
On the Security Goals of White-Box
Cryptography

Estuardo Alpirez Bock1, Alessandro Amadori2, Chris Brzuska1, and Wil
Michiels2,3

1 Aalto University, Finland, estuardo.alpirezbock,chris.brzuska@aalto.fi
2 Technische Universiteit Eindhoven, Netherlands, A.Amadori@tue.nl

3 NXP Semiconductors, Netherlands, wil.michiels@nxp.com

Abstract. We discuss existing and new security notions for white-box
cryptography and comment on their suitability for Digital Rights Man-
agement and Mobile Payment Applications, the two prevalent use-cases
of white-box cryptography. In particular, we put forward indistinguisha-
bility for white-box cryptography with hardware-binding (IND-WHW) as
a new security notion that we deem central. We also discuss the secu-
rity property of application-binding and explain the issues faced when
defining it as a formal security notion. Based on our proposed notion for
hardware-binding, we describe a possible white-box competition setup
which assesses white-box implementations w.r.t. hardware-binding. Our
proposed competition setup allows us to capture hardware-binding in a
practically meaningful way.
While some symmetric encryption schemes have been proven to ad-
mit plain white-box implementations, we show that not all secure sym-
metric encryption schemes are white-boxeable in the plain white-box
attack scenario, i.e., without hardware-binding. Thus, even strong as-
sumptions such as indistinguishability obfuscation cannot be used to
provide secure white-box implementations for arbitrary ciphers. Perhaps
surprisingly, our impossibility result does not carry over to the hardware-
bound scenario. In particular, Alpirez Bock, Brzuska, Fischlin, Janson
and Michiels (ePrint 2019/1014) proved a rather general feasibility result
in the hardware-bound model. Equally important, the apparent theoret-
ical distinction between the plain white-box model and the hardware-
bound white-box model also translates into practically reduced attack
capabilities as we explain in this paper.

Keywords: White-box cryptography · Hardware-binding · Application-binding
· Security Notions · Feasibility · AES

This paper will appear in the proceedings of TCHES Volume 2020, Issue 2. Both
versions of the paper are essentially identical and differ only in their formatting.

1 Introduction

The white-box attack model was introduced in 2002 by Chow, Eisen, Johnson,
and van Oorschot (CEJO [14,13]). In this model, we consider an adversary which
is in complete control of the execution environment of a cryptographic program
and which obtains the implementation code of the cryptographic program with
an embedded secret key. The goal of a white-box implementation is to remain
secure even in the presence of such a powerful adversary.

Since the introduction of white-box cryptography, constructing white-box
cryptographic implementations that achieve security against key extraction w.r.t.
a white-box attacker has been a central research topic. A prominent demonstra-
tion of these efforts are the WhibOx Competitions of 2017 and 2019 [18,16],
where designers were invited to submit white-box AES implementations with
embedded secret keys. However within a few days up to several weeks, attackers
succeeded to extract keys from all candidates that were submitted.1

Since achieving security against key extraction for standard ciphers seems
tremendously challenging and, in a way, a minimal goal, studies on further secu-
rity goals for white-box cryptography have received less attention. To some ex-
tent, it seems natural to associate white-box cryptography with a special-purpose
obfuscation technique for hiding embedded secret keys in ciphers. However, it
is folklore —and we elaborate more later in this paper— that a white-box pro-
gram which achieves only security against key extraction does not provide any
meaningful security in most use cases. To clarify this, we now reflect on Digi-
tal Rights Management and Mobile payment applications as the most popular
use cases of white-box cryptography. We study the considerations that lead to
the deployment of white-box cryptography and explicate the expected security
properties, in each of the application scenarios. As it turns out, even Virtual
Black-Box obfuscation [5] alone does not suffice to prevent misuse of the cryp-
tographic programs in the use-cases that we discuss, since the security goals of
white-box cryptography and Virtual Black-Box obfuscation are incomparable.

Digital Rights Management (DRM). The purpose of DRM applications
is to perform access control on a user’s device, typically allowing the user to
access content they have paid for and limit access to content beyond. Usually,
content is encrypted under a symmetric key, and the DRM applications contain
an embedded secret key to decrypt and thereby retrieve the content. White-
box cryptography here shall prevent the user from extracting the secret key
and sharing it with other users. However, instead of extracting the key, a user
could simply copy the entire decryption program with the embedded secret key
and share this copy with other users. Therefore, effective white-box decryption
programs for DRM applications need to implement countermeasures against such
code-lifting attacks.

1 Three design candidates of the 2019 edition resisted attacks during the competition
phase and were broken a few weeks after the end of the competition (see https:

//www.cryptolux.org/index.php/Whitebox_cryptography).

2

https://www.cryptolux.org/index.php/Whitebox_cryptography
https://www.cryptolux.org/index.php/Whitebox_cryptography

Motivated by the DRM application scenario, Delerablée, Lepoint, Paillier,
and Rivain (DLPR [17]) formulate several security notions. In addition to (ba-
sic) security against key extraction, DLPR suggest the notion of one-wayness,
which captures that an encryption program should not allow to decrypt. In gen-
eral, one-wayness is known not to be a suitable formalization of confidentiality
as one-wayness does not prevent the leakage of a few bits of information about
the encrypted message, unlike standard confidentiality notions such as indistin-
guishability under chosen-message attacks (IND-CPA). However, in the DRM
setting, one can argue that strong confidentiality is less essential and that illegal
re-distribution is thwarted already if significant parts of the content cannot be
recovered by the adversary.

In order to address the threat of code-lifting attacks and illegal re-distribution
of decryption software, DLPR propose the notions incompressibility and trace-
ability. A white-box implementation of a cryptographic primitive is called in-
compressible if it is of very large size and only remains functional in its complete
form. If the program is compressed or if fragments of the program are removed,
the program loses its functionality. The underlying motivation is that if a pro-
gram is incompressible and of a very large size, then it should be difficult for
an adversary to re-distribute it online. See [17,10,11,9,20,1] for constructions
that achieve incompressibility. Traceability, on the other hand, consists of wa-
termarking a decryption program such that, if used for unintended purposes and
re-distributed illegally, it is possible to determine the user who corresponds to
that program. DLPR define a white-box tracing scheme based on the fully col-
lusion resistant traitor tracing scheme defined by Boneh, Sahai and Waters in
[12].

Mobile Payment. White-box cryptography for mobile payment applications
should serve a somewhat different purpose than previously described for DRM
applications. For the description of the application scenario, we now follow the
presentation of Alpirez Bock, Brzuska, Fischlin, Janson and Michiels [3]. A mo-
bile payment application stores sensitive data (e.g. transaction credentials) in
encrypted form. When the owner of the application wishes to make a payment,
a credential is decrypted and used to generate a valid transaction request. Note
that in this case, the adversary and the owner of the application are distinct
entities. I.e., the adversary is a third party whose ultimate goal is to recover the
value of a transaction credential in order to use it for their own purposes against
the interest of the owner of the application. Therefore, we need to prevent the
adversary from reading out the content of the transaction credentials contained
in the ciphertexts stored within the application. I.e., we (should) aim for the
confidentiality of the transaction credentials. Analogously, we need to prevent
an adversary from modifying the values of the ciphertexts in such way that the
ciphertexts decrypt into new, maliciously modified transaction credentials. That
is, we (should) aim for ciphertext integrity. Moreover, we also need to protect
the secret key used to decrypt those ciphertexts. Additionally, it is desirable

3

to achieve confidentiality and integrity also for the requests that are generated
using the decrypted transaction credential.

An adversary located in the user’s phone (e.g. in the form of malware) might
attempt to extract the decryption key and use it for recovering the transaction
credentials. In addition, the adversary might attempt to simply copy the entire
application and run it on a phone of their choice, communicating with a pay-
ment terminal of their choice. That is, mobile payment applications also need
protection against code-lifting attacks.

The observations for both use cases discussed above show that indeed, a
white-box program needs to achieve more than only security against key ex-
traction and, in particular, that mitigating code-lifting attacks is central to the
application of white-box cryptography. The relevance of code-lifting attacks is
an attack vector that is usually not considered for obfuscation, which is one of
the distinguishing features of the two tools. As the attack threats on a DRM
application differ from the attack threats on a mobile payment application, we
now discuss why the DRM-specific security notions might not be suitable for
payment and that further security notions are needed.

1.1 Security notions for white-box cryptography beyond DRM

As explained above for mobile payment applications, we wish to achieve prop-
erties such as confidentiality, integrity, security against key extraction and secu-
rity against code-lifting attacks. Neither confidentiality nor integrity properties
are inherited from incompressibility, traceability or security against key extrac-
tion, and one-wayness only ensures hiding of part of a ciphertext. Moreover, the
concepts of incompressibility and traceability do not seem to fit the use case of
white-box cryptography for mobile payment. The concept of implementing cryp-
tographic programs of a very large size seems to stand in contrast with desired
design properties of applications used by mobile devices and in the internet of
things (see Section 5 for an extended discussion). As for traceability, it seems
unlikely that the owner of the payment application might want to illegally re-
distribute their application for unintended purposes. In this paper, we thus focus
on the properties of hardware- and application-binding for protecting white-box
programs in mobile payment applications.

Hardware-Binding. The property of hardware (device) binding captures that
white-box cryptography shall only be executable on the intended device. That is,
a white-box program can be evaluated when having access to a specific device,
but becomes useless when not having access to the device. Hardware-binding
has been remarked as a desirable goal for white-box cryptography in the lit-
erature [15,31,4]. In fact, commercial implementations offer hardware-binding
as an additional security feature [25], while evaluation boards provide security
assessments of white-box implementations with respect to software protection
methods such as device binding [28]. Moreover in a recent work by Alpirez Bock,
Brzuska, Fischlin, Janson and Michiels (ABFJM [3]), the authors present a fea-
sibility result for white-box cryptography with hardware-binding, based on the

4

assumption of indistinguishability obfuscation and a puncturable pseudo-random
function as a secure hardware component. The authors construct a white-box
key derivation function (KDF) with hardware-binding and use it as a building
block for a payment application. As the authors point out, their proposed ap-
plication achieves properties which align with security guidelines proposed by
Mastercard [24].

In this paper we abstract and generalize the security notion for hardware-
binding for white-box encryption. We define the notion of hardware-binding such
that an adversary is unable to generate a valid ciphertext, in the case that the
encryption program does not have access to the hardware device it is bound to.
We explain how we can construct a secure white-box encryption program based
on the approach presented by ABFJM.

Application-Binding. In order to increase the security of a cryptographic
program running on a mobile device, one can bind it to another application im-
plementing authentication or filtering functions. For instance, before performing
any cryptographic operation, an application might require its user to provide a
valid password.

Similarly, the application might first verify the validity of the input message
the user wishes to encrypt, and only in case that it is a valid message, the encryp-
tion will take place. For these countermeasures to be effective in the white-box
attack model, we need to have an encryption program which can only be exe-
cuted within a designated application and cannot be separated from it. We refer
to this technique as application-binding. The goal of application-binding is to
prevent an adversary from circumventing computations that shall be performed
by an application before encrypting a message.

Having a white-box program which achieves the property of application-
binding only, and does not implement any hardware-binding functions, has one
particular advantage. Namely, the owner of the program can freely choose on
which hardware device they want to use their program. For the case that the
application implements authentication operations, only the owner of the program
should be able to authenticate themselves and thus, an adversary who code
lifts the program is not able to use it. Combining the notions of application-
and hardware-binding achieves even stronger security properties than hardware-
binding alone, as was observed by Cooijmans, de Ruiter and Poll (CRP) [15]
in the context of secure storage solutions. The authors consider hardware- and
application-binding as properties jointly, i.e., they deem application-binding as
more useful when combined with hardware-binding.

In this paper, we discuss application-binding as a useful security design con-
cept in the white-box attack model. We point out several issues that arise
when trying to formalize the intuitively desired security guarantees provided
by application-binding as a formal security notion. A central difficulty is to ab-
stract and/or generalize the different functionalities that an (a priori) unknown
application can perform together with its associated desired security properties.
A useful special case is binding a white-box program to an application that

5

performs authentication operations, i.e., the white-box program can only be ex-
ecuted in case that a valid input (such as a password) is provided. Even in this
special case, defining security is non-trivial: Recall that in the white-box attack
model, we consider an adversary in control of the execution environment of the
program. Thus, it is fair to assume that the adversary might intercept the valid
authentication input and then use it for running a copy of the encryption pro-
gram. One might exclude this particular attack interface, but this appeared a
rather arbitrary restriction to us, inconsistent with the general white-box attack
scenario rationale. We thus refrained from formalizing such a notion.

1.2 On the Feasibility of White-Box Cryptography

Based on our security notions, we put forward suggestions for alternative white-
box competitions. Here, we consider white-box programs that are bound to a
(hardware) functionality. That is, the white-box program can only be executed
in the presence of a specific hardware module (emulated by the competition
server). We speculate that such a competition not only reflects the application
of white-box cryptography in real life applications more closely, but, in addition,
is also more likely to yield more robust implementations. Our speculation is fu-
eled by several results from the foundations of cryptography, but also from the
competition framework as we explain later. When a white-box encryption pro-
gram is not bound to a functionality, then its desired functionality is strikingly
close to that of public-key cryptography and/or trapdoor functions. By the sem-
inal result of Impaglizzo and Rudich [22], turning symmetric-key cryptography
into public-key cryptography via a generic transformation seems unlikely. Sim-
ilarly, the foundational impossibility result for Virtual Black-Box Obfuscation
by Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan and Yang [5] points
into the same direction. However, since the breakthrough of indistinguishability
obfuscation (iO), it is well-known that iO can turn any one-way function into
a public-key encryption scheme. In addition, ABFJM transform arbitrary sym-
metric encryption schemes into hardware-bound white-box encryption schemes.
Does the same approach apply to the non-hardware-bound setting?

The answer to this question is not known, and iO-inspired candidates have
been broken in prior competitions [21]. However, one might argue that the ap-
proach seems conceptually promising, and the failure in a practical competition
is merely due to the tremendous inefficiency of current iO candidates for con-
crete parameters. However, we argue that generic transformations that works
for arbitrary secure symmetric encryption schemes seems indeed hard to get by.
Namely, we show that a generic transformation from symmetric-key to public-
key cryptography while maintaining the input-output-behavior of the encryption
(as required in the white-box scenario) seems unlikely. Inspired by [5], we give a
contrived, yet black-box secure symmetric encryption scheme that is not white-
boxeable in the plain white-box model. Here, we can give a very efficient attacker
that is able to extract the key from any white-box version of the symmetric en-
cryption scheme. Perhaps surprisingly, the same symmetric encryption scheme

6

can be securely used in the hardware-bound setting, thus demonstrating a con-
ceptual separation between the two settings.

Based on our impossibility result and the (theoretic) ABFJM feasibility re-
sult, we speculate that in general, white-box programs which implement hardware-
binding are more likely to achieve the desired security. As we also argue, white-
box programs implementing such binding properties align better to the use case
of white-box cryptography in real-life, and reduce the attacker capabilities. Thus,
there are good reasons to believe that the suggested new white-box competitions
reflect the need of practical applications more accurately and reflect security
goals that are easier to achieve than those in current competitions.

Summary of Contributions and Outline of the Paper. In Sections 3 and
4, we discuss existing security notions for white-box cryptography and limits of
their usefulness in the context of payment applications. In Section 5, we define in-
distinguishability of white-box encryption with hardware-binding (IND-WHW).
In contrast to ABFJM, our IND-WHW security notion is general and not tai-
lored to a specific setup of payment applications. From IND-WHW security, we
derive a new white-box competition setup that captures the desired property
in Section 6. We then turn to studying a conceptual separation between the
plain white-box model and the hardware-bound white-box model. Namely, in
Section 7, we show that generic compilers for white-box cryptography cannot
exist in the plain model. The result is technically inspired by the impossibility
result for Virtual Black-Box obfuscation [5]. In Section 8, we discuss and reflect
on the ABFJM construction for white-box cryptography with hardware-binding
in the payment setting. In Section 9, we summarize the conceptual separation
between the plain white-box model and the hardware-bound white-box model
and reflect on the practical differences between them. We conclude with spec-
ulations that a competition for hardware-bound white-box cryptography not
only reflects use-cases of white-box cryptography in a more suitable way, but
might also put designers in an advantageous position where it becomes feasible
to submit designs that resist attacks for more than 8 weeks.

2 Preliminaries and Notation

1n denotes the security parameter in unary notation. Given a bit string x, we
denote by x[j : i] the bits j to i of the bit string x. We denote by binn(i) the
integer i, encoded as an n-bit string. For the concatenation of two bit strings a
and b, we write a||b. For a program P , we denote by |P | its bit-size. We leave
the choice of encoding of the program implicit in this work.

By ←, we denote the execution of a deterministic algorithm while ←$ de-
notes the execution of a randomized algorithm. We denote by := the process of
initializing a set, e.g. S := ∅, while ←$ denotes the process of randomly sampling
an element from a given set, e.g. x←$ {0, 1}n. When sampling x according to the
probability distribution X, we denote the probability that the event F (x) = 1
happens by Prx←$X [F (x)]. We write oracles as superscript to the adversary AO.

7

Sometimes, when we have many oracles, we additionally use the subscript of the
adversary, e.g., AO1,O2,O3

O4,O5,O6
. All algorithms receive the security parameter 1n as

input. For ease of notation, we omit the security parameter for the rest of the
article.

Definition 1. A nonce-based symmetric encryption scheme SE is a tuple of
three algorithms (KgenSE, Enc, Dec) such that KgenSE is a probabilistic polynomial-
time algorithm (PPT), and Enc and Dec are deterministic polynomial-time al-
gorithms. The algorithms have the following syntax: kSE←$ KgenSE(1n), c ←
Enc(kSE,m, nc), and m/⊥ ← Dec(kSE, c, nc). The encryption scheme SE satisfies
correctness, i.e., for all messages m ∈ {0, 1}∗ and all nonce values nc ∈ {0, 1}∗,

Pr[Dec(kSE, Enc(kSE,m, nc), nc) = m] = 1

where the probability is over the randomness of kSE←$ KgenSE(1n).

Remark. Throughout this paper, we use the term cipher for a deterministic
algorithm that is a building block for an encryption scheme, but is not an en-
cryption scheme itself. That is, we call AES a cipher, not an encryption scheme,
while, e.g., we call AES-CBC or AES-GCM symmetric encryption schemes. Our
security notions are specified for encryption schemes rather than only for their
building blocks, as security for ciphers does not necessarily translate to the
security of the scheme that uses the cipher. While for security against key ex-
traction, such a transformation should (almost trivially) hold, transformations
for advanced properties such as integrity and confidentiality are more difficult
to achieve, see Fischlin and Haag [19].

Below, we specify the security of an authenticated encryption scheme [8,29]
via the security game shown in Figure 1. Here, the adversary is provided with
a left-or-right encryption oracle and a decryption oracle where it can submit
arbitrary ciphertexts except for the ciphertexts obtained from the encryption
oracle. If b = 0, the decryption oracle returns a decryption of the submitted
ciphertext. If b = 1, the decryption oracle returns ⊥. As the adversary can
distinguish the two games whenever the adversary is able to forge a fresh, valid
ciphertext, this distinguishing game models not only confidentiality, but also
integrity. In the security game, we use assert as a shorthand to say that if
the assert condition is violated, then the oracle returns an error symbol ⊥.
Note that we consider only deterministic authenticated encryption schemes, and
therefore, the adversary is not allowed to re-use a previous queries (m,nc), or
else it could trivially determine b from two queries (m0,m1, nc) and (m0,m

′
1, nc)

with m1 6= m′1. For simplicity, we ensure this condition by generating the nonce
at random for each query.

Definition 2 (AE-security). A nonce-based symmetric encryption scheme
SE = (KgenSE, Enc, Dec) is called an authenticated encryption scheme or AE-
secure if all PPT adversaries A, the advantage

AdvAESE,A(n) :=
∣∣∣Pr
[
ExpAESE,A(1n) = 1

]
− 1

2

∣∣∣
is negligible. See Figure 1 for the description of experiment ExpAESE,A(1n).

8

ExpAESE,A(1n)

b←$ {0, 1}
kSE ←$ KgenSE(1n)

b′ ←$AENC,DEC(1n)

return (b′ = b)

ENC(m0,m1)

assert |m0| = |m1|
nc←$ {0, 1}n

c← Enc(kSE,mb, nc)

C := C ∪ {c}
return (nc, c)

DEC(nc, c)

assert c /∈ C
if b = 1 then

return ⊥
else

return m← Dec(kSE, c, nc)

Fig. 1. The ExpAESE,A(1n) security game

White-Box Cryptography. In the following, we provide a definition for white-
box cryptography compilers. That is, we define a randomized compiler which,
based on a symmetric encryption scheme, generates a white-box encryption pro-
gram with an embedded secret key. Here, the generated white-box encryption
program is functionally equivalent to the encryption program of the symmet-
ric encryption scheme. Note that in this definition, the generated white-box
program is in the plain white-box model and does not implement any binding
functionalities. This general definition serves as a starting point for discussions
on feasibility and infeasibility as well as the definitions of white-box compilers we
present and discuss later in this paper, which generate white-box programs with
hardware- and input-binding. We also note that in our notation, the subscript
of the compiler denotes which type of white-box program is generated by the
compiler, in this case, an encryption program in the plain white-box model.

Definition 3 (White-Box Encryption Compiler). A white-box encryption
compiler Compen for a symmetric encryption scheme SE is a randomized algo-
rithm that takes as input the symmetric key kSE and generates a white-box en-
cryption algorithm

EncWB←$ Compen(kSE).

For all key values kSE ∈ {0, 1}n, all messages m ∈ {0, 1}∗ and all nonce values
nc ∈ {0, 1}n, we have Pr[Enc(kSE,m, nc) = EncWB(m,nc)] = 1, where the proba-
bility is taken over the randomness of kSE←$ KgenSE(1n) and EncWB←$ Compen(kSE).

For completeness, we include the definitions of (length-doubling) pseudoran-
dom generators (PRGs) and pseudorandom functions (PRFs) in Appendix A.

3 Basic Security Properties for White-Box Cryptography

In this section we first discuss the popular notions of security against key extrac-
tion and one-wayness for white-box cryptography. Achieving security against key
extraction has been a central focus of researchers and designers in the white-box
crypto community. For this reason, we believe it useful to clarify the usefulness
and limits of this security goal. As we explain via folklore-inspired counterexam-
ples, achieving security against key extraction alone does not provide any useful

9

security. For one-wayness, we explain that in many cases it might not suffice
either. However we discuss some possible, more useful variations of the one-
wayness notion and possible use-cases. We conclude this section by explaining
that aiming for notions such as confidentiality and integrity might be more use-
ful for white-box cryptography. Note however that as expressed throughout this
paper, we also wish to achieve security against code-lifting attacks and there-
fore, confidentiality and integrity are only basic goals that should be achieved in
combination with security anchors against code-lifting attacks.

3.1 On Security against Key Extraction and One-wayness

Security against Key Extraction. The concept of the security notion for
security against key extraction captures that it should be impossible for an ad-
versary to extract the value of the secret key embedded in a white-box imple-
mentation. Key extraction attacks are indeed the most popular practical attack
strategies against white-box implementations, and achieving security against key
extraction is a necessary condition for all meaningful, stronger properties. DLPR
capture security against key extraction via a suitable formal definition, which the
authors call Unbreakability (see Definition 1 in [17]). Additionally, Bogdanov and
Isobe [10] also discuss security against key extraction as a security goal for white-
box cryptography. DLPR observe that achieving security against key extraction
is not very useful on its own. One can think of, e.g., artificial counterexamples
whose symmetric key is hardcoded in a way which is difficult to extract, but
which only returns the identity function of the plaintext. Such an implementa-
tion is indeed not useful and does, in particular, not satisfy confidentiality and
integrity, as is usually desired for an encryption scheme.

DLPR also remark that an adversary usually has the goal of recovering plain-
texts rather than extracting the secret key of an implementation. In this context,
an adversary could attempt to use a white-box encryption program in order to
decrypt ciphertexts which the adversary is not meant to be able to do. For this
reason, DLPR propose the notion of one-wayness as a stronger alternative to
security against key extraction.

On One-Wayness. One-wayness captures the property that an adversary, even
when given a white-box encryption algorithm, should not be able to use that
algorithm to decrypt. A similar property is called asymmetry property in [9],
which captures that a decryption program should not enable encryption.

The following folklore-inspired example illustrates a difference between one-
wayness and confidentiality. Consider a symmetric encryption program with two
symmetric keys harcoded into it such that the first key is difficult to extract
whereas the second key is stored in plain. On an input message, the encryption
scheme splits the message into two, and encrypts the right half of the message
using the first key and the left half of the message using the second key. As the
white-box adversary can read the second key off the program, the adversary can
recover the second half of the message. Yet, the white-box encryption scheme

10

remains one-way since the adversary cannot recover the entire message. In Ap-
pendix B we provide more details of this illustrating example for completeness.

One approach to strengthen the security of one-wayness to better capture
confidentiality is to, e.g., consider the adversary as winning, if the adversary is
able to recover, say, half of the bits of the message or some other substantial frac-
tion. Unlike in distinguishing attacks such as IND-CPA security, for one-wayness
to be meaningful, recovery of a single bit is not enough - unless one demands
that the bit be not guessable with probability significantly greater than 1

2 , but
then, one recovers indistinguishability under random message attacks, a weak
variant of IND-CPA security. As messages are usual structured and not random,
standard black-box security notions for symmetric encryption have converged to
IND-CPA and IND-CCA security, and Saxena, Wyseur and Preneel [32] suggest
to follow this approach also for white-box cryptography, essentially recovering
security guarantees of public-key cryptography.

Possible use cases for one-wayness and asymmetry. One can argue that
a standard notion of one-wayness can still be useful in a scenario in which, for
instance, recovering half of a message is not really useful for an adversary and
full confidentiality properties are not needed. E.g., in the use case of white-box
cryptography for streaming services, legitimate users have a white-box decryp-
tion program for recovering encrypted content, which usually consists of visual
and audio data. Here, it would be an unsatisfactory attack to recover only, say,
interrupted intervals of the content (assuming that collusion for reconstruction
is not possible). Moreover, the use of encryption here only serves access control
and not confidentiality, since it is often public information which content is being
streamed (e.g., in the case of a live sports event).

Signature schemes from white-box ciphers. Joye [23] suggests the possibil-
ity to build a signature scheme from a white-box program. Namely, the standard
encryption program is considered as the secret signing key and the white-box
decryption program is used as the public verification key. Security of a signature
scheme requires that an adversary is not able to generate a valid signature when
given only the white-box decryption program. Thus, the white-boxed decryp-
tion program needs to achieve asymmetry. Note that the confidentiality of the
ciphertexts, i.e. of the signatures, is not fundamental since the white-box de-
cryption programs are public and anybody can recover the plaintexts. However,
full integrity is desired for a signature scheme and, as we see shortly, is far from
trivial when only assuming asymmetry.

Following the Joye’s conceptual suggestion, Fischlin and Haag (FH) [19] rely
on a white-box implementation of a symmetric cipher such as AES for construct-
ing a signature scheme. Namely, they derive a signature scheme from a MAC
scheme based on white-box cryptography. As they show, a signature scheme
based on AES in CBC mode for input messages of length 128 × ` does not
yield security against selective forgeries under chosen message attack (see the
attack in Proposition 1 in [19]). They point out however, that if the signature

11

is generated with only one execution of AES, i.e., if the input message is of
length 128, we do obtain security against selective forgeries for random mes-
sages. That is, given a randomly chosen input message m and a white-box AES
decryption program, an adversary is unable to generate a valid ciphertext σ,
such that AES(k,m) = σ. Assuming the asymmetry property of the white-box
implementation of AES, the adversary cannot use the white-box decryption pro-
gram for generating the corresponding σ value on input m. Note that FH call
this asymmetry property unpredictability. FH define a second security property
named correlation intractability, where the adversary is tasked with finding the
corresponding signature values for a set of strings with a non-trivial correlation.
Note that security with respect to existential forgeries is not possible, because for
every given signature value, the adversary can easily come up with a matching
valid message by running its white-box program on the signature value.

Using white-box cryptography as a symmetric-key to public-key transforma-
tion indeed allows to make use of white-box cryptography without hardware-
binding. White-box based public-key algorithms might have some features that
can be useful, e.g., in this case, signature generation is very efficient while only
verification is expensive. However, these features can also be achieved by differ-
ent means, e.g., delegated computation [26], although using AES has the prac-
tical advantage that special-purpose computation infrastructure can be re-used.
In any case, such symmetric-to-asymmetric transformations in the absence of
hardware-binding are not the main application of white-box cryptography in
current applications. In the following subsection we provide a discussion on the
security properties of these transformations.

3.2 Confidentiality and Integrity

In the previous subsection, we discussed very specific application scenarios in
which one-wayness and/or asymmetry might suffice, but in general, we consider
it beneficial to focus on confidentiality for white-box encryption instead of one-
wayness. Similarly, for white-box decryption, we suggest to focus on integrity.
We give a brief overview over definitions of these properties.

Confidentiality for white-box encryption. In the paper Towards Security
Notions for White-Box Cryptography Saxena, Wyseur and Preneel (SWP [32])
suggest to adapt the standard public-key security notions indistinguishability
under chosen plaintext attacks (IND-CPA) and indistinguishability under cho-
sen ciphertext attacks (IND-CCA) to define confidentiality for plain white-box
encryption programs. I.e., one can define the IND-CCA game for white-box
encryption simply by using the public-key cryptography variant of IND-CCA
security and replacing the public key with a white-box encryption program. Fol-
lowing DLPR, one can additionally provide the adversary with a recompilation
oracle that returns to the adversary several versions of a white-box program
compiled for the same key. The standard implications that IND-CCA/IND-CPA
implies one-wayness also hold for white-box cryptography.

12

Integrity for white-box decryption. For white-box decryption, integrity
captures that a white-box decryption program should not help to generate fresh
ciphertexts or ciphertexts for fresh messages. As common for symmetric encryp-
tion (see, e.g., Paterson, Ristenpart and Shrimpton [27]), integrity comes in two
flavours, plaintext integrity (INT-PTXT) and the stronger ciphertext integrity
(INT-CTXT). Note that similarly to the discussion provided by Fischlin and
Haagh (see Appendix 3.1), in the plain white-box model, these notions can only
be achieved if the challenge message is not chosen by the adversary but rather,
e.g., at random. Following DLPR, one can augment both security notions with
a recompilation oracle.

4 Usefulness and Limits of Incompressibility &
Traceability

In this section we discuss the popular security notions of incompressibility and
traceability for white-box cryptography. In some application scenarios, these
properties might mitigate code-lifting attacks. However, we do not consider either
of the two properties a suitable choice to provide security against code-lifting
attacks in the context of mobile payment applications, and thus suggest to define
alternative different properties.

Possible use cases of incompressibility. Incompressibility captures that the
implementation of a cryptographic primitive is large and only remains functional
in its complete form. For DRM application, the hope is that the size of the
program makes online redistribution harder. More precisely, incompressibility
can be useful in a context where hardware (with large sized memory) is delivered
to a client, such as common for some traditional cable-streaming services, while
online redistribution of the same programs might be harder.

In addition, Bogdanov and Isobe [10] discuss that incompressibility might
help thwart mass surveillance. Namely, an increase of a reasonably large factor
in terms of storage might be permissible for a local user in their own device, as
it only implies small additional costs for the local user. However, if sufficiently
many users make use of incompressible cryptographic programs with large sized
keys, it might not be feasible for a broad-scale surveillance project to store the
large keys of all users. This scenario is similar to the bounded retrieval model
(BRM), where we assume that the adversary can only learn a limited amount of
information with respect to the secret keys in a cryptographic implementation.

Recent works by Bellare, Kane and Rogaway (BKR) [7] and Bellare and Dai
[6] put forward the use of big-key symmetric encryption as a practical method
for achieving security in the BRM. The authors propose the use of large symmet-
ric keys within a symmetric encryption scheme. Thereby, the large symmetric
keys are used to derive subkeys of smaller length via a key encapsulation algo-
rithm. The subkeys have a conventional length and they are used for performing
the actual encryption operations within the scheme. In this case, incompressible
schemes which only remain functional in their complete form might be a good

13

basis for constructing big-key symmetric encryption. Similarly, Alpirez Bock,
Amadori, Bos, Brzuska and Michiels [1] construct an incompressible PRF which
uses a key K of very large size. The incompressible PRF is functionally equiv-
alent to a smaller PRF which uses a key k of conventional size. I.e. key K is
incompressible and equivalent to k. One could construct an encryption scheme
which uses the incompressible PRF for deriving subkeys of conventional length
and use those subkeys for encryption. Then, on the decryption side, one could
use the small-sized, functionally equivalent PRF for deriving the corresponding
decryption keys.

Limits of incompressibility. Incompressibility does not seem to provide appropri-
ate guarantees for white-box programs to protect mobile payment applications.
Firstly, the definition of incompressibility does not capture any further security
properties such as confidentiality and authenticity, which as discussed earlier, are
two desirable security goals for white-box crypto in the setting of mobile pay-
ment. As an example we consider the work presented in [1], where the authors
present incompressible white-box encryption and decryption schemes based on
the assumption of one-way permutations. The encryption construction uses a
message authentication code (MAC) which is generated with an incompressible
key K of a very large size, and an authenticated encryption scheme which makes
use of a different key k′′ of smaller size. k′′ is thereby used to encrypt plaintexts
together with the MAC. The construction achieves incompressibility as an ad-
versary is only able to generate a valid MAC by using the complete large key K.
Via the authenticated encryption scheme, the plain construction also achieves
confidentiality. However an adversary with white-box access to the scheme is
able to break the confidentiality property. Namely, if no additional white-box
countermeasures are applied to that construction, the symmetric key k′′ can be
read out of the implementation.

Additionally, while incompressibility is suggested as a mitigation technique
against code-lifting attacks, it does not seem suitable for protecting applications
running on mobile devices and the internet of things. Namely, the general concept
of incompressibility seems to stand in contrast with the ongoing goal of achieving
small sized and efficient cryptographic designs suitable for small sized devices.
Moreover, large-size programs also harm their own legal distribution. That is,
when the legal distribution of an application needs to take place in a fast and
efficient way, and on a regular basis, then their cryptographic algorithms shall
not to be too large.

Traceability. The notion of traceability as defined by DLPR consists of water-
marking a cryptographic program such that if illegally re-distributed, the owner
of the original program can be identified. Such a property also finds its use case
in DRM applications, as the owner of a decryption program might make copies
of it and re-distribute them online. If a copy is found, the traceability property
can help identify the owner of the original program. For mobile payment appli-
cations however, this notion of traceability does not seem to be useful. Namely

14

as stated before, we want to achieve protection against external adversaries try-
ing to misuse the payment application, and not owners re-distributing their own
applications.

5 Hardware- and Application-Binding

In this section we define security of white-box cryptography w.r.t. hardware-
binding and discuss the difficulty of formalizing application-binding.

5.1 Hardware-Binding

Hardware-binding captures that a white-box cryptographic program shall only
be executable on one intended hardware device. That is, the white-box algorithm
can be evaluated when having access to a specific device, but becomes useless
when not having access to the device. For defining hardware-binding, we consider
a white-box compiler which returns a white-box encryption algorithm based on
a symmetric key and a hardware-related subkey. The idea is that the symmet-
ric key is used for encrypting messages, while the hardware subkey is used to
verify that the algorithm is running on the determined hardware. Both keys
are hard coded in the program. For completeness, we define our compiler based
on a hardware module HW, as defined in [3] (see Appendix C). The hardware
module specifies how the binding functionalities are implemented with regard
to one particular hardware device, as we explain below. Note however that for
understanding the hardware-binding definition, it is enough to think about a
white-box program compiled based on the two keys as described above.

In the hardware module, we consider a randomly generated hardware key,
located in the device to which we wish to bind our white-box program. We refer
to the hardware key as a master hardware key kHWms. From this master key, we
will derive hardware sub-keys kHWsl which we will use for the compilation of the
encryption program. To derive a hardware subkey, we run a subkey generation
algorithm on the hardware master key and a label value, which identifies the
white-box program. Using the subkey value for the compilation of the white-box
program instead of the master key value has one particular advantage. Namely,
if the subkey value gets compromised, a new subkey value can be generated for
recompiling a new version of the white-box program.

Before the white-box program performs an encryption, it first submits a query
value q to the hardware. The hardware runs a deterministic response algorithm
on the query value q, the Label identifying the program and the hardware mas-
ter key kHWms and returns a value σ to the white-box program. The white-box
program verifies the correctness of the value σ, e.g., by re-calculating it, via a
deterministic checking algorithm run on the subkey kHWsl, the query value q and
the response value σ. If verification goes through, the white-box program gained
assurance that it is running on the intended device. Note that if the white-box
encryption program is run on the correct hardware, the white-box program is
functionally equivalent to the encryption program of the symmetric encryption
scheme.

15

Querying Algorithm. Implementing hardware-binding as described above
provides us with the desired functionality that the white-box program can only
be run on a single device, namely the one that generates valid response values.
However, we also need to consider the possibility that a white-box adversary
might intercept a valid response value. In this case, the adversary could copy
the white-box encryption program and simply provide the intercepted response
value when running the program. In a way, this attack cannot be avoided. How-
ever, its usefulness can be limited by ensuring that, using a single intercepted
hardware value, the adversary can also only run the program on a single pro-
gram input. Namely, the query value q as well as the response σ should depend
somehow on the message we wish to encrypt. That way, for each message we
encrypt, a different response value is needed and intercepting a response value
only lets the adversary encrypt a single message. Therefore, our syntax includes
a querying algorithm which is used in combination with the white-box program.
A straight forward approach is to generate the querying values directly based
on the message we wish to encrypt. Note that since an adversary might still be
able to intercept the generated querying value, the confidentiality of the message
needs to be protected and it should not be possible for an adversary to derive
the message from the querying value. That is, the querying algorithm needs to
be one-way.

Attack scenario. Below we define the syntax for hardware-binding, followed
by its corresponding security notion. We here summarize the attack scenario we
wish to capture via this security notion. We consider an adversary (e.g. in the
form of malware) which finds itself in a user’s device (i.e. in the mobile phone
used to perform payment transactions). The adversary has thus access to the
program code of the white-box implementation. The adversary is also able to
execute the implementation itself, since it is able to run it directly on the phone.
Note however that, even if the adversary can execute the payment application,
we do not assume that an adversary is able to redirect the outputs of the payment
application to a terminal of their choice (i.e. performing a relay attack). This is
because for payment applications, we usually implement other countermeasures
against relay attacks, independently of white-box cryptography. Therefore, we
consider the case where an adversary wants to gain independence of the user’s
device, either by code-lifting the application or extracting its secret key. Our
security notion captures that once the white-box program is removed from the
specific device, an adversary is unable to use that program to generate a valid
ciphertext. In other words, the encryption program should satisfy a notion of
integrity. Additionally, our security notion captures that an adversary should
not be able to distinguish between two ciphertexts encrypted with the given
encryption program, i.e. the program should satisfy a notion of confidentiality.

16

Definition 4 (HW-white-box encryption compiler). A HW-white-box en-
cryption compiler CompHW for a symmetric encryption scheme SE and a hardware
module HW is a randomized algorithm that takes as input a symmetric key kSE
and a hardware-related sub-key kHWsl and generates a white-box encryption al-
gorithm with hardware-binding together with a querying algorithm

QueryHW, EncHW←$ CompHW(kSE, kHWsl).

For all genuine kHWms, for all kSE, for all m, for all nc, for all
kHWsl = SubKgen(kHWms,Label) and σ = Resp(kHWms,Label , q), we have

Pr[Enc(kSE,m, nc) = EncHW(m,nc, σ)] = 1,

where the probability is taken over compiling QueryHW, EncHW←$ CompHW(kSE, kHWsl).

Fig. 2 presents the ExpIND-WHW
CompHW,A (1n) security game, capturing the desired secu-

rity properties described above. In this game, the adversary is able to choose the
label he wants to use for the program. Based on this label, the hardware subkey
kHWsl will be generated. The adversary gets as input the white-box program, the
querying algorithm and a state value corresponding to the previous phase where
he determined the label value. The adversary can run the white-box program by
querying a response oracle Resp and obtaining valid response values. This lets
him analyze the program and collect some input-output pairs. The adversary
can also obtain (and see) different subkey values from a subkey generation ora-
cle SUBK. This represents the fact that an adversary might extract the hardware
subkeys of some (previous) versions of the white-box programs. The adversary
then plays a distinguishing game with the encryption and decryption oracles.

Definition 5 (IND-WHW). We say that a HW-white-box encryption com-
piler CompHW is IND-WHW-secure if for all PPT adversaries A, the advantage

AdvIND-WHW
CompHW,A (1n) :=

∣∣∣Pr
[
ExpIND-WHW

CompHW,A (1n) = 1
]
− 1

2

∣∣∣
is negligible, where the experiment ExpIND-WHW

CompHW,A is defined in Figure 2.

17

ExpIND-WHW
CompHW,A (1n)

b←$ {0, 1}n

kSE ←$ Kgen(1n)

kHWms ←$ KgenHW(1
n)

state,Label ←$A(1n)

kHWsl ← SubKgen(kHWms,Label)

QueryHW, EncHW ←$ CompHW(kSE, kHWsl)

b∗ ←$AResp,ENC
SUBK,DEC(QueryHW, EncHW, state)

return (b = b∗)

Resp(q)

assert q /∈ Q
Q := Q ∪ {q}
σ ← Resp(kHWms,Label , q)

return σ

ENC(m0,m1)

assert |m0| = |m1|
nc←$ {0, 1}n

c← Enc(kSE,mb, nc)

if m0 6= m1

q0 ← QueryHW(m0, nc)

q1 ← QueryHW(m1, nc)

assert q0, q1 /∈ Q
Q := Q ∪ {q0, q1}
C := C ∪ {(c, nc)}

return c, nc

DEC(c, nc)

assert (c, nc) /∈ C
m← Dec(kSE, c, nc)

q ← QueryHW(m,nc)

assert q /∈ Q
if b = 1

return ⊥
else

return m

SUBK(Label ′)

assert Label 6= Label ′

k′HWsl ← SubKgen(kHWms,Label ′)

return k′HWsl

Fig. 2. The ExpIND-WHW
CompHW,A (1n) security game

5.2 On Application-Binding

We now study the security property of (software) application-binding for white-
box cryptographic programs. Application-binding shall ensure that an encryp-
tion program can only be used within a particular application and that, in par-
ticular, an adversary should not be able to separate the encryption program
from the application. We deem application-binding a useful property for white-
box programs and would like to postulate as an open question to find a suitable
definition for application-binding for white-box cryptography. For such a defini-
tion to be meaningful, it needs to bypass a number of conceptual and technical
issues that we now discuss.

On a general security notion. A general security notion for application-
binding should be suitable for arbitrary applications. Yet, in that case, also the
security properties of the application will be application-specific, and need to be
carefully analyzed in each individual case, including the set of relevant attack
vectors. One possible approach would be to define a simpler notion, where a
program is considered secure as long as the adversary is not able to isolate
the encryption process from the application. However, such a security notion
seems to be significantly too weak. An adversary might be able to, e.g., alter the
messages that are encrypted within the application, violating the main security
goals of the application. Although the adversary breaks the security provided
by the application, such a white-box implementation might still be considered
secure in this simpler notion as long as a full separation of encryption program
and application is not achieved.

18

Authentication-binding. A useful restriction on the class of applications are
those performing authentication, defining thus authentication-binding (cf. Sec-
tion 1.1). Here, we would consider an encryption program which is only func-
tional in case that a particular auxiliary input is provided, such as a password
or fingerprint. This in fact adds a useful layer of security to our white-box pro-
grams, since an adversary can only run a copy of the program if they know the
value of an auxiliary input. Note however that in the white-box attack model,
we usually consider an adversary that is able to intercept the inputs that are
provided to the programs. Thus, we can only define security for such programs
if we modify (and weaken) our attack model so that we assume that the adver-
sary cannot intercept the auxiliary input. We discuss the consequences of such
a weakening next.

Weaker attack model. Consider that we define security of authentication-
binding in a weaker model where we assume that the adversary cannot intercept
auxiliary inputs. I.e., the adversary has obtained a copy of the program, but it
cannot observe the program while it is running on the user’s device. To capture
the notion that an adversary cannot run the encryption program without know-
ing a valid auxiliary input, the model needs to rely on sufficiently long inputs,
e.g., 128 in the concrete setting or n in the asymptotic security scenario. Else, a
brute-force attack over all input values allows the adversary to run the program
even without intercepting an auxiliary value. Such long secrets can be imple-
mented via smartcards, biometrics or long passwords (e.g. a string consisting of
ca. 19 ASCII characters). However, then the white-box implementation could be
entirely keyless or contain no information about the key, e.g, if we mask the key
k by auxiliary input aux and store k′ := k ⊕ aux = k′ within the application.
Such a security definition seems rather unrelated to white-box cryptography.

Combining hardware- and authentication-binding. One possible avenue
towards useful definitions of application-binding could be the combination of
hardware- and authentication-binding, similar to the suggestion [15]. Here, the
hardware-binding might ensure that only a limited number of auxiliary inputs
can be tested by the user, allowing to deploy short passwords and PINs, as is
common in banking. This assumes that the hardware implements a counter to
ensure an upper bound on the number of hardware queries or that the hardware
itself checks the user input. This requires the hardware to maintain a secure
state, moving towards more advanced hardware features and thus, potentially,
a platform where white-box cryptography might not be used, as the device has
strong hardware security features at its disposal already.

19

6 Advanced White-box Competitions

In this section we suggest a new variant of the white-box competition to cap-
ture hardware-binding, based on the IND-WHW security notion introduced in
the previous section. The CHES 2017 Capture the Flag Challenge [18] focused
on key extraction. The participants submitted candidate white-box programs
and attackers would try to extract the embedded secret key from the candidate
programs. More recently, the second edition of the white-box competition, the
CHES 2019 Capture the Flag Challenge [16] additionally introduced message
recovery attacks so that white-box implementations are assessed with respect to
key extraction attacks and one-wayness. As before, participants are invited to
submit a candidate white-box encryption program. Security against key extrac-
tion is assessed as before, while one-wayness is assessed by asking the attackers
to find a pre-image for a certain target ciphertext.

It is fundamental for the progress of white-box cryptography that we achieve
programs which remain secure against key extraction attacks. However, as dis-
cussed in Section 3, a white-box implementation which is only secure against
key extraction attacks might not provide meaningful security in many use cases
– especially due to code-lifting attacks (see Sections 3 and 5). As we have iden-
tified hardware-binding as a central security goal of white-box cryptography, we
now describe how to derive a white-box competition setup from our IND-WHW
security game.

In the IND-WHW security game, the adversary obtains a white-box encryp-
tion program and plays an indistinguishability game with an encryption oracle.
Considering the adversarial capabilities, we see that the adversary might attempt
to distinguish in one of the following ways.

1. First the adversary can attempt to extract the encryption key from the
white-box program it receives as input. If the adversary succeeds, it can
simply use the key to decrypt the ciphertexts obtained from the encryption
oracle and then distinguish.

2. If key extraction is not possible, the adversary can attempt to isolate the
encryption program from the rest of the white-box implementation, i.e. from
the part of the implementation which performs the binding functionality. If
it succeeds, the adversary would have a standard (possibly still obfuscated)
encryption program which is not bounded to any further functionality. In
that case, the adversary can simply encrypt one of the challenge messages
using the corresponding nonce received from the encryption oracle. The ad-
versary compares the generated ciphertext with the challenge ciphertext and
distinguishes this way.

3. Finally, the adversary can attempt to forge a valid (fresh) querying value
and use it for running the encryption for distinguishing as explained for the
previous point. The adversary can attempt to do this by de-obfuscating the
binding function of the white-box program and thereby try to learn a valid
hardware value for running the white-box program.

20

From the description above, we understand that a white-box implementation
with hardware binding at least needs to achieve that an adversary is unable
to (1) extract its secret key, (2) separate the encryption functionality of the
program form the functionality implementing the binding operations, and (3)
extract information for forging a valid input value for running the white-box
program. Thus, all three properties of candidate white-box implementations with
hardware-binding are assessed by the white-box competition that we suggest in
the following.

For the competition, we consider a competition server which simulates a
hardware module (see Appendix C) for each candidate implementation. That
is, for one candidate white-box implementation, the server generates a master
“hardware” key, from which it derives a subkey. That subkey should be used
for compiling the candidate white-box implementation. When the program is
submitted to the competition server, the server can generate valid input val-
ues for running the candidate program. In this way, the organizers can also
test the functionality of the submitted implementation. Moreover, participants
attempting to break an implementation can obatin a limited number of valid
input values for running the program, simulating the hardware module interface
(corresponding to Resp oracle in the IND-WHW game). Below we summarize the
further competition setup. We refer as designers to the participants submitting
white-box implementations and attackers to the participants trying to break
candidate implementations.

– Designers are invited to submit candidate white-box implementations of a
symmetric encryption algorithm, which is bound to a hardware functionality.
A designer receives a secret subkey value kHWsl from the competition server
(which needs to be securely transmitted). The participant generates a white-
box program based on a secret encryption key kSE and kHWsl and sends the
compiled program and the key kSE to the server (key kSE needs to be securely
transmitted). The functionality requirement on the submission is that the
encryption program works in case that a valid input (related to kHWsl) is
provided. As the server knows kHWsl, the server can then test the functionality
of the program by generating valid input values for running the white-box
program.

– Attackers select a candidate implementation they wish to attack. Upon se-
lection, an attacker downloads the candidate implementation and obtains
n valid σ values to run the candidate implementation on inputs of their
choice. The attacker now plays an indistinguishability game with the server
in the following way. The attacker sends 100 pairs of selected plaintexts
{(m0,m1)1, (m0,m1)2, ..., (m0,m1)100}. For each pair (m0,m1)i, the server
draws a bit bi←$ {0, 1} at random and encrypts mi

bi
, i.e., the attacker re-

ceives back 100 ciphertexts {cb1 , cb2 , ..., cb100}. The attacker is tasked with
submitting a bitstring b∗. The server compares the hamming distance be-
tween b∗ and b1, ..., b100. The attacker is considered successful if it submits
the correct bit for some threshold, say, 80%. Additionally, the server checks
that there were no trivial attacks, i.e., the hardware values given to the

21

adversary should not allow the adversary to encrypt any of the messages
(m0,m1)i that the adversary submitted with the same nonces as used by
the server, and for each message pair, mi

0 needs to have the same length as
mi

1.

The number of σ values, the number of message pairs and the passing threshold
for being a successful distinguisher can all be adapted to reflect different security
levels. Additionally, attackers might repeat the game—obviously, the threshold
and the number of allowed repetitions need to be chosen in such a way that it is
unlikely that an attacker submits a suitable bit vector merely by guessing and
repeated trying.

Gamification. The gamification of a competition shall reflect the current state-
of-the-art and promote to push the boundaries of what is possible/known. In the
past competitions, most candidates were vulnerable to key extraction attacks.
Therefore, it is meaningful to continue to award competition points (known in
previous competitions as strawberry points) for key extraction attacks in future
competitions. Once the state-of-the-art in white-box design advances and secu-
rity against key recovery attacks has become achievable for AES, we suggest to
remove strawberry points for key recovery to encourage participants to focus on
advanced properties rather than break the weakest candidates.

In the remainder of the paper, we give reasons, theoretically and practically,
conceptually and formally, why it might be feasible to build robust hardware-
bound white-box implementations. In fact, there are reasons to believe that
IND-WHW might be possible to achieve even when plain security against key
extraction is not. In Section 7, we start by showing that in the plain white-box
model, there are (contrived) black-box secure symmetric encryption schemes that
do not admit a secure functionality-preserving white-box implementation. Thus,
indistinguishability obfuscation and not even Virtual Black-Box Obfuscation [5]
suffice to build a generic white-box compiler in the plain white-box model. In
turn, as we discuss in Section 5, Alpirez Bock, Brzuska, Fischlin, Janson and
Michiels show that in the hardware-bound white-box model, arbitrary (black-
box) secure symmetric encryption schemes can be white-boxed. In Section 9,
we inspect the practical attack capabilities in the hardware-bound model more
closely and find that, although a designer needs to achieve more properties, the
attacker’s ability to, e.g., collect traces has been reduced in the hardware-bound
white-box attack scenario.

7 On Generic Compilers in the Plain White-Box Model

In this section, we show that there is no generic compiler that transforms any
black-box secure symmetric encryption scheme into an implementation that
is secure in the plain white-box model. Concretely, Construction 1 provides
a (contrived) symmetric encryption scheme SE′ = (KgenSE

′, Enc′, Dec′) that is
(a) black-box secure and (b) not white-boxeable by a compiler that preserves

22

input-output behaviour. The conceptual idea for SE′ is to start with a black-box
secure symmetric encryption scheme SE and modify it as follows: The encryp-
tion algorithm Enc′ inspects its input message, and if the input message is a
functional encryption scheme, then SE′ returns its key, and else, it returns the
same ciphertext as SE would have returned. This idea is loosely inspired by the
impossibility result for Virtual Black-Box Obfuscation [5], where an obfuscated
point function program is fed as an input to an obfuscated program that tests
the point function and returns a secret, if the point function passes the test.
The idea in our construction is that when the white-box program takes its own
encoding as input, then it returns the secret key, while in a black-box setting,
such a program is not available (and is hard to construct) and thus, the modified
symmetric encryption scheme remains secure in a black-box setting.

Construction 1. Let SE = (KgenSE, Enc, Dec) be a symmetric encryption scheme and
let PRFbe a pseudorandom function. We define SE′ = (KgenSE

′, Enc′, Dec′) as follows

Kgen′(1n)

kSE ←$ KgenSE(1n)

km ←$ {0, 1}n

knc ←$ {0, 1}n

kSE′ ← kSE||km||knc

return kSE′

Enc′(kSE′ ,m, nc)

C← PARSE(m)

kSE||km||knc ← kSE′

d← 1

for i from 1 to n

mi ← PRF(km, binn(i)||nc)
nci ← PRF(knc, binn(i)||nc)
if C(mi, nci) = 0||Enc(kSE,mi, nci)

d← d ∧ 1

else d← d ∧ 0

c′ ← Enc(kSE,m, nc)

if d = 0

c← 0||c′

else c← 1||c′||kSE′
return c

Dec′(kSE′ , c, nc)

d||c̃← c

kSE||km||knc ← kSE′

if d = 0

m← Dec(kSE, c̃, nc)

else

c′||k′ ← c̃

if k′ = kSE′

m← Dec(kSE, c
′, nc)

else m← ⊥
return m

To implement this idea formally, we need to ensure that SE′ satisfies correct-
ness. Thus, in the case that Enc′ returns its key, it will also output the input
message (in plain). Additionally, it distinguishes normal ciphertexts from cipher-
texts with embedded keys by prepending the former with a 0 and the latter with
a 1. Another technicality is that program equivalence testing cannot be done
efficiently and thus, Enc′ tests program equivalence approximately by observing
and comparing the inputs on several random message-nonce pairs. To avoid that
Enc′ uses too much randomness, the message-nonce pairs for testing are derived
via two pseudorandom functions. We provide SE′ in Construction 1.

23

In Appendix D, we prove (1) that SE′ is AE-secure in the black-box setting (as-
suming AE security of SE) and (2) that SE′ is not secure against key extraction
attacks.

Claim 1. If SE is AE-secure and if PRF is a secure pseudorandom function, then
SE′ is AE-secure.

Claim 2. There exists a PPT adversary A, such that for all white-box compil-
ers Compen for SE′, it holds that Pr[kSE←$A(EncWB)] = 1 − negl(n), where the
probability is over kSE′ ←$ KgenSE

′ and EncWB←$ Compen(kSE′).

8 Constructions from indistinguishability obfuscation

Given the success of indistinguishability obfuscation (iO), we now explore the
usefulness of iO for white-boxing symmetric encryption schemes. Indeed, sim-
ply using the iO technique by Sahai and Waters [30] yields a straightforward
security argument for white-boxing certain stream-ciphers (known in the the-
ory community as pseudorandom functions (PRF)). Namely, Sahai and Waters
suggest to obfuscate puncturable PRFs that allow to puncture the key k of the
PRF at a point z such that the punctured key kz allows to compute the PRF
on all points except for z. The Sahai-Waters argument implies that applying iO
to a puncturable PRF with a hardcoded key k yields a program from which k
cannot be extracted. ABFJM use a variation of this argument for constructing a
white-box key derivation function, which additionally implements the property
of hardware binding. For completeness, we now review the security argument of
using iO with punctured PRFs. Afterwards, we review how a variation of this
approach is adapted by ABFJM and we explain how we can use it to construct
a hardware-bound white-box encryption program.

8.1 A White-Box Perspective on Sahai-Waters

P0[k](x)

c← PRF(k, x)

return c

P1[z, kz, y](x)

if x = z

c← y

else

c← PPRF(kz, x)

return c

Security of iO captures that the obfusca-
tions of two functionally equivalent pro-
grams cannot be efficiently distinguished.
Thus, we start with a program P0[k](.) with
hard-coded key k that evaluates the PRF on
key k and an input, i.e., for all x, it holds
that P0[k](x) is equal to PRF(k, x). By the
security of iO, it suffices to find a program
P1 that is functionally equivalent to P0[k](.)
but that does not leak the key k. Program P1[z, kz, y] has as hard-coded param-
eters a point z, a punctured key kz punctured at z and the value y = PRF(k, x).
Program P1[z, kz, y](x) first checks whether x = z and if so, returns y. Else, it
uses its punctured key kz to return PPRF(kz, x) which is equal to PRF(k, x). Thus,
for all x, the two values P0[k](x) and P1[z, kz, y](x) are both equal to PRF(k, x)
and hence, the two programs are functionally equivalent.

24

Finally, due to the security of puncturable PRFs, from z, kz and y, the key k
cannot be efficiently extracted and thus P1[z, kz, y] does not leak k, and neither
does an obfuscation of P1[z, kz, y](x) (since obfuscating cannot add informa-
tion). By iO security, the obfuscations of P0[k](x) and P1[z, kz, y](x) cannot be
distinguished and thus, the obfuscation of P0[k](x) does not leak k either, which
concludes the argument.

The above simple example shows that obfuscating a puncturable PRF via in-
distinguishability obfuscation allows to hide the key of the puncturable PRF. Let
us take a step back and contemplate the above argument. Reconsidering the argu-
ment, one might argue that actually, puncturable PRFs can also be white-boxed
without iO. Namely, a white-box compiler could simply return P1[z, kz, y] as a
white-boxed version of P0[k]. Indeed, by puncturable PRF security, P1[kz, y, z]
does not allow to recover k. While Sahai and Waters [30] use iO for a more
elaborate confidentiality argument, security against key extraction seems to be
achievable by puncturable PRFs alone (albeit by a slightly non-intuitive argu-
ment since the punctured key can still be considered substantial leakage).

By the above observation, we see that the key of a puncturable PRF can be
hidden in two ways: Either, one runs an indistinguishability obfuscator on P0[k],
or one punctures the key k. In the security argument, however, the security
of the puncturable PRF appears in both cases. Thus, it is not straightforward
how to apply the iO argument to AES. However, due to the tremendous success
of iO as a general-purpose obfuscator, one could be tempted to hope that any
secure symmetric encryption scheme, when obfuscated with iO, yields a secure
white-box version of the same symmetric encryption scheme. However, as we
have seen in Section 7, this is not the case. Thus, in the plain white-box model,
a symmetric encryption scheme has to satisfy certain additional properties to be
white-boxeable.

8.2 A hardware-bound white-box payment application

The aforementioned work by ABFJW [3] presents a hardware-bound white-
box payment application. Surprisingly, ABFJW are able to compile arbitrary
AE-secure symmetric encryption schemes. The way in which they achieve this
property is tokenization and the use of a puncturable key derivation primitive.
Namely, each message is encrypted under a fresh key that was derived via a key
derivation function. This key derivation function, in turn, is (a) hardware-bound
and (b) puncturable. This way, simply using indistinguishability obfuscation to
bind the key derivation function and the symmetric encryption scheme together
suffices to obtain a secure payment application. The proof techniques are a vari-
ation of the Sahai-Waters argument. Our more general security notion can be
achieved in the same way. I.e., if we vary the encryption key, then every AE-
secure symmetric encryption scheme can be white-boxed in the hardware-bound
model and achieves full AE-security. Interestingly, when porting the approach
of using a key-derivation function together with a symmetric encryption scheme
in the plain white-box model, the security argument does not seem to carry
through. Namely, it does not seem straightforward to argue that one can hide

25

the derived key that is used for symmetric encryption while performing the en-
cryption. In the hardware-bound model, the argument that the key for the sym-
metric encryption scheme can be hidden/removed follows from the Sahai-Waters
trick of using a pseudorandom generator (PRG) on a random input. Namely, it
is first checked whether a PRG, applied to some input, yields a certain value and
only then, the branch containing the encryption scheme is executed. As long as
the random input is not known, the PRG value can be replaced by a uniformly
random string which, with high probability does not have a pre-image, and then,
the branch performing encryptions under the key of concern, can be removed.
However, this approach only works in the hardware-bound model, because the
hardware and the white-box program share additional secrets, and the adversary
learns only limited information computed based on these secrets.

9 Concluding Reflections

We started by justifying our prioritization of integrity and confidentiality prop-
erties for white-box cryptography. We then addressed code-lifting attacks on
white-box applications and generalized the notion of ABFJW to formulate IND-
WHW-security. We then derived a new competition setup to assess white-box
designs w.r.t. the hardware-binding property. The remainder of the paper fo-
cused on comparing the plain white-box model and the hardware-bound white-
box model conceptually in terms of the positive results to be expected in either
model. We now review this conceptual discussion and then provide additional
practical considerations.

In Section 7, we established an impossibility result in the plain white-box
model showing that there is a secure (but contrived) symmetric encryption
scheme which is not securely white-boxeable, since, regardless of the compiler,
the key can be extracted from the white-box implementation of the symmet-
ric encryption scheme. Recall that the idea was that if the encryption scheme
is fed a functional implementation of itself, then it returns its secret key. This
impossibility result does not carry over to the hardware-bound model, since the
hardware-bound white-box program is, by itself, not a functional implementa-
tion of the encryption scheme. Thus, we have an impossibility result in the plain
white-box model that does not seem to carry over to the hardware-bound model.

In Section 8.2, we discuss a hardware-bound white-box construction by
ABFJW that relies on a puncturable key derivation primitive and, thereby, al-
lows to derive a distinct key for each application of the symmetric encryption
scheme. Thanks to this, ABFJW can white-box arbitrary AE-secure symmetric
encryption schemes in the hardware-bound white-box model. The same approach
does not seem to carry over to the plain white-box model, roughly, again, because
in the plain white-box model, the white-box program always needs to be fully
functional on all possible inputs and thus, there is no argument to remove or
hide the key that can be used for a specific encryption operation. In conclusion,
we have a feasibility result in the hardware-bound model that does not seem to
carry over to the plain white-box model.

26

While the results do not fully allow to conclude that generic feasibility is
more tangible in the hardware-bound white-box model than in the plain white-
box model (since the positive and negative results are not complementary), we
speculate that indeed, a white-box competition on hardware-bound white-box
programs might be more likely to yield designs that cannot be attacked for
a long time. In fact, in our competition scenario discussed in Section 6, the
attacker has indeed less capabilities than in the first editions of the white-box
competitions. Most importantly, the attackers are only able to run the white-box
implementation a limited number of times. This reduces the attackers’ capability
to collect input-output pairs, execution traces and perform cryptanalysis and
automated attacks on the implementations [2]. Recall that this is not an artificial
weakening of the adversary but rather an adaptation motivated by the practical
use case of white-box cryptography in mobile payment applications, where an
adversary is not the owner of the application (unlike in the DRM scenario).
Conveniently, the hardware-bound setup also allows for benchmarking of white-
box implementations, e.g., by specifying the number of hardware values and thus
software-traces that the adversary can obtain.

Acknowledgments. We would like to thank Heye Everts for helpful discussions
in the early stages of this work. Part of this work was done while Estuardo Alpirez
Bock and Chris Brzuska were working at TU Hamburg. They are greatful to
NXP Semiconductors for the support of their chair for IT Security during that
time. This work was supported by COST Action IC1306 Cryptography for Secure
Digital Interaction.

References

1. E. Alpirez Bock, A. Amadori, J. W. Bos, C. Brzuska, and W. Michiels. Doubly
half-injective prgs for incompressible white-box cryptography. In M. Matsui, editor,
Topics in Cryptology - CT-RSA 2019 - The Cryptographers’ Track at the RSA
Conference 2019, San Francisco, CA, USA, March 4-8, 2019, Proceedings, volume
11405 of Lecture Notes in Computer Science, pages 189–209. Springer, 2019.

2. E. Alpirez Bock, J. W. Bos, C. Brzuska, C. Hubain, W. Michiels, C. Mune, E. San-
felix Gonzalez, P. Teuwen, and A. Treff. White-box cryptography: Don’t forget
about grey-box attacks. Journal of Cryptology, 32(4):1095–1143, Oct 2019.

3. E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, and W. Michiels. Security re-
ductions for white-box key-storage in mobile payments. Cryptology ePrint Archive,
Report 2019/1014, 2019. https://eprint.iacr.org/2019/1014.

4. S. Banik, A. Bogdanov, T. Isobe, and M. B. Jepsen. Analysis of software counter-
measures for whitebox encryption. Cryptology ePrint Archive, Report 2017/183,
2017. http://eprint.iacr.org/2017/183.

5. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In J. Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg, Aug.
2001.

27

https://eprint.iacr.org/2019/1014
http://eprint.iacr.org/2017/183

6. M. Bellare and W. Dai. Defending against key exfiltration: Efficiency improvements
for big-key cryptography via large-alphabet subkey prediction. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, pages 923–940, New York, NY, USA, 2017. ACM.

7. M. Bellare, D. Kane, and P. Rogaway. Big-key symmetric encryption: Resisting
key exfiltration. In M. Robshaw and J. Katz, editors, Advances in Cryptology –
CRYPTO 2016, pages 373–402, Berlin, Heidelberg, 2016. Springer Berlin Heidel-
berg.

8. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In T. Okamoto, editor,
ASIACRYPT 2000, volume 1976 of LNCS, pages 531–545. Springer, Heidelberg,
Dec. 2000.

9. A. Biryukov, C. Bouillaguet, and D. Khovratovich. Cryptographic schemes based
on the ASASA structure: Black-box, white-box, and public-key (extended ab-
stract). In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part I, volume
8873 of LNCS, pages 63–84. Springer, Heidelberg, Dec. 2014.

10. A. Bogdanov and T. Isobe. White-box cryptography revisited: Space-hard ciphers.
In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS 2015, pages 1058–1069. ACM
Press, Oct. 2015.

11. A. Bogdanov, T. Isobe, and E. Tischhauser. Towards practical whitebox cryptog-
raphy: Optimizing efficiency and space hardness. In J. H. Cheon and T. Takagi, ed-
itors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 126–158. Springer,
Heidelberg, Dec. 2016.

12. D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In S. Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 573–592. Springer, Heidelberg, May / June 2006.

13. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. White-box cryptography
and an AES implementation. In K. Nyberg and H. M. Heys, editors, SAC 2002,
volume 2595 of LNCS, pages 250–270. Springer, Heidelberg, Aug. 2003.

14. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. A white-box DES imple-
mentation for DRM applications. In J. Feigenbaum, editor, Security and Privacy
in Digital Rights Management, ACM CCS-9 Workshop, DRM 2002, volume 2696
of LNCS, pages 1–15. Springer, 2003.

15. T. Cooijmans, J. de Ruiter, and E. Poll. Analysis of secure key storage solutions
on android. In Proceedings of the 4th ACM Workshop on Security and Privacy in
Smartphones & Mobile Devices, SPSM ’14, pages 11–20. ACM, 2014.

16. cybercrypt. Ches 2019 capture the flag challenge - the whibox contest - edition 2,
2019. https://www.cyber-crypt.com/whibox-contest/.

17. C. Delerablée, T. Lepoint, P. Paillier, and M. Rivain. White-box security notions
for symmetric encryption schemes. In T. Lange, K. Lauter, and P. Lisonek, editors,
SAC 2013, volume 8282 of LNCS, pages 247–264. Springer, Heidelberg, Aug. 2014.

18. ECRYPT. Ches 2017 capture the flag challenge - the whibox contest, 2017. https:
//whibox.cr.yp.to/.

19. M. Fischlin and H. Haagh. How to sign with white-boxed aes. In P. Schwabe
and N. Thériault, editors, Progress in Cryptology – LATINCRYPT 2019, pages
259–279, Cham, 2019. Springer International Publishing.

20. P.-A. Fouque, P. Karpman, P. Kirchner, and B. Minaud. Efficient and provable
white-box primitives. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016,
Part I, volume 10031 of LNCS, pages 159–188. Springer, Heidelberg, Dec. 2016.

28

https://www.cyber-crypt.com/whibox-contest/
https://whibox.cr.yp.to/
https://whibox.cr.yp.to/

21. L. Goubin, P. Paillier, M. Rivain, and J. Wang. How to reveal the secrets of an
obscure white-box implementation. Cryptology ePrint Archive, Report 2018/098,
2018. https://eprint.iacr.org/2018/098.

22. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In S. Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages
8–26. Springer, Heidelberg, Aug. 1990.

23. M. Joye. On white-box cryptography. In Security of Information and Networks,
pages 7–12. Trafford Publishing, Bloomington, 2008.

24. Mastercard. Mastercard mobile payment sdk, 2017. https://developer.

mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-

mobile-payment-sdk-security-guide-v2.0.pdf.
25. Microsemi. Whiteboxcrypto cryptographic key hiding with tunable security and

performance. https://www.microsemi.com/document-portal/doc_view/135631-
whiteboxcrypto-product-overview-rev4.

26. B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in
public: Verifiable computation from attribute-based encryption. In R. Cramer,
editor, TCC 2012, volume 7194 of LNCS, pages 422–439. Springer, Heidelberg,
Mar. 2012.

27. K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag size does matter: Attacks
and proofs for the TLS record protocol. In D. H. Lee and X. Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 372–389. Springer, Heidelberg,
Dec. 2011.

28. Riscure. White box cryptography - wbc security services tailored to the needs of
manufacturers and integrators. https://www.riscure.com/service/white-box-

cryptography-evaluations/.
29. P. Rogaway. Authenticated-encryption with associated-data. In V. Atluri, editor,

ACM CCS 2002, pages 98–107. ACM Press, Nov. 2002.
30. A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable

encryption, and more. In D. B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

31. E. Sanfelix, J. de Haas, and C. Mune. Unboxing the white-box: Practical attacks
against obfuscated ciphers. Presentation at BlackHat Europe 2015, 2015. https:

//www.blackhat.com/eu-15/briefings.html.
32. A. Saxena, B. Wyseur, and B. Preneel. Towards security notions for white-box

cryptography. In P. Samarati, M. Yung, F. Martinelli, and C. A. Ardagna, editors,
ISC 2009, volume 5735 of LNCS, pages 49–58. Springer, Heidelberg, Sept. 2009.

A Cryptographic Assumptions

This appendix covers cryptographic assumptions that are relevant for the con-
struction of white-box cryptography by ABFJW and for the counterexample
presented in Appendix B.

Definition 6 (Pseudorandom Generator). A length-doubling pseudorandom
generator (PRG) is a deterministic, polynomial-time computable function PRG :
{0, 1}∗ → {0, 1}∗ satisfying the following:

Length-doubling For all x ∈ {0, 1}∗, |PRG(x)| = 2 |x|.
Pseudorandomness PRG(Un) is computationally indistinguishable from U2n,

29

https://eprint.iacr.org/2018/098
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://www.microsemi.com/document-portal/doc_view/135631-whiteboxcrypto-product-overview-rev4
https://www.microsemi.com/document-portal/doc_view/135631-whiteboxcrypto-product-overview-rev4
https://www.riscure.com/service/white-box-cryptography-evaluations/
https://www.riscure.com/service/white-box-cryptography-evaluations/
https://www.blackhat.com/eu-15/briefings.html
https://www.blackhat.com/eu-15/briefings.html

where Un denotes the uniform distribution over strings of length n and U2n

denotes the uniform distribution over strings of length 2n.

We define pseudorandom functions, where input length, output length and
key length are all equal.

Definition 7 (Pseudorandom Function). A deterministic, polynomial-time
computable function PRF, such that PRF : {0, 1}n × {0, 1}n → {0, 1}n for all
n ∈ N, is a pseudorandom function if for all PPT A, AdvA,PRF(n) :=∣∣∣Prk ←$ {0,1}n

[
APRF(k,·)(1n) = 1

]
− PrF ←$ {G:{0,1}n→{0,1}n}

[
AF (·)(1n) = 1

]∣∣∣
is negligible in n.

ExpIND-CPA
PKE,A (1n)

b←$ {0, 1}
(pk, sk)←$ Kgenpke(1

n)

b′ ←$AENC(1n)

return (b′ = b)

ENC(m0,m1)

assert |m0| = |m1|
c←$ Encpke(pk,mb)

return c

We now define public-key encryption.

Definition 8. A public-key en-
cryption scheme PKE is a tuple
of three algorithms
(Kgenpke, Encpke, Decpke) such that
Kgenpke and Encpke are PPT al-
gorithms with syntax
(pk, sk)←$ Kgenpke(1

n) and
c←$ Encpke(pk,m), and Decpke is a deterministic polynomial-time algorithm with
syntax m/⊥ ← Decpke(sk, c). The public-key encryption scheme PKE satisfies
correctness, i.e., for all messages m ∈ {0, 1}∗,

Pr[Decpke(sk, Encpke(pk,m)) = m] = 1

where the probability is over the randomness of (pk, sk)←$ Kgenpke(1
n) and the

randomness of Encpke. A public-key encryption scheme pk is called IND-CPA-
secure if for all PPT adversaries A, the distinguishing advantage

AdvIND-CPA
PKE,A (n) :=

∣∣∣Pr
[
ExpIND-CPA

PKE,A (1n) = 1
]
− 1

2

∣∣∣
is negligible in n.

B Separating example for one-wayness and confidentiality

In Section 3.1, we discuss a folklore-inspired example for illustrating the dif-
ference between one-wayness and confidentiality. For reference, we here expli-
cate and formalize the example. For concreteness, we choose the model of one-
wayness, as discussed in [17]. Note, however, that the statements made about
our example encryption scheme equally apply to the asymmetry notion discussed
in [9].

30

Kgen(1n)

(pk, sk)←$ Kgenpke(1
n)

k←$ Kgenbase(1
n)

return (k, pk, sk)

Enc((k, pk, sk),m)

m` := m[1 : bn
2
c]

mr := m[bn
2
c+ 1 : n]

c` ←$ Encpke(pk,m`)

nc←$ {0, 1}n

cr ← Encbase(k,mr, nc)

c := (c`, cr, nc)

return c

Dec((k, pk, sk), c)

Parse c as (c`, cr, nc)

if parsing fails return ⊥
m` ← Decpke(sk, c`)

mr ← Decbase(k, cr)

m := m`||mr

return m

Fig. 3. The symmetric encryption scheme SE: The plaintext m is split in two halves.
The first half is encrypted using the public-key encryption algorithm PKE. The second
half is encrypted using the symmetric key encryption algorithm SEbase. Then both
resulting ciphertexts are as the ciphertext of SE. The decryption behaves analogously.

Compen(kSE)(k, pk, sk)

return Enck,pk

Enck,pk(m)

m` := m[1 : bn
2
c]

mr := m[bn
2
c+ 1 : n]

c` ←$ Encpke(pk,m`)

nc←$ {0, 1}n

cr ← Encbase(k,mr, nc)

c := (c`, cr, nc)

return c

Construction. Let SEbase = (Kgenbase, Encbase, Decbase)
be an AE-secure symmetric encryption scheme, and
let PKE = (Kgenpke, Encpke, Decpke) be an asymmetric
IND-CPA secure encryption scheme. We define SE =
(Kgen, Enc, Dec) in Figure 3. If PKE is IND-CPA-secure
and SEbase is AE-secure, then SE is IND-CPA-secure,
i.e., it provides confidentiality in a black-box way. We
omit the proof of this black-box property and now fo-
cus on white-box implementations of SE. Namely, on
the left, we provide a white-box compiler Compen for SE.
Note that (k, pk) are considered to be hardcoded into
Enck,pk in plain, so that one can retrieve them easily
from the encoding.

Correctness. The white-box program Enck,pk inherits its correctness from the
correctness of the public-key encryption scheme PKE and of the symmetric en-
cryption scheme SEbase.

Attack against Confidentiality. While SE provides confidentiality in a black-
box way, Enck,pk does not provide confidentiality in the white-box attack sce-
nario: Namely, the adversary can retrieve k from program Enck,pk and can use
k to decrypt the second part of the ciphertext (cr, nc).

31

ExpOW-CPA+RCA
SE,Compen,A

(1n)

k←$ Kgenbase(1
n)

(pk, sk)←$ Kgenpke(1
n)

Enck,pk ← Compen(k, pk)

m←$ {0, 1}n

c←$ Enck,pk(m)

m∗ ←$AENC,RCA(Enck,pk, c)

if m∗ = m

then return 1

else return 0

RCA()

Enck,pk ← Compen(k, pk)

return Enck,pk

ENC(m′)

c′ ←$ Enck,pk(m′)

return c′

Proof of One-Wayness. In turn, Enck,pk still
provides one-wayness, because, given the cipher-
text, the adversary is unable to learn the left
part of the message, since it was encrypted
using an IND-CPA secure public-key encryp-
tion algorithm. To prove this via a formal re-
duction, we use a formal security model from
DLPR [17]. The authors provide one-wayness in
several flavors. We here use one-wayness with
an encryption oracle and a recompilation ora-
cle. Note that DLPR also define a flavor of
one-wayness with an additional decryption or-
acle, but Enck,pk breaks in the presence of a
decryption oracle (because halves from encryp-
tions of two different messages can be arbitrar-
ily combined, allowing the creation of fresh ci-
phertexts), and the current example is nice and
simple. We thus restrict ourselves to showing
that Compen for SE achieves one-wayness secu-

rity w.r.t. the experiment ExpOW-CPA+RCA
SE,Compen,A

, de-
fined on the right. Note that, for convenience,
we have already inlined SE into the defini-
tion.

Definition 9 (One-wayness from [17]). A compiler Compen for a symmetric
encryption scheme SE = (Kgen, Enc, Dec) is OW-CPA+RCA-secure if for all PPT
adversaries A, the following success probability is negligible:

AdvOW-CPA+RCA
SE,Compen,A

(n) := Pr
[
ExpOW-CPA+RCA

SE,Compen,A
(1n) = 1

]

32

We now prove that Compen for SE is OW-CPA+RCA-secure, i.e., one-way with
respect to full message recovery attacks in the white-box attack scenario.

Claim. If PKE is IND-CPA-secure, then Compen for SE is OW-CPA+RCA-secure.

BENCA (pk)

k←$ Kgenbase(1
n)

(pk, sk)←$ Kgenpke(1
n)

Enck,pk ← Compen(k, pk)

m0
` ←$ {0, 1}

n
2

m1
` ←$ {0, 1}

n
2

c← ENC(m0
` ,m

1
`)

mr ←$ {0, 1}
n
2

nc←$ {0, 1}n

(cr, nc)← Encbase(k,mr, nc)

c← (c`, cr, nc)

m∗ ←$AENC,RCA(Enck,pk, c)

if m∗ = m0
` ||mr

then return 0

else return 1

RCA()

return Enck,pk

ENC(m′)

c′ ←$ Enck,pk(m′)

return c′

Assume towards contradiction that there is
a PPT adversary A such that the advantage
AdvOW-CPA+RCA

SE,Compen,A
(n) is non-negligible. We need

to show that there exists a PPT adversary BA
such that the advantage AdvIND-CPA

PKE,BA (n) is non-
negligible, too. We construct a PPT adversary
BA such that

AdvIND-CPA
PKE,BA (n) ≥ 1

2Adv
OW-CPA+RCA
SE,Compen,A

(n)− 1
22−

n
2 ,

which is non-negligible if AdvOW-CPA+RCA
SE,Compen,A

(n) is
non-negligible. We give the code of BA on the
right. Note that the oracle descriptions at the
bottom describe how BA emulates the oracles
for A, whereas the oracle ENC in BA’s own
code refers to BA’s own oracle access to the
IND-CPA game. We first observe that if the se-
cret bit b in the ExpIND-CPA

PKE,BA (1n) is 0, then BA em-

ulates the experiment ExpOW-CPA+RCA
SE,Compen,A

(1n) per-
fectly and thus BA returns 0 with the same
probability as the probability that A returns
a correct pre-image, i.e.,

Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
∣∣∣ b = 0

]
= Pr

[
ExpOW-CPA+RCA

SE,Compen,A
(1n) = 1

]
. (1)

Note here, that ExpIND-CPA
PKE,BA (1n) returns 1 whenever BA returns b′ = b = 0. In

turn, when b = 1, then information-theoretically, A has no information about
m0

` and thus, the probability of A returning a message m∗ whose first half is
equal to m0

` is upper bounded by 2−
n
2 and thus, in all other cases, BA returns

b∗ = 1 which is equal to b = 1, and thus ExpIND-CPA
PKE,BA (1n) returns 1, i.e.,

Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
∣∣∣ b = 1

]
≥ 1− 2−

n
2 . (2)

33

Putting the two together, we obtain that

Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
]

= Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
∣∣∣ b = 0

]
· Pr[b = 0]

+ Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
∣∣∣ b = 1

]
· Pr[b = 1]

= Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
∣∣∣ b = 0

]
· 12

+ Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
∣∣∣ b = 1

]
· 12

≥Pr
[
ExpOW-CPA+RCA

SE,Compen,A
(1n) = 1

]
· 12

+ (1− 2−
n
2) · 12

= 1
2 + 1

2 Pr
[
ExpOW-CPA+RCA

SE,Compen,A
(1n) = 1

]
− 1

22−
n
2 ,

where the first equality is by definition of conditional probabilities. The second
equality is by observing that the probability of a uniformly random bit being 0
is 1

2 . The third step is by plugging in Equation 1 and Inequality 2, and the last
inequality follows by basic arithmetics. We observe that, by definition,

AdvIND-CPA
PKE,BA (1n) =

∣∣∣Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
]
− 1

2

∣∣∣
≥Pr

[
ExpOW-CPA+RCA

SE,Compen,A
(1n) = 1

]
− 1

22−
n
2 ,

which is non-negligible as Pr
[
ExpOW-CPA+RCA

SE,Compen,A
(1n) = 1

]
is non-negligible by as-

sumption, and only the negligible amount 1
22−

n
2 is subtracted. This contradicts

the assumption that PKE is IND-CPA-secure and thus, such a successful attacker
A against the one-wayness of (SE, Compen) cannot exist which concludes the proof
of Claim B.

C Hardware Module from [3]

Definition 10 (Hardware Module). A hardware module HW consists of
four algorithms (KgenHW, SubKgenHW, RespHW, CheckSW), where KgenHW is a PPT al-
gorithm, and the algorithms SubKgenHW, RespHW and CheckSW are deterministic
polynomial-time algorithms with the following syntax:

kHWms←$ KgenHW(1
n), σ ← RespHW(kHWms,Label , x),

kHWsl ← SubKgenHW(kHWms,Label) {0, 1} ← CheckSW(kHWsl, x, σ)

Correctness requires that for all security parameters n ∈ N,

Pr[CheckSW(SubKgenHW(kHWms,Label), x, RespHW(kHWms,Label , x)) = 1] = 1,

where the probability is over the randomness for generating kHWms←$ KgenHW(1
n).

34

D Proof of the Impossibility Result

For convenience, we re-state Claim 1.

Claim. If SE is AE-secure and if PRF is a secure pseudorandom function, then
SE′ is AE-secure.

Proof. To prove Claim 1, we proceed via game-hops. We start with GameA0 (see
Figure 4 for the definition) where we show that, assuming that SE is AE-secure,
any PPT adversary A has negligible advantage AdvGame0

A (n), where we denote

AdvGamei
A (n) :=

∣∣∣∣Pr
[
GameAi (1n) = 1

]
− 1

2

∣∣∣∣ .
We then upper bound the differences between each subsequent pair of games
by a negligible function, assuming PRF security and AE-security of SE as well
as making a statistical argument. Game3 then corresponds to the AE-security
game for SE′, and we conclude that any PPT adversary A must have negligible
advantage AdvGame3

A (n) as well.

Reduction from GameA0 to AE-security game for SE. Given a PPT adver-

sary A with advantage AdvGame0
A (n), we construct a PPT adversary BA with the

same advantage in ExpAESE,BA(1n). The adversary BA executes A and emulates
ENC and DEC for A as follows. Whenever A makes a query (m0,m1) to its ENC
oracle, then BA forwards this pair of messages to its own ENC oracle which re-
turns a ciphertext cb and a nonce nc. BA assigns c′b ← 0||cb and returns (nc, c′b)
to A. Whenever A makes a query (nc′, c′) to DEC, then adversary BA checks
the first bit of c′. If c′[1] = 1 then, BA returns an error message to A otherwise,
BA submits (nc′, c′[2 : n]) to DEC. Upon receiving a response from DEC, BA
forwards this response to A. When A outputs a bit guess b∗, BA outputs the
same b∗. Note that BA’s simulation of GameA0 is perfect and thus, AdvAESE,BA(n)

is equal to AdvGame0
A (n), which is negligible, by assumption on SE.

We now turn to the game hops between each subsequent pair of games.

GameA0 to GameA1 . The differences between GameA0 and GameA1 is that in

GameA1 the encryption oracle ENC checks whether the input string m parses into
a circuit C(·, ·) which is functionally equivalent to 0||Enc(kSE, ·, ·) for n randomly
sampled inputs. If so, then d will be set to 1 and thus, ENC will return 1||c′||kSE′ .
We thus need to argue that the probability that m parses into a circuit C(·, ·)
which is functionally equivalent to 0||Enc(kSE, ·, ·) for n randomly sampled inputs
is negligible. We argue this based on the AE-security of SE. I.e., we show that
the distinguishing advantage of an adversary A between GameA0 and GameA1 is
upper bounded by the distinguishing advantage of an adversary CA against the
AE-security of SE, given in Figure 5. The oracles on the right (denoted by ENC′

and DEC′) describe how CA emulates the oracles for A whereas the oracles in

35

GameA0 (1n)

b←$ {0, 1}
kSE′ ←$ KgenSE′(1

n)

b′ ←$AENC,DEC(1n)

return (b′ = b)

ENC(m0,m1)

assert |m0| = |m1|
C← PARSE(m)

nc←$ {0, 1}n

kSE||km||knc ← kSE′

d← 0

c′ ← Enc(kSE,m, nc)

c← 0||c′

C ← C ∪ {(c, nc)}
return c

DEC(c, nc)

assert (c, nc) /∈ C
if b = 1 : return ⊥
d||c̃← c

kSE||km||knc ← kSE′

if d = 0

m← Dec(kSE, c̃, nc)

else

m← ⊥
return m

GameA1 (1n)

b←$ {0, 1}
kSE′ ←$ KgenSE′(1

n)

b′ ←$AENC,DEC(1n)

return (b′ = b)

ENC(m0,m1)

assert |m0| = |m1|
C← PARSE(m)

nc←$ {0, 1}n

kSE||km||knc ← kSE′

d← 0

for i from 1 to n

mi ←$ {0, 1}n

nci ←$ {0, 1}n

if C(mi, nci) =

0||Enc(kSE,mi, nci):

d← d ∧ 1

else d← d ∧ 0

c′ ← Enc(kSE,m, nc)

if d = 0

c← 0||c′

else c← 1||c′||kSE′
C ← C ∪ {(c, nc)}
return c

DEC(c, nc)

assert (c, nc) /∈ C
if b = 1 : return ⊥
d||c̃← c

kSE||km||knc ← kSE′

if d = 0

m← Dec(kSE, c̃, nc)

else

c′||k′ ← c̃

if k′ = kSE′

m← Dec(kSE, c
′, nc)

else m← ⊥
return m

GameA2 (1n)

b←$ {0, 1}
kSE′ ←$ KgenSE′(1

n)

b′ ←$AENC,DEC(1n)

return (b′ = b)

ENC(m0,m1)

assert |m0| = |m1|
C← PARSE(m)

nc←$ {0, 1}n

kSE||km||knc ← kSE′

d← 0

for i from 1 to n

mi ←$ {0, 1}n

nci ← PRF(knc, bin(i)||nc)
if C(mi, nci) =

0||Enc(kSE,mi, nci) :

d← d ∧ 1

else d← d ∧ 0

c′ ← Enc(kSE,m, nc)

if d = 0

c← 0||c′

else c← 1||c′||kSE′
C ← C ∪ {(c, nc)}
return c

DEC(c, nc)

assert (c, nc) /∈ C
if b = 1 : return ⊥
d||c̃← c

kSE||km||knc ← kSE′

if d = 0

m← Dec(kSE, c̃, nc)

else

c′||k′ ← c̃

if k′ = kSE′

m← Dec(kSE, c
′, nc)

else m← ⊥
return m

GameA3 (1n)

b←$ {0, 1}
kSE′ ←$ KgenSE′(1

n)

b′ ←$AENC,DEC(1n)

return (b′ = b)

ENC(m0,m1)

assert |m0| = |m1|
C← PARSE(m)

nc←$ {0, 1}n

kSE||km||knc ← kSE′

d← 0

for i from 1 to n

mi ← PRF(km, bin(i)||nc)
nci ← PRF(knc, bin(i)||nc)
if C(mi, nci)

= 0||Enc(kSE,mi, nci) :

d← d ∧ 1

else d← d ∧ 0

c′ ← Enc(kSE,m, nc)

if d = 0

c← 0||c′

else c← 1||c′||kSE′
C ← C ∪ {(c, nc)}
return c

DEC(c, nc)

assert (c, nc) /∈ C
if b = 1 : return ⊥
d||c̃← c

kSE||km||knc ← kSE′

if d = 0

m← Dec(kSE, c̃, nc)

else

c′||k′ ← c̃

if k′ = kSE′

m← Dec(kSE, c
′, nc)

else m← ⊥
return m

AE security of SE PRF security PRF security

Fig. 4. Definition of the games

36

CENC,DEC
A (1n)

km ←$ {0, 1}n

knc ←$ {0, 1}n

AENC′,DEC′k←$ Kgenbase(1
n)

(pk, sk)←$ Kgenpke(1
n)

Enck,pk ← Compen(k, pk)

m0
`

$←− {0, 1}
n
2

m1
`

$←− {0, 1}
n
2

c← ENC(m0
` ,m

1
`)

mr
$←− {0, 1}

n
2

nc←$ {0, 1}n

(cr, nc)← Encbase(k,mr, nc)

c← (c`, cr, nc)

m∗ ←$AENC,RCA(Enck,pk, c)

if m∗ = m0
` ||mr

then return 0

else return 1

ENC′(m0,m1)

for b ∗∈ {0, 1} :

Cb∗ ← PARSE(mb∗)

if 1 = TestENC(Cb∗)

abort A

return d∗ ←WinENC(Cb∗)

(c′, nc)← ENC(m0,m1)

c← 0||c′

return c

TestENC(C)

d← 0

for i from 1 to n

mi ←$ {0, 1}n

(ci, nci)← ENC(mi,mi)

if Cb∗(mi, nci) = 0||ci
d← d ∨ 1

else d← d ∨ 0

return d

DEC′(c, n)

d||c̃← c

kSE||km||knc ← kSE′

if d = 0

m← DEC(c̃, nc)

else

c′||k′ ← c̃

if 1 = TestENC(Enc(k′, ., .))

abort A

return d∗ ←WinENC(Cb∗)

return m

WinENC(C)

m∗0 ←$ {0, 1}n,m∗1 ←$ {0, 1}n

(c∗, nc∗)← ENC(m∗0,m
∗
1)

if Cb∗(m
∗
0, nc

∗) = 0||c∗

return 0

if Cb∗(m
∗
1, nc

∗) = 0||c∗

return 1

else d∗ ←$ {0, 1}, return d∗

Fig. 5. Description of adversary CA.

the code of CA (denoted by ENC and DEC) refer to its own oracles. The helper
procedure Test checks whether a given circuit is equivalent to the encryption
program Enc, keyed with the symmetric used in the oracle ENC of CA. Test sim-
ply proceeds by sampling n messages at random, sending them to the encryption
oracle and checking, whether a given circuit behaves functionally equivalent to
the oracle on these messages. If no circuit (in the ENC′ oracle) or key (in the
DEC′ oracle) ever passes the Test, then GameA0 and GameA1 are equal. However,
if at some point, a circuit or key passes the Test, then CA uses this event to
break the AE-security of SE as described in the procedure Win. If the probability
of Test returning 1 is non-negligible, then CA has non-negligible advantage in
AE, namely, as we show now, if Test returns 1, then CA returns the correct bit
except with negligible probability: Firstly, using a Chernoff bound, one can show
that the else -branch is only used with negligible probability. I.e., if a circuit
is functionally equivalent to the oracle on n uniformly random inputs, then the
Chernoff bound states that the probability of the circuit behaving not function-
ally equivalent on another random input is exponentially small. Moreover, the
probability that Win returns the wrong bit is also exponentially small, since the
message that was not encrypted is information-theoretically hidden from the
encryption program. We thus obtain that∣∣Pr

[
GameA0 = 1

]
− Pr

[
GameA1 = 1

]∣∣
≤(1 + ν(n))AdvSESE,CA

37

where ν is an exponentially small function in n.

GameA1 to GameA2 . The difference between GameA1 and GameA2 is that in GameA2
the nonces nci are generated via a keyed-pseudorandom function instead of a
uniformly random sample. We now show that an adversary A is not able to
distinguish GameA1 from GameA2 with non-negligible advantage by reducing the
difference between the two games to the PRF security of the deployed pseudoran-
dom function. The reduction DA essentially emulates the entire game GameA2 ,
except that when the PRF for generating the random nonce is invoked, then DA
makes a call to its PRF oracle instead. This way, if the PRF oracle contains a PRF,
then DA emulates GameA2 , whereas if the oracle contains a uniformly random
function, then DA emulates GameA1 . It follows that∣∣∣Pr

[
GameA1 = 1

]
− Pr

[
GameA2

]∣∣∣ ≤ AdvPRF,DA(n).

GameA2 to GameA3 . Analogously to the previous game-hop, we can build a
reduction EA such that∣∣∣Pr

[
GameA2 = 1

]
− Pr

[
GameA3

]∣∣∣ ≤ AdvPRF,EA(n).

Using a telescopic sum to add up the differences between each pair of subse-
quent games, we obtain that SE is AE-secure, and PRF is a secure pseudorandom
function, then SE′ is AE-secure.

For convenience, we now re-state Claim 2.

Claim. There exists a PPT adversary A, such that for all white-box compiler
Compen for SE′, it holds that Pr[kSE←$A(EncWB)] = 1− negl(n), where the prob-
ability is over kSE′ ←$ KgenSE

′ and EncWB←$ Compen(kSE′).

Proof. We consider a white-box compiler Compen for SE′, which generates the
white-box encryption algorithm EncWB, i.e. EncWB←$ Compen(kSE′). We need to
show a strategy that can be adopted by the PPT adversary A that lets it ex-
tract the secret key from EncWB with overwhelming probability. The strategy
works as follows. The adversary gets as input the white-box encryption algo-
rithm EncWB with hard-coded encryption key kSE′ . The adversary then chooses
as input the algorithm EncWB and a random nonce nc to feed into EncWB itself. The
function PARSE evaluated in EncWB will output an executable circuit functionally
equivalent to EncWB. Later, line 7 of the algorithm checks whether for all mi

and nci, EncWB(mi, nci) = 0||Enc(kSE,mi, nci). By definition of EncWB, we have
that EncWB(·, ·) is functionally equivalent to Enc′(kSE′ , ·, ·). As we have shown
in the proof of Claim 1, thanks to the PRF-security of PRF, Enc′(kSE′ , ·, ·) and
0||Enc(kSE, ·, ·) are functionally equivalent with overwhelming probability. There-
fore, after the for-loop, the value of d will almost certainly never be set to 0. So,
EncWB(EncWB, nc) outputs c = 1||EncWB(EncWB, nc)||kSE′ , and for the attacker, it is
sufficient to consider c[|EncWB|+ 2 : |EncWB|+ 2 + n] to obtain kSE.

38

	On the Security Goals of White-Box Cryptography

