–13.
[14] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015. Ma-

chine Learning Classification over Encrypted Data. In 22nd Annual Network and

Distributed System Security Symposium, NDSS 2015, San Diego, California, USA,

February 8-11, 2015. The Internet Society. https://www.ndss-symposium.org/
ndss2015/machine-learning-classification-over-encrypted-data

[15] Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus Switch-
ing from Classical GapSVP. In Advances in Cryptology - CRYPTO 2012 - 32nd An-

nual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceed-

ings (Lecture Notes in Computer Science, Vol. 7417), Reihaneh Safavi-Naini and Ran
Canetti (Eds.). Springer, 868–886. https://doi.org/10.1007/978-3-642-32009-5_50

[16] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. 1986. All-or-Nothing
Disclosure of Secrets. In Advances in Cryptology - CRYPTO ’86, Santa Barbara,

California, USA, 1986, Proceedings (Lecture Notes in Computer Science, Vol. 263),
Andrew M. Odlyzko (Ed.). Springer, 234–238. https://doi.org/10.1007/3-540-
47721-7_17

[17] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer, and
Thomas Schneider. 2018. HyCC: Compilation of Hybrid Protocols for Practical
Secure Computation. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October

15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFengWang
(Eds.). ACM, 847–861. https://doi.org/10.1145/3243734.3243786

[18] Ran Canetti. 2000. Security and Composition of Multiparty Cryptographic Proto-
cols. J. Cryptology 13, 1 (2000), 143–202.

[19] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul
Tripathi. 2019. EzPC: Programmable and Efficient Secure Two-Party Computation
for Machine Learning. In IEEE European Symposium on Security and Privacy,

EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019. 496–511.
[20] Valerie Chen, Valerio Pastro, and Mariana Raykova. 2019. Secure Computation

for Machine Learning With SPDZ. CoRR abs/1901.00329 (2019). arXiv:1901.00329
http://arxiv.org/abs/1901.00329

[21] Geoffroy Couteau. 2018. New Protocols for Secure Equality Test and Comparison.
In Applied Cryptography and Network Security - 16th International Conference,

ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings (Lecture Notes in Computer

Science, Vol. 10892), Bart Preneel and Frederik Vercauteren (Eds.). Springer, 303–
320. https://doi.org/10.1007/978-3-319-93387-0_16

[22] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kristin Lauter, Saeed Maleki, Madan
Musuvathi, and Todd Mytkowicz. 2019. CHET: An Optimizing Compiler for
Fully-Homomorphic Neural-Network Inferencing. In Proceedings of the 40th ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI

2019, Phoenix, AZ, USA, June 22-26, 2019. 142–156.
[23] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-

work for Efficient Mixed-Protocol Secure Two-Party Computation. In 22nd An-

nual Network and Distributed System Security Symposium, NDSS 2015, San Diego,

California, USA, February 8-11, 2015.
[24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. 2009. Ima-

geNet: A large-scale hierarchical image database. In 2009 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June

2009, Miami, Florida, USA. 248–255.
[25] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schnei-

der, Shaza Zeitouni, and Michael Zohner. 2017. Pushing the Communi-
cation Barrier in Secure Computation using Lookup Tables. In 24th An-

nual Network and Distributed System Security Symposium, NDSS 2017, San

Diego, California, USA, February 26 - March 1, 2017. The Internet So-
ciety. https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
pushing-communication-barrier-secure-computation-using-lookup-tables/

[26] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.
2020. Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits. In
Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology

Conference.
[27] Shimon Even, Oded Goldreich, and Abraham Lempel. 1985. A Randomized

Protocol for Signing Contracts. Commun. ACM 28, 6 (1985), 637–647. https:
//doi.org/10.1145/3812.3818

[28] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-
momorphic Encryption. Cryptology ePrint Archive, Report 2012/144. http:
//eprint.iacr.org/2012/144.

13

https://github.com/mpc-msri/EzPC
https://github.com/mc2-project/delphi
https://github.com/mc2-project/delphi
https://arxiv.org/abs/1603.04467
https://doi.org/10.1145/2508859.2516738
https://eprint.iacr.org/2019/338
https://eprint.iacr.org/2019/131
https://doi.org/10.1145/237814.237996
https://doi.org/10.1109/SP.2013.39
https://doi.org/10.1109/AFIPS.1979.98
https://doi.org/10.1145/3338469.3358944
https://www.ndss-symposium.org/ndss2015/machine-learning-classification-over-encrypted-data
https://www.ndss-symposium.org/ndss2015/machine-learning-classification-over-encrypted-data
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/3-540-47721-7_17
https://doi.org/10.1007/3-540-47721-7_17
https://doi.org/10.1145/3243734.3243786
https://arxiv.org/abs/1901.00329
http://arxiv.org/abs/1901.00329
https://doi.org/10.1007/978-3-319-93387-0_16
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/pushing-communication-barrier-secure-computation-using-lookup-tables/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/pushing-communication-barrier-secure-computation-using-lookup-tables/
https://doi.org/10.1145/3812.3818
https://doi.org/10.1145/3812.3818
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144

[29] Juan A. Garay, Berry Schoenmakers, and José Villegas. 2007. Practical and
Secure Solutions for Integer Comparison. In Public Key Cryptography - PKC 2007,

10th International Conference on Practice and Theory in Public-Key Cryptography,

Beijing, China, April 16-20, 2007, Proceedings (Lecture Notes in Computer Science,

Vol. 4450), Tatsuaki Okamoto and Xiaoyun Wang (Eds.). Springer, 330–342. https:
//doi.org/10.1007/978-3-540-71677-8_22

[30] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In Pro-

ceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,

Bethesda, MD, USA, May 31 - June 2, 2009, Michael Mitzenmacher (Ed.). ACM,
169–178. https://doi.org/10.1145/1536414.1536440

[31] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael
Naehrig, and John Wernsing. 2016. CryptoNets: Applying Neural Networks
to Encrypted Data with High Throughput and Accuracy. In Proceedings of the

33nd International Conference on Machine Learning, ICML 2016, New York City,

NY, USA, June 19-24, 2016. 201–210.
[32] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any

Mental Game or A Completeness Theorem for Protocols with Honest Majority.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,

New York, New York, USA. 218–229.
[33] Shay Gueron. 2016. AES-GCM-SIV implementations (128 and 256 bit). https:

//github.com/Shay-Gueron/AES-GCM-SIV.
[34] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. 2018. Fast Garbling

of Circuits Under Standard Assumptions. J. Cryptol. 31, 3 (2018). https://doi.org/
10.1007/s00145-017-9271-y

[35] C. Guo, J. Katz, X. Wang, and Y. Yu. 2020. Efficient and Secure Multiparty
Computation from Fixed-Key Block Ciphers. In 2020 IEEE Symposium on Security

and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 247–263. https:
//doi.org/10.1109/SP.2020.00016

[36] Carmit Hazay, Yuval Ishai, Antonio Marcedone, and Muthuramakrishnan Venki-
tasubramaniam. 2019. LevioSA: Lightweight Secure Arithmetic Computation.
In Proceedings of the 2019 ACM Conference on Computer and Communications

Security, CCS 2019, London, UK, November 11-15, 2019. 327–344.
[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. 770–778.
[38] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.

2017. Densely Connected Convolutional Networks. In 2017 IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July

21-26, 2017. 2261–2269.
[39] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. 2016. Binarized Neural Networks. In Advances in Neural Information

Processing Systems 29: Annual Conference on Neural Information Processing Systems

2016, December 5-10, 2016, Barcelona, Spain, Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett (Eds.). 4107–4115.

[40] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size. CoRR abs/1602.07360 (2016). arXiv:1602.07360
http://arxiv.org/abs/1602.07360

[41] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending Oblivious
Transfers Efficiently. In Advances in Cryptology - CRYPTO 2003, 23rd Annual

International Cryptology Conference, Santa Barbara, California, USA, August 17-21,

2003, Proceedings (Lecture Notes in Computer Science, Vol. 2729), Dan Boneh (Ed.).
Springer, 145–161. https://doi.org/10.1007/978-3-540-45146-4_9

[42] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, An-
drew G. Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization
and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference.
In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018,

Salt Lake City, UT, USA, June 18-22, 2018. 2704–2713.
[43] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In
27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA,

August 15-17, 2018. 1651–1669.
[44] Vladimir Kolesnikov and Ranjit Kumaresan. 2013. Improved OT Extension for

Transferring Short Secrets. InAdvances in Cryptology - CRYPTO 2013 - 33rd Annual

Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,

Part II (Lecture Notes in Computer Science, Vol. 8043), Ran Canetti and Juan A.
Garay (Eds.). Springer, 54–70. https://doi.org/10.1007/978-3-642-40084-1_4

[45] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Ras-
togi, and Rahul Sharma. 2020. CrypTFlow: Secure TensorFlow Inference. In 2020

IEEE Symposium on Security and Privacy, S&P 2020, San Francisco, CA, USA, May

18-20, 2020. 1521–1538.
[46] Kim Laine. 2017. Simple Encrypted Arithmetic Library 2.3.1. https://www.

microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf.
[47] Yehuda Lindell. 2016. How To Simulate It - A Tutorial on the Simulation Proof

Technique. Cryptology ePrint Archive, Report 2016/046. https://eprint.iacr.org/
2016/046.

[48] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural Network Pre-
dictions via MiniONN Transformations. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,

October 30 - November 03, 2017. 619–631.
[49] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and

Raluca Ada Popa. 2020. Delphi: A Cryptographic Inference Service for Neural
Networks. In 29th USENIX Security Symposium, USENIX Security 20. Boston, MA.

[50] Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol Framework
for Machine Learning. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October

15-19, 2018. 35–52.
[51] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-Preserving Machine Learning. In 2017 IEEE Symposium on Security and

Privacy, S&P 2017, San Jose, CA, USA, May 22-26, 2017. 19–38.
[52] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. 2019.

Data-Free Quantization Through Weight Equalization and Bias Correction. In
2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,

Korea (South), October 27 - November 2, 2019. IEEE, 1325–1334.
[53] Erman Pattuk, Murat Kantarcioglu, Huseyin Ulusoy, and Bradley A. Malin. 2016.

CheapSMC: A Framework to Minimize Secure Multiparty Computation Cost
in the Cloud. In Data and Applications Security and Privacy XXX - 30th Annual

IFIP WG 11.3 Conference, DBSec 2016, Trento, Italy, July 18-20, 2016. Proceedings

(Lecture Notes in Computer Science, Vol. 9766), Silvio Ranise and Vipin Swarup
(Eds.). Springer, 285–294.

[54] Michael O. Rabin. 1981. How to exchange secrets with oblivious transfer.
Technical Report TR-81, Aiken Computation Lab, Harvard University. https:
//eprint.iacr.org/2005/187.pdf.

[55] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E. Lauter,
and Farinaz Koushanfar. 2019. XONN: XNOR-based Oblivious Deep Neural
Network Inference. In 28th USENIX Security Symposium, USENIX Security 2019,

Santa Clara, CA, USA, August 14-16, 2019. 1501–1518.
[56] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,

Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A Hybrid Secure
Computation Framework for Machine Learning Applications. In Proceedings of

the 2018 on Asia Conference on Computer and Communications Security, AsiaCCS

2018, Incheon, Republic of Korea, June 04-08, 2018. 707–721. https://doi.org/10.
1145/3196494.3196522

[57] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. 2018. Deepsecure:
scalable provably-secure deep learning. In Proceedings of the 55th Annual Design

Automation Conference, DAC 2018, San Francisco, CA, USA, June 24-29, 2018. ACM,
2:1–2:6.

[58] SEAL 2019. Microsoft SEAL (release 3.3). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA.

[59] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979), 612–613.
https://doi.org/10.1145/359168.359176

[60] N.P. Smart and F. Vercauteren. 2011. Fully Homomorphic SIMD Operations.
Cryptology ePrint Archive, Report 2011/133. http://eprint.iacr.org/2011/133.

[61] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN: 3-Party
Secure Computation for Neural Network Training. PoPETs 2019, 3 (2019), 26–49.

[62] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient
MultiParty computation toolkit. https://github.com/emp-toolkit.

[63] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended
Abstract). In 27th Annual Symposium on Foundations of Computer Science, Toronto,

Canada, 27-29 October 1986. IEEE Computer Society, 162–167. https://doi.org/10.
1109/SFCS.1986.25

[64] Wenting Zheng, Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica. 2019.
Helen: Maliciously Secure Coopetitive Learning for Linear Models. In 2019 IEEE

Symposium on Security and Privacy, S&P 2019, San Francisco, CA, USA, May 19-23,

2019. 724–738.
[65] Xiaoyong Zhu, George Iordanescu, Ilia Karmanov, and Mazen Zawaideh.

2018. https://blogs.technet.microsoft.com/machinelearning/2018/03/07/using-
microsoft-ai-to-build-a-lung-disease-prediction-model-using-chest-x-ray-
images/

A SUPPORTING PROTOCOLS

Here, we describe supporting protocols that our main protocols
rely on.

A.1 Protocol for regular FAND
Regular FAND can be realized using bit-triples [8], which are

of the form (⟨𝑑⟩𝐵
𝑏
, ⟨𝑒⟩𝐵

𝑏
, ⟨𝑓 ⟩𝐵

𝑏
), where 𝑏 ∈ {0, 1} and 𝑑 ∧ 𝑒 = 𝑓 .

Using an instance of
(16
1
)
-OT2, the parties can generate two bit-

triples [25]. We describe this protocol for generating the first triple,
and from there, it will be easy to see how to also get the second

14

https://doi.org/10.1007/978-3-540-71677-8_22
https://doi.org/10.1007/978-3-540-71677-8_22
https://doi.org/10.1145/1536414.1536440
https://github.com/Shay-Gueron/AES-GCM-SIV
https://github.com/Shay-Gueron/AES-GCM-SIV
https://doi.org/10.1007/s00145-017-9271-y
https://doi.org/10.1007/s00145-017-9271-y
https://doi.org/10.1109/SP.2020.00016
https://doi.org/10.1109/SP.2020.00016
https://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-40084-1_4
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2005/187.pdf
https://eprint.iacr.org/2005/187.pdf
https://doi.org/10.1145/3196494.3196522
https://doi.org/10.1145/3196494.3196522
https://github.com/Microsoft/SEAL
https://doi.org/10.1145/359168.359176
http://eprint.iacr.org/2011/133
https://github.com/emp-toolkit
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://blogs.technet.microsoft.com/machinelearning/2018/03/07/using-microsoft-ai-to-build-a-lung-disease-prediction-model-using-chest-x-ray-images/
https://blogs.technet.microsoft.com/machinelearning/2018/03/07/using-microsoft-ai-to-build-a-lung-disease-prediction-model-using-chest-x-ray-images/
https://blogs.technet.microsoft.com/machinelearning/2018/03/07/using-microsoft-ai-to-build-a-lung-disease-prediction-model-using-chest-x-ray-images/

Algorithm 6Multiplexer, Π𝑛MUX:

Input: For 𝑏 ∈ {0, 1}, 𝑃𝑏 holds ⟨𝑎⟩𝑛
𝑏
and ⟨𝑐⟩𝐵

𝑏
.

Output: For 𝑏 ∈ {0, 1}, 𝑃𝑏 learns ⟨𝑧⟩𝑛
𝑏
s.t. 𝑧 = 𝑎 if 𝑐 = 1, else 𝑧 = 0.

1: For 𝑏 ∈ {0, 1}, 𝑃𝑏 picks 𝑟𝑏
$← Z𝑛 .

2: 𝑃0 sets 𝑠0, 𝑠1 as follows: If ⟨𝑐⟩𝐵0 = 0, (𝑠0, 𝑠1) = (−𝑟0,−𝑟0 + ⟨𝑎⟩𝑛0).
Else, (𝑠0, 𝑠1) = (−𝑟0 + ⟨𝑎⟩𝑛0 ,−𝑟0).

3: 𝑃0 & 𝑃1 invoke an instance of
(2
1
)
-OT𝜂 where 𝑃0 is the sender

with inputs (𝑠0, 𝑠1) and 𝑃1 is the receiver with input ⟨𝑐⟩𝐵1 . Let
𝑃1’s output be 𝑥1.

4: 𝑃1 sets 𝑡0, 𝑡1 as follows: If ⟨𝑐⟩𝐵1 = 0, (𝑡0, 𝑡1) = (−𝑟1,−𝑟1 + ⟨𝑎⟩𝑛1).
Else, (𝑡0, 𝑡1) = (−𝑟1 + ⟨𝑎⟩𝑛1 ,−𝑟1).

5: 𝑃0 & 𝑃1 invoke an instance of
(2
1
)
-OT𝜂 where 𝑃1 is the sender

with inputs (𝑡0, 𝑡1) and 𝑃0 is the receiver with input ⟨𝑐⟩𝐵0 . Let
𝑃0’s output be 𝑥0.

6: For 𝑏 ∈ {0, 1}, 𝑃𝑏 outputs ⟨𝑧⟩𝑛
𝑏
= 𝑟𝑏 + 𝑥𝑏 .

triple using the same OT instance. The parties start by sampling
random shares ⟨𝑑⟩𝐵

𝑏
, ⟨𝑒⟩𝐵

𝑏

$← {0, 1} for 𝑏 ∈ {0, 1}. 𝑃1 sets the first
two bits of its input to

(16
1
)
-OT2 as ⟨𝑑⟩𝐵1 | |⟨𝑒⟩

𝐵
1 , while the other two

bits are used for the second triple. 𝑃0 samples a random bit 𝑟 and
sets its input messages to

(16
1
)
-OT2 as follows: for the 𝑖-th message,

where 𝑖 ∈ {0, 1}4, 𝑃0 uses the first two bits 𝑖1 | |𝑖2 of 𝑖 to compute
𝑟⊕((𝑖1⊕⟨𝑑⟩𝐵0)∧(𝑖2⊕⟨𝑒⟩

𝐵
0)), and sets it as the first bit of themessage,

while reserving the second bit for the other triple. Finally, 𝑃0 sets
⟨𝑓 ⟩𝐵0 = 𝑟 , and 𝑃1 sets the first bit of the output of

(16
1
)
-OT2 as ⟨𝑓 ⟩𝐵1 .

It is easy to see correctness by noting that ⟨𝑓 ⟩𝐵1 = ⟨𝑓 ⟩𝐵0 ⊕ (𝑑 ∧ 𝑒),
and since ⟨𝑓 ⟩𝐵0 is uniformly random, security follows directly in
the

(16
1
)
-OT2-hybrid.

The communication of this protocol is the same as that of
(16
1
)
-OT2,

which is 2𝜆 + 16 · 2 bits. Since we generate two bit-triples using this
protocol, the amortized cost per triple is 𝜆 + 16 bits, which is 144
for 𝜆 = 128.

A.2 Protocol for correlated FAND
Correlated triples are two sets of bit triples (⟨𝑑⟩𝐵

𝑏
, ⟨𝑒⟩𝐵

𝑏
, ⟨𝑓 ⟩𝐵

𝑏
)

and (⟨𝑑 ′⟩𝐵
𝑏
, ⟨𝑒 ′⟩𝐵

𝑏
, ⟨𝑓 ′⟩𝐵

𝑏
), for 𝑏 ∈ {0, 1}, such that 𝑒 = 𝑒 ′, 𝑑 ∧ 𝑒 = 𝑓 ,

and 𝑑 ′ ∧ 𝑒 ′ = 𝑓 ′. The protocol from Appendix A.1 required a(16
1
)
-OT2 invocation to generate two regular triples, where the 4

bits of 𝑃1’s input were its shares of 𝑑, 𝑒, 𝑑 ′, and 𝑒 ′. However, when
generating correlated triples, we can instead use an instance of(8
1
)
-OT2 because 𝑒 = 𝑒 ′, and thus, 3 bits suffice to represent 𝑃1’s

input. Correctness and security follow in a similar way as in the
case of regular FAND (see Appendix A.1).

The communication of this protocol is equal to that of
(8
1
)
-OT2,

which costs 2𝜆+8 ·2 bits. Thus, we get an amortized communication
of 𝜆 + 8 bits per correlated triple.

A.3 Protocol for Multiplexer

We describe our protocol for realizing F𝑛MUX in Algorithm 6.
First we argue correctness. Let 𝑐 = Reconst𝐵 (⟨𝑐⟩𝐵0 , ⟨𝑐⟩

𝐵
1) =

⟨𝑐⟩𝐵0 ⊕ ⟨𝑐⟩
𝐵
1 . By correctness of

(2
1
)
-OT𝜂 , 𝑥1 = −𝑟0+𝑐 · ⟨𝑎⟩𝑛0 . Similarly,

𝑥0 = −𝑟1 + 𝑐 · ⟨𝑎⟩𝑛1 . Hence, Reconst
𝑛 (⟨𝑧⟩𝑛0 , ⟨𝑧⟩

𝑛
1) = 𝑧0 + 𝑧1 = 𝑐 · 𝑎.

Algorithm 7 Boolean to Arithmetic, Π𝑛B2A:

Input: 𝑃0, 𝑃1 hold ⟨𝑐⟩𝐵0 and ⟨𝑐⟩𝐵1 , respectively, where 𝑐 ∈ {0, 1}.
Output: 𝑃0, 𝑃1 learn ⟨𝑑⟩𝑛0 and ⟨𝑑⟩𝑛1 , respectively, s.t. 𝑑 = 𝑐 .

1: 𝑃0 & 𝑃1 invoke an instance of
(2
1
)
-COT𝜂 where 𝑃0 is the sender

with correlation function 𝑓 (𝑥) = 𝑥 + ⟨𝑐⟩𝐵0 and 𝑃1 is the receiver
with input ⟨𝑐⟩𝐵1 . Party 𝑃0 learns 𝑥 and sets 𝑦0 = 𝑛 − 𝑥 and 𝑃1
learns 𝑦1.

2: For 𝑏 ∈ {0, 1}, 𝑃𝑏 computes ⟨𝑑⟩𝑛
𝑏
= ⟨𝑐⟩𝐵

𝑏
− 2 · 𝑦𝑏 .

Algorithm 8 ℓ-bit integer ReLU, Πint,ℓ
ReLU:

Input: 𝑃0, 𝑃1 hold ⟨𝑎⟩𝐿0 and ⟨𝑎⟩𝐿1 , respectively.
Output: 𝑃0, 𝑃1 get ⟨ReLU(𝑎)⟩𝐿0 and ⟨ReLU(𝑎)⟩𝐿1 .

1: For 𝑏 ∈ {0, 1}, 𝑃𝑏 invokes F int,ℓ
DReLU with input ⟨𝑎⟩𝐿

𝑏
to learn

output ⟨𝑦⟩𝐵
𝑏
.

2: For 𝑏 ∈ {0, 1}, 𝑃𝑏 invokes F 𝐿MUX with inputs ⟨𝑎⟩𝐿
𝑏
and ⟨𝑦⟩𝐵

𝑏
to

learn ⟨𝑧⟩𝐿
𝑏
and sets ⟨ReLU(𝑎)⟩𝐿

𝑏
= ⟨𝑧⟩𝐿

𝑏
.

Security trivially follows in
(2
1
)
-OT𝜂 -hybrid. Communication com-

plexity is 2(𝜆 + 2𝜂).

A.4 Protocol for B2A

We describe our protocol for realizing F𝑛B2A formally in Algo-
rithm 7. For correctness, we need to show that𝑑 = Reconst𝐿 (⟨𝑑⟩𝑛0 , ⟨𝑑⟩

𝑛
1)

= ⟨𝑐⟩𝐵0 + ⟨𝑐⟩
𝐵
1 − 2⟨𝑐⟩

𝐵
0 ⟨𝑐⟩

𝐵
1 . By correctness of

(2
1
)
-COT𝜂 , 𝑦1 = 𝑥 +

⟨𝑐⟩𝐵0 ⟨𝑐⟩
𝐵
1 . Using this, ⟨𝑑⟩𝑛0 = ⟨𝑐⟩𝐵0 + 2𝑥 and ⟨𝑑⟩𝑛1 = ⟨𝑐⟩𝐵1 − 2𝑥 −

2⟨𝑐⟩𝐵0 ⟨𝑐⟩
𝐵
1 . Security follows from the security of

(2
1
)
-COT𝜂 and com-

munication required is 𝜆 + 𝜂 bits.

B PROTOCOL FOR ReLU
We describe our ReLU protocol for the case where the input and

output shares are over Z𝐿 in Algorithm 8, and note that the case
of Z𝑛 follows similarly. It is easy to see that the correctness and
security of the protocol follow in the (F int,ℓ

DReLU, F
𝐿
MUX)−hybrid.

Communication complexity.Wefirst look at the complexity ofΠint,ℓ
ReLU,

which involves a call to F int,ℓ
DReLU and F 𝐿MUX. F

int,ℓ
DReLU has the same

communication as F ℓ−1MILL, which requires 𝜆(ℓ − 1) + 13 12 (ℓ − 1) −
2𝜆 − 22 bits if we assume 𝑚 = 4 and 𝑚 | (ℓ − 1), and exclude
optimization (3.1.1) in the general expression from Section 3.1.2.
F 𝐿MUX incurs a cost of 2𝜆 + 4ℓ bits, bringing the total cost to 𝜆ℓ +
17 12 ℓ − 𝜆 − 35

1
2 bits, which can be rewritten as < 𝜆ℓ + 18ℓ . We get

our best communication for ℓ = 32 (with all the optimizations) by
taking𝑚 = 7 for the Π31

MILL invocation inside Πint,32
DReLU, which gives

us a total communication of 3298 bits.
Now, we look at the complexity of Πring,𝑛

ReLU , which makes calls to
F ring,𝑛
DReLU and F𝑛MUX. The cost of F

ring,𝑛
DReLU is 2𝜆+4 bits for

(4
1
)
-OT1, plus

3
2𝜆(𝜂 +1) +27(𝜂 +1) −4𝜆−44 bits for 2 invocations of F

𝜂+1
MILL, where

𝑃1’s input is the same in both invocations and the same assumptions
are made as for the expression of F ℓ−1MILL above. The cost of F

𝑛
MUX is

2𝜆 + 4𝜂 bits, and thus, the total cost is 3
2𝜆(𝜂 + 1) + 31𝜂 − 13, which

15

1{𝑎0 ≥ 𝑛′} 1{𝑎1 ≥ 𝑛′} 1{𝑎𝑢 ≥ 𝑛′} 𝑤 𝑐1 𝑐0

1 0 0 0 0 0 𝐴′0
2 0 0 1 0 -1 𝐴′1
3 0 1 0 1 0 𝐴′1
4 0 1 1 0 0 𝐴′1
5 1 0 0 1 0 𝐴′1
6 1 0 1 0 0 𝐴′1
7 1 1 0 1 1 𝐴′1
8 1 1 1 1 0 𝐴′2

Table 8: Truth table for the correction terms 𝑐0 and 𝑐1 in the

proof of division theorem (Appendix C).

can be rewritten as < 3
2𝜆(𝜂 + 1) + 31𝜂. Concretely, we get the best

communication for 𝜂 = 32 by taking 𝑚 = 7 for the millionaire
invocations, getting a total communication of 5288 bits.

C PROOF OF DIVISION THEOREM

Here, we prove Theorem 4.1.

Proof. From Equation 2, we can write rdiv(⟨𝑎⟩𝑛
𝑖
, 𝑑) as:

rdiv(⟨𝑎⟩𝑛𝑖 , 𝑑) =𝑛 idiv(𝑎𝑖 − 1{𝑎𝑖 ≥ 𝑛′} · 𝑛,𝑑)
=𝑛 idiv(𝑎1𝑖 · 𝑑 + 𝑎

0
𝑖 − 1{𝑎𝑖 ≥ 𝑛

′} · (𝑛1 · 𝑑 + 𝑛0), 𝑑)
=𝑛 𝑎

1
𝑖 − 1{𝑎𝑖 ≥ 𝑛

′} · 𝑛1 + idiv(𝑎0𝑖 − 1{𝑎𝑖 ≥ 𝑛
′} · 𝑛0, 𝑑),

(3)

for 𝑖 ∈ {0, 1}. 𝑎𝑢 can be expressed as 𝑎𝑢 = 𝑎0 + 𝑎1 −𝑤 · 𝑛, where
the wrap-bit𝑤 = 1{𝑎0 + 𝑎1 ≥ 𝑛}. We can rewrite this as:

𝑎𝑢 = 𝑎0 + 𝑎1 −𝑤 · 𝑛
= (𝑎10 + 𝑎

1
1 −𝑤 · 𝑛

1) · 𝑑 + (𝑎00 + 𝑎
0
1 −𝑤 · 𝑛

0)
= (𝑎10 + 𝑎

1
1 −𝑤 · 𝑛

1 + 𝑘) · 𝑑 + (𝑎00 + 𝑎
0
1 −𝑤 · 𝑛

0 − 𝑘 · 𝑑), (4)

for some integer 𝑘 such that 0 ≤ 𝑎00 +𝑎
0
1 −𝑤 ·𝑛

0 −𝑘 ·𝑑 < 𝑑 . Similar
to Equation 3 and from Equation 4, we can write rdiv(𝑎, 𝑑) as:

rdiv(𝑎, 𝑑) =𝑛 𝑎10 + 𝑎
1
1 −𝑤 · 𝑛

1 + 𝑘 − 1{𝑎 ≥ 𝑛′} · 𝑛1

+ idiv(𝑎00 + 𝑎
0
1 −𝑤 · 𝑛

0 − 𝑘 · 𝑑 − 1{𝑎 ≥ 𝑛′} · 𝑛0, 𝑑)
=𝑛 𝑎

1
0 + 𝑎

1
1 −𝑤 · 𝑛

1 − 1{𝑎 ≥ 𝑛′} · 𝑛1

+ idiv(𝑎00 + 𝑎
0
1 −𝑤 · 𝑛

0 − 1{𝑎 ≥ 𝑛′} · 𝑛0, 𝑑). (5)

From Equations 3 and 5, we have the following correction term:

𝑐 =𝑛 rdiv(𝑎, 𝑑) − rdiv(⟨𝑎⟩𝑛0 , 𝑑) − rdiv(⟨𝑎⟩
𝑛
1 , 𝑑)

=𝑛
(
1{𝑎0 ≥ 𝑛′} + 1{𝑎1 ≥ 𝑛′} −𝑤 − 1{𝑎 ≥ 𝑛′}

)
· 𝑛1

+ idiv(𝑎00 + 𝑎
0
1 −𝑤 · 𝑛

0 − 1{𝑎 ≥ 𝑛′} · 𝑛0, 𝑑) (6)

−
(
idiv(𝑎00 − 1{𝑎0 ≥ 𝑛

′} · 𝑛0, 𝑑) + idiv(𝑎01 − 1{𝑎1 ≥ 𝑛
′} · 𝑛0, 𝑑)

)
=𝑛 𝑐

1 · 𝑛1 + 𝑐0 − 𝐵 (7)

Let 𝐴′
𝑖
= idiv(𝑎00 + 𝑎

0
1 − 𝑖 · 𝑛

0, 𝑑). Then the values of the correction
terms 𝑐1 and 𝑐0 are as summarized in Table 8.

From the table, we have 𝑐1 = corr and can rewrite the correction
term as 𝑐 =𝑛 corr · 𝑛1 + 𝑐0 − 𝐵. Thus, adding corr · 𝑛1 − 𝐵 mod 𝑛 to
rdiv(⟨𝑎⟩𝑛0 , 𝑑) + rdiv(⟨𝑎⟩

𝑛
1 , 𝑑) accounts for all the correction terms

except 𝑐0 mod 𝑛.

Now all that remains to be proven is that 𝑐0 = 1 − 𝐶 . Let
𝐶0 = 1{𝐴 < 𝑑}, 𝐶1 = 1{𝐴 < 0}, and 𝐶2 = 1{𝐴 < −𝑑}. Then,
we have 𝐶 = 𝐶0 +𝐶1 +𝐶2. Note from the theorem statement that
𝐴 = 𝑎00 + 𝑎

0
1 and 𝐴 = 𝑎00 + 𝑎

0
1 − 2 · 𝑛

0 for the cases corresponding to
rows 1 and 8 respectively from the table, while 𝐴 = 𝑎00 + 𝑎

0
1 −𝑛

0 for
the rest of cases. Thus, it is easy to see that 𝑐0 = idiv(𝐴,𝑑). Also
note that −2 · 𝑑 + 2 ≤ 𝐴 ≤ 2 · 𝑑 − 2, implying that the range of 𝑐0 is
{−2,−1, 0, 1}. Now we look at each value assumed by 𝑐0 separately
as follows:

• 𝑐0 = −2: In this case, we have (𝐴 < −𝑑), implying𝐶0 = 𝐶1 =
𝐶2 = 1, and 1 −𝐶 = −2.
• 𝑐0 = −1: In this case, we have (−𝑑 ≤ 𝐴 < 0), implying
𝐶0 = 𝐶1 = 1,𝐶2 = 0 and 1 −𝐶 = −1.
• 𝑐0 = 0: In this case, we have (0 ≤ 𝐴 < 𝑑), implying 𝐶0 =

1,𝐶1 = 𝐶2 = 0 and 1 −𝐶 = 0.
• 𝑐0 = 1: In this case, we have (𝑑 ≤ 𝐴), implying 𝐶0 = 𝐶1 =

𝐶2 = 0 and 1 −𝐶 = 1.

Thus, 𝑐 =𝑛 corr · 𝑛1 + (1 − 𝐶) − 𝐵 =𝑛 rdiv(𝑎, 𝑑) − rdiv(⟨𝑎⟩𝑛0 , 𝑑) −
rdiv(⟨𝑎⟩𝑛1 , 𝑑). □

D PROTOCOL FOR GENERAL DIVISION

We describe our protocol for general division formally in Al-
gorithm 9. As discussed in Section 4.2.2, our protocol builds on
Theorem 4.1 and we compute the various sub-terms securely us-
ing our new protocols. Let 𝛿 = ⌈log 6𝑑⌉. We compute the shares
of corr over both Z𝑛 and ZΔ (Step 15). We write the term 𝐶 as
(DReLU(𝐴 − 𝑑) ⊕ 1) + (DReLU(𝐴) ⊕ 1) + (DReLU(𝐴 + 𝑑) ⊕ 1),
which can be computed using three calls to F int,𝛿

DReLU (Step 19) and
F𝑛B2A (Step 20) each.

Correctness and Security. First,𝑚 = Reconst𝐵 (⟨𝑚⟩𝐵0 , ⟨𝑚⟩
𝐵
1) =

Reconst𝐵 (⟨𝛼⟩𝐵0 , ⟨𝛼⟩
𝐵
1) = 1{𝑎 ≥ 𝑛′}. Next, similar to Algorithm 5,

Reconst𝐿 (⟨corr⟩𝐿0 , ⟨corr⟩
𝐿
1) = corr = ReconstΔ (⟨corr⟩Δ0 , ⟨corr⟩

Δ
1),

where corr is as defined in Theorem 4.1. Given the bounds on
value of 𝐴 (as discussed above), it easy to see that Steps 16&17
compute arithmetic shares of 𝐴, and 𝐴0 = (𝐴 − 𝑑), 𝐴1 = 𝐴,𝐴2 =

(𝐴 + 𝑑), respectively. Now, invocation of F int,𝛿
DReLU on shares of 𝐴 𝑗

(Step 19) returns boolean shares of 𝛾 = (1 ⊕MSB(𝐴 𝑗)) over 𝛿 bit
integers, which is same as 1 ⊕ 1{𝐴 𝑗 < 0} over Z. Hence, 𝐶 ′

𝑗
=

Reconst𝐵 (⟨𝐶 ′
𝑗
⟩𝐵0 , ⟨𝐶

′⟩𝐵1) = 1{𝐴 𝑗 < 0}. By correctness of F𝑛B2A,
step 22 computes arithmetic shares of 𝐶 as defined in Theorem 4.1.
In step 23, 𝐵0 + 𝐵1 =𝑛 𝐵 as defined. Hence, correctness holds and
⟨𝑧⟩𝑛

𝑏
are shares of rdiv(𝑎, 𝑑).

Given that ⟨corr⟩𝑛0 and ⟨corr⟩Δ0 are uniformly random, security
of the protocol is easy to see in (

(4
1
)
-OT𝜂+𝛿 , F int,𝛿

DReLU, F
𝑛
B2A)-hybrid.

Communication complexity.Π
ring,𝑛,𝑑
DIV involves a single call toF ring,𝑛

DReLU
and

(4
1
)
-OT𝜂+𝛿 , and three calls each to F int,𝛿

DReLU and F𝑛B2A. From
Appendix B, we have the cost of F ring,𝑛

DReLU as 3
2𝜆𝜂 + 27𝜂 −

𝜆
2 − 13

bits.
(4
1
)
-OT𝜂+𝛿 and 3 × F𝑛B2A cost 2𝜆 + 4 · (𝜂 + 𝛿) and 3𝜆 + 3𝜂 bits

respectively. Since the cost of F int,ℓ
DReLU is 𝜆ℓ + 13 12 ℓ − 3𝜆 − 35

1
2 bits

(see Appendix B), 3 × F int,𝛿
DReLU requires 3𝜆𝛿 + 40 12𝛿 − 9𝜆 − 106

1
2 bits

16

Algorithm 9 Integer ring division, Πring,𝑛,𝑑
DIV :

Input: For 𝑏 ∈ {0, 1}, 𝑃𝑏 holds ⟨𝑎⟩𝑛
𝑏
, where 𝑎 ∈ Z𝑛 .

Output: For 𝑏 ∈ {0, 1}, 𝑃𝑏 learns ⟨𝑧⟩𝑛
𝑏
s.t. 𝑧 = rdiv(𝑎, 𝑑).

1: For 𝑏 ∈ {0, 1}, let 𝑎𝑏 , 𝑎0𝑏 , 𝑎
1
𝑏
∈ Z and 𝑛0, 𝑛1, 𝑛′ ∈ Z be as defined

in Theorem 4.1. Let 𝜂 = ⌈log(𝑛)⌉, 𝛿 = ⌈log 6𝑑⌉, and Δ = 2𝛿 .
2: For 𝑏 ∈ {0, 1}, 𝑃𝑏 invokes F ring,𝑛

DReLU with input ⟨𝑎⟩𝑛
𝑏
to learn

output ⟨𝛼⟩𝐵
𝑏
. Party 𝑃𝑏 sets ⟨𝑚⟩𝐵

𝑏
= ⟨𝛼⟩𝐵

𝑏
⊕ 𝑏.

3: For 𝑏 ∈ {0, 1}, 𝑃𝑏 sets 𝑥𝑏 = 1{⟨𝑎⟩𝑛
𝑏
≥ 𝑛′}.

4: 𝑃0 samples ⟨corr⟩𝑛0
$← Z𝑛 and ⟨corr⟩Δ0

$← ZΔ.
5: for 𝑗 = {00, 01, 10, 11} do
6: 𝑃0 computes 𝑡 𝑗 = (⟨𝑚⟩𝐵0 ⊕ 𝑗0 ⊕ 𝑥0) ∧ (⟨𝑚⟩

𝐵
0 ⊕ 𝑗0 ⊕ 𝑗1) s.t.

𝑗 = (𝑗0 | | 𝑗1).
7: if 𝑡 𝑗 ∧ 1{𝑥0 = 0} then
8: 𝑃0 sets 𝑠 𝑗 =𝑛 −⟨corr⟩𝑛0 − 1 and 𝑟 𝑗 =Δ −⟨corr⟩

Δ
0 − 1.

9: else if 𝑡 𝑗 ∧ 1{𝑥0 = 1} then
10: 𝑃0 sets 𝑠 𝑗 =𝑛 −⟨corr⟩𝑛0 + 1 and 𝑟 𝑗 =Δ −⟨corr⟩

Δ
0 + 1.

11: else

12: 𝑃0 sets 𝑠 𝑗 =𝑛 −⟨corr⟩𝑛0 and 𝑟 𝑗 =Δ −⟨corr⟩Δ0 .
13: end if

14: end for

15: 𝑃0 & 𝑃1 invoke an instance of
(4
1
)
-OT𝜂+𝛿 where 𝑃0 is the sender

with inputs {𝑠 𝑗 | |𝑟 𝑗 } 𝑗 and 𝑃1 is the receiver with input ⟨𝑚⟩𝐵1 | |𝑥1.
𝑃1 sets its output as ⟨corr⟩𝑛1 | |⟨corr⟩

Δ
1 .

16: For 𝑏 ∈ {0, 1}, 𝑃𝑏 sets ⟨𝐴⟩Δ
𝑏
=Δ 𝑎

0
𝑏
− (𝑥𝑏 − ⟨corr⟩Δ𝑏) · 𝑛

0.
17: For 𝑏 ∈ {0, 1}, 𝑃𝑏 sets ⟨𝐴0⟩Δ𝑏 =Δ ⟨𝐴⟩Δ𝑏 − 𝑏 · 𝑑 , ⟨𝐴1⟩Δ𝑏 = ⟨𝐴⟩Δ

𝑏
,

and ⟨𝐴2⟩Δ𝑏 =Δ ⟨𝐴⟩Δ𝑏 + 𝑏 · 𝑑 .
18: for 𝑗 = {0, 1, 2} do
19: For𝑏 ∈ {0, 1}, 𝑃𝑏 invokes F int,𝛿

DReLU with input ⟨𝐴 𝑗 ⟩Δ𝑏 to learn
output ⟨𝛾 𝑗 ⟩𝐵𝑏 . Party 𝑃𝑏 sets ⟨𝐶 ′

𝑗
⟩𝐵
𝑏
= ⟨𝛾 𝑗 ⟩𝐵𝑏 ⊕ 𝑏.

20: For 𝑏 ∈ {0, 1}, 𝑃𝑏 invokes an instance of F𝑛B2A with input
⟨𝐶 ′
𝑗
⟩𝐵
𝑏
and learns ⟨𝐶 𝑗 ⟩𝑛𝑏 .

21: end for

22: For 𝑏 ∈ {0, 1}, 𝑃𝑏 sets ⟨𝐶⟩𝑛
𝑏
= ⟨𝐶0⟩𝑛𝑏 + ⟨𝐶1⟩

𝑛
𝑏
+ ⟨𝐶2⟩𝑛𝑏 .

23: For 𝑏 ∈ {0, 1}, 𝑃𝑏 sets 𝐵𝑏 = idiv(𝑎0
𝑏
− 𝑥𝑏 · 𝑛0, 𝑑).

24: 𝑃𝑏 sets ⟨𝑧⟩𝑛
𝑏
=𝑛 rdiv(⟨𝑎⟩𝑛

𝑏
, 𝑑) + ⟨corr⟩𝑛

𝑏
· 𝑛1 +𝑏 − ⟨𝐶⟩𝑛

𝑏
− 𝐵𝑏 , for

𝑏 ∈ {0, 1}.

of communication. Thus, the overall communication of Πring,𝑛,𝑑
DIV is

3
2𝜆𝜂 + 34𝜂 + 3𝜆𝛿 + 44

1
2𝛿 − 4

1
2𝜆 − 119

1
2 , which can be rewritten as

< (32𝜆+34) · (𝜂+2𝛿). Concretely, we get the best communication for
Π
ring,𝑛,49
DIV (𝜂 = 32) by setting𝑚 = 7 in all our millionaire invocations,

which results in a total communication of 7796 bits.
Note that for the case of ℓ-bit integers, our division protocol

would require a call to F int,ℓ
DReLU and

(4
1
)
-OTℓ+𝛿 , and three calls each

to F int,𝛿
DReLU and F 𝐿B2A. The cost of F int,ℓ

DReLU and 3 × F int,𝛿
DReLU are as

mentioned in the previous paragraph, and the cost of
(4
1
)
-OTℓ+𝛿

and F 𝐿B2A are 2𝜆 + 4 · (ℓ + 𝛿) and 3𝜆 + 3ℓ bits respectively. Thus, the
overall communication is 𝜆ℓ + 3𝜆𝛿 + 20 12 ℓ + 44

1
2𝛿 − 7𝜆 − 142 bits,

which can be rewritten as < (𝜆 + 21) · (ℓ + 3𝛿). By setting𝑚 = 8 in

all our millionaire invocations, we get the best communication of
5570 bits for Πint,32,49

DIV .

E INPUT ENCODING

Neural network inference performs computations on floating-
point numbers, whereas the secret-sharing techniques only work
for integers in a ring Z𝑛 , for any 𝑛 ∈ N.12

To represent a floating-point number 𝑥 ∈ Q in the ring Z𝑛 , we
encode it as a fixed-point integer 𝑎 = ⌊𝑥 · 2𝑠 ⌋ mod 𝑛 with scale 𝑠 .
Fixed-point arithmetic is performed on the encoded input values
(in the secure domain) and the same scale 𝑠 is maintained for all the
intermediate results. The ring size 𝑛 and the scale 𝑠 are chosen such
that the absolute value of any intermediate result does not exceed
the bound ⌊𝑛/2⌋ and there is no loss in accuracy (refer Appendix I).

F IMPROVEMENT TO GAZELLE’S

ALGORITHM

Gazelle [43] proposed two methods for computing convolutions,
namely, the input rotations and the output rotations method. The
only difference between the two methods is the number of (ho-
momorphic) rotations required13. In this section, we describe an
optimization to reduce the number of rotations required by the
output rotations method.

Let 𝑐𝑖 and 𝑐𝑜 denote the number of input and output channels
respectively, and 𝑐𝑛 denote the number of channels that can fit in
a single ciphertext. At a high level, the output rotations method
works as follows: after performing all the convolutions homomor-
phically, we have 𝑐𝑖 · 𝑐𝑜/𝑐𝑛 intermediate ciphertexts that are to
be accumulated to form tightly packed output ciphertexts. Since
most of these ciphertexts are misaligned after the convolution, they
must be rotated in order to align and pack them. The intermediate
ciphertexts can be grouped into 𝑐𝑜/𝑐𝑛 groups of 𝑐𝑖 ciphertexts each,
such that the ciphertexts within each group are added (after align-
ment) to form a single ciphertext. In [43], the ciphertexts within
each group are rotated (aligned) individually, resulting in ≈ 𝑐𝑖 · 𝑐𝑜𝑐𝑛
rotations. We observe that these groups can be further divided into
𝑐𝑛 subgroups of 𝑐𝑖/𝑐𝑛 ciphertexts each, such that ciphertexts within
a subgroup are misaligned by the same offset. Doing this has the
advantage that the 𝑐𝑖/𝑐𝑛 ciphertexts within each subgroup can first
be added and then the resulting ciphertext can be aligned using
a single rotation. This brings down the number of rotations by a
factor of 𝑐𝑖/𝑐𝑛 to ≈ 𝑐𝑛 · 𝑐𝑜𝑐𝑛 .

With our optimization, the output rotations method is better
than the input rotations method when 𝑓 2 · 𝑐𝑖 > 𝑐𝑜 , where 𝑓 2 is the
filter size, which is usually the case.

G COMPLEXITY OF OUR BENCHMARKS

The complexity of the benchmarks we use in Section 7 is sum-
marized as follows:
• SqueezeNet: There are 26 convolution layers of maximum
filter size 3 × 3 and up to 1000 output channels. The activa-
tions after linear layers are ReLUs with size of up to 200,704

12Note that this includes the case of ℓ-bit integers when 𝑛 = 2ℓ .
13The number of homomorphic additions also differ, but they are relatively very cheap.

17

Benchmark Bitwidth Scale TF Fixed TF Fixed
Top 1 Top 1 Top 5 Top 5

SqueezeNet 32 9 55.86 55.90 79.18 79.22
ResNet50 37 12 76.47 76.45 93.21 93.23

DenseNet121 32 11 74.25 74.35 91.88 91.90
Table 10: Summary of the accuracy achieved by fixed-point

code vs input TensorFlow (TF) code.

Benchmark Garbled Circuits Our Protocol
LAN WAN Comm LAN WAN Comm

SqueezeNet 0.2 2.0 36.02 0.1 0.8 1.84
ResNet50 0.4 3.9 96.97 0.1 0.8 2.35

DenseNet121 17.2 179.4 6017.94 0.5 3.5 158.83
(a) over Z2ℓ

Benchmark Garbled Circuits Our Protocol
LAN WAN Comm LAN WAN Comm

SqueezeNet 0.2 2.2 39.93 0.1 0.9 1.92
ResNet50 0.4 4.2 106.22 0.1 1.0 3.82

DenseNet121 19.2 198.2 6707.94 0.6 4.4 214.94
(b) over Z𝑛

Table 9: Performance comparison of Garbled Circuits with

our protocols for computing Avgpool layers. Runtimes are in

seconds and communication numbers are in MiB.

elements per layer. All ReLU layers combined have a size of
2,033,480. Additionally, there are 3 Maxpool layers and an
Avgpool169 layer (Avgpool with pool size 169).
• ResNet50: There are 53 convolution layers of maximum filter
size 7 × 7 and a peak output channel count of 2048. Convo-
lution layers are followed by batch normalization and then
ReLUs. There are 49 ReLU layers totaling 9,006,592 ReLUs,
where the biggest one consists of 802,816 elements. More-
over, ResNet50 also hasMaxpool layers and an Avgpool49.

• DenseNet121: There are 121 convolution layers with maxi-
mum filter dimension of 7 × 7 and up to 1000 output chan-
nels. Similar to ResNet50, between 2 convolution layers,
there is batch normalization followed by ReLU. The biggest
ReLU layer in DenseNet121 has 802,816 elements and the
combined size of all ReLU layers is 15,065,344. In addition,
DenseNet121 consists of a Maxpool, an Avgpool49 and 3
Avgpool4 layers.

H GARBLED CIRCUITS VS OUR PROTOCOLS

FOR Avgpool
In this section, we compare our protocols with garbled circuits

for evaluating the Avgpool layers of our benchmarks, and the
corresponding performance numbers are given in Table 9. On
DenseNet121, where a total of 176, 640 divisions are performed,
we have improvements over GC of more than 32× and 45× in the
LAN and the WAN setting, respectively, for both our protocols.
However, on SqueezeNet and ResNet50, the improvements are
smaller (2× to 7×) because these DNNs only require 1000 and 2048
divisions, respectively, which are not enough for the costs in our
protocols to amortize well. On the other hand, the communication
difference between our protocols and GC is huge for all three DNNs.
Specifically, we have an improvement of more than 19×, 27×, and
31× on SqueezeNet, ResNet50, and DenseNet121 respectively, for
both our protocols.

I FIXED-POINT ACCURACY OF OUR

BENCHMARKS

In this section, we show that the accuracy achieved by the fixed-
point code matches the accuracy of the input TensorFlow code. Ta-
ble 10 summarizes the bitwidths, the scales, and the corresponding
TensorFlow (TF) and fixed-point accuracy for each of our bench-
marks. Since our truncation and division protocols lead to faithful
implementation of fixed-point arithmetic, accuracy of secure infer-
ence is the same as the fixed-point accuracy.

18

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Other Related Work
	1.4 Organisation

	2 Preliminaries
	2.1 Threat Model and Security
	2.2 Cryptographic Primitives

	3 Millionaires' and DReLU protocols
	3.1 Protocol for Millionaires'
	3.2 Protocol for DReLU for -bit integers
	3.3 Protocol for DReLU for general Zn

	4 Division and truncation
	4.1 Expressing general division and truncation using arithmetic over secret shares
	4.2 Protocols for division

	5 Secure Inference
	5.1 Linear Layers
	5.2 Nonlinear Layers

	6 Implementation
	6.1 Cryptographic backend
	6.2 CrypTFlow integration

	7 Experiments
	7.1 Comparison with Garbled Circuits
	7.2 Comparison with Delphi
	7.3 Evaluation on practical DNNs

	8 Conclusion and Future Work
	References
	A Supporting Protocols
	A.1 Protocol for regular FAND
	A.2 Protocol for correlated FAND
	A.3 Protocol for Multiplexer
	A.4 Protocol for B2A

	B Protocol for ReLU
	C Proof of division theorem
	D Protocol for general division
	E Input Encoding
	F Improvement to Gazelle's Algorithm
	G Complexity of our benchmarks
	H Garbled circuits vs our protocols for Avgpool
	I Fixed-point accuracy of our benchmarks

