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Abstract 

Contact tracing is an effective tool in controlling the spread of infectious diseases such as 
COVID-19. It involves digital monitoring and recording of physical proximity between people 
over time with a central and trusted authority, so that when one user reports infection, it is 
possible to identify all other users who have been in close proximity to that person during a 
relevant time period in the past and alert them. One way to achieve this involves recording on the 
server the locations, e.g. by reading and reporting the GPS coordinates of a smartphone, of all 
users over time. Despite its simplicity, privacy concerns have prevented widespread adoption of 
this method. Technology that would enable the “hiding” of data could go a long way towards 
alleviating privacy concerns and enable contact tracing at a very large scale. In this article we 
describe a general method to hide data. By hiding, we mean that instead of disclosing a data 
value 𝑥, we would disclose an “encoded” version of 𝑥, namely 𝐸ሺ𝑥ሻ, where 𝐸ሺ𝑥ሻ is easy to 
compute but very difficult, from a computational point of view, to invert. We propose a general 
construction of such a function 𝐸 and show that it guarantees perfect recall, namely, all 
individuals who have potentially been exposed to infection are alerted, at the price of an 
infinitesimal number of false alarms, namely, only a negligible number of individuals who have 
not actually been exposed will be wrongly informed that they have. 
 
1. Introduction 

Contact tracing has proven to be an effective tool in controlling the spread of infectious diseases 
such as COVID-19. It involves digital monitoring and recording of physical proximity between 
people over time, so that when one user reports infection, it is possible to identify all other users 
who have been in close proximity to that person during a relevant time period in the past and 
alert them. These users would be required to monitor their health and isolate, allowing early 
treatment and preventing further spread. Contact tracing has been deployed successfully in 
countries such as China, South Korea, Singapore, Israel, Australia, and Germany, and seems to 
be the only effective way to detect and contain the spread early in the process.  

There are two main approaches to contact tracing. The first is based on the relative distance 
between users. Using the Bluetooth sensor on a smartphone, it is possible to detect signals from 
other users with Bluetooth emitters who are physically close by (i.e. within a certain range) and 
record the proximity, either locally on the user’s device, or at a central authority/server. This 
method, currently under development by Apple, Google and others [1], has the advantage that 



absolute locations of users are never disclosed, ensuring some degree of privacy. The 
disadvantage is the reliability of the Bluetooth sensors and their ability to work well under all 
relevant conditions (e.g. occlusion) and at all relevant ranges and some security concerns about 
the popular decentralized approach to storing this type of data on user devices. 

The second approach to contact tracing involves recording on a central server the absolute 
locations, e.g. by reading and reporting the GPS coordinates of a smartphone, of all users over 
time. This obviously provides the server with more information to work with than the first 
approach, enabling not only alerts to nearby users, but also to identify geographic hotspots and 
other patterns of contagion. It also provides a historic record of the evolution of an epidemic 
which can be mined and analyzed in many other ways. 

Despite the simplicity of the second approach, privacy concerns have prevented its 
widespread adoption. Many people do not want their location history to be known to any third 
party, thus would avoid using any software that explicitly discloses this information. Some have 
gone so far as to call contact tracing based on unprotected disclosure of location data illegal or 
unconstitutional [2]. A number of commercial contact tracing apps, which report and store 
explicit location data, have recently been found in violation of user privacy policies, having 
shared this data with unauthorized third parties [3]. Such privacy concerns must be addressed if 
automatic contact tracing is to be deployed, as it is not very effective unless adopted by a 
majority of the population. 

Technology that would enable the “hiding” or “obfuscation” of location data could go a long 
way towards alleviating privacy concerns and enabling contact tracing at a very large scale. 
Since the outbreak of COVID-19, this has been the topic of recent research, incorporating 
cryptographic techniques such as private set intersection [4], private proximity testing based on 
an equality testing protocol [5] and homomorphic encryption [19]. We refer the interested reader 
to the comprehensive survey by Reichert et al. [20]. The objective of this article is to describe a 
very simple method to hide data, which can also be used to hide spatio-temporal data. By hiding, 
we mean that instead of disclosing a data value 𝑥, a user would disclose an “encoded” version of 
𝑥, namely 𝐸ሺ𝑥ሻ. For this to be useful, it should be easy for any user to compute 𝐸ሺ𝑥ሻ if given 𝑥, 
but be very difficult, from a computational point of view, to invert 𝐸, namely to recover 𝑥 when 
provided only with 𝐸ሺ𝑥ሻ (even for the user who encoded 𝑥ሻ. By “difficult” we mean it would 
require a prohibitive amount of storage or of computational resources, which would effectively 
deter any such attempt. Although quite distinct, as we will make clear later, these resemble in 
spirit one-way functions or cryptographic hash functions used in classical cryptography. In its 
simplest form, the function 𝐸 is deterministic and injective, as then it is easy to check if 𝑥 ൌ 𝑦 by 
simply checking if 𝐸ሺ𝑥ሻ ൌ 𝐸ሺ𝑦ሻ. In the contact-tracing scenario, the data 𝑥 ൌ ሺ𝑡, 𝑙ሻ is a data 
value consisting of a concatenation of the time 𝑡 with the location 𝑙. Given the function 𝐸, a user 
with ID 𝑖 would periodically transmit to a central server the pair ሺ𝑖, 𝑒ሻ, where 𝑒 ൌ 𝐸ሺ𝑥ሻ is the 
encoded version of 𝑥. The server would store these pairs in a database indexed by the second 
component. Given a query vector 𝑒 (of a detected infection), it should be easy to search this 



database to determine all pairs ሺ𝑖′, 𝑒′ሻ such that 𝑒′ ൌ 𝑒, namely identify which other users (having 
ID 𝑖′) were also at location 𝑙 at time 𝑡 and alert them. 

We depart from traditional cryptographic techniques by not requiring the use of encryption 
keys of any sort, neither private nor public keys. This means that even the user who computed 
𝐸ሺ𝑥ሻ from 𝑥 cannot recover 𝑥 from 𝐸ሺ𝑥ሻ unless she explicitly records the connection between 
the two or stores some additional information which might facilitate the recovery. While the 
basic embodiment of 𝐸 is deterministic, it is possible to add an extra layer of security by 
introducing a non-deterministic (probabilistic) element to 𝐸, namely 𝐸ሺ𝑥ሻ could assume more 
than one value for any given 𝑥. In this case we need to modify the database search to a matching 
procedure: given a query 𝑒, instead of searching for other vectors 𝑒′ such that 𝑒 ൌ 𝑒′, we search 
for all other vectors 𝑒′ such that 𝛿ሺ𝑒, 𝑒′ሻ  𝜏, where 𝛿 is the Hamming distance function between 
two vectors, namely the number of coordinates in which they differ, and 𝜏 is some threshold. 
These 𝑒′ are called matches of 𝑒. An exact match is, of course, the special case where 𝜏 ൌ 0. A 
judicious choice of the encoding function 𝐸 and the value 𝜏 will guarantee no false negatives (i.e. 
perfect recall), namely, given a query 𝑒 corresponding to some data 𝑥, we will always find all 
other matching values 𝑒′ corresponding to the same 𝑥. It will also guarantee a negligible (ideally 
zero) number of false positives (also called false alarms), namely, almost never report values 
𝑒′ corresponding to a different data value 𝑦 ് 𝑥. In the contact tracing scenario, perfect recall is 
necessary so that all individuals who have potentially been exposed to infection are alerted. A 
tiny number of false positives are tolerable as all this means is that a small number of individuals 
who have not actually been exposed will be informed that they have. 

This article proposes encoding functions for spatio-temporal data. In a nutshell, it maps a 2D 
location 𝑙 and time 𝑡, combined and represented as a large integer in a discrete world, to an 𝑛-
dimensional vector of integers 𝐸ሺ𝑥ሻ, where 𝑛 is quite large, e.g. 100. The range of the 
components of 𝐸ሺ𝑥ሻ can be much larger than 𝑛, e.g. ሼ0, … ,502ሽ. The function 𝐸 is based on 
well-known number-theoretic techniques, the preferred one making use of polynomials over 
finite fields. First deployed in 1960 in Reed–Solomon error-correcting codes [6] and its variants 
(the most important being the BCH code), the technique has also found use in other 
cryptographic methods, such as Shamir’s secret sharing method [7] and even blockchain [8]. The 
most important property of 𝐸 is that it transforms a very large integer into a long vector of much 
smaller integers in an injective way, which can be thought of as an embedding in a higher-
dimensional space, and this transformation cannot be inverted unless a minimal number 𝑚  𝑛 
of the vector coordinates (and their indices in the vector) are known. We take advantage of this 
by sorting the vector coordinates so that their correspondence to the coordinate indices is lost, 
making it difficult to apply the standard decoding methods. An attacker has no choice but to try 
all possible permutations of subsets of size 𝑚 of the 𝑛 coordinates, making it computationally 
infeasible, even for relatively small values of 𝑛 and 𝑚. Another important property is that, 
although there are simple algebraic relationships between the coordinates of the vector, to the 
naked eye, and even to a statistical test, they look like random integers. Thus, the distribution of 
the encoded vectors in the embedding space is quite uniform, which will work in our favor. 



 
2. The Setup 

Consider an integer domain (the “world”): 𝑊 ൌ ሼ0, … ,𝑀 െ 1ሽ. Any integer 𝑥 ∈ 𝑊 is a valid 
message and we may express it as a sequence of 𝑚 digits 𝑥 ൌ ሺ𝑥ଵ, … , 𝑥ሻ in base 𝑝: 𝑥 ൌ
∑ 𝑥𝑝
ିଵ
ୀ  where 𝑝 is a prime number (or more generally a prime power) and 𝑥 ∈ ℤ ൌ

ሼ0, … , 𝑝 െ 1ሽ. Note that this implies that 𝑚 ൌ ඃlog 𝑀ඇ and taking a larger 𝑚 is superfluous. 

Essentially, 𝑊 is synonymous with a subset of ℤ, the set of all vectors of length 𝑚, where each 

coordinate is taken from ℤ.   

In the contact tracing application, the spatio-temporal world consists of two-dimensional 
(latitude and longitude) GPS coordinates at 1 meter resolution (or the Open Location “Plus” 
Codes [9]), which translates to a grid with 10ଵସ points, and 10ହ different time stamps for every 
30 seconds over the past month, implying a “world” of size 𝑀 ൌ 10ଵଽ. If we use the prime 𝑝 ൌ
503, this would mean 𝑚 ൌ 8. 

 
3. The Encoding Function 

We propose the following non-deterministic encoding scheme:  

Let 𝑊 ൌ ሼ0, … ,𝑀 െ 1ሽ be an integer domain, 𝑛 a positive integer and 𝑝 a prime. Denote 
by ℤ the set of vectors with 𝑛 elements from ℤ and by Δ  the set of vectors with 𝑛 
elements from ℤ in non-decreasing order, also known as the ordered discrete simplex. 
The encoding function 𝐸:𝑊 → ℰ ⊂ Δ has parameters ሺ𝑀,𝑝,𝑛, 𝑘ሻ, where 0  𝑘  𝑛 
𝑝 and 𝑛  𝑚 ൌ ඃlog 𝑀ඇ.  

To compute 𝐸ሺ𝑥ሻ for a domain element 𝑥 ∈ 𝑊: 

1. Express 𝑥 in base 𝑝: 𝑥 ൌ ∑ 𝑥𝑝
ିଵ
ୀ . 

2. Compute the basic encoding 𝐶ሺ𝑥ሻ ൌ ሺ𝜋ሺ0ሻ,𝜋ሺ1ሻ, … ,𝜋ሺ𝑛 െ 1ሻሻ ∈ 𝒞 ⊂ ℤ, where 
𝜋ሺ𝜉ሻ ൌ ∑ 𝑥𝜉

ିଵ
ୀ  ሺmod 𝑝ሻ  is a polynomial of degree 𝑚െ 1 over the finite field ℤ. 

3. Sort the coordinates of 𝐶ሺ𝑥ሻ in non-decreasing order to 𝐶′ሺ𝑥ሻ ∈ ℰ. 
4. Randomly modify 𝑘 arbitrary coordinates of 𝐶′ሺ𝑥ሻ, while preserving the increasing 

order of the coordinates, resulting in 𝐸ሺ𝑥ሻ ∈ ℰ.  

Note that as a result of step 4, 𝑘  0 implies that 𝐸ሺ𝑥ሻ is non-deterministic, namely may assume 
multiple values. 

The basic code space 𝒞 ⊂ ℤ, defined as the set of all possible basic codes of world 

elements 𝒞 ൌ ሼ𝐶ሺ𝑥ሻ: 𝑥 ∈ 𝑊ሽ consists of vectors of length 𝑛, such that 𝐶ሺ𝑥ሻ ∈ ℤ. It has the 

following properties: 

1. 𝐶ሺ𝑥ሻ is injective, namely 𝑥 ൌ 𝑦 iff 𝐶ሺ𝑥ሻ ൌ 𝐶ሺ𝑦ሻ. 
2. 𝒞 has Hamming distance 𝑑 ൌ 𝑛 െ𝑚  1, namely any two distinct codewords 𝑐ଵ, 𝑐ଶ ∈
𝒞 differ from each other by at least 𝑑 coordinates: 𝛿ሺ𝑐ଵ, 𝑐ଶሻ  𝑑. This is because any 



polynomial of degree 𝑚െ 1 over a field is uniquely determined by 𝑚 of its values. So not 
only is 𝐶 an injective function (i.e. 𝑑  0ሻ, but it maps distinct world elements quite far 
apart from each other in 𝒞. 

3. 𝑥 may be recovered from 𝐶ሺ𝑥ሻ by a variety of efficient methods, including inverting a 
linear Vandermonde system. 

The basic coding function 𝐶 described above was proposed by Reed and Solomon [6] as an 
error-correcting code to overcome corruption of 𝑘 ൌ ⌊𝑑/2⌋ coordinates of 𝐶ሺ𝑥ሻ. When presented 
with 𝑐′, which is a corrupted version of 𝐶ሺ𝑥ሻ, Property 2 guarantees that 𝐶ሺ𝑥ሻ is the unique 
codeword in 𝒞 such that 𝛿ሺ𝐶ሺ𝑥ሻ, 𝑐′ሻ  𝑘, thus error-correction performed by replacing 𝑐′ with 
the vector closest to it in 𝒞 by the Hamming distance, is well-defined and yields the correct 
result 𝐶ሺ𝑥ሻ. The corrected codeword 𝐶ሺ𝑥ሻ may be found by efficient algorithms (e.g. [10]) which 
take into account the special algebraic structure of 𝒞. 

Our non-deterministic encoding function is a variation on the theme of error-correction. In our 
scenario, we are presented with two vectors 𝐸ሺ𝑥ሻ, 𝐸ሺ𝑦ሻ ∈ ℰ originating from 𝑥, 𝑦 ∈ 𝑊. We 

would like to have a threshold 𝜏 such that 𝑥 ൌ 𝑦 iff 𝛿൫𝐸ሺ𝑥ሻ,𝐸ሺ𝑦ሻ൯  𝜏.  
To give the flavor of our approach, we remark that it is relatively easy to determine this 

threshold if the encoding procedure does not contain the sorting step 2 in the encoding 
procedure, as the following lemma implies. 

Lemma 1. If we eliminate the sorting step 2 in the encoding procedure with parameters 

ሺ𝑀,𝑝,𝑛,𝑘ሻ,  and set 𝑘 ൌ ቔି
ସ
ቕ and 𝜏 ൌ 2𝑘 for 𝑚 ൌ ඃlog 𝑀ඇ, then 𝑥 ൌ 𝑦 iff 𝛿൫𝐸ሺ𝑥ሻ,𝐸ሺ𝑦ሻ൯  𝜏. 

Proof. From the definition of 𝑘, we have 𝑛 െ𝑚  4𝑘, so  

𝑥 ൌ 𝑦 ⟹  𝐶ሺ𝑥ሻ ൌ 𝐶ሺ𝑦ሻ  ⟹  𝛿൫𝐶ሺ𝑥ሻ,𝐶ሺ𝑦ሻ൯ ൌ 0 ⟹  𝛿൫𝐸ሺ𝑥ሻ,𝐸ሺ𝑦ሻ൯  2𝑘 ൌ 𝜏 

𝑥 ് 𝑦 ⟹  𝛿൫𝐶ሺ𝑥ሻ,𝐶ሺ𝑦ሻ൯  𝑛 െ𝑚  1 ⟹  𝛿൫𝐸ሺ𝑥ሻ,𝐸ሺ𝑦ሻ൯  𝑛 െ𝑚  1 െ 2𝑘  4𝑘 െ 2𝑘 ൌ 𝜏
 □ 

While not incorporating the sorting step 2 is amenable to easy analysis and identification of 𝑘 
and 𝜏, it also compromises the security of the encoding 𝐸ሺ𝑥ሻ, namely, it is then quite easy to 
recover 𝑥 from 𝐸ሺ𝑥ሻ. This is essentially error-correction from 𝑘 errors, which, as mentioned 
above, is possible by a number of efficient algorithms, taking advantage of the special algebraic 
structure of 𝒞 [10].  

The advantage of introducing sorting step 2 is precisely because it prevents the use of the 
standard error-correction algorithms, since the critical correspondence between the coordinates 
of 𝐶′ሺ𝑥ሻ (and thus of 𝐸ሺ𝑥ሻ) and the indices in the original 𝐶ሺ𝑥ሻ is lost.  

The disadvantage of introducing sorting step 2 is that it modifies the Hamming distance 𝑑 
present in 𝒞, which is not likely to be preserved in 𝒞′ and ℰ. In theory it could increase the 
distance, but it is much more likely to decrease it. It seems like it will be difficult to obtain a 
lower bound on this distance (which could have then been used to determine a threshold 𝜏, akin 



to Lemma 1), since all the algebraic structure that was present in 𝒞 has been destroyed in the 
transition to 𝒞′ and ℰ. 

Luckily, we are still able to make useful observations about the nature of the encoded vectors 
in ℰ. To the naked eye, the basic code space 𝒞 will consist of integer vectors of essentially 
random values in the range ሼ0, … , 𝑝 െ 1ሽ. By “random” we mean actually pseudo-random, 
namely that although completely determined by 𝑥, it will be statistically impossible to 
distinguish between these vectors and completely random vectors. The sorting of the vectors will 
make them less random, but it will still be quite difficult to distinguish between the vectors in ℰ 
and random non-decreasing integer vectors. 
 

4. The Matching Algorithm 

Let us recall the application: We have a database of 𝐷 pairs of user ID’s and encoded spatio-

temporal values: ൛൫𝑖,𝐸ሺ𝑥ሻ൯: 𝑖 ൌ 1, … ,𝐷ൟ. Given the 𝑞𝑢𝑒𝑟𝑦 – a vector 𝑒 –  we wish to find all 

matches of 𝑒, namely, find all database entries ሼሺ𝑖, 𝑒′ሻሽ such that both 𝑒 and 𝑒′ are possible 
encodings of the same data value 𝑥, i.e. 𝛿ሺ𝑒, 𝑒′ሻ  𝜏 for a suitable threshold 𝜏. We say that 𝜏 is 
the matching threshold and 𝑒ᇱ matches 𝑒. 

Recall that the size of the world is 𝑀 ൌ |𝑊| ൌ 10ଵଽ. Assuming 1 billion = 10ଽ users, each 
storing location data for every 30 seconds over the past month, namely, close to 10ହ time-
stamped locations, this implies that the database could contain 𝐷 ൌ 10ଵସ entries. 

We would like to show that even though the vectors are sorted, a matching threshold of 𝜏 ൌ
2𝑘 for “reasonable” values of 𝑘, as in Lemma 1 above, is still a good choice. This is because the 
size of the database (𝐷) is much smaller than the size of the world (𝑀), thus the probability that 
database vectors match a typical query vector is infinitesimally small, unless they are encodings 
of the same world data. 

Remember that 𝐷 ≪ 𝑀 ≪ 𝑁, where 𝑀 ൎ 𝑝 and 𝑁 ൌ 𝑝. Now, if given a query 𝑒 ൌ
𝐸ሺ𝑥ሻ for which there exists a matching database entry 𝑒′, then obviously 𝛿ሺ𝑒, 𝑒′ሻ  2𝑘. So to 
avoid false negatives, namely, to avoid missing correct matches, we must take 𝜏  2𝑘. 

Can we expect a given query vector 𝑒 ൌ 𝐸ሺ𝑥ሻ to “accidentally” match a vector 𝑒′ ൌ
𝐸ሺ𝑦ሻ corresponding to another 𝑦 ് 𝑥 in the database because of the sorting and corruption of the 
original basic code vectors in 𝒞 ? The following theorem implies that this false positive is highly 
unlikely. 

Theorem 1: Given any 𝑒 ∈ ℰ, an upper bound for the probability of a vector 𝑒ᇱ ∈ ℰ, generated 
by sorting the coordinates of a random vector 𝑧 ∈ ℤ, differing from 𝑒 in at most 𝜏 non-adjacent 

coordinates is 

Prob ሼ𝛿ሺ𝑒, 𝑒′ሻ  𝜏ሽ  𝑠ሺ𝑝,𝑛, 𝜏ሻ ൌ
𝑛!
𝑝

⋅
ሺ2𝑝ሻௗ

𝑑!

ఛ

ௗୀ

. 

Proof. For the case 𝜏 ൌ 0, the probability of an exact match in all coordinates is at most 𝑛!/𝑝, 
since all 𝑛! permutations of 𝑒 can be taken as 𝑧 among all 𝑝 possible unsorted vectors in ℤ, 



such that 𝛿ሺ𝑒, 𝑒′ሻ ൌ 0. For every coordinate of 𝑒 that occurs with multiplicity 𝜇  1, the 
probability reduces by a factor of 𝜇!, because the order of the repeated coordinate in 𝑧 does not 
matter. 

For the case 𝜏 ൌ 1, let us study the number of sorted vectors 𝑒′ ∈ ℰ that differ from 𝑒 in 
exactly one coordinate. Letting 𝑒 ൌ 0 and 𝑒ାଵ ൌ 𝑝 െ 1, it is clear that each coordinate 𝑒′ of 𝑒′ 
for 𝑖 ൌ 1, … ,𝑛 can take any value in ሼ𝑒ିଵ, … , 𝑒 െ 1, 𝑒  1, … , 𝑒ାଵሽ without compromising the 
correct order. Hence, there are  

ሺ𝑒ାଵ െ 𝑒ିଵሻ


ୀଵ

ൌ 𝑝 െ 1  𝑒 െ 𝑒ଵ  2𝑝 െ 2  2𝑝 

sorted vectors 𝑒′ ∈ ℰ at distance 𝛿ሺ𝑒, 𝑒′ሻ ൌ 1 from 𝑒 and thus the number of sorted vectors 𝑒′ ∈
ℰ with 𝛿ሺ𝑒, 𝑒′ሻ  1 is at most 2𝑝  1. Using the same permutation argument as before, this 
proves the upper bound for 𝜏 ൌ 1. 

For the case 𝜏  1 we apply the previous argument iteratively 𝜏 times while using the 
assumption that the coordinates of 𝑒′ that differ from those of 𝑒 are non-adjacent. Then a vector 
at distance 𝜏  1 is just a modification of a vector at distance 𝜏 in one additional coordinate, thus 
the number of modifications is at most ሺ2𝑝ሻఛ. Note that this is an overestimate as a modification 
may occasionally reduce the distance by one. Since the order of modification of the modified 
coordinates is not important, we have counted each distinct modification 𝜏! times.  □ 

The assumption that the differing coordinates of 𝑒 and 𝑒ᇱ are non-adjacent makes the proof of 
Theorem 1 easier, but we have experimentally observed that this upper bound holds also for the 
unrestricted case. 

So the expected number of false positives for any given query 𝑒 is at most 𝐷𝑠ሺ𝑝,𝑛, 𝜏ሻ, which 
decreases as 𝜏 decreases. For the values 𝑝 ൌ 503, 𝑛 ൌ 100,  we may use 𝑘 ൌ 10 and matching 
threshold 𝜏 ൌ 20, thus 𝑠ሺ𝑝,𝑛, 𝜏ሻ ൎ 10ିଵ. Since 𝐷 ൌ 10ଵସ, the expected number of false 
positives per query is infinitesimal (10ିହሻ, and even the expected number of false positives 
when each database entry is used as a query is still only 𝐷ଶ𝑠ሺ𝑝,𝑛, 𝜏ሻ ൌ 10ିସଷ. 
 
Conclusion. In our encoding scheme, it suffices to take a corruption parameter 𝑘 which is not 
too small and not too large, and then use 𝜏 ൌ 2𝑘 as the matching threshold. Such a threshold will 
completely avoid false negatives and produce a negligible number of false positives. 
 
Retrieving Matching Data. Now that we have a suitable matching threshold for our matching 
algorithm, we must address the algorithmic question of how to organize the database of 𝐷 
encoded values (which are sorted integer vectors), such that given a query vector 𝑒, it is possible 
to efficiently find all pairs ሺ𝑖′, 𝑒′) in the database such that 𝑒′ matches 𝑒, namely such that 
𝛿ሺ𝑒, 𝑒′ሻ  𝜏 ? This is known as the “static Hamming distance range query”. Of course, 
exhaustive search of the database is possible, but that would cost 𝑂ሺ𝐷ሻ time, which is too costly 
in our scenario where 𝐷 ൌ 10ଵସ. Efficient data structures have been devised for dealing with this 



problem, as in Manku et al. [11]. This requires 𝑂ሺ𝜏𝑛𝐷ሻ storage (which is significant but not 
prohibitive in our applicationሻ but has very fast (𝑂ሺlog𝐷ሻሻ query runtime. See also Liu et al. 
[12] for more recent work. 
 
5. The Tracing Algorithm 

Now that we have an encoding algorithm and are able to match two encoded vectors, we 
describe the procedure to be followed by the individual users and the central server to do the 
actual contact tracing and alerts. 

User with ID 𝒊 

 The user continuously transmits to the server data pairs ሺ𝑖, 𝑒ሻ where 𝑒 ൌ 𝐸ሺ𝑥ሻ and 𝑥 ൌ ሺ𝑡, 𝑙ሻ 
is her time and location, tagged as “uninfected”. The user also stores the triples ሺ𝑡, 𝑙, 𝑒ሻ in a 
local database indexed by 𝑡 and 𝑒 (e.g. on her smartphone), so that it is easy to retrieve all 
𝑒′s transmitted during a given time interval and recover ሺ𝑡, 𝑙ሻ from its encoding 𝑒.  

 If the user discovers she is infected, she sends again all pairs ሺ𝑖, 𝑒ሻ generated by her over the 
past, say, two weeks (by querying her local database) back to the server, tagged as 
“infected”. 

 Upon receipt of message 𝑒 tagged with “possible infection” from the server, the user 
recovers the infection time and location ሺ𝑡, 𝑙ሻ from 𝑒 (by querying her local database). The 
user self-isolates for two weeks and can possibly report ሺ𝑡, 𝑙ሻ separately to friends and 
family. 

Central server 

 Upon receipt of a data pair ሺ𝑖, 𝑒ሻ tagged “uninfected”, the server stores the pair on the server 
database (of size 𝐷). 

 Upon receipt of a pair ሺ𝑖, 𝑒ሻ tagged “infected”, the server retrieves from the server database 
(by the matching algorithm described in Section 4) all pairs ሺ𝑖′, 𝑒′ሻ for which 𝑒′ matches 𝑒. 
The server then sends these 𝑒′ to user 𝑖′ tagged with “possible infection”.  

 
6. Attacking the Code 

Recall that a critical objective is to “hide” the data by its encoding, namely render it 
computationally infeasible to recover the (large) integer 𝑦 ∈ 𝑊 from the integer vector 𝑒 ൌ
𝐸ሺ𝑦ሻ ∈ ℰ, either because it would require too much computation time or too much storage space. 
We describe here three possible methods of attack and argue that they are infeasible. 
 
Brute-force attack. The simplest method is just to exhaustively scan the entire world and check 
if the encoded version 𝑒′ ൌ 𝐸ሺ𝑥ሻ of any world point 𝑥 matches the given encoding 𝑒 (namely, 
that 𝛿ሺ𝑒, 𝑒′ሻ  𝜏ሻ. This would require |𝑊| ൌ 𝑀 ൌ 10ଵଽ encodings and comparisons, which is 
prohibitive in runtime. 
 
Table attack. We could reduce the runtime of the brute-force attack by trading off space for 
time, employing a very large database. Simply compute some encoding 𝐸ሺ𝑥ሻ for every possible 



𝑥 ∈ 𝑊 in a preprocessing phase and store the pairs ൫𝑥,𝐸ሺ𝑥ሻ൯ in a database indexed by 𝐸ሺ𝑥ሻ. 
Given an encoding 𝑒, the matching algorithm described in Section 4 would then be able to 

quickly retrieve all matches of 𝑒. However, this requires a database of size 𝑂ሺ𝜏𝑛𝑀ሻ which is 
ெ


ൌ

10ହ times larger than the server database. For 𝑀 ൌ 10ଵଽ,𝑝 ൌ 503,𝑛 ൌ 100 and 𝜏 ൌ 20, this is 
at least 10ଶଵ bytes, and would be prohibitively large. 
 
Direct attack. A direct attack occurs when an adversary tries to invert the encoding through a 
subset of the coordinates by applying the traditional decoding algorithms such as solving a linear 
Vandermonde system. This is foiled by the sorting of the coordinates of the vectors. Since 
inversion requires knowledge of the correspondence between coordinates and their indices for at 
least 𝑚 uncorrupted coordinates, this is what an attempt to invert 𝑒 ൌ 𝐸ሺ𝑥ሻ must look like: 

for each subset of 𝑚 coordinates (out of 𝑛) //   there are ൫൯ such subsets 

 for each permutation of 𝑚 indices (out of 𝑛) //   there are 
!

ሺିሻ!
 such permutations 

 solve for 𝑥 (e.g., by multiplying 𝑒 by the inverse of the Vandermonde sub-matrix 
 consisting of the corresponding 𝑚 rows from the full 𝑛 ൈ𝑚 Vandermonde matrix); 
 if 𝑥  𝑀 then continue; 
 compute 𝑒′ ൌ 𝐸ሺ𝑥ሻ; 
 if 𝛿ሺ𝑒, 𝑒′ሻ  𝜏 then return(𝑥); 
 end for; 
end for; 

Each solve costs Ωሺ𝑚ሻ time. Should any of the selected subset of 𝑚 coordinates be corrupted, 

the inner loop will run completely, costing 
!

ሺିሻ!
 solves. Since the probability that none of the 𝑚 

coordinates are corrupted is ቀ1 െ 


ቁ

ൎ exp ቀെ 


ቁ, the outer loop will terminate on the 

average after exp ቀ

ቁ iterations and the inner loop will compute an expected number of !

ଶሺିሻ!
 

solves the last time it runs. Note that failure in one iteration due to one or more corrupted 
coordinates will not reveal which of the 𝑚 coordinates are corrupted, so that there is no extra 
information that can help to choose a “better” set of 𝑚 coordinates in the next iteration. In total, 

the expected number of solves for this attack would be 
!

ሺିሻ!
exp ቀ


ቁ. For 𝑛 ൌ 100 and 𝑝 ൌ

503, we have 𝑚 ൌ 8. With 𝑘 ൌ 10, the expected number of solves is 10ଵ, which would take too 
long. 

 
7. An Alternative: Redundant Residue Number Systems 

While we have presented an encoding method based on polynomials over finite fields, it is 
possible to use another method which is also employed in error-correcting coding and secret-



sharing. This involves so-called redundant residue number systems. Originally proposed in the 
1950’s for efficient arithmetic computations on large integers [13], this technique was adopted 
for error-correction coding soon after [14,15] and is also used in cryptography [16,17]. The main 
difference between this method and the basic coding method described above based on 
polynomials is that now the basic code space is 𝒞 ൌ ℤభ ൈ ℤమ ൈ ⋯ൈ ℤ instead of ℤ for a 

sequence of distinct primes ሺ𝑝ଵ, … ,𝑝ሻ. 
Recall that the “world” is 𝑊 ൌ ሼ0, … ,𝑀 െ 1ሽ. Let ሺ𝑝ଵ, … , 𝑝ሻ be a sequence of increasing 

primes and 𝑚 an integer such that ∏ 𝑝 ൏ 𝑀 ൏ ∏ 𝑝

ୀଵ


ୀିାଶ , Denote 𝑁 ൌ ∏ 𝑝


ୀଵ . The 

encoding function 𝐸:𝑊 → ℰ for a domain element 𝑥 ∈ 𝑊, has parameters ሺ𝑝ଵ, … ,𝑝, 𝑘,𝑛ሻ, 
where 𝑝 are primes and 0  𝑘  𝑛 is an integer. The basic coding function is simply 𝐶ሺ𝑥ሻ ൌ
൫𝑥 ሺmod 𝑝ଵሻ, … , 𝑥 ሺmod 𝑝ሻ൯ ∈ 𝒞. Similar to the case of polynomials over finite fields, the 

infamous Chinese Remainder Theorem [15] guarantees that 𝑥 can be recovered from any subset 
of 𝑚 coordinates of 𝐶ሺ𝑥ሻ along with their indices, so this code also has Hamming distance 𝑛 െ
𝑚  1, and error-correction may be done using a variety of methods taking advantage of the 
algebraic structure (e.g. [18]). Our encoding proceeds as above, by sorting the coordinates of the 
basic code and corrupting a small subset without changing the order. Nothing else is changed. 

Despite this approach actually being simpler to implement than the polynomial-based 
approach, it is less desirable due to 𝑚 being more constrained as a function of the primes used. 
For example, for 𝑛 ൌ 80 , taking 𝑝 to be all the consecutive primes from 877 to 1,451 (having 
geometric mean 1,143) yields only 𝑚 ൌ 7. An appropriate 𝑘 would be 8, thus 𝜏 ൌ 16. The 
probability of a false positive is then 10ିହ଼ and the complexity of the direct attack is 10ଵଷ (see 
Table 1). 

Table 1. Parameters of the different settings for world size 𝑀 ൌ 10ଵଽ and database entries 𝐷 ൌ 10ଵସ. 

coding 
method 

encoded 
vector 
length 

alphabet 
size 

data 
vector size  

(base 𝒑) 

corrupted 
coordinates 

matching 
threshold 

encoded 
vector 

size 
(bits) 

expected # 
of false 

positives 

“direct attack” 
complexity 

𝑛 𝑝 
𝑚

ൌ ඃlog 𝑀ඇ 
𝑘 𝜏 ⌈𝑛 logଶ 𝑝⌉ 𝐷ଶ𝑠ሺ𝑛, 𝑝, 𝜏ሻ 

𝑛!
ሺ𝑛 െ 𝑚ሻ!

exp ൬
𝑘𝑚
𝑛
൰ 

polynomial 100 503 8 10 20 898 10−43 1016 
polynomial 100 101 10 1 2 666 10−10 1020 
polynomial 200 211 9 20 40 1,545 10−5 1021 

residues 80 ൎ1,143 7 8 16 858 10−58 1013 
 

 
8. Discussion  

Increasing the security. It is relatively easy to increase the security of the system, i.e. making a 
direct attack on the system more difficult. In the scenario described above, where 𝑀 ൌ 10ଵଽ, we 
took 𝑛 ൌ 100, 𝑝 ൌ 503, implying 𝑚 ൌ 8, thus the complexity of a direct attack is 10ଵ. If we 
were to take instead 𝑛 ൌ 100 and 𝑝 ൌ 101, so that 𝑚 ൌ ⌈logଵଵ 10ଵଽ⌉ ൌ 10, the complexity 
would increase to 10ଶ (although we would have to take 𝑘 ൌ 1  and 𝜏 ൌ 2 to keep the probability 



of a false positive at 10ିଵሻ , and if this were not enough, we can increase this further by 
increasing both 𝑛 and 𝑝.  See Table 1 for a comparison of the attack complexity resulting from 
different values of the system parameters. Increasing 𝑛 obviously increases the (bit) size 𝑛 ⋅
logଶ 𝑝 of the code 𝐶ሺ𝑥ሻ and thus the size of the server database, but the same is true for the 
database of the “table” attack. 
 
Using a deterministic mapping. Our encoding method is non-deterministic, namely involves 
randomly corrupting a subset of 𝑘  0 coordinates in the sorted basic code vector. The 
advantage of a large 𝑘 is that it increases the difficulty of a direct attack on the database, as 
described in Section 6. However, for certain values of the other system parameters, it may be 
possible to make do with a deterministic encoding method, namely 𝑘 ൌ 𝜏 ൌ 0. In this case, 
matching a query vector within the server database reduces to exact vector match, which may be 
done easily by binary search on a table (of size 𝐷ሻ of the database entries ሺ𝑖, 𝑒ሻ, sorted in 
lexicographic order of 𝑒. 
 
Detecting proximity. The method outlined in this article provides an easy way to determine 
whether 𝑥 ൌ 𝑦 by comparing 𝐸ሺ𝑥ሻ and 𝐸ሺ𝑦ሻ. Recall that 𝑥 and 𝑦 are taken from a discrete 
world, which are essentially samples of the true continuous world at some finite resolution grid. 
However, sometimes in contact tracing it is necessary to also determine proximity beyond the 
grid resolution, either because of an increased radius of infection or simply because the accuracy 
of the measured location (typically taken from a GPS device) is much worse than the grid 
resolution and the chances of an exact match in measured location even when two users are 
within grid resolution, is very slim. 

It would seem difficult to achieve this, since the encoded vectors have a pseudo-random 
distribution and any spatio-temporal correlation between two data points would be “lost in 
encoding”. The easy way to circumvent this is for the user to transmit to the central server 
encodings of not just her current location, but also of the neighboring grid points, effectively 
“dilating” the data point. This would incur some overhead in storage and transmission costs on 
both client-side and server-side. 

 
“Inflating” the world. The world size, in our contact tracing application, is 𝑀 ൌ 10ଵଽ integers, 
which is very large, but constrains some of the parameters in our encoding scheme. In particular, 
the parameter 𝑚, if too small, could compromise the security against the direct attack, as 
described in Section 6. One way to rectify this would be to “inflate” the world by means of some 
function 𝑓:𝑊 → 𝑊′ with 𝑀 ൌ |𝑊| ≪ |𝑊′| ൌ 𝑀′. This function 𝑓 should be injective and non-
polynomial, so that it cannot be inverted easily at each individual coordinate. One possibility for 
such an 𝑓 is the following: 

Let 𝑞 denote the 𝑖-th prime (i.e., 𝑞ଵ ൌ 2, 𝑞ଶ ൌ 3, etc.) and observe that the product of the first 
𝑚 ൌ 16 primes is a little larger than the size of our world. Hence, the first step is to map 𝑥 ∈ 𝑊 
to the residue code vector w.r.t. these 16 primes, namely compute 𝐶ሺ𝑥ሻ ൌ ሺ𝑐ଵ, … , 𝑐బ

ሻ with 𝑐 ൌ



𝑥 ሺmod 𝑞ሻ. For the next step, let 𝑠 ൌ ∑ 𝑞
ିଵ
ୀଵ  denote the sum of the first 𝑖 െ 1 primes (i.e., 𝑠ଵ ൌ

0, 𝑠ଶ ൌ 2, 𝑠ଷ ൌ 5, etc.) and let us map each 𝑐 to the ሺ𝑠  𝑐  1ሻ-th prime, giving the vector 

𝐶′ሺ𝑥ሻ ൌ ሺ𝑐ଵ′, … , 𝑐బ
′ሻ with 𝑐′ ൌ 𝑞௦ାାଵ. Finally, we define 𝑓ሺ𝑥ሻ ൌ ∏ 𝑐′

బ
ୀଵ  and note that 𝑓ሺ𝑥ሻ 

is a square-free integer with exactly 𝑚 prime factors. Moreover, as the mapping 𝐶 is injective, 
it follows that 𝑓ሺ𝑥ሻ and 𝑓ሺ𝑦ሻ for 𝑥 ് 𝑦 have at most 𝑚 െ 1 common factors, thus guaranteeing 

the injectivity of 𝑓. The size of the inflated world is 𝑀′ ൌ ∏ 𝑞௦శభ
బ
ୀଵ ൎ 10ଷଽ. We now continue 

to encode 𝑥′ ൌ 𝑓ሺ𝑥ሻ ∈ 𝑊′ instead of 𝑥 ∈ 𝑊 with the polynomial-based approach outlined above, 
but now having the advantage of a larger 𝑚′ ൌ 15 instead of the previous 𝑚 ൌ 8. 

 
Other linear codes. The basic code based on polynomials that we use is a linear code, in the 
sense that the coding operation is just multiplication by a matrix: 𝐶ሺ𝑥ሻ ൌ 𝑉 ⋅ 𝑥 over ℤ. 𝑉 is the 

𝑛 ൈ𝑚 Vandermonde matrix, which has the special property that all submatrices of size 𝑚 ൈ𝑚 
have full rank. This property allows to recover 𝑥 from any subset of 𝑚 coordinates of 𝐶ሺ𝑥ሻ by 
multiplying them by the inverse of the appropriate submatrix of 𝑉. Thus any 𝑛 ൈ𝑚 matrix with 
similar properties would serve the same purpose. Furthermore, were we to construct an 𝑛 ൈ𝑚 
matrix 𝐴 with the property that some of the submatrices of size 𝑚 ൈ𝑚 have rank less than 𝑚, 
and that full rank is obtainable only when the submatrix is enlarged to ሺ𝑚  𝑙ሻ ൈ 𝑚, this, 
coupled with the corruption of coordinates during encoding, could further complicate the direct 
attack on the method described in Section 6. 
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