Private Join and Compute from PIR with Default

Tancréde Lepoint*  Sarvar Patel!  Mariana Raykova  Karn Sethf  Ni Trieu?

October 2, 2021

Abstract

The private join and compute (PJC) functionality enables secure computation over data
distributed across different databases, and is applicable to a wide range of applications, many
of which address settings where the input databases are of significantly different sizes.

We introduce the notion of private information retrieval (PIR) with default, which enables
two-party PJC functionalities in a way that hides the size of the intersection of the two databases
and incurs sublinear communication cost in the size of the bigger database. We provide two
constructions for this functionality, one of which requires offline linear communication, which
can be amortized across queries, and one that provides sublinear cost for each query but relies
on more computationally expensive tools. We construct inner-product PJC, which has applica-
tions to ads conversion measurement and contact tracing, relying on an extension of PIR with
default. We evaluate the efficiency of our constructions, which can enable 28 PIR with default
lookups on a database of size 22% (or inner-product PJC on databases with such sizes) with the
communication of 44MB, which costs less than 0.17c. for the client and 26.48c. for the server.

1 Introduction

Private set intersection (PSI) enables two parties who have private input sets to identify items that
they have in common without learning any other information. While PSI has proven its broad
applicability, there are settings which require more refined functionality that does not reveal the
whole intersection but rather enables restricted computation on the data in the intersection. We
refer to this functionality as private join and compute (PJC) [Gool9].

An important difference in the privacy requirements relevant for the PJC and the PSI settings,
is that while the intersection size is inherently revealed by the PSI output, in the PJC case this is an
additional privacy leakage, which should be avoided in many scenarios. The cost of the “compute”
part in a private join and compute protocol is determined by the size of the intersection, which
is often much smaller than the size of the input sets, thus the dominant efficiency cost is the cost
of the step computing the intersection. Similarly to the PSI setting, when the two input datasets
are of the same size, the intersection computation is necessarily linear in the input size. However,
when we have asymmetric inputs where one of the datasets is much larger than the other, the
efficiency goal is to avoid linear dependence on the size of the larger input set. This raises the
question whether it is possible, in the private join and compute setting, to address both the privacy
requirement of hiding the intersection size and at the same time provide sublinear efficiency.

The PSI-Sum solution of Ton et al. [[KN"20], which was deployed in practice, does not provide
either of the above properties, and they will be highly beneficial for that setting. First, that

*Independent researcher, tancrede.lepoint@gmail.com
fGoogle LLC, {sarvar,marianar karn}@google.com
¥ Arizona State University, nitrieu@asu.edu



solution scales poorly for the party with the smaller input set, which also often has much more
constrained resources, but needs to incur cost proportional to the larger set. Second, it inherently
reveals the intersection size, which can be significant leakage especially when one of the inputs is
small — their protocol mitigates the issue by allowing the party with the small input to learn the
intersection size first and decide to abort if it is too small. Our construction addresses both of
these issues. Additionally, we also allow revealing the intersection cardinality in a differentially
private manner. Further, we extend the functionality that can be computed over the intersection,
including allowing both parties to contribute associated values. While we mainly focus on a specific
functionality (described below), we also discuss how to extend our work to generic functionalities.

We specifically consider the problem of private join and compute (Inner Product PJC) which
allows computing an inner product between attribute values associated with the intersection IDs
in each of the two input datasets. In this setting the two input sets are of the form (X, W) =
{(z1,w1),...,(x,w)} and (Y, V) = {(y1,v1),- -, (Yn,vn)} and the computation evaluated by the
PJC functionality is defined as follows: f((X,W),(Y,V)) = > w;v;.

1€ [t] 7je [’I’L] s Li=Yj

1.1 Owur Motivation

We motivate the above functionality with two practical applications. The first application involves
privacy-preserving computation for the effectiveness of advertising campaigns, which is a general-
ization of the functionality supported by Ion et al. [[KN"20]. A transaction data provider (TDP)
has a database of transaction values tdp_db which contains (id, spending). Here, the customer “id”
has seen an ad, and then makes a purchase with an amount “spending”. The Ad tech company has
a database at_db which contains (id, type). Here, the customer “id” has seen an ad with a “type”
supplied by the ad tech company. The “type” can be the time spent watching ads. Typically the
number of ad impressions over a particular time period is orders of magnitude higher (millions)
than the corresponding number of transactions on a fixed date (thousands), thus the sets are highly
asymmetric. The TDP may want to partition based on user attributes such as new/returning cus-
tomer, whether the customer is a loyalty card member, or some demographic information, and may
want to learn an inner-product for each partition. The following query on the join of these two
databases computes the sum of the transaction values of users who saw ads weighted according to
the type (or weight) supplied by the ad tech company.

SELECT sum/(tdp_db.spending * at_db.type)
FROM at_db INNER JOIN tdp_db

ON at_db.id = tdp_db.id

This problem can be seen as an instance of inner product PJC, where set sizes are asymmetric,
and hiding the exact intersection size may be especially important, since the computation may be
repeated with overlapping partitions from the TDP.

The inner product PJC functionality could also be used to enhance the privacy guarantees
of exposure notification protocols in the existing decentralized contact tracing solutions [AGC20,
CGH'20, TSST20, DP320]. In such solutions, user devices broadcast BLE packets that contain
pseudorandom values generated from a daily secret key. Users who test positive for COVID-19 can
report their secret keys for the periods when they were infectious to a central server. Each key is
accompanied with a transmission risk score based on the diagnosis and user symptoms. Anyone
who downloads the server database can therefore check whether the random values that her app
has received were derived from any of the reported secrets. However, this approach also allows
learning information about the values transmitted in individual BLE packets. We can view the
above problem as an instance of inner product PJC where the server database contains the reported



pseudorandom values with their risk scores, and where the user has the pseudorandom values she
has observed, and possibly with corresponding weights determined by the time elapsed since the
exposure incident, the exposure duration, and other parameters. The goal is for the user to obtain
the weighted sum of the transmission risks of the pseudorandom values matching all her exposures.
We note that this application also has a natural input size asymmetry: the client set is much smaller
than the server database.

1.2 Owur Contributions

With these two applications in mind, we present two different instantiations of our approach,
tailored for two distinct settings. We assume that the participants are semi-honest, they follow
the protocol but attempt to obtain extra information from the execution transcript. Our first
construction is in the setting allowing offline precomputation and initialization. In this setting, the
server’s database is fixed beforehand and can be computed on in an “offline” phase. The goal is to
minimize the cost of (possibly repeated) client queries in the “online” phase when the client data
becomes available. Our first construction in this setting incurs a setup time that is linear in the
size of the server’s (larger) dataset. The subsequent client queries are highly efficient, and have
computation and communication time linear in the client’s dataset and essentially independent
of the size of the server dataset. This is similar to approaches taken by [KLST17, RA18], which
send an encoded server database to the client in the offline phase, allowing highly efficient “online”
intersections. Our work can be seen as extending the functionality achieved by these previous works
by enabling computation over the intersection but keeping the intersection itself hidden, while
preserving the desirable efficiency properties for the online phase. This construction is well-suited
to applications where many small PJC executions are run against a single large databases. For
example, in the conversion-measurement setting, the client’s dataset may arrive in small batches,
or the client may want to make multiple overlapping queries based on different demographic slices.
Previous works incur the costs proportional to the larger database each PJC query.

The second construction is in the fully online setting (without precomputation). In this case,
we instantiate our construction using techniques derived from Private Information Retrieval (PIR).
The resulting construction allows the client to incur costs that are asymptotically linear in the size
of its own dataset, and logarithmic in the server’s dataset size. In practice, this makes it so the
bulk of the costs of executing the protocol are shifted from the client to the server. In this way,
our work improves on [PSTY19] by making the costs incurred by each party more equitable in the
asymmetric input size setting, This is especially beneficial when the client is a constrained device
like a mobile phone, such as in the contact tracing application.

Both our constructions compose with differential privacy in a straightforward way, which allows
repeated client queries on a single server database, using the differential-privacy noise to hide
correlations between the outputs of the different queries. This allows our protocol to hide and/or
apply differential privacy noise to the intersection size as well as the function computed over the
intersection. This is an improvement over PJC [IKN'20] and related works such as [BKM™20],
which require revealing the intersection size without noise.

PJC from PIR-with-Default The main building block for one of our PJC constructions provides
another primitive of independent interest which we call private information retrieval (PIR) with
default. This is a primitive which enables PIR queries over a sparse database where the client
has an input index and receives either the data stored at that index, or a default value, if there
is no item with this index in the database. The server does not learn anything about the query
including whether the client received a database value or a default value. The client does not



Construction 1 | ¢\ i vetion 2 | Circuit-based PSI [PSTY19, SGRP19] | Labeled PST [CHLRI1S]

Offline | Online
— Client -
Communication O(tlog(n/t)) O(t+n) O(tlog(n/t)) +1GC(®) |
Server | O(n) o)
. Client - O(tlog(n/t)) tlog(t) ]
Computation Server | O(n) O(n nlog(n)? O(tlog(n/t)) +1GC(®) |

Table 1: Theoretical costs of PJC protocols. In Construction 2, the log factor comes from the asymptotic be-
havior of the underlying PIR scheme, and can be replaced with the efficiency of the specific PIR scheme. The
computational complexity of [PSTY19] is slightly improved by mega-bin hashing. Poly-ROOM [SGRP19]
achieves asymptotics similar to [PSTY19], thus, we group it in the circuit-based PSI. Label-PSI [CHLR18]
achieves similar asymptotic efficiency as Construction-2, but has worse concrete performance (see [LPR20])
and requires extra cost due to using a generic MPC. We denote the extra cost as |GC(¢) |.

learn any further information about the database or the default value apart from her output. In
particular, if the database values and the default value are indistinguishable, then the client does
not learn whether the query index was present in the database. We also present a multi-query
PIR-with-Default construction.

PIR-with-Default on its own is sufficient to compute private set intersection-sum [ITKN*20].
Another application of PIR-with-Default outside the PJC setting, is a way to distribute anonymous
tokens [KLOR20] as follows: the users who belong to the database stored by the server receive one
type of an authentication token (which is used as the associated value for all database entries in
the PIR-with-Default execution), while every other user receives a second type of an authentication
token which is used for the default value. The server does not learn which of the two groups the
user belongs to, and if the two types of tokens are indistinguishable, the client does not learn which
type it received.

We also introduce a small extension of the PIR-with-Default functionality, which we call Extended-PIR-with-Defaul
that enables both parties to contribute associated values. In this case, the parties will learn shares
the product of the associated values, or the default value. If the parties sum the shares they receive
from multiple queries, they will receive shares of the inner-product over the intersection, which
then directly achieves the inner-product PJC functionality.

Table 1 shows the theoretical communication and computation complexity of our protocol com-
pared with prior works. Note that [CHLR18] is secure against malicious adversaries, but only for
the Labeled PSI functionality itself and not for PSI with computation. Table 1 lists the cost of
semi-honest Labeled PSI [CHLR18].

Implementation Evaluation We evaluate the concrete communication, computation and mon-
etary costs of our constructions and present them together with comparisons to existing works in
Section 7. For our first PJC construction, only the offline communication and computation de-
pends (linearly) on the size of the larger dataset. The online communications and computation is
determined completely by the size of the smaller set and the cost of random memory access (for
datasets of size 2% and 2%, the online computation is ~ 2.43ms and the communication is 7MB).
Our second construction is more computationally expensive but outperforms any existing construc-
tions in terms of total communication when the differences of the two dataset sizes are significant,
especially when the difference of input sizes is greater than a factor of 2'°. In terms of monetary
cost, a PJC execution on sets of sizes 28 and 22° costs ~ 0.17 c. for the client and ~ 26.48 c. for the
server. Compared to the previous works, our online constructions lead to a significant reduction in
client monetary costs with a small corresponding rise in server costs. For example, for n = 22° and
t = 28, our client cost is 36.5x lower than that of [PSTY19], while incurring a server cost that is
only 4x higher than theirs.



1.3 Improvement on Related Work

Our work is focused on privately computing a function over the intersection of two asymmetric-sized
datasets, both in the setting with offline setup, and in the fully-online setting. We discuss the most
important related works.

The field of private set intersection protocols is very rich, starting from the earliest PSI con-
structions that are based on the Diffie-Hellman assumption [Mea86]. Over the last few years, there
has been a long list of works on efficient secure PSI [DCW13, CHLR18, PRTY19, PRTY20] with
fast implementations, which can process millions of items in seconds. However, most of these works
only allow to output the intersection itself. In our scenario we wish to compute some function of
the intersection while hiding the individual elements in the intersection. There is much less related
work on the more general private intersection join and compute.

In terms of works that support computing over the intersection while hiding the values, a promi-
nent approach is Garbled-Circuit-based PSI. [HEK12] proposes an efficient sort-compare-shuffle
circuit construction to implement PJC. [PSTY19] improves circuit-PSI using several hashing tech-
niques. The main bottleneck in the existing circuit-based protocols is need for a large number of
string comparisons, and the methods used for computing over associated values. These are done
inside a generic MPC protocol, which increases the interaction round complexity, and incurs cost
due to bitwise encryption of each party’s dataset. Moreover, while these protocols are well-suited
to symmetrically-sized input sets, they perform worse when inputs are asymmetric: both parties
incur costs linear in the larger database size. Another approach in this space, which is currently
used in practice by Google [Gool9], is the approach combining Diffie-Hellman and homomorphic
encryption techniques [IKN*20]. While this approach has reasonable communication cost and
can be extended to the PJC functionality, it also performs poorly in the asymmetric inputs set-
ting, since both parties incur costs proportional to the other party’s dataset size. In terms of
work that leverages offline precomputation where one of the parties’ datasets is fixed beforehand,
there are several prominent works with the application of private contact discovery. Recent works
[KLST17, RA18] achieve good performance in the offline setting with asymmetric inputs. However,
these works cannot be straightforwardly extended to privately compute on the intersection.

The work that achieves the closest result to ours is the protocol of [CHLR18], which uses ho-
momorphic encryption to perform efficient PSI on sets of asymmetric sizes, with communication
cost logarithmically related to the larger dataset. The authors show how to extend this construc-
tion to enable each party to retrieve labels associated to individual items in its input, with the
property that the client receives “valid” labels only for the items in the intersection . They further
describe how these labels can be additively masked and fed into a downstream generic MPC com-
putation that allows privately computing a function over these labels (while hiding which specific
labels were in common). This “PSI-with-Computation” extension is described mostly theoretically
by [CHLR18], and is not accompanied by detailed experiments.

We see our work as improving on the approach outlined in [CHLRI18] in several important
ways. The first is that we use a highly tailored approach to test membership and retrieve additive
shares of the labels, which greatly moderates the client cost compared to a generic approach. Sec-
ondly, the [CHLR18] protocol effectively uses a novel batched Private Information Retrieval (PIR)
protocol to achieve efficiency in the asymmetric input size setting. We make the relationship to
PIR explicit in our construction, which allows us to leverage techniques from the PIR literature
[GRO5, ACLS18, ALP"19], especially recursion and oblivious query expansion. Thirdly, our ap-
proach can be efficiently applied in the offline precomputation setting such that the client’s online
cost is essentially independent of the server’s database size. This can provide significant gains when
many queries will be made against the same database.



2 Technical Overview

Next we overview the main techniques in our constructions. We first describe the construction
of PIR-with-Default, which is the core of our contributions. In particular, we show two different
instantiations of PIR-with-Default: one with offline setup and one with sublinear online executions,
and we describe important batching optimizations. Next, we show how to modify our constructions
to achieve an extended functionality, which we call Extended-PIR-with-Default. Finally, we will
describe how to build inner-product PJC from Extended-PIR-with-Default.

PIR-with-Default:  In the PIR-with-Default functionality, we assume the server holds the larger
input set (Y,V) = {(y1,v1),..., (Ym,vn)} while the client holds a single input z. We want the
client to receive v; if = y; for some j, and a server-chosen default value d otherwise. Neither
party should learn anything extra, and in particular, the server should not learn which value was
retrieved, and the client should not learn the other items in the server’s database. The client should
also not learn whether it received the default value (assuming the default value is chosen by the
server to be indistinguishable from the w; values.).

Our approach uses Bloom filters [Blo70], a data structure that allows efficient set membership
tests over sparse sets. A Bloom filter (BF) is a binary vector that encodes a set. For each item
x, one can check whether x is in the set or not by querying a constant number of locations in the
BF. Specifically, Bloom filters have as public parameters a set of hash functions Hi,..., H; and
testing membership of z requires accessing only locations Hi(x),..., H(z) in the Bloom Filter
and checking that they are all 1 (or alternatively, checking k = >_,;cp) BF[H;()]). In order to
allow retrieving associated values, we leverage the closely related notion of garbled Bloom filters
(GBF) [DCW13], which allows to store not only a set but also a set of associated values. For value x
present in the database, computing ;) GBF[H;(2)] will result in the associated value. However,
if z is not present in the database, >,y GBF[H;(z)] will return a garbage value that needs to be
transformed to the default value. We use a GBF in conjunction with a BF as we discuss next.

The first step is that the server creates a BF that contains the indices in Y and a GBF that
contains its database (Y, V). The client and the server then execute a query protocol where the
client has as input an index x and the output of the query protocol will be secret-shares of the
membership bit for z in the BF and secret-shares of the value retrieved from the GBF for x (which
is either a secret-share of some wj, or a secret share of some garbage value). Next the client and
the server will execute a Value-Or-Default protocol in which the two parties input their shares of
the BF and GBF query responses and additionally the server’s default value for this execution, and
the client obtains either the value from the GBF query, if the BF query response was a share of 1,
or the default value, otherwise.

We first describe the BF query protocol with a linear offline setup phase with a fixed server
database, and client query that is available only during the online phase. We will then describe
a setup-free BF query with sublinear cost in the larger database. These will constitute the differ-
ence between our two different constructions of PIR-with-Default. After that, we will describe the
Value-Or-Default protocol, which will be shared by both PIR-with-Default constructions.

BF/GBF Queries with Linear Offline Cost. In the offline phase the server sends an encryption of
BF and GBF, where each entry is encrypted using an additively homomorphic encryption scheme.
Now for each query zx, the client can compute Hi(x),...,Hg(x), and can locally compute the
encryption of Enc(3_;cp) BF[H;(x)]). The client generates a random value re, which it keeps as its
share, and sends Enc(}_; ¢ BF[Hi(x)] — r¢) to the server, which the server decrypts to obtain its
share rs. The client and server then transform shares r¢ and rs of 3, BF[H;(2)] into shares



of the BF membership result using a single l-out-of-(k + 1) oblivious transfer (OT) [Rab05] as
follows. The client chooses a bit be and computes B = {by,...,br} where all b; are bc, except
O(re+k) mod (k+1) 18 the client’s share which is equal to 1 @ bc. The client and the server execute
1-out-of-(k + 1) OT where the client is the sender with input B and the server is the receiver with
input rs. The server obtains output bs such that be @ bs = 1 if and only if rg 4+ r¢ = k.

In order to obtain shares of the GBF value, the client similarly locally computes Enc(3_; ¢ GBF[Hi()]),
and generates a random value vc, and sends the server Enc(}_;c(; BF[H;(2)] — ve). The server de-
crypts this value to obtain its share vg. After these steps, the server and client have shares of the
BF membership bit, and the GBF evaluation, as desired.

BF/GBF Queries with Sublinear Cost. Our second construction for the BF and the GBF queries
leverages constructions for symmetric private information retrieval (PIR) [GIKMO00] with sublinear
communication based on homomorphic encryption (HE) [Gen09]. The general idea is that instead
of transferring the entire encrypted BF and GBF to the client during a setup phase, the client instead
makes PIR queries to retrieve the desired entries H;[z| of the BF and GBF. We make use of the
fact that in many constructions of PIR, the client sends a homomorphic encryption of its desired
index, which the server uses to obliviously compute an encryption of the query response under the
same homomorphic encryption scheme, and the server can therefore sum several such responses
before returning them. Specifically, our client sends PIR queries for locations Hi(z), ..., Hi(z), and
the server evaluates the queries to obtain Enc(BF[H;(x)]) and Enc(GBF[H;(x)]). The server then
homomorphically sums these values, and subtracts randomly chosen masks rs and vs to obtain
Enc(3 ;e BF[Hi(2)] — rs) and Enc(}_,cpyy GBF[H;(x)] — vs), which it sends to the client. The
client decrypts these values to get r¢ and v¢ respectively. The client and server engage in the
l-out-of-(k + 1) OT described earlier to get shares be and bs of the BF membership bit. These,
together with the ve and vs values, are the desired output of the BF/GBF Queries.

Our use of PIR is heavily amenable to different kinds of optimization, which we explore in detail
in Section 5.3 and Appendix. Specifically, PIR constructions achieve sublinear communication
either by using packing techniques leveraging the slots in a HE ciphertext to encrypt the entire
selection vector in a single ciphertext [ACLS18, ALP*19], or using recursion where the selection
vector is written as an outer product of several vectors of shorter length [GR05, ALP"19]. These two
techniques are not compatible with each other, i.e. packing the entire selection vector for a query
in a single HE ciphertext requires increased computation at the server and higher multiplicative
degree from the HE, and does not provide efficiency benefits. However, in our setting we need
to execute multiple PIR queries and we use the HE slots to pack coordinates of the selection
vectors from different queries. This HE-slotting technique is also compatible with multi-query
PIR approaches which use Cuckoo hashing [PRO1, PSSZ15] to reduce the communication cost
per query. Such hashing techniques partition both parties’ inputs in a way that guarantees that
the client queries are distributed evenly across the smaller server partitions and can be executed
only over the partition without revealing anything about the query indices. We also instantiated
this approach using two-choice hashing [CRS03, PRTY19] and compare it to Cuckoo hashing for
different parameters. In both of these multi-query instantiations we can pack coordinates from
queries for different partitions in the same HE ciphertext while preserving the efficiency of the
server computation.

Value-Or-Default protocol:  As we discussed above, after the BF/GBF queries, the client and
server have XOR shares b¢ and bs of a bit (the output of the BF query) and additive shares ve and
vs of a value (the output of the GBF query). In addition the server has as input a default value d.
The goal of the Value-Or-Default phase is to take these shares and produce output received by the



client, namely v = v¢ + vs if b = be ® bs = 1, and d, otherwise. We execute this phase using only
two l-out-of-2 OT executions. The first OT enables the server to learn ¢ = A¢ + b - ve where A¢ is
a random value generated by the client. This is achieved by executing a OT where the client is the
sender with messages mg = A¢ + b - ve, mp = A¢ + (1 —be) - ve and the server is the receiver with
bit bs. The second OT enables the client to obtain A¢ +b-ve +b-vs+ (1 —b) - d from which the
client can subtract A¢ to recover v if b =1, and d, if b = 0, as desired. In the second OT the server
is the sender with messages mo = ¢+bs-vs+ (1 —bs)-d and m; = g+ (1 —bs).vs + bs.d which the
client is the receiver with input bit bc. Combining the BF/GBF queries with the Value-Or-Default
phase achieves the PIR-with-Default functionality.

Extended-PIR-with-Default from PIR-with-Default: Extended-PIR-with-Default has the addi-
tions: firstly, the client holds a weight w in addition to x. Secondly, the output learned by the
client should be an additively masked version of the product w - v; — s if x = v; for some v; in the
server’s database, and the additively masked default value d — s, and the server should receive the
additive mask s. This extension acts as a bridge between PIR-with-Default and inner-product PJC
by incorporating values from both parties, and also to more easily hide from the client whether it
retrieved a “real” value or the default.

We note that the mask w can be incorporated by having the party that creates the GBF sum
homomorphically multiply the GBF sum by w before proceeding with the protocol. More specifically,
in the PIR-with-Default protocol with offline setup, once the client homomorphically computes the
GBF sum, it can homomorphically multiply the result with the scalar w before masking it. In the
protocol with sublinear costs, the client additionally sends a homomorphic encryption of w to the
server along with its PIR queries. The server, after computing the PIR queries and summing the
results, can multiply the GBF sum with the encryption of w before masking it.

In order to additively mask the final result, the server simply replaces the values vs and d that
it uses in the Value-Or-Default phase with the values vs — s and d — s respectively. This makes it
so the final value retrieved by the client is either w - v; — s or d — s as desired.

Inner Product PJC from Extended-PIR-with-Default : In inner product PJC, the server
holds larger input set (Y, V) = {(y1,v1),.-., (Ym,vn)} and the client holds the smaller input set
(X, W) = {(z1,w1),...,(zt,wr)}. In our protocol, the client and the server jointly execute ¢

Extended-PIR-with-Default  queries from the set X where the server has default value 0 for all

the queries. As a result of this the client and the server have shares a¢; and as; such that

aci +as; = w;-vj for all z; € Y and ac; + as; = 0 for all ; ¢ Y. Therefore, by adding their

local shares Zie[t] ac,; and Zie[t} as;, the client and the server obtain shares of the desired output
’wﬂ}j.

i€[t],j€n],zi=y;

3 Preliminaries

We briefly introduce notations and cryptographic primitives in this section, and refer to Section A
for complete definitions. We denote by x and A\ the computational and statistical security param-
eters respectively. For n € N, we write [n] = {1,...,n}. We define a probabilistic polynomial time
(PPT) algorithm to be a randomized algorithm that runs in polynomial time in the length of its
first parameter.

Oblivious Transfer (OT) [Rab05]:  l-out-of-n OT is a two-party protocol, in which a sender
with n inputs (mq,...,m,) interacts with a receiver who has an input choice b € [n]. The result



is that the receiver learns m; without learning anything about others m;,Vj € [n] \ {i}, while the
sender learns nothing about the receiver’s choice b.

Bloom Filter (BF) [Blo70] and Garbled Bloom Filter (GBF) [DCW13]: A BF is an
array {BF[i]};c[n) of bits where each keyword z is inserted to the BF by setting BF[h;(z)] = 1 for
all h; in a collection of hash functions H = {hy,...,hx | h; : {0,1}* — [n]}. A GBF is an array of
integers in Z, that implements a key-value (z,v) store, where the value v associated with key =z is

v =i, GBF[hi()).

Cuckoo Hashing [PR01] and 2-Choice Hashing [CRS03]:  Basic Cuckoo hashing consists
of m bins BI[1],..., B[m], a stash, and k random hash functions hq, ..., hj of range [m]. To insert
an element x into a Cuckoo hash table, we place it in bin h;(z), if this bin is empty for any i.
Otherwise, we choose a random i € [k] and place  in bin h;(x), evict the item currently in that
bin, and recursively insert the evicted item. 2-choice hashing uses k& = 2 random hash functions
hi, he of range [m], and each item x will be placed in whichever of hy(z), ha(z) currently has fewest
items.

Homomorphic Encryption (HE): HE is a form of encryption that allows to perform arbitrary
computation on plaintext values while manipulating only ciphertexts. In this work, we use the
BGV [BGV14] and FV [FV12] HE schemes.

Private Information Retrieval:  Private information retrieval (PIR) is a cryptographic prim-
itive that allows a client to query a database from one or multiple servers without revealing any
information about the query to the database holder(s). A trivial solution suffering linear com-
munication overhead consists in sending the whole database to the client. While the feasibility
of a protocol with sublinear communication has been resolved for a long time [CKGS98|, the
search for concretely efficient constructions for practical applications has been an active area of
research [GR05, ACLS18, ALP*19]. In this paper, we focus on the single-server setting and will
use RLWE-based homomorphic encryption scheme as in [ACLS18, ALP*19].

4 Definitions

In this section, we provide the formal security definitions that we will use for our protocols. All
our constructions will be proven in the semi-honest setting where the parties follow the prescribed
steps in the construction.

We provide standard simulation security definitions [Gol04] for our constructions that use the
following notation: View( (1}, [X]c, [Y]s) is the view of party C during the execution of protocol
II with security parameter A between parties C and S which have inputs X and Y respectively;
SIMg(l)‘, O) is a ppt simulator algorithm, which generates the view of party C in the execution
of a protocol II (i.e. the messages received from the other participants) given input the security
parameter A and the output O that C receives at the end of II.

4.1 PIR with Default

We start by defining formally our new notion of PIR-with-Default. We first recall the different
existing variants of private information retrieval and their security guarantees. The notion of
PIR [CGKS95] enables a client to query a public database with a private index and to obtain
the corresponding entry, while the party who holds the database learns nothing about the index



PARAMETERS: Server/Sender S and Client/Receiver R, agree upon
e An upper bound n on the number of key-value pairs in Server S’s input.
e A space Z, for the associated values and default values.
e A bound t on the number of Client C’s queries.

INPUTS:
S: A set of key-value pairs P = {(y1,v1),..., (Yn,vs)} with distinct y;, and default values D =
{dl, N 7dt}~
R: A set of t queries {2}y
OuTrpUTS:
S: No output.
R: A set O = {0;}icy) where

d;, otherwise

{vj, if x; = y; for some j € [n]
0; =

Figure 1: The PIR-with-Default Functionality.

PARAMETERS: Server/Sender S and Client/Receiver R, agree upon
e An upper bound n on the number of key-value pairs in Server S’s input.
e A space Z; for the associated values and default values.
e A bound t on the number of Client C’s queries.
INPUTS:
S: A set of key-value pairs P = {(y1,v1),..., (Yn,vn)} with distinct y;, a set of default values
D ={ds,...,d}, and a set of additive masks S = {s1, ..., s:}. Each v;, d; and s; € Z,.
R: A set of t pairs {(zs,w;)}ic). Each w; € Zy.
OuTPUTS:
S: No output.
R: A set O = {0}y where

(w; - v;) — s;, if x; = y; for some j € [n]
0; = .
d; — s, otherwise

Figure 2: The Extended-PIR-with-Default Functionality. All arithmetic is in Z,.

during the execution of the query. Symmetric PIR [GIKMO00] adds also a privacy guarantee for
the database requiring that the client learns nothing but the queried database entry. Keyword
PIR [CGN98| addressed the setting of sparse databases where the query index is over a keyword
domain, and database is index with a subset of the same domain. The query party in keyword PIR
either obtains the requested value if present in the database, or learns that the query is not present
in the database.

PIR-with-Default extends the notion of keyword PIR providing stronger privacy against the client
hiding whether the query is present in the database. This is achieved by modifying the functionality
to return either the database entry if the query is in the database, or a default value provided by
the database holder, otherwise. This privacy property is stronger than symmetric keyword PIR
assuming that the database entries and the default values are indistinguishable. In many real-world
applications, the default value is a cryptographic object with natural pseudorandomness. As stand-
alone applications of PIR-with-Default, we envision use-cases where clients retrieve cryptographic
tokens from a server to utilize elsewhere. In Section 1.2, we consider the specific case of anonymous
tokens [KLOR20], but this could extend to retrieving coupons (with dummy codes for non-targeted
users), or a token proving allowlist-membership or blocklist-non-membership.

The precise PIR-with-Default functionality is described in Figure 1. We note that the presen-
tation in Figure 1 allows the client to submit multiple queries, where the server specifies different

10



default values for each client query. Single-query PIR-with-Default is equivalent to setting ¢t = 1.
Next we define the security properties for such a protocol.

Definition 1 (Semi-Honest Security for PIR-with-Default). Let n()) be an upper bound on the
size of server database of (index, value) pairs P, t(\) be a bound on the number of queries client’s
set X, and Zj(y) be the domain for the database values and default values D. Let O be a vector of
length | X| that contains the outputs of the PIR with default functionality executed with queries
from X on database P and default values D.

A PIR-with-Default protocol is (n(A),t(\), £(\))-secure, if there exist ppt algorithms SIM¢ and
SIMg such for any probabilistic polynomial-time adversary A , there exists a negligible function
negl(-) such that

| PrlA(1*, Views (1%, [X]c, [P, D]s)) = 1]
— Pr[A(1*, SIMs (1%, n, 4,0, [P, D]s)) = 1]| < negl(\)

and
) PrlA(1, Viewd (1%, [X]c, [P, D]s)) = 1]
~ Pr[A(1Y, SIMe (1%, [X]e, 1)) = 1]‘ < negl()\)

The above security definition formalizes the intuition that the client does not learn anything
more than the output of its query (the actual value if the item is present, or the default value) and
the database size, and the server does not learn anything from the executions except the number
of queries.

We also define the notion that extends the computation of PIR-with-Default as follows:

1. Allowing the client to also specify associated values, such that the client will learn the product
of the client and server’s associated values if the client identifier is in the server database.

2. Allowing the server to specify an additive mask, such that the client will receive a masked
associated-value or default. This enables the protocol to have additively secret-shared out-
puts.

Extended-PIR-with-Default is formally described in Figure 2. The security definition for this
primitive is the same as PIR-with-Default except the output O is computed with the extended func-
tionality. While PIR-with-Default is a special case of Extended-PIR-with-Default, where the client’s
associated values are all 1, and the server’s additive masks are all 0, we will be constructing both
primitives in a non-blackbox way from building block components to achieve better efficiency. Note
that one can use Extended-PIR-with-Default to output additive shares of items in the intersection,
which can serve as input to any MPC protocol described in Section 6.2.

5 PIR with Default Construction

5.1 Construction Outline

Both of our constructions share the following three high-level steps.

The first step is a secret-shared private membership test (SS-PMT). This enables the client and
server to compute a secret-share of a membership bit, i.e. the two parties obtain XOR shares of 1
or 0 if the client’s query is or is not in the database.

11



PARAMETERS:

Security parameter .

Server S input set size n, associated value space Z,y, number of client C queries ¢ .

A l-out-of-k OT primitive.

Bloom Filter parameters: Bloom filter size n sufficient to hold n items, a number of hash functions k,
a hash function family HF : {0,1}* — [n] .

An additively HE scheme (HGen,HEnc,HDec) with message space Z;.

INPUT:
e Server S: A set of key-value pairs P = {(y1,v1),- .., (Yn,vn)} with distinct y;, and a set of default

values D = {dy, ...,d;}, where each v;,d; € Z,. Additionally, a set of ¢ masks {s1, ..., st} each € Z,.
e Client C: A set of t queries {z1,....,x+}. Additionally, a set of ¢ associated values

{w1, ..., w }, each € Zy

ProTOCOL:
1. Setup phase:
e S and C jointly select k hash functions {hq, ..., hx} at random from HF.
e S generates a HE key-pair (pk, sk) + HGen()\) and sends pk to C.
e S inserts a set of keys {y1,...,yn} into a Bloom filter BF and the set of key-value pairs P into
a Garbled Bloom filter GBF using hash functions h;. S aborts if either insertion operation fails.
e Using pk, S encrypts BF and GBF as EBF[i] = HEnc(pk,BF[i]),Vi € [n] and EGBF[{] =
HEnc(pk, GBF[i]), Vi € [n].
e S sends EBF and EGBF to C.
2. Online phase: The following steps are executed in parallel for each z; for j € [t].

(a) SS-PMT computation:
e C chooses a random mask 7 < Z,, homomorphically computes z = Refresh(—HEnc(pk, r) +

k
>~ EBF[h;(z;)]), and send the ciphertext z to S
i=1

e S decrypts the received ciphertext z using secret key sk, and obtains r’.

e Parties invoke an instance of 1-out-of-(k + 1) OT:
— &S chooses a bit bg at random.
— S acts as OT’s sender with input {bp,...,b;} where each b; is equal to bs, except

b(k—r") mod (k+1) Which is equal to 1 & bs.
— C acts as OT’s receiver with choice r mod (k + 1).
— C obtains be from the OT’s functionality.
(b) SS-AV computation:
e C chooses a random mask wve <  Zp, homomorphically computes 2z =

k
Refresh(—HEnc(pk, ve)+ w;- Y EGBF[h;(z)]), and sends the ciphertext to S
i=1

e S decrypts the received Ciphe;text 7' using its secret key sk, and obtains vgs.

(¢) Value-Or-Default computation:
e S and C engage in a Value-Or-Default protocol execution described in Figure 4.
e S uses inputs bs, vs —s; and d; —s; .
e (C uses inputs be and ve.
o Let 0; be the output received by C from the Value-Or-Default protocol execution

3. Output: C outputs the set O = {0;};¢p-

Figure 3: Construction 1: PIR-with-Default construction with Setup. The highlighted parts are only
needed for Extended-PIR-with-Default construction.

12



The second step is computation of a secret-shared associated value (SS-AV). This enables the
client and server to compute an additive secret share of the database value corresponding to the
client’s query. The outputs for the client and the server are additive shares of a value, which is the
value that is in S’s database if the query is in S’s database. If the query is not in the database,
there are no guarantees for the value underlying the secret shared output. In particular, it may be
an arbitrary function of the server’s database entries.

The third step is functionality called Value-Or-Default, which enables the server and the client
to take their outputs from the first two steps as well as the default values on the server side, and
translate them into the client’s output, which is either the associated value or the default value
depending on whether the output of SS-PMT was shares of 0 or of 1 .

In the following sections, we will give two constructions for PIR-with-Default. These construc-
tions will have different implementations for SS-PMT and SS-AV, but will have the same imple-
mentation of Value-Or-Default.

5.2 Construction 1: PIR-with-Default with Offline Setup

Our first construction for PIR-with-Default involves an expensive setup phase that has communica-
tion linear in the server’s database. However, the remainder of the protocol is independent of the
number of entries in the server’s dataset. Therefore this protocol is well suited to scenarios where
the server’s database is fixed and the setup phase can be performed offline, and requires an efficient
online phase once the client’s input is available. Moreover, the setup phase can be run once and
reused for multiple protocol executions, and for different clients.

The construction presented in Figure 3 works as follows. The server inserts its database into a
Bloom filter BF and a Garbled Bloom filter GBF. The server generates a public/private key pair
(pk, sk) for additively homomorphic encryption, and encrypts the entries of both BF and GBF using
the public key. It sends the encrypted results to the client in the setup phase. Whenever the client
wants to run a PIR-with-Default query x, the client invokes the online phase of computation with the
server to compute SS-PMT, SS-AV and Value-Or-Default. We describe each of these computations
as follows:

5.2.1 SS-PMT Functionality
We instantiate SS-PMT as follows. The client first computes a sum of the encrypted entries b =

k

> EBF[h;(x)] using the homomorphic property of the encryption scheme. It is easy to see that
;) ils an encryption of a value p which is smaller than k& 4+ 1. Moreover, if the query x is in the
server dataset Y, p is exactly equal to k. The client now needs to turn this into secret shares of
the membership bit. A straw man solution is to homomorphically convert b to an encryption of
a bit (0/1) so that each party can have a secret share of the bit indicating whether z € Y. The
conversion can be done by homomorphically evaluating the equality circuit that has multiplicative
depth [log(k)]. However this approach is relatively inefficient.

Instead, we use a simple solution that relies on oblivious transfer. More precisely, the client
randomly chooses a value r < Zy, which will be its output share, and masks b by computing
¢ <= b— Enc(pk,r). The client sends the resulting value to the server, who decrypts it to obtain its
output share ' = Dec(sk,c) = p —r. The parties use their output shares of p as inputs in the next
OT functionality that translates these shares into shares of a single membership bit.

The client chooses a random bit be and acts as OT’s sender with (k + 1) OT messages B =
{bo, ..., b} where all b; are bc, except b(k—r") mod (k+1) Which is equal to 1 @ bc. The server acts as

13



OT’s receiver with » mod (k+1). The OT functionality gives the server bs such that be & bs =1
if r+7" =k (i.e. the client’s keyword is in the server’s database), otherwise be @ bs = 0. The
described process exactly implements the SS-PMT functionality.

Instantiating 1-out-of-N OT A trivial implementation of the 1-out-of-(k + 1) OT used above
is via log(k + 1) l-out-of-2 OT instances. Recently, several works [KK13, KKRT16, PSZ18] have
proposed efficient protocols to generalize 1-out-of-2 OT extension to 1-out-of-N OT. Each protocol
has a different underlying encoding function to support an upper-bound number of N messages
in OT. Kolesnikov and Kumaresan [KK13] employ 256-bit Walsh-Hadamard error-correcting code
and achieve 1l-out-of-N OT on random strings, for N up to approximately 256. For arbitrarily
large N, the best 1-out-of-N OT protocol [KKRT16] uses 424-448 bits codeword length, which
requires 424-448 bits of communication per OT and N hash evaluations. For smaller N, the best
protocols [PSZ18, OOS17] use linear BCH code, in which codeword length depends on N. Our
instantiation for the BF parameters yields N = 2° to achieve a BF false-positive rate of 2.
In this case, the required codeword length and the best underlying encoding are 248 bits, which
are chosen according to [min] to achieve Hamming distance of two codewords at least k security
parameter.

5.2.2 SS-AV Functionality

The SS-AV protocol uses similar but simplified approach as the one in SS-PMT. The client
first computes a sum of all encrypted EGBF[h;(x)],Vi € [k], using the additive HE property

k

z = > EBF[hi(x)]. Due to the GBF property, z is an encryption of the associated value v if
i=1

(z,v) € P, and some unrelated value otherwise. To output SS-AV, the client chooses a random v¢

and sends z — Enc(pk, v¢) to the server who can decrypt it and obtain vg.

The work [DCW13] observed that the GBF procedure aborts when processing item z if and only
if = is a false positive for a BF containing the previous items. Therefore, to bound the probability
by 27, one can use a table with 58n entries to store n items. In that case, the optimal number of
hash functions is k = 31.

In the setting of Extended-PIR-with-Default, the client homomorphically multiplies its value w;
with the sum of the encrypted GBF values before masking and sending it to the server. Then if
x; is in the server database, vs, the decryption of z, will be a share of (vj - w;) . Then the server
can simply add (—s;) to vs before proceeding to the next phase: now ve and vs — s; are additive
shares of (v; - w;) — s;.

Finally, the server and client engage in a Value-Or-Default protocol to translate the outputs of
the previous two steps into the associated value or the default value. We describe this subprotocol
in the next section.

5.2.3 Value-Or-Default Functionality

We describe our Value-Or-Default protocol for the PIR-with-Default construction and note that the
only change required for the Extended-PIR-with-Default construction is that the server has to modify
its inputs to Value-Or-Default, but there are no changes to the Value-Or-Default protocol itself.

After SS-AV, parties hold secret shares of the associated value v if (z,v) € P. To complete
the PIR-with-Default functionality, the client has to either reconstruct v or obtain a default value d
from the server. We translate the shares into the required output using 2 OT invocations (forward
and backward) as follows.

14



InpPUT:
e Server S: A bit bs and two strings vs and d each € Z,.
e Client C: A bit be and a string ve € Z; .
DESIRED OUTPUT:
e Server S: No output.
e Client C: v=wvs+wvc if b=1, or d if b =0, where b = bs & b¢

ProTocoL:
1. C chooses A¢ + Z; at random.

2. Parties invoke an OT instance:

e C acts as OT’s sender with OT’s messages mg = A¢ + be - ve and m; = Ac¢ + (1 — be) - ve.
e S acts as OT’s receiver with a choice bit bs, and obtains ¢q. Note that ¢ = A¢ + b - v¢ where
b=0bs ® b

3. Parties invoke another OT instance:

e S acts as OT’s sender with inputs mg = ¢+ (bs - vs) + ((1 —bs) - d) and m; = ¢+ ((1 —bs) -
vs) + (bs - d).

e C acts as OT’s receiver with a choice bit bc, and receives ¢’. Note that ¢ = ¢+ (b - vs) +
((1 =) - d) where b = bs @ be

4. C outputs ¢’ — A¢. Note that the output is exactly vs+vc if b =1, or d if b = 0, where b = bs P b¢

Figure 4: Our Value-Or-Default Construction. All arithmetic is implicitly in Z,.

In the “forward” OT, the client chooses a random value A¢ + {0,1}¢, and acts as OT’s sender
with OT’s messages {A¢ + be - ve, Ac + (1 — be) - ve}, while the server acts as OT’s receiver with a
choice bit bs, and obtains ¢q. Clearly, ¢ = A¢ + (be @ bs) - ve = A¢ + b - ve.

In the “backward” OT, the server acts as OT’s sender with input {¢ + bs-v+ (1 —bs) - d,q+
(1—bs)-v+bs-d} while the client acts as OT’s receiver with a choice bit be, and receives ¢'. It is
easy to see that ¢ =q+b-vs+ (1 —0)-d.

Finally the client reconstructs it output o = ¢’ — Ac.

5.3 Construction 2: PIR-with-Default with Sublinear communication.

Our second construction aims to remove the expensive offline setup phase from our first construc-
tion, replacing it by (standard) Private Information Retrieval queries.

Recall that the offline Phase in Construction 1 consists of S sending encrypted BF and GBF to
the client. For each query x; C homomorphically sums the entries corresponding to h;(x;) for each
of the k hash functions h;, additively masks the encrypted result, and sends it to the server.

In Construction 2, C will instead obliviously query the server at the locations h;(z;), and will
receive the masked sum of the corresponding values at those locations in BF and GBF. Note that
if C only needed to retrieve the entries at locations h;(x;) (without summing or masking), then
C could have used standard (symmetric) PIR. In order to execute the query results summed and
masked, we have C instead use a modified version of PIR, which we call Sum-PIR.

5.3.1 Sum-PIR Functionality

The Sum-PIR primitive allows a receiver C, holding a set of indices p1,...,pk, to interact with a
server holding a database P and receive Ele P[p:;] —r, for some additive mask r held by the server.
The server should not learn the entries queried by the client.

15



InpPUT:
e Server S: A database D of size n and an additive mask r
e (Client C: a set of indices p1, ..., pk.

DESIRED OUTPUT:
e Server S: no output

e Client C: v=73_, , Dlp;| —r

ProTOCOL:
1. C generates a public-secret key pair (pk, sk) with PIR.Gen, and sends pk to S
2. § and C invoke multi-query PIR. For each i € [k],

(a) C uses PIR.Query(pk,p;) to generate a query ¢; and sends it to S
(b) S uses PIR.Answer(pk, g;, D) to generate the answer d;.

(d
(e) S sends ¢* to C.

)

(¢) S homomorphically computes ¢ = Zle d;
) S homomorphically masks ¢* with r as ¢* < ¢ — HEnc(pk, r).
)

3. C outputs PIR.Extract(sk, ¢*)

Figure 5: Our Sum-PIR Construction.

Our construction for Sum-PIR builds on standard constructions of PIR from additively homo-
morphic encryption, for example [ACLS18, ALP*19]. In the basic version of these constructions,
the receiver C sends 7 ciphertexts ci,..., ¢, to the server, where n = |P| is the number of items
held by the server. These ciphertexts all encrypt 0, except the ¢; (where 7 is the index C wishes
to retrieve), which encrypts 1. The server S receives these ciphertexts and performs a homo-
morphic dot-product between these ciphertexts and its database P. This results in a ciphertext
= ;7:1 Plj] - ¢, which is an encryption of exactly P[i]. S then sends ¢* to the client who
decrypts to receive its desired value.

We observe that if the client wishes to instead receive the sum of k entries, then it can send
k PIR queries simultaneously to the server, who executes the computation described above, and
homomorphically sums the resulting ciphertexts before returning the result to the client. The result
will then contain exactly the sum of the k queried items. If we additionally want the result to be
masked, then the server can homomorphically add a chosen mask r to the result before returning
it to the client.

While the basic construction described has high client communication costs, we can perform
several optimizations to reduce the communication and computation costs, which we describe in
Section 7. We also note that the description above only requires additively homomorphic encryp-
tion. However, some of our optimizations will additionally require homomorphic multiplications.
Therefore, our construction will be from RLWE-based somewhat-HE [BGV14].

We present our Sum-PIR functionality and its construction in Figure 5. The security of our
Sum-PIR construction follows in a straightforward way from the security of its building block (e.g.
PIR).

5.3.2 Building PIR-with-Default from Sum-PIR

Our second PIR-with-Default construction is presented in Figure 6 and works as follows. In the
setup phase, the server inserts its database into a Bloom filter BF and a Garbled Bloom filter GBF.
The online execution starts the SS-PMT phase, which now consists of a Sum-PIR execution. For

16



PARAMETERS:

Security parameter .

Server S input set size n, associated value space Zg, number of client C queries ¢ .

A l-out-of-k OT primitive and a Sum-PIR primitive.

Bloom Filter parameters: Bloom filter size 1 sufficient to hold n items, a number of hash functions k,
a hash function family HF : {0,1}* — []] .

INpPUT:
e Server S: A set of key-value pairs P = {(y1,v1),- .., (Yn,vn)} with distinct y;, and a set of default

values D = {dy, ..., d:}, where each v;,d; € Z,. Additionally a set of ¢ masks {s1, ..., s;} each € Z,.
e Client C: A set of t queries {x1,....,2;}. Additionally a set of ¢ associated values

{w1, ..., w:}, each € Z,.

ProTOCOL:
1. Setup phase:
e S and C jointly select k hash functions {hq, ..., hx} at random from HF.
e S inserts a set of keys {y1,...,yn} into a Bloom filter BF and the set of key-value pairs P into
a Garbled Bloom filter GBF using hash functions h;. S aborts if either insertion operation fails.
2. Online phase: The following steps are executed in parallel for each z; for j € [¢].

(a) SS-PMT computation:

S selects a mask r < Z;.
C and S execute a Sum-PIR query. C uses inputs hiz;, ..., hi(z;). S uses BF and r as input.
C receives r’' = —r + Zle BF[h;(z;)] as output.
Parties invoke an instance of 1-out-of-(k + 1) OT:
— & chooses a bit bs at random.
— S acts as OT’s sender with input {bg,...,br} where each b; is equal to bs, except
b(—r+k) mod (k+1) Which is equal to 1 ¢ bs.
— C acts as OT’s receiver with choice ' mod (k + 1).
— C obtains b¢ from the OT’s functionality.

(b) SS-AV computation:

C sends HEnc(pk, w;) to S.

S selects a mask vg < Zy.
C and S execute a Sum-PIR query. C uses inputs hizj, ..., hp(z;). S uses GBF and vs as
input.

e Prior to additively masking the Sum-PIR result ¢ with vs to compute c*,
S homomorphically multiplies ¢ with HEnc(pk, w,)
o S receives mask vs as output. C receives v¢ = —vs+ wj- Zle GBF[hi(x;)] as output.

(c¢) Value-Or-Default computation:
e S and C engage in a Value-Or-Default protocol execution described in Figure 4.
e S uses inputs bs, vs —s; and d; —s; .
e C uses inputs be and ve.
e Let 0; be the output received by C from the Value-Or-Default protocol execution

3. Output: C outputs the set O = {0;};¢[-

Figure 6: Construction 2: PIR-with-default construction with sublinear communication.  Por-
tions with changes highlighted are needed for achieving Extended-PIR-with-Default

17



each item z;¢[y, the client inputs a set of indices {h1(z;), ..., hg(x;)} while the server inputs BF and
a random mask r. Similar to Construction 1, the parties obtain secret share of the value p which
is smaller than k£ + 1. The parties then use their obtained values as inputs to the 1-out-of-(k + 1)
OT that translates these shares into output of SS-PMT functionality.

For SS-AV computation, the parties also invoke Sum-PIR. We observe that the client can reuse
the queries from the SS-PMT phase in the SS-AV phase, since it is querying the same indices (i.e,
C does not need to send PIR.Query to the server in Step (2,a) of Figure 5) while the server inputs
GBF and a random mask vs. Sum-PIR directly gives parties SS-AV’s outputs as desired.

In the setting of Extended-PIR-with-Default , for each j € [t], the client additionally sends
encryption of w; to the server who homomorphically multiplies it with the PIR results in Step (2,c)
of Figure 5 before masking the result with the additive mask vs in Step (2,d) of Figure 5.

Finally, the server and client engage in the Value-Or-Default protocol as before to translate the
outputs of the previous two steps into the associated value or the default value. This protocol is
the same as in Construction 1.

5.3.3 Hashing Based Multi-Query PIR-with-Default Construction

Construction 2 based on Sum-PIR relies heavily on several PIR queries (see Step 2 of Figure 5),
with one query for each client input, which is executed against the server’s data at the same time.
However, standard PIR techniques require the server to touch each item in its dataset for each
client query, which quickly becomes expensive. In this section, we describe an optimization based
on hashing to bins that enables large cost savings when executing multiple parallel PIR executions.
Variants of this idea have appeared in previous work: [ACLS18, ALP"19] proposed a new PIR
construction for sparse databases based on Cuckoo hashing to amortize CPU cost when making
multiple PIR queries. We also show how to leverage a hashing technique [KMP*17, PRTY19] to
speed up the computational cost of Construction 2.

Our main idea is that the parties use hashing to partition its items into m bins. Each bin
contains a smaller fraction of inputs, which allows the parties to evaluate PIR-with-Default or
Extended-PIR-with-Default bin-by-bin. The amount of data the server has to touch per query is now
only the items that were mapped to the same bin as the client query, which is much more efficient
computationally.

Our hashing based PIR-with-Default construction is presented in Figure 9 . In this construc-
tion, parties hash their items to bins using one of the hashing schemes described above, and ex-
ecute PIR-with-Default bin-by-bin. We note that when we use this hashing technique, we are
able to achieve a weakened version of PIR-with-Default. Specifically, the server cannot assign a
particular default value specifically to the ith client query since it does not know which bin this
query got assigned to. Rather, the server must assign defaults to the ith client query per-bin.
That is, default values must be assigned bin-wise. The same holds true for masks in the case of
Extended-PIR-with-Default . We observe that this does not impact any of our applications, since
they have S choose all default values (and masks) the same way (as a random share of 0), indepen-
dent of which specific client query is being responded to. Therefore these applications lose nothing
from assigning default values and masks by bin.

An additional difference is that the hashing-based modification needs both the client and server
to pad their inputs with dummy values so that each bin is of the same size. These dummy values
need to be chosen carefully so that they are distinct for the client and server, and never occur
in either party’s input set. Our formulation [LPR'20] makes it so whenever C uses a dummy
value, it always receives the default value. S therefore has to provide additional default values to
allow for the increased number of client queries due to padding. We also note that in the case of

18



PIR-with-Default, the client can just discard the values received for dummy items. However, for
Extended-PIR-with-Default , the client must preserve these values, since the server has received a
mask-share for them, and may use it in downstream computation. This implies another caveat for
using hashing: the downstream computation for Extended-PIR-with-Default must also be able to
smoothly handle additional default values corresponding to dummy client inputs. We observe that
our applications are all able to smoothly do so, since their defaults and masks all correspond to
random shares of 0, and computation that follows can accommodate additional shares of 0 while
remaining correct.

We now discuss concrete hashing schemes and parameters. If there are m bins, each with
maximum load ~ items on the client’s side, then the number of default values the server must
provide is m~y. In the setting of Extended-PIR-with-Default, the number of additive masks the
server must provide is also m-y.

Concretely, the client uses Cuckoo hashing or 2-choice hashing with & hash functions, and inserts
her items into m bins. The server maps his points into m bins using the same set of k£ hash functions
(i.e., each of the server’s items appears k times across all over bins). Using a standard ball-and-bin
analysis based on k,m, and the input size of client |X|, one can deduce an upper bound /3 such
that no server bin contains more than 3 items with high probability (1 —27).

In our protocol, we use Cuckoo hashing, the client can place its set into a Cuckoo table of
size m = 1.27¢ using k = 3 hash functions. There are only 3% dummy items [PSTY19] required
per bin on the server’s side. Therefore, the client and server maximum bin size are v = 1 and
B =1.03[3n/m], respectively.

5.4 Correctness and Security Proofs

We observe that our constructions are correct by observation, except with the negligible probability

of Bloom Filter failure. In particular, our constructions fail to be correct if the server is unable to

hash its items into a BF or GBF, or if the Bloom filter returns a false positive on a client query.

However, we note that we can set parameters so that the probability of such failures is negligible.
The security proof of the following theorem is given in Appendix B.

Theorem 1. The PIR-with-Default constructions 1 and 2 described in Figure 3 and Figure 6 securely
implement the PIR-with-Default functionality defined in Figure 1 in the semi-honest setting, given
the OT, HE, and Sum-PIR functionalities described in Section 5.3.

Because the client’s associated values w; are either masked with random or encrypted before
sending to the server, the security of our Extended-PIR-with-Default constructions follows straight-
forwardly from the security of PIR-with-Default and the encryption scheme. Thus, we omit the
proof of the following theorem.

Theorem 2. The Extended-PIR-with-Default constructions 1 and 2 described in Figure 3 and Fig-
ure 6 securely implement the Extended-PIR-with-Default functionality defined in Figure 2 in the
semi-honest setting, given the OT, HE, and Sum-PIR functionalities described in Section 5.3.

6 Two Party PJC

6.1 Inner-Product Private Join and Compute

The functionality of Extended-PIR-with-Default provides directly a protocol for inner-product private
join and compute. In particular, a client with input (X, W) = {(x1,w1),..., (2, w)} and a server

19



with input (Y, V) = {(y1,v1),..., (yYn,vn)} execute the Extended-PIR-with-Default protocol where

the server uses 0 as the default value for all queries. The two parties receives as outputs additive

shares of w; - v; is x; € Y, or shares of 0 otherwise. Now each of the parties sums locally all the

shares they have obtained, and in doing so they obtain shares of the value > w;v;, which
i€lt],j€n] zi=y;

is the desired output.

Private set intersection-SUM is a special case of inner-product PJC can also be obtained in
the same way as above except that the client uses weight equal to 1 in the execution of the
Extended-PIR-with-Default protocol. For a slightly more efficient implementation the parties can
use a plain PIR-with-Default execution, where for the i-th client query, the server additively masks
all values with the same mask s;, and sets s; to be the default value, and uses these values as input
to the protocol. The client then receives effectively an additive share of the associated value or of
0, with the server’s share being —s;. Parties can sum their shares locally to get additive shares of
the intersection-sum.

If the server sets v; = 1 for all i € [n], this protocol computes the cardinality of the intersection
for the two input sets. Since the two parties obtain shares of the cardinality they can further
execute a two-party protocol that checks whether the cardinality is above a threshold.

6.2 General PJC

The Extended-PIR-with-Default functionality enables the two parties to obtain shares of the associ-
ated values for the server’s records included in the intersection, or shares of zero for the records with
identifiers in Y\ X. We note we can obtain such shares for multiple attributes values associated
with record.

We can also enable the two parties to obtain shares of the client’s attribute values (or vectors
of attribute values) for the intersection records (and shares of 0 for the records in Y \ X) as
follows: The client executes PIR-with-Default with an input z; to receive a share of the server’s
associated attribute(s). The client and the server execute a 1-out-of-2 OT similar to Step 2 of the
Value-Or-Default protocol, using the shares of membership bit b¢ and bs from the SS-PMT phase of
the preceding PIR-with-Default, where the client uses inputs my = r; 4+ be - w;, my = r; + (1 —be) - w;
for a random mask 7;, and the server uses bs as its choice bit. The result will be an additive sharing
of either w; or 0.

At this point the two parties can run any general two-party computation protocol which takes
as input the shares of the attribute values for the records in X N'Y and shares of 0 for records in
Y \ X, and evaluates a function on these attribute values.

6.3 Supporting Differentially Private Outputs

The above approach to compute general functions on the inner-join data can also be extended easily
to support differential privacy (DP) [DMNS06] for the output by having the two parties compute
jointly DP noise that will be added to the output. Since we are constructing semi-honest protocols
each party can locally compute noise with the magnitude required for the resulting output. This
means that the noise will be double the standard amount of noise, but this is needed in order to
prevent either of the parties from subtracting its noise contribution from the output. The ability
to add noise is important when the records in the input data sets are records of individuals and
the PJC output is aggregate statistics over the users in the inner-join database, which should not
reveal information about individuals.

20



Parameters Construction 1

Construction 2

Circuit PSI [PSTY19]

Poly-ROOM [SGRP19)]

PJC+RLWE [IKN*20]

Setup Online Online Online Online Online

Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time

n t (MB)  (/query)  (MB) (/query) (MB)  (/query) (MB) (/query) (MB) (/query) (MB) (/query)
28 29 35ms 7 2.43ms 27 673ms 5 11.79ms 55 59ms* 3t 44.8ms'

216 212 29 2.19ms 112 1.03ms 120 34ms 30 0.93ms 863 3.5ms* 3t 2.97mst
216 29 0.14ms 1794 0.72ms 801 2ms 472 0.13ms 13788 2.2ms* 6t 0.36ms"

28 465 539ms 7 2.43ms 29  11821ms 51 178ms 71 - 40t 713ms'

220 912 465 34ms 112 1.03ms 213 52lms 76 11.31ms 878 40t 44.7mst
216 465 2.11ms 1794 0.72ms 1821 34ms 522 0.78ms 13837 441 2.97ms’

28 14885  17252ms 7 2.43ms 44 370s 1582 5668ms 591 - 1272f 22838ms’

2% 212 14885  1078ms 112 1.03ms 379 15.8s 1607 354ms 1401 - 1272 1427ms'
216 14885 67ms 1794 0.72ms 3704 1.1s 2180 22.22ms 14391 - 12767 89ms’

Machine: single core of Intel(R) Xeon(R) CPU E5-2696 v3 @ 2.30GHz. For all constructions and n = 2%°, times have been estimated from microbenchmarks
of the core operations, and fixed cost for a random access was assumed.

* The times for Poly-ROOM are taken from [SGRP19, Fig. 17], initially provided for a database n = 50, 000 and a number of queries ¢ = 5,000 and 50, 000.
Unknown machine.

 Although PJC+RLWE does not achieve the PIR-with-Default functionality, we report it for comparison purpose. Timings are estimated from microbench-
marks of NIST-P256, and RLWE-encryption with degree 2048 and 62 bit modulus.

Table 2: Communication and computation costs of PIR-with-Default with elements of 32 bits. Running time
is amortized over the number of client queries.

7 Implementation

In Appendix D, we revisit the state of the art constructions and optimizations of single-server
PIR based on RLWE-based homomorphic encryption: SealPIR [ACLS18] and MulPIR [ALP*19].
Then, we explain how to apply the optimizations of the latter works to the application setting of
our new PIR-with-Default construction. In particular, note that we achieve sublinear communica-
tion using recursion and multiplicative homomorphism, and use oblivious expansion to compress
the upload as in [ALP'19]. Finally, we explain how to embed weights in PIR queries for the
Extended-PIR-with-Default construction. The communication cost of all protocols is calculated ac-
cording to Section 7.2.

7.1 Communication and Computation

Asymptotically, Construction 2 (Figure 6) achieves sublinear communication per client query with
respect to the server database size. In our benchmarking, we will make use of the hashing-based
multi-query PIR-with-Default Construction described in 5.3.3 to reduce server costs. For both our
constructions (and related work), we report the communication cost of ¢ queries against a database
of key-value pairs of size n with 32-bit values, for 28 <t < 216 gnd 216 < n < 225, and the
computational cost amortized over the number of queries ¢, in Table 2.

For Construction 1 (Figure 3), we report the cost of encrypting a Bloom Filter and Garbled
Bloom Filter of dimension 58n with an homomorphic encryption scheme. We use the Shell homo-
morphic encryption library [she20] with HE parameters d = 1024, logs(q) = 15 for the encryption
of the Bloom filter, and d = 2048, logy(q) = 46 for the encryption of the Garbled Bloom filter,
both ensuring more than 128 bits of security [APS15] and allowing & = 31 homomorphic additions.
Each coefficient of the polynomials embeds a cell of the (Garbled) Bloom Filter, and rotations are
performed by multiplications with z?. As expected, the setup communication grows linearly with
n and becomes larger than 15GB when n > 22°. On the computation side, it is important to note
that, assuming fixed cost for a random access, the online time only depends on t (and not on n).

For Construction 2 (Figure 6), we try different combinations of the optimizations and for each
input size, we report the cost for the combination with smallest communication cost. In particular,
we use Cuckoo hashing with three hash functions, as described in Section 5.3.3, and loop over 5
recursions levels (1 to 5 homomorphic multiplications). Concretely, for n = 220 and t = 2% = 256,
we obtain 326 buckets for the Cuckoo hashing, each of size 576,461. We perform k£ = 31 queries over

21



—&— Construction 1 (setup) =& Construction 1 (setup)
—%¥= Construction 1 {online} =¥ Construction 1 (onling)
10° 4 —&— Construction 2 A —&— Construction 2
—4— Circuit PSI 107 1 —<— Circuit PS|
z Poly-ROOM E Paly-ROOM
b = b
on o
5 5
- 10° o Y
o [eu]
S £
(= c
-] 2
5 5 —
(= c
20y ) . .|
E E
S IS
107 4 o
101 4
T T T T T T T T T T T T T T T T
o 1 2 3 4 5 & 7 o 1 2 3 4 5 & 7
Database size - Log scale 1e7 Database size - Log scale 1e7
12
(a) t =2° (b) t =2

Figure 7: Communication cost of ¢ PIR-with-Default queries, for increasing database sizes n and fixed number
t.

104 4
w w 10°
m o
7 A
on o
5 107 3
E - + * * * . g 10° 4
= =
2 g
i l
o o
51 g 10
E E 1
E —&— Construction 1 (setup) E =& Construction 1 {setup)
b —%¥— Construction 1 {online) - —¥— Construction 1 {online)
—a&— Construction 2 —a&— Construction 2
10 4 —= Circuit P3l 100 4 —= Circuit P5l
Poly-ROOM Poly-ROOM
T T T T T T T T T T T T T
o 10000 20000 30000 40000 50000 60000 o 50000 100000 150000 200000 250000
Number of elements of the client Number of elements of the client
(a) n =220 (b) n = 2%

Figure 8: Communication cost of ¢t PIR-with-Default queries, for increasing number ¢ and fixed database
sizes n.

each bucket, and use 4 homomorphic multiplications for recursion. The total number of elements
transmitted is therefore approximately 5 - BY/5.31.326 = 717,305, which fits in 88 ciphertexts
using oblivious expansion [ACLS18, ALP'19]. The HE parameters are d = 8192, log,(q) = 255,
and each ciphertext is about 250kB. The key information is about 6MB, and the upload ciphertexts
account for about 29MB of communication. Finally, the amortized time per query is 11.8s.

As illustrated in Figure 7, for a fixed number ¢ of elements, Construction 2 has the smallest
communication footprint as the database size n increases. For database of moderate sizes n < 22°
and very few elements ¢, our solutions use less communication than alternatives. We note that
Construction 2 becomes more communication efficient relative to other solutions as the gap between
n and t grows larger, with the advantage appearing when the server size is a factor of 2!0 larger than
the client dataset. Finally, we note that the computation cost is relatively higher for Construction
2 than related works, but the bulk of the cost is incurred by the server instead of shared between
client and server.

22



7.2 Comparison to Previous Work

We compare the resulting communication of our protocols to those of the best Circuit PSI proto-
col [PSTY19] and ROOM [SGRP19]. The run-time comparison of the protocols is illustrated in
Table 2.

We first compute the communication complexity of [PSTY19]. The communication is composed
of (a) the OPRF evaluations for each of the m bins which has an amortized communication of at
most 450 bits; (b) the communication of 1.03kn coefficients of size 7 + ¢ bits each where 7 is
approximately equal to A+ log(knt) —log(m); (c) the weighted sum garbled circuit which contains
m comparison of two 7-bit elements, m multiplications of two ¢-bit associated values, and m — 1
additions of two ¢-bit associated values. Using circuit compiler [MGCT16], the weighted sum
garbled circuit has m(7+/¢—1)+993mf+ (m —1)(¢ —1) AND gates in total. Note that each AND
requires 256 bits. The communication cost of garbled circuit also requires m(7 + ¢) OT instances,
each requiring 256 bits of communication.

In ROOM [SGRP19], the communication is composed of (a) the communication of n coefficients
of size 128 bits each; (b) m garbled AES executions, each requiring 6400 AND gates; (¢) and the
same weighted sum garbled circuit as that of [PSTY19], which has t(7+¢—1)4993t¢+ (t—1)({—1)
AND gates and m(7 + £) OT instances.

For PJC [IKN'20], we use the NIST-P256 elliptic curve, which requires 32B to represent an
element. We also use RLWE-based encryption for the associated values, with degree d = 2048 and
logy(q) = 62-bit modulus. We use their packing technique to pack 2048 associated values into a
single RLWE ciphertext, together with homomorphic rotation and addition.

Note that the labeled PSI protocol proposed in [CHLRI18| can be extended to perform PJC.
However, the extended protocol either reveals the intersection size, or incurs extra cost due to
using a generic MPC. [CHLR18] only provide experimental numbers for their implementation of a
similar functionality of keyword PIR (e.g. retrieve the associated value of an intersection item) for
the server’s dataset of size n = 220 records and the 256 queries. Their protocol takes 340ms and
20.9ms per query in the offline and online phases, respectively. To extend their functionality to
PIR-with-Default, the sender needs to mask labeled (associated) message with random value using
HE, and send it to the receiver. When the receiver decrypts the ciphertext, parties hold a secret
share of a correct associated value, or of a random value. These shares are forwarded to a secondary
MPC protocol to perform the functionality of PIR-with-Default. Indeed, the last extended step is
similar to the garbled circuit phase of [PSTY19], which takes about 40% of [PSTY19)’s total cost.
Therefore, we estimate that [CHLR18] requires an extra 71.2ms in the online phase to implement
a PIR-with-Default query. In contrast, Construction 1 only takes 2.43ms online time to perform
an instance of PIR-with-Default, a 37x improvement. However, Construction 1 is 1.5x slower
than [CHLR18] in the offline phase. In terms of communication/storage cost, [CHLR18] requires
at least 66.56MB transmitted without storage from the offline phase while ours needs only 7TMB
transmitted but 465MB storage from the offline phase. We present the performance comparison of
ours and [CHLR18] for n = 22 and t = 2% in Table 4.

7.3 Monetary Costs

We estimate the monetary costs of our protocol compared to other works [[KNT20, PSTY19] using
the same cost model. The cost is charged by Google Platform for pre-emptible virtual machines
(including CPU and RAM). More details of the estimation of the monetary costs are shown in
Table 3.

We observe that Construction 2 enables much lower client monetary costs compared to other

23



Parameters Construction 1  Construction 2 Circuit PSI PJC+RLWE

n t Client Server Client Server Client Server Client Server
28 0.14 0.11 0.11 0.15 0.06 0.06 0.01 0.01

216 ol2 0.55 0.11 0.47 0.51 0.78 0.78 0.01 0.01
216 7.14 0.11 3.13 3.17 12,51  12.51 0.03 0.03

28 1.84 1.84 0.11 0.95 0.24 0.25 0.18 0.18

220 212 2.26 1.84 0.83 1.42 0.97 0.98 0.18 0.18
216 8.84 1.84 7.11 7.73 12,7 12.72 0.2 0.2

28 58.17  58.76 0.17  26.48 6.22 6.62 5.78 5.78
225 212 58.58  58.76 148  19.46 6.94 7.34 5.78 5.78
216 65.17  58.76 1447 3449 19.18  19.58 5.8 5.8

Table 3: Total monetary cost in USD cents of PIR-with-Default with elements of 32 bits, using GCP pricing
for network and compute costs (see Table 5). Costs are totals across ¢ queries including network cost (divided
equally amongst client and server), and computation costs for both client and server including setup.

protocols. However, due to the expensive server computation, we notice that the server monetary
cost is higher than that of alternative protocols. However, the relative changes in cost make the
comparison attractive. For example for n = 22° and t = 28, our client cost is 36.5x lower than that
of [PSTY19], while incurring a server cost that is only 4x higher than theirs.

8 Conclusion and Future Directions

Many applications for the private join and compute functionality (PJC) are settings where the two
input sets have vastly different sizes. In these scenarios the intersection size, which could be quite
small, can be undesirable leakage beyond the required output. We introduced PJC constructions
that both hide the intersection size and achieve efficiency that is sublinear in the size of the larger
set. The heart of our constructions is a protocol for PIR-with-Default, which is of independent
interest. It implies directly PSI-Sum and a small modification of it gives inner-product PIR.
Additionally, it could be easily composed with general two-party computation protocols to obtain
any PJC computation and also to support differential privacy. We evaluate the efficiency of our
constructions, which could enable 28 PIR-with-Default lookups on the database of size 2%° (or inner-
product PJC on databases with such sizes) with communication of 44MB, which costs less than
0.17c. for the client and $0.26 for the server.

In this work, PJC is not clearly-defined for more than 2-parties, e.g. whether the functionality
should be computed on the n-way intersection, or also on items held by some parties but not
others. Furthermore, we have focused on the asymmetric-input setting, and it is not clear whether
the n-parties would have a mix of large and small inputs, or whether one party has large input and
all others small. In the mixed setting, it is interesting whether one could design a protocol with
communication cost linear in the “small” parties’ and logarithmic in the “large” parties’ inputs.
We believe this in an intriguing question for future work.

PJC currently focuses on the single server setting. To enhance scalability, a multi-server non-
colluding setting for PIR could be applied. Given the major differences in techniques and assump-
tions between these settings, we believe the multi-server PJC is an interesting research problem.

Acknowledgements. The last author is partially supported by NSF awards #2031799,

24



#2101052,

and #2115075. Part of this work was done while the first and last authors worked

at Google.

References

[ACLS18] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed
queries and amortized query processing. In 2018 IEEE Symposium on Security and
Privacy, 2018.

[AGC20] Privacy-preserving contact tracing, 2020.

[ALPT19] Asra Ali, Tancréde Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann,
Karn Seth, and Kevin Yeo. Communication-computation trade-offs in PIR. IACR
Cryptol. ePrint Arch., 2019:1483, 2019.

[APS15]  Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning
with errors. Cryptology ePrint Archive, Report 2015/046, 2015. http://eprint.iacr.
org/2015/046.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. TOCT, 6(3):13:1-13:36, 2014.

[BKM™20] Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sengupta, Erik
Taubeneck, and Vlad Vlaskin. Private matching for compute. ePrint, 2020.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422-426, July 1970.

[CGH'20] Justin Chan, Shyam Gollakota, Eric Horvitz, Joseph Jaeger, Sham Kakade, Tadayoshi
Kohno, John Langford, Jonathan Larson, Sudheesh Singanamalla, Jacob Sunshine, and
Stefano Tessaro. Pact: Privacy sensitive protocols and mechanisms for mobile contact
tracing, 2020.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information
retrieval. In 36th FOCS, pages 41-50. IEEE Computer Society Press, October 1995.

[CGN98] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by keywords.
Cryptology ePrint Archive, Report 1998/003, 1998. http://eprint.iacr.org/1998/
003.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully
homomorphic encryption with malicious security. In ACM CCS 2018, 2018.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information
retrieval. J. ACM, 45(6):965-981, 1998.

[CRS03]  Artur Czumaj, Chris Riley, and Christian Scheideler. Perfectly balanced allocation. In
Sanjeev Arora, Klaus Jansen, José D. P. Rolim, and Amit Sahai, editors, Approzima-
tion, Randomization, and Combinatorial Optimization., 2003.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big

data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 2013, pages 789-800. ACM Press, November 2013.

25


http://eprint.iacr.org/2015/046
http://eprint.iacr.org/2015/046
http://eprint.iacr.org/1998/003
http://eprint.iacr.org/1998/003

[DMNSO06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise

[DP320]

[DRRT18]

[DS16]

[FV12]

[Gen09]

[GIKMOO]

[Gol04]

[Goo19]

[GROS]

[HEK12]

[TKN+20]

[KK13]

[KKRT16]

[KLOR20]

[KLS*17]

to sensitivity in private data analysis. In TCC' 2006, 2006.

Decentralized privacy-preserving proximity tracing. https://github.com/DP-3T,
2020.

Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. Pir-psi: Scaling private
contact discovery. PoPETs, 2018:159-178, 2018.

Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In EUROCRYPT (1),
volume 9665 of Lecture Notes in Computer Science, pages 294-310. Springer, 2016.

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryp-
tion. TACR Cryptol. ePrint Arch., 2012:144, 2012.

Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford, CA,
USA, 2009.

Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy
in private information retrieval schemes. J. Comput. Syst. Sci., 2000.

Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press, 2004.

GoogleBlogPost, 2019. https://security.googleblog.com/2019/06/
helping-organizations-do-more-without-collecting-more-data.html.

Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval with
constant communication rate. In Luis Caires, Giuseppe F. Italiano, Luis Monteiro,
Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005, volume 3580 of LNCS,
pages 803-815. Springer, Heidelberg, July 2005.

Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS 2012. The Internet Society, February
2012.

Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana Raykova, Shob-
hit Saxena, Karn Seth, David Shanahan, and Moti Yung. On deploying secure comput-
ing commercially: Private intersection-sum protocols and their business applications.
In FuroSP, 2020.

Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring
short secrets. In CRYPTO 2013, Part II, 2013.

Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious PRF with applications to private set intersection. In ACM CCS 2016, 2016.

Ben Kreuter, Tancrede Lepoint, Michele Orru, and Mariana Raykova. Efficient anony-
mous tokens with private metadata bit. Cryptology ePrint Archive, Report 2020/072,
2020.

Agnes Kiss, Jian Liu, Thomas Schneider, N Asokan, and Benny Pinkas. Private set
intersection for unequal set sizes with mobile applications. PoPETs, 2017.

26


https://github.com/DP-3T
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html

[KMP*17]

[KOJ

[LPRT20]

[Mea86]

[MGC16]

[min]

[008S17]

[Pai99]

[PRO1]

[PRTY19)

[PRTY?20]

[PSSZ15]

[PSTY19)]

[PSZ18]

[RAI1S]

[Rab05]

Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Prac-
tical multi-party private set intersection from symmetric-key techniques. In ACM CCS
2017, 2017.

Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In $8th FOCS.

Tancrede Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu. Private
join and compute from pir with default. Cryptology ePrint Archive, Report 2020/1011,
2020. https://ia.cr/2020/1011.

Catherine A. Meadows. A more efficient cryptographic matchmaking protocol for use
in the absence of a continuously available third party. In IEEE Symposium on Security
and Privacy, pages 134-137, 1986.

Benjamin Mood, Debayan Gupta, Henry Carter, Kevin R. B. Butler, and Patrick
Traynor. Frigate: A validated, extensible, and efficient compiler and interpreter for
secure computation. In IEEFE European Symposium on Security and Privacy, EuroS&éP
2016, Saarbriicken, Germany, March 21-24, 2016, pages 112-127. IEEE, 2016.

http://mint.sbg.ac.at.

Michele Orru, Emmanuela Orsini, and Peter Schol. Actively secure 1-out-of-n ot ex-
tension with application to private set intersection. In CT-RSA, 2017.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Jacques Stern, editor, FUROCRYPT’99, volume 1592 of LNCS, pages 223-238.
Springer, Heidelberg, May 1999.

Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Friedhelm Meyer
auf der Heide, editor, Algorithms — ESA 2001. Springer Berlin Heidelberg, 2001.

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Lightweight
private set intersection from sparse OT extension. In CRYPTO 2019, Part II1, 2019.

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Psi from paxos: Fast,
malicious private set intersection. Eurocrypt, 2020.

Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private
set intersection using permutation-based hashing. In USENIX Security 2015, 2015.

Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient
circuit-based PSI with linear communication. In FUROCRYPT 2019, Part I1I, 2019.

Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection
based on ot extension. In ACM TOPS, 2018.

Amanda C Davi Resende and Diego F Aranha. Faster unbalanced private set inter-
section. In International Conference on Financial Cryptography and Data Security,
2018.

Michael O. Rabin. How to exchange secrets with oblivious transfer. ePrint 2005/187,
2005.

27


https://ia.cr/2020/1011

[SGRP19] Phillipp Schoppmann, Adria Gascén, Mariana Raykova, and Benny Pinkas. Make some
ROOM for the zeros: Data sparsity in secure distributed machine learning. In ACM
Conference on Computer and Communications Security, pages 1335-1350. ACM, 2019.

[she20] Simple homomorphic encryption library with lattices, 2020. https://github.com/
google/shell-encryption.

[Ste] Julien P. Stern. A new efficient all-or-nothing disclosure of secrets protocol. In ASI-
ACRYPT’98.

[TSST20] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. Epione:
Lightweight contact tracing with strong privacy, arXiv 2020.

A Preliminaries

A.0.1 Bloom Filter (BF) and Garbled Bloom Filter (GBF)

Given a collection of hash functions H = {hq,..., hy | h; : {0,1}* — [n]}, a Bloom filter (BF) [Blo70]
is the array BF[1...,n| of bits where each keyword =z is inserted to the BF by setting BF[h;(z)] = 1
for all h; € H.

A variant of BF is Garbled Bloom filter [DCW13] which is the array GBF[1...,n| of strings.
The GBF implements a key-value (x,v) store, where the value v associated with key z is v =
Sk GBF[h;(x)]. Both BF and GBF work as follows.

BF and GBF are initialized with all entries equal to 0 and L, respectively. For each key-value
pair (z,v), set BF[h;(x)] = 1,Vj € [k], and let

T ={hj(y) | j € [K], GBF[h;(z)] = L}

be the relevant positions of GBF that have not yet been set. Abort if T = (). Otherwise, choose
random values for GBF[j], j € T, subject to S% | GBF[h;(x)] = v.
For any remaining GBF[j] = L, GBF[j] is replaced with a randomly chosen value.

A.0.2 Hashing Scheme

Cuckoo hashing In basic Cuckoo hashing [PR01], there are m bins denoted B[1],..., B[m], a
stash, and k random hash functions hq, ..., hx, each with range [m]. To insert an element z into a
Cuckoo hash table, we place it in bin h;(z), if this bin is empty for any i. Otherwise, we choose a
random 7 € [k] and place x in bin h;(z), evict the item currently in that bin, and recursively insert
the evicted item. After a fixed number of evictions, give up and place the current item in the stash.
Using the analysis from [DRRT18, PSTY19], the parameters m, k will be chosen so that, with high
probability (1 —27?), every bin contains at most one item and no item has to place in the stash
during the Cuckoo eviction (i.e., no stash is required).

2-choice hashing In 2-choice hashing [CRS03], there are k = 2 random hash functions hq, ho
of range [m], and each item x can be placed in one of hi(x), ha(z). While in Cuckoo hashing, each
bin contains at most one item, 2-choice hashing does not restrict the number of items per bin: a
2-choice hashing algorithm assigns item x to whichever of hi(z), ha(z) currently has fewest items.
However, using the analysis from [CRS03, PRTY19], the parameter m will be chosen so that, with
high probability (1 —27%), every bin needs to pad with at most one dummy item to hide the actual
bin size.

28


https://github.com/google/shell-encryption
https://github.com/google/shell-encryption

A.0.3 Homomorphic Encryption Scheme

Homomorphic encryption (HE) is a form of encryption that allows to perform arbitrary computation
on plaintext values while manipulating only ciphertexts, and consists of the following probabilistic
polynomial-time algorithms.

e HGen(\): takes a security parameter \ as input, and outputs a public-private key pair (pk, sk).

e HEnc(pk,m): takes the public key pk and a plaintext m as input, and outputs a ciphertext
ct = HEnc(pk, m) as an encryption of m under public key pk.

e HDec(sk, ct): takes the secret key sk and a ciphertext ¢t = HEnc(pk, m) as input, and recovers
the plaintext m.

e HSum(pk, {ct;}): takes the public key pk and a set of ciphertexts {ct; = HEnc(pk,m;)} as
input, and outputs a ciphertext encrypting the sum of the underlying messages over the
plaintext space as HEnc(pk, > m;).

(2
e HMul(pk, {ct;}): takes the public key pk and a set of ciphertexts {ct; = HEnc(pk,m;)} as
input, and outputs a ciphertext encrypting the product of the underlying messages over the
plaintext space as HEnc(pk, [[ m;).
i

In this work, we will use homomorphic encryption based on Ring Learning with Errors (RLWE)
problem, and more precisely on the BGV [BGV14] and FV [FV12] homomorphic encryption
schemes; we defer to Section 7 for details thereon. However, we will use of the property that
one can hide the sequence of operations used to create a ciphertext by using a randomized proce-
dure denoted as Refresh, where the distribution of the ciphertext does not depend on the circuit
that led to it via homomorphic evaluation. In RLWE-based cryptosystems, we can achieve this
functionality by noise flooding or sanitization [DS16].

A.0.4 Private Information Retrieval

In this paper, we focus on the single-server setting and will use RLWE-based homomorphic en-
cryption scheme as in [ACLS18, ALP"19]. The server holds a database DB of N strings, and the
client wishes to read item DB[i] without revealing i. Single-server PIR consists of the following
algorithms.
e PIR.Gen(\): takes a security parameter \ and generates a public and secret key pair (pk, sk)
from a homomorphic encryption scheme.
e PIR.Query(pk,7): a randomized algorithm that takes index i € [IN] and public key pk as input
and outputs a query gq.
e PIR.Answer(pk,q, DB): takes a query g, public key pk, and a database DB as input, returns
an answer d, containing an encryption of D[i].
e PIR.Extract(sk,d): takes a secret key sk and answer d as input, returns D Bi].
In a basic construction, for server database size N, the PIR client computes (q) <— PIR.Gen(i) as
a vector of N ciphertexts encrypting 0, except for the ith ciphertext which encrypts 1. The server
homomorphically computes the following inner product: d def Z;V: 1 qlj] - DB][j], which consists of
a ciphertext encrypting DB[i]. The server then sends PIR.Answer’s output to client, who can then
reconstruct D B[i] by decrypting d.

B Security Proof of Theorem 1

Proof. We exhibit simulators for simulating corrupt client and server, respectively. We argue the
indistinguishability of the produced transcript from the real execution.

29



PARAMETERS:
e Server S input set size n, associated value space Z,y, number of client C queries t.
e A PIR-with-Default and Extended-PIR-with-Default primitive.
e Hashing parameters: a number of bins m, maximum bin sizes § for server bins and ~ for client bins,
a number of hash functions k.
e A set of 8+ v distinct dummy strings to use for padding bins by the server and client. These strings
must not appear in either party’s set of inputs.

INPUT:
e Server §: A set of key-value pairs P = {(y1,v1),---, (Yn,vn)} with distinct y;, and a set of de-
fault values {di1,...,dm ~}, where each v;,d; ; € Zy. The set of values {d;1,...,d;, will serve

as default values for client queries in bin i. Additionally a set of masks {s1,1,...,5mn,} each € Z,.
The set of values {s;1,...,s;} will serve as masks for client queries in bin 3.

e Client C: A set of ¢t queries X = {z1,...,2:}. Additionally a set of ¢ associated values
W = {ws,...,w} each € Zy.

ProToOCOL:

1. C hashes items {1, ..., z;} into m bins using the Cuckoo or 2-choice hashing scheme. Let Bc[b] denote
the items in the client’s bth bin.

2. S hashes items {y1,...,y,} into m bins under k hash functions. Let Bg[b] denote the set of items in
the server’s bth bin.

3. For bin b € [m]:

(a) S computes P, = {(vi,v;) | (vi,v;) € P and y; € Bs[b]}, then pads P, with dummy pairs to the
maximum bin size 3
(b) Parties invoke an instance of PIR-with-Default or Extended-PIR-with-Default :
eSS uses a set of key-value Py, a set of v default wvalues
{dp1,...,dp~}, and a set of v masks {sp1,..., 5.~}
e C use a set of v queries {v; | v; € Be[b]} padded with with dummy items to size
«v, and a set of v associated values {w;|v; € Be[b],w; € W}, padded with

dummy items till the bin has size

e C receives PIR-with-Default or Extended-PIR-with-Default output.
e Since our parameters include distinct dummy strings that never occur in either party’s input,
a client query for a dummy item is guaranteed to return a default value.

Figure 9: Our hashing based PIR-with-Default construction with sublinear communication. Por-
tions with changes highlighted are needed for achieving Extended-PIR-with-Default

Parameters Construction 1 Construction 2 Labeled PSI [CHLR18]

n t Setup Online Online Setup Online
Comm. Time Comm. Time Comm. Time Comm.  Time Comm. Time

220 2% 465MB  539ms  7MB  2.43ms 29MB  11821ms ~  340ms 66.56 73.63ms

Table 4: Comparison of communication (MB) and computation (ms) costs of PIR-with-Default with
elements of 32 bits compared with Labeled PSI ([CHLR18]). The running time is amortized over
the number of client queries.

Recall that our PIR-with-Default construction consists of three main building blocks: SS-PMT,
SS-AV, and Value-Or-Default. The security of our PIR-with-Default constructions follows in a

30



straightforward way from the security of its building blocks. Thus, we prove each block is se-
cure as follows.

We begin by observing that if we choose parameters appropriately, the server will fail to insert
its entries in the Bloom Filter with negligible probability, and also that each client’s query has a
negligible probability of false positive when checking BF membership. In either failure case, we
assume the simulator fails, and that this has a negligible effect on an adversary’s distinguishing
advantage. We will therefore assume in the following discussions that neither of these failures
occurs.

Simulating the client’s view. In Construction 1 as described in Figure 3 for PIR-with-Default
with setup, the simulator must simulate the view of client C for SS-PMT computation, which consists
of encrypted EBF, encrypted EGBF, and transcripts from the OT ideal functionality. The EBF and
EGBF are encrypted under the public key pk generated by the server. The corrupt client does not
know the secret key sk. Because of the semantic security of the HE scheme property, we can replace
EBF and EGBF with encryptions of random. The simulator proceeds the OT invocation as follows.
The honest server acts as OT’s sender and provides a set of OT messages {b1,...,bx} as input.
Note that b; € {bs,1 @ bs} where bs is chosen by the server, and the client receives only output
be from OT. The cryptographic guarantees of the underlying OT protocol allow us to replace b¢
with a randomly chosen bit. The proof for SS-PMT of our second PIR-with-Default construction,
using the abstraction of our Sum-PIR functionality, and can be proven directly from the fact that
the mask from the server is chosen randomly.

The client C receives no messages from the SS-AV computation in our Construction 1, there-
fore the simulator has no work here. For the second construction, the simulator sees Sum-PIR’s
randomness and output ve which is masked by a server’s secret value vs. Thus, we can replace v¢
with random.

In the Value-Or-Default phase, the simulator simulates an execution of the protocol in which
the client C receives nothing from the OT ideal functionality in Step 2 of Figure 4 since C acts
as OT’s sender. In Step 3 of Figure 4, the honest server’s input is two OT messages mg and mq
which are masked by his private value either vs or d. The simulator will instead simulate an OT
execution with both messages being o, the output corresponding to the client’s input which the
simulator receives as input. Due to the simulation-privacy of OT, Value-Or-Default produces output
indistinguishable from the real world.

Simulating the server’s view. The server receives nothing from SS-PMT computation,
except its chosen random output bs. In PIR-with-Default construction 1, the server also sees an
encryption of r’, where r’ is masked by the random value r. Furthermore the ciphertext encrypting
r’ has been rerandomized using Refresh. Therefore the simulator can indistinguishably replace this
ciphertext with a new encryption of a randomly chosen /. In Construction 2, the server sees a PIR
query from the client consisting of several homomorphic encryptions. The simulator can replace
these encryptions with encryptions of 0.

In the SS-AV computation, In construction 1 the simulator sees a refreshed homomorphic en-
cryption of vs, consisting of a share of the associated value desired by the client, masked by the
random ve chosen by the client. Relying on the security of the Refresh procedure, the simulator
can replace this ciphertext with a fresh encryption of a randomly chosen vs. In construction 2, the
server sees only homomorphic ciphertexts corresponding to a PIR query, which the simulator can
replace with encryptions of 0.

For both constructions, in the Value-Or-Default phase, the server participates in 2 OTs. In the
first OT, the server acts as a receiver, while the client provides two input messages each masked by
a random d¢. Since these messages are statistically uniformly random, the simulator can replace
both messages with random strings and use the simulator for the underlying OT. In the second OT,

31



CPU ($/hr) Network ($/GB)

Google Cloud Platform (GCP) $0.01 $0.08
Amazon Web Services (AWS) $0.005 $0.08
Microsoft Azure $0.005 $0.083

Table 5: Computation and Network Costs charged by different cloud providers. Computational costs are
for a single pre-ordered pre-emptible CPU and 2-4 GB of RAM. Network costs are the cost for the 10-50TB
tier of Cloud-to-Internet egress traffic.

the server acts as a sender, and the simulator can rely on OT receiver privacy to indistinguishably
simulate this step. O

C DMonetary Costs

We estimate the monetary costs of our protocol compared to other works. Monetary cost gives a
convenient measure to unify the cost of computation and network resources in a practically relevant
way, and has been used in other works include [TKN"20, PRTY19]. A key feature of monetary cost
as a metric is that it gives a large weight to communication cost. A gigabyte of communication
would add only minutes to end-to-end running time, but its monetary cost is equivalent to 8 hours
of computation.

C.0.1 Specific costs used

For our concrete monetary costs of resources, we use the model used by [IKN'20], who use the
costs charged by Google Platform for pre-emptible virtual machines (including CPU and RAM),
and the cheapest cost for ”Internet Egress” network usage (representing data flowing to an external
data center or cloud provider). This cost model was used to capture latency-insensitive executions
in a business-to-business setting. As such, it is a good fit for the advertising measurement use
case. However, we note that this model may underestimate true monetary costs in the exposure
notification use case where the client is a mobile device, since computation and network may be
much more constrained in that setting. We note that we expect our constructions to perform even
better compared to other works in this a setting, since our communication costs are relatively low,
and the vast majority of our computation cost is on the server where computation is presumably
cheaper.

GCP costs are in a similar range to the bulk costs charged by the other cloud providers, as
shown in Table 5. The prices shown are for single-CPU machines with 2GB RAM in AWS and
Azure, and 3.75 GB RAM in Google Cloud. The network bandwidth costs are for internet egress
in the 10-50TB data transfer tier.

C.0.2 Alternative cost models

This cost model assumes participants are hosted in different datacenters or homed in different cloud
providers. Network costs become cheaper if the two participants use the same cloud provider and
are colocated in the same cloud region, which is not the case for our deployment. For example,
network transfer in the same region costs 0.01 per GB within GCP, which is 8 x cheaper than the
internet egress rates. In this setting protocols with different efficiency tradeoffs may have a better
monetary cost.

32



D Optimizations for PIR-with-Default

This section revisits the state of the art constructions and optimizations of single-server PIR based
on RLWE-based homomorphic encryption: SealPIR [ACLS18] and MulPIR [ALP*19], and apply
them to the application settings of our new PIR-with-Default construction.

We recall that the ciphertexts of the RLWE-based HE schemes behind the latter PIR protocols
live in a ring Z, [z]/(z? + 1), for ¢ a product of primes congruent to 1 modulo 2d and d a power of
2, and the plaintext space is Z[z]/(z? + 1) for t < q.

Sublinear communication using recursion Recursion was proposed by Kushilevitz, Ostro-
vsky [KO], and later Stern [Ste], so as to obtain sublinear communication in single-server PIR based
on homomorphic encryption. The key idea is, instead of representing the database as a vector of
size n, to represent it as a r-dimensional hypercube of dimension n'/” (r = 1 is a n-dimensional
vector, r = 2 is a n'/? x n'/2 matrix) for 1 < r < log, N, so that the client has to send (the
encryption of) r n'/"-dimensional one-shot vectors indicating which position she is querying.

Originally described for additively homomorphic HE schemes, for the recursion to work with
additive-only HE schemes (such as Paillier [Pai99]), the ciphertext after one level of recursion is
“parsed” as a plaintext in the next layer. However, for our applications, we will need the ciphertext
after recursion to encrypt exactly the value (and not a ciphertext of the value); hence, we will
perform recursion using the multiplicative homomorphism of the RLWE-based HE schemes as
proposed in MulPIR [ALP*19].

It follows that a PIR query for index j = >°i_, j; - n0=/7, ji € [0,nY/"] will therefore
encrypt r one-shot binary vectors s;’s such that s;[i'] =1 <= ' = j;. In the naive version, each
bit is encrypted in its own ciphertext (e.g., as the constant coefficient of the polynomial). We will
describe below optimizations to reduce the query size.

Oblivious expansion An optimization proposed in SealPIR [ACLS18] is called oblivious expan-
sion, and as explained in [ALPT19], allows to encrypt the concatenation of the r one-shot vectors
into [rn'/"/d] ciphertexts, by placing each of the bit in a different coefficient of the polynomials.
Now, given an additional key material (of the order of a few megabytes) in the public key, the
server can first using a combination of additions (and substitutions) to obliviously recover rn!/"
ciphertexts encrypting each of the bits of the one-shot vectors.

Reducing the amortized cost Note that all applications listed in Section 6 inherently work
in the setting where the client will perform many PIR-with-Default queries. Henceforth, we aim at
reducing the amortized communication and computation costs.

The first method consists in using a hashing technique [KMP*17, PRTY19] and is already
described in Section 5.3.3. The idea is that both the clients and the server hash their items into
bins. Each client bin contains a small number of inputs (bounded by «), and the size of each bin on
the server is significantly smaller than the size of the initial database (cf. Section 5.3.3 for concrete
values). Each client will then evaluate v times PIR-with-Default on each of the bins. We further
note that this is essentially similar to the multi-query PIR technique described in [ACLS18, Sec. 5].

Additionally, remember that the plaintext space of the HE scheme is Z;[z]/(2?+1); in particular,
when ¢ is a prime congruent to 1 modulo 2d, it follows that the HE scheme can operate over d
polynomial “slots” in parallel. In particular, this means that it is possible to batch up to d queries
in a single ciphertext (basically, recombining differently after doing the oblivious expansion), and
process each query in parallel.

33



Weights embedded in PIR queries In the Extended-PIR-with-Default construction as de-
scribed in Figure 6, C sends the encryptions HEnc(pk,w;) to S, which are then homomorphically
multiplied to the results of the PIR queries by the server. In practice, this would require one more
level of homomorphic multiplication (and hence larger parameters for the HE scheme). However,
we note that the client already sends a 1-hot vector that encrypts the value 1 at the right position
for the PIR query. An alternative could then be that the client sends a 1-hot vector that encrypts
the value w; at the right position for the GBF, but this would double the upload since the same
PIR query could not be used both for the BF and the GBF. And this is indeed the case when
no recursion is used. However, when recursion is used, remember that the client sends r one-shot
binary vectors s;’s such that s;[¢'] = 1 if and only if i = j;. In that case, we propose to create a
sSBF as s$BF[i/] = w; and 0 otherwise, and send encryptions of s1,...,s;, sSBF to the server. The
server will then use s1,...,s, to answer in the SS-PMT computation, and szF
SS-AV computation.

,82,...,8 in the

34



	Introduction
	Our Motivation
	Our Contributions
	Improvement on Related Work

	Technical Overview
	Preliminaries
	Definitions
	PIR with Default

	PIR with Default Construction
	Construction Outline
	Construction 1: PIR-with-Default with Offline Setup
	SS-PMT Functionality
	SS-AV Functionality
	Value-Or-Default Functionality

	Construction 2: PIR-with-Default with Sublinear communication.
	Sum-PIR Functionality
	Building PIR-with-Default from Sum-PIR
	Hashing Based Multi-Query PIR-with-Default Construction

	Correctness and Security Proofs

	Two Party PJC
	Inner-Product Private Join and Compute
	General PJC
	Supporting Differentially Private Outputs

	Implementation
	Communication and Computation
	Comparison to Previous Work
	Monetary Costs

	Conclusion and Future Directions
	Preliminaries
	Bloom Filter (BF) and Garbled Bloom Filter (GBF)
	Hashing Scheme
	Homomorphic Encryption Scheme
	Private Information Retrieval


	Security Proof of Theorem ??
	Monetary Costs
	Specific costs used
	Alternative cost models


	Optimizations for PIR-with-Default

