
Asynchronous Remote Key Generation: An Analysis of Yubico’s
Proposal for W3CWebAuthn

Nick Frymann

n.frymann@surrey.ac.uk

Surrey Centre for Cyber Security

University of Surrey

Guildford, UK

Daniel Gardham

d.gardham@surrey.ac.uk

Surrey Centre for Cyber Security

University of Surrey

Guildford, UK

Franziskus Kiefer

mail@franziskuskiefer.de

Wire Swiss GmbH

Berlin, Germany

Emil Lundberg

emil@yubico.com

Yubico AB

Stockholm, Sweden

Mark Manulis

mark@manulis.eu

Surrey Centre for Cyber Security

University of Surrey

Guildford, UK

Dain Nilsson

dain@yubico.com

Yubico AB

Stockholm, Sweden

ABSTRACT
WebAuthn, forming part of FIDO2, is a W3C standard for strong

authentication, which employs digital signatures to authenticate

web users whilst preserving their privacy. Owned by users, WebAu-

thn authenticators generate attested and unlinkable public-key

credentials for each web service to authenticate users. Since the

loss of authenticators prevents users from accessing web services,

usable recovery solutions preserving the original WebAuthn design

choices and security objectives are urgently needed.

We examine Yubico’s recent proposal for recovering from the

loss of a WebAuthn authenticator by using a secondary backup

authenticator. We analyse the cryptographic core of their proposal

by modelling a new primitive, called Asynchronous Remote Key

Generation (ARKG), which allows some primary authenticator to

generate unlinkable public keys for which the backup authenticator

may later recover corresponding private keys. Both processes occur

asynchronously without the need for authenticators to export or

share secrets, adhering toWebAuthn’s attestation requirements. We

prove that Yubico’s proposal achieves our ARKG security properties

under the discrete logarithm and PRF-ODH assumptions in the

random oracle model. To prove that recovered private keys can

be used securely by other cryptographic schemes, such as digital

signatures or encryption schemes, we model compositional security
of ARKGusing composable games by Brzuska et al. (ACMCCS 2011),

extended to the case of arbitrary public-key protocols.

As well as being more general, our results show that private keys

generated by ARKG may be used securely to produce unforgeable

signatures for challenge-response protocols, as used in WebAuthn.

We conclude our analysis by discussing concrete instantiations

behind Yubico’s ARKG protocol, its integration with the WebAuthn

standard, performance, and usability aspects.

CCS CONCEPTS
• Security and privacy→ Key management;Multi-factor au-
thentication; Pseudonymity, anonymity and untraceability.

KEYWORDS
WebAuthn; web authentication; key generation; composability

1 INTRODUCTION
In recent years, the desire to move away from password-based

authentication on the web has become more pronounced due to

the amount of damage caused to individuals, organisations, and

industry through phishing attacks, compromised web servers, bad

password choices, frequent password reuse, and poor password

management [11].

Popular web-based federated identity and single-sign on pro-

tocols, such as SAML [9] and OIDC [33], partly mitigate against

some of these problems by using a trusted identity provider to

help authenticate users on behalf of other web services (relying

parties). These solutions improve usability by reducing the need

for password management as users may use their existing online

accounts, with Google and Facebook, for example, to authentic-

ate to countless web services. Despite this, they still represent a

single point of attack and failure, with their security depending on

the underlying mechanism through which the identity provider

authenticates users.

The need to end reliance on passwords as the only authentication

factor, driven by new regulations such as the Payment Services

Directive 2 (PSD2) [2], led to the rise of two-factor authentication

(2FA). Many 2FA solutions employ one-time passcodes (OTPs), such

as HOTP [27] and TOTP [28], which are sent to users over out-of-

band channels, email or SMS for instance, or generated locally,

either in software (e.g., Google Authenticator) or hardware (e.g.,

RSA SecurID, YubiKey). However, as well as being less usable and

convenient [16], OTP-based solutions have also been shown to be

susceptible to various types of attacks [12, 26] and account providers

often rely on static and predictable security questions for account

recovery as the fallback authentication method [32].

Stronger 2FA and multi-factor authentication (MFA) methods

for web authentication using public key cryptography have started

to emerge in recent years—rooted in specifications from the FIDO

Alliance
1
, consisting of major web technology vendors and organ-

isations. Their FIDO U2F (Universal 2nd Factor) [34] specification

was designed to extend the widely-used password-over-TLS ap-

proach with signature-based challenge-response authentication as

a second factor. The signing keys for each web service are typically

1
https://fidoalliance.org/

1

https://fidoalliance.org/

Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, Mark Manulis, and Dain Nilsson

Authenticator

Browser

RP’s JavaScript Application

Relying Party Server

1

2

3

4

5

6

WebAuthn API

Figure 1:WebAuthn components andmessage flow for regis-
tration and authentication [3].

stored on some physical device, an authenticator, owned by the

user who can unlock their use for signature generation through

some simple action or gesture, such as pressing a button. The FIDO

UAF (Universal Authentication Framework) [23] specification was

designed to remove reliance on passwords and protect the unlocking
of signing keys with other factors, typically biometric. These early

FIDO specifications have evolved into the W3C
2
Web Authentic-

ation (WebAuthn) standard [3] for interaction between the user’s

client (e.g., a web browser) and web server. WebAuthn, recently

endorsed by the World Economic Forum [37], specifies an abstract

authenticator model—of which the most well-known implementa-

tion is the FIDO Client-to-Authenticator Protocol (CTAP) [1]. CTAP

includes two protocols: CTAP1 for U2F authenticators and CTAP2

for WebAuthn authenticators, offering a passwordless experience.

WebAuthn and CTAP2 are known together as FIDO2.

1.1 WebAuthn overview and key properties
In WebAuthn, the user authenticates to a relying party (RP) us-

ing an authenticator, which manages the user’s keys and employs

asymmetric cryptography to prove their possession. WebAuthn is

a decentralised web authentication mechanism since no third party

is required for a user to register with and authenticate to an RP,

and there is no central location to store user information.

The authenticator creates a unique private-public key pair for

each RP and supplies the RP with the generated public key. The

authenticator may be integrated in a smartphone or laptop with a

secure element, or may exist as a separate hardware token, com-

municating with the user’s device using CTAP over a USB, NFC, or

Bluetooth connection. Most of today’s authenticators implement

CTAP1/U2F to strengthen conventional passwords, whilst newer

authenticators implement CTAP2 and may perform client-side veri-

fication of a PIN or biometric input.

As shown in Fig. 1, WebAuthn adopts a similar message flow for

the registration and authentication procedures. During registration,

the server sends user information and a challenge to the client-side

JavaScript application 1 , which is relayed to the authenticator by

the browser 2 . The authenticator generates a new private-public

key pair, signs the challenge, and generates attestation data 3 ,

2
https://www.w3.org/

returning the public key, signed challenge, and attestation to the

browser 4 . The browser returns these to the client-side application,

which sends it back to the server 5 . The server verifies these and

stores the new public key.

For authentication, the RP sends a challenge in the authentication

request to the client-side application 1 , which relays the request

through the browser to the authenticator 2 . The authenticator

signs the challenge 3 and returns it to the browser 4 . The browser

returns this to the client-side application which sends it back to the

server 5 . The server verifies the data and grants access 6 .

Steps 2 and 4 are defined by the CTAP specification, whereas

the others are defined by the WebAuthn standard. The WebAuthn

API is used to facilitate communication between the browser—and

the authenticator by extension—and the RP’s JavaScript application.

The following aspects of WebAuthn’s design are particularly

important for security and privacy: the unlinkability of registered

public keys and authenticator attestations:

Non-correlateable and unlinkable keys. To guarantee user pri-

vacy, WebAuthn requires that all public key credentials output by

the same authenticator remain unlinkable such that no RP can de-

termine whether they were created by a single authenticator. This

property prevents malicious RPs from correlating users between

their systems without additional information such as a wilfully

reused username or email address [3, §14.2].

Attestation. WebAuthn authenticators are equipped with attest-

ation keys and certificates to provide assurance about their proven-

ance. By signing new public keys with its attestation private key

and supplying its attestation certificate to the RP, the authenticator

can prove its make and model and provide assurance about, for

example, how strongly it protects generated private keys. Attest-

ation can further help the RP to establish trust in the client-side

verification of additional authentication factors (e.g., biometrics)

in CTAP2 authenticators. These capabilities are required for high-

security certification levels
3,4

of the authenticators. To preserve

privacy, WebAuthn describes a set of mechanisms that can be used

for attestation. FIDO UAF [23], for example, mandates that attest-

ation keys are used for at least 100,000 authenticator devices. As

discussed in the standard [3, §14.4.1], using ECDAA [22] is another

option for privacy-preserving attestation.

Internal and remote key storage. WebAuthn authenticators may

have an internal symmetric wrapping key. Upon registration, for

each generated key pair, the authenticator can use this key to en-

crypt the private key and include its ciphertext in the credential that

is sent to and stored by the RP, instead of storing the private key

locally. During authentication, the RP returns this credential as part

of its challenge, allowing the authenticator to decrypt the private

key. This allows for secure management of WebAuthn private keys

without consuming storage space on the authenticator.

1.2 Authenticator loss
A problem that remains unresolved in WebAuthn, and is currently

under discussion within the W3C working group [17], is how a

3
https://fidoalliance.org/certification/authenticator-certification-levels/

4
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-

security-requirements-v1.3-fd-20180905.html

2

https://www.w3.org/
https://fidoalliance.org/certification/authenticator-certification-levels/
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.3-fd-20180905.html
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.3-fd-20180905.html

Asynchronous Remote Key Generation: An Analysis of Yubico’s Proposal for W3C WebAuthn

user may securely regain access to an account if an authenticator is

lost or damaged, and therefore any private keys managed by it are

also lost. A recent study by Lyastani et al. [25] showed that losing

authenticators is one of the biggest fears affecting the adoption of

WebAuthn by users. Although a user may register multiple authen-

ticators for each RP and use one as a backup in case another is lost,

this currently requires that the backup authenticator be present at

the time of its registration. Since users need to keep the backup

authenticator on hand, they risk losing it as well—which defeats

the purpose of having the backup authenticator. Registering mul-

tiple authenticators also requires additional user interaction and

generally cannot be expected from the user.

1.2.1 Challenges. The attestation and unlinkability properties of

WebAuthn impose some design restrictions on solutions for regain-

ing account access. Further restrictions apply for a solution to be

widely interoperable and implementable by resource-constrained

authenticators.

Attestation restricts how keys may be shared. It should not be

possible to circumvent an RP’s attestation policy by registering one

authenticator and then transferring private key material to a differ-

ent authenticator. Transferring keys between similar authenticators
(e.g., same brand or series) may be acceptable in some cases, but

interoperability would likely suffer since resource-constrained au-

thenticators cannot feasibly verify attestation signatures for more

than a few kinds of authenticator.

Unlinkability restricts how keys may be generated. In particu-

lar, different keys must be used for each new account at each RP.

This means, for example, that one cannot simply generate a static

backup public key to be included in each new registration since the

user could then be tracked using that static public key. Additionally,

resource-constrained authenticators typically rely on remote key

storage and have limited internal storage space. For example, gen-

erating large numbers of key pairs in advance is not feasible, since

this would require large amounts of storage locally or introduce

dependency on a remote third party.

1.2.2 Yubico’s proposal. A recent proposal by Lundberg and Nils-

son [24] from Yubico, a FIDO Alliance member and a global vendor

of hardware authenticators known as YubiKeys, aims to address

these challenges. Their approach assumes that, in addition to a

primary authenticator that is used on a regular basis for WebAuthn

registration and authentication, the user has a backup authentic-

ator. After an initial setup procedure, the primary authenticator

can start registering unlinkable public keys with RPs on behalf of

the backup authenticator, in addition to its own public keys. If the

primary authenticator is lost, the backup authenticator, following

interaction with an RP, can recover the private key to access the

account at the RP. An important property of Yubico’s proposal is

that registration of public keys by the primary authenticator and re-

covery of private keys by the backup authenticator does not require

any interaction between the authenticators after setting them up,

nor any transfer or sharing of secrets, thus respecting restrictions

on attestation. Although the proposal specifies the protocols and

their integration with WebAuthn, it remains unclear whether it

meets the security and privacy objectives for use in WebAuthn due

to the lack of analysis.

1.3 Contribution
Our main contribution is a modular analysis of the cryptographic

core behind Yubico’s proposal [24] for recovering access to online

accounts after losing WebAuthn authenticators. As a first step, we

explain the protocols from the proposal by modelling them as a

new cryptographic primitive, Asynchronous Remote Key Genera-

tion (ARKG), capturing the core properties behind remote genera-

tion and registration of public keys and later recovery of private

keys. We define ARKG security under various trust assumptions on

the involved parties. We then view Yubico’s protocol as an instance

of our general ARKG scheme for which we prove security under

the discrete logarithm and PRF-ODH assumptions.

As a second step, we model composition of ARKG with arbitrary

asymmetric protocols to establish sufficient conditions under which

the keys can be used securely. We repurpose the framework of com-

posed games by Brzuska et al. [8] to handle the case of asymmetric

ARKG keys and public-key protocols. We prove that the general

ARKG scheme can be composed with all public-key protocols which

rely on the DL assumption and use keys with matching distribu-

tion. Taking into account the adopted instances of cryptographic

algorithms in Yubico’s proposal, our analysis implies that recovered

private keys can be securely used in WebAuthn’s signature-based

challenge-response protocol. We note that our model for ARKG and

its composability with asymmetric protocols might be of independ-

ent interest, applied not only to authentication but also public-key

encryption. As part of an extended discussion, we address the imple-

mentation, efficiency, integration, and usability aspects of Yubico’s

proposal.

Organisation. Section 2 explains Yubico’s proposal and highlights
its cryptographic core. The ARKG primitive is modelled in Section 3.

Section 4 presents a generalised ARKG scheme and proves its se-

curity. ARKG composability with arbitrary asymmetric protocols,

based on composed games, is modelled and proven in Section 5.

The extended discussion is provided in Section 6 and other related

work is addressed in Section 7. We conclude in Section 8.

2 YUBICO’S PROPOSAL FORWEBAUTHN
ACCOUNT RECOVERY

Here we describe Yubico’s proposal [24], which allows users to

securely regain access to an account after losing an authenticator.

2.1 Overview
We focus on the cryptographic core which involves three parties:

the primary authenticator (PA), backup authenticator (BA), and

WebAuthn relying party (RP). In a nutshell, PA remotely generates

and registers a fresh public key 𝑃 at some RP for which BA may

recover the corresponding private key 𝑝 at a later time to regain

access to the account. Crucially, PA and BA do not share any secrets,

the registration of 𝑃 does not require interaction with BA, and

recovery of 𝑝 does not require the presence of PA.

Yubico’s specification can be split into three main stages, de-

scribed in the following (see also Fig. 2), whilst adopting the ori-

ginal notations: LEFT(𝑎, 𝑏) returns the first 𝑏 bytes of byte array 𝑎

and DROP_RIGHT(𝑎, 𝑏) returns the byte array 𝑎 without the last
𝑏 bytes. Elliptic curve operations are performed on the NIST P-256

3

Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, Mark Manulis, and Dain Nilsson

curve [29], generated by 𝐺 with order 𝑛. ECDH [10] is used along

with key derivation functions KDF1 and KDF2, based on HKDF

[21], andMAC, based on HMAC [14]. Instantiations are discussed

further in Section 6.1.

In our analysis, we use the setup stage, along with both proced-

ures specified in Fig. 2, as part of a new cryptographic primitive

which we call Asynchronous Remote Key Generation (ARKG) and

model in Section 3. By proving compositional security of ARKGwith

arbitrary public-key protocols in Section 5, we implicitly show that

it is safe to use the key pair (𝑝, 𝑃) established through the above

stages with the standard WebAuthn signature-based challenge-

response authentication protocol.

Setup. BA generates a private-public key pair (𝑠, 𝑆) and transfers
its public key 𝑆 to PA. This 𝑆 will be used by PA to derive new

public keys on BA’s behalf, whilst the private key 𝑠 will be stored

by BA and used for account recovery purposes. In our analysis,

we assume that this phase is trusted as it is performed locally by

the owner of both authenticators. Therefore, it does not involve

interaction with the relying party and as such it is outside the scope

of WebAuthn. In Section 6, we discuss implementing the transfer

of 𝑆 in a possible CTAP extension.

Registration. When registering with RP, identified by rpId, PA
registers its own public key as in the WebAuthn standard, but also

generates a key handle 𝐸, derives a public key 𝑃 using 𝐸 and 𝑆 ,

and sends cred (containing 𝐸) to RP as shown in Fig. 2a. PA will

generate an independent pair (𝑃, cred) for each BA with which it

has completed the setup stage and send this to RP.

Recovery. At a later time, BA can request cred from RP and use

𝑠 to derive 𝑝 (Fig. 2b). The user provides an identifier for their

account at RP, which can then retrieve all cred associated with

the account. BA processes all received cred—if it finds a cred that

was registered on its behalf, it may then use the generated 𝑝 to

authenticate with RP, which holds 𝑃 , to regain access to the account

using the WebAuthn authentication procedure as normal.

2.2 Intuitive security and privacy goals
We now motivate the desirable security and privacy goals for Yu-

bico’s proposal, preparing for our formal analysis in later sections.

Security goals. Intuitively, the scheme needs to ensure that no

adversary can gain access to the user’s account without knowledge

of BA’s private key 𝑠 , since multiple public keys 𝑃 for BA may be

registered by PA on its behalf at different RPs. Consequently, the

secrecy of recovered keys 𝑝 must be guaranteed for all 𝑃 registered

by PA before its loss. An adversary with access to PA may learn its

internal secrets and try to use them to break secrecy of the keys

registered earlier. In general, we assume that, during the registration

phase, any RP can be compromised and the attacker may learn

public keys 𝑃 and key handles 𝐸 in cred as registered by PA. An

adversarymay further compromise an RP during the recovery phase

and use either these honestly generated keys, or maliciously modify

them when interacting with BA, to obtain information that would

allow it to gain backup access to user accounts with other RPs.

Privacy goals. In addition to the security against impersonation

attacks on BA and secrecy of recovered keys 𝑝 , the proposal should

preserve WebAuthn user privacy by ensuring that registered public

keys 𝑃 and key handles 𝐸 remain unlinkable—that is, no RP can

decide whether they were registered for the same or different BAs.

3 MODELLING ASYNCHRONOUS REMOTE
KEY GENERATION

In this section, we model the general Asynchronous Remote Key

Generation (ARKG) protocol and define its security and privacy

properties. As discussed in Section 2, we use ARKG as a new prim-

itive for the modular analysis of Yubico’s proposal by considering

public key registration by PA and private key recovery by BA sep-

arately from this key pair’s usage in the authentication procedure,

for which we adopt a compositional approach in Section 5.

3.1 Syntax of ARKG
ARKG functionality. ARKG allows arbitrary public keys pk′ to

be derived from an original pk, with corresponding sk′ being cal-
culated at a later time—requiring private key sk for the key pair

(sk, pk) and credential cred.

Definition 3.1 (ARKG). The remote key generation and recovery

scheme ARKG B (Setup,KGen,DerivePK,DeriveSK,Check) con-
sists of the following algorithms:

• Setup(1𝜆) generates and outputs public parameters pp =

((G, 𝑔, 𝑞),MAC,KDF1,KDF2) of the scheme for the security

parameter 𝜆 ∈ N.
• KGen(pp), on input pp, computes and returns a private-

public key pair (sk, pk).
• DerivePK(pp, pk, aux) probabilistically returns a new public

key pk′ together with the link cred between pk and pk′, for
the inputs pp, pk and auxiliary data aux. The input aux is
always required but may be empty.

• DeriveSK(pp, sk, cred), computes and outputs either the new

private key sk′, corresponding to the public key pk′ using
cred, or ⊥ on error.

• Check(pp, sk′, pk′), on input (sk′, pk′), returns 1 if (sk′, pk′)
forms a valid private-public key pair, where sk′ is the cor-
responding private key to public key pk′, otherwise 0.

Correctness. An ARKG scheme is correct if, ∀𝜆 ∈ N, pp ←
Setup(1𝜆), the probability Pr [Check(pp, sk′, pk′) = 1] = 1 if

(sk, pk) ← KGen(pp);
(pk′, cred) ← DerivePK(pp, pk, ·);

sk′ ← DeriveSK(pp, sk, cred) .

3.2 Security definitions
For an ARKG scheme we define two properties: the secrecy of a

derived private key and its initial private key, and the unlinkability

of derived public keys to an initial public key.

Adversaries and oracles. An adversary A, used in our security

experiments, is modelled as a probabilistic polynomial time (PPT)

algorithm and is allowed to call any of the public procedures defined

in Section 3.1 with the parameters to which it is given access. The

adversary A may make a polynomial number of queries to the

following oracles:

4

Asynchronous Remote Key Generation: An Analysis of Yubico’s Proposal for W3C WebAuthn

Register

1 : PA(𝑆) RP(rpId)

2 :
rpId

3 : (𝑒, 𝐸) ←$KGen

4 : 𝑘cred ← KDF1 (ECDH(𝑒, 𝑆))
5 : 𝑘mac ← KDF2 (ECDH(𝑒, 𝑆))
6 : if 𝑘cred ≥ order of P256 then goto 3

7 : 𝑃 ← (𝑘cred ·𝐺) + 𝑆
8 : if 𝑃 = 0 then goto 3

9 : cred← 𝐸 ∥LEFT(MAC(𝑘mac, 𝐸 ∥rpId), 16)

10 :
𝑃, cred

11 : store 𝑃, cred

(a) Registration of backup credentials.

Recover

1 : BA(𝑠) RP(rpId)
2 : retrieve cred

3 :
cred, rpId

4 : 𝐸 ← DROP_RIGHT(cred, 16)
5 : if 𝐸 = 0 then abort

6 : 𝑘cred ← KDF1 (ECDH(𝑠, 𝐸))
7 : 𝑘mac ← KDF2 (ECDH(𝑠, 𝐸))
8 : if cred ≠ 𝐸 ∥LEFT(MAC(𝑘mac, 𝐸 ∥rpId), 16) then abort

9 : 𝑝 ← 𝑘cred + 𝑠 mod 𝑛

(b) Key recovery using backup authenticator.

Figure 2: Yubico’s protocols for registration/recovery of WebAuthn backup credentials [24].

• Derived public key oracle Opk′ (pk, ·): Opk′ is parameterised

with public key pk. This oracle returns the result of calling
DerivePK(pp, pk, aux) on input aux. It records the resulting
(pk′, cred) in PKList: PKList← PKList∪ (pk′, cred). PKList
is initialised as PKList← Ø.

• Challenge oracle O𝑏pk′ (𝑏, sk0, pk0): O
𝑏
pk′ is parameterised

with a bit 𝑏 and fixed key pair (sk
0
, pk

0
), and takes no inputs.

When called, the oracle either returns (sk′, pk′) derived us-

ing the initial pk
0
, when 𝑏 = 0, or a freshly-generated key

pair sampled from a distribution D, when 𝑏 = 1.

• Private key oracle Osk′ (sk, ·): on input cred, where (·, cred)
∈ PKList, Osk′ outputs the result of DeriveSK(pp, sk, cred)
and updates SKList← SKList ∪ cred. SKList is initialised as

SKList ← Ø. If (·, cred) ∉ PKList, the oracle aborts, other-
wise it returns sk′ without giving access to sk.

SK-security. The private-key security property ensures that for

an initial public key pk, an adversary A cannot derive a valid key

pair (sk★, pk★) along with corresponding cred★ (see Section 2.2).

We consider four variants of private-key security, modelled using

the experiment Expks
ARKG,A (𝜆) in Fig. 3 with ks ∈ {mwKS, hwKS, msKS,

hsKS}.
Adversary A is always given access to Opk′ and must find a

(sk★, pk★, cred★) triple for a provided pk.
The malicious (m) and honest (h) variants result from the omis-

sion or presence of the PKList check on line 8, respectively, which

ensures that the triple is for an honestly-generated pk (modelled

using Opk′) if present. The weak (w) and strong (s) variants depend
on whether A has access to the private key derivation oracle Osk′ .
IfA has access to Osk′ , trivially querying it with cred★ is prevented

through the SKList check on line 7.

Definition 3.2 (SK-security). An ARKG scheme provides private-

key security with ks ∈ {mwKS, hwKS, msKS, hsKS} if the following
advantage is negligible in 𝜆:

AdvksARKG,A (𝜆) B Pr

[
ExpksARKG,A (𝜆) = 1

]
5

Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, Mark Manulis, and Dain Nilsson

Expks
ARKG,A (𝜆)

1 : pp← Setup(1𝜆)
2 : (sk, pk) ← KGen(pp)

3 : (sk★, pk★, cred★) ← AOpk′ ,Osk′ (pp, pk)
4 : sk′ ← DeriveSK(pp, sk, cred★)

5 : return Check(sk★, pk★) =? 1

6 : ∧ Check(sk′, pk★) =? 1

7 : ∧ cred★ ∉ SKList

8 : ∧ (pk★, cred★) ∈ PKList

Exppku
ARKG,A (𝜆)

1 : pp← Setup(1𝜆)
2 : (sk

0
, pk

0
) ← KGen(pp)

3 : 𝑏 ←$ {0, 1}

4 : 𝑏′ ← AO
𝑏
pk′ (pp, pk

0
)

5 : return 𝑏 =
?

𝑏′

Figure 3: Security experiments for ARKG. The presence or
omission of boxes results in the four variants of the ks ∈
{mwKS, hwKS, msKS, hsKS} experiment. Presence of the dashed
boxes gives the strong variants of ks (msKS and hsKS), the
presence of the dotted box gives the honest variants (hwKS
and hsKS), and the omission of all boxes gives mwKS.

It is easy to see that msKS⇒ mwKS⇒ hwKS and msKS⇒ hsKS⇒
hwKS, making msKS the strongest and hwKS the weakest SK-security
properties.

Remark 1. An even stronger ks flavour can be defined by drop-
ping the (·, cred) ∉ PKList restriction in the Osk′ oracle of msKS. We
mention this here for completeness as such property would be too
strong for the envisioned use of ARKG in practice, as it would allow
the attacker to query the user’s BA on arbitrary inputs, bypassing
security mechanisms of WebAuthn. This property is not satisfied by
Yubico’s proposal.

PK-unlinkability. This property ensures that derived key pairs

cannot be distinguished from a sample of a distribution D and

also prevents an adversary from linking a derived public key to a

long-term public key. This models the required unlinkable privacy

goal of WebAuthn, given in Section 2.2.

The unlinkability between public keys pk and derived public

keys pk′ is defined using Exppku
ARKG,A (𝜆). The game chooses a bit

𝑏 ∈ {0, 1} and generates a key pair (sk
0
, pk

0
). A is given access

to oracle O𝑏pk′ , public parameters pp, and pk
0
. When called, O𝑏pk′

returns a derived key pair (sk′, pk′), which is derived from pk
0
if

𝑏 = 0, otherwise, for𝑏 = 1, it samples and returns key pair (sk′, pk′)
according to a distribution D. It is able to corrupt any derived key,

for which corresponding sk′ is output. The adversary A wins the

game if it is able to determine whether O𝑏pk′ is instantiated with

𝑏 = 0 or 𝑏 = 1.

Definition 3.3 (PK-unlinkability). An ARKG scheme provides PK-

unlinkability if the following advantage is negligible in 𝜆:

Advpku
ARKG,A (𝜆) B

����Pr [ExppkuARKG,A (𝜆) = 1

]
− 1

2

����
Remark 2. Definition 3.3 provided here is designed to allow secure

composability with asymmetric protocols, however we also capture
a weaker useful property that any two derived public keys cannot
be linked, which gives the name for this property. As a result, any
RP that stores derived public keys cannot link any two of them to a
common PA, even with knowledge of the derived secret key—which
would most likely not be the case for real-world applications. This can
be seen by arguing that if no derived key pair can be distinguished
from a random sample from a distribution D, then neither can any
two derived key pairs that are distributed with respect to D.

4 AN ARKG SCHEME FOR DL-BASED KEYS
We present a general ARKG construction in a cyclic group G of

order 𝑞 based on DL keys (sk, pk) = (𝑥,𝑔𝑥) for a generator 𝑔 ∈ G
and 𝑥 ∈ Z𝑞 . Note that we use multiplicative notation for group

operations. In addition we require the following building blocks.

Pseudorandom Function (PRF) [15]. A pseudorandom function

PRF(𝑘,𝑚) takes high-entropy key 𝑘 and message𝑚 and produces

an output that is, for a PPT adversary A, indistinguishable from a

uniformly-sampled bitstring of the same length. A has access to

oracle OPRF (·) which cannot be queried with𝑚 and returns either

PRF(𝑘, ·) or 𝑓 (·), with 𝑓 being a truly random function.

Key Derivation Function (KDF) [18]. A key generation function

KDF(𝑘, 𝑙) takes source key 𝑘 and label 𝑙 and returns a new key 𝑘 ′.
It is secure if the advantage AdvKDFA (𝜆) is negligible in 𝜆 for a PPT

adversary A to distinguish derived keys from uniformly-sampled

bitstrings of the same length. In this paper we consider KDF1 (𝑘) =
KDF(𝑘, 𝑙1) and KDF2 (𝑘) = KDF(𝑘, 𝑙2), where KDF1 : G → Z𝑞 ,
KDF2 : G→ {0, 1}∗ and 𝑙1, 𝑙2 are fixed labels.

Message Authentication Code (MAC) [4]. A message authentica-

tion codeMAC = (KGen, Tag,Verify) consists of three algorithms.

KGen(1𝜆) outputs secret key mk←$ {0, 1}𝜆 for security parameter

𝜆. Tag(mk,𝑚) outputs tag 𝜇 for input key mk and message𝑚, and

Verify(mk,𝑚, 𝜇) outputs 1 if 𝜇 is valid for𝑚 under mk, otherwise 0.
MAC satisfies its correctness property iff, ∀(mk,𝑚), Verify(mk,𝑚,
Tag(mk,𝑚)) = 1.MAC is unforgeable if the advantage AdvMAC

A (𝜆)
is negligible in 𝜆 for a PPT adversaryA to find, withoutmk, a valid
tag 𝜇★ for a new message𝑚★

. A is given access to oracle OTag (·),
which on input message𝑚 ≠𝑚★

returns the result of Tag(mk,𝑚).

4.1 The ARKG scheme
The algorithms of our ARKG scheme for DL-based keys are specified

in Fig. 4. Note thatDerivePK generates an ephemeral key pair (𝑒, 𝐸),
which is used to derive pk′ using KDF1, which gives the credential

key ck. Integrity checking is provided byMAC for cred. DeriveSK
may compute sk′ using 𝐸, recorded in cred, using the property

that 𝑆𝑒 = 𝐸𝑠 for key pairs (𝑠, 𝑆) and (𝑒, 𝐸). This also ensures the

correctness property of the scheme holds.

6

Asynchronous Remote Key Generation: An Analysis of Yubico’s Proposal for W3C WebAuthn

Setup(1𝜆)
return pp = ((G, 𝑔, 𝑞),MAC,KDF1,KDF2)

KGen(pp)
𝑥 ←$Z𝑞

return (sk, pk) = (𝑥,𝑔𝑥)

Check(pp, sk′ = 𝑥, pk′ = 𝑋)
return 𝑔𝑥 =

?

𝑋

DerivePK(pp, pk = 𝑆, aux)
1 : (𝑒, 𝐸) ← KGen(pp)
2 : ck ← KDF1 (𝑆𝑒)
3 : mk ← KDF2 (𝑆𝑒)

4 : 𝑃 ← 𝑔ck · 𝑆
5 : 𝜇 ← MAC(mk, (𝐸, aux))
6 : return pk′ = 𝑃, cred = (𝐸, aux, 𝜇)

DeriveSK(pp, sk = 𝑠, (𝐸, aux, 𝜇))
1 : ck ← KDF1 (𝐸𝑠)
2 : mk ← KDF2 (𝐸𝑠)
3 : if 𝜇 = MAC(mk, (𝐸, aux)) then
4 : return sk′ = ck + 𝑠 mod 𝑞

5 : else return ⊥

Figure 4: Algorithms of the ARKG scheme.

4.2 Security analysis
In this section we define the hardness assumptions and prove se-

curity of the proposed ARKG scheme.

Discrete logarithm (DL) assumption. For a cyclic groupG of order

𝑞 and a generator𝑔 ∈ G, the discrete logarithm is hard if there exists

no polynomial time adversary that, when given 𝑋 ←$G, is able to
compute 𝑥 ∈ Z such that 𝑋 = 𝑔𝑥 .

The lrPRF-ODH assumption [6]. We require several intractability

assumptions introduced by Brendel et al. [6], with the generic form

written as lrPRF-ODH. Its instances have successfully been used to

analyse security of the Extended Access Control (EAC) [5] and the

TLS 1.3 [6] protocols. We will use two variants of this assumption.

Let G be a cyclic group of order 𝑞 with generator 𝑔 ∈ G. Let
PRF : G × {0, 1}∗ → {0, 1}∗ be a pseudorandom function that on

input a key 𝐾 ∈ G and a label 𝑋 ∈ {0, 1}∗ outputs 𝑦 ∈ {0, 1}∗.
For the complete range of variants given in [6], the adversary

has access to left and right OODH oracles. The number of queries

is bound by the values for 𝑙 and 𝑟 , where the possible values are

𝑛 = none, 𝑠 = single and𝑚 = many. We only need to consider snPRF-

ODH, which allows a single call to one oracle, and nnPRF-ODH,

where the adversary cannot make any calls. In our description of the

oracle, we omit the element𝑈 = 𝑔𝑢 as input since it is implicit from

the game. The PRF-ODH assumption holds if the advantage of the

adversary in Fig. 5 is negligible. As proven by Brendel et al. [6], the

hardness of the snPRF-ODH implies the hardness of nnPRF-ODH,

ExpnnPRF-ODHA (𝜆)
1 : 𝑢, 𝑣 ←$Z𝑞

2 : pp← (G, 𝑔, 𝑔𝑢 , 𝑔𝑣)
3 : pick challenge label 𝑥 ∈ {0, 1}∗

4 : 𝑦0 ← PRF(𝑔𝑢𝑣, 𝑥)
5 : 𝑦1 ←$ {0, 1}𝜆

6 : 𝑏 ←$ {0, 1}
7 : 𝑏′ ← A OODH (pp, 𝑦𝑏 , 𝑥)
8 : return 𝑏 =

?

𝑏′

OODH (·) where (·) = (𝑆, 𝑥)
1 : if 𝑆 ∉ G ∨ (𝑆, 𝑥) = (𝑔𝑣, 𝑥) then 𝑦 ← ⊥
2 : else 𝑦 ← PRF(𝑆𝑢 , 𝑥)
3 : return 𝑦

Figure 5: The lrPRF-ODH security experiment and its OODH
oracle. nnPRF-ODH is given by the exclusion of the dashed
box and snPRF-ODH by its inclusion.

and snPRF-ODH is implied by the hardness of the Strong Diffie-

Hellman assumption [31] (also known as the Gap Diffie-Hellman
assumption) and a random oracle, whereas nnPRF-ODH is implied

from DDH and existence of a pseudorandom function. This latter

reduction is given in the standard model.

Theorem 4.1. The ARKG scheme satisfies PK-unlinkability given
the nnPRF-ODH and DL assumptions hold in G.

Proof. G0 is defined exactly by Exppku
ARKG,A (𝜆). Thus

Pr

[
G𝑏
0
= 1

]
= Pr

[
Exppku

ARKG,A (𝜆) = 1

]
We immediately begin by combining, when the challenge bit b

is set to 0, the secret key derivation performed by the DeriveSK al-

gorithm with DerivePK performed by the oracle. This is a semantic

change and hence there is no loss of advantage to the adversary as

the outputs of the oracle are indistinguishable. We now define a

series of hybrid gamesH𝑏
𝑖
such thatH𝑏

0
B G0 andH𝑏

𝑖
asH𝑏

𝑖−1 but
with the exception that, in the 𝑖th oracle call to O𝑏pk′ , computation

of 𝑃 is replaced with ‘𝑝 ←$Z𝑞, 𝑃 ←$𝑔ck𝑖𝑔𝑝 ’. Note that 𝑝 is now

returned as sk′. The adversary is unable to distinguish between

H𝑏
𝑖
and H𝑏

𝑖−1 as the random sample of ck𝑖 in H𝑏
𝑖−1 ensures the

distribution of (𝑝𝑖 , 𝑃𝑖) is uniformly random in both games, giving���Pr [ˆH𝑏
𝑘
= 1

] ��� = ���Pr [ˆH𝑏
𝑘−1 = 1

] ���
Next, we continue by defining another series of hybrid games

˜H𝑏
𝑗
where

˜H𝑏
0
B G1. Game

˜H𝑏
𝑗
is defined to be game

˜H𝑏
𝑗−1,

with the exception that the execution of DerivePK in the 𝑗th or-

acle call is altered when the challenge bit is set to 0. We replace

‘𝜇 ← MAC(mk𝑗 , (𝐸, aux))’ with ‘𝜇 ← MAC(mk′𝑗 , (𝐸, aux))’, where
mk′𝑗 is a uniformly sampled MAC key independent from mk𝑗 . The

adversary is able to distinguish between the games
˜H𝑏
𝑗
and

˜H𝑏
𝑗−1

if it is able to forge the MAC key mk𝑗 , where mk𝑗 is the MAC key

7

Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, Mark Manulis, and Dain Nilsson

from
˜H𝑏
𝑗
. We show that the adversary’s ability to do this is bounded

by the nnPRF-ODH property of KDF2.
The adversary B, against the nnPRF-ODH game, plays the role

of challenger in
˜H𝑏
𝑗
for A. It invokes its own game, receiving

G, 𝑔, 𝑆 ← 𝑔𝑠 , and the nnPRF-ODH challenge (𝐸 = 𝑔𝑒 , 𝑦★), and
sets the challenge label 𝑥 as the label for KDF2. It wins its own
game if it can decide whether 𝑏 = 0 or 𝑏 = 1. B invokes

˜H𝑏
𝑗
and

sets pk
0
← 𝑆, sk

0
← ⊥. It answers the 𝑗th oracle query to O𝑏pk′

honestly except it sets pk
1
= 𝐸, sk

1
= ⊥, and mk𝑗 ← 𝑦★

𝑗
, which is

the output of KDF2 in game
˜H𝑏
𝑗
. It then waits for A to output a

bit 𝑏. It forwards 𝑏 as the answer to its own nnPRF-ODH game and

wins with probability equal to that of A distinguishing
˜H𝑏
𝑗
from

˜H𝑏
𝑗−1. Thus, we have���Pr [˜H𝑏

𝑗 = 1

]
− Pr

[
˜H𝑏
𝑗−1 = 1

] ��� ⩽ AdvnnPRF-ODH
KDF𝑖

2
,B (𝜆)

We define G𝑏
2
B ˜H𝑏

𝑞𝑜
, where 𝑞𝑜 is the number of queries made

to the O𝑏pk′ oracle. Next, we define a third series of hybrid games

ˆH𝑏
𝑘
where

ˆH𝑏
0
B G𝑏

2
. Game

ˆH𝑏
𝑘
is defined to be game

ˆH𝑏
𝑘−1, with

the exception that the execution of DerivePK in the 𝑘th oracle call

is altered. We replace ‘ck ← KDF1 (𝑆𝑒)’ with ‘ck←$ {0, 1}’. The
advantage of the adversary distinguishing

ˆH𝑏
𝑘
from

ˆH𝑏
𝑘−1 is also

bound by the nnPRF-ODH in an argument almost identical to that

of
˜H𝑏
𝑗
and

ˆH𝑏
𝑗−1. It is omitted here for brevity. Thus we have���Pr [ˆH𝑏
𝑘
= 1

]
− Pr

[
ˆH𝑏
𝑘−1 = 1

] ��� ⩽ AdvnnPRF-ODH
KDF𝑖

1
,B (𝜆)

We define G𝑏
3
B ˆH𝑏

𝑞𝑜
and analyse the advantage of A in distin-

guishing between 𝑏 = 0 and 𝑏 = 1. Since the game is independent

of 𝑏, and the distributions of (𝑝, 𝑃) are identical, it follows that���Pr [G𝑏
3
= 1

] ��� = 1

2

Thus the advantage of A is bounded by

Advpku
ARKG,A (𝜆) ⩽ 𝑞𝑜 ·

(
AdvnnPRF-ODHKDF1,B (𝜆) + AdvnnPRF-ODHKDF2,B (𝜆)

)
By assumption that KDF1 and KDF2 are nnPRF-ODH secure, the

advantage of their adversaries is negligible and hence the advantage

of the adversary against PK-unlinkability is also negligible. □

Next, we analyse all flavours of SK-security showing that its ma-

licious variants (mwKS, msKS) can be reduced to the aforementioned

snPRF-ODH assumption [6] (requiring the random oracle model),

whereas its honest variants (hwKS, hsKS) can be reduced directly to

the DL assumption in the standard model.

Theorem 4.2. The ARKG construction is:

(1) msKS-secure given the snPRF-ODH assumption holds in G.
(2) mwKS-secure given the snPRF-ODH assumption holds in G.
(3) hsKS-secure given the DL assumption holds in G.
(4) hwKS-secure given the DL assumption holds in G.

Proof. All proofs for Theorem 4.2 are given in Appendix A. □

5 COMPOSITION OF ARKGWITH GENERIC
PUBLIC KEY PROTOCOLS

As a next step in our analysis, we model and prove composition of

the general ARKG scheme with arbitrary public key protocols using

the framework of composed games from Brzuska et al. [8], which

has been used to prove composition of key exchange protocols with

symmetric key protocols [7, 13]. In this work, we reuse and adopt

their general modelling techniques to the case of asymmetric key

pairs generated by ARKG and generic public key protocols. We will

model their composition by means of a composed protocol whose

security is defined via a composed game, in which an adversary is

challenged to mount a successful attack against the generic pro-

tocol 𝛱 that uses keys generated by ARKG. Note that the goal of

this adversary is to break security of the higher-level protocol 𝛱

and not of the ARKG scheme. Intuitively, this is because the com-

posed protocol ARKG;𝛱 adopts the functionality of the higher-level

protocol and thus also adopts its security requirements.

Our composition result proves that any key pair (sk′, pk′) gen-
erated by ARKG can be used in any public-key protocol that is

compatible with the structure of ARKG keys, i.e., DL-based keys

generated by our ARKG scheme in Section 4.

5.1 Modelling ARKG composition
Recall that ARKG is defined as ARKG B (SetupARKG,KGenARKG,
DerivePK,DeriveSK,Check) and, for any generic public-key pro-

tocol, we have the key generation phase and the protocol phase,

henceforth written as 𝛱 B (KGen𝛱 , 𝛴𝛱). We consider a combined

protocol ARKG;𝛱 B (KGenARKG;𝛱 , 𝛴ARKG;𝛱), defined in Fig. 6. Since

the composed protocol 𝛴ARKG;𝛱 generates the long-term user keys

for the ARKG protocol we set KGenARKG;𝛱 B KGenARKG. If 𝛱 also

has a setup phase, we denote this by Setup𝛱 . Security for the com-

posed protocol is defined by the security of 𝛱 with respect to a

game Exp
𝛱
(𝜆). We denote the security game for the composed pro-

tocol as ExpARKG;𝛱 (𝜆). As this game depends on the properties of

𝛱 , we define a behaviour that describes an adversary’s interaction

with the composed game.

ExpARKG;𝛱 (𝜆) is constructed from queries and states from both

ARKG and 𝛱 and the behaviour allows us to describe certain oracle

calls explicitly, whilst allowing any protocol-specific queries to be

generically handled by Exp
𝛱
(𝜆). Furthermore, it restricts sharing

state information between ARKG and 𝛱 to only necessary informa-

tion, as given by Exp
𝛱
(𝜆), to ensure the adversary does not trivially

win its game. We allow the adversary A to interact with multiple,

simultaneous, and distinct executions of the composed protocol

where some may be running the ARKG algorithm as well. Note that

A wins if it breaks the security property of 𝛱 only and that the

advantage of A against ExpARKG;𝛱 (𝜆) is given by AdvARKG;𝛱,A (𝜆).
In order to enable interaction between the two protocols, Brzuska

et al. [8] define a set of generic states to store variables specific to

the security game, as well as values used in the execution of the

protocol. Although the authors propose composition with symmet-

ric protocols, the generic nature behind their modelling of states

lends itself to the composition with public-key protocols, for which

we can define general experiments. We use the following internal

states:

8

Asynchronous Remote Key Generation: An Analysis of Yubico’s Proposal for W3C WebAuthn

• Local Session Identifier (LSID). The set of all local session
identifiers of the form (𝑖, 𝑗) ∈ Z2, where 𝑖 and 𝑗 are polyno-
mial in 𝜆 and represent the number of main authenticators

and derived public keys (i.e., BAs), respectively.

• Session State (SST). For a given lsid ∈ LSID, SST(lsid) gives
the session state for that local session. It includes protocol

specific information and will include user information such

as derived keys and the corresponding long-term keys from

which they were derived. We also allow additional informa-

tion to be stored in an auxiliary variable, aux. The game may

access the session state as SST(lsid).(sk, pk, sk′, pk′, aux).
• Local Session State (LST). LST(lsid) returns the local state
for lsid, which includes game-relevant variables. We store

a boolean 𝛿 that records whether a pk′ is corrupt, that is if
the adversary has knowledge of its corresponding sk′.
• Execution Session State (EST). EST contains global informa-

tion for the execution of the protocol, i.e., it does not depend

on local session identifiers. In our composed game, this will

hold long-term keys of users stored as EST(𝑖) .(sk, pk).
• Model Session State (MST). The model state is used to store

non-session-specific game-relevant information, such as the

challenge bit in an indistinguishability game. In the com-

posed game, we do not defineMST as it will depend on the

security game Exp
𝛱
(𝜆).

The composed game must keep track of all states for ARKG and

𝛱 . The session state function for the composed game is simply given

by the union of the ARKG and 𝛱 session states, thus SSTARKG;𝛱 B
SSTARKG ∪ SST𝛱 , and the local state of the composed game is sim-

ilarly defined to be both local session states of the composed pro-

tocols, LSTARKG;𝛱 B LSTARKG ∪ LST𝛱 . For the execution session

state, we have ESTARKG;𝛱 = ESTARKG as the execution state for the

composing protocol is always undefined because the game execu-

tion state depends on the protocol 𝛱 , which is not defined here. We

also haveMSTARKG;𝛱 = MST𝛱 since the security game is only with

respect to 𝛱 and hence the model state for the key recovery is also

not defined. The adversary interacts with the composed protocol

via a behaviour 𝜒ARKG;𝛱 , described in Fig. 7, which answers queries

for oracles related to this phase of the protocol, otherwise forward-

ing the query to the protocol phase and relaying the reply to A.

The behaviour separates states to limit protocol-specific variables,

allowing only derived key pairs to be passed from ARKG to 𝛱 .

We consider two relevant oracles, Ocorrupt, which upon input of a

derived public key returns the corresponding derived secret key,

and Oexecute, which runs the protocol for ARKG keys. Any other

protocol-specific oracle would not need special treatment and thus

is forwarded to the game for 𝛱 .

Winning predicate. The state of the adversary is evaluated by a

predicate P that encodes the winning condition for the game. For

the composed protocol, the winning condition is precisely that of

the generic protocol’s game G𝛱 .

Validity predicates. Evaluations on the input of each oracle call

are achieved by corresponding validity predicates. If true is re-

turned, the oracle answers the query, otherwise the query is abor-

ted. Validity predicates are used to capture the correct behaviour

SetupARKG;𝛱 (𝜆)
1 : pp

1
← SetupARKG (𝜆)

2 : pp
2
← Setup𝛱 (𝜆)

3 : return pp = (pp
1
, pp

2
)

𝛴ARKG;𝛱 (SSTARKG;𝛱 (lsid),msg)
1 : Parse SSTARKG;𝛱 (lsid) as (pk′, sk′, sk, cred)
2 : 𝛾 ← check(sk′, pk′)
3 : if 𝛾 ≠ accept then

4 : sk′ ← ARKG(sk, cred)
5 : if sk′ = ⊥ then abort

6 : SSTARKG;𝛱 (lsid) .sk′ ← sk′

7 : return (SSTARKG;𝛱 , 𝛴𝛱 (sk′,𝑚))

Figure 6: Algorithms of the composed protocol.

of an adversary against any restrictions made by the game, for ex-

ample, in our composed protocol, we capture the scenario where an

adversary submits an Oexecute query on behalf of a user without a

defined key, that is, sk = ⊥ or the messagemsg is empty. The valid-

ity predicate returns false and the query is aborted. The Ocorrupt
oracle checks that pk′ exists and that pk′ does not already have an

existing derived secret key, otherwise it aborts.

Setup phase. This phase initialises the execution and game vari-

ables for the composed game ExpARKG;𝛱 (𝜆), which are handled by

the two setup algorithms, SetupG and SetupE, respectively. For the
generic protocol, SetupE sets all values to be undefined, as they

are set during interaction with the adversary. SetupG initialises

the model and local session states for the game G𝛱 , which, due

to the generality of the model, is unknown and therefore not spe-

cified here. The setup phase for the composed protocol consists of

running all setup algorithms for ARKG and 𝛱 as shown in Fig. 6.

5.2 Analysis of ARKG composition
In this section, we show that our ARKG scheme can replace the

KGen algorithm for any secure public-key protocol that uses DL-

based keys. Our main composability result is stated in Theorem 5.1.

Intuitively, one might expect that secure composition holds un-

der the assumption that it is hard to recover a private key cor-

responding to a public key, as captured by SK-security properties

from Section 3.2. However, there is a nuance to what Theorem 5.1

claims. It says that composing our ARKG with any compatible

asymmetric protocol is at least as secure as the unmodified protocol

itself, given the hardness assumptions hold. Theorem 5.1 makes

no claims over the security of the protocol itself. It is the security

of the protocol 𝛱 that is reduced to key secrecy of its key genera-

tion algorithm, and hence we show that, given that the hardness

assumptions hold, ARKG offers key secrecy such that it may be

composed with all asymmetric protocols that require secrecy of

their DL-based private keys. We have shown in Section 4 that key

secrecy for ARKG, modelled via different SK-security flavours, can

be achieved under different assumptions from the PRF-ODH family.

To achieve our result, we require that public keys generated by

ARKG remain indistinguishable from randomly sampled keys 𝑑

9

Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, Mark Manulis, and Dain Nilsson

𝜒ARKG;𝛱 (query, (LSID, (SSTARKG, SST𝛱), (LSTARKG, LST𝛱), ESTARKG,MST𝛱))
1 : if query = corrupt then

2 : Parse query into Ocorrupt (lsid)
3 : ((SST′ARKG, LST

′
ARKG, ESTARKG,⊥), response) ← corrupt(lsid, (LSID, SSTARKG, LSTARKG, ESTARKG))

4 : SST′𝛱 ← SST𝛱 , LST′𝛱 ← LST𝛱 ,MST′𝛱 ← MST𝛱

5 : return ((SST′ARKG;𝛱 , LST′ARKG;𝛱 , EST′ARKG,MST′𝛱), response)
6 : if query = execute then

7 : Parse query into Oexecute (lsid,msg)
8 : SST′ARKG;𝛱 ← SSTARKG;𝛱

9 : (SST′ARKG;𝛱 (lsid), response) ← 𝛴ARKG;𝛱 (SSTARKG;𝛱 (lsid),msg)
10 : return ((SST′ARKG;𝛱 , LSTARKG;𝛱 , ESTARKG,MST𝛱), response)
11 : else

12 : ((SST′𝛱 , LST′𝛱 ,⊥,MST′𝛱), response) ← 𝜒𝛱 (query, (LSID, SST𝛱 , LST𝛱 ,⊥,MST𝛱),msg)
13 : SST′ARKG ← SSTARKG, LST′ARKG ← LSTARKG, EST′ARKG ← ESTARKG

14 : return ((SST′ARKG;𝛱 , LST′ARKG;𝛱 , EST′ARKG,MST′𝛱), response)

Figure 7: Behaviour for the composed protocol.

of the same distribution D. This property is implied by the PK-

unlinkability property of ARKG from Section 3.2. In order to use

it in our proof, we first ensure notational compatibility of PK-

unlinkability with the framework of composed games and the gen-

eric public-key protocol by rewriting it using the notions of states

and predicates as defined by Brzuska et al. [8], which we present

in Appendix B.

Theorem 5.1. For an ARKG that provides PK-unlinkability and
outputs keys with distribution D, let 𝛱 be a secure protocol with re-
spect to Exp

𝛱
(𝜆). If theKGen of𝛱 outputs keys𝑑 with distributionD,

then the composition ARKG;𝛱 is secure with respect to ExpARKG;𝛱 (𝜆).

Proof. The adversary interacts with the game GARKG;𝛱 via be-

haviour 𝜒ARKG;𝛱 , defined in Fig. 7. Oracle descriptions are given in

Appendix C.

To prove the theorem, we begin by using Remark 2 to swap long-

term public keys of backup authenticators from pk𝑖 to pk
0
, which

means restricting LSID entries to be of the form (0, 𝑗). The strategy
is to define a set of hybrid games where each key is replaced with

pk
0
in turn. The advantage of a distinguishing adversary is bound

by the success probability of an adversary against PK-unlinkability

and, as the detail is almost identical to the proof of Theorem 4.1, is

omitted here.

Next, we define a set of hybrid games where we replace the

output of ARKG with a randomly-sampled key pair 𝑑 also from

distribution D. We define a game G𝜅,DARKG;𝛱 by the game GARKG;𝛱 ,

but where the first 𝜅 sessions generate derived keys from a random

sample of the distribution D for use in the protocol 𝛱 along with

the addition of a variable 𝜅★, initially set to 0. The behaviour of

G𝜅,DARKG;𝛱 , given by 𝜒★ARKG;𝛱 , is defined as 𝜒ARKG;𝛱 except upon an

Oexecute query, where instead it performs OexecuteA as described in

Appendix C. Note that Lemma 1 gives us G0,DARKG;𝛱 = GARKG;𝛱 , thus

we have����AdvG0,𝑑

ARKG;𝛱

ARKG;𝛱,A (𝜆) − Adv
G𝑞𝑜 ,𝑑ARKG;𝛱

ARKG;𝛱,A (𝜆)
���� ⩽ 𝑞2𝑜𝑝 · AdvExppkuARKG,A (𝜆)

ARKG,B (𝜆)

Lemma 2 shows that the success probability against Exp𝑞𝑜 ,DARKG;𝛱 (𝜆)
is bound by the advantage of B against the security of 𝛱 with re-

spect to Exp
𝛱,B (𝜆). As𝛱 is secure with respect to Exp

𝛱,B (𝜆), then
ARKG;𝛱 is secure with respect to ExpARKG;𝛱,B (𝜆). □

Remark 3. In Theorem 5.1, generic protocol 𝛱 may rely on further
hardness assumptions to satisfy its own security properties. In WebAu-
thn, 𝛱 is a challenge-response protocol with DL-based signature keys.

For our ARKG, the DL property of its keys is implied by any vari-
ant of SK-security (from Theorem 4.2). We would only require the
additional snPRF-ODH assumption in cases that allow for a stronger
adversary.

Lemma 1. For an ARKG that provides PK-unlinkability and outputs
keys with respect to the distribution D, and a protocol 𝛱 that uses
DL-based keys with distributionD, we have, for all 𝜅 = 1, . . . , 𝑞𝑜 and
any PPT adversary A:

Adv
G𝜅,𝑑ARKG;𝛱

ARKG,A (𝜆) − Adv
G𝜅−1,𝑑ARKG;𝛱

ARKG,A (𝜆) ⩽
𝑞𝑜

𝑝
· Adv

ExppkuARKG,A (𝜆)
ARKG,A (𝜆)

Lemma 2. For an ARKG that provides PK-unlinkability, let 𝛱 be
a DL-based protocol whose keys have distribution D. For any PPT
adversary A, we have

Adv
G𝑞𝑜 ,𝐷ARKG;𝛱

ARKG,A (𝜆) ⩽ Adv
Exp

𝛱
(𝜆)

𝛱,B (𝜆)

The proofs for Lemmas 1 and 2 may be found in Appendix A.

This composability result shows that, for any generic protocol

that uses DL keys, we can instead use the keys generated by ARKG

securely provided that the nnPRF-ODH assumption holds inG. The
security of a signature scheme is reduced to the DL structure of its

key pairs, and thus we require ARKG to offer some flavour of SK-

security for use in WebAuthn. Our composition modelling supports

up to the strongest notion, msKS, as it can handle corruption queries

of honest parties, which is what our msKS property captures for

ARKG and is required in typical unforgeability games. As shown

10

Asynchronous Remote Key Generation: An Analysis of Yubico’s Proposal for W3C WebAuthn

in Section 4, this is achieved under the snPRF-ODH assumption in

the random oracle model.

6 EXTENDED DISCUSSION
We discuss how Yubico’s proposal [24] instantiates our ARKG

scheme and can be integrated with the WebAuthn standard. We

address the attestation requirements, performance, and usability.

6.1 Yubico’s ARKG instance
Instead of generic building blocks from Section 4, Yubico’s proposal

uses standards-based cryptographic algorithms.

For compatibility with WebAuthn [3], all operations in G are

based on Elliptic Curve Cryptography (ECC) [10] on the P-256 curve

and the ECDSA standard [29] is used as a signature algorithm.

The standards-based HKDF [21] is used with SHA-256 [14] to

instantiate the KDF functions, which offers the necessary PRF-ODH
security [8, 19]. In DerivePK, only the 𝑥-coordinate of ECDH(𝑒, 𝑆),
where 𝑒 is the private key of the ephemeral key pair (𝑒, 𝐸) and 𝑆
is the public key of the backup authenticator, is used as input to

HKDF−Extract.HKDF−Expand usesHKDF−Extract’s 256-bit pseu-
dorandom key output and two separate fixed “info” arguments, and

returns 𝑘cred and 𝑘mac as 256 bits of keying material per invocation.

DeriveSK uses the same instantiations as DerivePK.
HMAC-SHA-256 [20] is used to instantiate MAC. The auxiliary

input aux to theDerivePK algorithm is defined as the SHA-256 hash

of the RP’s identifier rpId, which becomes part of the credential

cred.

6.2 Integration with WebAuthn
6.2.1 WebAuthn’s extensions interface. Yubico’s ARKG instance

can be integrated with WebAuthn using the existing extensions

interface [3, §9]. In particular, the generate action can invoke

DerivePK on PA, which generates a credential for BA and signs it

with the PA’s private key. The recover action can invoke DeriveSK
on BA when recovering access to an account at some RP. According

to the proposal [24], this integration would not require any changes

to WebAuthn.

6.2.2 Attestation requirements. Yubico’s proposal respects WebAu-

thn’s attestation framework by using the backup key pair (𝑝, 𝑃) as
a single-use key used by BA to authenticate registration of a new

key pair to replace PA’s key pair. BA can then provide attestation

as usual for this new key.

In the setup stage, BA transfers 𝑆 to PA together with some attest-

ation metadata 𝐴. During registration, PA generates and registers

its own authentication key pair (𝑘, 𝐾). It also derives a public key 𝑃
from 𝑆 , uses 𝑘 to sign (𝑃,𝐴) and includes (𝐾, 𝑃,𝐴) and the signature
in the registration. When BA later derives the private key 𝑝 , it also

creates a new key pair (𝑘 ′, 𝐾 ′) as it would for a normal registration.

It signs 𝐾 ′ using both 𝑝 and its attestation key, stores 𝑘 ′, discards
𝑝 , and registers 𝐾 ′ as a replacement for 𝐾 and 𝑃 . The RP can now

verify BA’s attestation per its usual attestation policy.

This creates a signature chain from PA’s key 𝐾 , via the single-

use backup key 𝑃 , to BA’s new key 𝐾 ′. Note that at the time 𝑃 is

registered, the attestation metadata𝐴 is not signed by BA. The RP’s

attestation policy is enforced when BA creates (𝑘 ′, 𝐾 ′). However,
since this is assumed to happen after PA is lost, 𝐴 is provided to

Table 1: Impact of ARKG onWebAuthn operation run times,
given in milliseconds per operation for 10,000 invocations
for a software implementation.

Registration Authentication

Scheme № of BAs Mean Max Mean Max

WebAuthn only 0 2.1 3.9 1.1 1.4

WebAuthn with

ARKG

1 5.3 8.2 2.2 4.2

5 18.0 23.0 6.4 9.6

10 34.0 41.0 12.0 15.0

allow RP to reject 𝑃 on creation, before PA is lost. If the attestation

metadata 𝐴 is maliciously modified, it may cause a false-positive

rejection of 𝑃 but cannot bypass RP’s attestation policy.

This metadata consists of the 128-bit authenticator attestation

GUID (aaguid). The same aaguid may be shared between authen-

ticator models with the same firmware or capabilities. An attesta-

tion certificate chain is also provided, using X.509 certificates. Note

that the attestation data are not unique to an authenticator.

6.2.3 CTAP. The setup stage of ARKG would not form part of the

WebAuthn extension, instead falling under CTAP’s remit as this

is a procedure involving two authenticators and no RPs. Yubico’s

proposal specifies the required extensions to CTAP in order to setup

an authenticator so that it may generate and register keys on behalf

of other authenticators. It proposes a method to transfer this seed
key 𝑆 to a PA using an intermediate host device, the client. The
CTAP extension [24], which applies to the operations authenticators

can perform with clients, adds the exportSeed and importSeed
operations. Using a client supporting this CTAP extension, the user

first exports 𝑆 from BA and then imports it into PA, most likely

over USB.

6.3 Performance evaluation
ARKG as specified in Section 4, is extremely efficient: DerivePK
uses three exponentiations, one group operation, and two KDF
calls, and DeriveSK uses one exponentiation, and two KDF calls. In

practice, some further optimisations can be performed to further

reduce the computation.

Each WebAuthn registration procedure requires one key genera-

tion and one signing operation and each authentication procedure

requires one signing operation. Assuming only P-256 keys are used,

these are dominated by two P-256 exponentiations and one expo-

nentiation, respectively. We thus estimate the WebAuthn registra-

tion procedure, with execution of DerivePK, to take approximately

150 % longer per backup public key 𝑆 associated with PA and au-

thentication, with execution of DeriveSK, to take approximately

100 % longer per cred for which BA must process before finding a

matching MAC.
Table 1 shows run times for the standard WebAuthn operations

and those using ARKG to generate private and public keys, meas-

ured on a single-threaded Python implementation, published to-

gether with [24], on an AMD Ryzen 7 3700X processor.

11

Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, Mark Manulis, and Dain Nilsson

The WebAuthn-only results use abstracted WebAuthn opera-

tions: registration generates a P-256 key pair and an ECDSA sig-

nature; authentication only generates a signature. Registration for

WebAuthn with ARKG requires PA to generate a P-256 key pair,

run DerivePK for each BA’s 𝑆 , and generate a signature for its key

pair. Authentication for WebAuthn with ARKG requires BA to run

DeriveSK for all received cred until one returns successfully, then

generate a signature with the derived private key. Since one PA

may be associated with several BAs, and a user may have more

than one BA, run times are presented for one, five, and ten BAs. For

these measurements, the successful cred is always found last.

The results in Table 1 show that using ARKG to generate public

and private key pairs for WebAuthn, for the expected case of an

average user having one BA for a PA, gives an increase in compu-

tation time over standard WebAuthn for registration and recovery

of 152 % and 100 %, respectively.

For comparison, the average run time for standard WebAuthn

authenticationwith a P-256 key on a YubiKey 5 token, wasmeasured

to be 94ms over 1,000 invocations, including USB communication

overheads. Registration could not be measured since it is dominated

by a mandatory physical user gesture.

6.4 Usability
Combining ARKG with WebAuthn would allow PA to register keys

for BAs on behalf of the user without requiring BAs to be present—

this means users do not need to carry their BAs with them when

registering to web services.

This requires users to have performed the setup procedure be-

forehand for the transfer of 𝑆 . Additionally, mobile devices may

be able to add support for this as many are suitable as both au-

thenticator devices, thanks to their secure elements, and clients

for additional external authenticators. The proposal also discusses

the user experience for registering backup credentials and account

recovery, including the messages that will be shown and the ac-

tions an RP should perform. For example, the proposal recommends

that RPs explicitly inform users of registered recovery credentials

and that clients should display details about the authenticators

for which it may register keys. Overall, the core usability benefit

of the proposal is that users do not need to manage their backup

authenticators manually by having them present and registering

them by hand when creating accounts.

7 OTHER RELATEDWORK
Finally, we mention several other approaches that have been pro-

posed for the recovery of WebAuthn accounts. Nishimura et al. [30]

propose identity-based key sharing in the context of WebAuthn

using a third party to mediate the sharing of keys amongst devices.

The third party authenticates the user at each device to ensure keys

are not shared to other users.

Takakuwa et al. discuss the issue of replacing authenticators [36],

presenting a protocol for the transfer of account details from one

authenticator to another over an assumed secure channel. The

primary application of this protocol is to allow users to transfer

authenticator data from an old device to a new one, so that they

need not re-register with the new device for online accounts. Al-

though a related problem, this is not applicable to the authenticator

loss problem since it assumes that the user still has access to the

authenticator to be replaced.

Takakuwa [35] proposes two protocols for solving the authen-

ticator loss problem: Preemptively Synced Keys (PSK) and Online

Recovery Storage (ORS). PSK does not require a third party as the

backup device instead generates a number of key pairs and transfers

public keys to the primary authenticator. ORS requires the storage

of recovery information for every registration at a third party and

connectivity during registration and recovery procedures. Both

protocols have caveats that make them impractical for resource-

constrained authenticators: PSK requires large amounts of storage

space for preemptively generated keys, and ORS requires that the

authenticator can connect to the internet.

8 CONCLUSION
We proved security of Yubico’s recent proposal [24] for account

recovery in WebAuthn. To model the cryptographic core of Yu-

bico’s proposal, we presented a new cryptographic primitive, called

ARKG, which allows for asynchronous and remote generation of

public keys, for which private keys may be derived later by the

owner of the key pair. Yubico’s proposal instantiates ARKG with

DL-based keys and enables primary authenticators to remotely

generate and register public keys for a backup authenticator. Our

analysis proves that Yubico’s ARKG can be securely composed

with public-key protocols, such as WebAuthn’s signature-based

challenge-response protocol, assuming the hardness of the DL and

PRF-ODH assumptions in the random oracle model.

We discussed the integration of ARKG with WebAuthn and the

usability aspects of such an integration, as well as the concrete

instantiations recommended in the proposal. Our experimental res-

ults show that performance overhead of ARKG for a single backup

authenticator, when combined with WebAuthn, increases the run

time of the registration and authentication/recovery procedures by

152 % and 100 %, respectively.

Finally, by decoupling ARKG into a separate, yet composable

building block, our modelling technique prepares ground for further

instantiations and utilisation of the scheme. Of particular interest

is a post-quantum secure instance of ARKG for the time when

WebAuthn begins adoption of new quantum-safe cryptographic

standards. Another interesting research objective is to utilise ARKG

to allow users to delegate access to their WebAuthn accounts to

other users.

ACKNOWLEDGMENTS
Researchers from the Surrey Centre for Cyber Security were sup-

ported by the UK’s National Cyber Security Centre.

REFERENCES
[1] FIDO Alliance. 2018. Client to Authenticator Protocol (CTAP). Technical

Report. https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-

authenticator-protocol-v2.0-id-20180227.html

[2] European Banking Authority. 2018. Payment services and electronic money. Tech-
nical Report. https://eba.europa.eu/regulation-and-policy/payment-services-

and-electronic-money

[3] Dirk Balfanz, Alexei Czeskis, Jeff Hodges, J.C. Jones, Michael B. Jones, Akshay

Kumar, Angelo Liao, Rolf Lindemann, and Emil Lundberg. 2019. Web Authen-
tication: An API for accessing Public Key Credentials Level 1. Technical Report.
https://www.w3.org/TR/webauthn

12

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-authenticator-protocol-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-authenticator-protocol-v2.0-id-20180227.html
https://eba.europa.eu/regulation-and-policy/payment-services-and-electronic-money
https://eba.europa.eu/regulation-and-policy/payment-services-and-electronic-money
https://www.w3.org/TR/webauthn

Asynchronous Remote Key Generation: An Analysis of Yubico’s Proposal for W3C WebAuthn

[4] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. 1996. Keying Hash Functions

for Message Authentication. In Advances in Cryptology – CRYPTO ’96. Springer
Berlin Heidelberg, 1–15. https://doi.org/10.1007/3-540-68697-5_1

[5] Jacqueline Brendel and Marc Fischlin. 2017. Zero Round-Trip Time for the

Extended Access Control Protocol. In Computer Security – ESORICS 2017. Springer
International Publishing, 297–314. https://doi.org/10.1007/978-3-319-66402-6_18

[6] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. 2017.

PRF-ODH: Relations, Instantiations, and Impossibility Results. In Advances in
Cryptology – CRYPTO 2017. Springer International Publishing, 651–681. https:

//doi.org/10.1007/978-3-319-63697-9_22

[7] C. Brzuska, M. Fischlin, N. P. Smart, B. Warinschi, and S. C. Williams. 2013. Less

is More: Relaxed yet Composable Security Notions for Key Exchange. Int. J. Inf.
Secur. (2013). https://doi.org/10.1007/s10207-013-0192-y

[8] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams.

2011. Composability of Bellare-Rogaway Key Exchange Protocols. In Proceedings
of the 18th ACM Conference on Computer and Communications Security (CCS ’11).
ACM Press, 51–62. https://doi.org/10.1145/2046707.2046716

[9] Scott Cantor, John Kemp, Rob Philpott, and Eve Maler. 2005. Assertions and Pro-
tocols for the OASIS Security Assertion Markup Language (SAML) V2.0. Technical
Report. https://www.oasis-open.org/standards#samlv2.0

[10] Certicom Research. 2009. SEC 1: Elliptic Curve Cryptography. Technical Report.
http://www.secg.org/sec1-v2.pdf

[11] Dipankar Dasgupta, Arunava Roy, and Abhijit Nag. 2017. Multi-Factor Authen-

tication. In Infosys Science Foundation Series. Springer International Publishing,
185–233. https://doi.org/10.1007/978-3-319-58808-7_5

[12] Alexandra Dmitrienko, Christopher Liebchen, Christian Rossow, and Ahmad-

Reza Sadeghi. 2014. On the (In)Security of Mobile Two-Factor Authentication. In

Financial Cryptography and Data Security. Springer Berlin Heidelberg, 365–383.

https://doi.org/10.1007/978-3-662-45472-5_24

[13] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. 2015.

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Candidates. In

Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security (CCS ’15). Association for Computing Machinery. https://doi.org/10.

1145/2810103.2813653

[14] D. Eastlake and T. Hansen. 2006. US Secure Hash Algorithms (SHA and HMAC-
SHA). Technical Report. https://doi.org/10.17487/rfc4634

[15] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1986. How to construct

random functions. Journal of the ACM 33, 4 (aug 1986), 792–807. https://doi.org/

10.1145/6490.6503

[16] Nancie Gunson, Diarmid Marshall, Hazel Morton, and Mervyn Jack. 2011. User

perceptions of security and usability of single-factor and two-factor authentic-

ation in automated telephone banking. Computers & Security 30, 4 (jun 2011),

208–220. https://doi.org/10.1016/j.cose.2010.12.001

[17] Jeff Hodges. 2018. Recovering from Device Loss. https://github.com/w3c/

webauthn/issues/931

[18] Hugo Krawczyk. 2010. Cryptographic Extraction and Key Derivation: The HKDF

Scheme. In Advances in Cryptology – CRYPTO 2010. Springer Berlin Heidelberg,

631–648. https://doi.org/10.1007/978-3-642-14623-7_34

[19] Hugo Krawczyk. 2010. Cryptographic Extraction and Key Derivation: The HKDF

Scheme. In Advances in Cryptology – CRYPTO 2010, Tal Rabin (Ed.). Springer

Berlin Heidelberg.

[20] H. Krawczyk, M. Bellare, and R. Canetti. 1997. HMAC: Keyed-Hashing for Message
Authentication. Technical Report. https://doi.org/10.17487/rfc2104

[21] H. Krawczyk and P. Eronen. 2010. HMAC-based Extract-and-Expand Key Deriva-
tion Function (HKDF). Technical Report. https://doi.org/10.17487/rfc5869

[22] Rolf Lindemann. 2018. FIDO ECDAA Algorithm. Technical Re-

port. https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-

v2.0-id-20180227.html

[23] Rolf Lindemann, Davit Baghdasaryan, and Eric Tiffany. 2014. FIDO UAF Protocol
Specification v1.0. Technical Report. https://fidoalliance.org/specs/fido-uaf-v1.0-

ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html

[24] Emil Lundberg and Dain Nilsson. 2019. Webauthn recovery extension. https:

//github.com/Yubico/webauthn-recovery-extension/

[25] S. Ghorbani Lyastani, M. Schilling, M. Neumayr, M. Backes, and S. Bugiel. 2020.

Is FIDO2 the Kingslayer of User Authentication? A Comparative Usability Study

of FIDO2 Passwordless Authentication. In 2020 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 842–859. https:

//doi.org/10.1109/SP40000.2020.00047

[26] Ariana Mirian, Joe DeBlasio, Stefan Savage, Geoffrey M. Voelker, and Kurt

Thomas. 2019. Hack for Hire: Exploring the Emerging Market for Account

Hijacking. In WWW 2019. ACM, 1279–1289.

[27] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen. 2005. HOTP: An
HMAC-Based One-Time Password Algorithm. Technical Report. https://doi.org/

10.17487/rfc4226

[28] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. 2011. TOTP: Time-Based One-Time
Password Algorithm. Technical Report. https://doi.org/10.17487/rfc6238

[29] National Institute of Standards and Technology. 2013. Digital Signature Standard
(DSS). Technical Report. https://doi.org/10.6028/nist.fips.186-4

[30] Hideo Nishimura, Yoshihiko Omori, Takao Yamashita, and Satoru Furukawa.

2018. Secure authentication key sharing between mobile devices based on owner

identity. In 2018 Fourth International Conference on Mobile and Secure Services
(MobiSecServ). IEEE. https://doi.org/10.1109/mobisecserv.2018.8311436

[31] Tatsuaki Okamoto and David Pointcheval. 2001. The Gap-Problems: A New

Class of Problems for the Security of Cryptographic Schemes. In Public Key
Cryptography, Kwangjo Kim (Ed.).

[32] Ariel Rabkin. 2008. Personal knowledge questions for fallback authentication.

In Proceedings of the 4th symposium on Usable privacy and security - SOUPS ’08.
ACM Press. https://doi.org/10.1145/1408664.1408667

[33] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. 2014. OpenID
Connect 1.0. Technical Report. https://openid.net/connect/

[34] Sampath Srinivas, Dirk Balfanz, and Eric Tiffany. 2014. Universal 2nd Factor (U2F)
Overview. Technical Report. https://fidoalliance.org/specs/fido-u2f-v1.0-ps-

20141009/fido-u2f-overview-ps-20141009.html

[35] Alex Takakuwa. 2019. Moving from Passwords to Authenticators. Ph.D. Disserta-
tion. http://hdl.handle.net/1773/44147

[36] Alex Takakuwa, Tadayoshi Kohno, and Alexei Czeskis. 2017. The Transfer Access
Protocol—Moving to New Authenticators in the FIDO Ecosystem. Technical Report.

http://dada.cs.washington.edu/research/tr/2017/06/UW-CSE-17-06-01.pdf

[37] World Economic Forum. 2020. Passwordless Authentication: The next breakthrough
in secure digital transformation. Technical Report. http://www3.weforum.org/

docs/WEF_Passwordless_Authentication.pdf

A ADDITIONAL SECURITY PROOFS
Here we present the additional proofs from Section 4.2 and Sec-

tion 5.2.

A.1 Proof of Theorem 4.2 (1)
Proof. G0 is defined exactly by the experiment ExpmsKS

ARKG,A (𝜆).
Thus

Pr [G0 = 1] = Pr

[
ExpmsKSARKG,A (𝜆) = 1

]
Define G1 as G0 with the exception that line 4 of DerivePK is

replaced with 𝑟 ←$Z𝑝 , 𝑃 ← 𝑔ck ·𝑔𝑟 during the oracle call Opk′ . The
adversary B keeps an internal list List that contains elements of the

form (𝐸, 𝑒, 𝑟). If A queries Osk′ with cred ∋ 𝐸 such that 𝐸 ∈ List
then it replaces line 4 of DeriveSK run by Osk′ with ‘return sk′ =
ck + 𝑟 ’ where 𝑟 is obtained from the matching 𝐸 entry in List. This
ensures that sk′ output from the oracle still passes Check when

called on a corresponding public key obtained from Opk′ . As both 𝑠
and 𝑟 are uniformly sampled from the same space, the two games

are indistinguishable. Hence

Pr [G1 = 1] = Pr [G0 = 1]
We then construct an adversary B for the snPRF-ODH game

from an adversary that is able to win at G1. That is, break msKS
security of ARKG.

The adversary B gets the challenge 𝑆 from its snPRF-ODH game.

It sets up the game as described except it sets sk← ⊥, pk← 𝑆 , and

the label of KDF1 to be the challenge label 𝑥 from its own game. It

challenges A to create a forgery on 𝑆 and is able to answer oracle

queries honestly. Then,A outputs the tuple (sk★, pk★, cred★), from
which B can create a successful answer to the snPRF-ODH chal-

lenge (𝑔, 𝑆, 𝐸,𝑦★). It extracts 𝐸 from cred★ and uses the single𝑂𝐷𝐻

oracle query in the snPRF-ODH game to get ck = 𝑦 ← PRF(𝑔𝑠𝑒 , 𝑥).
B can then compute the secret key as 𝑠 = sk − ck mod 𝑞. With

knowledge of 𝑠 it is trivial for B to compute 𝑦 = PRF(𝐸𝑠 , 𝑥) and
make the comparison 𝑦 =

?

𝑦★. If they are equal, then 𝑏 = 0, other-

wise 𝑏 = 1. The event that A queries 𝐸 = 𝐸 (which would cause

the experiment to abort) happens with probability 𝑞𝑜/𝑝 where 𝑝

is the size of G and 𝑞𝑜 is the number of oracle queries made by A.

This probability is negligible as 𝑝 is large.

13

https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/978-3-319-66402-6_18
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1007/s10207-013-0192-y
https://doi.org/10.1145/2046707.2046716
https://www.oasis-open.org/standards#samlv2.0
http://www.secg.org/sec1-v2.pdf
https://doi.org/10.1007/978-3-319-58808-7_5
https://doi.org/10.1007/978-3-662-45472-5_24
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.17487/rfc4634
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://doi.org/10.1016/j.cose.2010.12.001
https://github.com/w3c/webauthn/issues/931
https://github.com/w3c/webauthn/issues/931
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.17487/rfc2104
https://doi.org/10.17487/rfc5869
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html
https://github.com/Yubico/webauthn-recovery-extension/
https://github.com/Yubico/webauthn-recovery-extension/
https://doi.org/10.1109/SP40000.2020.00047
https://doi.org/10.1109/SP40000.2020.00047
https://doi.org/10.17487/rfc4226
https://doi.org/10.17487/rfc4226
https://doi.org/10.17487/rfc6238
https://doi.org/10.6028/nist.fips.186-4
https://doi.org/10.1109/mobisecserv.2018.8311436
https://doi.org/10.1145/1408664.1408667
https://openid.net/connect/
https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-overview-ps-20141009.html
https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-overview-ps-20141009.html
http://hdl.handle.net/1773/44147
http://dada.cs.washington.edu/research/tr/2017/06/UW-CSE-17-06-01.pdf
http://www3.weforum.org/docs/WEF_Passwordless_Authentication.pdf
http://www3.weforum.org/docs/WEF_Passwordless_Authentication.pdf

Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, Mark Manulis, and Dain Nilsson

Thus, the advantage of A in ExpmsKS
ARKG,A (𝜆) is bound by an ad-

versary B against the snPRF-ODH assumption, giving

AdvmsKSARKG,A (𝜆) ⩽
𝑝 − 𝑞𝑜
𝑝
· Adv𝑠𝑛𝑃𝑅𝐹−𝑂𝐷𝐻

G,B (𝜆)

If the snPRF-ODH assumption is hard in G then ARKG is msKS
secure. □

A.2 Proof of Theorem 4.2 (2)
Proof. G0 is defined exactly by the experiment ExpmwKS

ARKG,A (𝜆).
Thus

Pr [G0 = 1] = Pr

[
ExpmwKSARKG,A (𝜆) = 1

]
We immediately construct an adversary B for the snPRF-ODH

game from an adversary that is able to win at G0. That is, break
mwKS security of ARKG.

The adversary B gets the challenge 𝑆 from its snPRF-ODH game.

It sets up the game as described except on line 2 where instead it sets

‘sk ← ⊥, pk ← 𝑆’, and sets the label of KDF1 to be the challenge

label 𝑥 from its own game. It challenges A to create a forgery on

𝑆 and is able to answer oracle queries honestly. Then, A outputs

the tuple (sk★, pk★, cred★), from which B can create a successful

answer to the snPRF-ODH challenge (𝑔, 𝑆, 𝐸,𝑦★). It extracts 𝐸 from

cred★ and uses the single 𝑂𝐷𝐻 oracle query in the snPRF-ODH

game to get ck = 𝑦 ← PRF(𝑔𝑠𝑒 , 𝑥). B can then compute the secret

key as 𝑠 = sk★ − ck. With knowledge of the secret key 𝑠 it is trivial

for B to compute 𝑦 = PRF(𝐸𝑠 , 𝑥) and make the comparison 𝑦 =
?

𝑦★.

If they are equal, then 𝑏 = 0, otherwise 𝑏 = 1. The event that A
queries 𝐸 = 𝐸 (which would cause the experiment to abort) happens

with probability 𝑞𝑜/𝑝 where 𝑝 is the size of G and 𝑞𝑜 is the number

of oracle queries made by A. This probability is negligible as 𝑝 is

large.

Thus, the advantage of A in ExpmsKS
ARKG,A (𝜆) is bounded by an

adversary B against the snPRF-ODH assumption, giving

AdvmwKSARKG,A (𝜆) ⩽
𝑝 − 𝑞𝑜
𝑝

Adv𝑠𝑛𝑃𝑅𝐹−𝑂𝐷𝐻
G,B (𝜆)

If the snPRF-ODH assumption is hard in G then ARKG is mwKS
secure. □

A.3 Proof of Theorem 4.2 (3)
Proof. G0 is defined exactly by the experiment ExphsKS

ARKG,A (𝜆).
Thus

Pr [G0 = 1] = Pr

[
ExphsKSARKG,A (𝜆) = 1

]
Define G1 as G0 with the exception that line 4 of DerivePK is

replaced with 𝑟 ←$Z𝑝 , 𝑃 ← 𝑔ck · 𝑔𝑟 during the oracle call Opk′ . If
A queries Osk′ with cred ∋ 𝐸 such that 𝐸 ∈ List, then it replaces

line 4 of DeriveSK executed by Osk′ with ‘return sk′ = ck + 𝑟 ’
where 𝑟 is obtained from the matching 𝐸 entry in List. This ensures
that sk′ output from the oracle still passes Check when called on

a corresponding public key obtained from Opk′ . As both 𝑠 and 𝑟
are uniformly sampled from the same space, the two games are

indistinguishable. Hence

Pr [G1 = 1] = Pr [G0 = 1]
We then construct an adversary B for the DL game from an

adversary that is able to win at G1. That is, break hsKS security of

ARKG. The adversary B sets up the game as described in G1, except
that on line 2 it replaces ‘(sk, pk) ← KGen’ with ‘pk← 𝑌, sk← ⊥’,
where 𝑌 is B’s challenge from the DL game. The challenger B
chooses one query to the oracle where it guesses A will use the

derived pk′ as part of its forgery. For this query, it can answer

oracles calls to Opk′ using the DL challenge S, and cannot answer

Osk′ queries. In the event this oracle is queried, the experiment

aborts. For all other queries, B can answer oracle queries made by

A as B generates the ephemeral key pair (𝑒, 𝐸) and can extract the

value 𝑟 from List.
Then, B waits for A to output a successful forgery sk′ with

credential cred★. Using 𝐸 from cred★, B is able to locate 𝐸 in List
and find the corresponding 𝑒 . This allows B to recompute ck from
KDF1 (𝑆𝑒) and compute an 𝑠 such that𝑔𝑠 = 𝑆 as 𝑠 = sk′−𝑐𝑘 mod 𝑞.

B is guaranteed that 𝐸 ∈ List as a successful forgery in the hsKS
game requires (pk★, cred★) ∈ PKList which can only happen if B
generated 𝐸 during an oracle call fromA. However, the simulation

fails if A queries Osk′ on pk′ that embeds the DL challenge, which

happens with probability (𝑞𝑜 − 1)/𝑞𝑜 . Thus, the advantage of A
in ExphsKS

ARKG,A (𝜆) is bound by an adversary B against the discrete

logarithm assumption, giving

AdvhwKSARKG,A (𝜆) ⩽
1

𝑞𝑜
Adv𝐷𝐿
G,B (𝜆)

By assumption, the DL problem is hard in G and thus ARKG is

hsKS secure. □

A.4 Proof of Theorem 4.2 (4)
Proof. G0 is defined exactly by the experiment ExphwKS

ARKG,A (𝜆).
Thus

Pr [G0 = 1] = Pr

[
ExphwKSARKG,A (𝜆) = 1

]
We immediately construct an adversary B for the DL game from

an adversary that is able to win at G0. That is, break hwKS security

of ARKG. The adversary B sets up the game as described in the

experiment, except that on line 2 it replaces ‘(sk, pk) ← KGen’
with ‘pk ← 𝑌, sk ← ⊥’, where 𝑌 is B’s challenge from the DL

game. It can answer oracle queries made by A as B generates the

ephemeral key pair (𝑒, 𝐸) and thus can compute 𝐸𝑠 as 𝑆𝑒 in lines 1

and 2 ofDerivePK, and the rest can be executed without knowledge

of the exponent.

In particular,A is unable to do this as it does not have knowledge

of 𝑒 . WhenA does make an oracle call, B stores the key pair (𝑒, 𝐸)
in a list List. Then, B waits for A to output a successful forgery

sk′ with credential cred★. Using 𝐸 from cred★, B is able to locate 𝐸

in List and find the corresponding 𝑒 . This allows it to recompute ck
from KDF1 (𝑆𝑒) and compute an 𝑠 such that 𝑔𝑠 = 𝑆 as 𝑠 = sk′ − 𝑐𝑘
mod 𝑞. B is guaranteed that 𝐸 ∈ List as a successful forgery in the

hwKS game requires (pk★, cred★) ∈ PKList which can only happen

if B generated 𝐸 during an oracle call from A.

Thus, the advantage of A in ExphwKS
ARKG,A (𝜆) is bounded by an

adversary B against the DL assumption, giving

AdvhwKSARKG,A (𝜆) ⩽ Adv𝐷𝐿
G,B (𝜆)

By assumption, the DL problem is hard in G and thus ARKG is

hwKS secure. □

14

Asynchronous Remote Key Generation: An Analysis of Yubico’s Proposal for W3C WebAuthn

A.5 Proof of Lemma 1
Proof. Given an adversaryA against G𝜅−1,DARKG;𝛱 , we construct an

adversary B against the PK-unlinkability property of ARKG. To

start, B honestly simulates the 𝛱 stage of the composition, using

keys from the PK-unlinkability game Exppk
ARKG,A (𝜆). To allow B to

simulate the 𝛱 stage, it simulates the lists SST𝛱 , LST𝛱 and the

variable 𝜅★. It also keeps track of corrupt keys by maintaining and

updating the list LSTARKG. Upon execution, it sets up the game:

(SST𝛱 , EST𝛱) ← SetupE𝛱 (LSID, ARKG.KGen, 𝜅)
(LST𝛱 ,MST𝛱) ← SetupG𝛱 (LSID, SST𝛱 , EST𝛱 , 𝜅)

𝜅★← 0

∀lsid ∈ LSID, LST𝛱 (lsid) .𝛿 ← honest

The adversary B now invokes A. It is able to make oracle quer-

ies, which B answers as described by OexecuteB and Ocorrupt in
Appendix C.

The probability that A issues a Ocorrupt query against a simu-

lated key in the PK-unlinkability game is bounded by 𝑞0/𝑝 . Notice
that, if the challenge oracle in the PK-unlinkability game returns a

real key, then B perfectly simulates G𝜅−1,DARKG,𝛱 . If a simulated key is

returned, then it perfectly simulates G𝜅,DARKG,𝛱 . IfA wins against the

composed game, B sends the query Oguess (1), otherwise it sends
Oguess (0). Therefore, the difference in success probability of A
provides a lower bound for the success of B against Exppk

ARKG,A (𝜆).
That is, we have

Pr

[
Exppk0

ARKG,A (𝜆) = 0

]
= Adv

G𝜅−1,𝑑ARKG;𝛱

ARKG,A (𝜆)

Pr

[
Exppk1

ARKG,A (𝜆) = 1

]
= Adv

G𝜅,𝑑ARKG;𝛱

ARKG,A (𝜆)
Which gives the following bound, where negl is a negligible

function in the security parameter 𝜆,

Adv
Exppk

ARKG,A (𝜆)
ARKG,A (𝜆) =

���Pr [Exppk0ARKG,A (𝜆) = 0

]
− Pr

[
Exppk1

ARKG,A (𝜆) = 1

] ���
=

�����AdvG𝜅,𝑑ARKG;𝛱
ARKG,A (𝜆) − Adv

G𝜅−1,𝑑
ARKG;𝛱

ARKG,A (𝜆)
����� ⩽ negl(𝜆)

□

A.6 Proof of Lemma 2
Proof. Let B be a PPT adversary against G𝛱 that simulates the

composed game G𝑞𝑜 ,DARKG;𝛱 . Since the keys used in the protocol stage

are independent of those used in the ARKG phase, B can answer

A’s queries to the ARKG stage using its simulated composed game,

whilst forwarding A’s queries to the protocol stage to G𝛱 . The

outputs of B to A are distributed exactly as A expects to play

against.

To construct the simulation, B internally defines and maintains

SSTARKG, LSTARKG, ESTARKG, andMSTARKG as in the composed game.

To generate these variables, B runs:

(SSTARKG, ESTARKG) ← SetupEARKG (LSID,KGen, 𝜆)
(LSTARKG,MSTARKG) ← SetupGARKG (LSID, SST, EST, 𝜆)

Then, B invokes A, which can query oracles offered by the

composed game. If the query is to the 𝛱 phase of the composed

protocol, then B forwards the query to Exp
𝛱
(𝜆) and forwards the

response to A. If the query is to the ARKG phase of the protocol,

then B uses its internal simulated states, that is SSTARKG, LSTARKG,
ESTARKG, andMSTARKG, to answerA. Since B and G𝛱 run the same

algorithms as in the composed game, the simulation is perfect.

Eventually, A will terminate, at which point B also stops. The

success probability A is lower bound for the success probability of

B against its game. Thus

Adv
G𝑞𝑜 ,𝐷ARKG;𝛱

ARKG,A (𝜆) ⩽ Adv
Exp

𝛱
(𝜆)

𝛱,B (𝜆)

□

B REWRITING PK-UNLINKABILITY
Herewe rewrite the PK-unlinkability property defined in Section 3.2

using the framework from Brzuska et al. [8]. We stress that we

capture the same winning conditions for the adversary. The frame-

work allows us to separate the session and game states for PK-

unlinkability from that of a generic protocol, which allows us to

address security of their composition. The algorithms and oracles

are given in Fig. 8.

We now define the states that formally capture this security

experiment, but note that we do not make use of the local session

state LSTARKG for this security property. Furthermore, for readability,

we omit the subscript for all states in this section, as this only

pertains to a property for ARKG, all states have an implicit ARKG

subscript, i.e., SST = SSTARKG. The setup algorithms are run first to

set up the experiment. The states, algorithms, oracles and predicates

required are:

• Game Execution State. The execution state comprises of a

key pair (sk
0
, pk

0
) from which derived keys are computed.

• Session State. The session state SST is indexed by a local

session identifier lsid ∈ LSID, which is derived from a user’s

long-term key and an integer in 1 ⩽ 𝑖 ⩽ 𝑛, where 𝑛 is

the number of derived key pairs per user in the game. In

this game, there is only one user, namely that with key pair

(sk
0
, pk

0
). Initially set to undefined, it is populated with a

key pair (sk′, pk′) when computed by the challenge oracle.

• Model Session State. The model stateMST stores two values

(𝑏,𝑏 ′). The challenge bit 𝑏 is sampled and set during the

start of the game, and 𝑏 ′, which is the adversary’s guess at

𝑏, is initially set to undefined and updated by the adversary

before its termination.

• Setup. The algorithm SetupE is used to initialise all long-

term keys for all users. Each session is initialised with the

correct key pair and all other variables are initially set to be

undefined. SetupG picks the challenge bit 𝑏 ∈ {0, 1}.
• Queries. For PK-unlinkability, we allow the adversary one

oracle—the challenge oracle. The oracle responds with the

tuple ((SST, LST, EST,MST), pk′, sk′) when queried. That is,

it updates the appropriate session states and outputs a po-

tentially derived key pair (sk′, pk′).
• Predicate. The guess predicate defines the winning condition

of the adversary. That is, the predicate evaluates the output

of the Oguess oracle, where the predicate evaluates 𝑏 ′ =? 𝑏,
with equality indicating a win for the adversary.

15

Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, Mark Manulis, and Dain Nilsson

SetupE(LSID,KGen, 𝜆)
1 : EST.(sk

0
, pk

0
) ← KGen(𝜆)

2 : for (★) ∈ LSID
3 : SST(pk

0
,★) ← (⊥,⊥)

4 : return (SST, EST)

P(LSID, SST, LST, EST,MST)
1 : returnMST.𝑏 =

? MST.𝑏′

SetupG(LSID, SST, EST)
1 : MST.𝑏 ←$ {0, 1}
2 : MST.𝑏′ ← ⊥
3 : return (LST,MST)

Oguess (SST, LST, EST,MST, 𝑏)
1 : MST′ ← MST, MST′.𝑏′ ← 𝑏

2 : return (SST, LST, EST,MST′)

Opk𝑏′ (LSID, SST, EST, EST,MST, 𝜆)
1 : SST′ ← SST

2 : if MST.𝑏 =
?

0 then

3 : pk′ ← DerivePK(EST.pk
0
)

4 : sk′ ← DeriveSK(pk′, EST.sk
0
)

5 : else (sk′, pk′) ←$D
6 : SST′ (lsid) .pk′ ← pk′

7 : SST′ (lsid) .sk′ ← sk′

8 : return ((SST′, LST, EST,MST), pk′, sk′)

Figure 8: Algorithms and oracles for remodelling PK-unlinkability in Section 3.2.

OexecuteB (lsid,msg)
1 : if LST(lsid) .𝛿 = corrupt then sk′ ← SST(lsid) .sk′

2 : elseif 𝜅★ < 𝜅

3 : (sk′, pk′) ←$D
4 : SST𝛱 (lsid) .(sk′, pk′) ← (sk′, pk′)
5 : 𝜅★ = 𝜅★ + 1
6 : elseif 𝜅★ ≥ 𝜅

7 : pk′ ← DerivePK(pk
0
)

8 : sk′ ← corrupt(pk′)
9 : SST𝛱 (lsid) .(sk′, pk′) ← (sk′, pk′)
10 : 𝜅★ = 𝜅★ + 1
11 : return (𝜒𝛱 (sk′, pk′,msg), (SSTARKG;𝛱 ,MSTARKG;𝛱 , LST′ARKG;𝛱 ,

12 : ESTARKG;𝛱)

Ocorrupt (lsid, (SSTARKG;𝛱 ,MSTARKG;𝛱 , LST′ARKG;𝛱 , ESTARKG;𝛱))
1 : LST′ (lsid) ← LST

2 : LST′ (lsid) .𝛿 ← corrupt

3 : return (LST′ (lsid) .sk′, (SSTARKG;𝛱 ,MSTARKG;𝛱 , LST′ARKG;𝛱 ,

4 : ESTARKG;𝛱))

OexecuteA (lsid,msg)
1 : if LST(lsid) .𝛿 = corrupt then sk′ ← SST(lsid) .sk′

2 : elseif 𝜅★ < 𝜅

3 : (sk′, pk′) ←$D
4 : SSTARKG;𝛱 (lsid) .(sk′, pk′) ← (sk′, pk′)
5 : 𝜅★ = 𝜅★ + 1
6 : elseif 𝜅★ = 𝜅

7 : SSTARKG;𝛱 (lsid) .pk′ ← Opk𝑏
8 : SSTARKG;𝛱 (lsid) .sk′ ← ODeriveSK (lsid)
9 : 𝜅★ = 𝜅★ + 1
10 : elseif 𝜅★ > 𝜅

11 : pk′ ← DerivePK(LSTARKG;𝛱 (lsid) .pk)
12 : sk′ ← corrupt(lsid)
13 : SSTARKG;𝛱 (lsid) .(sk′, pk′) ← (sk′, pk′)
14 : 𝜅★ = 𝜅★ + 1
15 : return (𝜒𝛱 (sk′, pk′,msg), SSTARKG;𝛱 ,MSTARKG;𝛱 ,

16 : LSTARKG;𝛱 , ESTARKG;𝛱)

Figure 9: Additional oracles for Theorem 5.1.

C ADDITIONAL ORACLES
In Fig. 9, we give the additional oracles for the proof of Theorem 5.1.

The Ocorrupt oracle, upon input of a session identifier lsid, executes
and returns DeriveSK as sk′ and updates LST(lsid) .𝛿 ← corrupt. It
is used as the Ocorrupt oracle in Theorem 5.1 and in Lemmas 1 and 2.

The OexecuteA oracle is used in the proof of Theorem 5.1 to swap

each derived key pair for a random sample of distribution D. It is

implicitly indexed by the value of 𝜅★. The OexecuteB oracle is used

in the proof of Lemma 1. It embeds a PK-unlinkability challenge in

the session 𝜅★. Again, this oracle is also implicitly indexed by the

value of 𝜅★.

16

	Abstract
	1 Introduction
	1.1 WebAuthn overview and key properties
	1.2 Authenticator loss
	1.3 Contribution

	2 Yubico's proposal for WebAuthn account recovery
	2.1 Overview
	2.2 Intuitive security and privacy goals

	3 Modelling Asynchronous Remote Key Generation
	3.1 Syntax of ARKG
	3.2 Security definitions

	4 An ARKG Scheme for DL-based Keys
	4.1 The ARKG scheme
	4.2 Security analysis

	5 Composition of ARKG with Generic Public Key Protocols
	5.1 Modelling ARKG composition
	5.2 Analysis of ARKG composition

	6 Extended discussion
	6.1 Yubico's ARKG instance
	6.2 Integration with WebAuthn
	6.3 Performance evaluation
	6.4 Usability

	7 Other related work
	8 Conclusion
	Acknowledgments
	References
	A Additional Security Proofs
	A.1 Proof of msks
	A.2 Proof of mwks
	A.3 Proof of hsks
	A.4 Proof of hwks
	A.5 Proof of Lemma 1
	A.6 Proof of Lemma 2

	B Rewriting PK-unlinkability
	C Additional Oracles

