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Abstract. At CRYPTO 2018, Cascudo et al. introduced Reverse Multiplication Friendly Embeddings
(RMFEs). These are a mechanism to compute δ parallel evaluations of the same arithmetic circuit
over a field Fq at the cost of a single evaluation of that circuit in Fqd , where δ < d. Due to this
inequality, RMFEs are a useful tool when protocols require to work over Fqd but one is only interested
in computing over Fq. In this work we introduce Circuit Amortization Friendly Encodings (CAFEs),
which generalize RMFEs while having concrete efficiency in mind. For a Galois Ring R = GR(2k, d),
CAFEs allow to compute certain circuits over Z2k at the cost of a single secure multiplication in R. We
present three CAFE instantiations, which we apply to the protocol for MPC over Z2k via Galois Rings
by Abspoel et al. (TCC 2019). Our protocols allow for efficient switching between the different CAFEs,
as well as between computation over GR(2k, d) and F2d in a way that preserves the CAFE in both
rings. This adaptability leads to efficiency gains for e.g. Machine Learning applications, which can be
represented as highly parallel circuits over Z2k followed by bit-wise operations. From an implementation
of our techniques, we estimate that an SVM can be evaluated on 250 images in parallel up to ×7 more
efficiently using our techniques, compared to the protocol from Abspoel et al. (TCC 2019).

1 Introduction

Secure Multi-Party Computation (MPC) protocols allow any n parties to compute any function on their
secret data, while revealing nothing beyond the function’s output. This is guaranteed even in the presence
of an adversary A who corrupts and coordinates up to t of the participants. The capabilities of A determine
the main limitations of MPC, as well as the most relevant techniques to construct such protocols.

One of the main distinctions is whether corrupted parties follow the protocol (but try to extract addi-
tional information from its execution) or if they arbitrarily deviate from it. The former is known as passive
corruption, whereas the latter is active. Additionally, A could have limited computational resources, or rather
be unbounded. Finally, one of the most important aspects is whether corrupted parties constitute a minority
(t < n/2) or not and, if so, whether t < n/3.

All practical protocols capable of resisting a computationally unbounded, active adversary are based in
linear secret sharing schemes (LSSS), such as Shamir’s LSSS [Sha79]. Most of them follow a “gate-by-gate”
paradigm4, where a boolean (or arithmetic) circuit is computed on secret-shared inputs one gate at a time.
As the secret sharing scheme is linear, addition gates can then be computed without interaction among the
parties. Non-linear operations, such as multiplying two secrets together, are more complicated. In fact, for
all known protocols in this setting which are able to compute any function efficiently, multiplication gates
require running some interactive sub-protocol. If some preprocessed correlated randomness is assumed, this
usually consists in “opening” (i.e. reconstructing to all parties) a linear combination of such randomness
with either the inputs (e.g. when using Beaver triples [Bea92]) or the outputs (e.g. when using double-shares
[BTH08]) of the multiplication gate. The protocol maintains the invariant that inputs and outputs of any
processed gate are secret-shared in the same way, so that they can be combined and used as inputs to other
gates.

Frequently, one is interested in computing functions which are naturally represented as either a boolean
circuit or an arithmetic circuit over Z2k . Nevertheless, be it in order to achieve some security parameter

4 A notable exception here are protocols based on lookup tables, such as those described in [Cou19] or [KOR+17].
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Name #Inputs (in R) Expressiveness (as a Z2k -subcircuit)

Näıve [ACD+19] 2 Circuits with 1 multiplication and 1 output.
InnerProd 2 Inner products of length ≈ d/2.
SIMD 2 ≈ d0.6 parallel circuits w/ 1 mult. and 1 output each.

Näıve [ACD+19] m Depth 1 circuit with m multiplications and 1 output.
FLEX m Depth 1 circuit with m multiplications and d outputs.

Table 1. Encoding schemes. All rows assume a single “opening” in R = GR(2k, d).

[KOS16] or because the number of parties is bounded by the LSSS and the ring where computation takes
place [Sha79,ACD+19], it is often required to “lift” the computation to a large enough extension ring. As a
concrete example, when the goal is to evaluate a boolean circuit (resp. a circuit over Z2k) using Shamir-style
MPC, the computation has to take place over F2d (resp. GR(2k, d), the degree-d Galois extension of Z2k),
where d = log(n+1). This incurs on a multiplicative overhead of d in communication and d2 in computation,
where the latter can be asymptotically reduced to quasi-linear in d using FFT-style techniques.

Having the above in mind, the authors in [CCXY18] and [CRX19] introduced Reverse Multiplication
Friendly Embeddings (RMFEs), which exploit the inherent overhead induced by the extension degree d as a
mechanism to compute in parallel δ < d copies of the boolean (resp. Z2k) circuit that was the original target.
Namely, through RMFEs, a single multiplication in F2d (resp. GR(2k, d)) translates into a component-wise
multiplication in Fδ2 (resp. Zδ2k). Interested in asymptotic results, most of the RMFE constructions provided
by the authors involved algebraic geometry tools5, whose concrete computational efficiency is unclear and
for which the exact ratio δ/d might only become interesting for very large values of d.

In this work we propose Circuit Amortization Friendly Encodings (CAFEs) as a generalization of the
RMFE paradigm, where we compute certain subcircuits over Z2k at the cost of a single multiplication in
R = GR(2k, d). Furthermore, as the extension degree d is usually very small, we focus our attention on
concrete rather than asymptotic efficiency and provide an implementation which experimentally validates
our claims. We apply our techniques to the protocol for MPC over Z2k via Galois Rings by Abspoel et al.
[ACD+19], but we expect our framework to be useful for other protocols as well. Note that by setting k = 1
we obtain CAFEs for boolean circuits at the cost of a multiplication in F2d .

The use of CAFEs allows us to match the efficiency improvements they provide with a “subcircuit-by-
subcircuit” rather than “gate-by-gate” view of computation. Such view (and more general ones) is shared
among many people programming MPC, who view LSSS-based protocols as a series of linear combinations
and “openings” (secret reconstruction) rather than addition and multiplication gates. In Table 1 we show our
three CAFE proposals, which allow computing commonly found subcircuits, and compare them with using
the protocol by Abspoel et al. [ACD+19]. The RMFEs from [CRX19] can be seen as a different proposal for
the Single Instruction Multiple Data (SIMD) CAFE.

From a more theoretical perspective, Circuit Amortization Friendly Encodings (and RMFEs in particular)
constitute a partial answer to the question “what can we securely compute at the cost of one multiplication?”,
rather than the more usual “what is the cost of securely computing one multiplication?”. This means, among
other things, that our CAFEs can be naturally combined with packed secret sharing techniques such as
[FY92].

Bit-wise operations. Our previous discussion focused on the matter of computing circuits over Z2k . Many
practical applications, however, make use of bit-wise operations in order to compute e.g. comparisons between
integers. These operations can be emulated in Z2k even when k > 1, but doing so loses the advantage of
XOR being “for free”: Whereas XOR is linear in Z2, it is not in Z2k . In fact, for a, b ∈ {0, 1}, we have that
a XOR b = a+ b− 2ab mod 2k, so XOR reduces to a multiplication in Z2k , which requires communication.

5 As an exception, their most practical construction, given in [CCXY18] for boolean circuits, builds on polynomial
interpolation.
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A solution to this problem is the use of doubly-authenticated bits (daBits) [RW19], which are secret,
random bits shared in two different algebraic structures. In our case, these structures are GR(2k, d) and F2d ,
where we further make use our CAFEs in order to compute sub-circuits over Z2k and F2, respectively.

1.1 Technical Overview and Contributions

The fact of being constantly switching between different algebraic structures (Z2k , GR(2k, d),F2 and F2d) in
an actively secure way introduces several technical challenges in our protocols, as we do not want the costs
introduced by these transformations to outweigh the benefit from using CAFEs. In order to deal with these,
we devise efficient protocols for creating correlated encoded randomness.

Both for efficiency and simplicity of presentation, we restrict ourselves to the non-robust MPC sce-
nario, where the adversary is able to abort the protocol after seeing its outputs. This way we avoid de-
scribing (now standard) player elimination techniques [BTH08,ACD+19], the absence of which allows us
to introduce batch checking mechanisms for double-shares and daBits. Concretely, the use of our batch
checking allows us to duplicate the throughput of correlated randomness production via hyper-invertible ma-
trices [BTH08,BHKL18,CCXY18,ACD+19]. Furthermore, even when using hyper-invertible matrices over
R = GR(2k, d), the batch check is compatible with the production of double-shares which are bound by
Z2k -linear relations, such as those required for our CAFEs.

To the best of our knowledge, this is the first time batch checking is applied to MPC protocols using
hyper-invertible matrices, even in non-robust protocols such as [BHKL18]. We remark that our non-robust
preprocessing protocols using this technique can still be used in the robust scenario in an optimistic way:
Namely, if an abort is induced by the batch check failure, parties can switch to the slower, robust protocols.
As no actual inputs to the MPC protocol have been provided yet, our optimistic variant remains both secure
and robust.

We would like to highlight that our concrete CAFE constructions are mostly a clever combination of
combinatorics, circuit randomization and multilinear algebra. The individual components are generally sim-
ple, which we see as a positive rather than a negative aspect of our work. Simple protocols usually lead
to more efficient implementations, which is something we back with our experiments. Finally, we make a
conscious effort to present our techniques in the most elementary way, so that they are as broadly accessible
as possible within the community. In particular, we avoid using formal abstractions such as d-fold generalized
linear secret sharing from [CCXY18], which are useful and we implicitly use, but we feel they could clog our
presentation.

2 Preliminaries

We use n to denote the number of parties, among which t < n/3 are corrupted. Denote by P = {P1, . . . ,Pn}
the set of parties. We use boldface letters x to denote vectors, for which we index their elements starting at
0, i.e., if x ∈ Rδ, x = (x0, . . . , xδ−1). If X is a set, x← X denotes a uniform random sampling from X, the
result of which is assigned to the variable x. Finally, [n] is used to denote the set {0, . . . , n − 1} and [a, b]
with a < b to denote the set {a, . . . , b}. Let λ be the statistical security parameter.

2.1 Commutative Algebra

We briefly recall some previous results from commutative ring theory, as well as the background for Galois
Rings we will need. In this subsection, R denotes a commutative ring with identity.

Definition 1. Let α0, . . . , αm−1 ∈ R. We call A = {α0, . . . , αm−1} an exceptional set if and only if αi−αj ∈
R∗ for all i, j ∈ [m] with i 6= j. We define the Lenstra constant of R to be the size of the biggest exceptional
subset of R.

The following is a generalization of the Schwartz-Zippel lemma which we will need throughout the paper.
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Lemma 1 ([BCPS18]). Let R be a commutative ring and f : Rn → R be an n-variate non-zero polynomial.
Let A ⊆ R be an exceptional set. Then

Pr
x←An

[f(x) = 0] ≤ deg f

|A|
.

2.2 Galois Rings

Galois Rings are the unique degree-d Galois extension of rings of the form Zpk , where p is a prime. Whereas
for k = 1 such an extension yields the Galois Field Fpd , for k > 1 Galois Rings contain zero-divisors, in
particular the multiples of p. We will use the following, equivalent definition of Galois Rings, as it is better
suited for our purposes.

Definition 2. A Galois Ring is a ring of the form R = Zpk [X]/(h(X)) where p is a prime, k ≥ 1 and
h(X) ∈ Zpk [X] is a monic polynomial of degree d ≥ 1 such that its reduction modulo p yields an irreducible
polynomial in Fp[X].

Once p, k and d has been fixed in Definition 2, any valid choice of h(X) ∈ Zpk [X] will result in the same
R, up to isomorphism. Hence, we shall denote such a ring as R = GR(pk, d).

The ring R = GR(pk, d) is of characteristic pk and all its ideals (pi) form the chain

R ⊃ (p) ⊃ (p2) ⊃ · · · ⊃ (pk−1) ⊃ (pk) = 0.

Thus, for i ∈ [1, k] we can define the natural homomorphisms πi : R → R/(pi) which are computed by
“reducing modulo pi”. Notice that R/(pi) ∼= GR(pi, d), so by computing the quotient of R with its unique
maximal ideal (p) we will obtain the finite field Fpd . Furthermore, all non-units of R are nilpotent and they
constitute (p). We will need the following lemma:

Lemma 2. The Lenstra constant of GR(pk, d) is pd.

In order to reason about Galois Ring elements and their arithmetic, we will sometimes describe them as
it naturally follows from Definition 2. We will refer to such explicit description as the additive representation
of a. More concretely, any element of a ∈ GR(pk, d) can be described as

a = a0 + a1 · ξ + . . .+ ad−1 · ξd−1, (1)

where ai ∈ Zpk and ξ is a root of h(X), i.e. GR(pk, d) ∼= Zpk [ξ].
Our work focuses in Galois Rings of the form R = GR(2k, d), hence of characteristic 2k, maximal ideal

(2), Lenstra constant 2d and such that R/(2) ∼= F2d . Notice that in such case a ∈ R is a unit (i.e. a /∈ (2)) if
and only if, given its additive representation, there is at least one i ∈ [d] such that ai ≡ 1 mod 2.

2.3 Shamir’s secret sharing over Galois Rings

Shamir’s secret sharing scheme [Sha79] extends to any commutative ring with identity, as long as it contains
an exceptional set of size at least n+ 1 [ACD+19]. Given the fact that the Lenstra constant of a Galois Ring
R = GR(2k, d) is 2d, we can construct Shamir’s secret sharing for R if d ≥ log(n+1). We provide the precise
construction in ΠShare(s, t) (Protocol 1).

Protocol 1. ΠShare(s, t) — Degree-t Shamir’s LSSS over Galois Rings.

Let R = GR(2k, d) be a Galois Ring such that log(n + 1) ≤ d and let A = {α0, α1, . . . , αn} ⊂ R be an
exceptional set. Let Pi be the Dealer of the secret, with input s ∈ R.

1. Pi samples a random degree-t polynomial p(X) ∈ R[X] such that p(α0) = s.
2. Pi defines its own share as p(αi) and sends p(αj) to Pj for all j 6= i.

Denote the output as 〈s〉Rt = (p(α1), . . . , p(αn)), a “degree-t sharing” of s.
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Since {αi}ni=0 is an exceptional set, Lagrange interpolation can be used with t + 1 points to interpolate
p(X) and thus recover the secret. We denote the sharing of a value a as 〈a〉. Whenever there could be confusion

about whether a is shared in one of two rings R or R̃, we will use 〈a〉R and 〈a〉R̃ to avoid misunderstandings.
To run MPC using Shamir’s scheme we also need the following protocols, which are standard and we

provide in Appendix B.

– Private reconstruction ΠrPriv(Pi, s): This reconstructs a Shamir secret shared value to a single party. This
only requires every party apart from Pi communicate a single element for a total of n− 1 elements.

– Public reconstruction ΠrPub(s0, . . . , sn−t−1): This reconstructs n − t Shamir secret shared values simul-
taneously to all parties. To do so, parties privately reconstruct a single share to each party, followed by
each party sending the reconstructed value to all other parties. This protocol requires communicating a
total of 2 · n · (n− 1) elements.

2.4 Hyper-Invertible Matrices over Galois Rings

Hyper-Invertible Matrices (HIMs) were introduced in [BTH08] as a tool to generate secret correlated ran-
domness in information-theoretic MPC. Their original description was limited to matrix whose entries are
Finite Field elements, but HIMs naturally generalize to rings having big enough exceptional sets, as shown
in [ACD+19].

Definition 3. Let M be a r-by-c matrix. We say that M is Hyper-Invertible if, for all A ⊆ [r], B ⊆ [c] with
|A| = |B| > 0, the sub-matrix MB

A is invertible, where MA denotes the matrix consisting of the rows i ∈ A
of M , MB denotes the matrix consisting of the columns j ∈ B of M , and MB

A = (MA)B.

For constructions of hyper-invertible matrices over Finite Fields and rings, we refer the reader to [BTH08]
and [ACD+19].

The technical reason why hyper-invertible matrices are a powerful instrument in MPC is the following
lemma from [BTH08].

Lemma 3. Let M ∈ Rm×m be a hyper-invertible matrix, and let y = Mx. Then, for all A,B ⊆ [m] with
|A| + |B| = m, there exists a R-linear isomorphism φ : Rm → Rm such that φ(xA,yB) = (xĀ,yB̄), where
Ā = [m] \A and B̄ = [m] \B.

Informally, it states that any combination of m inputs/outputs of the R-linear isomorphism induced by a
square hyper-invertible matrix are uniquely determined by the remaining m inputs/outputs. This is key in
enabling the “player elimination” mechanism, which relies in revealing each of 2t outputs to a different party.
Player elimination enables, in turn, robust MPC.

Lemma 4. Let P1, . . . , Pn be parties out of which at most t are corrupted. Let M ∈ R(n−t)×n be a hyper-
invertible matrix. Let y = M · x, where y = (y1, . . . , yn−t), x = (x1, . . . , xn) and each xi ∈ R is a secret,
uniformly random input chosen by party Pi. No Adversary can distinguish any yj ∈ R from uniformly
random.

Proof. Let H ⊂ [1, n] be a set of indices corresponding to any n− t honest parties. We have that y = M ·x =
MH ·xH +M H̄ ·xH̄ . Denote zH = MH ·xH . As M is hyper-invertible, MH and all its entries are invertible.
Then, as xH consists only of secret, random values; we have that zH ∈ Rn−t is uniformly random. Thus, so
is y = (y1, . . . , yn−t). ut

3 Switching between Galois Rings and Galois Fields

Computation over Z2k , while attractive for many applications, is not the best choice for operating on the
level of bits. In fact, for many applications where Z2k shines, such as machine learning, specialized conversion
protocols are often employed to deal with certain computations that cannot easily be expressed as arithmetic
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in Z2k . For example, comparing two numbers a and b is equivalent to computing the result of the comparison
0 < a− b, which amounts to extracting the most significant bit of a− b (in two’s complement, this bit is 1 if
the result is negative, i.e., b > a and 0 otherwise). Common for many protocols for MSB extraction, is a need
for a secret-shared representation of the bit-decomposition of a number. If we know v0, . . . , vk−1 such that

v =
∑k−1
i=0 2ivi then MSB extraction is easy. Obtaining secret-shares of v0, . . . , vk−1 given a secret-sharing

of v can be done in the following way. Suppose we have k pairs of values (〈bi〉F2d , 〈bi〉R); that is, the same
bit bi secret-shared in R as well as in F2d . First we open the value z = 〈v〉R + 〈

∑
i 2ibi〉R after which z is

decomposed into bits. Notice that everyone now has a masked version of v+b in its bit representation (where

b =
∑k−1
i=0 2ibi), as well as secret-shares of the bits of b. Finally, shares of the bits of v can be obtained by

computing a binary adder.

Efficiently generating tuples of the kind (〈bi〉F2d , 〈bi〉R) has been the topic of recent work such as [RW19],
and more recently [EGK+20]. Both these works present a generic approach (i.e., generating bits for any two
algebraic structures). We will instead focus on the specific case where the bits are shared over R = GR(2k, d)
and the residue field of R, that is F2d .

3.1 Details

Let R̃ = GR(2k̃, d) and R = GR(2k, d) be two Galois Rings such that k̃ > k. Let πk : R̃ → R be the
“reduction modulo 2k” map.

Lemma 5. Let Ã = {α0, . . . , αm−1} ⊂ R̃ be an exceptional set. Then A = πk(Ã) = {πk(α0), . . . , πk(αm−1)}
is an exceptional set in R.

Proof. For any αi, αj ∈ Ã such that αi 6= αj , let βi,j ∈ R̃ be the inverse of αi − αj ∈ R̃. We have the
following equalities, all derived form the fact that πk is an homomorphism:

πk(βi,j) · (πk(αi)− πk(αj)) = πk(βi,j) · πk(αi − αj) = πk(βi,j · (αi − αj))
= πk(1R̃) = 1R.

Hence, A = {πk(α0), . . . , πk(αm−1)} ⊂ R is an exceptional set. ut

Proposition 1. The “reduction modulo 2k” map πk : R̃ → R commutes with Shamir secret sharing. More

precisely, given a ∈ R̃ shared as 〈a〉R̃ using an exceptional set Ã ⊂ R̃, then

πk(〈a〉R̃) = 〈πk(a)〉R,

where the shares of 〈πk(a)〉R use the exceptional set A = πk(Ã) ⊂ R and they are computed by applying πk
to the shares of 〈a〉R̃.

Proof. Let p̃(X) ∈ R̃[X] be the polynomial such that 〈a〉R̃ = (p̃(α1), . . . , p̃(αn)) and denote p(X) =
πk(p̃(X)) ∈ R[X]. As p̃(X) is of degree at most m − 1, so is p(X). Additionally, observe that πk(p̃(αi)) =
πk(p̃(πk(αi))) = p(πk(αi)). As shown in [ACD+19, Theorem 3], which follows from the Chinese Remainder
Theorem over rings, there is an isomorphism between p(X) ∈ R[X] and any m evaluations of p(X) at points
of the same exceptional set A ⊂ R. We conclude that

〈πk(a)〉R = (p(πk(α1)), . . . , p(πk(αn)))

= (πk(p̃(α1)), . . . , πk(p̃(αn))) = πk(〈a〉R̃). ut

Notice that, as a corollary of the previous proposition, we have that for any k̃ ≥ 1, π1(〈a〉R̃) = 〈π1(a)〉F,
where F = F2d is the residue field of R̃.
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3.2 Double Authenticated Bits

In Section 4 we present concrete protocols for generating shares of random bits. Here we outline the general
technique that we will be using.

With the properties of R outlined in the previous section, a pair of secret-shared bits—one in R and the
other in F2d—is easy to obtain: We first generate a secret shared bit 〈b〉R in R and then use the observation
in Proposition 1 to obtain 〈b〉F2d by simply having each party locally truncate their share of 〈b〉R modulo 2.

It remains to discuss how to produce a random 〈b〉R, b ∈ {0, 1}. For this, we will adapt the RandBit
protocol from [DEF+19], which produces such values when R = Z2k . We will make use of their following
lemma when proving our protocols.

Lemma 6 ([DEF+19]). Let ` > 2. If a ∈ Z is such that a2 ≡ 1 mod 2`, then a is congruent modulo 2` to
one among {1,−1, 2`−1 − 1, 2`−1 + 1}.

4 Circuit Amortization Friendly Encodings

Given some private a1, . . . , am ∈ Z2k , consider that we want to securely compute some circuit C taking them
as inputs. In what we will call the näıve encoding (which is the approach in [ACD+19] and [ADEN19]),
sharings of the inputs 〈a1〉t, . . . , 〈am〉t would have to be produced by first embedding each ai ∈ Z2k into
R = GR(2k, d), individually. Any multiplication gate in C would then be computed in the usual way, that
is, given 〈a〉t, 〈b〉t and a double sharing (〈r〉t, 〈r〉2t):

Protocol 2. Πonline-ds — Standard Online use of double-shares.

1. Parties locally compute 〈c〉2t = 〈a〉t · 〈b〉t.
2. Publicly reconstruct 〈z〉 = 〈c〉2t − 〈r〉2t.
3. Compute 〈c〉t = z + 〈r〉t.

However, this approach makes no use of the extension degree of R, and as we previously outlined in
Table 1, it would incur on more communication (and computation) than the encodings we are about to
present.

By making explicit the act of encoding the Z2k elements on which we want to compute into elements in R,
we can generalize the above protocol in the following way. For a circuit C with 2 · δ1 inputs, δ2 outputs, and
where δ2 ≤ δ1, define two Z2k -linear homomorphisms Ein : (Z2k)δ1 → R and Eout : (Z2k)δ2 → R satisfying

Ein(a) · Ein(b) + Eout(c) = Eout(C(a,b) + c). (2)

Using Ein and Eout, Protocol 2 can be generalized as shown in Protocol 3:

Protocol 3. Πonline-enc-ds — Online use of encoded double-shares.

1. Parties locally compute 〈Ein(a) · Ein(b)〉2t = 〈Ein(a)〉t · 〈Ein(b)〉t.
2. Publicly reconstruct 〈Eout(C(a, b)− r)〉2t = 〈Ein(a) · Ein(b)〉2t − 〈Eout(r)〉2t.
3. From Eout(C(a, b)− r), compute Ein(C(a, b)− r).
4. Finally, define 〈Ein(C(a, b))〉t = Ein(C(a, b)− r) + 〈Ein(r)〉t.
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Notice that by setting C(a, b) = a · b and encodings Ein(a) = Eout(a) = a we get the näıve encoding and
Protocol 2.

In the following, we present alternative definitions of Ein and Eout which work for the more expressive
circuits from Table 1: In Section 4.2 we give what we call FLEX encoding, InnerProd encoding in Section 4.3,
and finally SIMD encoding in Section 4.4. The main challenge will be to produce pairs (〈Eout(r)〉2t, 〈Ein(r)t〉)
in an efficient manner. We also show how to produce random bits 〈b〉 ∈ {0, 1} ⊂ Z2k compatible with
each CAFE: For example, for the SIMD encoding we produce sharings of the form 〈Eout(b)〉Rt , where b =
(b0, . . . , bδ−1) and each bi ← {0, 1} independently. Each presentation is concluded with an analysis of the
technique’s efficiency and expressiveness. An overview of our CAFEs and how they relate to each other
is given in Figure 1. By setting k = 1, we obtain the finite field equivalent of our protocols, but without
exploiting the fact of being in a structure of characteristic two. Finally, note that, through the use of daBits,
we can switch between values with a given encoding in GR(2k, d) and their bit decomposition, using the
same encoding, in F2d

FLEX-R

SIMD-RInnerProd-R

FLEX-F

SIMD-F InnerProd-F

ΠSIMDds

ΠInnerProd-to-FLEXds

ΠFLEXds

ΠSIMDds

ΠInnerProd-to-FLEXds

ΠFLEXds

Fig. 1. Overview of how our Circuit Amortization Friendly Encodings relate to one another. The direction of an edge
indicates the transformation from one type of encoding to another. Dashed lines indicate protocols which we do not
explicitly provide constructions, but which are easy to build from the ones we give as sketched in Section 4.5.

We briefly note that parties must check if private secret-shared inputs in the online phase are correctly
encoded and not arbitrary elements from R. In the näıve case, this corresponds to verifying that parties input
Z2k elements [ACD+19]. In our CAFEs, this can be done with the aid of preprocessing by making use of the
fact that Ein-encoded (resp. Eout-encoded) values will constitute a Z2k -module. In the offline phase, parties
generate shares of random encodings. Then, in the online phase, to verify that some share is of the form
〈Ein(a)〉t, parties can use a random share 〈Ein(r)〉t to open and check that the sum Ein(a+r) = Ein(a)+Ein(r)
is in the Z2k -module defined by Ein.

4.1 Hyper-Invertible Matrices and Z2k-modules

Let ΦM : Rn → Rn−t be the R-module homomorphism defined by multiplication with a hyper-invertible
matrix M ∈ R(n−t)×n, i.e. ΦM (x) = y, where y = Mx. ΦM is trivial to define, as all the elements of M,x,
and y belong to the ring R. As the input and output encodings of CAFEs can be seen as some Z2k -module N ,
we also need to define a Z2k -module homomorphism from multiplication by M ∈ R(n−t)×n which preserves
the properties of hyper-invertible matrices. We will denote such homomorphism by ΨM : (Nd)n → (Nd)n−t.
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As Nd is a Z2k -module, we know how to multiply its elements with scalars from Z2k . But how can we
multiply the elements of Nd with scalars from R, the degree-d extension of Z2k? For the reader familiar with
tensor products the answer is simple: Nd is isomorphic to R ⊗Z

2k
N as a Z2k -module, but R ⊗Z

2k
N can

also be seen as an R-module compatible with the Z2k -module structure Nd. Aiming for a broader audience,
our following exposition will refrain from using tensor products, giving instead explicit formulas to compute
y = ΨM (x). We refer those interested in a more systematic path towards the tensor product argument
to the sections on interleaved generalized secret sharing schemes in [CCXY18], where all the mentions to
vector spaces and finite fields can be replaced by modules and Galois Rings without any harm. The tensoring
technique was also implicitly used by the authors of [ACD+19] when producing double-shares of Zpk elements
using matrices in (GR(pk, d))n×n.

Z2k-linear action of b ∈ R on Nd: Towards our goal of defining the Z2k -module homomorphism ΨM :

(Nd)n → (Nd)n−t, let us start by looking at how the product between any a, b ∈ R is computed. If we
express a in its additive representation, a =

∑
`∈[d] a` · ξ`, multiplication by b can be seen as the Z2k -

module homomorphism φb : Zd2k → Zd2k which maps the coefficients of a’s additive representation to those
of c = φb(a). We can represent this by the following matrix-vector product: c0

...
cd−1

 =Mb ·

 a0

...
ad−1

 (3)

where Mb ∈ Zd×d
2k

is defined by φb. More explicitly, we know that

c = b · a = a0b0 + . . .+ (
∑

i,j∈[d],
i+j=`

aibj) · ξ` + . . .+ ad−1bd−1 · ξ2d−2, (4)

from which we reduce to the coefficients (c0, . . . , cd−1) ∈ Zd2k of c’s additive representation, according to the
polynomial h(X) such that R = Z2k [X]/(h(X)). Hence, Mb can be written as the following sum, where the
first matrix is lower diagonal and Hb represents the reduction by the quotient polynomial in Equation (4):

Mb =


b0
b1 b0
...

...
. . .

bd−1 bd−2 . . . b0

+Hb

As R is isomorphic Zd2k , what we have shown in Equation (3) is the Z2k -linear action of “multiplying by
b” on an element a ∈ Nd when N = Z2k . Informally, we can simply substitute the ai ∈ Z2k coefficients in
Equation (3) with ai ∈ N , where N is a Z2k -module. As each ci would then be a Z2k -linear combination of
the ai’s, we have that ci ∈ N .

The Z2k-module homomorphism ΨM : (Nd)n → (Nd)n−t: Now, letM ∈ R(n−t)×n be a (hyper-invertible)

matrix and x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn−t) ∈ Rn−t be vectors such that y = Mx. We then have
that

yi = mi,1 · x1 + . . .+mi,n · xn = φmi,1(x1) + . . .+ φmi,n(xn)

where (mi,1, . . . ,mi,n) ∈ Rn is the i-th row of M and φmi,j is the “multiplication by mi,j” map. Hence, if
we represent xj , yi ∈ R in their additive representations and each of the Z2k -module homomorphisms φmi,j
as in Equation (3), we obtain:

(yi,0, . . . , yi,d−1) = Mmi,1(x1,0, . . . , x1,d−1) + . . .+Mmi,n(xn,0, . . . , xn,d−1)
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This leads to a “block-wise” view of the product of hyper-invertible matrices with elements from Rn ∼= (Zd2k)n,
which we depict in Equation (5).



y1,0

...
y1,d−1

...
yn−t,0

...
yn−t,d−1


=



Mm1,1
. . . Mm1,n

...
. . .

...
...

. . .
...

Mmn−t,1 . . . Mmn−t,n


·



x1,0

...
x1,d−1

...

...
xn,0

...
xn,d−1


(5)

The same way we did in Equation (3), we can replace x ∈ (Zd2k)n,y ∈ (Zd2k)n−t with x ∈ (Nd)n,y ∈ (Nd)n−t.
In other words, we can simply substitute each xi,`, yj,` ∈ Z2k in Equation (5) with xi,`, yj,` ∈ N . This way,
we have defined the Z2k -module homomorphism ΨM : (Nd)n → (Nd)n−t. When writing y = ΨM (x) while
specifying each xi,`, yj,` ∈ N , we will use semicolons to preserve the lines breaking up x ∈ (Nd)n and
y ∈ (Nd)n−t into blocks of size d as in Equation (5).

Finally, the following lemma tells us that ΨM preserves the guarantees provided by Lemma 4.

Lemma 7. Let R = GR(2k, d) and let N be a Z2k -module. Consider the same hypothesis as in Lemma 4
but with x ∈ (R ⊗Z

2k
N)n and y ∈ (R ⊗Z

2k
N)n−t, so that now xi, yj ∈ Nd. For j ∈ [1, n − t], parse

yj = (yj,0, . . . , yj,d−1) ∈ Nd. No Adversary can distinguish any yj,` ∈ N from uniformly random.

Proof. Let H ⊂ [1, n] be a set of indices corresponding to any n − t honest parties. Express y = M · x =
MH · xH + M H̄ · xH̄ and denote zH = MH · xH . As M is hyper-invertible, MH and all its entries are
invertible. If we adopt the “block-wise” view from Equation (5), H is selecting among the pre-established
size-d blocks and mi,j being invertible translates into Mmi,j being invertible. Due to this and the fact that
xH ∈ (Nd)n−t consist only of secret, random values, we have that zH ∈ (Nd)n−t is uniformly random. Thus,
so is y ∈ (Nd)n−t, which in turn implies that the values yj,` ∈ N are i.i.d. uniformly random. ut

4.2 FLEX Encodings

Given m secret-shared values encoded as in the näıve [ACD+19] setting, our FLEX encoding shows how to
compute a circuit C with d outputs and multiplication depth one. Such a circuit could of course be computed
in the näıve setting, using d openings in R; however we show how to compute it using only a single opening.

The encoding works as follows: During preprocessing, parties produce “double-shares” of the form
(〈r0〉t, 〈r1〉t, . . . , 〈rd−1〉t, 〈r〉2t) where r =

∑d−1
i=0 ri·ξi. Given inputs {〈ai〉t}i∈[m], parties compute C(〈a0〉t, . . . , 〈am−1〉t).

Let 〈zj〉2t for j ∈ [d] denote the resultant shares. To reduce the degree of these d shares, parties do the fol-
lowing:

1. Locally compute 〈z〉2t =
∑d−1
i=0 〈zi〉2t · ξi.

2. Open 〈w〉2t = 〈z〉2t − 〈r〉2t.
3. Parse w in its additive form as w ≡

∑d−1
i=0 wi · ξi.

4. Each party defines 〈zj〉t as 〈zj〉t := wj + 〈rj〉t for j ∈ [d].

Double share generation. It remains to be shown how to generate a double-sharing for this encoding.
ΠFLEXds in Protocol 4 shows how to do so using Hyper-Invertible matrices. We remark that our protocol
takes a different approach than previous work, in that we utilize the Hyper-Invertible matrices only for
generating the double-sharings. By separating generation of the double-sharings from their checking, we
produce double-shares much more efficiently than [ACD+19], as we can now batch check all the generated
double-shares at once.
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Protocol 4. ΠFLEXds — Double-sharings for FLEX encoding.

Let M ∈ R(n−t)×n be a Hyper-Invertible matrix and let ΨM : (Nd)n → (Nd)n−t be as defined in
Section 4.1 and depicted in Equation (5).

Generate. Parties produce a batch of d · (n− t) random double-shares as follows:

1. For i ∈ [n], ` ∈ [d], each Pi samples at random si` ∈ Z2k and computes si =
∑d−1
`=0 s

i
` · ξ`. Call

ΠShare(s
i
`, t) and ΠShare(s

i, 2t) to distribute 〈si`〉t and 〈si〉2t shares to all parties in P.
2. Parties compute (〈r1〉2t, . . . , 〈r(n−t)〉2t) = M · (〈s1〉2t, . . . , 〈sn〉2t).
3. Parties compute:

(〈r1
0〉, . . . , 〈r1

d−1〉; . . . ; 〈rn−t0 〉, . . . , 〈rn−td−1〉)
= ΨM

(
〈s1

0〉, . . . , 〈s1
d−1〉; . . . ; 〈sn0 〉, . . . , 〈snd−1〉

)
Batch Check. Let m be the number of batches generated in the previous step. Assume that m(n−t) >

λ. Throughout, j ∈ [m] identifies each batch.
I. Z2k-outputs: We check that each 〈rij,`〉t is a sharing of a Z2k element.

1. For each 〈rij,`〉t and τ ∈ [λ], call χi,τj,` ← Frand({0, 1}) to obtain a random bit.
2. For each τ ∈ [λ], compute:

〈xτ 〉t =

m−1∑
j=0

n−t∑
i=1

d−1∑
`=0

χi,τj,` · 〈r
i
j,`〉t.

3. Call ΠrPub(x0, . . . , xλ−1). If xτ 6∈ Z2k for τ ∈ [λ], abort.
4. For τ ∈ [λ] pick a tuple (iτ , jτ , `τ ) ∈ ([m]× [1, n− t]× [d]) such that χiτ ,τjτ ,`τ

= 1 and discard

the shares 〈riτjτ ,0〉t, . . . , 〈r
iτ
jτ ,d−1〉t, 〈r

iτ
jτ
〉2t. These shares are considered as having acted like

masks in the computation of 〈xτ 〉t as a linear combination.

II. Equality: Next we check that each double-share satisfies 〈rij〉2t =
∑d−1
`=0 〈rij,`〉t · ξ`. Let λ̄ such

that λ̄d > λ.
1. For τ ∈ [λ̄], j ∈ [m] and i ∈ [1, n− t]. Call χi,τj ← Frand(A), where A is an exceptional set of

R of length 2d.
2. For τ ∈ [λ̄], compute:

〈yτ 〉2t =

m−1∑
j=0

n−t∑
i=1

χi,τj · (〈r
i
j〉2t −

d−1∑
`=0

〈rij,`〉t · ξ`).

Call ΠrPub(y0, . . . , yλ̄−1). If yτ 6= 0 for any τ ∈ [λ̄], abort.
Output. Let D = {(iτ , jτ ) | τ ∈ [λ]} be a set of indices corresponding to the discarded values in Step I.4

of Batch Check. For (i, j) ∈ ([m]× [1, n− t])\D output the double-shares 〈rij,0〉t, . . . , 〈rij,d−1〉t, 〈rij〉2t
as valid.

Theorem 1. ΠFLEXds in Protocol 4 securely produces a minimum of m · (n− t)−λ valid double-sharings for
the FLEX encoding.

Proof. Let A ⊂ [1, n] denote the indices of the parties corrupted by A and assume a non-aborting execution
ΠFLEXds. We do not care about the abort scenario, as in such case all double-shares are discarded and,
furthermore, no private MPC inputs have been yet provided.
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Correctness. In an honest protocol execution, it follows from the discussion in Section 4.1 that ΠFLEXds

produces double-shares of the right form. When A deviates from the protocol, we need to look at what is
implied by the non-aborting execution of Batch Check.

I. Z2k-outputs: See each shared value 〈rij,`〉t in its unique additive representation, i.e. rij,` =
∑d−1
ι=0 r

i
j,`,ι · ξι

where rij,`,ι ∈ Z2k . What we want to prove is that 〈rij,`〉t = 〈rij,`,0〉t or, in other words, that rij,`,ι = 0 for

ι ∈ [1, d− 1]. For τ ∈ [λ], define also xτ =
∑d−1
ι=0 xτ,ι · ξι. Then we have that:

xτ,ι =

m∑
j=1

n−t∑
i=1

d−1∑
`=0

χi,τj,` · r
i
j,`,ι, ι ∈ {1, . . . , d− 1}.

Let M = m · (n − t) · d. We can look at xτ,ι as the evaluation in χi,τj,` of an M -variate polynomial f

of degree one with coefficients rij,`,ι ∈ Z2k . Assume f is not the zero polynomial (i.e. that there exists

any rij,`,ι 6= 0). Then, by applying the Schwartz-Zippel Lemma (c.f. Lemma 1), as each variable is
evaluated only in elements of the exceptional set A = {0, 1} ⊂ Z2k , we have that Prχτ←{0,1}M [xτ,ι =

0] = Prχτ←{0,1}M [f(χτ ) = 0] ≤ 1/2. Let χ = (χ1, . . . ,χλ). We conclude that for ι ∈ {1, . . . , d− 1}:

Pr
χ←{0,1}M·λ

[x0,ι = . . . = xλ,ι = 0] ≤ 2−λ.

Applying a union bound, the previous equation implies that the Adversary can produce a rij,` /∈ Z2k (i.e.

a rij,`,ι 6= 0 for ι 6= 0) with a success probability of at most (d− 1) · 2−λ.
II. Equality: Let m̃ = m · (n − t) · d. We apply the Schwartz-Zippel Lemma (c.f. Lemma 1), where each

variable is evaluated only in elements of the exceptional set A ⊂ GR(2k, d) of size |A| = 2d. For τ ∈ [λ̃],

we have that Prχτ←Am̃ [yτ = 0] = Prχτ←Am̃ [f(χτ ) = 0] ≤ 2−d. Let χ = (χ1, . . . ,χλ̃), we conclude:

Pr
χ←Am̃·λ̃

[y0 = . . . = yλ̃ = 0] ≤ 2−λ̃·d,

As λ̃ · d > λ, we are done.

Privacy. Let’s first look at the Generate step. The Adversary knows at most t of the degree-2t inputs
to which the hyper-invertible matrix M is applied, namely {〈si〉2t}i∈A. By Lemma 4, we know that the
values {〈ri〉2t}i∈[1,n] are secret and uniformly random. For the degree-t sharings, A know t blocks of inputs,
namely {〈si0〉t, . . . , 〈sid−1〉t}i∈A. By Lemma 7, we know that the values {〈ri`〉t}i∈[1,n],`∈[d] are secret and i.i.d.
uniformly random from A’s perspective.

Finally, the outputs of Batch Check do not leak any information on the output 〈r〉 values. This follows
from the fact that yτ = 0 and that each revealed xτ is one-time padded by the discarded 〈r〉 values indexed
by the set D = {(iτ , jτ ) | τ ∈ [λ]}. ut

Generation of random bits for FLEX encoding. In Protocol 5 ΠFLEXbits, we give an adaptation of the
RandBit protocol of [DEF+19] to producing shares over R. Moreover, applying FLEX encoding enables us
to produce batches of d random bits, compared to producing a single random bit if we were to only replace
the arithmetic sharing with Shamir secret sharing over R.

Protocol 5. ΠFLEXbits — Random bits for the FLEX encoding.

Let R̃ = GR(2k+2, d), R = GR(2k, d). Parties produce m batches of d random bits as follows:

1. For j ∈ [m], ` ∈ [d] parties produce shares 〈uj,`〉R̃t of secret, random uj,` ∈ Z2k+2 . This can be done
as in the ΠFLEXds (Protocol 4) by skipping steps related to the degree 2t sharings, including skipping
Step II. of Batch Check.
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2. Compute 〈aj,`〉R̃t = 2 · 〈uj,`〉R̃t + 1 and 〈(aj,`)2〉R̃2t = 〈aj,`〉R̃t · 〈aj,`〉R̃t .

3. Compute 〈ej〉R̃2t = 〈(aj,0)2〉R̃2t + 〈(aj,1)2〉R̃2t · ξ + · · ·+ 〈(aj,d−1)2〉R̃2t · ξd−1.
4. Call ΠrPub to reconstruct ej for all j ∈ [m] and parse each revealed value ej in its additive form as
ej = ej,0 + ej,1 · ξ + · · ·+ ej,d−1 · ξd−1

5. For j ∈ [m], ` ∈ [d], let cj,` be the smallest square root modulo 2k+2 of ej,` and let c−1
j,` be its inverse.

6. Each party computes 〈dj,`〉R̃t = c−1
j,` · 〈aj,`〉R̃t + 1.

7. Parties then divides their shares of dj,` by 2. This division is well-defined, and we denote the result

of this operation 〈b̃j,`〉R̃t .

8. Parties output 〈bj,`〉Rt = πk(〈b̃j,`〉R̃t ).

Proposition 2. ΠFLEXbits in Protocol 5 securely produces m ·d shares of random bits for the FLEX encoding.

Proof. Our proof, as our protocol, is very similar to that of [DEF+19, Proposition IV.1]. We limit our
discussion to correctness, as privacy follows from the properties of the secret sharing scheme. Observe that
the coefficients ej,` ∈ Z2k+2 of ej ’s additive representation are all odd integers, since aj,` = 2 ·uj,`+ 1. Hence,
cj,` is also odd, which implies the existence of c−1

j,` . Now, as both c−1
j,` and aj,` are square roots of ej,`, we

have that:
(c−1
j,` · aj,`)

2 ≡ c−2
j,` · a

2
j,` ≡ e−1

j,` · ej,` ≡ 1 mod 2k+2

Thus, by Lemma 6, c−1
j,` ·aj,` ≡ ±1 mod 2k+1. Moreover, 1 and −1 are as likely in this last congruence, since

aj,` is guaranteed to be a uniformly random odd value (because uj,` is uniformly random) and c−1
j,` is chosen

in a unique, pre-established way. Hence, dj,` = c−1
j,` ·aj,`+ 1 is congruent to a uniformly random value among

{0, 2} modulo 2k+1.
Finally, we need to argue about the “division by two” of dj,`, which results in a b̃j,` that is congruent

(with the same probability) to either 0 or 1 modulo 2k. We perform such “division” by looking at the shares

of 〈dj,`〉R̃ as elements of Z, so this operation is well-defined as long as each share of dj,` is an even number.
Notice that this is the case, since:

〈dj,`〉R̃t = c−1
j,` · (2 · 〈uj,`〉

R̃
t + 1) + 1 = 2 · c−1

j,` · 〈uj,`〉
R̃
t + (1 + c−1

j,` )

As c−1
j,` is invertible in Z2k+2 , it is odd. Hence, an even public constant (1 + c−1

j,` ) is added to 2 · c−1
j,` · 〈uj,`〉R̃t .

As the shares of the latter value are clearly even (since they are the result of multiplying by an even public

constant), we can conclude that all the shares of 〈dj,`〉R̃t are even. Finally, observe that if we re-interpret the
new divided shares of dj,` as elements of Z2k+1 , it could be that their reconstruction is not an element among

{0, 1}, but rather among {0, 1, 2k, 2k + 1}. Hence, we need to compute 〈πk(b̃j,`)〉Rt , which we can just do by

computing πk(〈b̃j,`〉R̃) as shown in Proposition 1. ut

Analysis. We now analyze the FLEX encoding. This works over näıve shares (i.e. by embedding Z2k into
GR(2k, d), as in [ACD+19]) and outputs näıve shares. Online, it can be used to compute any depth 1 circuit
with any number of inputs and d outputs at the cost of opening a single element in R.

Double shares for the FLEX encoding can be precomputed in batches of d · (n − t) with n · d calls to
ΠShare(·, t) and n calls to ΠShare(·, 2t). Checking these double shares requires (λ + λ̄)/(n − t) invocations of
ΠrPub. Notice the communication cost of the Batch Check step of ΠFLEXds is independent of the number of
shares being checked as long as m · (n− t) > λ, where m is the number of batches of shares generated. The

amortized communication cost is therefore approximately 3(d+1)
2 calls to ΠShare per double-share.

ΠFLEXds can be adapted to generate shares of random Z2k elements by skipping steps related to degree-2t
shares. Doing so yields batches of d · (n− t) random shares with d calls to ΠShare, and only requires λ/(n− t)
calls to ΠrPub for the Batch Check. Producing shares of ` random bits in ΠFLEXbits then only requires
generating shares of ` random Z2k+2 elements and `/(d · (n− t)) calls to ΠrPub.
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4.3 InnerProd Encodings

Given sharings of the inputs, inner products can be computed with a single opening in our previous FLEX
encoding, which incurs very little communication. Nevertheless, there are two major problems with such an
approach: First, one still needs to individually share each of the elements in the input vectors. Second, the
amount of multiplications to be computed is the same as in the näıve case.

In order to overcome such limitations, we introduce our InnerProd encoding technique. Let δ be the
encoding capacity of the encoding and consider the following two Galois Ring elements a, b ∈ R given in
their additive representation:

a = a0 + a1 · ξ + · · ·+ aδ−1 · ξδ−1,

b = bδ−1 · ξδ + bδ−2 · ξδ+1 + · · ·+ b0 · ξ2δ−1. (6)

Our goal is that, by computing c = a ·b, one can retrieve the value
∑δ−1
i=0 ai ·bi as the coefficient associated

to ξ2δ−1 in c. In order to achieve this, we need to impose two restrictions on δ. Let h(X) be the degree-d
polynomial used to represent the Galois Ring, i.e. R = Z2k [X]/(h(X)). Define d̃ to be the degree of the
second-highest monomial in h(X). The following bounds on δ need to be imposed:

1. δ < (d+ 1)/2. This is to ensure that b can be defined in Equation (6).
2. δ < d− d̃+ 1. This is in order to avoid “wrap-around” terms to be added to the coefficient associated to
ξ2δ−1 in c.

More precisely, we define encodings Einnin,L,E
inn
in,R,E

inn
out of a,b ∈ (Z2k)δ, c ∈ Z2k as follows:

Einnin,L(a) = a0 + a1 · ξ + · · ·+ aδ−1 · ξδ−1,

Einnin,R(b) = bδ−1 · ξδ + bδ−2 · ξδ+1 + · · ·+ b0 · ξ2δ−1,

Einnout (c) = c · ξ2δ−1 +
∑

`∈[d], 6̀=2δ−1

r` · ξ`, r` ← Z2k .

Double shares from InnerProd to FLEX (ΠInnerProd-to-FLEXds). The results of the InnerProd encoding can
be easily converted into inputs of the FLEX encoding by producing double shares. For a randomly sampled r ←
GR(2k, d), r =

∑d−1
i=0 ri ·ξi, these are of the form 〈r〉2t, 〈r2δ−1〉t or, what is the same, 〈Einnout (r2δ−1)〉2t, 〈r2δ−1〉t.

Thus, these double shares can be produced exactly as in ΠFLEXds (Protocol 4) by ignoring d−1 of the degree-t
shares.

Generation of random bits for InnerProd encoding. Random bits can be generated in exactly the
same way as in the previous encoding (see ΠFLEXbits Protocol 5). Nevertheless, those bits are not quite
enough for values in the InnerProd encoding. In particular, they cannot be used as-is for masking a value
encoded according to Einnout . Let c = Einnin,L(a) · Einnin,R(b). If we write c =

∑d−1
i=0 ci · ξi, we have that c2δ−1 has

the result of the inner product between a and b, but the other components of c leak further information
on the input vectors. Hence, when reconstructing c, we will need a single random mask r satisfying that
r =

∑
`∈[d], 6̀=2δ−1 r` · ξ`, i.e. ensuring that r2δ−1 = 0. Such values can be produced using the same ideas as

in ΠFLEXds or, more efficiently as we only need to produce one such mask for each bit decomposition in the
protocol, by adapting the RandEl protocol of [ACD+19].

Analysis. As input, InnerProd encoding takes two sharings encoded as described above. The output is an
element of R ∼= Zd2k with the inner product as its (2δ − 1)’th coefficient. The online cost is a single opening
in R, and the offline cost is the same as for FLEX encoding (since double-shares are produced with the same
protocol). It is worth remarking here that one can compute inner products with näıve shares as well, at the
same online communication cost. I.e., given näıve sharings 〈a0〉, . . . , 〈ak−1〉 and 〈b0〉, . . . , 〈bk−1〉 for some k,

the inner product can be computed as 〈c〉 =
∑k−1
i=0 〈ai〉〈bi〉, because addition does not increase the degree

of a share. However, InnerProd encoding allows us to decrease local computation (in the online phase) by
around a factor of d/2, which is significant as operations in R are non-trivial.
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4.4 SIMD Encodings

Our final encoding allows us to compute multiple circuits in parallel. Hence, we dub it SIMD, i.e., Sin-
gle Instruction Multiple Data. Reverse Multiplication Friendly Embeddings (RMFEs), as introduced in
[CCXY18,CRX19] (and recap in Appendix A), can also be seen as a SIMD encoding. On a technical level, the
combinatorial problem behind our SIMD construction has been previously applied in the context of packing
for homomorphic encryption [OSV20] and leakage-resilient MPC [BMN17].

Let δ denote the encoding capacity, and let I = {i0, . . . , iδ−1} and J = {j0, . . . , jδ−1} be index sets. The
sets I, J will describe in which positions of an element in R we will “store” encoded Z2k elements. More
precisely, we define two Z2k -linear encodings ESIMD

in , ESIMD
out of a ∈ (Z2k)δ as follows:

ESIMD
in (a) = a0 · ξi0 + a1 · ξi1 + · · ·+ aδ−1 · ξiδ−1 ,

ESIMD
out (a) =

δ−1∑
k=0

ak · ξjk +
∑

`∈[d]\J

r` · ξ`, r` ← Z2k

Regardless of how we choose I and J , we have that adding ESIMD
in -encodings (resp. ESIMD

out -encodings) results in
an ESIMD

in -encoding (rep. ESIMD
out -encodings). Nevertheless, we further ask our encodings to satisfy the relation

given by Equation (2). In particular, we want following equality to hold:

ESIMD
in (a) · ESIMD

in (b) + ESIMD
out (c) = ESIMD

out (a ∗ b + c) (7)

where ∗ denotes the component-wise product. In order to achieve this, we need to introduce the following
restrictions to the way the index sets are chosen.

1. j` = 2 · i`. This implies that the product a`b` ends up in the degree j` monomial.
2. For all i` ∈ I we require that i` < d/2, so that no wrap-around happens during reduction in R.
3. For all i`, iι ∈ I that are pairwise different, then i` + iι /∈ J . This implies that cross products between a`

and bι (and aι and bδ) do not end up on a monomial of J .

Under these restrictions, we obtain the following when multiplying ESIMD
in (a) and ESIMD

in (b):

ESIMD
in (a) · ESIMD

in (b) = (a0 · ξi0 + · · ·+ aδ−1 · ξiδ−1) · (b0 · ξi0 + · · ·+ bδ−1 · ξiδ−1)

=
∑
`∈[δ]

(
a`b` · ξj` +

∑
ι∈([δ]\{`})

(a`bι + aιb`) · ξi`+iι
)
.

Notice that this is different from ESIMD
out (a ∗b), as the monomials of degree j /∈ J have coefficients which have

not been sampled independently and uniformly at random from Z2k . Yet, we have that Equation (7) holds.
Turning our attention to δ, asymptotically we have δ ∼ d0.6, as pointed out by [OSV20]. However, for

small values of d this allows for relatively large values of δ. Taking into account that in Shamir secret sharing
over Galois Rings (or small finite fields) we would have that d = O(log n), we get reasonable values for δ
despite the poor asymptotic. Table 2 provides some examples of the index sets defining ESIMD

in and ESIMD
out for

different values of d.

d δ I J

3–6 2 {0, 1} {0, 2}
7–8 3 {0, 1, 3} {0, 2, 6}
9–16 4 {0, 1, 3, 4} {0, 2, 6, 8}
17 5 {0, 1, 3, 7, 8} {0, 2, 6, 14, 16}
Table 2. Examples of I and J for different values of d.
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Double share generation. Protocol 6 shows how to generate double-shares for SIMD encoding. As in our
previous protocols, this is a two-step process, where we first generate shares in batches and then we check
for correctness all of them at once.

Protocol 6. ΠSIMDds — Double-sharings for SIMD encoding.

Let M ∈ R(n−t)×n be a Hyper-Invertible matrix and δ the packing capability of R. Let ΨM : (Nd)n →
(Nd)n−t be as defined in Section 4.1 (Equation (5)).

Generate. Parties produce a batch of d · (n− t) random double-shares as follows:
1. For ` ∈ [d], each party Pi samples si` ← (Z2k)δ and calls both ΠShare(Ein(si`), t) and
ΠShare(Eout(s

i
`), 2t).

2. Parties apply ΨM to their degree-t and degree-2t shares in the same way:

(〈Ein(r1
0)〉, . . . , 〈Ein(r1

d−1)〉; . . . ; 〈Ein(rn−t0 )〉, . . . , 〈Ein(rn−td−1)〉)
= ΨM

(
〈Ein(s1

0)〉, . . . , 〈Ein(s1
d−1)〉; . . . ; 〈Ein(sn0 )〉, . . . , 〈Ein(snd−1)〉

)
(〈Eout(r1

0)〉, . . . , 〈Eout(r1
d−1)〉; . . . ; 〈Eout(rn−t0 )〉, . . . , 〈Eout(rn−td−1)〉)
= ΨM

(
〈Eout(s1

0)〉, . . . , 〈Eout(s1
d−1)〉; . . . ; 〈Eout(sn0 )〉, . . . , 〈Eout(snd−1)〉

)
Batch Check. Let m be the number of batches produced in the previous step. We need to check that

the degree t and degree 2t shares are using their respective encodings (I and J). We also verify that
both shares encode the same vector r. Throughout, j ∈ [m] identifies each batch.
1. For each 〈Ein(rij,`)〉, 〈Eout(rij,`)〉 and τ ∈ [λ], parties generate a random bit χi,τj,` ← Frand({0, 1}).
2. For τ ∈ [λ], parties compute:

〈xτ 〉t =

m−1∑
j=0

n−t∑
i=1

d−1∑
`=0

χi,τj,` · 〈Ein(rij,`)〉t and 〈yτ 〉2t =

m−1∑
j=0

n−t∑
i=1

d−1∑
`=0

χi,τj,` · 〈Eout(r
i
j,`)〉2t

and call ΠrPub to reconstruct both xτ , yτ .
3. If for any τ ∈ [λ] parties observe either that

– xτ is not a I-encoding (i.e. xτ /∈ Im(Ein)), or
– E−1

in (xτ ) 6= E−1
out(yτ )

then they abort.
4. For τ ∈ [λ], let (iτ , jτ , `τ ) ∈ {[m] × [1, n − t] × [d]} be a triplet of indices such that χiτ ,τjτ ,`τ

= 1.
Define D = {(iτ , jτ , `τ ) | τ ∈ [λ]}.

Output. For (i, j, `) ∈ {[m]× [1, n− t]× [d]} \D, where D is defined on Step 4 of Batch Check, output
the double sharings (〈Ein(rij,`)〉t, 〈Eout(rij,`)〉2t).

Theorem 2. ΠSIMDds in Protocol 6 securely produces m · (n− t) · d− λ valid double-sharings for the SIMD
encoding.

Proof. Let A ⊂ [1, n] denote the indices of the parties corrupted by A and assume a non-aborting execution
ΠSIMDds. We do not care about the abort scenario, as in such case all double-shares are discarded and,
furthermore, no private MPC inputs have been yet provided.

Correctness. In an honest protocol execution, it follows from the discussion in Section 4.1 that ΠSIMDds

produces double-shares of the right form. When A deviates from the protocol, we need to look at what is
implied by the non-aborting execution of Batch Check.
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Denote by 〈rij,`〉 (resp. 〈r̃ij,`〉) the output from Generate that in a fully honest execution would be

〈Ein(rj,`)〉t (resp. 〈Eout(rj,`)〉2t). Batch Check has two goals. The first one is ensuring that 〈rij,`〉 (resp.

〈r̃ij,`〉) is actually an Ein-encoding (resp. Eout-encoding). In particular, if we see each rij,` ∈ R in its unique

additive representation rij,` =
∑d−1
ι=0 r

i
j,`,ι · ξι (where rij,`,ι ∈ Z2k), we want to prove that ∀ι /∈ I, rij,`,ι = 0.

Applying the same reasoning as in the proof of the Z2k-outputs step of ΠFLEXds (see Theorem 1), we conclude
from the Schwartz-Zippel Lemma that this happens with probability at most (d− |I|) · 2−λ.

Express r̃ij,`, xτ , yτ in their unique additive representations, i.e. r̃ij,` =
∑d−1
ι=0 r̃

i
j,`,ι · ξι and similarly for the

others. The second goal of Batch Check is proving that ∀ι ∈ I, rij,`,ι = r̃ij,`,2ι. Let M = m ·(n−t) ·d. We can

look at fτ,ι = xiτ,ι − yiτ,2ι as an M -variate linear polynomial, where the coefficients are rij,`,ι − r̃ij,`,2ι and the

variables are evaluated at χi,τj,` ∈ {0, 1}. Once again, by the Schwartz-Zippel Lemma, we have that if fτ,ι is

not identically equal to zero, then Prχτ←AM [fτ,ι(χ
τ ) = 0] ≤ 1/2. Hence, ∀ι ∈ I, if we let χ = (χ1, . . . ,χλ),

then Prχ←{0,1}M·λ [f0,ι = . . . = fλ,ι = 0] ≤ 2−λ. Applying a union bound we can conclude that, if the test

passes, it is at most with probability |I| · 2−λ that we do not have the same rij,` on the Ein and the Eout
encodings.

Privacy. Let’s first look at the Generate step. For the degree-t and the degree-2t shares, respectively, the
Adversary knows at most t blocks of inputs, namely {〈Ein(si0)〉t, . . . , 〈Ein(sid−1)〉t}i∈A and {〈Eout(si0)〉2t, . . . ,
〈Eout(sid−1)〉2t}i∈A. By Lemma 7, we know that the values {〈Ein(ri`)〉t, 〈Eout(ri`)〉2t}i∈[1,n],`∈[d] are secret and
i.i.d. uniformly random from A’s perspective.

Finally, the outputs of Batch Check do not leak any information on the output values. This follows
from the fact that each revealed (xτ , yτ ) is one-time padded by the discarded values indexed by the set
D = {(iτ , jτ ) | τ ∈ [λ]}. ut

Random bit generation for SIMD. This section we give a way for producing shares of random bits for
SIMD, but first we introduce an intermediate protocol for producing shares of ESIMD

out (a), where a ∈ (Z2k)δ is
some fixed, known vector. This is given in Protocol 7 as ΠSIMDout.

At a high level, ΠSIMDout works by having parties generate zero shares and offsetting these zero shares
by a. Producing shares of zero is done in the same manner as producing random ESIMD

out shares in ΠSIMDds

by having parties instead use s = 0. Batch checking also works in the same way as in ΠSIMDds, with parties
checking yτ = ESIMD

out (0). Proof of Proposition 3 follows the proof of Theorem 2.

Protocol 7. ΠSIMDout — Producing 〈Eout(a)〉 for a fixed a.

Let M ∈ R(n−t)×n a Hyper-Invertible matrix and let ΨM : (Nd)n → (Nd)n−t be as defined in Section 4.1
and depicted in Equation (5). Let δ the packing capability of R. Denote by 0 the all-zero vector of length
δ and parse the input a ∈ Zδ2k as a = (a0, . . . , aδ−1). Recall that Eout is defined by J = {j0, . . . , jδ−1}.

Generate. Parties produce a batch of d · (n− t) random Eout-sharings of zero as follows:
1. For ` ∈ [d], each Pi samples zi` = Eout(0) and calls ΠShare(z

i
`, t).

2. Parties apply ΨM to their shares in the following way:

(〈Z1
0 〉, . . . , 〈Z1

d−1〉, . . . , 〈Zn−t0 〉, . . . , 〈Zn−td−1〉)
= ΨM

(
〈z1

0〉, . . . , 〈z1
d−1〉, . . . , 〈zn0 〉, . . . , 〈znd−1〉

)
Batch Check. Let m be the number of batches produced in the previous step. For j ∈ [m], ` ∈ [d] and

i ∈ [1, n− t], we need to verify that 〈Zij,`〉 = Eout(0).

1. For each 〈Zij,`〉 and τ ∈ [λ], parties sample χi,τj,` ← Frand({0, 1}).
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2. For τ ∈ [λ], parties compute:

〈xτ 〉 =

m−1∑
j=0

n−t∑
i=1

d−1∑
`=0

χi,τj,` · 〈Z
i
j,`〉

and call ΠrPub to reconstruct xτ .
3. If for any τ ∈ [λ] parties observe that E−1

out(xτ ) 6= 0, they abort.
4. For τ ∈ [λ], let (iτ , jτ , `τ ) ∈ {[m] × [1, n − t] × [d]} be a triplet of indices such that χiτ ,τjτ ,`τ

= 1.
Define D = {(iτ , jτ , `τ ) | τ ∈ [λ]}.

Output. Let A =
∑δ−1
k=0 ak ·Xjk . For (i, j, `) ∈ {[m]× [1, n− t]× [d]} \D, where D is defined on Step

4 of Batch Check, output the m · (n− t) · d− λ different sharings of a as 〈Eout(a)〉 = 〈Zij,`〉+A.

Proposition 3. ΠSIMDout in Protocol 7 securely produces a minimum of m · (n− t) · d− δ shares of a public
value for the SIMD encoding.

ΠSIMDbits in Protocol 8 gives a way of generating shares of the form 〈ESIMD
out (b)〉, where b ← {0, 1}δ.

Similar to ΠFLEXbits, this follows the outline of the RandBit protocol of [DEF+19]. The main differences are
in Steps 3 and 6 where add ESIMD

out shares of some publicly know values, which we produce using ΠSIMDout.
The reason for this is that elements in ESIMD

out have uniformly random coefficients in the positions j /∈ J . As
the multiplication of two ESIMD

in values introduces the result of some cross-products of the Z2k encoded values
in such positions, we need to add these secret sharings of ESIMD

out (0) and ESIMD
out (1) as a masking mechanism.

By Equation (7), we obtain the displayed results.

Protocol 8. ΠSIMDbits — Random bits for SIMD encoding.

Let R̃ = GR(2k+2, d), R = GR(2k, d), and δ the packing capability of R. Denote 0 and 1 be the all-zero
and all-one vectors of length δ, respectively. For j ∈ [m], parties produce 〈Eout(bj)〉t, where bj ← {0, 1}δ
as follows:

1. For j ∈ [m] parties produce shares 〈Ein(uj)〉R̃t of secret, random uj = (uj,0, . . . , uj,δ−1) ∈ (Z2k+2)δ.
This can be done as in ΠSIMDds (Protocol 6) by skipping the generation of Eout values there and
hence the computation of yτ .

2. Compute 〈Ein(aj)〉R̃t = 2 · 〈Ein(uj)〉R̃t + Ein(1).

3. Compute 〈Eout(a2
j )〉R̃2t = 〈Ein(aj)〉R̃t · 〈Ein(aj)〉R̃t + 〈Eout(0)〉R̃t where 〈Eout(0)〉R̃t is produced using

Protocol 7.
4. Call ΠrPub to reconstruct 〈Eout(a2

j )〉R̃2t for all j ∈ [m] and parse the revealed a2
j as a vector

(a2
j,0, . . . , a

2
j,δ−1) ∈ (Z2k+2)δ.

5. For ` ∈ [δ], let cj,` be the smallest root modulo 2k+2 of a2
j,` and let c−1

j,` be its inverse. Write

c−1
j = (c−1

j,0 , . . . , c
−1
j,δ−1).

6. Compute 〈Eout(dj)〉R̃t = Ein(c−1
j ) · 〈Ein(aj)〉R̃t + 〈Eout(1)〉R̃t , where 〈Eout(1)〉R̃t is produced using

Protocol 7.
7. Finally, each party divides their share of 〈Eout(dj)〉R̃t by 2. We denote the result of this operation
〈Eout(bj)〉Rt , which is our final output.

Proposition 4. ΠSIMDbits in Protocol 8 securely produces shares of m ·δ random bits for the SIMD encoding,
where δ is the SIMD packing capacity of R = GR(2k, d).
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Analysis. We now discuss the SIMD encoding. This encoding can compute in parallel δ ≈ d0.6 circuits, each
having one multiplication and a single output.

Batches of d · (n− t) double shares for SIMD encoding can be generated in the offline phase with 2 · d · n
calls to ΠShare. Similar to the FLEX Batch Check, the communication cost of the Batch Check of SIMD
double shares is independent of the number of batches produced. Checking m batches of double shares can
be done with 2 · λ/(n− t) calls to ΠrPub.

Producing d · (n− t) shares of encodings (both fixed values or random) takes d calls to ΠShare. The cost
of the batch check in either of these cases takes λ/(n − t) calls to ΠrPub. Producing m random bits takes
m/(n− t) calls to ΠShare, (λ+m)/(n− t) calls to ΠrPub, and 2 ·m calls to ΠSIMDout.

4.5 Remaining CAFEs

We describe here how the remaining dashed lines in Figure 1 can be obtained by either combining or tweaking
the encodings we presented thus far.

CAFE-R to/from CAFE-F. Moving to and from F and R while maintaining the same encoding E can be
done using double authenticated bits [RW19]. More precisely, generate (〈E(r)〉R, 〈E(r0)〉F, . . . , 〈E(rk−1)〉F)

where r ∈ Zδ2k and r1, . . . , rk−1 are vectors corresponding to the bit-decomposition of r (i.e., r =
∑k−1
i=0 2iri).

These can be produced for our CAFEs by first generating each 〈E(ri)〉R (i.e. as in Protocols 5 and 8),

then computing 〈E(r)〉R =
∑k−1
i=0 2i〈E(ri)〉R and projecting π1(〈E(ri)〉R) = 〈E(ri)〉F to the residue field as

described in Proposition 1.
Given the above preprocessed material, a value E(v) ∈ R can then be converted to its corresponding

encoded bit decomposition in F as follows. Second and last, compute and open 〈E(v) + E(r)〉R. Then,
use the bits 〈E(ri)〉F to remove the mask from the revealed value by computing a binary adder. Going
from F to R is a similar process: a value in F (i.e., the encoding of several bits) is masked in F, opened
and unmasked in R. Similar to before, preprocess (〈E(r0)〉R, . . . 〈E(rk−1)〉R, 〈E(r0)〉F, . . . , 〈E(rk−1)〉F) and
compute E(w0), . . . ,E(wk−1) where 〈E(wi)〉 = 〈E(vi)〉 + 〈E(ri)〉F (notice that addition here is XOR as we
are working in F). E(wi) is opened, and unmasked in R as 〈E(vi)〉R = E(wi)+ 〈E(ri)〉R−2 ·E(wi) · 〈E(ri)〉R.
The final value can then be obtained by computing a linear combination of the vi’s.

This easily works for any of our encodings, albeit with a small caveat for InnerProd. Specifically, because
of the 2·E(wi)·〈E(ri)〉R term, we can only apply the conversion from InnerProd-F to and from InnerProd-R on
vectors of length 1. (This is because the multiplication needed here does not give an entrywise multiplication
between wi and ri, but rather computes an inner product.)

Switching between different CAFEs in the same ring (or field). The basic idea in this case is to produce
double shares where the Eout encoding corresponds to the “previous” CAFE and Ein to the “new” CAFE.
Notice that, in some cases, this might require combining multiple Eout encodings into a single Ein encoding:
For example, taking two Z2k -values from two Einnout (·) encodings and the remaining (δSIMD − 2) ones from a
EFLEX
out (·) encoding, to put them into a single ESIMD

in (·). Generating double shares in these mixed scenarios can
be done by tweaking our existing protocols, for which the underlying techniques are looking at CAFEs as
Z2k -modules, using the map ΨM : (Nd)n → (Nd)n−t and invoking the generalized Schwartz-Zippel lemma
(Lemma 1) in an appropriate way to check that (1) data is encoded correctly and (2) the random values in
the input and output encodings are consistent.

5 Efficiency Analysis

We implemented ΠFLEXds and ΠSIMDds and compared them with a double-share generation protocol extracted
from [ACD+19, Figure 2] as a baseline.6 We provide various microbenchmarks for different stages of these

6 Although the protocol in [ACD+19] is used to generate sharings of random elements, it is trivial to modify it to
generate double-shares to use for multiplication: The same random element is shared twice with degree t and 2t,
and when the check is performed we additionally check that the opened shares are equal.
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protocols, as well as our InnerProd encoding scheme. For each of these protocols, we are mainly interested
in their throughput, but we also compare our approach with that of [ACD+19] for a specific circuit in
Section 5.5.

5.1 Experiment setup.

We set k = 64 and d = 4. With k = 64, all operations in Z2k can take place on uint64 t types, and setting
d = 4 lets us support up to 15 parties. Our Galois Ring is therefore GR(264, 4) = Z264 [X]/(h(X)) where
h(X) = X4 +X + 1. Our implementation was written in C++ and can be found at https://github.com/
eysalee/cafe. Openmp was used in various places to speed up local computation.

Experiments were run on c5.9xlarge machines on a local network. Each machine is equipped with 36
cores, 76gb of memory, and are connected with a 10Gpbs network. The average rtt between machines is
0.29ms.

Everlasting/computational security. Our experiments constitute a prototype and hence are not a statistically
secure implementation of our protocols. If we ignore the (obvious) fact that we do not use pure randomness
in ΠShare, we actually implement an everlasting version of our protocols [Unr13]. In more detail, our protocols
are secure against adversaries that are computationally unlimited after the protocol execution. This stems
from the fact that we implement Frand in a computationally secure fashion, so that we can toss coins non-
interactively once a PRG seed is sampled. Thus, our overall protocol is everlasting-secure, since we only
require Frand to be computationally unpredictable during the protocol execution, but once the randomness
has already been sampled, an unbounded adversary breaking the PRG cannot harm the protocol.

5.2 Experiments

We experimentally investigate the efficiency of the preprocessing protocols presented in Protocol 4 (ΠFLEXds)
and Protocol 6 (ΠSIMDds) by comparing them against a double share procedure presented extracted from
[ACD+19]. For each protocol, we measured the running time of the generation step as well as the batch check.
For the protocol in [ACD+19], the generation step encompasses generating randomness, sending shares and
evaluating the hyper-invertible matrices. The check step involves reconstructing 2t double-shares per batch
and verifying that (1) the reconstructed tuple are Z2k elements and (2) that the two shares are the shame
(thus being a valid double share). We note that our implementation of [ACD+19] uses ΠrPub rather than
ΠrPriv, making it somewhat sub-optimal. Nevertheless, we remark that the communication complexity of
ΠrPub is roughly just twice that of ΠrPriv, and that the extra round in ΠrPub will not affect much our reported
numbers due to the low network latency. Hence, even with this quantitative inaccuracies, the qualitative
results of our experiments remain the same.

We ran each protocol several times and took the average of the running time. Each protocol was run
with n set to 4, 7, 10 and 13 parties (thus giving us thresholds 1, 2, 3 and 4). For each n we generated 1260,
12 600, 63 000, 126 000 and 630 000 double-shares.7

For our InnerProd encoding, we report on local computation times. Since generating double shares for
this encoding is captured by the experiments pertaining to ΠFLEXds, looking at the speedup in terms of local
computation is more insightful.

Finally, we use our results to analytically obtain the running time of evaluating an SVM on 100 inputs
in parallel. This is done both to get an intuition about the cost of our protocols in connection with a real
application, as well as to showcase the functionality of our SIMD encoding.

7 A quirk in our implementation requires the number of double shares that are generated to be divisible by the
different batch sizes.
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5.3 Results

Figure 2 shows running time for increasing number of double share generation for a fixed number of parties
(4 and 13).8 Interestingly, we see that the näıve double-share protocol of [ACD+19] is faster for a smaller
number of parties. However, when the number of parties increase, our protocols are a lot more efficient.

Fig. 2. Running time generating a varying number of shares for fixed number of parties.

We can further see this fact in Figure 3. Indeed, the running time of both our protocols increase only
slightly when the number of parties increase. This demonstrates the benefit of the check we utilize, which
does not depend on the number of parties, as opposed to the protocol in [ACD+19] which need to open 2t
shares per batch. We note that the plots for our protocols should ideally follow a parabolic curve as well,
but that it would increase at a much slower rate than the curve for [ACD+19]. We explain this difference
by the relatively small number of data points as well as the fact that local computation is in many cases a
dominant factor. We return to this point in the next section.

Fig. 3. Varying the number of parties who generate 126k double-shares.

Finally, we consider the distribution of time spent when generating, respectively checking shares. Figure
4 shows timings presented in Figure 3, but separated into the generation step and checking step.

8 Our experiments lack a data point for FLEX in the case of 630k shares.
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Fig. 4. Running time for the generation (left) and check (right) step of double share protocols, for variable number
of parties generating 126k double-shares.

We clearly see that the generation step of each protocol is not that different. On the other hand, the
right graph in Figure 4 clearly shows the benefit of the check step in our protocol. This graph also shows
that we are not making an unfair comparison by having sub optimal protocol for [ACD+19]. Indeed, even if
this protocol communicated half the number of bits, the general trend we see would still be present, and the
extra round does not impact the result as the round-trip-time in our setup is less than 0.3ms

5.4 Micro benchmarks

We also run a number of micro-benchmarks. First, we look at the speedup by using our InnerProd encoding.
Not surprisingly, we see a speedup approaching ×2. The table below shows local computation times of
computing inner products of varying lengths (with the length denoted as multiplies of 100 000).

Length 0.1 1 10 100 500

Näıve [ACD+19] (ns) 298.7 320.7 404.9 421.0 461.1
InnerProd (ns) 207.2 104.0 289.5 350.5 347.1

We further perform timings of the local computation that is performed in the generation step of ΠFLEXds

and ΠSIMDds, as this is where the majority of computation is spent. The table below provides some insight
in this regard.

# double-shares 1 260 12 600 63 000 126 000 630 000

SIMD (s) 0.03 0.12 0.47 0.91 4.44
FLEX (s) 0.05 0.13 0.51 0.99 4.87
Näıve [ACD+19] (s) 0.01 0.07 0.31 0.61 3.00

We see a small difference in times between our protocols and the one in [ACD+19]; besides slight variations
in programming style (which may affect compiler optimizations), the main difference comes from the added
processing (e.g., encoding) of the random values that is needed in our protocols; something which does not
exist in the protocol of [ACD+19].

5.5 Extrapolation to practical applications

Finally, we examine the running time of evaluating an SVM using our SIMD encoding, and compare this
with the protocol of [ACD+19]. To be concrete, we consider a linear SVM on a dataset of 3072 features and
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10 classes.9 Thus, the function we wish to evaluate is f(x) = argmaxi(wix + bi) where wi and bi are the
parameters of the model, and i denotes a class. This computation can be expressed as follows: Compute
z = Wx + b, where W is a matrix with the vectors wi arranged in the rows. z will be a 10 × k vector,
where k denotes the number of images, and the remaining step is to find the index of the entry with the
highest value, for which we can use the circuit in [KO02] which requires 1216 AND gates since we have 10
classes and 64 bit wide values. We present here two cost formulas that can be used to derive the number
of double-shares required to evaluate an SVM on k images. How we arrive at these formulas is described in
Appendix C:
Näıve case ([ACD+19]): C0(k) = k(1216 + 2 · 64 · 10).
SIMD case: CSIMD(k) = k/2(1216 + 2.5 · 64 · 10).

6 Optimizations

Hyper-invertible matrices are used throughout this work to efficiently generate secret correlated randomness.
However, following the construction of hyper-invertible matrices from [BTH08] and [ACD+19], operating over
a Galois Ring R requires the sum of the dimensions of the matrix not exceed the Lenstra constant of R.
As an optimization, we show how hyper-invertible matrices in our protocols can instead be replaced by a
weaker randomness extractor known as linear t-resilient functions [CGH+85].

6.1 Linear t-resilient functions

A function is said to be t-resilient if it is uniformly distributed when t inputs are fixed and the remaining
inputs are uniformly random. In other words, any t inputs to such a function give no information about the
output, provided the remaining inputs are random.

We focus our attention to linear t-resilient functions, given by a matrix M .

Definition 4. Let M be a r-by-c matrix. A R-linear t-resilient function is a R-linear function given by
x 7→ M · x such that, for any I ⊆ [c] of size t ≤ c − r, the distribution of Mx is uniformly random in Rr,
conditioned on x[c]\I being uniformly random in Rc−t.

A simple construction for a linear t-resilient function is given in [CGH+85], which can be straightforwardly
adapted to abstract commutative rings.

Proposition 5 (R-linear t-resilient function). Let α0, . . . , αn−1 be an exceptional set in R. Define M to
be a (n− t)-by-n Vandermonde matrix (i.e. where mi,j = αij for i ∈ [1, n− t], j ∈ [n]). The function defined
by M is a R-linear t-resilient function.

Note that, as r = n− t, c = n, the previous construction is optimal with regards to the relation between
r, c and t.

Let M be a matrix defining a R-linear t-resilient function, where R = GR(2k, d). As in Section 4.1, the
action of multiplying an element x ∈ (Zd2k)n on the left by M can be described by Equation (5). Furthermore,
substituting the hyper-invertible matrix in the hypothesis of Lemma 7 with the t-resilient M yields the same
conclusions, as we restate below.

Lemma 8. Let R = GR(2k, d) and let N be a Z2k -module. Let P1, . . . , Pn be parties out of which at most t
are corrupted. Let M ∈ R(n−t)×n be the matrix associated to a R-linear t-resilient function. Let y = M · x,
where y = (y1, . . . , yn−t) ∈ (R ⊗Z

2k
N)n−t, x = (x1, . . . , xn) ∈ (R ⊗Z

2k
N)n, where each xi ∈ Nd is a

secret, uniformly random input chosen by party Pi. For j ∈ [1, n− t], parse yj = (yj,0, . . . , yj,d−1) ∈ Nd. No
Adversary can distinguish any yj,` ∈ N from uniformly random.

Proof. Follows the same blueprint as the proof of Lemma 7. ut
9 This matches an SVM trained on the CIFAR10 image prediction problem.
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Hence, throughout our paper, Hyper-Invertible Matrices can be replaced with R-linear t-resilient func-
tions while achieving the same results, when the goal is either statistically or everlasting [Unr13] security.
This brings the advantage that, while HIMs following the constructions from [BTH08,ACD+19] require an
exceptional set containing at least r + c = 2n− t elements, t-resilient functions only require the exceptional
set to be of size c = n. Thus, while HIMs require to work on a Galois Ring such that 2d ≥ 2n − t, using
t-resilient functions adds no further impositions to the existing restriction of 2d ≥ n + 1 (that comes from
building Shamir’s secret sharing in a ring of characteristic 2k).

On the other hand, if one wants to use CAFEs in the setting of perfectly secure MPC, our batch checking
techniques have to be dropped and we need to stick to the techniques for producing double-shares (enhanced
with the CAFEs) as in [BTH08,ACD+19].
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A Reverse Multiplication Friendly Embeddings

Reverse Multiplication Friendly Embeddings (RMFEs) were proposed for Multi-Party Computation (MPC)
over finite fields in [CCXY18], and they were later extended to MPC over Galois Rings in [CRX19]. They
can be seen as a way to construct a SIMD Circuit Amortization Friendly Encoding. We recall here their
definition, adapted to our particular scenario and notation:

Definition 5. Let R = GR(2k, d) and let R̃ = GR(2k, d̃) be a degree-m extension of R (i.e. d̃ = d ·m). A
pair (φ, ψ) is called a (δ,m)d-reverse multiplication friendly embedding (RMFE for short) if φ : Rδ 7→ R̃ and
ψ : R̃ 7→ Rδ are two R-linear maps satisfying:

x ∗ y = ψ(φ(x) · φ(y))

for all x, y ∈ Rδ, where ∗ denotes the component-wise product.

It is easy to see that, from the definition of RMFE, the map φ : R̃ 7→ Rδ has to be injective. A simple
RMFE from the interpolation-based construction given in [CCXY18, Lemma 4] can be built in the Galois
Ring case.

Lemma 9. Let 1 ≤ δ ≤ 2d + 1. There exists a (δ, 2δ − 1)d-RMFE.

Proof. This follows the same blueprint as [CCXY18, Lemma 4], replacing pairwise different elements from a
finite field with elements from an exceptional set (hence, the upper bound depending on the Lenstra constant
of R). ut
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Lemma 10. Let R = GR(2k, d) be a Galois Ring, R̂ = GR(2k, d̃) a degree-m1 extension of R and R̃ =
GR(2k, d̃ ·m2). Assume (φ1, ψ1) is a (δ1,m1)d-RMFE (i.e. φ1 : Rδ1 7→ R̂ and ψ1 : R̂ 7→ Rδ1) and (φ2, ψ2) is
a (δ2,m2)d̃-RMFE (i.e. φ2 : R̂δ2 7→ R̃ and ψ2 : R̃ 7→ R̂δ2). Then

φ : Rδ1·δ2 → R̃ ψ : R̃→ Rδ1·δ2

(r1, . . . , rδ2) 7→ φ2

(
φ1(r1), . . . , φ1(rδ2)

)
r 7→ ψ1 ◦ ψ2(r)

where ri ∈ Rδ1 , constitute a (δ1 · δ2,m1 ·m2)d-RMFE.

Proof. Both φ and ψ are R-linear. Express x ∈ Rδ1·δ2 as x = (x1, . . . ,xδ2), where xi ∈ Rδ1 , and proceed
analogously with y ∈ Rδ1·δ2 . Then we have that:

ψ(φ(x) · φ(y)) = ψ1 ◦ ψ2

(
φ2(φ1(x1), . . . , φ1(xδ2)) · φ2(φ1(y1), . . . , φ1(yδ2))

)
= ψ1

(
(φ1(x1), . . . , φ1(xδ2)) ∗ (φ1(y1), . . . , φ1(yδ2))

)
= ψ1

(
(φ1(x1) · φ1(y1), . . . , φ1(xδ2) · φ1(yδ2))

)
=
(
x1 ∗ y1, . . . ,xδ2 ∗ yδ2

)
= x ∗ y. �

Definition 6. Let (φ, ψ) be a RMFE obtained purely by combining the constructions from Lemma 9 and
Lemma 10. We call (φ, ψ) an interpolation-based RMFE.

Concrete parameters. One can build an interpolation-based RMFE by invoking Lemma 9 and then recursively
applying Lemma 10 until arriving to a R̃ big enough for Shamir-based MPC to take place.

We summarize the possible values of δ below, given a fixed R̃. SIMD denotes our combinatorial con-
struction from Section 4.4 and RMFE uses the aforementioned strategy of chaining RMFEs, starting with
whichever is more convenient among (2, 3)1 or (3, 5)1.

d δSIMD δRMFE

3–4 2 2
5–6 2 3
7–8 3 3
9–14 4 4
15–16 4 6

17 5 6

Table 3. Maximum value of δ given that we need d such that GR(2k, d) (notice this was called m instead of d in this
appendix).

B Communication Efficient Protocols

We recall here a couple non-robust protocols for communication efficient share reconstruction from [BHKL18].
ΠrPriv (Protocol 9) reconstructs shares towards a single party, while ΠrPub (Protocol 10) reconstructs a value
towards all parties in P. Notice that ΠrPub reconstructs a batch of size n− t shares at a time.

Protocol 9. Private reconstruction ΠrPriv(Pi, s)

Let Pi be the party to receive output and 〈s〉 the shares to be reconstructed.
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1. Every Pj sends their share sj of 〈s〉 to Pi.
2. Pi checks if there exists a degree t polynomial p(X) ∈ R[X] such that at least 2t+ 1 of the received

shares lie on it. If so, Pi outputs p(α0). Otherwise Pi aborts.

Protocol 10. Public reconstruction ΠrPub(s0, . . . , sn−t−1)

Let 〈s0〉, . . . , 〈sn−t−1〉 be shares to reconstructed and A = {α1, . . . , αn} an exceptional set.

1. For i = 1, . . . , n parties compute 〈ui〉 = 〈s0〉+ 〈s1〉 · αi + · · ·+ 〈sn−t−1〉 · αn−t−1
i .

2. Parties invoke ΠrPriv(Pi, ui).
3. Every Pi sends ui to every Pj ∈ P.
4. Every Pi uses (u0, . . . , un−1) to interpolate a degree n− t− 1 polynomial p. If they succeed, output

the coefficients s0, . . . , sn−t−1 of p(X). Otherwise abort.

C Cost formulas for SVM estimation

The following details how the cost formulas provided in Section 5.5 were derived. For the sake of reference,
the formulas are given here as well.

C0(k) = k(1216 + 2 · 64 · 10), (8)

and

CSIMD(k) = k/2(1216 + 2.5 · 64 · 10). (9)

Recall that k denotes the number of images. We work a matrix w of dimensions 10 × 3072 (the weights)
and another x of dimensions 3072× k (the images). Notice that for the SIMD case, the input matrix x has
dimensions 3072× (k/2) since we can encode two a feature of two images into a single entry. Both formulas
are derived according to the following general princinple:

cost of conversion + cost of argmax.

Because we are working with an honest majority, we do not require any double shares for the matrix product
itself. Indeed, parties can locally compute the matrix multiplication and then perform the conversion on
the degree 2t shares. For the argmax, we need 1216 times the number of length 10 vectors (so k and k/2,
respectively). What remains is to analyze the cost of the conversion, which we do next.

Näıve case ([ACD+19] + [DEF+19]). First, to do a conversion from R = GR(2k, d) to F2d in the näıve case,
we need 64 times the size of the matrix multiplication, that is, 64 · 10 ·k, random bits. To compute a random
bit in the näıve case, we use the RandEl protocol of [ACD+19] (and take timings from our benchmark
section) as the RandBit protocol of [DEF+19] (recall that this protocol also forms the basis of our random
bit protocols). Thus, with this approach, to generate a random bit, we need one random double share (to
perform a doubling in the protocol of [DEF+19]) as well as a random share 2 random shares (one for the
protocol in [DEF+19] and one for the protocol in [ACD+19]). We therefore estimate this to be 2 random
double shares. Combining this estimation with the cost of the argmax, gives us the cost formula in (8) as

1216 · k + 64 · 10 · k · 2 = k(1216 + 2 · 64 · 10).
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SIMD case. Similar to above, we need 64 times the size of the matrix to be converted. In the SIMD case, this
implies we need 64 · 10 · (k/2) random bits. Looking at Protocol 8, we see that it requires 1 multiplication
as well as 3 random shares (1 for the protocol itself, and two random shares to generate 〈Eout(0)〉 and
〈Eout(1)〉, cf, Protocol 7). A similar estimation as above allows us to conclude that 2.5 double-shares are
needed. Combining this estimation with the argmax gives the formula in (9) as

1216 · (k/2) + 64 · 10 · (k/2) · 2.5 = k/2(1216 + 2.5 · 64 · 10).
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