Lunar: a Toolbox for More Efficient
Universal and Updatable zkSNARKSs
and Commit-and-Prove Extensions

Matteo Campanelli', Antonio Faonio?, Dario Fiore?, Anais Querol®#, and Hadrian Rodriguez®

! Aarhus University, Denmark
matteo@cs.au.dk
2 EURECOM, Sophia Antipolis, France
antonio.faonio@Qeurecom.fr
3 IMDEA Software Institute, Madrid, Spain
{dario.fiore, anais.querol, hadrian.rodriguez}@imdea.org
4 Universidad Politécnica de Madrid, Spain

Abstract. We address the problem of constructing zkSNARKSs whose SRS is universal—valid for all
relations within a size-bound—and updatable—a dynamic set of participants can add secret random-
ness to it indefinitely thus increasing confidence in the setup. We investigate formal frameworks and
techniques to design efficient universal updatable zkSNARKs with linear-size SRS and their commit-
and-prove variants.

We achieve a collection of zkSNARKs with different tradeoffs. One of our constructions achieves the
smallest proof size and proving time compared to the state of art for proofs for arithmetic circuits.
The language supported by this scheme is a variant of R1CS, called R1CS-lite, introduced by this
work. Another of our constructions supports directly standard R1CS and improves on previous work
achieving the fastest proving time for this type of constraint systems.

We achieve this result via the combination of different contributions: (1) a new algebraically-flavored
variant of IOPs that we call Polynomial Holographic IOPs (PHPs), (2) a new compiler that combines
our PHPs with commit-and-prove zkSNARKs for committed polynomials, (3) pairing-based realizations
of these CP-SNARKs for polynomials, (4) constructions of PHPs for R1CS and R1CS-lite, (5) a variant
of the compiler that yields a commit-and-prove universal zkSNARK.

Keywords: cryptographic protocols - zero knowledge - succinct arguments - polynomial commitments
- commit-and-prove - universal SRS - IOP

Table of Contents

D e Ya [Tt 1o 1 P 3
LT Our Contributionl.ot 4
L2 Other Related Workl o 8
3 OUEIIE - o oot e 9

[2__Basic Preliminaries].o 9

[3 Polynomial Holographic IOPs| o 10
B.1 PHP Verifier Relationl. o 12
3.2 Compiling PHPs and AHPs into One Another |...... 13

[Our PHP Constructions]o oot 14
4.1 Algebraic Preliminaries| 14
4.2 Rank-1 Constraint SYsStems|. 17
4.3 Our PHPs for RICS-Titel. oo e e e 18
A4 Our PHP for RICS. ... e e e e e e e e 29

o Preliminaries on Commitments and zkSNARKS[. o 36
B.1 _Commitment Schemesl 36
5.2 Preprocessing zkSNARKSs with Universal and Specializable SRS|........... 38
5.3 Universal Commit-and-Prove SNARKS|. 39

6 Our Compiler from PHPs to zkSNARKs with Universal SRS| 41
6.1 Building Blocks| e 41
6.2 Compiling to Universal Interactive Arguments| 42

7 CP-SNARKSs for Pairing-Based Polynomial Commitments|............. 45
[7.1 Bilinear Groups and AsSSumptions|ttt e 45
[.2 The Commitment Schemes] o 46
[7.3 CP-SNARKS for Ropn|- -« oo 47
[7.4 CP-SNARK for evaluation of a single polynomiall.vurrrreeeeeeeeeeeeeeaaaea... 49
7.5 CP-SNARK for batch evaluation of many polynomials| 50
7.6 CP-SNARK for Polynomial Equations| 51
[r.7 CP-SNARK for CS5 for quadratic polynomial equations|......... 53
7.8 CP-SNARKSs tor degree of committed polynomials|............ 54
[7.9 A general-purpose CP-SNARK for Rpnp|.o 56

|8 Our Compiler for Universal Commit-and-Prove zkSNARKs|. L. 56
8.1 Compiling to Commit-and-Prove Universal Interactive Arguments|.................... ... 56
8.2 Pairing-Based Instantiations of our Building Blocks|........... oo i 57

[9 Instantiating Our Compiler: Our Universal zkSNARKs| o i 64
9.1 Available Options to Compile Our PHPs| o 64
9.2 Instantiating the PHPs with the appropriate zero-knowledge bounds|.................. ... 65
0.3 Our ZkSNARKE . . . oottt 66
9.4 Our CP-SNARKS 67

[A - Constralnt SYSEEIS| oot 72
IA.1 Proof of Lemmaldlo 72
[A.2 Proof of Lemmalll 73
IA.3 Reduction to Arithmetic Circuit Satishability|....... 74
A4 Comparing R1CS5 and R1CS-lite].o 75

[B__Our Protocol for Lincheckl. 76
B._Preliminaries]o e 76
IB.2 An Holographic Protocol for Points of Sparse Matrices | 7

IB.3 The linear check protocoll. e 79

[C.1 Universal Interactive Arguments in the SRS.|...... 81
C.2 Proof of Theorem[Bl.o 83
[C3 Proof of TheoremTIHl.o ottt e e 86
D Experimental Evaluation|. 88

1 Introduction

A zero-knowledge proof system [37] allows a prover to convince a verifier that a non-deterministic computation
accepts without revealing more information than its input. In the last decade, there has been growing interest
in zero-knowledge proof systems that additionally are succinct and non interactive |46}, [53| 35, |14], the so-
called zkSNARKSs. These are computationally-sound proof systems (arguments) that are succinct, in that
their proofs are short and efficient to verify: the proof size and verification time should be constant or
polylogarithmic in the length of the non-deterministic witness.

In circuit-based arguments for general computations the verifier must at least read the statement to be
proven which includes both the description of the computation (i.e., the circuit) and its input (i.e., public
input). But this is not succinct; by reading the whole circuit, the verifier runs linearly in the size of the
computation. Preprocessing zkSNARKs try and work around this problem [38, |50, [34} |L5]. Here the verifier
generates a structured reference string (SRS) that depends on a certain circuit C'; it does this once and for
all. This SRS can be used later to verify an unbounded number of proofs for the computation of C. This is
a succinet system: while the cost of SRS generation does depend on |C], proof verification does not have to.

Works on subversion-resistance show that CRS can be generated by a verifier with no impact on security
|11 130, |5]. But contexts with many verifiers, e.g. blockchains, require a trusted party. Solutions that mitigate
this problem (e.g. MPC secure against dishonest majority |9]) are still expensive and often impractical as they
should be carried out for each single computatimﬂ C'. To address this problem, Groth et al. [40] introduced
the model of universal and updatable SRS. An SRS is universal if it can be used to generate and verify proofs
for all circuits of some bounded size; it is updatable if any user can add randomness to it and a sequence of
updates makes it secure if at least one user acted honestly. Groth et al. [40] proposed the first zkSNARK
with a universal and updatable SRS. Their scheme, though, requires an SRS of size quadratic in the number
of multiplication gates of the supported arithmetic circuits (and similar quadratic update/verification time).

Recent works [51} 23, 160}, |33}, [24} 26] have improved on this result obtaining universal and updatable SRS
whose size is linear in the largest supported circuit. In particular, the current MARLIN [24] and PLONK |33]
proof systems achieve a proving time concretely faster than that of Sonic [51] while retaining constant-
size proofs (|23} |60} |26] have instead polylogarithmic-size proofs). We also mention the very recent works of
Biinz, Fisch and Szepieniec [22], and Chiesa, Ojha and Spooner [25] that proposed zkSNARKSs in the uniform
random string (URS) model, that is implicitly universal and updatable; their constructions have a short URS
and poly-logarithmic-size proofs. Yet another universal zkSNARK construction is that in [47] which, despite
its proofs of 4 group elements and comparable proving time, has an SRS which is not updatable.

Many of these efficient constructions (and the ones in this work) follow a similar blueprint to build
zkSNARKS, which we now overview.

The current landscape of zkSNARKSs with universal SRS. A known modular paradigm to build
efficient cryptographic arguments [42} 43| works in two distinct steps. First construct an information-theoretic
protocol in an abstract model, e.g., interactive proofs [37], standard or linear PCPs [15|, IOPs [54, 11]. Then
apply a compiler that, taking an abstract protocol as input, transforms it into an efficient computationally
sound argument via a cryptographic primitive. This approach has been successfully adopted to construct
zkSNARKSs with universal SRS in the recent works [33] |24, |22|, in which the information theoretic object

! These protocols |20} [19] may take a few months, requiring coordination of a hundred users, each with at least one
round of communication. As a further mitigation, one could generate an SRS for a universal circuit for computations
up to size T, but this adds a multiplicative overhead of O(logT') which is often unacceptable.

is an algebraically-flavored variant of Interactive Oracle Proofs (IOPs), while the cryptographic primitive
are polynomial commitments |[45]. Through polynomial commitments, a prover can compress a polynomial
p (as a message much shorter than all its concatenated coefficients) and can later open the commitment
at evaluations of p, namely to convince a verifier that y = p(x) for public points x and y. In these IOP
abstractions—called algebraic holographic proofs (AHP) in [24] and polynomial I OP:E| in |22]—a prover and
a verifier interact, one providing oracle access to a set of polynomials and the other sending random challenges
(if public-coin). At the end of the protocol the verifier asks for evaluations of these polynomials and decides
to accept or reject based on the responses. The idealized low-degree protocols (ILDPs) abstraction of [33]
proceeds similarly except that in the end the verifier asks to verify a set of polynomial identities over the
oracles sent by the prover (which can be tested via evaluation on random points). To build a zkSNARK
with universal SRS starting from AHPs/ILDPs we let the prover commit to the polynomials obtained from
the AHP/ILDP prover, and then use the opening feature of polynomial commitments to respond to the
evaluation queries in a sound way. As we detail later, our contribution revisits the aforementioned blueprint
to construct universal zkSNARKSs.

1.1 Our Contribution

In this work we propose Lunar, a family of new preprocessing zZkSNARKSs in the universal and updatable
SRS model that have constant-size proofs and that improve on previous work [51} 33, 24] in terms of proof
size and running time of the prover. Through our results we obtain a collection of zkSNARKSs with different
tradeoffs (see Table [4]in the Appendix for the full list).

In Table [T} we present a detailed efficiency comparison between prior work and the best representatives
of our schemes, when using arithmetic circuit satisfiability as common benchmark. LunarLite has the smallest
proof size (384 bytes over the 100-bits-secure curve BN128; 544 bytes over 128-bits-secure BLS12-381) and
the lowest proving time compared to the state of art of universal zkSNARKs with constant-size proofs for
arithmetic circuits. As we explain later, LunarLite uses a new arithmetization of arithmetic circuit satisfiability
that we call R1CS-lite, quite similar to rank-1 constraint systems (R1CS). A precise comparison to PLONK
depends on the circuit structure and how the number m of nonzero entries of R1CS-lite matrices depends on
the number a of addition gatesﬂ; for instance, PLONK is faster for circuits with only multiplication gates,
but LunarLite is faster when m < 3a.

If we focus the comparison on solutions that directly support R1CS looking at Table [2| (of which MARLIN
|24] is the most performant among prior work), our scheme Lunarlcs (fast & short) offers the smallest SRS,
the smallest proof and the fastest prover. This comes at the price of higher constants for the size of the
(specialized) verification key and the verification timeﬂ Lunarlcs (short vk) offers a tradeoff: it has smaller
verification key and faster verification time than Lunarlcs (fast & short), but slightly larger proofs, 3x larger
SRS, and 5m more G;-exponentiations at proving time than Lunarlcs (fast & short). Even with this tradeoft,
Lunarlcs (short vk) outperforms MARLIN in all these measures. We implemented Lunar’s building blocks and
we confirm our observations experimentally (Appendix E[)

Our main contribution to achieve this result is to revisit the aforementioned blueprint to construct univer-
sal zkSNARKs by proposing: (1) a new algebraically-flavored variant of IOPs, Polynomial Holographic IOPs
(PHPs), and (2) a new compiler that builds universal zkSNARKSs by using our PHPs together with commit-
and-prove zkSNARKs (CP-SNARKs) [25] for committed polynomials. Additional contributions include: (3)
pairing-based realizations of these CP-SNARKSs for polynomials, (4) constructions of PHPs for both R1CS
and a novel simplified variant of it, (5) a variant of the compiler (2) that yields a commit-and-prove universal
zkSNARK. The latter is the first general compiler from (algebraic) IOPs to commit-and-prove zkSNARKs.

2 Hereinafter we use AHP /PIOPs interchangeably whenever possible, as they are almost the same notion.

3 Applying the results in [17] one can get PLONK’s proving time down to 8n -+ 8a, but our analysis still applies.

4 In practice this overhead is negligible. Lunarlcs (fast & short) takes 7 pairings to verify (= 35ms); faster schemes,
including some from this work, take 2 (~ 10ms).

Table 1. Efficiency of universal and updatable practical zkSNARKs for arithmetic circuit satisfiability with constant-
size proofs. n: number of multiplication gates; a: number of addition gates; m > n: number of nonzero entries in
R1CS(-lite) matrices encoding the circuit; N, N*; A and M: largest supported values for n, a+m, a and m respectively.

/KSNARK size ' time .
srs| |ekr| |vkr||m| KeyGen Derive Prove Verify
. Gy 4N 36n — 20 4N 36n 273n ..
Sonic 7 pairings
51 Go AN — 3 — 4N — —
F — — — 16 — O(mlogm) O(mlogm) O({+logm)
Gy 3M 3m 12 13 3M 12m 14n+8m ..
MARLIN 2 pairings
oy G2 2 —
F — — — 8 — O(mlogm) O(mlogm) O(¢+logm)
prong G138V Sntsa 8 7 3N 8n+8a 1n+1la 2 pairings
(small proof) G, 1 — 1 — 1 —
[33] F — — — 7 — O(n+a)log(n+a)) O((n+a)log(n+a)) O(L+log(n+a))
PLONK Gy N* n+a 8 9 N 8n+8a In+9a 9 pairings
(fast prover) Go 1 — 1 — 1 —
[33] F — — — 7 — O((n+a)log(n+a)) O((n+a)log(n+a)) O(L+log(n+a))
Gy M m — 10 M &n+3m .
. 7 pairings
LunarLite Gy M — 27T — M 24m —
(this work) F — — — 2 — O(mlogm) O(mlogm) O(l+logm)

Table 2. Efficiency comparison of universal zkSNARKs for R1CS with constant-size proofs. n (resp. m) is the
dimension (resp. the number of nonzero entries) of the R1CS matrices; N and M are the largest supported values for
n and m respectively. Entries in gray correspond to this work.

JKSNARK size | time |
|srs| |ekgr| [vkr| || KeyGen Derive Prove Verify
Gy 3M 3m 12 13 3M 12m 14n+8m o
MARLIN 2 pairings
4] Gy 2 — 2 — — — —
: F — — — 8 — O(mlogm) O(mlogm) O({+logm)
Gt M m — 11 M — In+3m ..
7 pairings
Lunarles Go M — 60 — M 2Tm —
(fast & short) F — — — 2 — O(mlogm) O(mlogm) O(¢+logm)
G13M 3m 12 12 3M 12m In+8m ..
2 pairings
Lunarles Go 1 — 1 — 1 — —
(shortvk) F — — — 5 — O(mlogm) O(mlogm) O(¢+logm)

A CP-SNARK permits to verify a proof through a commitment to an input (rather than an input in the
clear) that, crucially, we can reuse among proofﬁﬂ Below we detail our contributions.

Polynomial Holographic IOPs (PHPs). Our PHPs generalize AHPEE| as well as ILDPs. A PHP consists
of an interaction between a verifier and a prover sending oracle polynomials, followed by a decision phase in
which the verifier outputs a set of polynomial identities to be checked on the prover’s polynomials (such as

a(X)b(X) — z - c(X) 20, for oracle polynomials a, b, ¢ and some scalar z), as well as a set of degree tests
(e.g. deg(a(X)) < D). The PHP model is close to ILDPs, but the two differ with respect to zero-knowledge
formalizations: while ILDPs lack one altogether, we introduce and formalize a fine-grained notion of zero-
knowledge—called (by,...,b,)-bounded zero-knowledge—where the verifier may learn up to b; evaluations
of the i-th oracle polynomial. When compared to AHPs, PHP has, again, a more granular notion of zero-
knowledge, as well as verification queries that are more expressive than mere polynomial evaluations.

As we shall discuss next, these two properties of PHPs—expressive verifier’s queries and a highly flexible
zero-knowledge notion—naturally capture more (and more efficient) strategies when compiling into a cryp-
tographic argument (e.g., we can weaken the required hiding property of the polynomial commitments and
the zero-knowledge of the CP-SNARKS used in our compiler).

From PHPs to zkSNARKSs through another model of polynomial commitments. We describe
how to compile a (public-coin) PHP into a zkSNARK. For AHPs and ILDPs |33, |24], compilation works
by letting the prover use polynomial commitments on the oracles and then open the commitments to the
evaluations asked by the verifier. Our approach, though similar, has a key difference: a different formalization
of polynomial commitments with a modular design.

Our notion of polynomial commitments is modular: rather than seeing them as a monolithic primitive—a
tuple of algorithms for both commitment and proofs—we split them into two parts, i.e., a regular commitment
scheme with polynomials as message space, and a collection of commit-and-prove SNARKs (CP-SNARKSs)
for proving relations over committed polynomials. We find several advantages in this approach.

As already argued in prior work on modular zkSNARKSs through the commit-and-prove strategy |23l
13|, one benefit of this approach is separation of concerns: commitments are required to do one thing
independently of the context (committing), whereas what we need to prove about them may depend on
where we are applying them. For example, we often want to prove evaluation of committed polynomials:
given a commitment ¢ and points x,y, prove that y = p(z) and ¢ opens to p. But to compile a PHP (or
AHP /ILDP) we also need to be able to prove other properties about them, such as checking degree bounds or
testing equations over committed polynomials. Because these properties—and the techniques to prove them—
are somehow independent from each other, we argue they should not be bundled under a bloated notion of
polynomial commitment. Going one step further in this direction, we formalize commitment extractability
as a proof of knowledge of opening of a polynomial commitment. This modular design allows us to describe
an abstract compiler that assumes generic CP-SNARKSs for the three aforementioned relations—proof of
knowledge of opening, degree bounds and polynomial equations—and can yield zkSNARKSs with different
tradeoffs depending on how we instantiate them.

We also find additional benefits of the modular abstraction. First, a CP-SNARK for testing equations
over committed polynomials more faithfully captures the goal of the PHP verifier (as well as the AHP verifier
in virtually all known constructions). Second, we can allow for realizations of CP-SNARKSs for equations over
polynomials other than the standard one, which reduces the problem of (batched) polynomial evaluations
via random point evaluation. As an application, we show a simple scheme for quadratic equations that can
even have an empty proof (see below); our most efficient realizations exploit this fact.

5 We compose CP-SNARKs as gadgets to modularly build complex schemes; as studied recently [23, 61|, they are
generally useful in applications where we prove properties of committed values |41} |13].
6 PHPs generalize AHPs where the verifier is “algebraic” (see Section 3.2)). This encompasses all the schemes in [24].

From PHPs to zkSNARKS: fine-grained leakage requirements. Our second contribution on the
compiler is to minimize the requirements needed to achieve zero-knowledge. As we shall discuss later, this
allows us to obtain more efficient zkSNARKs. A straightforward compiler from PHPs to zkSNARKSs would
require hiding polynomial commitments and zero-knowledge CP-SNARKS; we weaken both requirements.
Instead of “fully” hiding commitments, our compiler requires only somewhat hiding commitments. This new
property guarantees, for each committed polynomial, leakage of at most one evaluation on a random point.
Instead of compiling through “full” zero-knowledge CP-SNARKS, our compiler requires only (by,...,b,)-
leaky zero-knowledge CP-SNARKSs. This new notion is weaker than zero-knowledge and states that the
verifier may learn up to b; evaluations of the i-th committed polynomial.

We show that by using a somewhat-hiding commitment scheme and a (b, ..., b,)-leaky zero-knowledge
CP-SNARK that can prove the checks of the PHP verifier, one can compile a PHP that is (b; +1, ..., b, +1)-
bounded ZK into a fully-zero-knowledge succinct argument.

Although related ideas were used in constructions in previous works [33], our contribution is to system-
atically formalize (as well as expand) the properties needed on different fronts: the PHP, the commitment
scheme, the CP-SNARKS used as building blocks and the interaction among all these in the compiler.

Pairing-based CP-SNARKSs for committed polynomials. We consider the basic commitment scheme
for polynomials consisting of giving a “secret-point evaluation in the exponent” |38 45| and then show CP-
SNARKSs for various relations over that same commitment scheme. In particular, by using techniques from
previous works 45|33, [24] we show CP-SNARKSs for: proof of knowledge of an opening in the algebraic group
model [31] (which actually comes for free), polynomial evaluation, degree bounds, and polynomial equations.
In addition to these, we propose a new CP-SNARK for proving opening of several commitments with a
proof consisting of one single group element; the latter relies on the PKE assumption [38] in the random
oracle model. Also, we show that for a class of quadratic equations over committed polynomials (notably
capturing some of the checks of our PHPs), we can obtain an optimized CP-SNARK in which the proof is
empty as the verifier can test the relation using a pairing with the inputs (the inputs are commitments, i.e.,
group elements). This technique is reminiscent of the compiler from [15] that relies on linear encodings with
quadratic tests.

PHPs for constraint systems. We propose a variety of PHPs for the R1CS constraint system and for a
simplified variant of it that we call R1CS-lite. In brief, R1CS-lite is defined by two matrices L, R and accepts
a vector if there is a w such that, for ¢ = (1,z,w), L-co R- ¢ = ¢. We show that R1CS-lite can express
arithmetic circuit satisfiability with essentially the same complexity of R1CS, and its simpler form allows
us to design slightly simpler PHPs. We believe this characterization of NP problems to be of independent
interest.

Part of our techniques stem from those in Marlin |24]: we adopt their encoding of sparse matrices; also
one of our main building blocks is the sumcheck protocol from Aurora of Ben-Sasson et. al. [10]. But in our
PHPs we explore a different protocol that proves properties of sparse matrices and we introduce a refined
efficient technique for zero-knowledge in a univariate sumcheck. In a nutshell, compared to [10] we show how
to choose the masking polynomial with a specific sparse distribution that has only a constant-time impact
on the prover. This idea and analysis of this technique is possible thanks to our fine-grained ZK formalism
for PHPs. By combining this basic skeleton with different techniques we can obtain PHPs with different
tradeoffs (see Table [3)).

Commit-and-prove zkSNARKS from PHPs. We propose the first general compiler from an information-
theoretic object such as (algebraic) IOPs— and more in general PHPs—to Commit-and-Prove szNARKﬂ
Recall that the latter is a SNARK where the verifier’s input includes one (or several) reusable hiding com-
mitment(s), i.e., to check that R(uy,...,ug) holds for a tuple of commitments (¢;);efq such that é; opens

7 Here we do not consider the alternative approach of explicitly proving in the PHP a relation augmented with
commitment opening; this is often too expensive [23].

to u;. By reusable we mean that these commitments could be used in multiple proofs and with different
proof systems since their commitment key is generated before the setup of the proof system. To obtain a
CP-SNARK we cannot apply the committing methods for polynomials used in [33}|24]: these require a known
bound on how many times we will evaluate the polynomials. This is analogous to knowing a bound on the
number of proofs over those same committed polynomials, which may be unknown at commitment time.
Therefore we apply more stringent requirements and assume these commitments to be full-fledged hiding
rather than just somewhat-hiding.

To obtain our commit-and-prove compiler we adapt our compiler to zkSNARKSs to include the following
key idea: we prove a “link” between the committed witnesses (u;);cg—which open hiding commitments
(¢j)jejg—and the PHP polynomials (p;);c[n)—which open somewhat-hiding commitments (c;);efm). - We
design a specific CP-SNARK for this task, CPj,k. Our construction works for pairing-based commitments
and supports a wide class of linking relations which include those in our PHP constructions.

Simplifying a little bit, our techniques involve proving equality of images of distinct (committed) polyno-
mials on distinct domains and they are of independent interest. In particular they can plausibly be adapted
to compile other zZkSNARKSs with similar properties—e.g., Marlin or PLONK |24} 33]—into CP-SNARKs
with commitments that can be reused among different proofs.

Efficient CP-SNARKSs with a universal setup are strongly motivated by practical applications. One of
them is committing-ahead-of-time |23, [12] in which we commit to a value possibly before we can predict
what we are going to prove about it. A CP-SNARK with a universal SRS, like those in this work, can be
a requirement in the context of committing-ahead-of-time: if the setting requires committing to data before
knowing what properties to prove about them (which can happen on-demand), the same setting can benefit
from an (unspecialized) SRS string available before knowing what to prove about the committed data.

Our work improves significantly on the efficiency of LegoUAC in [23], a highly modular CP-SNARK
construction with universal setup for universal relations (and the only one in literature to the best of our
knowledge). Our results are also complementary to those of [23] (in particular their specialized CP-SNARKs
with universal setup) and to those of works on efficient composable CP-SNARKSs on commitments in prime
order groups, such as [13]: our universal CP-SNARK can be composed with the schemes in these works as
they can all be derived from the same SRS, or with some of the transparent instantiations in [13].

1.2 Other Related Work

SNARKS. In this work we focus on practical zkSNARKSs with a universal and updatable setup and constant-
size proofs. Recent work builds on our formalizations to expand this area designing a fully algebraic framework
for modular arguments [55|. Here we briefly survey other works that obtain universality through other
approaches at the cost of a larger proof size.

Concurrent work in [48] proposes a new scheme with universal—but not updatable—SRS and an asymp-
totically linear prover (our prover is quasi-linear due to the use of FFT). By recursive composition they
achieve an asymptotically O, (1)-size proof. In practice this is about 9x larger than some of our proofs.

Spartan [56] obtains preprocessing arguments with a URS; it trades a transparent setup for larger argu-
ments and less efficient verification, ranging from O(log*(n) to O(y/n), depending on the instantiation.

Concurrent work in [49] extends Spartan techniques obtaining a linear-time prover. They obtain asymp-
totically constant-sized proofs through one step of recursive composition with Groth16 [39]; they do not
discuss concrete proof sizes. This, however, yields a scheme with universal but not updatable setup. It would
require an existing scheme with universal and updatable setup to achieve the latter; their work can thus be
seen as complementary to ours.

Other works obtain universal SNARGS through a transparent setup and by exploiting the structure of
the computation for succinctness. They mainly use two classes of techniques: hash-based vector commit-
ments applied to oracle interactive proofs |6, (7} |8] or multivariate polynomial commitments and doubly-
efficientinteractive proofs |64, [63] (65| (58, |60} |62].

Fractal |25] achieves transparent zkSNARKSs with recursive composition—the ability of a SNARG to prove
computations involving prior SNARGs. Their work also uses an algebraically-flavored variant of interactive
oracle proofs that they call Reed—Solomon encoded holographic IOPs.

Another line of work, e.g., |2, (10} [18] 21} 32|, obtains a restricted notion of succinctness with no prepro-
cessing, a linear verifier and sublinear proof size.
CP-SNARKS. The recent work in ECLIPSE |[3] also presents a general compiler from information-theoretic
objects to CP-SNARKSs with a universal-updatable SRS. They instantiate their compiler with MARLIN,
PLONK and Sonic |24} 33}|51] obtain different efficiency than ours. While our verification grows only linearly
in the number of committed inputs ¢, theirs grows with the total size of the committed witnesses (which
may be w(f)). It is hard to directly compare the proof sizes in our work and theirs since our proofs are
O(¥), while theirs grow logarithmically in the total size of the committed witness (their proofs are shorter for
settings with many small committed inputs, for example). Other differences between the two works involve:
commitment scheme, techniques and generality of the compiler. In [3| inputs are committed with (vector)
Pedersen, while we assume a KZG commitment to the polynomial interpolating the input. The different
commitments schemes between the two works also determine different techniques in our “linking gadgets”
(see also Section : we use a pairing-based construction to show “shifts” of related polynomials, while they
rely on compressed X-protocols [4]. Finally, while our compilers are similar in spirit and are both applicable
to PHPs (although their formal description is only for AHPs), theirs is slightly less general as it assumes a
“decomposition property” among the polynomials in the underlying PHP.

1.3 Outline

See Section [2] for basic preliminaries. In Section [3] we define PHPs and we describe our PHP constructions
in Section [4l The reader will find some preliminaries on commitment schemes and zkSNARKs in Section
Section [6] describes our first compiler from PHPs to universal zkSNARKs. Section [7] describes commitment
schemes for polynomials and compatible CP-SNARKSs that we use to instantiate our compilers. Section [§]
presents our second compiler from PHPs to universal commit-and-prove zkSNARKSs, as well as additional
building blocks and their instantiations with pairing based commitments. Concrete compilations for the
family of Lunar zkSNARKSs are in Section [9

We refer the reader to the appendix for additional preliminaries, details on constraint systems, proofs, as
well as our PHP for properties of sparse matrices.

2 Basic Preliminaries

We denote by A € N the security parameter, and by poly(\) and negl(\) the set of polynomial and negligible
functions respectively. A function e()) is said negligible — denoted £(\) € negl(\) —if £(\) vanishes faster than
the inverse of any polynomial in A. An adversary A is called efficient if A is a family { Ay} en of nonuniform
circuits of size poly(A).

For a positive integer n € N we let [n] := {1,...,n}. For a set S, |S| denotes its cardinality, and x s S
denotes the process of selecting = uniformly at random over S. We write vectors and matrices in boldface
font, e.g., v, V. So for a set S, v € S™ is a short-hand for the tuple (vy,...,v,). Given two vectors u and v
we denote by u o v their entry-wise (aka Hadamard) product.

We denote by F a finite field, by F[X] the ring of univariate polynomials in variable X, and by F4[X]
(resp. F<4[X]) the set of polynomials in F[X] of degree less (resp. less or equal) than d.

Universal Relations. A universal relation R is a set of triples (R, x,w) where R is a relation, x € Dy is
called the instance (or input), w € D,, the witness, and Dy, D,, are domains that may depend on R. Given R,
the corresponding universal language L(R) is the set {(R,x) : Iw : (R,x,w) € R}. For a size bound N € N,
Rn denotes the subset of triples (R, x,w) in R such that R has size at most N, i.e. |R| < N. In our work, we
also write R(R,x,w) =1 (resp. R(x,w) = 1) to denote (R,x,w) € R (resp. (x,w) € R).

When discussing schemes that prove statements on committed values we assume that D,, can be split in
two subdomains D, x D,,. Finally, we sometimes use an even more fine-grained specification of D, assuming
we can split it over ¢ arbitrary domains (D; x --- X D,) for some arity /.

3 Polynomial Holographic IOPs

In this section we define our notion of Polynomial Holographic IOPs (PHP). In a nutshell, a PHP is an
interactive oracle proof (IOP) system that works for a family of universal relations R that is specialized
in two main ways. First, it is holographic, in the sense that the verifier has oracle access to the relation
encoding, a set of oracle polynomials created by a trusted party, the holographic relation encoder (or simply,
encoder) RE. Second, it is algebraic in the sense that the system works over a finite field I, the prover can
at each round send to the verifier field elements or oracle polynomials, and the verifier queries are algebraic
checks over these prover messages. For example the verifier can directly check polynomial identities such as
P1(X)p2(X)pa(X) + pa(X) = 0.

Compared to the AHP notion of [24] and the polynomial IOP of [22], PHPs have the following differences:
the prover can also send actual messages in addition to oracle polynomials, and the verifier queries are more
expressive than polynomial evaluations. This richer syntax—as we shall see in Sections [6] and [9}—gives us
more flexibility when compiling into a cryptographic argument system. Our model is closer to the idealized
polynomial protocols of [33] in terms of verifier’s checks, but it adds to it the aforementioned general prover
messages and a notion of zero-knowledge.

More formally, a Polynomial Holographic IOP is defined as follows.

Definition 1 (Polynomial Holographic IOP (PHP)). Let F be a family of finite fields and let R be
a universal relation. A Polynomial Holographic IOP over F for R is a tuple PHP = (r,n,m,d, ne, RE, P, V)
where r,n,m,d, ne : {0,1}* = N are polynomial-time computable functions, and RE, P,V are three algorithms
for the encoder, prover and verifier respectively, that work as follows.

- Offline phase: The encoder RE(F,R) is executed on input a field F € F and a relation description R,
and it returns n(0) polynomials {po,;}jem(0) encoding the relation R.

- Online phase: The prover P(F,R,x,w) and the verifier VREER(F x) are exvecuted for r(|R|) rounds; the
prover has a tuple (R,x,w) € R and the verifier has an instance x and oracle access to the polynomials
encoding R.

In the i-th round, V sends a message p; € F to the prover, and P replies with m(i) messages {m; ; €
F}je[m(i)]: and n(i) oracle polynomials {p; ; € F[X]}je[n(i)], such that deg(p; ;) < d(|R],4,J).

- Decision phase: After the r(|R])-th round, the verifier outputs two sets of algebraic checks of the following
type.

e Degree checks: to check a bound on the degree of the polynomials sent by the prover. More in detail, let

np = Zz(lleD n(k) and let (p1,...,pn,) e the polynomials sent by P. The verifier specifies a vector of
integers d € N™ which is satisfied if and only if

Vk € [np] : deg(pr) < dy.

e Polynomial checks: to check that certain polynomial identities hold between the oracle polynomials and

the prover messages. More in detail, let n* = Z;(‘:%D n(k) and m* = Z;c(‘:Rll)m(k), and denote by
(p1y.--yn+) and (w1, ..., 7m+) all the oracle polynomials (including the n(0) ones from the encoder)
and all the messages sent by the prover. The verifier can specify a list of ne tuples, each of the form
(G,v1,...,0n%), where G € F[X, Xy,..., Xp=,Y1,..., Y] and every v, € F[X].

Then a tuple (G,v1,...,vn+) is satisfied if and only if F(X) =0 where

F(X) = G(X, {pe(vx(X)) Yren] {7k eem=))

The verifier accepts if and only if all the checks are satisfied.

10

Efficiency Measures. Given the functions r,d,n, m in the tuple PHP, one can derive some efficiency measures
of the protocol PHP such as the total number of oracles sent by the encoder, n(0), by the prover ny, by both in
total, n*; or the number of prover messages m*. In addition to these, we define below the following shorthands
for two more measures of PHP, the degree D and the proof length I(|R]):

D:= max (d(|R],4,7)), IR == > m() +d(|R],4,).

RER
i€[0,r(|R])] i€[r(|R])]
JE@)] J€[n(i)]

PHP can satisfy completeness, (knowledge) soundness and zero-knowledge, defined as follows.

Completeness. A PHP is complete if for all F € F and any satisfying triple (R,x,w) € R, the checks returned
by VRg(F’R)(IF, X) after interacting with the honest prover P(IF,R,x,w), are satisfied with probability 1.

Soundness. A PHP is e-sound if for every field F € F, relation-instance tuple (R,x) ¢ L(R) and prover P*
we have
Pr[(P*, VFEER(F x)) =1] <

Knowledge Soundness. A PHP is e-knowledge-sound if there exists a polynomial-time knowledge extractor €
such that for any prover P*, field F € F, relation R, instance x and auziliary input z:

Pr [(R,x,w) eR:w« EP(F,R,x, z)} > Pr[(P*(F,R,x, 2), VREER(F x)) = 1] — ¢

where € has oracle access to P*, i.e., it can query the next message function of P* (and also rewind it) and
obtain all the messages and polynomials returned by it.

Zero-Knowledge. A PHP is e-zero-knowledge if there exists a PPT simulator S such that for every field
F € F, every triple (R, x,w) € R, and every algorithm V* the following random wvariables are within €
statistical distance:

View(P(F,R,x,w) ,V*) =, View(S¥ (F,R,x))

where View (P(IF, R, x, w) ,V*) consists of V*’s randomness, P’s messages 1, ..., Tm= (which do not include

the oracles) and V*’s list of checks, while VieW(SV* (F, R,x)) consists of V*’s randomness followed by S’s
output, obtained after having straightline access to V*, and V*’s list of checks.

In our PHP notion the use of prover’s messages 7; is not strictly necessary as they could be replaced by
(degree-0) polynomial oracles evaluated on 0 during the checks. However, having them explicitly is useful
for the zero-knowledge definition: while messages are supposed not to leak information on the witness (i.e.,
they must be simulated), this does not hold for the oracles. Looking ahead to our compiler, this implies that
one does not need to hide these messages from the verifier.

On the class of polynomial checks. In the definition above, the class of polynomial checks of the
verifier is stated quite generally. For convenience, we note that this class includes low-degree polynomials
like G({p:i(X)}:) (e.g., p1(X)p2(X)p3(X) + pa(X)), in which case each v;(X) = X, polynomial evaluations
pi(z), in which case v;(X) = z, tests over P messages, e.g., p;(x) — 7;, and combinations of all these.

Public coin and non-adaptive queries. A PHP is said to be public coin if each verifier message p;, for
i=1,...,r(|R|), is a random element over a prescribed set, and so is an additional value p,(rj)4+1 possibly
used by the verifier to generate the final checks. A PHP is non-adaptive if all the verifier’s checks can be
fully determined from its inputs and randomness, and thus are independent of the prover’s messages.

Since the PHP verifier’s checks are also polynomials evaluated over the prover’s messages, one may wonder
if these are really independent. However, we note that, once having fixed the verifier’s randomness (which is

11

independent of the prover’s messages), these checks (i.e., the pairs of polynomials (G, v) and degrees d) can be
fully determined. More formally, this means that the verifier V(F, x) can be written as the combination of two
prover-independent algorithms: a probabilistic sampler Sy(F) — p := (p1,..., prr)+1) and a deterministic
algorithm Dy (F,x; p) — (d U {(G;,v;)}jen,))-

In our work, we only consider PHPs that are public coin and non-adaptive.

In the following we define two additional properties that can be satisfied by a PHP.

Bounded Zero-Knowledge. We define a zero-knowledge property for PHPs, which is useful for our com-
piler of Section [Intuitively, this property requires that zero-knowledge holds even if the view includes a
bounded number of evaluations of certain oracle polynomials at given points. Since such evaluations may
leak information about the witness, this property ensures that this is not the case.

For simplicity, we define this property for our scenario of interest only: for PHPs that are public-coin and
with non-adaptive honest verifiers.

The notion below shall guarantee zero-knowledge against verifiers that follow the specification of the
protocol (thus, they are honest) but that can also arbitrarily query the polynomials sent by the prover.
However, as the polynomials evaluated in some specific points could leak bits of information of the witness,
we define a notion of “admissible” evaluations.

We say that a list £ = {(é1,v1),...} is (b, C)-bounded where b € N™ and C is a PT algorithm if
Vie np]: {(,y) : (G,y) € L} <b; and V(i,y) € L: C(i,y) = 1.

Definition 2 ((b,C)-Zero-Knowledge). We say that PHP is (b, C)-Zero-Knowledge if for every triple
(R,x,w) € R, and every (b, C)-bounded list L, the following random variables are within € statistical distance:

(View (P(F,R,x,w) , V), (0i(¥)) ipyec) e S(F,R,x, V(F,x), L).

where p1,...,pn, are the polynomials returned by the prover P.

Moreover, we say that PHP is honest-verifier zero-knowledge with query bound b (b-HVZK for short) if
there exists a PT algorithm C such that PHP is (b, C)-ZK and for all i € N we have Pr[C(i,y) = 0] € negl(\)
where y is uniformly sampled over F.

Straight-line extractability. In our compiler to commit-and-prove zkSNARKs, we consider PHPs where the
extractor for the knowledge soundness satisfies a stronger property usually denoted as straight-line extractabil-
ity in the literature. Informally, we consider an extractor that upon input the polynomials returned by the
prover during an interaction with the verifier outputs a valid witness. We formalize this property below:

Definition 3 (Knowledge Soundness for PHPs with straight-line extractor.). A PHP is e-knowledge-
sound with straight-line extractor if there exists an extractor WitExtract such that for any prover P*, every
field F € F, relation R, and instance x:

Pr [(R, x, WitExtract((p;)jejn,))) € R] > Pr[(P*, VREER(F x)) = 1] — ¢

where (p;)jecin,) are the polynomials output by P* in an execution of (P, YREER) (R x)).

3.1 PHP Verifier Relation

We formalize the definition of an NP relation that models the PHP verifier’s decision phase. We shall use it
in our compilers in Sections [f] and

Let PHP = (r,n,m,d, ne, RE, P, V) be a PHP protocol over a finite field family F for a universal relation
R, where D is its maximal degree. We define Rpnp as a family of polynomial-time relations that expresses
the checks of V over the oracle polynomials, which can be formally defined as follows.

12

Let np,n* € N be two positive integers, and consider the following relations:

Rueg ((dk)kein,): (P)rein)) = [\ deg(pk) < dy
ke[ny]

Req((G,0), (P)jein) == G(X, (p;(vi(X)))jem))

where G € F[X, X1,..., Xp+] and v = (vy,...,v,+) € F[X]"". For a PHP verifier that returns a polynomial
check (G',v), Req expresses such check if one considers G as the partial evaluation of G’ at (Y1 = m1,..., Y =
Tm+). Raeg instead expresses the degree checks of a PHP verifier.

Given two relations R4 C Dy xD,, and Rg C D, X D,, with a common domain D,, for the witness, consider
the product operation R4 x Rg C Dy x D, x D,, containing all the tuples (x4,xp,w) where (x4,w) € R4
and (xp,w) € Rp. For an integer ne, let

?

0

ne times

—
Rn npone = Rdeg X Req X -+ X Req
Then we can define the family Ry as
Ronp 1= {Rn= (IRp).np((RD)ne(R) < R € R}

where n*(|R|) = Z;(i%‘) () and ny(|R]) = Z;i?l) (j) are the number of total and prover oracle polynomials

respectively, in an execution of PHP with relation R € R.

3.2 Compiling PHPs and AHPs into One Another

Here we discuss ways in which the formalisms of PHPs and AHPs are similar and how they can be compiled
into each other straightforwardly. Recall that the main difference in the semantics of the two models is that a
PHP supports more abstract queries that may not involve actual polynomial evaluations but only polynomial
equations. One more difference is in the expressivity of verifiers’ decision algorithms (see below).

In the remainder of this section we consider only public-coin AHPs and PHPs with non-adaptive queries.
For AHPs, this implies that the last steps of verification can be expressed as a pair of algorithms: one outputs
a tuple of queries for the polynomial oracles; the other algorithm, that we denote by Vapp decides whether
to accept or reject and takes the oracle responses and the view of the verifier’s randomness as input. We can
structure the verifier in a public-coin PHP with non-adaptive queries in an analogous manner.

There is one main difference between the verifiers in the two models: the decision algorithm of a PHP,
Vpup, is completely “algebraic”; Vapgp is an arbitrary algorithm. While Vpyp accepts if and only if all the
degree-bounds and polynomial checks hold, Vagp can (in principle) run any arbitrary subroutine internally.
We remark, however, that all the AHP constructions in [24] and several of the polynomial IOPs described in
[22] (i.e. Polynomial IOP Starks [7], Spartan [56] and Sonic univariate [51]) actually present a very specific
structure: they can all be expressed as a set of randomized zero-tests of low-degree polynomialsﬂ We finally
assume that the verifier accepts if and only if all tests pass and that all polynomials in a test are sampled on
the same unique point. When compiling AHPs into PHPs below, we shall assume this restriction on Vagp.

Some high-level observations about compilation follow. When compiling AHPs into PHPs, or viceversa,
the offline stages and the public coins sent by the verifier are the same. In the compilers below we need to
slightly modify the provers in the two models (that we denote respectively by Pagp and Ppyp) as well as the
last steps of the verifiers. We need to take into account that the verifier in an AHP performs point-evaluation
queries, whereas a PHP verifier does not. While all communication from Ppgp consists in providing oracle
access to some polynomial, in a PHP the prover can also send “messages”, scalars whose distribution we
require to simulate for zero-knowledge.

8 The final step in Marlin [24] can be expressed as a conjunction of checks of the type p;(gi,y1,- - -, yxr;) = 0, where
qi is a point the verifier queried, y;-s are oracle responses for the i-th query, p; is some low-degree polynomial.

13

Compiling PHP — AHP: The AHP prover Papp sends the same oracle polynomials at the same
round as Pppp. It also sends all messages (scalars) from Ppyp at their respective rounds as degree-0 oracle
polynomials. We let Vapp sample K random scalars (Ti)i K] where K is the number of polynomial tests
of Vpyp. It then queries all the oracle polynomials in test ¢ of Vpgp on point r;. Finally, for each of the
polynomial checks 7 in the PHP it evaluates F(r;) with F as defined in “Polynomial checks” in Definition
(at this point the verifier has all it needs to perform such a computation). It accepts if and only if all the

evaluations equal 0.

Compiling AHP — PHP: The PHP prover Ppyp acts exactly as Papp does by sending the same oracle
polynomials at their respective rounds (it sends no scalar messages). We let Vpyp perform the same test as
Vaup and encode the queries of Vapp as constant polynomials v;-s (see “Polynomial checks” in Definition
appropriately. More specifically, each of the polynomials v;-s in test ¢ are such that v;(X) = r; where r; is
the polynomial we are sampling in test . The polynomial G for each test is the one derived from the Vapp
in the natural way. We also let Vpyp output an explicit degree check for each of the oracle polynomials.

4 Our PHP Constructions

In this section we present a collection of PHP constructions for two types of constraint systems: the by now
standard rank-1 constraint systems |34] and an equally expressive variant we introduce in Section called
R1CS-lite. The two differ in the number of matrices used to represent a relation. While any relation for R1CS
uses three matrices, instances of R1CS-lite use only two; the R1CS-lite matrices have roughly the same size
as the ones in R1CS.

All the PHPs in this section derive from the same (implicit) bare-bone protocols: one for R1CS and
another one for R1CS-lite. We then provide variants of these protocols differing in two dimensions: how we
encode non-zero entries in matrices—the ones corresponding to the relation—and how low is the degree in
the verifier’s checks. In PHPjiwe1 (resp. PHPy1.1), we encode non-zero entries of the matrices using one single
mapping, while in PHPjex (resp. PHP,1c2), each matrix carries its own mapping. In turn, we describe for
each of these four constructions PHP, a slight variant that uses fewer polynomials to represent the relation,
that we refer to as PHP,, (intuition: “the fewer polynomials” =~ “the higher the degree of the verifer checks”).
Finally we provide one more construction called PHP,;.3 that shows an interesting tradeoff between the
complexity of the offline phase and the verifier workload.

4.1 Algebraic Preliminaries

Vanishing and Lagrange Basis Polynomials. For any subset S C F we denote by 2z s(X) := [[,.g(X —s) the
vanishing polynomial of S, that is the unique monic polynomial of degree at most |S| that is zero on every
point of S. Also, for any S C F we denote by £5(X) the s-th Lagrange basis polynomial, which is the unique
polynomial of degree at most |S| — 1 such that for any s’ € S

1 ifs=¢
£f<s'>={ Lo

0 otherwise.

Multiplicative subgroups. In this paper we work with subsets of F that are multiplicative subgroups. These
have nice efficiency properties crucial for our results. If H C [F is a multiplicative subgroup of order n, then its
vanishing polynomial has a compact representation Z(X) = (X™ —1). Similarly, [44, 57, 59] show that for
such specific H every Lagrange polynomial has the following compact representation E]SI(X) = ﬁ . X)‘(Hljll.
Both Zp(X) and £})(X) can be evaluated in O(log n) field operations. When H is clear from the context we
just write 2 (X) instead of Zy(X).

We assume that H comes with a bijection ¢y : H — [n] (e.g., using a canonical ordering of the elements
of H). For more compact notation, we use elements of H to index the entries of a matrix M € F**" (resp.

vector v € F”, namely we use M, (resp. v,) to denote My, (n).¢u(n) (T€SP. Vgy(n))-

14

For a multiplicative subgroup H C F of order n and any vector v € F™, we denote by v(X) its interpolating
polynomial in H, which is the unique polynomial of degree at most [H|—1 such that, for all n € H, v(n) = v,,.
Note that v(X) can be computed from v in time O(nlogn).

Lemma 1 (Polynomial Division). Given a multiplicative subgroup H C F and polynomial p € F<q[X]
where d > n, there exist unique quotient and remainder polynomials q¢ € F<q_p)(X),r € Fejm—2(X) and
constant ¢ € F such that p(X) = ¢(X)- 2u(X)+ X -r(X)+c. We denote by DivPolyy the (efficient) procedure
that computes these polynomials in O(dlog|H|) time using polynomial long division.

We use the following strategy from [10, 24] as the main tool to define a sumcheck protocol for univariate
polyomials over multiplicative subgroups:

Lemma 2 (Univariate Sumcheck). Letp € Fy4[X] and multiplicative subgroup H C F of order |H| = n,

o= Zp(n) <~ dg,7: p(X) =q¢(X)zr(X)+ Xr(X) —l—% with deg(r) <n —1
nel

Proof. We proceed by proving both directions of the above statement.

(=) Note that by Lemma ??, p(X) can be uniquely defined as p(X) = ¢(X)Zu(X) + Xr(X) + ¢. Then,
proving the above claim is equivalent to proving that the constant term equals . Assuming o = ZneH p(n),
then o = > (a(n)Zm(n) +n-r(n) +c). Since Zy(n) = 0 for all n € H, the sumcheck above reduces to
checking 0 =3, g (n-7(n)) +n-c. Now by the zero sum lemma from the Aurora proof system [10][Remark
5.6], given any polynomial f € F,[X] and multiplicative subgroup H of size n it holds that >,y f(n) =0
if and only if f(0) = 0. Then, >° g7 -7r(n) = 0 because r'(X) = X - r(X) is a polynomial of degree less
than n with constant term 0. This implies that ¢ = Z.

(<) Assume polynomial p(X) can be expressed as q(X)Zg(X)+ Xr(X)+ Z. Then, the sum of p(X) over
the group H is > -y q(m)2u(n) + >, cqn - r(n) +n- 2. Using the same reasoning as above, this equation
reduces to >, iz p(1) = o, which concludes the proof.

Definition 4 (Masking Polynomial). Given a subgroup H C F and an integer b > 1, we denote
by Maskgﬂ(-) a method which on input a polynomial p € Fy[X] returns a random polynomial p'(X) €
Fojm4[X] that agrees with p(X) on the points of the subgroup H. This is essentially a shorthand for

Mask (p(X)) := p(X) + Zu(X)p(X) for a randomly sampled p(X) «sF -p[X].

Definition 5 (Bivariate Lagrange polynomial). Given a multiplicative subgroup H C F, we define the
o ZH(X)-fo-ZH(Y)
= n(X—Y) :

bivariate Lagrange polynomial Ag(X,Y)

This polynomial has two properties that are interesting for our work. First, for all n € H it holds that
Au(X,n) = L7(X). Second, its compact representation enables its evaluation in O(logn) time.

The first property is a direct corollary of the following lemma.

Lemma 3. LetF be a finite field and H C F a multiplicative subgroup. Then it holds An(X,Y) =3_ .y EI,:H(X)-
LE(Y).
n

15

Proof. The claim is proven via the following transformations:

H . rH _ 772 zu(X) - zu(Y) B Zu(X) - zu(Y) 12 X_Vv
nze]l:ﬂﬁn(X) EU(Y)_UEHHQ X-n-n X-Y ZG2X-nY-n
z2u(X) - zu(Y) ﬁ X -7 XY —(X—n)
n-(X-Y) n%;ﬁn ((X—n)(Y—n)+ (X—n(Y—n)>
Zu(X) - zu(Y) 772<1_ 1)
n(X—Y) nEHn an an
T (Xl—Y) Zu(X) Y 0 Ly(Y) = 2u(Y) Y _n- LX)
nel neH
_ (zuX) Y —zu(Y) - X)
B n-(X-Y)

In the last step we used the property that any polynomial p(X) of degree < |H| can be written as ZneH p(n)-
L7(X), which implies that X = D nenn” LI(X).

Sparse Matriz Encodings For a matrix M we denote by ||M|| the number of its nonzero entries, which we
call its density. We will occasionally use encodings for sparse matrices inspired by that of [24]. In brief, a
sparse matrix M can be represented with three polynomials (valy, rowp, coly), where rowy : K — H (resp.
coly : K — H) is the function such that rowpy (k) (resp. coly(x)) is the row (resp. column) index of the x-th
nonzero entry of M, and valy; : K — F is the function that encodes the values of M in some arbitrary
ordering.

Definition 6 (Sparse Matrix Encodings). Let H be a multiplicative subgroup of order n, M & Fm>*™
be a square matriz with elements in F, and let K be another multiplicative subgroup of F whose order is at
leasﬂ the number of nonzero elements of M, namely ||M|| < |K|.

The sparse encoding of M is a triple (valy, rowwm, coly) of polynomials in F x| [X] such that for all k € K
valm (H) = MrowM(/-c),coIM(n)

We define the matrix-encoding polynomial of M as the bivariate polynomial

Var(X,Y) i= D val(r) - Ll 0 (X) - Lag) (V)-
reK

Note that the matrix-encoding polynomial of M is such that, for all n,n" € H, Vas(n,n') = M, .

When the matrix is obvious from the context, we will not explicitly use the subscript M in these poly-
nomials.

In the following lemma we show how a sparse encoding polynomial of a matrix M can be used to express
linear transformations by M.

Lemma 4 (Sparse Linear Encoding). Let M € F"*" be a matriz with a sparse encoding polynomial
Vi (X,Y) as per Definition[6} Let v,y € F™ be two vectors and v(X),y(X) be their interpolating polynomials
over H. Then y = M - v if and only if y(X) =3, g v(n) - Va (X, n).

% In the best case, we will have |K| = || M||. But sometimes a subgroup of this size (being FFT-friendly as well) may
not exist and we need to pad with dummy zero entries.

16

Proof. This can be seen via the following equality

> My v(n) - LX) = valy (k) - v(col(k)) - Loy (X)

n,n’' €H rek
= Z vaIM(n) . Z v(n) 'ﬁgﬂ(n)(n) 'EEW(N)(X)
k€K neH
=> v(n) - Vu(X,n)
neH

If y = M - v then its interpolation y(X) =3, my, - L7(X) can be written y(X) = > nayer Moy -o(n') -
L7(X), and thus the above equality shows the desired result. On other direction, if y(X) = > ner (n) -
Var(X,7n) then by the above equality we have that for all » € H holds y, = > M, - v(n), ie.,
y=M -wv.

n’' €l

Joint Sparse Encodings for Multiple Matrices. Finally, when working with multiple matrices, it is sometimes
convenient to use a sparse encoding that keeps track of entries that are nonzero in either of the matrices.
This has the advantage of having a pair of col, row polynomials that is common to all matrices.

Here we show the case of two matrices L, R. This can be easily extended to more matrices. Let S =
{m,n) e HxH: Ly, #0V R, # 0} be the set of indices where either L or R are nonzero. Let K be
the minimal-size multiplicative subgroup of F such that |K| > |S|, where |S] is in the worst case ||L||+ || R]|.
Then we can encode matrices L, R similarly to definition |§| by using the same polynomials {row, col} to keep
track of the indices of their nonzero entries, and the polynomials {valy,valr} for their values. Namely, for
any k € K, the polynomials are defined such that valy (k) = Ly ow(r),col(x) and valg(k) = R () col(r)-

4.2 Rank-1 Constraint Systems
We recall the definition of the rank-1 constraint systems (R1CS) languagem

Definition 7 (R1CS). Let F be a finite field and n,m, ¢ € N be positive integers. The universal relation
Rrics is the set of triples
(R7 X, W) = ((Fv n,m, ga La R> O)a T, ’U))

where L, R,0 € F**" max{||L||,||R||,||O||} <m, z € F* ', w € F*~*, and for z := (1,x,w) it holds
(L-z)o(R-2)=0 -z

We now introduce a new language called R1CS-lite, which can be seen as a simplified version of R1CS
with only two matrices. In brief, an R1CS-lite relation is defined by two matrices L, R and is satisfied if there
exists a vector ¢ such that (L-¢)o (R-c) = c¢. We show that R1CS-lite is as expressive as R1CS as it can be
used to express the language of arithmetic circuit satisfiability with essentially the same complexity as R1CS
(see Appendix . At the same time, though, the two-matrix form allows us to obtain PHP constructions
(and resulting zkSNARKSs) that are simpler and more efficient.

More formally, R1CS-lite is defined as follows.

Definition 8 (R1CS-lite). LetF be a finite field and n,m € N be positive integers. The universal relation
RRrics-lite 15 the set of triples
(R,x,w) := ((F,n,m,¢,{L, R}), x, w)

where L, R € F™" max{||L||,||R||} < m, the first { rows of R are (—1,0,...,0) € F** z € F¢-1,

w € F"~¢ and for ¢ := (1,z,w), it holds
(Lc)o (Re) =c¢

10 For simplicity of presentation, our definition uses square matrices.

17

Summary of our PHP constructions. In the following table, we provide a summary of our constructions for
R1CS and R1CS-lite that are described in the next sections:

Table 3. Comparison of our PHP constructions, all with relation encoder complexity O(m logm), prover complexity
O(mlogm + nlogn) and verifier complexity O(¢ + logm + logn). Here, n is the dimension of the square matrices.
For simplicity of the table, we make the assumption that |K| = m > 2n, which is true in many cases. We call
[Tt| = 5n + 2m — 2¢ + 2b, + 2bp + 2bs + 6bg — 4, and |n'| = || + n — £ + by, + Tbg. For the verifier checks, we denote
by “deg” the number of degree checks that require a tight bound; the last two columns show the degree of the two
polynomial checks where in the first one we have all v;(X) = y and in the second one all v;(X) = X.

oracles proof V checks
PHP degree ———— messages

RE P length deg degx (x,3(G1) degx (x,1(G2)
PHPjite1 4.3 2m 8 7 1 It| +2m 2 2 2
PHPjite1x Rk{2 2m 5 7 1 ITt| + 2m 2 2 3
PHPjite2 4.3 m 24 7 1 | 2 2 2
PHPjite2x Rk{3 m 16 7 1 e 2 2 3
PHPcs1 (4.4 3m 9 8 1 It'|+4m 2 2 2
PHP1cs1x RkJH 3m 6 8 1 || +4m 2 2 3
PHP 1> 4.4 m 57 8 1 || 2 2 2
PHP, 12« Rk6 m 42 8 1 || 2 2 3
PHP,1s3 4.4 3m 12 8 1 || 2 2 5

4.3 Owur PHPs for R1CS-lite

In this section we describe a collection of PHPs for the R1CS-lite constraint system. Precisely, we give one
main protocol and a few variants of it that offer various efficiency tradeoffs.

In all our constructions we use a variant of R1CS-lite in which we slightly expand the witness, and we
express the witnesses and the check into polynomial form.

Definition 9 (Polynomial R1CS-lite). Let F be a finite field and n,m € N be positive integers. We
define the universal relation Rpoiyrics-lite 05 the set of triples

((F,n,m,{L, R}, {), z, (d'(X),V'(X)))

where L, R € " max{||L||,||R||} < m, x € F*!, a/(X),0'(X) € F<p,_r—1[X], and such that ' = (1,),
a(X) =32, e & pu(n) LX)+ d(X) - ZL(X) and b(X) :== 1+ (X) - z1(X), it holds, over F[X, Z],

a(X)+Z-0(X)+ > (Lyy +2Z-Ryy)-aln)-bln') - L5(X) =0 (1)
n,m’ €H

where L := {¢g" (1),..., 05" (0)} (not a group) and 21 (X) := [, (X —n).

The following lemma shows that the two relations are equivalent. For completeness, we give the proof in

Appendix [A7T]

Lemma 5. L(Rrics—iite) = L(RpolyR1CS-lite)-

18

Our Main PHP for R1CS-lite We start by describing the main ideas of this PHP protocol, which we
denote PHPjite1. The prover’s goal is to convince the verifier that the polynomials a(X), b(X) satisfy equation
[m.

To this end, the relation encoder RE encodes the matrices L, R by using a joint sparse encoding, as
discussed in section This encoding consists of four polynomials (valy,valg, col, row) in F k[X]. In this
case we use a multiplicative subgroup K C F of minimal cardinality such that |K| > 2m > ||L|| + || R]|.

By applying the sparse linear encoding of Lemma [4] to the matrices L and R and using the property of
the bivariate Lagrange polynomial that Ag(X,n) = ££H(X), equation can be expressed as

0=a(X)+Z bX)+ Y aln -(VL(X,m) + Z - Vr(X,n))
neH
=Y (a(n) + Z-b(n)) - Au(X,m) + a(n) - b(n) - VLr(X, 0, Z) € F[X, 2] (2)
neH

where, exploiting the use of col, row common to L, R, V r(X,Y, Z) is:

Vir(X,Y,2) = Vi(X,Y) + Z - Va(X,Y) = Y (vl (k) + Z -valg(k)) - L (0 (X) - L) (V)
reK

In order to show that a(X),b(X) satisfy equation , the verifier draws random points x, a <—s[F that
are used to “compress” the equation from F[X, Z] to F. Then, the prover’s task becomes to show that

> () +a-b(n)) - Au(w,n) +aln) - b(n) - Ver(w,n,a) =0

neH
This is done via a univariate sumcheck over p(X) := (a(X)+a-b(X)) - An(x, X)+a(X) -b(X) - Vir(z, X, a).
However, since p(X) depends on the witness, we make the sumcheck zero-knowledge by doing it over p(X) +
$(X) for a random polynomial s(X) sent by the prover in the first round. Although this resembles the zero-
knowledge sumcheck technique of |10], we propose an optimized way to randomly sample a sparse s(X),
which is sufficient for the bounded zero-knowlegde of our PHP. So, for the sumcheck the prover sends two
polynomials ¢(X),r(X) such that s(X)+p(X) = q¢(X) - 2u(X)+ X -r(X). The verifier checks this equation
by evaluating all the polynomials on a random point y <—sF \ H. To do this, the verifier can compute on its
own (in O(logn) time) the polynomials Ag(x,y), Zu(y), and query all the others, except for Vi gr(z,y, a).
For the latter the prover sends a candidate value o and runs a univariate sumcheck to convince the verifier

that o = 3, g (valp(k) + a - valg(k)) - EEW () () - Lgl(m)(y).
In what follows we give a detailed description of the PHP protocol PHPjji; .

Offline phase RE(F,n,m,{L, R},{). The holographic relation encoder takes as input a description of the
specific relation and outputs eight polynomials

{col(X), row(X), cr(X), col’ (X), row’ (X), cr'(X),ver (X), verg(X)} € F< g [X]

that are computed as follows. First, it finds the polynomials {col, row, valy,,valr} described above such that
for all k € K valr,(k) = Lrow(x).col(x) and Valr(k) = Ryow(x),col(x)- Second, it computes:

Z col(k) - row(k) - LE(X)

reEK

{vch(X) = Z valy (k) - cr(k) "C]E(X)}JMG{L,R}

col'(X) := X - col(X), row'(X):=X -row(X), cr'(X):=X cr(X)
Essentially, the polynomials cr(X),very, (X) and verg(X) are low-degree extensions of the polynomials

col(X) - row(X), valr(X) - col(X) - row(X) and valg(X) - col(X) - row(X) respectively, while col’, row’ and cr’

19

are a shifted version of col, row and cr respectively. The intuition behind expanding the sparse encoding of
L, R in this way is to keep the polynomial checks of the verifier of the lowest possible degree. In particular
we are interested in obtaining a PHP where degy ¢ X,-}(G) < 2 as it enables interesting instantiations of our
compiler. As an example, by adding cr(X) we can replace terms involving col(X) - row(X) with cr(X). This
shall become more clear when looking at the decision phase.

Online phase (P ((F,n,m,{L,R},{),z, (a/(X),V'(X))),V(F,n,m,x)).

Round 1.
The prover samples two random polynomials

D {d'(X),b’(XLS(X)} v qS(X) <_$Fbs+bq—1[X]7 TS(X) %str_,_bq_l[X],

and sets s(X) := ¢s(X)-Zu(X)+X 7r:(X). Note that, whenever b, +b, <
n, the pair ¢s(X),rs(X) is a unique decomposition of s(X), and also
$(X) € F<ntb,+b,-1[X]-

P sends to V: s(X) and randomized versions of the witness polynomials a'(X) s Maskﬂfa\ibq (¢ (X)) €

F <t 4b,-+b,—1[X] and B'(X) ¢ Masky 'ty (1 (X)) € Fpp_pib, b, —1[X].

Round 2.
The verifier sends two random points x, a <sTF.
73 €T, V «“ 2 :
The prover uses x, a to “compress” the check of equation over F[X, Z]
into a sumcheck °, iy p(n) = 0 over F for the polynomial
P {g(X),7(X)} Y,
p(X):=(a(X)+a-b(X)) Az, X) 4+ a(X) - 0(X) - Vor(z, X, @)

where, for ' = (1,), we have

a(X) =a'(X)- zL(X) + ZwI@H(ﬂ) ’ LE;H(X) € an-i-ba-&-bq—l[X]v
nel
b(X) := ¥ (X)- 21(X) + 1 € F<ppp,n,-1[X],

and Ag(z, X) € F,,_1[X] is the minimal degree polynomial such that for all € H: Ag(z,n) = L} (z).
Next, P computes and sends polynomials ¢(X) € F<ay b, b, +2b,-3[X] and r(X) € F<,,_2[X] such that

$(X) +p(X) = q(X) - zu(X) + X - r(X)

to prove the univariate sumcheck statement >, g s(n) +p(n) = 0.

Note that by construction -, . s(n) = 0, and its role here is to (sufficiently) randomize ¢(X),r(X)
in such a way that their evaluations do not leak information about the witness (see the proof of bounded
zero-knowledge in Theorem .

Round 3.
The verifier sends a random point y «—sF \ H.
P Y V | The prover uses y to compute o < Vpg(z,y,«) and then defines the
degree-(|K| — 1) polynomial
p o {dX),r"(X)} %
P(X) =) (valp (k) + a-valp(r)) - L (@) - LG () - LE(X)

reK

20

The goal of the prover is to convince the verifier that

Y Pk =0

reK
Ve e K: p/(’%) = (ValL(K) +o- ValR(K)) ' ‘C’I]?(I)w(m) (J?) : ‘Cﬂcﬂol(n) (y)

These two statements can be combined in such a way that P does not need to send p’(X), which is implicitly
known by the verifier since it depends only on the polynomials provided by the encoder.

For the first statement, since p’(X) is a polynomial with degree smaller than the size of the subgroup K,
the univariate sumcheck lemma over (p/(X) — @) reduces to proving that its constant coeflicient is zero.

This can be done by computing 7'(X) € F<|g)—2[X] such that p'(X) = X -7/(X) + TR
For the second statement, note that by decomposition of the Lagrangians this is equivalent to:

VeeK:n® p'(k)- (z—row(k)) - (y — col(k)) = (valp (k) + a - valg(k)) - row(k) - col(k) - Zm(z) - Zu(y)

that, by using the definition of p’(X), can be written as

VeeK: (/i (k) + |]IU{> -n? - (wy +cr(k) — - col(k) — y - row(k))
— (verp (k) + a-verg(k)) - Zu(z) - 2u(y) =0
Using the relation polynomials, P can define the auxiliary polynomial
tHX) = |%-nz-(azxg—&—cr(X)—;1c~coI(X)—y-row(X))—i—r'(X)~nQ~(asy-X—i—cr’(X)—33-co|’(X)—y-row’(X))
— (verp(X) + a-verg(X)) - zu(x) - 2u(y)
of degree < 2|K| — 2, that equals 0 on any x € K. By the remainder theorem,
VeeK:t¢(X)=1tk) mod (X —k) <= t(X)=0 mod zg(X)

Thus P can compute the following polynomial:

q,(X) = S IFS‘KI,Q[X]

X)
Z]K(X)
and sends o and {¢/(X), ' (X)} to V.

Decision phase. The verifier outputs the following degree checks

deg (@), deg (), deg(s), deg(q). deg(¢') < Dand (3)
deg(r) ; n—2 (4)
deg(r) < |K| 2 (5)

and the following polynomial checks

s@) + | &) - zL) + D sui - L (Y) -(AH(%y)Jr(@’(y) -ZL(y)+1)-0>

nel

+ (M) -zuly) +1)-a-Au(r,y) — qy) Zaly) —yr(y) =0 (6)

21

®~n2~(ry+ cr(X) —z- col(X) —y- row(X))

+ (X)) -n?(zy- X + o' (X) —z- ol (X) —y- row (X))
?

— (ver(X) +a- vera(X)) - Zu(e) - Zu(y) — ¢(X) - 2x(X) 20 (7)
where, we recall, Ag(z,y) = W Above, we highlight the oracle polynomials in gray , the prover
messages in blue, and the coefficients of the verifier’s polynomial checks in red. This is to help seeing how
the above checks fit the ones described in Definition [Il

In the first degree check, D, 4 is an integer that can be chosen by the verifier and governs the soundness
error as shown in Theorem [I] While for correctness we need Dg,q > D — 1, where D is the degree of the PHP
(shown below), this bound does not need to be tight (i.e., Dsg = D — 1) as is the case for the degree checks
on r and r’. This observation has an impact on our compiler where, by choosing Dy,4 to be the maximal

degree supported by the commitment scheme, one does not need to create a proof for degree checks of the
form “< Dgpq”

EFFICIENCY ANALYSIS We analyze the efficiency of the protocol PHPjies.

Relation encoder It creates 8 polynomials, five of degree < |K|—1 and three of degree < |K]|; this is doable
in time O(|K]log|K]).

Degree By looking at the polynomials of the highest degree sent by relation encoder and prover, one can
see that D = max{2n + b, + by + 2b; — 3, n+ b, + b, — 1, |K|}, whose result depends on the difference
between |H| and |K| and the concrete values of b,, by, by, bs. For example, when all these bounds are small
constants (as in our use cases) and |K| > 3|H]|, then D = |K].

Proof length. The prover sends one element of F and 7 oracle polynomials. By inspection, the proof length
is I(|R]) = 6n + 2|K| — 20+ 2bg + 2by + bs + 5b; — 4. With a closer look at the shape of s(X'), we have that
the number of its nonzero coefficients is actually at most by + 2b, + max{bs, b, }, which gives us a proof
length I(|R|) = 5n + 2|K| — 2¢ + 2b, + 2b, + 2b, + 6b, — 4.

Prover complexity. The total complexity is O(|K|log |K| + |H] log |H|), which is justified as follows.

The polynomials sent in the first round can be computed in time O(|H|log |H).

In the second round, the less trivial step is computing Vi g(z, X, a) which we claim doable in time O(|K|+
|H| log |H]|) as follows. First, one can precompute all E]EI)W(K) (2) in time O(|H]log |H]|) since each of them
can be computed in O(log |H|) time and there are at most |H| of these terms (recall that row maps into H).
Second, one can compute all the terms

{VLR(x,n,a)}neH = Z (valp (k) + - valg(k)) - Lﬂw(ﬁ)(z)

reEK
col(k)=n nel

in time O(|K|) (with O(JH]|) memory). This is possible by computing, for every x € K, the term (valy (k) +a-
valp(k))- E]r}gw(n) (x), which can be accumulated into the relevant variable Vi r(z,n, @) such that n = col(x).
Finally, Vo r(z, X, o) is computed by interpolating {Vzr(x,n, @)}yem in time O(|H|log |H]).

Once having computed Vi g(z, X, @), the polynomials ¢(X) and r(X) can be obtained using polynomial
long division in time O(|H]|log |H]).

In round 3, one can compute p/'(X) in time O(|K|log |K| + |H|log |H|) using ideas similar the ones above,
while ¢'(X),r'(X) can be computed in time O(|K|log |K|) using polynomial division.

Verifier complexity. This amounts to O(¢+log |H|+log |K|) field operations, which are needed to construct
the polynomial checks. In particular, notice that: computing evaluations of the vanishing polynomials in
H costs O(log |H|); log |K| stems from defining the integer |K|; and ¢ is the cost needed to compute the
“shifted polynomial” with the public input.

SECURITY ANALYSIS

22

P ((F, n,m, {L, R}, 8)7 a:', (GI(X), b/(X))) vV ver g, ver g ,row, col,cr,row” col ,cr’ (F7 n,m, 513/)

Sample random gs,7s, set $(X)<qs(X)zZu(X) + Xrs(X)

Sample random &', b that agree with a’,b’ on H \L {a,v,s}

a(X) &' (X)ZL(X) + Y @ g L9 (X)

nel

b(X) + b (X)zL(X) + 1 z, 2, sF

Compute ¢(X), r(X) s.t.
$(X) + (a(X) + a - (X)) - Au(w, X)

+a(X) - b(X) - Vir(z, X, a) = ¢(X)2u(X) + Xr(X) {ar}

Y y<«sF\H

o+ Vir(z,y,)
Compute ¢'(X),r"(X) s.t. ¢(X) - zx(X) =

(Xr/(X) + é) n®(zy + cr(X) — x col(X) — y row(X))

— (vern(X) + averr(X)) - Zu(z) - Zu(y) o, {d,r'}

Verifier’s checks
o deg(d/),deg(V'), deg(s), deg(q), deg(q') < Dyna A deg(r) <n—2 A deg(r') < |K| -2
o s(y) + (é’(y) ~Z;(:u)+zw'¢m<n> '5151(!/)> ~ (AH(w,y)Jr(b'(y) - zLly) + 1)-0)
+H(V(@) -zL) +1)-a- du(z,y) — q@y) Zuly) —y r(y) =0

A |%wf(a:y—i— cr(X) —x- col(X) —y- row(X))

+7(X) -0’ (wy- X+ o’'(X) —z- col'(X) —y- row' (X))

—(verp(X) +a- verr(X)) - zu(z) - 2u(y) — ¢(X) 'ZK(X);O

Fig. 1. Our PHP protocol PHPjie; for R1CS-lite.

23

Theorem 1 (Knowledge Soundness). The PHP protocol PHPjwe1 described in section s e-sound

with ¢ = 1Bl m&%ﬁ‘m', and 0-knowledge-sound. Furthermore, PHPiwe1 is straightline extractable (Definition

@ [F]
Proof. We begin by proving the soundness of this PHP, and then show its proof of knowledge property.

SOUNDNESS. Assume that for the given polynomial R1CS-lite relation R = (F, n,m,{L, R},{) and input x
there exists no witness a’(X), ' (X) that satisfies the equation of Definition [9] Then by correctness of
the relation encoder’s polynomials, also there is no witness satisfying equation .

This means that for the polynomials @' (X), 5 (X) sent by the prover in the first round it must be the
case that

F(X.2) =" (a(n) + Z -b(n) - Au(X,n) +a(n) - b(n) - Ver(X,n, Z) # 0 over F[X, Z].
neH

where a(X) and b(X) are appropriately reconstructed as a'(X) - 21 (X) + 2 onel & gu(n) ~,C]SI(X) and V(X)) -
Z1,(X) + 1 respectively.

Let s(X),d (X),0'(X),q(X),7(X), ¢ (X),7(X) and o be the polynomials and message sent by the prover
P*, and z, a,y be the verifier’s messages. Let us recall that by the order of the messages in the protocol we
have: s(X),a'(X),V(X) are independent of z, o, and that o, ¢(X),r(X) are independent of y.

By considering the polynomial check and by the correctness of the relation encoder’s polynomials we

deduce that the polynomial p'(X) := (X (X)) + @) is such that

Zu(z) - 2u(y)

Vi €K:p(k) = (verp(k) + a - verp(x)) - n2(zy + cr(k) — z - col(k) — y - row(k))

that is Ve € K: p/'(k) = (valp(k) + a - valg(k)) - EEI)W(H) () - L’]g),(m) (y)

Then, by considering the degree check we have that ' (X) € F<g|_2[X], and thus p'(X) is a polynomial
of degree < |K| — 1 with constant term ¢/|K|. Hence by Lemma it holds o =), g p'(k).

Putting this together with the definition of p’(k) we obtain that o = Vi gr(x,y, «).

Next, since the polynomials s(X), a(X),b(X), ¢(X),r(X), Vr(z, X, a) are independent of y, by Schwartz-
Zippel we obtain that the polynomial check @ (combined with the first degree check and that o =
Vir(x,y,«)) implies that

s(X) + (a(X) + a-b(X)) - Au(z, X) + a(X) - b(X) - Vir(z, X,) = ¢(X) - 2u(X) + X - 7(X)

holds with probability > 1 — %ﬂi‘m over the choice of y.

The degree check gives us that 7(X) € F<,_2[X] and thus by Lemma we have that

Yo s+ flea) = s(n) + (a(n) +a-b(n) - Aule,n) +a(n) - b(n) - Vir(e,n.a) =0

neH neH

Let s* = ZneHs(n). Since s* and f(X, Z) are independent of x,a, by the Schwartz-Zippel lemma, we

have that, over the random choice of z, o <= T, Pr[f(z,a) + s* = 0] < %.

KNOWLEDGE-SOUNDNESS. We define the extractor £, which is simply the algorithm that runs the prover
P* for the first round, obtains a/(X), ¥ (X), and then reconstructs the non randomized witness polynomials
a'(X) =32, eq @' ()L (X) and V'(X) = 37, U ()L} (X).

If the verifier accepts with probability greater than the soundness error € given above, then the polynomials
returned by £ must encode a valid witness.

Finally, it is straightforward to see the straight-line extractability. The algorithm WitExtract is the one
that takes the polynomials a’(X), lA)'(X)7 and reconstructs the R1CS-lite witness by taking the product of
their evaluations on the points of H \ L (see Appendix [A.T).

24

Theorem 2 (Zero-Knowledge). The PHP PHP1 described in section s perfect zero-knowledge.
Furthermore, it is perfect honest-verifier zero-knowledge with query bound b = (b, by, bs, by, by, 00, 00).

Proof. We begin by showing the perfect zero-knowledge. This turns out rather easily. In fact, in the PHP
model we do not need to worry about the oracle polynomials, the prover in Section sends only one (non-
oracle) message, 0. This message, moreover, does not depend on the witness. More formally, we describe a
simulator S that on input the relation R = (F,n,m,{L, R},¢) and the input x, and given oracle access to
the verifier V*, proceeds as follows. It runs V* to obtain its random messages z,y, @ and its checks. Next,
it computes 0 = Vpr(x,y,), and outputs o followed by checks obtained from V*. It is easy to see that
VieW(SV* (F,R, :c)) is identically distributed to VieW(P(F, R,z,a (X),b (X)) ,V*).

Next, we prove b-HVZK for bounds by, by, bs, by, b, on the polynomials d’(X),I;’(X),S(X),q(X),r(X)
respectively, whereas for the polynomials ¢’'(X),r'(X) we tolerate unbounded number of evaluations (this is
trivial as these polynomials depend on public information only).

Let C(,7) be the algorithm that on any pair (¢,7) outputs 1 if and only if < € {1,...,7} and v ¢ H. For
a 7y <= T, it holds Pr[C(¢,v) = 0] = |H]/|F|, which is negligible for the choices of F considered in this paper.

The simulator samples a random tape p for the honest verifier and runs its query sampler (z,y,a)
Qv (p) and its decision algorithm {d, {(G,v)} < Dy (F,x; p) to obtain its checks. Then, it simulates answers
to polynomial evaluations as follows.

For every pair (i,7) with i € {6,7} (i.e., for every query on ¢’,7’), the simulator computes t; ,, < p;(7)
honestly, which is trivial as these polynomials depend only on public information.

For every pair (i,7) € £ such that i € [5] \ {4} (i.e., every query on &', v, s,7), the simulator samples a
random value ¢; , <—sF and stores a tuple (¢,v,%;) in a table T.

For every query (4,) it simulates the answer with the value ¢, , computed as follows:

tay <ty - ZL(7) + Z T’ gy () - EEI(V)
nel

thy <ty - Z]L('y) +1
tpy (tay + -ty) - Am(z,v) +tay oy - Vir(z,7y,q)
tpy tlay — 7 15y

Zzu(7)

t47fy <—

While doing the computations above, for j = 1,2,3,5, if an entry (j,v,¢;) already exists in T, then the
corresponding value t; - is used; otherwise a random ¢; , <—sF is sampled and a new entry (j,7,t;~) is added
to T.

S returns (p, Vir(z,y, @), (d,{(G,v)}), {tm}(m)eﬁ).
To conclude the proof, we argue that the distribution of S’s output is identical to that of

(View(P(F,R,@,a’, ') V), (pi(1)gec) -

By the (b, + by)-wise (resp. (b, + b,)-wise) independence of the polynomial a'(X) (resp. b'(X)) sampled
by the honest prover (and using the fact that they are evaluated on F\ H), we have that the set of simulated
answers {t1,}(1,4)ec (resp. {t2}(2,4)cc) are identically distributed (we recall that these sets are of size b,
and by, respectively) to those of the real prover.

For the remaining polynomials, let us recall that for the honest prover we have

= (a(X) 4+ a-b(X)) - Ag(z, X) + a(X) - b(X) - Vig(z, X, @)
S(X) = qs(X)ZH(X) + XTS(X)

where @' = (L,z), &(X) = @'(X) - Z2L(X) + e @' gt - LH(X), b(X) = V(X) - zL(X) + 1, and
qs(X) <sFp 4, [X] and r4(X) <sFp 1p, [X]. Also, let us write p(X) = ¢p(X)Zu(X) + Xry(X) for the
unique ¢,(X), r,(X) by polynomial division.

25

By the uniqueness of polynomials ¢(X) and r(X) € F<,,_2[X] such that s(X) +p(X) = ¢(X) - z2u(X) +
X - r(X), we have that ¢(X) = ¢,(X) + ¢s(X) and 7(X) = r,(X) + rs(X).

By the (b, + by)-wise independence of r;(X) (and thus of r(X)) we obtain that the set of simulated
answers {t5}(5,y)ec (Whose cardinality is at most b,) are identically distributed to those, {r(7)} s 4)ez, of
the real prover. Furthermore, by the (bs+b,)-wise independence of ¢,(X) we obtain that the set of simulated
answers {t3 . }(3,y)ec (Whose cardinality is at most b,) are identically distributed to those, {s(7)}s,4)ez, of
the real prover. In particular, for this we use that for v € F \ H, s(X) is (bs + by)-wise independent even
conditioned on 74(X).

To argue the correct distribution of the set of simulated answers {t4 -} (4,y)ez, We observe that the honest
q(X) is determined by (p(X) + s(X) — Xr(X))/2Zu(X), where p(X) is defined as above. In particular, an
evaluation of g(y) on v € F \ H can be obtained as (p() + s(y) — vr(v))/2u(y), thus using evaluations
of a'(v), 1% (7), s(v), r(7), and evaluations of publicly available polynomials. This explains the simulation
strategy of ¢4, by S, and these values are identically distributed to ¢(v) as the polynomials a’(X), V(X),
s(X), and r(X), each allows b, more evaluations whose outputs are uniformly distributed.

Remark 1 (On degree optimizations). From the proof of the above theorem it turns out that increasing the
degrees of polynomials a’, 1% , s, 7 by by may be a too conservative choice. Indeed, additional information
about these four polynomials is leaked only if an evaluation ¢(X) is revealed on a point v on which these
polynomials were not already evaluated. More precisely, if the list £ is such that the simulation of t4 ., does

not require sampling new values ¢; 4, j € {1,2,3,5}, then it is sufficient to have &’ € F<,1p,, V' € F<ptp,,
gs € Fep,, 7 € Feypy, .

Remark 2 (PHPjie1x: a variant with fewer relation polynomials). We present a variant of PHPjye;, that
we call PHPjie1x, which has fewer relation polynomials. In particular, the RE of PHPie1, does not output
col’(X), row’(X) and cr’(X), and the second polynomial check, of degree 3 with a public term X, becomes:

n? (X - r(X) + 2. xy+ cr(X) —a- col(X) —y- row(X)
K]

— (verp(X) +a- verg(X)) - Zu(e) - Zuly) — ¢(X) -z2x(X) 0 (8)

A Variant with Separate Sparse Matrix Encodings We propose a variant of the PHP for R1CS-lite
PHPi.e1 described in the previous section. We call this protocol PHPjitep. In PHPy;ep, the matrices {L, R} are
encoded in sparse form separately, namely without keeping track of common nonzero entries (see Definition
@. The main benefit of this choice is that in this case we can work with a subgroup K C F of minimal size
such that |K| > m, which is half the size of the one needed in PHPjj;.

Namely, L, R can be represented with the functions {valys, rowas, colas }areqr gy~ Here, for M = {L, R}
and any k € K, valps(k) = Mo, (x),colrs (x)- We can use such sparse encoding of L and R to change the
Vir(X,Y,Z) polynomial in equation into the following one

VLr(X,Y,Z2) = VL(X,Y) + Z - VR(X,Y)

= 3 (Valu (k) - L8, (X) - £E, () () + Z val(k) - L8, (X) - £y 0 (V))
reK

Then in this variant the prover’s goal is to show that the polynomials sent in the first round satisfy the
equation above. This variant proceeds almost identically to the one of section [£:3} the only differences are in
the relation polynomials and the third round.

Offline phase RE(F,n,m,{L, R},). The holographic relation encoder outputs 24 polynomials
{{vch’i,j (X)}MG{L,R},{M}G{OJ}, {Cri,j (X), Cl’;,j (X)}i,je{o,l,Q}Ai7£27£j} € FS\KI [X]

26

that are computed as follows. First, it finds the polynomials {valy, coly, rowy, valg,colr, rowr } such that for
all k € K valp (k) = Lyow, (x),coly, (x) a0d Valr(K) = Ryowp (x),coln(x)- Second, it computes:

verpo0(X) = Y valp(k) - colp, (k) - rowp (k) - col (k) - rowp (k) - L5 (X)
verp,o,1(X) = — §V3|L - colp, (k) - rowr (k) - rowg (k) - £(X)
verp 1 0(X) = —%valL - col, (k) - rowr, (k) - colp(k) - LX(X)

verp 11(X) = i‘ivau - coly (k) - rowy, (k) - LX(X)

and analogously {vcrg 0,0,VCrr.0.1,VCrr1,0,Verg, 1,1 }. Third, it computes

croo(X) = Z colr, (k) - rowr, (k) - colg(k) - rowg(k) - LX(X)

cro1 (X) = —Sirom - (colp (k) - rowg(k) + col g (k) - rowg(x)) - L5(X)
crio(X) == — E colp () - (colr(k) - rowr(k) + col g (k) - rowp (k)) - L,S(X)
cri1(X) = ;I;(cou(ﬁ) + colr(k)) - (rowg (k) + rowy (1)) - L(X)
crao(X) = S;cou(n) -colr(k) - LX(X)

cro.2(X) = irOWL(“) - rowg (k) - £,(X)

cry2(X) = — E(rowL(n) +rowg(k)) - £,(X)

cr 1 (X) = — ;j:;(cou(ﬁ) + colp(x)) - L5(X)

as well as {cr; ;(X) = X -cr; ;(X)}
Online phase (P ((F,n,m,{L, R},{),z, (a/(X),b(X))),V(F,n, m,x)). Round 1 and 2 proceed identically to
the PHP of section [£.3] except for the different definition of the polynomial Vy g.

Round 3 The verifier sends a random point y «—sF \ H. The prover uses y to compute o < Vig(x,y,)
and then defines the degree-(|K| — 1) polynomial

P = 37 (Valo (k) - L, @) - L1, (0 (9) + 0 VaIR(K) - Lo (2) - Ly (9)) - LE(X)

reK

The goal of the prover is to convince the verifier that

> pk) =

rEK
Vi € K p/ (k) = valL(k) - Lrw, () (@) - Loai, () (¥) + - Valr(K) - Lig () (@) - Léot iy ()

27

and for this it computes

p'(X) —o/[K]

r(X) = f € Fog—2[X]
t(X) = Z zlyl e (X)) + (X Z xly ~crp (X)
i,j€[0,2] 1,7€[0,2]
— Zu(z) - Z2u(y) - Z 'y’ (verpi j(X) + a-verg, (X))
1,5€[0,1]

where cry 2(X) := 1 and cr) ,(X) := X, defines polynomial

q/(X) = t(X) S FS\K|—2[X]
and sends {¢'(X),r'(X)} to V.

Decision phase. The degree checks and first polynomial check stay the same, while the second polynomial
check is as follows

% Zay-crmX)—i—r . Zly cr; ;(X)
‘ | i,7€[0,2] i,5€[0,2]
— zu(z) - zu(y) Z xty?! (vcrL,M(X) +a- verg,; ;i (X)) - ¢(X) - zg(X) 20 (9)
i,j€[0,1]
where cry2(X) :=1 and crj ,(X) := X.

By construction of the relation polynomials, observe that the check of equation @D is equivalent to
checking

<X~T/(X)+®>~n2- H (@ —rowp (X)) - (y — colpr (X))

Me{L,R}
—Zu(z) - Zu(y) - (valp(X)colr (X)row, (X)(z — rowg(X))(y — colr(X))
+a - val g(X)col (X)row (X)(z — row, (X)) (y — col,(R))) = 0 mod Z g (X)

Knowledge soundness and zero-knowledge of PHP);.» are essentially identical to those of PHPj1. The
only differences concern polynomials that are produced by the relation encoder and thus are correct by
definition.

Efficiency analysis. The relation encoder creates 24 polynomials of degree < |K|, doable in time O(|K| log |K]).
If expressed as functions of |K|, the degree, proof length, prover complexity and verifier complexity are the
same as in section [I.3] The only notable difference is that in this construction, in which we use separate
sparse encodings for the matrices L, R, we have |K| > m, unlike in the previous construction where it was
K| > 2m.

Remark 3 (PHPjiweax: @ variant with fewer relation polynomials). We present a variant of PHPjien, that we
call PHPite2x, whose difference with the former is a reduced number of relation polynomials. In particular, the
offline phase of PHPjiweox outputs 8 less polynomials cr; ;(X). Here the second polynomial check has degree
3, with a publicly computable term X:

n2~(X~r’() Z z'y’ - cry ;(X)
i,j€[0,2]
i, / ?
— ZH(.T) . Z[-ﬂ(y) . Z !)C'yj (VCI’Lﬂ‘)j(X) +a- VCI’R)LJ‘(X)) - q (X) -ZK(X) =0 (10)
1,5€[0,1]

28

4.4 Owur PHP for R1CS

In this section we present our constructions of PHPs for R1CS. We give three constructions and two more
variants that achieve different tradeoffs.

Recall that in R1CS we have a claim of the form (L -z)o (R-z) = O - z. In all our constructions we
consider an equivalence of the R1CS relation in which we express all the checks merged into polynomial
format as follows.

Definition 10 (Polynomial R1CS). Let F be a finite field and n,m € N be positive integers. We define
the universal relation Rpoyrics as the set of triples

((F,n,m,{L,R,0},0),z, (a(X),b(X), w(X)))

where L, R, 0 € F*™*" max{||L||,||R||,||O||} < m, € F* !, a(X),b(X) € F<,,_1[X], and such that, for
x' = (1, @), w(X):= 3, cpnp Weu(n) - L3(X) and 2(X) := Donel T du(n) LX) 4+ w(X) - zL(X) it holds

> (Ze-a(n) + Zr-b(n) = Zo - a(mb(n)) - L3)(X) + Y Zar - My - 2(1') - L31(X) = 0 (11)

neH n,n’ €H
Me{L,R,0}

where L := {¢5'(1),..., 05" ()} and the above is a polynomial over F[X, Z1, Zr, Zo).

The following simple lemma shows that the two relations are equivalent. For completeness, we give the proof

in Appendix
Lemma 6. E(RRJC’S) = E(RpolyRICS)'

Our Main PHP for R1CS Here we present our first PHP for R1CS that we call PHP,1.1 and that uses
a joint sparse encoding as stated in definition [7] The differences with PHPje; are very subtle, and for this
reason we only highlight the main keypoints and then show the full PHP in Figure 2]

Because Rpoyrics requires one more matrix than Rpoyrics-iite, we must modify the main equation
accordingly. In particular, we define a new matrix encoding polynomial V;go. The holographic relation
encoder of this PHP requires more polynomials than in PHPj;, for the same reason. The protocol follows
directly from these modifications, and the fact that the prover sends one more oracle, w(X), in the first
round.

In this setting, we will need a multiplicative the subgroup be such that |K| > ||[M]|| < 3m for any
M € {L,R,0O}. The prover’s goal is to convince the verifier that the polynomials a(X),b(X), z2(X) satisfy
equation , which can be expressed as

0= Z (Zp-a(n) + Zg - b(n) — Zo - a(n)b(n)) Au(X,n) + 2(n) - Vero(X,n, Z1, Zr, Zo) (12)
neH

where Vi ro € F[X,Y, Z1,, Zr, Zo] is the following polynomial,

Viro(X,Y, Z1, Zr, Zo) = Z1, - VL(X,Y) + Zr - Vr(X,Y) + Zo - Vo (X, Y)
= Z AV ValM("{) ’ E]E:I)w(n) (X) : Eﬂc‘gl(n)(y)
rEK

€
Me{L,R,0}

Offline phase RE(F,n,m,{L, R, O}, ¢). The holographic relation encoder takes as input a description of the
specific relation and outputs 9 polynomials

{row(X), col(X), cr(X), row’(X), col'(X),cr' (X), {veras (X)}amreqr,r0} } € F<pi)—1X]

29

P((F,n,m,{L, R,0},6),2’, (a(X),b(X), w(X))) proweeenrow'scolcr Lverat} (7 i ')

Sample random gs s Fu, b, —1[X],7s <=5 Fp, b, —1[X]

Set s(X) < qs(X)Zmr(X) + Xrs(X) € F<nyb,4b,-1[X]

Sample random a, B,w that agree with a,b, w on H { a,b,w,s}

s Maski, b, (a(X)) € F<nin, b, -1[X]
s Masky, 15, (b(X)) € F<nib,+by—1[X]
W(X) s Masky,, 1b, (w(X)) € Fentib,+b,-1[X]

a(Xx)
b(X)

2(X) i= &/ (X) + D(X) - ZL(X) € F<npby +by—1[X] z,{anm}irL,r0} z, {on} +sF

... // Sumcheck for “znelﬂ s(n) + p(n) = 0” where
/) p(X) = (ara(X) + arb(X) — aoa(X)b(X)) Au(z, X) + 2(X) - Viro(z, X, ar, ar, ao) € F<3n4bg+by+2bg —3[X]

Compute ¢ € F<onib,tby+26,—3[X], 7 € F<pn_o[X] s.t. {ar}

s(X)+p(X)=¢q(X) z2u(X)+X - -r(X) Y y<«sF\H

....... // Structured sumcheck for “Z an - valu(k) - L‘Ew(n)(z) . ETO‘(N)(y) =Viro(z,y,ar,ar,a0)” oo

rEK
Me{L,R,0}

Let 0 + Viro(z,y, oL, ar, ao)

Compute ¢'(X), 7" (X) € Fjg_2/[X] : ¢'(X)2x(X) =

n?. (X (X)) + ®) - (z = row (X)) - (y — col(X))

— zu(x) - zu(y) - row(x) - col(y) - ZanaIM(X) o, {d,r'}
Me{L,R,0}

Verifier’s checks
o deg(a), deg(b), deg (i), deg(s), deg(q), deg(q') < Dana A deg(r) <n—2 A deg(r') < |K| -2

. BBl - (aL -+ B0 - co a(mz%(y))AH(m.y)

2

o (D @ gLy (v) + W) 21y) — qy) Zuly) —yry) =0
A n? L (ry -z col(X) —y- row(X) + cr(X))

K|
+n’ - (X)) (zy- X —z- col (X) —y- row'(X) + o (X))

—zu(z) zu(y) - > o vermr(X) — ¢(X) - zx(X)£0
Me{L,R,0}

Fig. 2. Our PHP pro@ftol PHP,1; for R1CS.

Online phase (P ((F,n,m,{L,R,0},{),x, (a(X),b(X), w(X))),V(F,n,m,x)). The online phase of PHP1cs1
proceeds with the same round structure as in PHP ;1. We refer the reader to Figure [2] for the full description
of the protocol.

EFFICIENCY ANALYSIS We analyze the efficiency of our PHP protocol for R1CS with joint sparse encoding
and |K| > 3m.

Relation encoder It creates 9 polynomials, six of degree < |K| — 1 and the other three of degree < |K]|,
doable in time O(|K|log |K]).

Degree By looking at the polynomials of the highest degree sent by indexer and prover, one can see that
D = max{2n + b, + by + 2b, — 3,n + by + b, — 1, K|}, which depends on the difference between |H| and
IK|, and the concrete values of b, by, by, bs, which are small constants in our use cases. For example, when
m > n (which holds for matrices that encode arithmetic circuits), then D = |K|.

Proof length. The prover sends one element of F and 8 oracle polynomials. By inspection, the proof length
is I(R) = "n + 2|K| — £ + 2b, + 2b, + b,, + bs + 6b; — 4. By the structure of s(X), we have that its
number of nonzero coefficients is upperbounded by by + 2b, + max{b,, b, }, what gives us a proof length
I(|R]) = 6n + 2|K| — € + 2b, + 2b, + by, + 2bs + Tby — 4.

Prover complexity. Using ideas similar to the ones for R1CS-lite, the total complexity is O(|K|log |K| 4+
|H log [H).

Verifier complexity. Similarly to the PHP for R1CS-lite, this this amounts to O(¢+ log |H| +log |K|) field
operations, which are needed to construct the polynomial checks.

SECURITY ANALYSIS

Theorem 3 (Knowledge Soundness). The PHP protocol PHP,ic1 described in section is e-sound

2D.na+|H|

with € = A T %, and 0-knowledge sound.

Proof. First we prove the soundness of this PHP, and then show its proof of knowledge property.

SOUNDNESS. Given the polynomial R1CS relation R = (F,n, m,{L, R, O}, {) and input @, assume there exists
no witness a(X),b(X),w(X) that satisfies the equation of Definition Since the relation encoder’s
polynomials are generated honestly (and thus are correct), there is no witness satisfying the equivalent
equation either. Then, for whatever polynomials a(X),b(X),%(X) sent by the prover P* in the first
round, it must be the case that

f(X» Zy, 2R, ZO) = Z (ZL ’ d(n) +Zr- 6(77) —Zo- d(n)é(n))AH(Xv 77) + 2(77) ’ VLRO(X7 N, 2L, ZR, ZO) #0
neH

for properly reconstructed £(X) =37, 1 &',y - LX)+ w(X) - zL(X).

Let the protocol run as usual, then a(X), b(X), w(X), s(X), ¢(X),7(X),¢'(X),r'(X) and o are the poly-
nomials and message sent by P*, and z,ar,ar,ao,y are the messages from V. Due to the order of the
messages, we know that a(X),b(X),w(X),s(X) are independent of answers x, {aa}, and o, ¢(X),r(X) are
independent of y.

Conditioned on the verifier accepting the proof, meaning that all degree and both polynomial checks are
satisfied, we denote with bad; and bad, the events that the first and second polynomial checks hold when
there exists no satisfying witness for the R1CS relation.

Given that the verifier accepted and the second polynomial check is deterministic, Pr(bady) = 0. This
means that for all & € K, the prover will find a polynomial p'(X) such that p'(k) = > yre (1 g0y @nr-valy (k)
E]ﬂw(ﬁ) (x) -Eff)l(n)(y), as it does not depend on the witness. Considering the degree check on 7/(X), we have
that p'(X) := (X - 7(X) + @) is a polynomial of degree < |K| — 1 that sums to o on K. Putting all of this
together and considering the definition of p/'(X), we have that 0 = Vygro(z,y, ar, ar, ao).

31

Next, since the polynomials a(X), b(X),w(X), s(X), ¢(X),r(X), Viro(z, X, ar, ar, ao) are independent
of y, by the Schwartz-Zippel lemma we obtain that the first polynomial and degree checks imply that

g(X)zu(X) + Xr(X) = s(X) + p(X) holds with probability > 1 — QD%&-'IEU over the choice of y € F\ H.

By the assumption on the nonexistence of a satisfying witness, the above equality can only hold when y
happens to be a root

s(y) + (awaly) + arbly) — a0a(y)b(y)) Az, y) + 2@)Veno(w,y, ar, ars00) — a(y) Za(y) - yr(y) =0,

which occurs with probability at most Pr(bad;) < %ﬁ‘llm

The remaining degree check gives us that r(X) € F<,,_2[X], and thus by Lemma [2| we have that

> sn) + f(,an, ar,a0) =0

nel

Let ¢ = ZneHs(n), since ¢ and f(X, Zy,Zr, Zo) are independent of x, {aps}, by Schwartz-Zippel we have
that Pr[f(z,ar,ar, a0) +< = 0] < & over the choice of z, {ap} +sF. O

KNOWLEDGE SOUNDNESS. We define the extractor algorithm £ that runs the prover P* for the first round,
obtains a(X),b(X),w(X), and reconstructs the nonrandomized witness polynomials by interpolation as
a(X) = ZneH &(n)ﬁ%ﬂ(X), b(X) = ZneH b(n)ﬁlflﬂ(X),w(X) = ZneHw(n)Eg(X).

If the verifier accepts with probability greater than the soundness error € given above, then the polynomials
returned by £ must encode a valid witness.

Finally, it is easy to see the straight-line extractability. The algorithm WitExtract is the one that takes
the polynomial w(X), and reconstructs the R1CS witness w by taking its evaluations on the points of
H \ L—recall w(X) := ZWGH\L W () - EISI(X).

Theorem 4 (Zero-Knowledge). The PHP PHP, 151 described in section 18 perfect zero-knowledge.
Furthermore, it is perfect honest-verifier zero-knowledge with query bound b = (b, by, by, bs, by, by, 00, 00).

Proof. We begin by showing the perfect zero-knowledge. As this scheme lies on the PHP model, there is no
need to worry about oracle polynomials. Thus, we set our focus on the single non-oracle message o that the
prover sends throughout the rounds, which by the way does not depend on the witness. More formally, we
describe a simulator S that on input the relation R = (F,n,m,{L, R}, {) and the input x, and given oracle
access to the verifier V*, proceeds as follows. It runs V* to obtain its random messages «x, y, @ and its checks.
Next, it computes 0 = Vpg(z,y, ar, ar, @o), and outputs o followed by checks obtained from V*. Note that
View(SY" (F,R, z)) is identically distributed to View (P(F,R,z, a(X),b(X), w(X)) ,V*).

Next, we prove b-HVZK for bounds b,, by, by, bs,bg, b, on the polynomials a(X), ZA)(X)7 w(X), s(X),
q(X),r(X) respectively, whereas for the polynomials ¢’(X), r'(X) we tolerate unbounded number of evalua-
tions (this is trivial as these polynomials depend on public information only).

Let C(,7) be the algorithm that on any pair (i,) outputs 1 if and only if ¢ € {1,...,8} and « ¢ H. For
a 7y < T, it holds Pr[C(i,v) = 0] = |H]/|F|, which is negligible for the choices of F considered in this paper.

The simulator samples a random tape p for the honest verifier and runs Qy(p) to sample queries
(z,y,{an}me(r,r,01), and its decision algorithm {d, {(G,v)} < Dy(FF,x;p) to obtain its checks. Then,
it simulates answers to polynomial evaluations as follows.

For every pair (¢,v) with ¢ € {7,8} (i.e., for every query on ¢, r’), the simulator computes ¢; , <+ p;(7)
honestly, which is trivial as these polynomials depend only on public information.

For every pair (i,7) € £ such that i € [6] \ {5} (i.e., every query on @, b, , s, 7), the simulator samples a
random value ¢; , <—sF and stores a tuple (¢,v,%;) in a table T.

32

For every query (5,) it simulates the answer with the value ¢5 , computed as follows:

tom ¢ tay - ZL(Y) + D& gy - Lo (V)
nel
tpy < (L tiy +ar-toy — a0ty tay) Au(@,v) +toy - Virroy (@, 7, oL, ag, ao)
tpy T tay — 7 toy
Zu(y)

t5,7 —

While doing the computations above, for j = 1,2,3,4,6, if an entry (j,7,t;) already exists in T, then
the corresponding value t; , is used; otherwise a random ¢; , <—sF is sampled and a new entry (j,v,t;) is
added to T.

S returns (p> VLr(7,y, oL, ar, ao), (d,{(G,v)}), {tiﬁ/}(i,'y)eﬁ)-

To conclude the proof, we argue that the distribution of S’s output is identical to that of

(View(P(IF, R,x,a,b,w) ,V)7 (pi<’7))(i,'y)€l:) .

By the (b, + by)-wise (resp. (by + by) and (b, + b,)-wise) independence of the polynomial a(X) (resp.
b(X) and @(X)) sampled by the honest prover (and using the fact that they are evaluated on F \ H), we
have that the set of simulated answers {t; , }ic[3]:(i,7)ec are identically distributed (we recall that these sets
are of size by, b, and b, respectively) to those of the real prover.

For the remaining polynomials, let us recall that for the honest prover we have

where 2(X) = @(X) - Z20(X) + 3, cp, ® gu(n) LX), qs(X) «=sFp, 11, [X] and 74(X) <= Fp, 15, [X]. Also, let
us write p(X) = ¢p(X)2Zwu(X) + Xrp(X) for the unique g,(X),r,(X) by polynomial division.

By the uniqueness of polynomials ¢(X) and r(X) € F<,,_2[X] such that s(X) +p(X) = ¢(X) - z2u(X) +
X - r(X), we have that ¢(X) = ¢,(X) + ¢s(X) and 7(X) = r,(X) + rs(X).

By the (b, + by)-wise independence of r4(X) (and thus of (X)) we obtain that the set of simulated
answers {t¢ }(6,y)ec (Whose cardinality is at most b,) are identically distributed to those, {r(7)},1)ez, of
the real prover. Furthermore, by the (bs+b,)-wise independence of ¢,(X) we obtain that the set of simulated
answers {t4 }(4,y)ec (Whose cardinality is at most b,) are identically distributed to those, {s(7)},4)ec, of
the real prover. In particular, for this we use that for v € F \ H, s(X) is (bs + by)-wise independent even
conditioned on r4(X).

To argue the correct distribution of the set of simulated answers {t5 -} (5,)c, We observe that the honest
q(X) is determined by (p(X) + s(X) — Xr(X))/2Zu(X), where p(X) is defined as above. In particular, an
evaluation of ¢(v) on v € F \ H can be obtained as (p(v) + s(v) —vr(v))/2u(7), thus using evaluations of
a(7y), B(fy), w(y), s(7), r(7), and evaluations of publicly available polynomials. This explains the simulation
strategy of t5 4 by S, and these values are identically distributed to ¢(-y) as the polynomials a(X), b(X),
w(X), s(X), and r(X), each allows b, more evaluations whose outputs are uniformly distributed.

Remark 4 (On degree optimizations). From the proof of the above theorem it turns out that increasing the
degrees of polynomials a, 13, w, s, r by by may be a too conservative choice. Indeed, additional information
about these four polynomials is leaked only if an evaluation ¢(X) is revealed on a point v on which these
polynomials were not already evaluated. More precisely, if the list £ is such that the simulation of t5 , does
not require sampling new values t; ., j € {1,2,3,4,6}, then it is sufficient to have & € F<,1y,, be Feptbys
w e an-i-bwv qs €]ngs, rs € Fﬁbw

Remark 5 (On the number of relation polynomials). We present a variant of PHP,1.s1, that we call PHP ¢,
whose difference with the former is a reduced number of relation polynomials. In particular, the offline phase

33

of PHP, 11 outputs three less polynomials col’ (X), row’(X) and cr'(X). Here the second polynomial check
has degree 3, with a publicly computable term X:

n* - <X~ ' (X) +H2) . (azy—:r- col(X) —y- row(X) + cr(X))

—ZH(.’I?> . ZH(y) . Z(X]u . VCI’M(X) — q,(X) ~ZK(X) ; 0 (13)
Me{L,R,0}

A Variant with Separate Sparse Matrix Encodings Here we show a variant of our PHP for R1CS, in
which the matrices {L, R, O} are encoded separately as in definition @ We call this scheme PHP, ..

We can use such sparse encoding of L, R and O to change the Voro(X,Y, Z1, Zr, Zo) polynomial in
equation into the following one:

Viro(X,Y, Z1, Zr, Z0) = Y Znr -valu(k) - Lo, 00 (X) - L0 (V)

reEK
Me{L,R,O}

Then in this variant the prover’s goal is to show that the polynomials sent in the first round satisfy the
equation above. This variant proceeds almost identically to the one of section [£:4} the main differences are
in the relation polynomials and the third round.

Offtine phase RE(F,n,m,{L, R,0},¢). The holographic relation encoder outputs 57 polynomials,
{{erij (X))} je0.31nizans {verasi; (X) I ame(r,r,01nije0,2) € F<igj—1[X]

{cr’ (X) =X Cl’i’j(X)}

,J

1,5€[0,3] Ni#£3#£] € FS\K\[X]

where cr; ;(X) and vecrps; ;(X) are obtained by computing low-degree extensions of the polynomials that
represent the coefficients accompanying the z* - 7 terms of the following polynomials, respectively:

[(& — rowm (X)) - (y — colm (X))

Me{L,R,0}
ZvaIM(X) - rowpm(X) - colm(X) - H (z — rowm (X)) - (y — colw (X))
Me{L,R,0} M'#M

Similarly to PHPjitep, the goal of all these polynomials is to obtain a verifier polynomial check that has
at most degree 2 in the oracle polynomials.

Online phase (P ((F,n,m,{L,R,0},£),z, (a(X),b(X),w(X))),V(F,n,m,x)). Round 1 and 2 proceed iden-
tically to the PHP of section [£.4] except for the different definition of the polynomial Vy ro.

Round 3 The verifier sends a random point y «—s F\H. The prover uses y to compute o + Viro(z,y, ar, ar, @o)
and then defines the degree-(|K| — 1) polynomial

Viro(X,Y, Z1, ZRr, Z0) = ZZM Valm (k) - Ligw () (X) + Lty (V)

kEK
Me{L,R,0}

The goal of the prover is to convince the verifier that), i p'(x) = o and for all K € K

P (k) = Z OKMV3|M(’€)£]E£WM(~) (x)ﬁﬂm(m) (y)
Me{L,R,0}

34

Note that by decomposition of the Lagrangians this is equivalent to

VeeK: n?p(k) H(x — rowm (k))(y — colm(k)) —

Me{L,R,0}
y) Z aprvaly (k) rowy (k) coly (k) H(x — rowpm (k))(y — colm/ (k) =0
Me{L,R,0} M'#AM

that by using 42 of the relation polynomials and cr3 3(X) = 1 can be rewritten as

YV k€ K:n?p/ (k) Zwi cyler (k) — Zu(x) - Zu(y) ZaM byl verpri (k) =0

i,j€[0,3] 1:7€10,2]
Me{L,R,0O}

Then, P computes r'(X) = (p/(X) — @)/X € Fgj—2[X] and ¢'(X) := %)&) € Fegj—2[X] with

HX)=n"p'(X) D a'ylenj(X) - zu(2)2u(y) > amz'yverar ;(X) € Fox)—o[X]
1,7€[0,3] i,7€[0,2]
MeE{L,R,0}

and sends {¢'(X),r(X)} to V.

Decision phase. The degree checks and first polynomial check stay the same, while the second polynomial
check using the 57 relation polynomials becomes the following

Z 'y er (X)) +n®r'(X) Z xlyl cr; ;(X)

ue[o 3] i,5€[0,3]

—zu(@)2u(y) > aua'y’ vernij(X) — ¢(X) 2x(X) 20 (14)

i,j€[0,2]
Mec{L,R,0}

with crz 3(X) =1 and crj 5(X) = X.

Efficiency analysis. In this variant where nonzero entries are treated separately |K| > m, unlike in the
previous construction where it was |K| > 3m. The relation encoder creates 42 polynomials of degree < |K|—
and 15 of degree < |K|, doable in time O(|K|log |K|). The degree, proof length, prover complexity and verifier
complexity are the same as in section To summarize, the degree is D = max{2n + b, + by + 2b, — 3,n +
bs + by — 1, K|}, proof length is I(R) < 6n + 2|K| — ¢ + 2b, + 2by, + by, + 2bs + 7b, — 4, prover complexity is
O(|K|log |K| + |H|log |H]), while verifier’s is O(¢ + log |H| + log |K]).

Remark 6 (On the number of relation polynomials). We present a variant of PHP 1., that we call PHP 1y,
whose difference with the former is a reduced number of relation polynomials. In particular, the offline phase
of PHP,1csox outputs 15 less polynomials cr;j(X). Here the second polynomial check has degree 3, with a
publicly computable term X:

7L2(X7“ Z z'y? er; ;(X) —ZH(:L*)ZH(y)ZaAm:iyj vera i (X) — ¢(X) z2r(X) ;0(15)

,7€[0,3] i,5€[0,2]
Me{L,R,0}

A Variant with Better Tradeoffs Here we show another variant of a PHP for R1CS that presents a
tradeoff between the number of relation polynomials and the degree of the second polynomial check. We call
it PHP1cs3, and it will follow the separate sparse encoding of definition [6}

We will proceed as in PHP,1.», which also follows this encoding. The main differences we highlight are
in the relation polynomials and the final round.

35

Offline phase RE(F,n,m,{L, R,0},¢). The holographic relation encoder outputs 12 polynomials describing
the matrices of the R1CS,

{rowwm, colw, crm, verm, Faseqr, roy € Fepr—1[X]
where cry(X) := Y, ok colw(k) - roww (k) - LE(X) and verm(X) := Y, i valu (k) - colm (k) - rowm (k) - L5 (X).

Online phase (P ((F,n,m,{L, R,0},¢),z, (a(X),b(X),w(X))),V(F,n,m,x)). Round 1 and 2 proceed iden-
tically to the PHP of section [£.4] using the same definition of polynomial V7, go.

Round 3 Here, the only difference comes when redefining the polynomial ¢(X) which is now defined over
F<7x|—7[X]. This can be done using 9 relation polynomials as:

t(X) :=n?-p(X) H (z = rowm (X)) (y — colm(X))

Me{L,R,0}
— zu(z)zu(y) ZaM -valy(X) colp(X) rowm(X) H (z — roww (X)) (y — colw (X))
Me{L,R,0} M'#M

Nonetheless, this option will lead to a polynomial degree check of degree 8, which is undesirable for the
verifier. Instead, we can make use of the other relation polynomials to obtain an equivalent definition of ¢(X)
with at most degree-5 checks:

tH(X) :=n?p(X) H (zy — yrowm(X) — zcoly(X) + cru(X))

Me{L,R,0}
— zy(x)zu(y) Z apy - verm(X) H (zy — yroww (X) — ol (X) + crm (X)) € Feyjij—a[X]
Me{L,R,0} M'£M

As usual, the prover will send {¢’, 7'} to the verifier, such that 7'(X) = (p/(X) — @)/X € Fegj—2[X]

and q/(X) = 7;[2?))() S F§3|K\—4[X]'

Decision phase. The degree checks and first polynomial check stay the same, while the second one becomes
the following check using the 9 relation polynomials

— ¢(X) zx(X) 4 n? <Xo r'(X) +HU<> H (zy — y rowm(X) — 2 colm(X) + crm(X))

Me{L,R,0}
—Zu(x)zu(y) ZQM verp (X)) H (zy — y rowm (X) — z colw (X) + crm (X)) 20 (16)
Me{L,R,0} M'#£M

Efficiency analysis. In this variant where nonzero entries are treated separately, |K| > m as well. The relation
encoder creates 12 polynomials of degree < |K| — 1, doable in time O(|K]|log|K|). Note that the quotient
polynomial sent in the third round has much larger degree now, which becomes D = max(2n + b, + by +
2bg — 3, 3|K| —4). The proof length, prover complexity and verifier complexity are the same as in section
To summarize, the proof length is [(R) < 6n + 2|K| — ¢ + 2b, + 2by, + by, + 2bs + 7b, — 4, prover complexity
is O(JK|log |K| + |H|log |H]), while verifier’s is O(¢ + log |H| + log |K]).

5 Preliminaries on Commitments and zkSNARKSs

5.1 Commitment Schemes

In our work we use the notion of type-based commitments (Definition . Type-based commitments, intro-
duced by Escala and Groth [28], are a generalization of regular commitments that unify several committing

36

methods into the same scheme. This capability can be useful when committing to values from different
domains (e.g., elements from one of the bilinear groups G1, Gz, as in the original motivation of [28]), or
when creating commitments with different security properties (e.g., some that are hiding and some that are
not). As done in [13], in this work we will exploit the formalism of type-based commitments to describe
commit-and-prove zero-knowledge proofs that work with commitments of different typeﬂ

More in detail, a type-based commitment scheme is a tuple of algorithms CS = (Setup, Commit, VerCom)
that works as a commitment scheme with the difference that the Commit and VerCom algorithms take an
extra input type that represents the type of c. All the possible types are included in the type space T.

Definition 11 (Type-Based Commitment Schemes). A type-based commitment scheme for a set of
types T and with message space M is a tuple of algorithms CS = (Setup, Commit, VerCom) that work as
follows:

Setup(1*) — ck takes the security parameter and outputs a commitment key ck.

Commit(ck, type,m) — (¢, o) : takes the commitment key ck, a type type € T and a message m € M, and
outputs a commitment ¢ and an opening o. We assume ¢ contains information about its type, which we
denote by type(c).

VerCom(ck, type, c,m,0) — b: takes as input the commitment key ck, a type type € T, a commitment ¢, a
message m € M and an opening o, and it accepts (b =1) or rejects (b =0). By default it outputs 0 if
type(c) # type. Additionally we define VerCom(ck, ¢, f,0) that runs VerCom(ck, type(c), ¢, f,0).

CS satisfies correctness, type-typed binding and type-typed trapdoor-hiding properties defined below:

Correctness. For any A € N, any commitment key ck < Setup(17), type type € T, message m € M, and for
any honestly generated commitment-opening (¢, 0) < Commit(ck, type, m), we have that VerCom(ck, type, ¢, m,0) =
1;

type-typed Binding. Let type € T, CS is type-typed (computationally) binding if for every (non-uniform,)
efficient adversary A we have Pr(Game% ™ (\) = 1] = negl(\) where:
Game%™ ()

ck + Setup(1*)

c,m,o,m’,0 < A(ck, type, auxz)

return VerCom(ck, type, ¢, m, 0) Z1A VerCom(ck, type, ¢, m’, o) Z1Am “m/

We simply say that CS is binding if it is type-typed binding for any type € T.

type-typed Trapdoor-Hiding. There exist three algorithms (ck,td) < Sa (1), (c, st) < TdCom(td, type) and
0 < TdOpen(td, st, type, c,m) such that: the distribution of the commitment key returned by Sck is perfectly/
statistically close to the one of the key returned by Setup; for any m € M , (¢,0) = (¢, 0") where (c,0) +
Commit(ck,m), (¢, st) + TdCom(td, type) and o' + TdOpen(td, st, typec’, m).

Definition 12 (Succinct Commitments). A commitment scheme CS is said succinct if there is a fixed
polynomial that bounds the size of every commitment ¢ returned by Commit; in particular |c| may be inde-
pendent of the size of the message.

' Our notion of type-based commitments is analogous to that in [13] with one exception: we allow the same message

space, e.g. the set of polynomials, to be associated with different types; we see a type as a way to device different
sets of properties from a commitment scheme in a fine-grained manner.

37

5.2 Preprocessing zkSNARKs with Universal and Specializable SRS

In a recent work, Groth et al. [40] introduced the notion of (preprocessing) zkSNARKs with specializable
universal structured reference string (SRS). In a nutshell, this notion formalizes the idea that key generation
for R € R can be seen as the sequential combination of two steps: a first probabilistic algorithm that generates
an SRS for the universal relation R and a second deterministic algorithm that specializes this universal SRS
into one for a specific R. We remark that by considering “universal relations” R that contain a single R, and
by having Derive as the identity function, one recovers the usual zkSNARK notion.

We consider families of relations parametrized by the output of a probabilistic algorithm ParGen(1%)
— pp that takes as input the security parameter and outputs a set of relation parameters pp. The families
also depend on a size bound N; we denote them as a tuple (ParGen7 {Rpp,N}ppe{O,l}*,NGN)' Occasionally, as
in the definition of CP-SNARK, we will consider “simple” relation families R parametrized only by a bound
N eN.

Definition 13 (Universal zkSNARK). 4 zkSNARK with specializable universal SRS (Definition ??) for
a family of relations (ParGen, {Rpp,N}ppe{O,l}*,NeN) is a tuple of algorithms IT = (KeyGen, Derive, Prove, Verify)
that work as described below and that satisfy the notions of completeness, succinctness and knowledge-
soundness defined below. If II also satisfies zero-knowledge we call it a universal zkSNARK.

— KeyGen(pp,N) — (srs,tdy) is a probabilistic algorithm that takes as input the public parameters for the
relation family and it outputs a srs := (ek,vk). We assume without loss of generality that srs contains pp
output of ParGen.

— Derive(srs, R) — (ekg, vkr) is a deterministic algorithm that takes as input an srs produced by KeyGen(pp,
N), and a relation R € Ry, and outputs specialized keys srsg := (ekg, VKR).

— Prove(ekr,x,w) — 7 takes a proving key ekg for a relation R, a statement x, and a witness w such that
R(x,w) holds, and returns a proof .

— Verify(vkr, x, ™) — b takes a verification key for a relation R, a statement x, and either accepts (b=1) or
rejects (b= 0) the proof .

Completeness. For all pp € Range(ParGen),N € N, R € Ry, n and (x,w) such that R(x,w) =1, it holds:

(srs, tdy) « KeyGen(pp, N)
Pr | (ekgr,Vvkr) < Derive(srs,R) : Verify(vkg,x,7) =1 =1

7 < Prove(ekg, x, w)

Succinctness. I is said succinct if the running time of Verify is poly(A + |x| + log |w|) and the proof size is
poly(A + log |wl).

Knowledge Soundness. Let N = poly()), we say I has knowledge soundness for an auxiliary input dis-
tribution Z, denoted KSND(Z) for brevity, if for every (non-uniform) efficient adversary A there exists a
(non-uniform) efficient extractor € such that Pr [Gamegﬂ%()\) = 1] = negl(X). We say that II is knowledge-
sound if there exists benign Z such that IT is KSND(Z).

Game%%'\"g)Ag (A) =0

pp + ParGen(1%)

(srs, tdk) < KeyGen(pp, N)
auxz < Z(srs)

(R,x,m) + A(srs,auxz)

w < E(srs,auxz)

vkr < Derive(srs, R)

b = Verify(vkgr, x,) A =R(x,w)

38

Zero-Knowledge in SRS Model. We say II is zero-knowledge if there exists a simulator S such that for all
adversaries A, for all pp € Range(ParGen),N € N, for all R € Rppn, and for all (x,w) such that R(x,w) =1,

pp « ParGen(1

A
(srs, tdy) < KeyGen(pp, N

Pr o Alsrs, tdg, Ryx,w,) = 1

Q

srsg < Derive(srs, R

i pp + ParGen(1* i

Pr | (srs, tdx) < KeyGen(pp, N
T < S(tdk, R, x

)
)
)

7 < Prove(srsg, x, w)
)
)+ A(srs, tdy, R, x, w, m) =1
)

5.3 Universal Commit-and-Prove SNARKSs
We adapt the notion of commit-and-prove SNARKSs of 23| to universal relations.

Definition 14 (Universal CP-SNARKS). Let {Rn}nen be a simple family of relations R over Dy x
Dy X Dy, such that D, splits over £ arbitrary domains (D1 X --- x Dy) for some arity parameter £ > 1. Let
CS = (Setup, Commit, VerCom) be a commitment scheme (as per Deﬁnition whose input space D is such
that D; C D for all i € [¢]. A universal commit and prove zkSNARK for CS and {Rn}nen s a zkSNARK
for a family of relations (ParGen = CS.Setup, {Rgﬁnﬁ}cke{o,l}*,NeN) such that:

— every ng"ﬂ € RE™ is represented by a pair (ck,R) where N = poly(\), ck € Setup(1*) and R € Ry;
- Rccfﬂ is over pairs (X,W) where the statement is % := (x,(c;)jejq) € Dx x C*, the witness is W :=
((us)jeqe, (05) e, w) € D1 x --- x Dg x Of x D,,, and the relation Rgﬁﬂ holds if and only if

/\‘e[a VerCom(ck, ¢;,uj,0;) = L AR(X, (uj)jep,w) =1
J

We denote a Universal CP-SNARK as a tuple of algorithms CP = (KeyGen, Derive, Prove, Verify). For ease
of exposition, in our constructions we adopt the syntax for CP’s algorithms defined below.

— KeyGen(ck, N) — srs := (ek, vk) generates the structured reference string.

— Derive(srs, R) — vkg is a deterministic algorithm that takes as input a srs produced by KeyGen(ck, N), and
a relation R € Ry.

— Prove(ek, x, (¢j)jeies (Uj) e (05) e, w) — ™ outputs the proof for (x,w) € R and w = (uy,...,us,w).

— Verify(vkr,, (¢;) e, ™) — b € {0,1} rejects or accepts the proof.

Type-restricted completeness. In the completeness notion of Universal CP-SNARKSs (Definition , the CP-
SNARK is required to work on commitments of any type. Here we define a weaker notion of completeness
in which the CP-SNARK works only when certain witnesses are committed with a specific type. This is
useful if we want to use a CP-SNARK that supports only a subset of the types of the commitment scheme.
We give a few examples. Suppose the commitment scheme has two different types, type;, type,, and there
exists a CP-SNARK that only works with commitments of type,. Alternatively, a CP-SNARK for a relation
with ¢ 4 {5 committed witnesses could work only when the first £, commitments are of type type; and the
subsequent /> commitments are of type type,. And clearly, more fine-grained combinations are possible. The
following definition formalizes this completeness notion of CP-SNARKSs:

Definition 15. Let {Rn}nen be a family of relations R over Dy x D, x D,, such that D, = D’ for ¢ € N.
Let CS be a commitment scheme with types set T and message space D C M and let T € T*.

A CP-SNARK scheme CP is T-restricted complete if for every N € N, R € Ry, ck and ((x, (¢j) e[q), W)
such that Rfﬁﬂ((x, (¢j)jel), W) =1, and for all j € [{] : type(c;) = T} it holds:

(ek,vk) « KeyGen(ck, N),

Pr 7 < Prove(ek, X, W)

: Verify(Derive(srs,R),x,m) =1 | =1

39

For T' C T* we say that CP-SNARK scheme CP is T’ -restricted complete if for all T € T it is T-restricted
complete.

Commitment-only SRS. The following definition formalizes a property common to several schemes.

Definition 16 (Commitment-only SRS). We say that a universal CP-SNARK has a commitment-only
SRS if the key generation algorithm is deterministic.

Notice that for universal CP-SNARK with commitment-only SRS the notion of zero-knowledge defined in
Definition [13]is not achievable. In fact, formally speaking, the commitment key ck is part of the description
of a relation; thus, the actual SRS of the CP-SNARK would be the empty string. However, the classical
result of [36] shows that NIZK in the plain model exists only for trivial languages. Therefore we consider a
weaker notion of zero-knowledge where the trapdoor necessary for simulation comes from the commitment
key of CS.

Definition 17. A universal CP-SNARK CP is trapdoor-commitment zero-knowledge in the SRS model for
a family of universal relations {Rn}nen if there exists a simulator S such that for all adversaries A, N € N,
R € Rn, (ck,td) € Sek(1?), and %, W such that REf",Q(%W) =1:

[(srs, tdy) + KeyGen(ck, N)
Pr srsg < Derive(srs, R)
7 < Prove(srsg, x, w)

(srs, tdy) < KeyGen(ck, N)
m — S(tdk, td, R, x)

o A(srs, tdy, td, Ry x,w,) = 1| =~

Pr o A(srs, tdy, td, R, x,w,) = 1

where X = (x, (¢j)jefq) and W = ((uj) e, (0) e[, w)-

Lastly, when the CP-SNARK CP is for a family of relations {Ry}nen and |Ry| = 1 for all N then we
omit the algorithm Derive and drop the adjective universal.

Knowledge Soundness with Partial Opening. Sometimes, we consider a more general notion of knowledge
soundness for CP-SNARKs introduced by Benarroch et al. [13] named knowledge soundness with partial
opening (Definition . The intuition is to consider adversaries that explicitly return a valid opening for
a subset of the commitments that they return. This models scenarios in which these commitments are not
extractable and trusted by the verifier.

Definition 18 (Knowledge Soundness with Partial Opening). We say that II has knowledge sound-
ness with partial opening for a commitment scheme CS and an auziliary input distribution Z, denoted
poKSND(CS, Z) for brevity, if for every (non-uniform) efficient adversary A there exists a (non-uniform)

efficient extractor £ such that Pr[Gamech’lfigD(A) = 1] = negl()), where the experiment is defined as follows.

poKSND
GameCS)Z)Af b

ck < CS.Setup(1%); (srs, tdy) < KeyGen(ck,N); auxz < Z(srs)
(Rox, (¢5)jere15 (Ug) e, (05)jeter), ™) 4= Alsrs, auxz)

((uy)jere, (05)jer,w) < E(srs,auxz)

vkgr ¢— Derive(srs, R)

b = Verify(vkr, x, m) A = /\ - VerCom(ck, ¢;, uj,05) < AR(x, (uj) e, w))
J

40

6 Our Compiler from PHPs to zkSNARKSs with Universal SRS

In this section we show how to compile PHPs into zkSNARKSs. At a high level, we follow the known paradigm
stemming from Kilian’s work [46] (and the extension to non-interactive arguments by Micali [52]) in which
the prover commits to the oracles, answers the verifier’s queries generated using a random oracle and proves
correctness of these answers.

We first introduce some required building blocks in Section and then describe our compiler in two
steps: in Section [6.2] we convert a PHP into a public coin interactive argument system in the structured
reference string model (SRS)E and then remove interaction through the Fiat-Shamir transform. The proofs
of the theorems in this section can be found in Appendix [C]

6.1 Building Blocks

In our compiler we make use of the following:

a PHP protocol PHP over a finite field F;
a commitment scheme CS for polynomials in F[X];

— a CP-SNARK CP,,n proving knowledge of the committed polynomials;

— a CP-SNARK CPy,;, proving that the PHP verifier accepts, namely for the family of relations Rpnp defined
in Section [3.1} which corresponds to the PHP verifier’s degree and polynomial checks.

We now describe some of the properties we require from our commitment scheme for polynomials and
from CP-SNARKS for them.

Commitments to Polynomials Recall that a PHP verifier has access to two sets of oracle polynomials:
those from the relation encoder (which roughly describe the relation) and those from the prover (which
should supposedly persuade the verifier to accept a public input x). During compilation, we shall commit to
polynomials in both sets; we will require all these commitments to be binding, but not to fully hide any of
these polynomials.

The commitments for the relation encoding polynomials—whose type we denote by rel—do not need
to hide anything: they open to polynomials representing the relation, which is public information. The
polynomial commitments of type rel have weaker requirements for one more reason. Besides not requiring
them to be hiding, we will not require them to be extractable (i.e., we do not assume a CP-SNARK that
has knowledge soundness for them, here is the reason to use the notion of knowledge soundness with partial
opening).

Above, we ignored leakage when committing to relation encoding polynomials; we cannot do the same
when committing to the polynomials from the PHP prover: they contain information about the witness. If
we do not prevent some leakage we will lose zero-knowledge. At the same time we will show that we do not
need full hiding for these polynomials either, just a relaxed property that may hold even for a deterministic
commitment algorithm. We call this property somewhat-hiding—defined below— and denote its type by swh.

In the remainder of this section we will assume CS to be a polynomial commitment scheme; i.e., a
commitment scheme (see Definition in which the message space M is F<4[X] for a finite field F € F and
an integer d € N. Without loss of generality we assume d to be an input parameter of Setup.

Definition 19 (Somewhat-Hiding Polynomial Commitments). Let CS = (Setup, Commit, VerCom) be
a type-based commitment scheme for a class of polynomials F<q[X] and a class of types T, and that works
as in Definition [T}, but where we allow Commit to be deterministic.

We say that CS is somewhat-hiding for type type if it satisfies the following property.

12 A straightforward extension of interactive arguments; see Section for a definition.

41

type-typed Somewhat Hiding. There exist three algorithms (ck,td = (td’,s)) + Se(s) where s € F, (c, st) +
TdCom(td,) and o + TdOpen(td, st,c,) such that: (1) the distribution of the commitment key returned
by Sck with a uniformly random s <—sTF as input is identical to the one of the key returned by Setup; (2)
for any f € F4[X], (¢,0) = (¢/,0") where (c,0) + Commit(ck,type, f), (¢, st) + TdCom(td, f(s)) and
o' + TdOpen(td, st,c, f).

For our first compiler (Section [6.2)) we assume CS to be a type-based commitment scheme with type set
T = {rel, swh} that is binding for all types and swh-typed somewhat-hiding. We summarize this requirement
in the following definition.

Definition 20 (Compiling Commitment Scheme). Let CS = (Setup, Commit, VerCom) be a type-based
commitment scheme for a class of polynomials F4[X] and a class of types T = {rel,swh}. We say CS is a
compiling commitment scheme if it is T -binding and swh-somewhat-hiding.

CP-SNARKS for CS. We assume that the commitment scheme CS is equipped with a CP-SNARK CPp, =
(KeyGen,,,, Proveppy, Verify) for a relation family R’ 2O Rphp (we defined Rppp in Section [3.1)), and with
a CP-SNARK CPop, = (KeyGen,,,, Proveepn, Verify,,,) for the (trivial) relation family Ropn = {%, (pj)je[q
¢ € N} whose instance is the empty string ¢ and witnesses are tuples of polynomials. A CP-SNARK for Ropn
is essentially a proof of knowledge of the openings of ¢/ commitments.

Additionally we define a weaker zero-knowledge notion that is sufficient to be satisfied by the CPph, CP-
SNARK in our compiler. This new property allows better efficiency and flexibility of the compiled protocols.

Leaky Zero-Knowledge. Intuitively, a CP-SNARK for relations over committed polynomials is leaky zero-
knowledge if its proofs may leak information about a bounded number of evaluations of these polynomials.
This is formalized by letting the zero-knowledge simulator have access to a list {u;(y)}; as a hint for the
simulation of proofs. The formal definition follows.

Definition 21. A CP-SNARK CP is (b, C)-leaky zero-knowledge for a family of relations {Rn}nen if there
exists a simulator S = (Sieak, Sprv) such that for all adversaries A, for allN € N, for all R € Ry, the following
two properties hold.

PROOF INDISTINGUISHABILITY. For all (ck,

td) € Sw(1?), for all X, W where X = (x,(c;)jeq) and W =
((u)jeg, (05) e, w) and such that Rcclf)ﬂ(f(,w =

1, for any L < Sieak(1*,x) let Leak:={(j,u;())}w)ec:

(srs, tdy) < KeyGen)

P (ck,N
"lr e Prove(Derive(srs, R), x, W)
N

: A(srs, tdg, td, R, X, w, 7) = 1] =

(srs, tdy) < KeyGen(ck,
7+ S(tdi, td, R, %, Leak

; : A(srs, tdy, td, R, X, w,) = 1]

BOUNDED LEAKAGE. For any x, and any L <sSieak(1*,x), the list L is (b, C)-bounded with overwhelming
probability over the security parameter.

6.2 Compiling to Universal Interactive Arguments

We describe our compiled universal succinct interactive argument (UIA) system in the SRS model in Figure
A high-level description of UIA follows.

— At key-generation time we run the setup of the commitment scheme CS and generate keys for the auxiliary
CP-SNARKsS.

— When deriving a specialized SRS for a specific relation R we commit to all the polynomials returned by
the relation encoder RE(R).

42

— The prover acts the same at every round except for the last. If we are not at the last round then it commits
to the polynomials from the PHP prover P, proves it knows their openings and propagates the rest of
the messages from P. At the last round it proves that the PH P verifier V would accept. In order to do
that it first runs the decision stage of V, thus obtaining a vector of degree checks (d;); and descriptions of
polynomial equations (G;,v;);. It then partially evaluates the polynomials G;-s on the prover’s message
and uses them—together with the other checks—to prove V would accept.

— At every round that is not the last, the verifier simply propagates the messages from V. At the last round,
it obtains the checks from the decision stage of the PHP verifier. It then checks the prover’s final PHP
proof as well as all the opening proofs received throughout the interaction.

Theorem 5. Let PHP = (r,n,m,d, ne, RE, P, V) be a non-adaptive public-coin PHP over a finite field family
F and for a universal relation R. Let CS be a compiling commitment scheme (Deﬁnition@) equipped with
CP-SNARKs CPopn for Ropn and CPpnp for Rpnp.

— The scheme II = (KeyGen, Derive, Prove, Verify) defined in Figure @ is a zkSNARK with specializable uni-
versal SRS for the family of relations R.

— If CPopn is TP-ZK, and, for a checker C, PHP (resp. CPphp) is (b + 1, C)-bounded honest-verifier zero-
knowledge (resp. (b, C)-leaky zero-knowledge) then II is zero-knowledge in the SRS model.

Remark 7 (On the completness requirements). It is sufficient for CPyp, to be T-restricted complete, with
T = ((re1)"®|(swh)™) € 7", to obtain the completeness of II.

Remark 8 (On updatable SRS). If the commitment key generated by Setup is updatable [40, 26|, and CPqpn
and CPppp have commitment-only SRS (see Definition then the SRS of IT is updatable.

Remark 9 (Efficiency of the resulting zkSNARK). From the construction one can see that in IT:

— Derive outputs a specialized verification key that consists of n(0) commitments;

— the prover sends: m* field elements, n, commitments, r proofs of CPp,, and one proof of CPphp;

— the verifier’s running time is that of the PHP verifier, plus the sum of running Verify,,, and Verify,,, and
r cryptographic hash function evaluations.

Combining the above observations with the succinctness of the commitment scheme CS (Definition and
of the CP-SNARKSs CPpn and CPphp, we obtain the succinctness of I1.

Intuition on Security Proof. We refer the reader to Appendix [C] for a formal proof of Theorem [5} here we
provide an intuition. By the knowledge-soundness property of PHPs we know we can extract a valid witness
from the interaction with a PHP prover. Let’s call this extractor Epgp and let us assume the verifier accepts.
The high-level idea is to simulate the interaction between Epgp and a PHP prover as follows: whenever Eppp
queries a polynomial we run the extractor for CPqp, and respond with the corresponding polynomial (we are
ignoring messages in this proof intuition). Call W the output of Epgp at the end of the interaction. If this
is not a valid witness with high probability then we broke the assumption on knowledge-soundness of the
PHP. To see why: consider the extractor for CPphp, if we run it on 7 h, then we can obtain polynomials that
make the PHP verifier accept (if given oracle access to them). These polynomials must be identical to the
ones we can extract through CPgp,, otherwise we could break binding. If W were not a valid witness then
we could construct a PHP prover that makes the verifier accept but without being able to extract a valid
witness from it breaking knowledge-soundness of the PHP.

We now provide an intuition about zero-knowledge; for simplicity we shall describe it as if the protocol
involved a single committed polynomial. First, observe that we assume a PHP with b 4+ 1-bounded ZK—
i.e., we can simulate interaction with an honest prover even after we have leaked b 4+ 1 evaluations of the
polynomial. Since we assume a commitment scheme that is only somewhat-hiding (Definition [19)), we are
actually leaking one evaluation of the committed polynomial (in particular on a random point). We now

43

KeyGen(1*,N) — (ek, vk) Derive(vk, R) — (ekg, vkr)

// Let D be the max degree of PHP (Definition [I]) po + RE(F,R)

ck « CS.Setup(1*,D) (co, 00) +—s Commit(ck, rel, p,)
(€kopn, Vkopn) ¢— KeyGen, (ck) vkr := (vk, co)

(ekphp, Vkpnp) < KeyGen (ck) ekg := (ek, R,po,oo)

ek := (ck, ekphp, €kopn); Vk := (VKkphp, VKopn)

P(ekr, X, W, p1, ..., Pi) = T
Let r:=r(|R])
if + <r(|R|) then
// Get polynomials and messages from PHP prover
(p;; i) < P(F,R,x,w,p1,..., i)
(ei, 0i) + Commit(ck, swh, p;)

Tlopn,i <— Proveopn(ekopn, Ci, 0;)
T3 := (Ciy s, Topn,i)
else
// Get checks from PHP verifier
((dj)jemp)s (Gi>v5)jeme) < Dv(F, %, p1,. .., pry1)
Sonp 1= ((dj)jeinyls (G5, 5)jelmd) »
where G, partially evaluates Gy, i.e., for k € [ne] :
G(X, (X5)jem) = Gr(X, (X5) e, (] [7r0))
Wonp := ((Poll- - - IIPy); (00 .- - [|or))
Tiphp < Provephp (ekphp, Xphp, (Col| - - - [|er), Wphp)

Tr+1 := Tphp

V(srs, vk, X, 71, ..., 7)) = i

if : <r then
Pi V(]F,X, Ty ,7’l’1‘71)
Pi = pPi
else
Sonp i = ((d1)jelnp)s (G v5)j€lne]) »
where G, partially evaluates G, i.e., for k € [ng] :
Gr(X, (X))jem) = Ge(X, (X5) e, (ma]] . [[7wr)
b < Verify ., (Vkphp, Xphp, (Col| - - - [|€r), Tonp)

b Verify,,, (VKopn, (€i,5) jen(i), i) for i € [r]
Accept iff (/\ie[r] b A b)

Above we use a shortcut notation for committing to whole vectors of polynomials in one go. That is, given a
commitment type ¢ and a vector of polynomials p of size m, above we write (¢, 0) + Commit(ck, ¢, p) to mean
that for each j € [m] (¢j,0;) < Commit(ck,t,p;), ¢ = (c1,...,¢m) and 0 = (01,...,0m).

44
Fig. 3. Compiler from PHP to UIA.

combine this fact with the ZK property we are assuming on the CP-SNARKSs in the computer—b-leaky
ZK— and this allows us to still simulate an interaction with an honest prover that is indistinguishable after
further b leaked evaluationd™]

7 CP-SNARKS for Pairing-Based Polynomial Commitments

In this section we present constructions of (type-based) commitment schemes for polynomials that work
in bilinear groups, and a collection of CP-SNARKSs for various relations over such committed polynomials.
The commitment of a polynomial p is essentially the “evaluation in the exponent” of p in a secret point s,
following the scheme of Groth [38] and Kate et al. [45].

We show various CP-SNARKSs for various relations over polynomials committed using CS; or CSsy; more
details on the CP-SNARKSs follow. Our CP-SNARKSs work over both commitment schemes unless explicitly
stated otherwise.

— ‘I know p : c opens to p™: two CP-SNARKSs CPgp, for proof of knowledge of opening, secure respectively
in the algebraic group model and under the mPKE assumption (Section ;

— “p(z) = y”: a CP-SNARK for polynomial evaluation, CPeya 1, secure under the d-SDH assumption (Section
. We then extend this CP-SNARK as CPe4 to support batching—* (pl(azl) = yi)ie[e]”— in Section

— a very general construction for a CP-SNARK for polynomial equationsiE|7 CPe¢q, relying mainly on CPgpn
and CPey, (Section ;

— a CP-SNARK, CPgq, for quadratic polynomial equationﬁ specific to commitment scheme CSy (Section
; although less general than CPeq, CPqeq is more efficient since its proof may simply be empty, while
verification consists of some pairing checks over the commitments.

— “deg(p) < d”: two CP-SNARKSs for degree bounds, CP&:;; and CPgié, both secure if CPypn and CPeq are

secure; while CP&:; works over both commitment schemes, CPgi; works only over CSs;
— a CP-SNARK CPj.k, a key ingredient in our compiler to universal CP-SNARKSs, to link polynomial
commitments of different types; see “Additional building blocks” for further motivation.

7.1 Bilinear Groups and Assumptions

A bilinear group generator GenG(1*) outputs bgp := (¢, G1, Go, Gr, e), where Gy, Go, Gr are additive groups
of prime order ¢, and e : G; X Go — G is an efficiently computable, non-degenerate, bilinear map. We focus
Type-3 groups where it is assumed there is no efficiently computable isomorphism between Gy and Go. We
use the bracket notation of [29], i.e., for g € {1,2,T} and a € Z,, we write [a], to denote a - Py € G4, where
Py is a fixed generator of G,. From an element [a], € G, and a scalar b it is possible to efficiently compute
[ab] € Gg4. Also, given elements [a]; € G; and [b]s € G2, one can efficiently compute [a - b]7 by using the
pairing e([al1, [b]2), that we compactly denote with [a]; - [b]o.
In our constructions we make use of the following assumptions over a group generator GenG.

Assumption 1 (d-Power Discrete Logarithm [50]) Given a degree bound d € N, the d-Power Discrete
Logarithm (d-DLOG) assumption holds for a bilinear group generator GenG if for every efficient non-uniform
adversary A the following probability is negligible in \:

bgp <—s GenG(11); s < Zy;

P "'=s: ’ j j ’
Ll « A(bgp, {[s7]1,[5"]2} je0,q))

13 Polynomials that allow for unbounded ZK can even use leakier forms of commitments than somewhat-hiding ones.
4 An example of polynomial equations is a(X)b(X)c(X) — s-d(X) = 0).
15 Here “quadratic” means it supports products of at most two polynomials.

45

Assumption 2 (d-Strong Diffie-Hellman [16]) Given a degree bound d € N, the d-Strong Diffie-Hellman
(d-SDH) assumption holds for a bilinear group generator GenG if for every efficient non-uniform adversary
A the following probability is negligible in A:

bgp < GenG(11); s <—sZ;

Pr|C=[s+7N oy Abgp, {57, [} ret0)

We consider a slight variant of the Power Knowledge of the Exponent (PKE) Assumption of Groth [38].
This variant, also used in [24], considers an adversary (resp. an extractor) that outputs a vector of group
elements (resp. of tuples of field elements), and is implied by the PKE assumption.

Assumption 3 (mPKE) The (multi-instance) Power Knowledge of Exponent (mPKE) assumption holds
for a bilinear group generator GenG if for every efficient non-uniform adversary A and a degree bound
d € N there exists an efficient extractor € such that for any benign distribution Z the following probability is
negligible in \:

bgp «s GenG(1*);

auxz < Z(bgp);
dj=~-¢; N 8,7y s Lyg;
¢; #als T T = (11] sl) o

(¢j)jerens (dj)jee) < Albgp, X, auxz);

(a(j))je[g/] + E(bgp, X, auxy)

7.2 The Commitment Schemes

We show two type-based commitment schemes, CS; and CSy, with type set {rel,swh} and for degree-d
polynomials. We begin with an informal explanation of them.

In both schemes, ck contains encodings of powers of a secret point s, a commitment of type swh to
a polynomial p(X) is a group element [p(s)];. The only difference between the two schemes being the
commitments of type rel, which in CS; are [p(s)]; whereas in CSy are [p(s)]2. As we shall see in Section
[7.7] the advantage of having some polynomials committed in G is that one immediately gets a way to test
quadratic equations over polynomials where each quadratic term involves exactly one polynomial of type
rel. Both types of commitments are computationally binding under the power-discrete logarithm assumption
[50]; we prove commitments of type swh to also be somewhat hiding.

Below we describe the commitment schemes in more detail. To keep the presentation compact, we describe
them as a single scheme CS, parametrized by the following function, for g € {1, 2},

g if type = rel
1 if type = swh

[1q(type) = {
The function essentially dictates in which group is a type-rel commitment.
The algorithms (Setup, Commit, VerCom) of CS, are defined as follows:

CSg.Setup(1>‘7 d): Tun bgp <s GenG(1*) to generate the bilinear groups description, set the message space to
be F<4[X] where F := Z,. Next, sample s <—sZ, uniformly at random, compute and output:

ck — {(([sjh)je[o,d]7 [s]2) ifg=1,
([Sj]la [Sjb)je[o’d] if g =2.

CS,.Commit(ck, type, p) — (¢, 0): Let § < p4(type), and output the commitment ¢ := [p(s)]; (the opening o
is empty)

16 For this reason, all the CP-SNARKSs given for this commitment scheme will omit o from the prover’s inputs.

46

CS,.VerCom(ck, type, ¢, p, 0): set G < pg(type), and check if ¢ Z p([s]g)-

Remark 10. We note that in CS;, the elements [1, s]o are not needed to commit and verify openings, but
they are useful to verify the correctness of ck (which is useful when generating ck in an updatable way).

In the following theorem we state the security of the scheme.

Theorem 6. CS, is binding under the d-DLOG assumption for GenG, and perfectly somewhat-hiding.

Proof. Binding is essentially the same as in [38]. Assume the adversary produces two polynomials p and p’
that evaluate to the same value on the point s. Then by finding the 0’s of the polynomial p(X) — p/(X) we
can find s and break the d-DLOG assumption.

For somewhat-hiding, we notice that the polynomial commitment scheme does not need any trapdoor
opening information, thus the TdCom algorithm we define next sets st to be the empty string and there is
no need for the TdOpen algorithm. We define algorithms Scx and TdCom and show that the distributions
produced by the algorithms are indistinguishable from the distributions produced by Setup and Commit:

Sck(s) — (ck,td): use s to compute ck as in Setup and output ck and td = s.
TdCom(ck, type, p(s)) — (c, st): let ug(type) = g and output [p(s)],.

Clearly for an uniformly random s the distributions of the outputs of S and Setup are identical.

7.3 CP-SNARKS for Repn

Here we present two CP-SNARKSs for the commitment schemes CS;,CS; and the relation Ropn (which
essentially provides a proof of knowledge of the committed polynomials). For our results, we are interested
in proving this relation only over commitments of type swh.

A CP-SNARK in the algebraic group model. The first CP-SNARK, CPQPGnM, is actually a trivial scheme in
which the proof is the empty string. Its knowledge-soundness, can be shown in the algebraic group model
[31] where any adversary that returns a commitment is assumed to know coefficients which explain it as a
linear combination of the public parameters, the ck. This is an observation already done in previous work,

e.g., [33,24]), and thus we omit the details of the analysis.

Theorem 7. CPAM is ¢ CP-SNARK for Ropn over CSy (resp. CSq) that is swh'-restricted complete, per-

opn
fectly zero-knowledge and knowledge-sound in the algebraic group model.

A CP-SNARK under the mPKE assumption. The second CP-SNARK, CPE;E, is novel and provides ex-
tractability based on the mPKE assumption and, when used on more than one commitment, on the random
oracle heuristic. In a nutshell, this scheme uses the classical technique of giving as a proof a group element
Topn Such that Topn = v - ¢ for some secret v € F, and this T, can be honestly computed by using the
same linear combination used to compute c¢. What is new in our scheme is a way to batch this proof for ¢

commitments in such a way that we have only one extra group element as a proof, instead of £ elements.

CPPKE KeyGen(ck): parse ck as (cki,cks) with ck; € G4, sample v T, define ek := (ck,v - cky) and

vlsp:n: [1,7]2, and return srs := (ek, vk).

CPCF:g(nE.Prove(ek7 (Cj)je[g], (pj)je[g]): for j € [{] compute T; < [y - p;(s)]1, next compute (p1,...,pr)
H((cj)jery) and output Topn == >, p;T;.

CPCF)’;(,]E.Verify(vk7 (¢j)jeles Topn): compute (p1,...,pe) + H((c;)jeq) and ¢ := 7, pjc;. Output 1 if and

only if e(c, [7]2) = e(nopna [1]2)'

47

Remark 11 (On Updatable SRS generation). Note that the SRS of this CP-SNARK can be generated
by having access to the commitment key (without need of knowing its trapdoor), and it is easy to see
how it can be generated in an updatable fashion, and the correctness of every element can be efficiently
checked using a pairing. Generating the SRS of CPqp, after the commitment key ck would however require
an additional sequence of rounds in the SRS ceremony. Although this can be still useful when re-using an
existing commitment key, it is annoying if the goal is to generate ck and the CPyp, SRS together. In the
latter case, however, it is easy to see that they can be generated together with a single sequence of rounds
in the ceremony, i.e., such that at every round the i-th participant outputs its version of (ck,~y - cky).

Efficiency. Key generation requires d+ 1 exponentiations in G; to generate - cky, and one in G, to compute
[7]2. The prover can be implemented so as to require d* Gi-exponentiations and O(¢ - d*) F-operations,
where d* max;e({deg(p;)}. This is done by computing p*(X) <= 3> p;p;(X) and then Topn < [y - p*(s)]1.
Verification requires: 2 pairings, ¢ Gi-exponentiations, and one hash computation.

PKE

Security. In the following theorem we state the security of CPgp,

Theorem 8. CPE,L(,]E is a CP-SNARK for Ropn over CSq (resp. CSy) that is swh’-restricted complete, perfectly

zero-knowledge and knowledge-sound under the mPKE assumption in the random oracle model.

Proof. Completeness is obvious. Zero-knowledge is also rather easy to see: a simulator that knows v can
perfectly simulate proofs without knowing the witness. Before proving knowledge soundness we recall an
useful form of the Chernoff-Hoeflding bound [27].

Lemma 7. Let X := Zje[n] X; where X1,...,X, are independently distributed in [0,1]. Then for allt > 0:

Pr[X < E[X] — 1] <27%"/n

Let A be an (non-uniform PT) adversary and Z be an auxiliary input distribution such that for any
& the probability that A outputs a statement (c;);cqq and a valid proof 7 is € in the game Game7KzSg'\f%A£
(where RG is the dummy algorithm that outputs Ropn). Moreover, let W be the event that the adversary
outputs a valid statement-proof tuple. (Obviously, Pr[W] = e.)

Consider the following adversary B and auxiliary distribution Z’ against the mPKE assumption. The
distribution Z’(X) computes the structured reference string srs of CPgp, from X, runs auxz < Z(Ropn, Sts)
and outputs srs, auxyz.

Adversary B; (X, (sts,auxz); p):

1. Let K = 2le~1q(1+ \), parse p = (hg))i<k§q,je[K] where h,gj) € Zg and ¢ is the maximum amount
of random oracle queries made by an execution of A.
2. Compute ck from X, run A(Ropn, ck, srs, auxz) and answer the first i —1 queries of A to the random
oracle with the values h = hy,...,h;_1. Let st the state of A just before the i-th queried is sent.
3. For j =1... K run the following:
(a) Run A feeding it with the value h,(j) at the k-th query.
Let X;,m; be the output of A and let b; < Verify(srs, x;, ;).
(b) Rewind A to the state st.
4. Assert Zj b;j > ¢, let H be a subset of of cardinality ¢ of the indexes j such that b; = 1, we define
the square matrix M which columns are the vectors hgj) e Zf; and j € H.
5. Assert that M is full rank.
Assert that for all j, j* we have x; = x;.. If so parse them as (c;) e
7. Compute (d;)jejq = (T;)jen M~ and output (¢;) e (d5) e

=

48

The adversary B is parameterized by an index ¢ and values hy,...,hi_1 where h; € Zg.

First we notice that if the adversary B does not abort then it outputs values (c;) e[and (d;);ejq such
that for all j € £ : v-c; = d;. Indeed the verification in step @ for any j, we set b; to 1 if and only if
v - > hjxcr = T where we parse hE]) =21, P50 thus (W) jen = (¢)jeg - M.

We analyze the probability that B does not abort. Let (); be the event that the adversary A queries the
random oracle with (c;);eg (the output instance) at the j-th random oracle query. Let i be the index that
maximizes the probability Pr[IW A @Q;]. It is easy to see that Pr[WW A Q;] > g. Let h be the assignment of
the first ¢ — 1 queries that maximize the probability Pr[IWW A Q;], by average argument, we notice that there
must exist b such that, conditioned on the assignment Pr[W A Q;[h] = <.

Given an assignment auxz, we call it good if Pr[W A Q;|h, auxz] > i. By a simple average argument we

have that with probability % an output auxy of Z is good. Also we notice that if we fix h and auxz then
the random variables b1, ...,bx are independent and if auxy is good then each of them has average greater
or equal to i, thus by the Chernoff-Hoeffding bound we have that:

Pr[z b; > Llh,auxz] > 1 — negl()\).
J

Thus the assertion in step [4] passes with overwhelming probability. We notice that the assertion in step [f]
passes with overwhelming probability as the rows of M are random vectors in Zg, also the assertion in step
[6] passes always cause fixing h and auxz the i-th query of the adversary A is deterministic function of srs.
Putting all together the probability that B does not abort is greater than % — negl(\).

We are ready to define the extractor for the knowledge soundness experiment. Roughly speaking the
extractor calls the extractor of B, however the reduction B is a probabilistic polynomial time algorithm.
Thanks to the non-uniformity we can fix the randomness of B to a string p that maximizes the probability
of B outputting valid tuples. Thus let B’ such non-uniform PT that runs B with randomness set to p.

Let £ be the extractor of B’, assumed to exist thanks to the mKEA assumption. The extractor outputs
vectors a?) for any j € [(]. We let the extractor for A simply run £ and output what it does. By the mPKE
assumption, we have ¢; = >, a,(cj) gk (as otherwise B would break the mPKE assumption).

Remark 12. (Efficiently composing CPqp, with other SNARKSs) All of the CP-SNARKSs in this section apply
CPopn to obtain extractability of the committed polynomials. More precisely, this is true only for polynomials
of type swh; we assume the adversary always opens commitments of type rel. The proofs of the CP-SNARKSs
we present in this section are all of the form (Topn,) where the first part, Topn, is a proof of knowledge of
a valid opening for the commitments in input. A straightforward composition of these CP-SNARKSs would
incur in redundantly proving the knowledge of the openings of the same commitments; therefore, we do not
use black-box composition: given a CP-SNARK CP = (KeyGen, Prove, Verify) we define the algorithms Prove
and Verify respectively working just as Prove and Verify, except that they do not compute/verify the proof

Tlopn-

7.4 CP-SNARK for evaluation of a single polynomial

We define a CP-SNARK CPeyq 1 for the relation Reya1((a,b),p) := p(a) z b, where p is committed as [p(s)];.
Hence CPeyqyi,1 is complete for CS;, and swh—restrictecﬂ complete for CSs. This scheme is essentially the
evaluation proof technique of [45] with an additional proof of knowledge.

KeyGengy,i1 (ck): execute (ekopn, Vkopn) < KeyGen,,, (ck), parse ck as ([s7]1, [s7]2) je[o,q) define ek := (ck, ekopn)
and vk := ([1, s]2, Vkopn), and return srs := (ek, vk).

Proveevain (ek; (a,b), ¢, p): Compute a proof Topn <— Provegpn(ekopn, ¢, p), the polynomial w(X) such that w(X)-
(X —a) =p(X) —bset T+ [w(s)]1, and output (Topn,).

17 An extension to support evaluations on rel-typed ccommitments in CSs is straightforward; it is omitted as it’s not
needed in our work.

49

Verifyq,1 (VK, (a,b), ¢, m): Parse T = (Topn, [w]1), and output 1 iff:
L. Verify,pn (Vkopn, ¢, Topn) = 1 and
2. e([wl, [s — alz) = e(c = [bl1, [1]2).

Efficiency. We give efficiency ignoring the costs of CPopn. Generating a proof requires deg(p) G-exponentiations
to compute T and O(deg(p)) F-operations to compute the polynomial w(X). Verification requires: 2 pairings.

Security. In the following theorem we state the security of CPeyal 1.

Theorem 9. If CPqp, is a swh-restricted CP-SNARK for Ropn and the d-SDH assumption holds for GenG,
then CPeyal1 is a complete (resp. swh-restricted complete), knowledge sound, and trapdoor-commitment zero-
knowledge CP-SNARK for Revain for CS1 (resp. CSg). Moreover, if CPopn has commitment-only SRS then
CPeval1 has commitment-only SRS.

Proof. The proof of completeness and knowledge soundness follow from previous works [45] 24] and is there-
fore omitted. To see trapdoor-commitment zero-knowledge, notice that with the trapdoor s € Z, we can
compute [w]q := (¢ — [b]1)/(s — a), moreover, we can simulate Topn using the simulator of CPgpn.

7.5 CP-SNARK for batch evaluation of many polynomials

We define a CP-SNARK CP,,, for the commitment schemes CS;, CS, and the relation Reya which is the
Cartesian product of £ € N instances of Reyal,1. The CPeya we propose is complete for CS; and swhi-restricted
complete for CSy. This scheme is essentially a CP-SNARK version of the batched polynomial commitment
evaluation technique in |33, [24].

The intuition for the construction is as follows. To prove that two polynomials p and p’ committed to ¢
and ¢ evaluate to b and b’ on the point a, by linearity of the polynomials and classical batch argument we
can simply show that a random linear combination p* = pp + p'p’ of p and p’ evaluate to pb + p’'b’. Notice
that by the homomorphic property of the commitment scheme we can compute ¢* = pc + p'c’ which is a
valid commitment of p*. Generalizing, of the £ points a1, ..., ap on which we want to evaluate the proofs, we
gather the £* distinct ones. For each of these we compute an evaluation proof by batching the polynomials
together.

KeyGen,,, (ck): this proceeds identically as the key generation of CPeyaj 1.

eval

Proveeyal (€k, (a;, ;) jele (¢5) e (Ps)jere): o .
1. Let W :={j € [éﬁ : type(cjl) = swh} be the set of indices of type-swh commitments. Compute Topn

Proveopn(ekopn; (¢5)jew, (1) jew);

2. For j € [{] set p;j < H(x||j) and let {a],...,a;.} = {a;}cq (repeated values are not counted), let
Py, ..., P~ be a partition of the set [¢] such that P, = {j : a; = a} };

3. For k € [¢*] compute ¢}, < > :cp) Cj, Pk = D jep, P Pj» and b, = pi(ag);
Compute Ty, < Proveevan (ek, (af, b%), ¢k, p})-

4. Return T = (Topn, () jc(e+])-

Verify, .1 (Vk, (a;,b5)jeiq, (¢)jerg,®): Compute W as described in the step 1 of the prover, and compute
(Pi)jcia, (@})jeien), (¢5)jejer) and (Pj) je(e+) as described in steps 2 and 3 of the prover. Parse T = (Topn, () je[e+]),
and return 1 iff :

L. Verify,on(srs, (¢j)jew, Topn) = 1 and,
2. for all k € [¢*] we have Verify .1 (Vk, (a},b}), ¢k, Tx) = 1.

Efficiency. We give efficiency ignoring the costs of CPopn. Generating a proof requires deg(p;) Gi-exponentiations
and O(deg(p;)) F-operations to compute each m;. Verification requires 2¢* pairings, which can be reduced
to a total of 2 using standard batching techniques.

50

Security. In the following theorem we state the security of CPeyq).

Theorem 10. If CPqy is a swh’-restricted CP-SNARK for Ropn and the d-SDH assumption holds for GenG,
then CPeya) is a CP-SNARK for CSy (resp. CSy) that is: complete (resp. swh’-restricted complete), knowledge-
sound (with partial opening of type-rel commitments) in the random oracle model, and trapdoor-commitment

zero-knowledge in the SRS model. Moreover, if CPqpn has commitment-only SRS then CPeya has commitment-
only SRS.

Proof (Proof sketch). The proof of this theorem is an extension of the one of Theorem [9} we only provide
a sketch. The main difference is in the knowledge soundness. First, notice that by Theorem [J] we have that
each of the £* polynomial evaluations is correct. The correctness of all the ¢ evaluations then follows from a
classical batching argument using the randomizers p1, ..., pe.

7.6 CP-SNARK for Polynomial Equations

We describe a CP-SNARK for polynomial equations that relies on the one for batched polynomial evaluations
given in the previous section. This CP-SNARK is based on the optimizations proposed by [33].

Although the formal general treatment of our scheme has several technical details, its intuition is simple.
At the high-level, we verify each polynomial equation by sampling a random point, exploiting the Schwartz-
Zippel Lemma and reducing the problem to proving polynomial evaluation. For example, we pick random
point v and then reduce proving a(X)b(X)c(X) 4+ d(X) = 0 to a(u)b(u)c(u) + d(u) = 0. Then, for each
monomial of degree d at least 2 in the polynomial equation, we recursively prove evaluation for a monomial
of degree d — 1. For example, assume monomial a(u)b(u)c(u) above equals value y, then we could reduce
to yab(u)e(u) = y by providing y, and relative proof to the verifier. We could then do this again for b
by providing a proof that b(u) = ys, y» and then reducing to y.ypc(u) = y. At this point we obtained a
linear equation and we can use the approach of Provee,. In the example above we first started from a and
then moved to b leaving c last, but clearly there are different recursion strategies. Some of them will be
more efficient than others. Below, we abstracted away this aspect through minimal set S defined as in the
pseudocode.

We define a class of CP-SNARKSs for subsets of the relation Req (see Section . In particular, let C be
a checker, we implicitly parameterize the CP-SNARK with the checker C. Consider the following relation:

; ; Vie [l],x € Zy: Cli,vi(x)) = 1A
e = {05 e e GG ey 21)

We define a (1, C)-leaky zero-knowledge CP-SNARK CP¢q for the commitment scheme CS and the relation
Req,c. Let H be a random oracle from {0,1}* to Z,.

KeyGeng,(ck): execute (ekopn,Vkopn) < KeyGen,,,(ck) and (ekeval,Vkeval) ¢ KeyGeng, (ck) define ek :=
(ekopn), €Keval) and vk := (Vkopn, VKeval), and return srs := (ek, vk).

Proveeq (ek, (G, v), (¢j)jerq, (P)jerq): Execute the following steps.

1. Let W := {j € [4] : type(cj) = swh} be the set of indices of type-swh commitments. Compute Topn
Proveopn (€kopn; (¢;)jew, (1)) jew);

2. Let % == ((GY), 09,1, (¢)jeqy) and set p < H(X|Topn). For any [€ [k] if degx (GV (X, v\ (X),. ..,
vél)(X))) > 0, and, for j € [{], let agl) — v](»l)(p), bg»l) = pj(a;l)); otherwise, let ay) — vﬁ)(O) and

@)
i)

—

bg.l) =p,la

)bea

3. For any [€ [k] let {a};,...,a}. ;} = {ag»l)}je[g] (repeated values are not counted), let Pl(l)7 R P;i
partition of the set [¢] such that Pt(l) ={j: a§-l) =a;,};

4. Let S be the minimal subset of [¢] such that (1) exists an index i* such that S = [(]\ S C P;«, (2) the
polynomial G(x, X1,...,X,) has degree zero or one in the variables {X,},cs.

5. Let ZjES [;X; + lp be equivalent to the polynomial G with the variables (X;);es assigned to the values
(bj)jes and the variable X assigned to the value p.

o1

6. Let a* = al., b* = —lp,c* = Zjeélj ¢y, Pt = Zjeélj - Dj-

Let X' = ((aj,bj,¢;)jes, (a*,b*,¢*))), namely X" is a vector of S| + 1 instances of Reyar.
ComPUte Teval < Proveeval(Ekevalv)A(/7 ((pj)jesvp*ype))
7. Output (Topn, {b;};cs, Teval)-

Verify.,(vk, %,): Parse T = (Topn, {b;}jes, Teval). Execute the steps 2,3, 4 and 5 of the prover (but do not
compute the values (b;);c(g, bur rather take (b;);e[s) from the proof). Also compute W as in step 1.
Compute the commitment c* as in step 6 of the prover, set a* = a} and b* = —ly. We observe that [y can
be computed efficiently since it depends only on the linear terms of G involving the values {b;};cs and the
constant term of G(p, .. .).

Return 1 iff:

1. Verifyopn(vkopn, (Cj)je[W]chopn) =1,
2. Set X’ as in step 6 of the prover, Verify,, (VKeval, X', Teval) = 1 and,
3. Vj €] :Cj,v(a5)) = 1.

Efficiency. We give efficiency ignoring the costs of CPypn. Generating a proof requires generating a batched
evaluation proof for |S| 4+ 1 committed polynomials (see previous section). Verification requires O(|G|) F-
operations for the partial evaluation of G' and to recover the [; coefficients, plus the cost of one batched
evaluation verification (2 pairings).

Security. In the following theorem we state the security of CPeq.

Theorem 11. Let CPypn and CPeyal be CP-SNARKs over commitment scheme CS for relations Ropn and Reyal
respectively. Then CPeq is a CP-SNARK over CS that is knowledge-sound (with partial opening of type-rel
commitments), and swh-typed (1, C)-leaky zero-knowledge. Moreover, if CPopn and CPeyal have commitment-
only SRSs then CPeya has a commitment-only SRS.

Before proving the theorem we make the following observation.

Remark 13 (On more fine-grained leakage). With a closer look, we observe that this scheme is actually
(b, C)-leaky zero-knowledge, for a b such that b; = 1if i € S and b, = 0 otherwise. This is because evaluations
of polynomials are revealed only if the index j is included in S.

Proof. Knowledge Soundness follows by the extractability of CPypn, the Schwartz-Zippel Lemma and the
knowledge soundness of CPe, . In particular, it is enough to extract only from type-swh commitments as we
only have to prove knowledge soundness with partial openings of type-rel commitments.

More in detail, for any benign relation sampler RGcom and auxiliary input sampler Z consider the
adversary A that outputs an instance X = (G, (v;)ejg, (¢5)) and a proof &, along with polynomials p; such
that type(c;) = rel. By the knowledge soundness of CP,,, we can extract polynomials (p;);e(sq. Moreover,
since p = H(X||Topn) the value p is independent from the polynomials G, v and (p;);e[¢ and uniformly random
over Z,. Thus applying the Schwartz-Zippel lemma, if the polynomial G'(X) := G(X, (p;(v;j(X)))jerq)
evaluates to 0 on p then G'(X) = 0. We conclude noticing that, by the knowledge soundness of CPe, it
holds that Vj € S: pj(a;) = b; and 3,5 lp;(a*) = b* thus G'(p) = 0.

We show that CPeq is (1, C)-leaky zero-knowledge. Let X a valid instance of R;“’E. Consider the simulator
Sieak(X) that computes a; + v;j(H(X||Topn)) for j € [{] and outputs the list £ = {(j,a;)};cjq- By definition
of x and by inspection of £, the list £ is (1,C)-bounded. The simulator Sy (td,X,leak) simulates the
proof Mopn, then parses leak as (bj);jcg where bj = pj(a;), letting Spr” be simulator of CPey and X' =
((aj,bj,cj)jes, (@*,b*,c*))), computes T < Spn/(tdk, X’') and outputs (Topn, {b;}jes:s Tpoly)-

The indistinguishability easily follows by the zero-knowledge of the proofs of CP, and of CPyp,.

52

7.7 CP-SNARK for CS; for quadratic polynomial equations

Let us consider the following relation in which G is an f-variate polynomial of degree 2:

?

Raeq (G, (Pj)jelg) = G(p1(X),...,pe(X)) =0

Rqeq is a simplification of Req in which the degree of G is restricted to 2, each v;(X) = X, and we removed
the first variable X.

Here we show a simple CP-SNARK for the commitment scheme CS, and the above relation Rgeq. This
scheme is novel and to the best of our knowledge it did not appear in previous work. The techniques are
inspired by the linear interactive proof compiler of [15].

The basic intuition is rather simple, when G satisfies the restriction above it is possible to homomor-
phically compute G over (p1(s),...,pe(s)) in the target group using pairings and the linear property of the
commitments. Like for the previous scheme, our approach is based on Schwartz-Zippel. Only, this time we
exploit the random point s hidden in the SRS of the commitment scheme for polynomial evaluation. Thus all
the verifier needs to do is verify a pairing product for each of the monomials of the type a(X)b(X). For this
to be possible, it needs to have each of the two polynomials a and b in two distinct groups. This is the case
if they are committed through different types, i.e., one as type rel and the other as type swh. Otherwise, if
they are both committed in the same group, we let the prover send one of the two polynomials committed
in the “symmetric” group. Like in CP.q we abstract the most efficient approach to do this through a minimal
set, in this case set J as defined in the pseudocode.

KeyGeng,(ck): execute (ekopn, Vkopn) <= KeyGen,,,(ck) and return srs := (ekopn, Vkopn)-
Proveqeq(ek, G, (¢))jee); (Pi)jele)):
first, let W := {j € [{] : type(c;) = swh} be the set of indices of type-swh commitments, and compute
Topn — Provegpn(€kopn, (¢;)jew, (9)jew). Then proceed as follows:
— Consider the undirected graph where V' = [¢] and there is an edge {i,j} if type(c;) = type(c;) and the
term (X; - X;) is non zero in G.
— Let J be the min-cut of such graph, namely the minimal set of nodes that cover all the edges of G.
— Forany je€ J:
if type(c;) = swh, compute c; = [p;(s)]2;
if type(c;) = rel, compute ¢; = [p;(s)]1;
— Let C' = {c}}jes and output ® := (Tepn,C’).
Output 7 := (Topn, C’).
Verifyeq (vk, X,)z parse C' = {c};. Reconstruct the set J as in the prover algorithm, and return 1 if and
only if all the following checks pass:
L. Verifyopn (Vkopn, (¢5)je[w], Topn) = 1, for W computed as in step 1 of the prover;
2. forall j € J, check e(cj, [1]2) = e([1]1, ¢}) (if type(c;) = swh) or e(c}, [1]2) = e([1]1, ¢;) (if type(c;) = rel);
3. [é’((c;)je[g], (¢h)jes)lr Z [1]7, where G is a modified version of @ where the computation of a quadratic
term involving only ¢; is performed as e(c;, ;) (or e(c}, ¢;)).

Efficiency. Generating a proof requires | 7| operations of G; or Gy to compute each c;. Verification requires
2|J| pairings in step 2 and ¢ + 1 pairings in step 3, where ¢ is the number of quadratic terms in G. Here we
ignored the cost of CPypn as well as that to compute the min-cut J; in our applications this is trivial and
can be given as a parameter.

Security. In the following theorem we state the security of CPgeq.

Theorem 12. If CPgp, is a CP-SNARK for Ropn over CSy then CPqeq is a complete, knowledge-sound (with
partial opening of type-rel commitments) zero-knowledge CP-SNARK for Rqeq over CSy under the d-DLOG
assumption for GenG. Moreover, if CPopn has a commitment-only SRS then CPqeq has a commitment-only
SRS.

53

Proof (Proof Sketch). We define the extractor of CPgeq to be the same as the CP,p, extractor. By the
knowledge soundness of CPgp,, such extractor returns a tuple of polynomials (p;);cjq such that for every
j € [£] it holds ¢; = [p;(s)]y,; for the appropriate group g;.

We want to bound the probability that for the extracted polynomials it holds G(p1(X),...,ps(X)) £ 0
(while the proof accepts). Let us define p*(X) = G(p1(X),...,pe(X)). Since the proof accepts we have
p*(s) = G(p1(8),...,pe(s)) = 0. Then we can factor p*(X) to recover the root s, and thus break d-DLOG
assumption.

7.8 CP-SNARKS for degree of committed polynomials

In this section we show two CP-SNARKS, CP(*) and CPge;, for proving a bound on the degree of committed
polynomials, namely they work for the unlversal relation Ryeg in which every Rgeg € Raeg consists of a vector
(dj)jepq of degrees, such that every d; € [d], and the relation is satisfied if and only if Vj : deg(p;) < d;.

The basic idea of the schemes is the following. To prove that deg(p) < d* one commits to the shifted
polynomial p*(X) = X4 % p(X) and then proves that the polynomial equation X4~ - p(X) — p*(X) = 0
using a CP-SNARK for polynomial equations. This idea is extended in order to batch together these proofs
for several polynomials.

The two schemes CPE,:; and Cszé follow this approach with the only difference that CPgZ makes use of

the optimized scheme CPqeq for quadratic equations. Indeed, X d—d” p(X) — p*(X) = 0 can be seen as a
quadratic equation in which the polynomial X?~¢" can be committed in Gy by the Derive algorithm.
Therefore we have that CPS:; can work with both commitment schemes CS; and CSs, while CP((fe; works
with CS, only. Both CP-SNARKSs are swh’-restricted complete.
Finally, we remark that in the CP-SNARKSs below we assume that the degree bounds are always strictly

less than the maximal degree d supported by the commitment key ck. In fact, for such d a proof for deg(p) < d
is for free.

Scheme CP{*) We define the CP-SNARK CP§) =

KeyGendeg(ck). execute (ekopn, Vkopn) < KeyGen,,,(ck), execute (ekeq,Vkeq) < KeyGen,,(ck), define ek :=
(ck, ekopn,ekeq) and vk := (vkopmvkeq) and return srs := (ek, vk).

Provede((di)jern, ()il

1. Com pute Tgogne[] ‘DJ]gop]n srs {gﬂye[é p])je[g])

2. Let p1, ..., pe < H((ds) e, (¢j)je[q, Topn), let {d7, ..., dj. } = {d;}je[q (repeated values are not counted),
and let Pp,..., Py~ be a partition of the set [¢] such that P, = {j : d; = d} };

3. Tor all i € (6] let o] ['(s))s i= [, ep, 3 py(s) and ¢ ()1 = 5 5,y (o)

4. Compute 75, Proveopn(srs (c5)jeres) (PF)jeres))-

5. For all i € [¢*], define G;(X, X[, X7) = X% . X! — X7, v}’ (X) = v’ (X) = X, and compute Teq ¢
Proveeq(ekeqa (Gu U(l))ie[ﬁ*] (Ci» G)16[4*] (pg,p;‘k)ie[é*])

6. Return (Topn, €7, - - - 5 Ce, Mapns Teq)-

Verifyeg (VK (d;) e[, (¢j) e, T): Parse T = (Topn, €T, - - -, € s Tgpns Teq), and compute py, ..., p¢ and Gj, v

as the prover does. Return 1 iff :

L. Verifyoon (Vkopn, (¢5)jele]s Topn) = 1 and,

2. VerifYOpn(Vkopm (C;)jG[Z*]an:pn) =1 and,

3. Verifyeq(vkeq,(Gi,v(i))ie[m,(Ci, 1)16[3*],7(@(1) 1.

(KeyGen yeg, Proveqeg, Verify,,) as follows.

Efficiency. Generating a proof requires ¢£* - d* Gj-exponentiations and O(¢ - d*) F-operations, where d* =
max e {deg(p;)}, the cost of generating two CPopn proofs and one CPeq proof. Verification requires verifying
two CPopn proofs and one CP¢q proof.

Remark 14 (Optimization). When CPg:; is used in a larger protocol that uses other invocations of CPeq,
we observe that these proofs can batched together (which in turn implies for example the use of the same
random point, and of the same CPey, proof).

54

()

Security. In the following theorem we state the security of CP deg-

Theorem 13. If CPypn is a CP-SNARK for Ropn and CSq (resp. CSz), and CPeq is a CP-SNARK for Req,
then CPS:;; is a knowledge-sound and zero-knowledge CP-SNARK for CSy (resp. CSy).

Proof. Let (p;)jeiq and (p});e(e-) be the polynomials extracted from Topy and 75, by the knowledge sound-
ness of CPop,. We notice that py, ..., py are uniformly random and independent of (p;);cjg, since we can
extract the polynomials before answering the random oracle query ((c;);cie, Topn)-

Thus with overwhelming probability, for every ¢ the polynomial p;(X) = 3, p p;p;(X) has degree equal
to max;ep, deg(p;). Suppose exists ¢ such that p; has degree bigger than d;. Then for the same index ¢ we
have that X?=% p/(X) — p(X) # 0. However, if this is the case, then we can build a reduction against the
soundness of CPeq.

Zero-knowledge is straightforward: the commitments c7, ..., cj. are deterministic functions of the random
oracle H, the values (c;);e[q and the trapdoor s, while the remaining proofs Tpn and Teq can be generated
by using the simulators of CPypn and CPeq respectively.

Scheme CP{Z). We define the CP-SNARK CP(2) = (KeyGengeg, Derivedeg, Proveeg, Verify,eg) as follows.

KeyGeny,, (ck): execute (ekopn,Vkopn) < KeyGen,,(ck), execute (ekqeq,VKqeq) ¢ KeyGeny,(ck), parse ck as
([sj]l,[sj]g)je[o,d] define ek := (ck,ekopn,€kqeq) and vk := (([sj]g)je[oydbvkopn,vkqeq)7 and return srs :=
(ek, vk).

Derivegeg ((d;)je[q) generates a verification key for the vector of degrees (dj);cjq as follows. Let {d;};epy
= {d},...,d}.} (repeated values are not counted), and set vkq := ([sd_d;]Q)ie[m.
Provegeg ek, (Cj)je[g], (pj)je[g]):
1. Compute Topn <~ Proveopn (srs, (¢;) e, (Pj)jela);
2. Let p1,...,pr < H((ds) e, (¢j)jerq, Topn), let {d7, ..., dj. } = {d;}je[q (repeated values are not counted),
and let Pp,..., Py~ be a partition of the set [¢(] such that P, = {j : a; = a}};
3. For all i € [£*] let ¢ < [p'(s)]1 := [>_ cp, pj - pj(8)]1 and ¢ < [p*(s)|1 == [sd—di Y jep, Pi - Pi(8)h;

4. Compute 7y, < Proveopsn(srs, (¢})jefe-)s (PF)jeler))-
5. For all i € [¢*], define G;(X;, X/, X?) = X, - X! — X, and compute

K2

Tgeq < Proveqeq(ekeq7 (Gu v(i))ié[é*]v ([sd_di]27 C;h Cr)ie[l*]a (Xd_di 7p2apf)i€[€*])
6. Return (Topn, €1, - - -, Cjv s Tapns Taeq)-
erify ., (Vka, (¢;)icre, T): Parse T = (Topn, €5, ..., Ch, T, Teq), and compute p1, ..., p, and G;,v9 as the
Verif deg k j)jef] p P)1k z :pn q d t P 12 d G @ th

prover does. Return 1 iff :
L. Verifyoon (Vkopn, (¢5)je[e]s Topn) = 1 and,
2. VerifyOpn(Vkopnv (C;)je[f*]an;pn) =1 and,

3. Verifyqeq (Vkeq, (Gi)ic[e+], ([s %], Ci, €} ie[e+], Teeq) = 1.
The security proof of CPgi; works essentially the same as that of CPSZ; and is therefore omitted.

Theorem 14. If CPqp, is a CP-SNARK for Repn over CSg, and CPeq is a CP-SNARK for Req over CSg,
then CP((jze?; is a knowledge-sound and zero-knowledge CP-SNARK for Ryeg over CSs.

FEfficiency. From the shape of all the quadratic polynomials G; and the construction of CPgeq in Sec-
tion we observe that the proof mgeq is empty and it can be verified by checking, for every i € [¢*],
e(X ep, PiCs» [s79]3) = e(m;, [1]2). The cost of generating the rest of the proof requires generating two
CPopn proofs, £* - d* Gi-exponentiations and O(£ - d*) F-operations, where d* = max ;¢ {deg(p;)}. Verifica-
tion additionally requires verification of two CPgp, proofs.

55

7.9 A general-purpose CP-SNARK for Rppp

Given the CP-SNARKSs presented in the previous section, it is possible to construct CP-SNARKs for the
commitment schemes CS;, CSs and for any PHP verifier checks, i.e., for the relation Ry, discussed in Section
Such a CP-SNARK CPp, can be obtained with three main building block CP-SNARKSs: one for Ropn
(see Section , one for proving a bound on the degree of committed polynomials, and one for polynomial
equations.

8 Our Compiler for Universal Commit-and-Prove zkSNARKSs

In this section we show how to compile PHPs into CP-SNARKs. We present the compiler in Section [81]
It can be instantiated with the same building blocks presented in the previous section, plus additional ones
that we present in Section [3.2

8.1 Compiling to Commit-and-Prove Universal Interactive Arguments

We show how to adapt the compiler of Section [6.2] to produce a commit-and-prove succinct interactive
argument in the SRS model.

Let PHP be a PHP protocol for a universal relation R such that for any triple (R, x,w) € R, the witness
splits into an £ 4 1-tuple w := ((u;);jefg,w) € D1 X -+ X Dy x D,,.

We show how to compile PHP to a commit-and-prove UIA for R in which prover and verifier take as
inputs commitments ¢y, ..., ¢ to uy, ..., uy respectively. More in detail, UIA is a universal commit-and-prove
argument for R and a type-based commitment scheme CS* such that the commitments taken as input are
of type 1nk and satisfy full-fledged hiding. The reason to require these commitments to be hiding (instead
of our weaker somewhat-hiding notion) is that these are supposed to be “regular” commitments that may
be generated independently of this proof system and that, for a general application scenario, should hide
messages even if they are re-used an unbounded number of times for different proofSE We summarize the
requirements on CS* in the following definition.

Definition 22 (CP-Compiling Commitment Scheme). Let R be a universal relation such that for
any (Ryx,w) € R, w := ((uj),eci,w) € D1 X ...Dy x Dy,. We say CS* = (Setup, Commit, VerCom) is
a CP-compiling commitment scheme if it is a type-based commitment scheme for a class of types T =
{rel, swh, 1nk}, such that:

— commitments of type rel and swh are for messages that are polynomials F4[X] for a given bound d € N;
— commitments of type 1nk are for messages in D such that for all i € [{], D; C D;

— it is T -binding;

— it s swh-somewhat-hiding and 1nk-hiding.

Additional building blocks. Besides the requirements of Section [6.2] we additionally require from the CS* and
from PHP the following properties:

1. The PHP has a straight-line extractor (see Definition . Specifically, there exists an efficient extractor
WitExtract such that WitExtract((p;) je[-1) = w.

2. CS™ is equipped with a zero-knowledge CP-SNARK CPj, = (KeyGeny,,, Provenk, VerProof|,k) that can
“link” a tuple of Ink-typed commitments (opening to (u;);e[¢g) With a tuple of n* swh-typed commitments.
The linking relation should also enforce that the latter commitments open to polynomials that somehow
contain a witness for a universal relation. Specifically, CPjin, is a ({1nk}¢ x (swh)")-restricted complete
ZK CP-SNARK for the universal relation R,k parametrized by the algorithm WitExtract and by a PT
decoding algorithm Decode:

2

R“nk((uj)je[g], (pj)je[n*},w) = WitExtract((pj)je[n*]) = (Decode((uj)je[g]),w)

8 Note this rules out the use of polynomial commitments with “bounded-use randomizers” such as the one in [45].

56

We additionally require the Decode algorithm for a rather technical reason. Namely, the commitment
scheme CS could encode the witness blocks u; in different way, the decoding algorithm casts back to
strings the encoding used by the commitment scheme CS.

The commit-and-prove compiler. Let UIA = (KeyGen, Derive, P, V) be the interactive protocol for R from the
Figure [3] We show how we can make it commit-and-prove with some simple modifications.
In what follows, to distinguish the commitments (and the associated openings) taken as input by the
protocol, from the commitments generated during the interaction, we denote the former ones with a hat.
Consider the interactive protocol that is the same as UIA but with the following modifications:

The KeyGen algorithm does not sample a commitment key from CS.Setup but instead takes a commitment

key ck of the CS* commitment scheme as input.

— The prover on input ek, X = (x, (¢;) ;) and W = ((uj);eqg, (05) el w), executes the same as P(vk, x, ((u;) e, w))-
— At the last round the prover computes

Tink <= Provesink(ekink, ((&5)jeie)5 (¢5)seir)s ((U5)jeies (P)jems))s ((05)je1a5 (05)jein,])s @)

At the last round the verifier additionally checks bjnk < Verifyy, (Vkink; ((¢5) €65 (¢5)j€n,]) Tink), and
output 1 if all the CP-SNARK proofs verify.

Theorem 15. Let PHP = (r,n,m,d, n., RE, P, V) be a non-adaptive public-coin PHP over F and R, let CS*
be a compiling commitment scheme as in Definition equipped with CP-SNARKs CPqpn for Ropn, CPphp
for a relation Rpnp, and CPiink for Rink. Then we have:

— If PHP has straight-line extractability, then the scheme UIA defined above is a universal commit and prove
interactive argument in the SRS model for R’ such that:

(R, (uj)jeqe,w) € R <= (R,x,Decode((uj);cq),w) € R.

— If, for a checker C, PHP (resp. CPphp) is (b+1, C)-bounded honest-verifier zero knowledge (resp. trapdoor-
commit (b, C)-leaky zero-knowledge), and both CPopn and CPiink are trapdoor-commitment zero-knowledge,
then UIA is trapdoor-commitment honest-verifier zero-knowledge.

Note that the analogous of Remark [7] holds for this theorem as well.

While a proof of Theorem [I5]is in Appendix[C} we provide an intuition for the case £ = 1. To prove knowledge
soundness we should be able to extract (6, u,w)—valid CP-witnesses for the CP-version of R—{rom ¢, x. Let
us assume that the verifier accepts. We can run the CPj.x extractor and obtain u,6,w as well as a vector
of polynomials p with respective openings for the c¢;-s. By knowledge soundness of CPjnk, u,w as defined
above extracted from the polynomials in p. In turn, we can claim these polynomials encode valid witnesses
for relation R because, if they didn’t, we could obtain “valid” polynomials p’ by running the extractor of
CPphp. These would also be valid openings to commitments c. If the polynomials in p’ were distinct from
the polynomials in p then we would be able to break binding; therefore, polynomials in p and p’ must be
identical and encode witnesses for R. To prove zero-knowledge we extend the simulator from Theorem [5| by
appending to its output that of the simulator of CPj. a zero-knowledge CP-SNARK.

8.2 Pairing-Based Instantiations of our Building Blocks

Commitment Scheme We describe the polynomial commitment scheme CS* which supports types 1nk, swh, rel.

The scheme is an extension of CS, for g € {1,2}. The algorithms (Setup, Commit, VerCom) of CS} are defined

as follows:

Setup(1*,d): run ck’ +— Setup,(1*,d), sample random o +—sF and output ck = ck’, [a, as, as?];.

Commit(ck, type, p) — (¢, 0): if type # 1nk output the same as Commity, else sample o <—sF and output
[p(s) + a-o;.

VerCom(ck, type, ¢, p, 0): if type # 1nk output the same as VerComg, else check if ¢ Z p([s]1) + o[a]r.

Remark 15. Notice that the values [as, as?]; are not needed for hiding, however they are useful for the

CP-SNARK for polynomial evaluation that we present next.

o7

Basic suite of CP-SNARKSs for CS*

CP-SNARK for Ropn. As described in Section we can obtain trivially a CP-SNARK in the AGM. A
trivial extension of the construction CPOP;E of Section [7.3|is also suitable for CS*. The only difference is that
for the security analysis we need to rely on the following assumption:

Assumption 4 (mmPKE) The (multi-instance, multi-base) Power Knowledge of Exponent (mmPKE) as-
sumption holds for a bilinear group generator GenG if for every efficient non-uniform adversary A and degree
bounds dy,ds € N there exists an efficient extractor € such that for any benign distribution Z the following
probability is negligible in \:

bgp +s GenG(1?*);
auxz <+ Z(bgp);
S, 0,y s Lg;
(([s]1, Sj]27hsj]1vh])ild])
([ees?]1, [as?]a, [ays?]1, [avs7]2) jetas))
(¢j)jeen (i)jere < A(bgp, X, auxz);
i (a(J)]E[LN +— E(bgp, X, auxyz)

dj =v-¢c; N

Pr |dj:
r C]#Zk Oa(3)8j+azd2 b(])

CP-SNARK for Reyal,1.- We define a zero-knowledge CP-SNARK CPey, 1 for CS; and the relation Reyal,1((a, b),p) ==

p(a) < b, where p is committed as [p(s) + - olr.

Kate et al. [45] describe a method to do evaluation proofs for hiding polynomial commitments. In a
nutshell, in their case a commitment to p is an element [p(s) + « - o(s)]; where o is a random polynomial
of degree deg(p) (or degree b, if one aims to support at most b evaluation proofs) and the evaluation proof
for a point a reveals o(a). This technique, however, cannot be seen as a full-fledged commit-and-prove
zero-knowledge proof as one should know a priori how many evaluation proofs are generated for a given
commitment. More technically, in the commit-and-prove framework, a simulator would only take as input
a commitment and must simulate a proof which must be indistinguishable from a real one, independently
of how many other proofs have been already (or will be) generated. It is also interesting to note that for
a polynomial p of degree d giving more than d evaluations of p on distinct points reveal the polynomial;
thus one may think that zero-knowledge would no longer be needed. However, there are some applications in
which one can use a commitment in more than d evaluation proofs without necessarily revealing d evaluations
of the committed polynomial. This is for example the case if one shows evaluations of linear combinations of
various committed polynomials to known constant, e.g., proving that p1p;(a)+ p2pa2(a) = 0. In this case, the
technique from [45] would leak information on the random polynomials 01, 02 and would be usable a limited
number of times.

Motivated by this problem, we propose a different technique for proving an unbounded number of eval-
uations of committed polynomials in zero-knowledge.

Let us provide a brief intuition of our technique. In our CP-SNARK the prover additionally computes
a flh-typed commitment ¢ to the 0 polynomial using fresh randomness, and then proves that (1) ¢ indeed
commits to the 0 polynomial, and (2) that the polynomial p committed in ¢+ é evaluates to b on the point a.
The idea is that in the step (2) the prover masks the opening material of ¢ using the fresh opening material
of ¢. In particular, the prover picks a degree-2 polynomial for the opening of ¢ because we want to assure
that the mask in (2) is uniformly random even given the value ¢ and the leakage (one evaluation point) in
step (1).

KeyGen,,i1 (ck): execute (ekopn, Vkopn) < KeyGen,,, (ck), parse ck as ([s7]1, [s7]2) je[o,q) define ek := (ck, ekopn)
and vk := ([1, s]2, vkopn), and return srs := (ek, vk).

Proveeyain (€k, (a,b), ¢, p): Sample random degree-2 polynomial 6(X) and set ¢ = [ad(s)]1, compute a proof
Tlopn <— Provegpn(ekopn, (¢, €), (p,0), (0,0)), and set (x) <— H (X||Topn]|€) :

1. Let y1 <+ o6(z) and let w](X) such that wi(X) - (X —z) =o(X) — y1;

58

2. Let y2 < o(a) + 6(a) and let w(X), wh(X) such that w(X) - (X —a) =p(X) — b and wh(X) - (X —a) =
o(X)+o(X)—y.
set < ([wy(s), w(s) + awy(s)]1,y1, y2) and output (Tepn, T0).
Verify,1 (Vk, (a,b), ¢, m): Parse T = (Topn, ([w', w)]1,%1,¥2)), and output 1 iff:
1. VerifyOpn(Vkopnvca 7I:opn) =1,
2. e([w']1,[s — z]2) = e(é,[1]2) — [ay1]T, and
3. e([w]1,[s —a]2) = e(c+ ¢, [1]2) — [b]T — [ay2]T-

Theorem 16. If CPp, is a f1h-restricted CP-SNARK for Ropn and the d-SDH assumption holds for GenG,
then CPeya1 is a complete, knowledge sound, and trapdoor-commitment zero-knowledge CP-SNARK for
Reval,1 for CS™ Moreover, if CPopn has commitment-only SRS then CPeyai1 has commitment-only SRS.

Proof. The proof of knowledge soundness follow similar to |45} 24]. In particular, we notice that the second
verification equation shows that ¢ is indeed a polynomial commitment to 0, thus, by the homomorphic
property of the commitment scheme we have that ¢+ ¢ is a commitment to p. Then the third equation shows
that p(a) = b.

For zero-knowledge notice that ¢ is random degree-2 polynomial thus even given the evaluation points
21) and o(s) the evaluation 6(a) is still uniformly random over F and it can be used to mask the value
a). We can simulate by sampling ¢ «sG; and i,y ¢sZ2, then set [w']; = (¢ — [a]y1)/(s — =) and
[(w]y = (c+¢—[bl1 — [a]1y2)/(s — a).

0
0

CP-SNARK for Reval and Req. Similar to Section and Section [7.6, we can define the CP-SNARKSs CPeyq
and CP.q for CS*, indeed such constructions use CPeal,1 as a black-box thus we could easily instantiate
Ink-restricted complete version of them using the CPe,),1 presented in the previous paragraph.

Efficiency. We give efficiency ignoring the costs of CPopn. For CPeyar1 generating a proof requires deg(p) + 6
G1-exponentiations to compute T and O(deg(p)) F-operations to compute the polynomials w(X), w} (X), w5 (X),
verification requires 4 pairings. For CPe.ai generating a proof requires £* - (deg(pj) + 1) Gi-exponentiations
and O(¢*deg(p;)) F-operations, verification requires 4¢* pairings, where we recall that £* is computed as the
cardinality of the set of all the evaluation points (in particular £* < ¢). For the counting for CPeq we refer to
Section

CP-SNARK for Linking Commitments Finally, we propose instantiations for the CPj,x CP-SNARK
that support our lnk-typed commitments and the WitExtract straight-line extractors of our PHPs. We
also remark that the techniques used in this section can be applied—with the appropriate care—to other
zkSNARKSs based on polynomial oracles/commitments, such as PLONK and Marlin [33] |24].

The ideas in this section allow to obtain CP-SNARKS overcoming a limitation in our approach so far
(which is also the basic approach in PLONK and Marlin): the commitments used to compile to the oracle
polynomials cannot be reused. The reason for it is that, in order to reuse them in some other proofs, we
would need to open additional evaluation points on them, but this would break zero-knowledge. We can go
around that by linking the “throw-away” commitments used in the proof to the commitments we want to
reuse. One of the challenges here is that the content of the reusable and throw-away polynomials, although
related, does not match perfectly. For example, the latter is specific to the relation we are proving and to
the rest of the input, while the former is not (it just represents “data” we are sharing among proofs).

The setting. Let us first consider the WitExtract algorithm of our PHPs for R1CS of Section [£.4 this
simply uses one polynomial, w(X), and returns its evaluations on H' := H\ L, i.e., w := (w(¢g (x| +
1),...,w(¢g" (n))). Our goal is to support use cases in which one has commitments ¢; to vectors u; and
wants to prove that w = ((u;);e[g,w)-

We consider the following algebraic setting. Let 1 be the generator of H so that H = (n,72,...,n") and
H\ L can be partitioned in ordered form as H = (W7, ..., Wyy1), where the sets W7, ..., W, have the same

59

cardinality. We define V' as a “prefix” of H, i.e., V = {n,...,1VI}. Although 1nk-typed commitments in
CS™ are defined for polynomials, we assume a canonical encoding of a vector u into a polynomial G(X) via
interpolation in V. This means that the Decode algorithm corresponding to the linking relation is the one
that outputs G1(V), ..., a,(V)[™]

Breaking the linking problem in two parts. Once fixed the setting above, proving the linking between
commitments (¢;);ejg to (0;);efq and a commitment c to 1 requires to prove that there is a vector w such
that

(ﬂl(‘f)a"'vﬁe(‘f)auo :?(1@(‘@&),...,1@(‘@%),1@(LV}+1))
We create a CP-SNARK for this language in two steps. First we show a scheme CPl(i}]{(that proves
(ﬂi(VVE),-~-aGZ(LLQ)a“0 ::(1D(LLH)""alb(L@Q)aQb(LVQ+1))

for some freshly committed (ﬁ;) jele), and then a scheme CPl(iif(that internally runs CPl(i:]f< and additionally
proves that for all j € [¢], it holds ﬁ}(Wj) = 0;(V). Thus, while CP,%E(exclusively proves a correspondence
among the polynomials on the same domains Wj, CPl(ii?(proves that (running CPl(”l]i) plus a correspondence
between the Wj-s and V.

Finally, at the end of the section, we discuss how to extend these results to support the WitExtract
algorithm of our PHPs for R1CS-lite, in which the extractor uses two polynomials a/(X), ' (X) (instead of
one) and computes the witness as w := (a/(¢g' (£ +1)) - b(pg' (£ +1)),...,a (¢g" (n) - b(dg (£ + 1))).

Scheme CPl(irlﬂz. We first show a scheme for tuple Decode, WitExtract where W; = V; for all i € [¢] and the
sets are disjoint. In particular, we can consider universal CP-SNARK for R,k where each relation Ry, in
the family is defined by a list of sets (W) cq-

We let z;(X) be the vanishing polynomial on W;, let Z;(X) := [Ticjci 2(X) (we set zZ1(X) =1).
Below we assume that there exists an index i* € [n*] such that the p;-(H) = WitExtract((p;) e[n+]). The
intuition of our construction is to let the prover compute an (affine) decomposition of the polynomial p;+ (X)
using the basis Z1(X), ..., 2¢(X), and similarly compute an (affine) decomposition of the polynomial p;(X)
using the base Z ;(X). If the statement holds then, for any i, the Z,(X)-coefficient of the decomposition of
p;= and of the decomposition of p; are the same polynomials.

KeyGenl(i}],)((ck): execute and output (ekopn, Vkopn) <— KeyGeng (ck).

opn(
Derivel(iil)((srs, R): Parse R as (W;);c(q and output vkg = ([24(s)]2, [Z(5)]2)jep-

Provel(ek, ((¢5)seiq; (¢5)jepne1): ((ui)seta, ()ien)s (61 (03)jeiw))):

1. For i € [¢] compute ¢;(X), u;(X) such that u;(X) = ¢;(X)2;(X) + uj(X).
Sample v; < F, set o} = 2 ;(X)7y; + 0; and
c; = [ui(s) + aoi(s)h, [di] = lai(s) — ayil-
2. Let p := p;x and compute the polynomial ¢(X) such that

p(X) =Y Z2i(X) - uj(X) = 5 4(X) - q(X)
1€[¢]

3. Sample 5(X) = By + X1 random polynomial of degree 1 and set
[d]1 < [q(s) +aB(s))]r-

19 We parse the evaluation of a polynomial p(W) on an ordered set W as a vector in FIWI,

60

4. Compute
X = ((¢5)se10 ci» (¢)) e, ([d51) 0, 1d)1),
Topn < Proveopn ekopm W = (uj)je[f]apa (UJ)JG 45 (QJ)J)
((05)je1e), 0, (Bj)jeters (v7) je E] ﬁ)

T~

(Namely, a proof for the opening for all the commitments to polynomials computed up to here and the
all the commitments of the instance.)

5. Prove that indeed p(X) — Zie[é] Zi(X) - ui(X) = Z y41(X) - q(X) using random point evaluation.
Speciﬁciilly, let 7 = ((@)je[l]”(cﬂje[n* 1(c}) el (d] Jici | [d]1[|Topn) - Let @ < H(7) and let 6(X) :=
—B(X)2 41(X) =32, 072 ;(X), compute z = 6(z), let w(X) be the polynomial such that w(X)- (X —z) =
o(X) — z.

6. Output (Topn, (C})je[g], [(dj)je[g],d, aw(s)], 2).

Verifyl(i}]z((ck,c, (¢j)je,m): Parse T = (Topn, (¢})jeia; [(d))jee, d, wi, 2); then output 1 if all the following
holds:

1. For j € [¢] check e(é;, [l2) = e([dj]1, [Zi(s)]2) + e(c], [1]2).

2. \/e"ifycpn(Vkopm((é) ¢ Cix 7(C;)j€[f]7([Jh)ye[f] [d]1) Tlopn) = 1,

3. e([wl, [s — z]) = e(c, [2) = e([dl1, [Z 041 (9)]2) = Xiepq e(ch, [Z4(s)]2) — [a]r.

Efficiency of CPl(i}]L. This analysis ignores the costs of CPgpn. Generating a proof requires O(¢|V|) F-
operations, plus a total of n + ¢|V| + ¢ exponentiations in G;. Proof size is 2¢ + 2 group elements (Gq)
and one field element. Verification requires 3¢ + 3 pairings. A breakdown for the exponentiations of the
prover follows:

— L|V| to commit to the c}-s;

— £ O(1) to commit to the d;-s;

— n —£|V| for [d] (we commit to ¢, which is of maximum degree n — ¢|V])

— {|V| to commit to w

Scheme CPl(iﬁz. We show a scheme for tuple Decode, WitExtract where there exists a subset V' of a subgroup
H = (n) of F, and let the values for j € [¢] ; = n?!VITI (recall that in our PHPs for R1CS of Section
the polynomial @, which “encodes” the witness, also contains the instance x) and set W; = 6, - V. (We can
assume that H is big enough so that W; # W for all j, ' where j # j'.)

The intuition is to first “shift” the polynomials u; computing polynomials u} such that u; (V) = u}(6; - V')
and secondly to apply the CP-SNARK Cpﬁ}]?« To prove the soundness of the shifted polynomials we make
black-box use of CPeq from the previous section, however the scheme is only leaky zero-knowledge, thus to
obtain zero-knowledge we additionally need to randomize the polynomials u;..

KeyGenl(iif((ck): execute (eKeval, VKeval) ¢ KeyGen,,(ck) execute (ekﬁ}i,vkﬁﬂ) — KeyGen,(iiE((ck) and return

1 1
srs 1= ((ekeq,ekl(in)k), (Vkeqkaﬁnb)-
Derivel(iil)((srs, R): Parse R as V, (W});e[q, compute vk(Rl) — (:Pl(iif(.Derive(srs7 R), and output specialized key

vkr = (vk&, ([Z4(s)]1)je10)-
Proveiny (ek, % = (&) ela (¢5)jene))s (U5)sepas (Pi)semme1)s ((05)ses (05)jelne)))?

1. For any j € [{] let:
uH(X) = ui(X/0;) + zv(X/0;)3;(X/0;),

where (3;(X) is a uniformly random degree-2 polynomial in F[X]. Set ¢} = [u’(s)]1 for j € [¢].

61

2. Prove that for j € [{], u;j(X) and u}(¢; - X) agree on V, namely, prove that u;(X) — u;(0;X) = 0
mod Z v (X) using CPeq.
Specifically, compute h;(X) such that h;(X)2Z v (X) = u;(X) — u}(X6;) and set h; = [h;(s)]1 for j € [¢];
Let

G(X, (X)) ese41]) = Xi — Xoi — X3i - X4 J €4,

X jelfgul2e+1,30
“J‘(X):{ejx‘] jelt+ 1.2

and set v = (v;) 3. Compute Teq as the output of

Proveeq (G, v)icie)s (&) seie)> (¢5)sere)> (hi)jer
(Zv(s)], ((u)jem (W))jem, (hi)jem), ((05)je00,0))

3. Compute T CP.EiL Prove(ekiny. (([u(s)]1)jeie): (¢1)iem1) (W) e (07) €1+, 0)-
4. Output T = ((c})e(q, (hj) e, Teqs Tink)

Verify® (vkjin, ¢, (¢j)jee,m): Parse T = ((c})jefe: (hj)jele)s eq, Tink) output 1 iff:
1. Verify, (Vkeq, (G, v)ic[g, (&) e, (€])ge[e] (hj)jeia, [2v ()1, Teq) = 1.

2. CP{}) Verify(vk{L, (¢!)it (€5)jem=))s Tink) = 1.

Efficiency of CPl(IiE< We ignore the costs of CPqpn in the efficiency analysis. For CPl(iiE< generating a proof

requires the computation of Clek and additionally 2¢ multi-exponentiations with basis of size |V| and a
proof for CPq that costs approximately 2 multi-exponentiations with basis of size |V|. In total the prover
carries out n+ 3|V|(¢ +2) 4 £. The total proof size is 4¢ + 3 group elements (G1), plus one field element. We
observe that the proof size goes down to 4/ + 42 if we can batch the CP.q proof with other CPq proofs used
in the compiler, as we do in our resulting CP-SNARKSs. The verifier complexity reduces to £ + 4 pairings (
¢+ 3 applying the batching techniques mentioned above).

Extension for the WitExtract of our PHPs for R1CS-lite. We discuss how to support the WitExtract
algorithm of our PHPs for R1CS-lite. Let us recall that this algorithm uses the two polynomials a(X),0(X)

and computes the witness as w := (a'(¢g' (£ + 1)) - (gi)H (L+1)),...,d (¢g" (n) - (ng (L+1))).

Given the scheme CPl(if< described above, which supports the WitExtract algorithm for a single polynomial,
we can obtain a scheme that supports the WitExtract of our PHPs for R1CS-lite with the following simple
extension. The prover computes a commitment to a polynomial ¢(X) such that Vn € H : ¢(n) = a/(n) v (n),
proves that this is the case, and then runs the proving algorithm of CP; nf(for the single polynomial ¢/(X).

The proof for ¥n € H : d(n) = a'(n) - b'(n) can be done by committing to the polynomial h(X) :=
(a'(X) - ¥(X) — ¢(X))/2z2u(X) and then showing that h(X) - zx(X) — a/(X) - b'(X) + ¢/(X) = 0. The
latter equation check can be added to the set of equations already proven in CPl(iif(using CPeq. The CPl(ii?(
CP-SNARK with this extension requires: 2n more exponentiations in G; to commit to ¢/(X) and h(X), two
more commitments, and finally the cost of the evaluation proof used in CP¢q gets increased: instead of 2
multi-exponentiations with basis of size V], it is one multi-exponentiation with basis of size |V| and another
multi-exponentiation with basis of size n.

Security of CP.(..fZ

Theorem 17. If CPOpn is a CP-SNARK for Ropn, and CPgeg is a CP-SNARK for Ryeg, then Clek is
{swh, 1nk}* x (swh)" -restricted complete, knowledge-sound, and zero-knowledge. Moreover, if CPopn and
CPyeg have commitment-only SRS then CPeyal1 has a commitment-only SRS.

62

Proof. We start with completeness. The check in step 1 holds in fact:

e([dj]1, [2i(s)]2) +e(c], [1]2) =
= [(ai(s) + aBi)2i(s) + u'(s) — (Zi(s)Bi + 03)]r =
= [2i(s)2i(s) + U'(s) + aoi]r = e([éi]1, [1]2)
The check in step 2 of the verifier holds by the completeness of CP,p,. For the last check, notice the relation
Riink can be expressed as Vi € [€] : p;« (W;) = u;(W;). By the definition of the u}(X) we have u;(W;) = u,(W;)
for i € [¢]. Moreover:

e(civ, [1J2) = e([d]1, [Z 41(9)]2) = D _ (e, [Zi(s)]o) — [az]r
1€[]

o () — 4(8)Z 031(5) = 3 Zals)-ul(s) a0 — B(8) 2 i1(s) = 3 0;24(s) — 3(@))]r

i€ [(] J

=0
—[a(a(s) — 6(2))]r = [aw(s) - (s — @)} = e([wh, s — a]2)

Now we move to knowledge soundness.
Let d(X),od(X),p(X),op(X),(uj)jem,(6j)j€[1g],(dj,uj,ug,odj,ouj,ou;)jem be the output of the extractor
of CPypn. First we show that for any j and n € W; it musts be u'(n) = u(n). In fact, suppose not, if
oy, (s) = 0w () — 0g,(X)v;(s) = 0 then it musts be that P;(X) := u;(X) — uj(X) — ¢;(X)Z;(X) # 0, since
the third equation of the verifier holds then s is a zero of the polynomial P;. Thus we can break the d-
DLOG assumption. The other case is when o, (s) — ou (8) = 04;(s)vj(s) # 0, in this we could sample s and
on challenge the value [a];, since the third equation of the verifier holds, we can compute the value a as
(uj(s) — uj(s) = q;j(s)Z(s))/ (ou,(s) — 0w, (s) = 0g,(5)Z ;(5)).

Suppose 3¢, 7 : pi«(n) # u;(n) = ui(n) and n € W,;. We let:

P(X) = p(X) = Z 1 (X)d(X) — sz(X)ﬁ (X)

Notice that the Eq. 3 of the verification algorithm implies that P(z) = 0 and « is uniformly random and
independent of P(X) because x is sampled after the proof mep, is computed (and therefore the polynomial
can be extracted before x is sampled). By the Swartz-Zippel lemma we have that P(X) = 0. The proof that
P(z) = 0 follows the same line of the proof of knowledge soundness of CPeya 1, therefore omitted. By our
hypothesis, the polynomial P(X) on point 7 evaluates to p(n) — p;(n) # 0, which leads to a contradiction.

We now prove zero-knowledge. We can simulate Top, using the simulator of CPgp,, moreover, given the
trapdoor s for any j € [(] we can sample a random value 7; and set ¢ = [r;]1 and set [q;] = (&; — ¢})/Z(s)
and we can sample d, z < Z, and define [w]; = [@d(s) — 6(x)]1/(s —).

We show this is indistinguishable from the real distribution with an hybrid argument. In the first hybrid
we are additionally given the witness p, (p;j) e[, 0, (05)jcig- We compute the proofs Mgeg, Topn as the real
prover would do and we compute the value ¢(s), which is deterministically defined given the witness, we

sample d, z as in the simulator and then compute g, 31 such that:

{q(s) +a(f+sp)=d
o—(Bo+apr)—>2;2;(s)oj =2

The group element [w]; is computed as the simulator does. Notice the marginal distribution of 8y, 81 is the
uniform distribution over ZE.

In the next hybrid we sample d, z at random, compute 5(X) := 8y + X1 as described before, compute
d = q(s) + af(s) and 2’ = 6(x) Compute [w]; as in the simulator and output (Topn, Tdeg, [, w]1,2’). This
hybrid is equivalent to the previous one in fact d = d and 2’ = 2.

In the last hybrid we compute the proof [w]; in the same way the prover does. Notice that once fixed the
witness and d’, 2’ the value w is completely determined, thus the two hybrids are equivalent.

63

Security of CPﬁﬁz. We will use the leaky-zero knowledge of CP¢q. Before stating the theorem we describe
the checker C that upon input an index and a value ¢ € F outputs 1 if and only if ¢ H. Moreover, we require
from CPeq to be leaky zero-knowledge only for the input commitments (c});e(¢- As noted in Remark [13{ this
is the case for our CPeq.

Theorem 18. If CP.q is a CP-SNARK for Req, and CP{}) is CP—SNARK for Ry then CP{Z) is (1nk)" x
(swh)" -restricted complete, knowledge-sound. Moreover if CPeq is ((0%,1%,0%), C)-leaky zero-knowledge then

CPl(iif(1s zero-knowledge. Moreover, if CP&L and CP¢q have commitment-only SRSs then CPﬁif(has commitment-
only SRS.

Proof. We start with completeness. Notice that by definition of u’(X) for j € [f], we have that u;(V) =
u’(0; - V). Thus, by definition of h;(X) and by the completeness of CPeq the first check of the verifier holds.
By definition of WitExtract, for any j € [{] the value u}(6; - V') and p*(0; - V) agree thus by the completeness

of CP{1) the third check of the verifier holds.

We prove knowledge soundness. From the extractor of CPeq we can extract the polynomials (d;) ;e[with
the ppening material (6;);e(g such that G;(V) = u}(0;V). By the knowledge soundness of CPI(irl'n?(we have for
all j € [£], u; (V) = uj(60;V) = p*(0;V).

Finally, we prove zero-knowledge. Let S¢q = (Sieak; S) be the simulator of CPeq. The simulator, for
any j € [{], sample ¢}, h; uniformly at random from G;. Then, let Xeq = (G}, v);c(30, ((¢5);e(0 () el
(hj)jelq), it runs Sieak (11, %eq) of CSeq and obtains {(7, Tj)}jele+1,2¢ It samples uniformly random value
Leak = (y;)jeie+1,2¢ and runs S(td, Xeq, Leak) obtaining meq. Then it simulates the proof nl(lil)(using the
simulator of CPl(iR(.

Through an hybrid argument we can show that the proof is statistically close to a proof where for any
J € [€] the value c;, h; are computed as in the real proof and the value y; is computed as u’(z;). Indeed, for
any fixed polynomial u;(X), the following system of equations hold:

u;(s) =u,;(s/0;) + 2v(s/0;) - B;(s/6;)
hj(s) = (u(s) —u'(0;5))/ 2 v (s) = B;(s)
y; = uj(;/0;) + 2v(x;/0;) - Bj(x;/0;)

Recall that $;(X) is an uniformly random degree-2 polynomial thus the tuple 3;(s/0;),8;(s), B;(z;/0;) is
uniformly random over F? with overwhelming probability (it is not when z;/60; € {s,s/0;} or when s € V).
Therefore they are uniformly distributed as sampled by the simulator.

We can conclude the proof of zero-knowledge through another hybrid step where we switch the simulated

proofs Ttl(lii and Ty with real proof.

9 Instantiating Our Compiler: Our Universal zkSNARKSs

We describe different options to obtain universal zkSNARKSs in the SRS model by applying our compiler from
Section [6] to our PHP constructions of Sections [1.3H4.4] and our CP-SNARKs for pairing-based polynomial
commitments of Section [{l The results are a collection of zkSNARKs that offer different tradeoffs in terms
of (mainly) SRS size, proof size, and verification time. Some preliminary experimental evaluations of our
zkSNARKSs are gathered in Appendix

9.1 Available Options to Compile Our PHPs

We discuss how to combine the aforementioned CP-SNARKSs for committed polynomials to obtain CP-
SNARKS for the Ry relations corresponding to our PHPs. All our PHPs have a similar structure in which
the verifier checks consist of one vector d of degree checks, and two polynomial checks ((G1,v1), (G2, v2)).
Hence, for each PHP the corresponding relation R,n, can be obtained via the product of

Raeg ((dj)jein)> (P5)jem()+1,n7]) A Req((G1,v1), (05)jem=)) A Req((G3,v2), (9j)jeme))

64

Fig. 4. Different options to compile our PHPs. We mark compatibility with commitment schemes CS; and CS»
respectively by a circle and a square (both shapes mean full compatibility). Dotted lines mean either option is
possible. An index 1 or 2 for an arrow to Req denotes whether it refers to the first or second polynomial check.

Ropn Req Rdeg
e) | () [o=]| o] [

W

Blocks Q@y @ey N

opn eq deg m eq
PHPiite1x ~ PHPRricsi1x PHPiite1 PHPRrics: CSo
PHP g PHPiiteax ~ PHPRics2x PHPite2 PHPRrics2
[

where G/, is the partial evaluation of G; on the prover message o.

In all the PHPs, in the first polynomial check the v ;(X) are constant polynomials (in particular, they
all encode the same point, i.e., Vj : v1;(X) = y), while in the second check they are the identity, i.e.,
Vj 1 v2,;(X) = X. Furthermore, in those PHPs where degx ;x,1(G2) = 2, the second Req relation can be
replaced by its specialization for quadratic equations.

Given the above considerations, we consider two main options for applying our compiler to our PHPs:

Commitment scheme CS;: this is applied to PHPjite1x, PHPjiteax; PHP1cs1x, and PHP qco.
— For CP,,, we can use either CPoAnM7 secure in the algebraic group model, or CPE;E that relies on the
mPKE assumption (see Section .
— To prove the first and second polynomial checks we use (twice) CPeq of Section
— To prove Rgeg, we use CPS,:; of Section with the optimization of Remark
Commitment scheme CS.Q: this isAglaplie to I_DHP”tel, PH P”Fez’ PHP,1c1, and PH PB&SI?
— For CPypn we can use either CP_", secure in the algebraic group model, or CP
mPKE assumption (see Section .
— To prove Rgeg, we use CP&?g of Section
— To prove the first polynomial check we use CP¢q of Section @
— To prove the second polynomial check we use CPgeq of Section [7.7]

opn that relies on the

9.2 Instantiating the PHPs with the appropriate zero-knowledge bounds

Our compiler accounts for using a CP-SNARK CP,p, that can be (b, C)-leaky-ZK, which in turn requires
the PHP protocol to be (1 4 b)-bounded ZK (see Theorem , where the +1 essentially comes from the fact
that the commitment reveals one evaluation of each oracle polynomial.

Among the CP-SNARKSs we propose to realize CPphp, the only one that is leaky-ZK is the CP¢q scheme
of Section [7.6] Its leaky-ZK is due to the fact that the proof includes evaluations of those polynomials that
end up in the set S used to optimize the proof size.

Note that this concern arises only when using it to prove the first polynomial check. Indeed, in all our
schemes the second polynomial check involves only oracle polynomials that are not related to the witness, and
thus for those polynomials the amount of leakage does not matter.

We discuss what is b for the b-leaky-ZK of CP.q when it is used to prove the first polynomials checks in
all our PHPs, and how such b impacts the instantiation of these PHPs.

65

PHPs for R1CS-lite. The first polynomial check is the same in both constructions, and for the sake of the
relation Req the polynomial G can be written as

Gll(Xa;vaX37Xq7Xr) = Xa'Xb'ga,b+Xa'ga+Xb'gb+Xq'gq+Xr'gr+Xs+gO

and the goal is to prove that on a given y, G ((p;(y)),cj5) = 0, ie.,

~ 2 ~ 2 ?
a' (' () - gar + @' (y) - ga + 0" (W) - g6 +s() + (W) - 94 +7(Y) - gr + 90 =0

To this end, CP.q chooses a set S of size 1; for instance it reveals 1% (y) and nothing more. Thus, CPq for
this polynomial check is b-leaky-ZK with b = (b,, by, bs, by, b,) = (0,1,0,0,0) (cf. Remark .

From Theorem [5] PHPjite; and PHPjiep need to be (1,2,1,1,1)-bounded ZK. Moreover, note that all the
“+1” evaluations due to the commitment are all in the same point (the secret exponent s). This is relevant
because, by Remark we can optimize the degrees and instantiate PHPjie; and PHPjie» with &’ € F<,,41[X],
b e an+2[X], qs € Fgl[X], rs € Fgl[X]

PHPs for R1CS. All constructions share the same first polynomial check, which can be written as
Gll(XaaXban7Xs;Xq,Xr> = Xa 'Xb *Ga,b +Xa *Ya +Xb *9b +Xs +Xq *9q +Xr *gr +90

and whose goal is to prove that on a given y, G’ ((p;(¥));e6)) = 0, i.e.,

a()b(y) - gap + a(y) - ga +b(Y) - g +0(Y) - g + 5) +a(y) - gg +7(y) - gr + 90 =0

Similarly to the above, CP.q chooses a set .S of size 1, revealing only the evaluation of I;(y) Thus, CP¢q for
G1 is b—leaky-ZK with b = (b, by, by, bs, by, b)) = (0,1,0,0,0,0). Due to Theorem [5| these constructions
need to be (1,2,1,1,1,1)-bounded ZK, where the +1 evaluations correspond to the evaluation of the secret
exponent of the commitments. Similarly to the previous case, the optimizations of Remark [apply to these
PHPs as well.

9.3 Our zkSNARKS

In Table [4] we summarize the efficiency of the zkSNARKs schemes obtained through the different options
to instantiate the compiler on all our PHPs (the table only shows the instantiation in the AGM model, see
later for the differences when CPqpn = CPE;E). We comment how these measures are computed. The final

numbers are obtained after considering the efficiency of the single CP-SNARKS from Section

— The universal SRS srs is the commitment key instantiated using the maximal degree D of the given PHP,
and the KeyGen cost is the cost of generating this commitment key. This follows from the fact that all the
CP-SNARKS used in this instantiation are commitment-only.

— The verification key vkg of the specialized SRS srsg for an R1CS-lite (resp. R1CS) relation involving
matrices of dimension n and density at most m includes rel-type commitments to the relation polynomials
and the specialized SRSs for the CP-SNARKSs. In our case, the latter only includes [s]2 used to verify a
proof in CPey, and [s,sP~"*2 sP=m+2], used in the verification of CP((jz; when using CS,. The Derive
complexity is the cost of generating these rel-type commitments.

— The proof includes one commitment per polynomial sent by the PHP prover, one CPqp, proof per PHP
round, two CPge, proofs, one CP.q proof for the first polynomial check, and a proof for the second poly-
nomial check, which is done using CPeq for CS; or using CPgeq for CS,. The cost of the prover is the sum
of: the committing cost which corresponds to the PHP proof length (translated into G; exponentiations),
the cost of generating the CP-SNARK proofs, and the PHP prover complexity (which are F operations).
Note that in the CS, instantiation, the CPqeq proof is empty since for every quadratic term of G we have
exactly one commitment in G; and another in Go.

66

— Verification involves running the PHP verifier, Dy,, and to run verification of the CP-SNARK proofs for
CPopn; CPgeg, CPeq for the first polynomial check, and CPeq (resp. CPgeq) for the second check in the
CS; (resp. CS2) instantiation. In our summary we only count the number of pairings, as this is the most
expensive cost. Each proof of CPopn, CPyeg and CPeq requires 2 pairings while a CPqeq proof (for the G
polynomial used in our case) needs 3 pairings. Several of these pairings have a common Go argument, and
thus can be batched using standard techniques; the numbers in the table are the ones after batching.

In Table [I] we present a comparison between a selection of our schemes and previous work.

Instantiations under mPKE. For the versions of our zkSNARKs based on the mPKE assumption, i.e.,
instantiated with CPgp, = CPE;E, the efficiency decreases as follows: SRS size is increased by D elements of

Gy and 1 element of Gy (while remaining updatable by remark , proof size is increased by 4 elements of
G, the verifier needs 1 more pairing (after batching), and the prover needs I more exponentiations in Gy,

where | = 3n + 2m for Hl(it1e)2x’ H,fgw Hr(llc)s2x, Hr(].2c)s27 Il =3n+ 4m for Hl(itle)lx, ngfe)l, Hr(11253, and [= 3n + 6m for
1) (2)
1

rleslx? “Frlesl®
It is worth noting that all our instantiations under the mPKE assumption are significantly more efficient
than the instantiation of MARLIN |24] with the polynomial commitments based on mPKE. The latter would
require 11 more elements of Gy in the proof (1 per commitment), while the proving time requires 11n + 5m
more exponentiations in Gy.

9.4 Our CP-SNARKS

By using the commit-and-prove variant of our compiler described in Section[8:1] we obtain commit-and-prove
variants of our zkSNARKSs in Table [4] Below we discuss their efficiency.

Let us consider proving R1CS or R1CS-lite relations in which a portion of the witness vector w is
committed. Assume there are I commitments, (¢;);ep], such that each ¢ commits to a vector of dimension
v encoded in a low-degree extension u;(X) of degree v — 1. Also, we recall that according to our compiler,
each CP-SNARK variant works the same as the corresponding zkSNARK except that it additionally runs
the CPl(iif< proof system.

In the case of the PHPs for R1CS, adding the CPl(iaf< proof requires in addition: n+ v(3l 4 2) + 1 exponen-
tiations in Gy for the prover, (41 + 2) elements of Gy and one element of F in the proof, and I + 3 pairings
to the verifier.

In the case of the PHPs for R1CS-lite, adding the CPl(iiE(proof (with the modification to deal with the two
polynomials) requires in addition: 4n + v(3l + 1) + I exponentiations in G, for the prover, (41 + 4) elements
of G; and two elements of F in the proof, and [+ 3 pairings to the verifier.

Acknowledgements

This work has received funding in part from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program under project PICOCRYPT (grant agreement No.
101001283), by the Spanish Government under projects SCUM (ref. RTT2018-102043-B-100), CRYPTOEPIC
(ref. EUR2019-103816), and SECURITAS (ref. RED2018-102321-T), by the Madrid Regional Government
under project BLOQUES (ref. S2018/TCS-4339), and by research grants from Protocol Labs, and by Nomadic
Labs and the Tezos Foundation. The first and second authors were at the IMDEA Software Institute while
developing part of this work. Additionally, the project that gave rise to these results received the support of
a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/ES18/11670018.

67

Table 4. Efficiency summary of our zkSNARKSs with universal and updatable SRS in the AGM model (i.e., using
CPopn = CPOSM) for R1CS-lite and R1CS relations with n x n matrices, each of density < m, and inputs of length ¢.
For field operations, we simplified using that m = O(n). M is the largest value of m supported by the PHPs.

size time
PHPCS i srs| |vkr| || KeyGen Derive Prove Verify
i Gy 2M 5 11 2M 10m n+8m—2¢ 2 pairings
Sles| my e o1 o1
o F — — 3 — O(mlogm) O(mlogm) O({+logm)
2 Gy 2M — 10 2M — 8n+6m—2¢ 7 pairings
o & [CS), Gy 2M 11 — 2M 16m —
';T) o F — — 2 — O(mlogm) O(mlogm) O({+logm)
E ij Gy M 16 11 M 16m 8n+4m—2¢ 2 pairings
o [CS Hl(itle)2x Gy 1 L — 1 o o
= F — — 3 — O(mlogm) O(mlogm) O(£+logm)
3 9 Gy M — 10 M — n+3m—2¢ ..
d (cs, M Gy M 21— M 2um N
a (aka LunarLite) F — — 2 — O(mlogm) O(mlogm) O(¢+logm)
7 Gi3M 6 12 3M 18m Ont12m—L . .
Sles| mp. e 1 - 1 T 2
= F — — 3 — O(mlogm) O(mlogm) O({+logm)
9 Gi3M — 11 3M — OndOm-€
o [cS| m®, Gy3M 12— 3M 2Tm — i
a F — — 2 — O(mlogm) O(mlogm) O(¢+logm)
S G M 42 12 M 2m - ntdm—L
Ells| m G111 2y
= F — — 3 — O(mlogm) O(mlogm) O({+logm)
% my, G M — 11 M — In-+3m—, N
Q_T CSy| (aka Lunarles Go M 60 — M 5Tm — 7 pairings
o fast & short) F — — 2 — O(mlogm) O(mlogm) O({+logm)
% o), Gy3M 12 12 3M 12m 9n+8m—4 .
Q‘_: CS:| (aka Lunarles Go 1 1 — 1 — — 2 pairings
a short vk) F — — 5 — O(mlogm) O(mlogm) O(¢+logm)

68

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A Subversion-Resistant SNARK. In: Takagi, T.,
Peyrin, T. (eds.) ASTACRYPT 2017, Part III. LNCS, vol. 10626, pp. 3-33. Springer, Heidelberg (Dec 2017).
https://doi.org/10.1007/978-3-319-70700-6 1

Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sublinear arguments without a
trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087—2104.
ACM Press (Oct / Nov 2017). https://doi.org/10.1145,/3133956.3134104

Aranha, D.F., Bennedsen, E.M., Campanelli, M., Ganesh, C., Orlandi, C., Takahashi, A.: Eclipse: Enhanced
compiling method for pedersen-committed zksnark engines. Cryptology ePrint Archive, Report 2021/934 (2021),
https://ia.cr/2021/934

Attema, T., Cramer, R.: Compressed X-protocol theory and practical application to plug & play secure algorith-
mics. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 513-543. Springer,
Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-030-56877-1 18

Baghery, K.: Subversion-Resistant Simulation (Knowledge) Sound NIZKs. In: Albrecht, M. (ed.) 17th IMA In-
ternational Conference on Cryptography and Coding. LNCS, vol. 11929, pp. 42-63. Springer, Heidelberg (Dec
2019). https://doi.org/10.1007/978-3-030-35199-1 3

Ben-Sasson, E., Bentov, 1., Chiesa, A., Gabizon, A., Genkin, D., Hamilis, M., Pergament, E., Riabzev, M.,
Silberstein, M., Tromer, E., Virza, M.: Computational integrity with a public random string from quasi-linear
PCPs. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 551-579. Springer,
Heidelberg (Apr / May 2017). https://doi.org/10.1007/978-3-319-56617-7 19

Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Scalable zero knowledge with no trusted setup. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 701-732. Springer, Heidelberg (Aug
2019). https://doi.org/10.1007/978-3-030-26954-8 23

Ben-Sasson, E., Chiesa, A., Goldberg, L., Gur, T., Riabzev, M., Spooner, N.: Linear-size constant-query IOPs for
delegating computation. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 494-521.
Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/978-3-030-36033-7 19

Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of public parameters for succinct
zero knowledge proofs. In: 2015 IEEE Symposium on Security and Privacy. pp. 287-304. IEEE Computer Society
Press (May 2015). https://doi.org/10.1109/SP.2015.25

Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: Transparent succinct
arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103-128.
Springer, Heidelberg (May 2019). |https://doi.org/10.1007/978-3-030-17653-2 4

Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B,
Part II. LNCS, vol. 9986, pp. 31-60. Springer, Heidelberg (Oct / Nov 2016). https://doi.org/10.1007/978-3-662-
53644-5 2

Benarroch, D., Campanelli, M., Fiore, D.: Commit-and-Prove Zero-Knowledge Proof Systems. ZKProof.org
(2020), https://docs.zkproof .org/standards/proposals

Benarroch, D., Campanelli, M., Fiore, D., Gurkan, K., Kolonelos, D.: Zero-Knowledge Proofs for Set Membership:
Efficient, Succinct, Modular. In: Financial Cryptography and Data Security (2021)

Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive
arguments of knowledge, and back again. In: Goldwasser, S. (ed.) ITCS 2012. pp. 326-349. ACM (Jan 2012).
https://doi.org/10.1145,/2090236.2090263

Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-interactive arguments via linear
interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315-333. Springer, Heidelberg (Mar 2013).
https://doi.org/10.1007/978-3-642-36594-2 18

Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 56—73. Springer, Heidelberg (May 2004). https://doi.org,/10.1007/978-3-540-
24676-3 4

Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Efficient polynomial commitment schemes for multiple points and
polynomials. Cryptology ePrint Archive, Report 2020/081 (2020), https://eprint.iacr.org/2020/081

Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits
in the discrete log setting. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp.
327-357. Springer, Heidelberg (May 2016). https://doi.org/10.1007/978-3-662-49896-5 12

Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the public parameters of the pinoc-
chio zk-SNARK. In: Zohar, A., Eyal, 1., Teague, V., Clark, J., Bracciali, A., Pintore, F., Sala, M. (eds.) FC 2018
Workshops. LNCS, vol. 10958, pp. 64-77. Springer, Heidelberg (Mar 2019). https://doi.org/10.1007/978-3-662-
58820-8 5

69

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1145/3133956.3134104
https://ia.cr/2021/934
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-35199-1_3
https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-36033-7_19
https://doi.org/10.1109/SP.2015.25
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://docs.zkproof.org/standards/proposals
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-540-24676-3_4
https://eprint.iacr.org/2020/081
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-662-58820-8_5

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK parameters in the random
beacon model. Cryptology ePrint Archive, Report 2017/1050 (2017), http://eprint.iacr.org/2017/1050
Biinz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for confidential
transactions and more. In: 2018 IEEE Symposium on Security and Privacy. pp. 315-334. IEEE Computer Society
Press (May 2018). https://doi.org/10.1109,/SP.2018.00020

Biinz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 677-706. Springer, Heidelberg (May 2020).
https://doi.org/10.1007,/978-3-030-45721-1 24

Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: Modular design and composition of succinct zero-knowledge
proofs. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2075-2092. ACM Press (Nov
2019). https://doi.org/10.1145/3319535.3339820

Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Preprocessing zkSNARKs with
universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105,
pp. 738-768. Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45721-1 26

Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive proofs from holography. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 769-793. Springer, Heidelberg
(May 2020). https://doi.org/10.1007/978-3-030-45721-1 27

Daza, V., Rafols, C., Zacharakis, A.: Updateable inner product argument with logarithmic verifier and appli-
cations. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp.
527-557. Springer, Heidelberg (May 2020). https://doi.org/10.1007,/978-3-030-45374-9 18

Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge
University Press (2009), http://www.cambridge.org/gb/knowledge/isbn/item2327542/

Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
630-649. Springer, Heidelberg (Mar 2014). https://doi.org/10.1007/978-3-642-54631-0 36

Escala, A., Herold, G., Kiltz, E., Rafols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129-147. Springer, Heidelberg
(Aug 2013). https://doi.org/10.1007/978-3-642-40084-1 8

Fuchsbauer, G.: Subversion-Zero-Knowledge SNARKs. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I.
LNCS, vol. 10769, pp. 315-347. Springer, Heidelberg (Mar 2018). https://doi.org/10.1007,/978-3-319-76578-5 11
Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33-62. Springer, Heidelberg (Aug 2018).
https://doi.org/10.1007/978-3-319-96881-0 2

Gabizon, A.: AuroraLight: Improved prover efficiency and SRS size in a sonic-like system. Cryptology ePrint
Archive, Report 2019/601 (2019), https://eprint.iacr.org/2019/601

Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over lagrange-bases for oecumenical nonin-
teractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019), https://eprint.iacr.
org/2019/953

Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626-645. Springer, Heidelberg
(May 2013). https://doi.org/10.1007/978-3-642-38348-9 37

Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assump-
tions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp. 99-108. ACM Press (Jun 2011).
https://doi.org/10.1145,/1993636.1993651

Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. Journal of Cryptology 7(1),
1-32 (Dec 1994). https://doi.org,/10.1007/BF00195207

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. STAM Journal on
Computing 18(1), 186-208 (1989)

Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASTACRYPT 2010.
LNCS, vol. 6477, pp. 321-340. Springer, Heidelberg (Dec 2010). https://doi.org/10.1007/978-3-642-17373-8 19
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.S.
(eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305-326. Springer, Heidelberg (May 2016).
https://doi.org/10.1007/978-3-662-49896-5 11

Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference strings
with applications to zk-SNARKSs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol.
10993, pp. 698-728. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-96878-0 24

Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash Protocol Specification. Tech. rep. 2016-1.10. Zerocoin
Electric Coin Company, Tech. Rep. (2016)

70

http://eprint.iacr.org/2017/1050
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45374-9_18
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/601
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Ishai, Y.: Efficient zero-knowledge proofs: A modular approach (2019), https://simons.berkeley.edu/talks/
tbd-79. Also see https://zkproof.org/2020/08/12/information-theoretic-proof-systems/

Ishai, Y.: Zero-Knowledge Proofs from Information-Theoretic Proof Systems - Part I. ZKProof.org, Blog entry
(2020)

Ivanov, K.G., Saff, E.B.: Behavior of the Lagrange Interpolants in the Roots of Unity, pp. 81-87. Springer
Berlin Heidelberg, Berlin, Heidelberg (1990). https://doi.org/10.1007/BFb0087899, https://doi.org/10.1007/
BFb0087899

Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177-194. Springer, Heidelberg (Dec 2010).
https://doi.org/10.1007/978-3-642-17373-8 11

Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: 24th ACM STOC.
pp. 723-732. ACM Press (May 1992). https://doi.org/10.1145/129712.129782

Kosba, A.E., Papadopoulos, D., Papamanthou, C., Song, D.: MIRAGE: Succinct arguments for randomized
algorithms with applications to universal zk-SNARKs. In: Capkun, S., Roesner, F. (eds.) USENIX Security 2020.
pp. 2129-2146. USENIX Association (Aug 2020)

Kothapalli, A., Masserova, E., Parno, B.: A direct construction for asymptotically optimal zkSNARKSs. Cryptology
ePrint Archive, Report 2020/1318 (2020), https://eprint.iacr.org/2020/1318

Lee, J., Setty, S., Thaler, J., Wahby, R.: Linear-time zero-knowledge SNARKs for R1CS. Cryptology ePrint
Archive, Report 2021/030 (2021)

Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169-189. Springer, Heidelberg (Mar 2012).
https://doi.org/10.1007/978-3-642-28914-9 10

Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge SNARKSs from linear-size universal
and updatable structured reference strings. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS
2019. pp. 2111-2128. ACM Press (Nov 2019). https://doi.org/10.1145/3319535.3339817

Micali, S.: CS proofs (extended abstracts). In: 35th FOCS. pp. 436-453. IEEE Computer Society Press (Nov
1994). |https://doi.org/10.1109/SFCS.1994.365746

Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4), 1253-1298 (2000).
https://doi.org/10.1137/S0097539795284959

Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs for delegating com-
putation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC. pp. 49-62. ACM Press (Jun 2016).
https://doi.org/10.1145/2897518.2897652

Rafols, C., Zapico, A.: An Algebraic Framework for Universal and Updatable SNARKs. Cryptology ePrint
Archive, Report 2021/590 (2021), https://eprint.iacr.org/2021/590

Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 704-737. Springer, Heidelberg (Aug 2020).
https://doi.org/10.1007/978-3-030-56877-1 25

Trefethen, L., Berrut, J.P.: Barycentric lagrange interpolation. SIAM Review 46(3), 501-517 (2004).
https://doi.org/10.1137,/S0036144502417715

Wahby, R.S., Tzialla, 1., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKSs without trusted setup.
In: 2018 IEEE Symposium on Security and Privacy. pp. 926-943. IEEE Computer Society Press (May 2018).
https://doi.org/10.1109/SP.2018.00060

Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: A distributed zero knowledge proof system. In:
Enck, W., Felt, A.P. (eds.) USENIX Security 2018. pp. 675-692. USENIX Association (Aug 2018)

Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-knowledge proofs with optimal
prover computation. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp.
733-764. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/978-3-030-26954-8 24

Yamashita, K., Tibouchi, M., Abe, M.: On The Impossibility of NIZKs for Disjunctive Languages from Commit-
and-Prove NIZKs. IEEE Access (2021)

Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge
proof. In: 2020 IEEE Symposium on Security and Privacy. pp. 859-876. IEEE Computer Society Press (May 2020).
https://doi.org/10.1109/SP40000.2020.00052

Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: Verifying arbitrary SQL queries
over dynamic outsourced databases. In: 2017 IEEE Symposium on Security and Privacy. pp. 863-880. IEEE
Computer Society Press (May 2017). https://doi.org/10.1109/SP.2017.43

Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A Zero-Knowledge Version of vSQL.
Cryptology ePrint Archive, Report 2017/1146 (2017), https://eprint.iacr.org/2017/1146

71

https://simons.berkeley.edu/talks/tbd-79
https://simons.berkeley.edu/talks/tbd-79
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/
https://doi.org/10.1007/BFb0087899
https://doi.org/10.1007/BFb0087899
https://doi.org/10.1007/BFb0087899
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1145/129712.129782
https://eprint.iacr.org/2020/1318
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1145/2897518.2897652
https://eprint.iacr.org/2021/590
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1137/S0036144502417715
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP.2017.43
https://eprint.iacr.org/2017/1146

65. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM: Faster verifiable RAM with
program-independent preprocessing. In: 2018 TEEE Symposium on Security and Privacy. pp. 908-925. IEEE
Computer Society Press (May 2018). https://doi.org/10.1109/SP.2018.00013

A Constraint Systems

Below we define a less compact version of R1CS-lite (Definition [§) in which satisfiability is expressed via
three vectors and three checks. This form is sometimes more convenient to work with.

Definition 23 (LongR1CS-lite). Let F be a finite field and n,m € N be positive integers. The universal
relation Rpongrics-lite 15 the set of triples

(R,x,w) := ((F,n,m,{L, R},{),z, (a’,b’,c))

where L, R € ™" max{||L||,||R||} < m, x € F*"!, a’,b',c¢’ € F*~¢, and for a := (1,z,a’), b := (1,b'),
c:=(l,z,¢c) it holds

aob—c=0 AN a+L-¢c=0 AN b+R-c=0

Lemma 8. Let R (resp. R) be a LongR1CS-lite (resp. R1CS-lite) relation with matrices {L, R}. Then for
any x € F'=1 it holds € L(R) if and only if x € L(R).

Proof. CASEI: x € L(R) = x € L(R). Let (a’, b, ¢’) be a witness for & € £(R). Then ¢’ := a’ob’ is a witness
for € L(R). To see this, note that by LongR1CS-lite definition, we have that L-(aob)o R-(aob) =aob,
for a := (1,2,a’) and b := (1,b’). Finally, noticing that (1,2, ¢’) = a o b concludes this part of the proof.

Case II: & € L(R) « « € L(R). Let ¢’ be a witness for € £(R), namely for & := (1,,¢’) it holds
é¢=L-éoR-& ~
Let @:=—L-&b:=—R-¢é and ¢ := ¢, and let a’, b’ be the last n — £ rows of @ and b respectively.
By the satisfiability of R1CS-lite we have that

1 - " /!
x :é:L-éoR-é:&ob:<Z,)o<Z/)
/

which implies that ¢/ = a’ o b’, and thus for a := (1,z,a’), b := (1,b’), and ¢ := (1, z, ¢’), the Hadamard
constraint of R1CS-lite must hold.

Finally, note that from the definition of the first £ rows of R it holds b = (1,b’), and thus @ = (1,x,a").
Therefore, for a,b as above the linear constraints of R1CS-lite are also satisfied.

This concludes the proof that (a’,b’,¢’) is a satisfying witness for € L(R).

A.1 Proof of Lemma [5]

Proof. We do the proof by showing equivalence with the LongR1CS-lite relation of definition 23} by lemma
one can then obtain the proof.
First, we claim that equation is equivalent to

VneH:a(n) + Y Ly, -aly)-b(n') =0 (17)
n’eH

VneH:b(n)+ Y Ry -a(y')-b(n') =0 (18)
n’€H

72

https://doi.org/10.1109/SP.2018.00013

To see this, we observe that we can group the checks inside equations (resp.) by doing a linear
combination with linearly independent polynomials {AC];H(X) nem; then, these two equations can be merged
into a single one by introducing a new random variable Z.

> aln)- LY

+ Z L,,-a

) b(n') - Ly(X) = 0 € F[X]

neH n,n’€H
D b)) LX)+ Y Ry -a(n)-b(n) - LX) =0 € F[X]
neH n,n’ €l
i
a(X)+Z-b(X)+ Y Ly -a(n)-by') - L3(X)+
n,n’ €

+ZZ Ry a(n)

n,n’ €H

In one direction, given a satisfying witness (a’, b’,
that satisfy equations (I7)—(18) by defining: a = (1,z,a’), a(X) = > neH Qou(n) LX) € F<pa[X

(and similarly for b(

(b(X) = 1)/2L(X).

In the other dlrectlon let a'(

put satlsfy equatlons .

X) from b = (1,b")), d/(X)

Then we build a witness (a’,b,

b(n) - L(X) =0 € F[X, Z]

¢’) for R1CS-lite, we can build polynomials a’(X), b

= (a(X)

= YoneL ' gu(n) - L(X))/Z1L(X), and b'(X) :

'(X)
]

),b'(X) be polynomials such that their extensions with the public in-
c’) for R1CS-lite by defining: b’

(b <¢H (f +1)) a(¢' (€ +1)),...,d (¢5' (n), and ¢ := (a(¢5" (€ + 1)) - (o' (¢ +
1)), (¢H (n)- (¢H (f +)))
A.2 Proof of Lemma
Proof. Similarly to the proof above, we claim that equation is equivalent to
V€M :a(n) + Y Ly, -2(n') =0 (19)
n’€H
VneH:b(n)+ Y Ry - 2(n) =0 (20)
n’ €l
Vn e H: M)+ Y Opay - 2() =0 (21)
n’ €l

To see this, we observe that we can group the checks inside equations f by doing a linear combi-

nation with linearly independent polynomials {LE’,H(X) }nem; then, these three equations can be merged into
a single one by introducing new random variables Zp,, Zg, Zo.

> aln)- Ly

nel

> b)) - LX) +

neH

~Sa

neH

> (Zra(n) + Zrb(n) — Zoa(n)b(n)) Ly (X

neH

X) + Z Ly

n,n’ €H

n,n’ €H

(X)) + Z On,n"

n,n'€H

Z R,y -

2(n) - LX) = 0 € FIX]
2(n) - £(X) = 0 € FIX]

2(n) - £E(X) = 0 € FIX]

)

)+ > Zu My 2(0) L (X) = 0 € FIX, Z1, Zr, Zo]

n,n’' €H
Me{L,R,0}

73

In one direction, given a satisfying witness w for R1CS, we can build polynomials a(X),b(X), w(X)
that satisfy equations f: first, let @ = —L -z and b = —R - z with z = (1,2, w), second, define
by interpolation a(X) = -, i @gu() - LX) € F<p—1[X] and similarly (X), and finally define 2(X) :=
Zne]L "”'m{(n) : ‘ngﬂ(X) + ZneH\L Wy (n) ‘CJEI(X) : Z]L(X)-

In the other direction, let a(X),b(X),w(X) be such that they satisfy equations (I9)—(21), for z(X) :=
D onel & gun) LX) +w(X) - 2L(X). Then, we build a witness w for R1CS by defining w := (z(pg" (€ +

1), o2(¢5 (n)).

A.3 Reduction to Arithmetic Circuit Satisfiability
Let us recall the arithmetic circuit satisfiability problem.

Definition 24 (Arithmetic Circuit Satisfiability). Let F be a finite field. The universal arithmetic
circuit satisfiability relation Re is the set of triples (C,(x,y),w), where C : Ffn x Flwit — Flouwt s qn
arithmetic circuit with £;, public inputs, Ly private inputs, and €., public outputs, such that C(x, w) = y.

Gennaro et al. [34] proved how to encode arithmetic circuit satisfiability with a quadratic arithmetic
program (which is the polynomial version of R1CS). We summarize below their result.

Theorem 19 (|34]). Let C : Fbn x Fwit — Flowt be an arithmetic circuit with N multiplication gates. Then
there exists an R1CS L, R, O € FWN+ou) X yyith n = €5, +€ g+ N +1 such that for any «, Jw : C(x,w) =y
if and only if 3¢’ that makes (1,x,y) accepted by (L, R, O).

In the following theorem we show a similar method to encode arithmetic circuit satisfiability with
R1CS-lite.

Theorem 20. Let C : Fén x Flwi — Flowt be an arithmetic circuit with N multiplication gates. Then there
exists an R1CS-lite {L, R} € F™*™ with £ = £;n+Lous+1, n = £+ N, such that for any z, Jw : C(x,w) =y
if and only if Jw’ that makes (1,x,vy) accepted by {L, R}.

Proof. We do the proof by building matrices for the LongR1CS-lite relation. By the equivalence of R1CS-lite
LongR1CS-lite shown in lemma [§], this shows a reduction to R1CS-lite.
Our goal is to define a, b, c and matrices L, R such that the satisfiability of C' can be expressed as follows:

a+L-¢c=0
b+R-c=0 (22)
aob=c

with a = (1,z,y,a’), b= (1,b’) and ¢ = (1,2, y,).

Let us partition [n] into Iy = {2,...,bn + 1}, Tout = {lin +2,.. ., 0}, Ima = {£+1,...,n}.

Let us label all the multiplication gates of C with integers in I,;q, and for every such multiplication
gate j let us denote by a;,b; and ¢; its left input, right input and output respectively. Also recall that c
contains the public input and output (including the constant 1) as a prefix. Then the consistency of every
multiplication gate can be checked as:

a; + Lj =0
Vje.[midi bj—I—Rj'CZO
aj - bj —C; = 0
for appropriate row vectors L, R; which express the linear subcircuits for the left and input wires. More in

detail, a multiplication gate is describedm by a list of coefficients Iy, ..., (the left inputs) and a list

20 Formally an arithmetic circuit is made of 2-fan-in sum gates, 2-fan-in multiplication gates and multiplication by
a constant gates, however, we can equivalently consider the gate described here.

74

of coefficients rg,...,ry (the right inputs) for values k, k' € N and computes the function that maps
(@1, s Y1y - Ukr) 10 (O, liws +1o) - (D2, 73ys + 70). Moreover, in the circuit C' the inputs of the gate
with label j are connected to the outputs of k + &’ distinct gates with indexes ji, ..., jx+x - The row vectors
L; and R; are thus defined as:

—lo ifi=1 —T9 ife=1
Ljﬂ‘ = —l ifda:1 = ja, Rj,'i = —Tq ifda: 1 = jk+aa .
0 else 0 else

Next, we add constraints for the public outputs:

aj+Lj-c:O
¥j € ot : 4 by —c1 =0

aj-bj—cj:()

The first and second constraints check correctness of outputs that are obtained from possible linear subcircuits

on multiplication gates outputs, namely gates of the form), l;x; for constants 1, ..., and input variables
Z1,...,25. The row vectors L; for j € I,y are thus defined as:
)=l if Jaii = G,
Ly = { 0 else :

Finally, recalling that a = (1,2, y,a’), b = (1,b’) and ¢ = (1, 2, y, ¢’), we can add the following (dummy)
constraints for the public inputs:

CLj—CjZO
Vie{l}ULy:q¢bj—c1 =0
aj~bj—cj:0

We conclude by showing how to define matrices L and R such that all the constraints above are compactly
represented by the equations .

_Izin+1 ‘ 0
Léin+2
L,
In order to define R, we define auxiliary matrix E as the ¢ x n matrix where each row is the unit vector
e, € F".

—F
1...0...0
Ry
E-= : . R=| .
1...0...0 R,

A.4 Comparing R1CS and R1CS-lite

We compare the efficiency of the R1CS and R1CS-lite constraint systems that result from applying the results
of theorems [19] and [20] to the same circuit C. Let L, R, O and L, R be the resulting R1CS and R1CS-lite
matrices respectively.

From the theorems statements it s clear that R1CS matrices have ¢;, + 1 less rows than R1CS-lite ones.

75

Next, we analyze their densities. For ease of comparison, we show how the R1CS matrices are obtained.
This works very similarly to the proof of our theoremwith a few differences at the end. For ¢ = (1,2, vy, '),
the satisfiability can be expressed as the following constraints

Lyt Rty
L ".e)=10 11
(C)O(R C) [Nxé‘] (& with I = : 7 R/: .
Lyy-c=0) :
L, R,
where the i-th row of L,,; checks that the i-th output vy, is correctly obtained from a linear subcircuit with
inputs from (1,,c’).
Then one can set

R/
N L/ N (170,...0) N O|I
L= , R=) , O=
<Lout> : (Ofoutxn)
(1,0,...0)

Let us now analyze their densities. For R1CS we have:

LI = 1L + | Lowtll, [|RI[= (IRl + Llows, 0]l =N

\
whereas for R1CS-lite we have:
IIL|| = [|IL'|| + [| Lowt|| + [Iim| + 1, [|R|| = ||R|| + ¢,

Basically, the two R1CS-lite matrices have each ¢, + 1 more entries than their R1CS counterparts. If we
consider the total size of the constraint system, we also have that

1L+ |RI| < [|L]| + ||R|| + O]

holds as long as N > 2({¢;, + 1), which is likely to be the case.

B Our Protocol for Lincheck

In this section we describe a PHP for the following relation
f=Mg

where f,g € F” and M € F"*" is a sparse matrix. This PHP is used as a building block for the constructions
in Section 4

B.1 Preliminaries

The equation f = Mg can be rewritten as

VneH f(n ZMM)=0 (23)

We can rewrite it equivalently as a linear combination through Lagrange polynomials:
S oLrv)(f Z M, =0 (24)
n

that is

ZﬁH M,y g(n) (25)

76

From here (we mark substitutions in blue):

FY) = Z Ly (Y) My g() (26)

= Zval COl)’Crow(n)(y) (27)
reK

- Zval Zg col(;@)))‘Crow(n)() (28)
rEK

= Zg Zval CO|(I<L))[’Ir%w (k) ()) (29)
n’ KEK

= > 9V, Y) (30)
= > DY) (31)

Thus we are defining;:

= LI(Y)f(n) (32)

D(X Y) = g(X)V(X Y) (33)
Z val(r col(n))‘CEW(H)(Y) (34)
rEK

A high-level view of the lincheck protocol:

1. Sumcheck. After sampling a random yg, we carry out a sumcheck protocol on o := F(yg). Specifically
we check the claim o = 3° , D'(n’) where D'(X) := g(X)V (X, yo).

2. Check product of polynomials. As a step in the sumcheck protocol from the step before, we need to
recursively check the structure of D’. We want to check that D’ is of the form D'(X) = ¢(X)V (X, yo). In
order to do this, we sample a random point 2 and recursively check a claim on g(z) (to which the verifier
has oracle access) and on V(x,y) (for which we use the following step).

3. Check sparse matrix polynomial. The polynomial V' encodes a sparse matrix. We use a specialized
protocol for this type of claim, described later on in the following subsection.

B.2 An Holographic Protocol for Points of Sparse Matrices

The new protocol we describe here is, together with sumcheck, the main ingredient for our lincheck. The
protocol allows to verify that a polynomial V in input correctly “encodes” the point with indices (z*,y*) for
a matrix encoded as described in Definition @ We point out that the indices (z*, y*) do not necessarily have
to be valid row/column position of the matrix (they are arbitrary field elements).

Remark 16. The approach below can be generalized to a different number of polynomial and different rational
functions.

See Section [4.1] for background on this section. Consider a sparse matrix M and let (row col,val) be its
encoding (as by Definition @ to which we assume the verifier has oracle access. Let 2*, y* be any two points
in the field F. Let us define the polynomial V as

V Z Val col(n))‘CEI)W(R) (y*) (35)

r€EK

We now define a protocol that, fixed a matrix and fixed z*, y* allows a verifier to check that V is correctly
defined as in . Its analysis (efficiency and soundness) are analogous to those in Section

7

Intuition By definition of V, we know that
V(k) = val(n)ﬁﬂl(n)(x*)ﬁ]ﬂw(ﬁ) (y*) for every k € K
For every x € K we can write this as:

col(k) Zm(z*) row(k) Zu(y’)
n a* —col(k) n y* — row(k)

V (k) = val(k)

where n := |H]|. The latter is equivalent to
n2V (k) (z* — col(k))(y* — row(k)) = val(x)col(k)row (k) Z u(z*) 2 u(y*)
Let us define polynomial B as
B(X') == n?V(X")(z* — col(X"))(y* — row(X")) — val(X")col (X Yrow(X") Zw(z*) Zm(y*)
and we observe that the above is equivalent to:
B(X') =0 (mod Zx(X'))

B(X")

In order to check this relation in the protocol, the prover can send m(X') := Z2 () and the verifier can

check
m(y)zx(y) = B(y)

for a random point y.

78

B.3 The linear check protocol

P(F7 M, F|7 G) VF,G,row,coI,val(F))

yo <sF

D" :=> "GV (n,y)

neH
(qu"'/) A DiVPOIYH(D,aF(yO))

q,r
T <slF
ye + G(=)
oy < V(a:, yo)
V= Z val(k) Ar(z, col(k)) Am(yo, row(k))
Let 7 s.t. V(X) = ov/n+ X7(X)
w(Y) =
Zoiry VD@ = (V) (g0 = row(¥))-
val(Y)col(Y)row(Y) Zu(x) Zu(yo)
oV, T, T

Fig. 5. Online phase of our lincheck PHP.

79

Let p(X) = ‘%V + XA(X).
1) n%5(X)(x — col(X)) (yo — row(X))—

252 (x) 21 (yo)val (X)col (X)row(X) — 7(X) 2x(X) = 0
2) G(X)oy — Flyo)/n — ¢ ()2 5(x) — ar'(z) £ 0

Fig. 6. Decision phase of our Lincheck PHP

80

C Additional Material for Section

C.1 Universal Interactive Arguments in the SRS.

Definition 25 (Universal (Commit and Prove) Interactive Argument in the SRS model).
A Universal Commit and Prove Interactive Argument in the SRS model (Universal CP-UIA) is a tuple
UIA = (KeyGen, Derive, P, V) of PT algorithms where all the algorithms work as in universal CP-SNARK
(Deﬁm'tz'on but where P and V form an interactive protocol. In particular:

— Pek, x = (ck,x,(¢j)jerq), W= ((u;)je, (05)jergsw))s P1,---,pi): the next-message function of P takes

as input the evaluation key ek, the instance X, the witness W and the first i-th messages py, ..., p; from V.
— V(srs, vk, %, 1, ..., ;) the next-message function of V takes as input the verification key vk, the instance
x and the first i-th messages w1, ...,m; from the prover P.

At the last round of interaction the verifier outputs a decision bit b.

When £ = 0 we simply call it a Universal Interactive Argument in the SRS model (Universal UIA). Fur-
thermore, we define the properties of knowledge-soundness as in Definition[I]] and of trapdoor-commitment
honest-verifier zero-knowledge similar to Definition[I7 Specifically:

Knowledge Soundness. Let RG be a relation generator and Z an auziliary input distribution, and let RGcom
as in Deﬁnitz’on UIA has knowledge soundness for RG and Z, denoted KSND(RG, Z) for brevity, if for
every (non-uniform) efficient adversary A = (Ao, A1) there exists a (non-uniform) efficient extractor £ such
that Pr [Game%sg'\f%A’g()\) = 1] = negl. We say that II is knowledge sound if there exist benign RG and Z
such that IT is KSND(RG, Z).

Game!}(?'gNg A, 5()\) — b

((ck,R), auxR) — RGcom(1™) ; srs:= (ek,vk) < KeyGen(ck,R) ; auxz «+ Z(R,auxg, srs)
(R,x = (jer), st) < Ao(R,ck,sts,auxg,auxz) ; (7,b") « (Ai(st), V(Derive(vk, R),x, (¢;);ee))

W= ((Uj)je[g], (Oj)je[g],W) +— E(R,srs,auxg,auxz) ; return b=1>5 A —\Rck’N(x, W)

Trapdoor-commitment honest-verifier zero-knowledge. A CP-UIA scheme UIA is trapdoor-commit honest-
verifer zero-knowledge in the SRS model for a family of universal relations {Rn }nen if there exists a simulator
S such that for all adversaries A, for all N € N, for all R € Ry, for all (ck,td) € Su(1?), and for all (x,w)
such that R(x,w) = 1:

(srs, tdy) < KeyGen(ck, N)
Pr srsg < Derive(srs,R) : A(srs, tdy, td, R, x,w,7) = 1| =
| (7,D) + (P(ek, X, W), V(vk, X))
_(srs, tdx) < KeyGen(ck, N)

Pr
T = S(tdk, td, R, x)

o A(srs, tdy, td, Ry x, w, 7) = 1

where recall that X = (x, (¢;j)jerq) and W = ((u;) e, (05) e[, w)-

Succinctness. We say that a public-coin CP-UIA scheme UIA is succinct if, for any input x € {0, 1}”,7both
its total communication complexity (the sum of the length of all prover’s messages) and the runtime of V are
at most poly-logarithmic in n.

81

HO(lAv 5*)
pp ParGen(1) ; srs:= (ek,vk) « KeyGen(pp,N) ; auxz < Z(srs) ;
(R, x, st) <= Ao(srs,auxz) ; (7,b) < (Ai(st),V(Derive(vk,R),x) ;

w < E"(srs,auxz) ;

bg + R(x,w) ; bw < b

H, (1", &%)

pp ParGen(lA) ; srs:= (ek,vk) < KeyGen(pp,N) ; auxz < Z(srs) ;
(R, x, st) = Ao(srs,auxz) ; (7,b) < (Ai(st), V(Derive(vk,R),x) ;

‘ (p;7 O;)J'E[n*] < Ephp(Rephp, ck, Vkphp, aUXPZHP) ‘ 5

by /\ (Gr(X, {P) vk, (X)) Yseme), {mi }jem=]) = 0) A /\ (deg(p}) < dj) A /\ VerCom(ck, c;, pj, 0})

kEne jen*] jen*]

w <« E"(srs,auxz) ;

b R(x0) ;

Hy (1%, &%)

pp ParGen(l’\) ; srs:= (ek,vk) «+ KeyGen(pp,N) ; auxz < Z(srs) ;
(R, x, st) <= Ao(srs,auxz) ; (7,b) < (Ai(st),V(Derive(vk,R),x) ;

(p/77 O})J‘E[h*] — gPhP(Rth Ck7 VkPhP7 aUXPZHP))

bv e N (Gr(X, D] (0r. (XD} {mstseme)) Z0) A J\ (deg(®)) <dj) A\ VerCom(ck, ¢, pf, 05) ;

kéne J€ln*] j€n*]

for i € [r] : (pi,j, 01,5)jem(iy) < Ej(ekopn,auxz) 5 by =\ VerCom(ck, cij, pi;, 0i5)
J€n()]

w < E"(srs,auxz) ;

be — R(x,w) ; ‘bw<—b/\bv/\(/\ib’{/) :

H3(1*, &%)

pp ParGen(lA) ; srs:= (ek,vk) «+ KeyGen(pp,N) ; auxz < Z(srs) ;

(R,x, st) <= Ao(srs,auxz) ; (7,b) < (Ai(st),V(Derive(vk,R),x) ;

(p;70;')j6["*] Ephp(Rphp; ck, Vkphp’auxPZHP) 5

by \ (Ge(X, D5 (s (X)) }jeme1, {m tieme) =0) A J\ (deg(p}) < dj) A\ VerCom(ck, c;,pj,05) ;
kene j€ln*] j€n*]

for i € [r] : (pij,0i5)iem@) < 5]/-(ck,auxR,auxz) ; bi/ — /\ VerCom(ck, ¢;,j, Pi,j, 0s,5)
J€n(9)]

)

‘let (ps)jem*] = (Pij)iei.jem@) 3 bes < Vi1 pj = p;

w < E7(R,srs,auxg,auxz) ;

br — R(x,w) ; bW<—b/\bV/\(/\¢b§/)/\bcs‘ :

Fig. 7. Hybrid Experiments for Proof of Theorem
82

C.2 Proof of Theorem [5l

Knowledge Soundness. Let Z be a benign auxiliary input distribution and let A = (Ap,.4;) be a non-
uniform PT adversary for the knowledge soundness game described in Definition In Figure[7] we describe
a sequence of hybrid experiments, the experiments are parameterized by an algorithm £* that they run
internally. _ _

Consider the hybrid Ho(1*,£*). Let bJ;, (resp. b};) be the event of the flag by (resp. bg) being true in
the hybrid experimentH; . Formally the events should be parameterized by the extractor £* that the hybrid
is running. However, it is clear that the variable b{',V does not depend on the specific of £*, thus for a cleaner
presentation we omit it. On the other hand b% depends on £*, thus when needed we will refer to bi; [E*] to
specify that the event is parameterized by the extractor £*. By a simple derivation:

Pr {Game_’;?ﬁ?g*} < Pr[t9] — Pr[p%[€7]] .

Let H;(1*,£*) be the same as Hy but where the variable by is computed differently. Specifically, let Epnp
be the extractor for the CP-SNARK CPpp, and the adversary Apnp that runs the same as the adversary A
but that simply outputs the proof @y, the openings (p;);jem(0)]> (0j);ein(0y for the rel-typed commitments
and the relative statement. Formally, the adversary Apn, receives in input Rphp, ck, vkpnp and auxZHP =
auxz, VKkopn-

Let €pnp be the knowledge soundness error (with partial opening) of the CP-SNARK CPphp

Lemma 9. Pr[b9,] < Prbiy] + epnp

Proof. Notice that Pr[b9,] — Pr[b];;] = Pr[by = 0]. In particular, as described in the definition of the hybrid,
the adversary Apnp on input the state st runs an execution of the universal argument between A; and the
honest verifier and then outputs ((i;,d;);cm,]> (G:v5)jemd))s (¢5)jem+]) and the proof Tpny. Since b =1 then
it means that the proof myhp is valid, but by = 0, i.e., the extractor does not output a valid witness.

Let Hy(1*,E*) be the same as Hy but where the variable by, is computed differently. Specifically, let &/
be the extractor for the adversary A’ that runs the same as the adversary A but that simply outputs the

(cij)je[n(i)]a Topn,i-
Let €opn be the knowledge soundness error of the CP-SNARK CPgp,.

Lemma 10. Pr[bl,] < Pr[b?,] +r €opn

Proof. Similarly to the previous lemma, Pr[bl;,| — Pr[b%,] = Prbiy, A Ji : bi, = 0] < r-max; Pr[bl, Abi, = 0] <
r - €opn- Since b = 1 then it means that Verify,,, (Vkopn, (i ;) jen(i)» Topn,i) = 1, but b, = 0 thus the extractor
does not extract valid openings the commitments.

Let H3(1*,£*) be the same as Hy but where the variable by is computed differently. Specifically, we check
that the extractions of the CP-SNARKSs agree. Let ecs be the advantage against the binding of CS.

Lemma 11. Prb},] < Pr[bd,]| + ecs

Proof. Notice that Pr[b¥,] < Pr[b3,]+ Prbcs = 0]. We reduce to the binding of CS. In particular consider the
adversary that runs Hg and if bc = 0 it outputs the values (p;, 0;, p;-, 09) for the index j that make bcs = 0.
Thus Pr[bcs = 0] < €cs.

Consider the following PPT sampler algorithm:
Sampler D(17):

pp ParGen(l’\) ; srs:= (ek,vk) «+ KeyGen(pp,N) ; auxz < Z(srs) ;

(R,x,st) — Ao(srs,auxz) ; auxy := (srs,auxz) ; return (R,x,aux%)

83

Lemma 12. There exists a prover P* for the protocol PHP such that
Pr[(P*(F, R, x, z), VREERN(F x)) = 1: (R,x,auxy) «sD(1*)] = Pr[by,] (36)

Proof. We define the prover P*. For any 1, j, let ind(i,j) := >, _,n*(i') + j and let ind~! its inverse in the
domain [n*]. Namely, the function ind re-indexes the j-th polynomial sent at the i-th round as the ind(i, j)-th
polynomial sent by the prover.

Prover P*(R,x,auxy, p1,...,p;)):

(R, x, s5t) < Ao(auxy) ;

if i=r+1 then :
(ci.i)jemns 1 tier), Tenp < A1(st, pr,...,pr)
serp = ((45,dj) jemny) (G5, v5) e, (¢i)jem=) s
if Verify . (Vkohp, Xprp,) = 0 then return L ;
(p;mO;c)ke[n*] < Ephp(Rohp, ck, s15,aUx7) 5
for k € [n"] let pij = Pla-1(x) ;
if 3,4 :p;j # pi,; then return 1 ;

else :

(€ii)sem@l, {mis e M Au(st, pr,..,pi)) 5
if Verify,,, (Vkphp, , ;) = 0 then return L ;

(Pi.0i3)jen(i < €j(ekopn, auxz)
if 37 : VerCom(ck, ¢; j, pi,j,0i,;) = 0 then return L ;

return (pi;) e, {mijtiere) s

By inspection, if P* does not output L then the output of P* is computed exactly the same as A does.
Moreover, the prover P* outputs L only when either the verification of the CPqpy, fails (if round ¢ <r) or the
verification of the CPpp, fails (if last round) or exists index j s.t. VerCom(ck, ¢; ;, pi j,0;,;) = 0 or the binding
property of CS is violated. Notice that if b3, holds then none of the previous events can happen.

Notice that we can rewrite the Eq. as:
E(Rxavey) <5201 |PE(P (LR %, 2), VREER(E,)) = 1]] = Pr(by]
Thus by applying the knowledge soundness of PHP there exists an extractor &:
E(Rscauy) o0 [PHEP (R x,auxz)] + eprp | = Prlbiy]

Equivalently we can rewrite the equation above:

Pr[€F (R, x, auxy) : (R,x,auxy) «s D(1M)] + epup > Pr[biy].
Finally, we define the extractor Ext® := Ext” . It is easy to see that:

Pr[Ext” (R,x,auxy) : (R,x, auxy) < D(1*)] = Pr [b% [£7]]
The equation above holds by definition of D and £*. Thus we can conclude:

Pr [GameS%. | < Prlbly] — Pribh] < Prby] — Prlb] + N - co + (n* + Decs

< epHp + IV - €snark + (™ + 1)ecs.

84

Zero Knowledge. We now prove that under the condition of the statement of the theorem the UIA is trapdoor
commitment honest-verifier zero-knowledge.

Let C and Spup be the checker and the simulator for the claimed (C,bppp)-bounded zero-knowledge
of PHP. Let 8§ = (8], Spr’) be the simulator of CPypp. Let 8” be the simulator of CPgp,. Consider the
simulator Syja = (Skg, Spn,)t

Simulator Sig(ck, tdek, N):
1. Sample ekopn, VKopn, tdp"" 4—s Skg”’ (ck, tdek) and output ekpnp, Vkphp, tdEhp and output vk = ck, ekopn, €Kphp
and vk = ck, Vkopn, Vkphp and tdy := td", tdP"™, tdg,.
Simulator Sy (tdk, R,X):
1. Init Phase. Let r := r(|R|). Run the honest verifier on input vkg and x, obtain a sequence of
messages p1,. .., pr1 and the constraints ((Gj,v;))jein.s (15, dj)jen,)- Set p:= (pj)jefr+1)-
Parse the trapdoor tdy as (td,”", tdﬁhp, td, s) where s € F.
2. Define Leakage. Let L' < S, (Xpnp), Let £ := L' U {(i,s) : i € [n*]}.Assert that C(¢,z) for all
(i,z) € L;
3. Create Transcript. Compute the following;:
(a) Run the simulator Sppp(F, R, x, £) and obtain a simulated transcript 7 = (71, p1,..., 7, Pr)s
and a set of simulated evaluated points {p;(y) : (¢,y) € L};
(b) For j € [n*] compute the simulated commitment: set é;, st; <— TdCom(tdk, p;(s));
(c) Let leak’ == (Bi(y))(i,yec and let Xpup = ((i5,d;5)jem,]> (G, v5)jemd, (¢5)jem), compute the
simulated proof Tphp < Spn,'(tdﬁhp, Xpup, leak’);
(d) For i € [r] compute the simulated proof fopn; + S (tdi™", (¢i ;) jer(i));
Output the full transcript re-ordered according to the specification of the protocol.

We consider a sequence of hybrid experiments. The first hybrid Hy receives in input the trapdoor tdy,
the specific relation R, the input x and the witness w, runs the same steps of simulator Sy, defined above,
and outputs the full view including the evaluation points.

The next hybrid H; runs the same as Hy but instead of running Spyp at step 3, it runs the real protocol
between P and V and computes the evaluation points using the polynomial oracles output by P.

Lemma 13. For all ck,R,x,w and for any adversary A:

|Pr[A(srs, Ho(tdk, R, x,w)) = 1] — |Pr[A(srs, H; (tdk, R, x,w)) = 1]| € negl(\)

Proof. Notice that if the assertion in step 2 does not hold the two hybrids are equivalent. Thus we can
assume the assertion holds, in this case the list £ is (C, b + u(t))-bounded. The proof of the lemma follows
straightforwardly from the (C, b + u(t))-bounded zero-knowledge of PHP.

The next hybrid Hy is the same as H; but the assertion in step 2 is not executed.

Lemma 14. For all ck,R,x,w and for any adversary A:

|Pr[A(srs, Hy (tdk, R, x,w)) = 1] — |Pr[A(srs, Ha(tdk, R, x,w)) = 1]| € negl())

Proof. The two hybrids diverge if there is tuple (i,2) € L such that C(i,z) = 0. Notice that, by our
assumption on C (Definition , a tuple (i, s) does not pass the checker with negligible probability (since
the trapdoor element s is chosen uniformly at random). Moreover, by the bounded leakage property of the
(b, C)-leaky zero knowledge of CPphp, & tuple in £ does not pass the check with negligible probability. We
can conclude applying union bound.

85

The next hybrid Hg is the same as Hy but the commitments are computed as in the real protocol,
specifically for any ¢, j where ¢ > 1 we compute ¢; j, 0; ; — Commit(ck, swh, p; ;).

Lemma 15. For all ck,R,x,w and for any adversary A:

|Pr[A(srs, Ha(tdk, R, x,w)) = 1] — |Pr[A(srs, Hs(tdk, R, x,w)) = 1]| € negl(})

The lemma easily follows by the swh-typed somewhat-hiding property of CS.
The next hybird Hy is the same as Hs but at step (c), the proof is computed with the algorithm Proveynp
and the polynomial oracles p1,...,pnx.

Lemma 16. For all ck,tdy, R, x,w and for any adversary A:

|Pr[A(srs, Hs(tdy, R, x,w)) = 1] — |Pr[A(srs, H4(tdy, R, x,w)) = 1]| € negl(})

The lemma easily follows by the leaky zero-knowledge of the CP-SNARK CPppp.
The next hybird Hj is the same as Hy but at step (d), for any round ¢ € [r], the proofs are computed
with the algorithm Prove,,, and the polynomial oracles p; ;.

Lemma 17. For all ck,tdy, R, x,w and for any adversary A:

|Pr[A(srs, Hya(tdk, R, x,w)) = 1] — |Pr[A(srs, H5(tdk, R, x,w)) = 1]| € negl(\)

The lemma easily follows by the zero-knowledge of the CP-SNARK CPqpy.

C.3 Proof of Theorem 15

The proof of zero-knowledge is almost the same as in the proof of Thm. |5 for knowledge soundness there
are some differences that we highlight next.

Consider the hybrid Hs as in the proof of Thm. [5| and the event by, . For clarity we rewrite the hybrid
below. The only difference with the hybrid from Thm. [5]is that they hybrid below does not run the extractor
E* since we are interested only in the event by .

Hs(1%)

pp ParGen(lA) ; ck < CS".Setup(pp) ; srs:= (ek,vk) « KeyGen(pp,ck,N) ; auxz « Z(srs) ;
(R,)? = (%, (¢i)jerq)s st) < Ao(srs,auxz) ; (7,b) <= (Ai(st), V(Derive(vk,R),x, (¢;)jelq))
(1}, 05)jem*] = E(Rphp, 575,aUx7)

bv(—/\ (Gk(X, {p}(vk,j(X))}je[n*]a{Wj}je[m*]) = 0) A /\ (deg(pgk) < dk) A /\VerCom(ck,chp;,o;) ;
k k k

for j € [r] : (Pij,0i5)jemi) < Ej(VKopn, auxz) ; b, /\ VerCom(ck, ¢;,5,Di,5,04,5)
J€[n ()]

let (pj)jeme] = (Piy)ici.jem@) 5 bes < Vi:p; =pj ;

bw « bAby A (Ajb) Abcs
Consider the hybrid H4 which is the same of H3 but additionally check that the linking relation holds. Recall
that for a PHP has a straight-line extractor WitExtract.

Let Ejnk be the extractor for the CP-SNARK for the adversary Ak that runs the same as the adversary A

but that simply outputs the proof my and the statement ((¢;);eqq, (¢j) jen+])- Formally, the adversary Ajink

receives in input Ry, ck, srsink and aux”Znk where aux”Znk contains all the other values, namely the elements of
srs different than srsj,x, and ne and R. In particular:

86

H, (1Y)

pp ParGen(lA) ; ck < Setup(pp) ; srs:= (ek,vk) + KeyGen(pp,ck,N) ; auxz < Z(srs) ;
(R,f(= (%, (Cj)je[g]),st) — Ao(srs,auxz) ; (7,b) < (Ai(st), V(Derive(vk,R),x, (¢j)jelq))

((u)iere, (65)iers (PF)sems (0)jeme) < Eink (Rink, ck, Srsink, auxz™) | ;

‘ w = 0, w + WitExtract((p}) je[n+))

)

‘b"“k — Njerg(VerCom(ck, é;,05,u;) = 1) Nee) (VerCom(ck, ¢;, 4, 01, p1) = 1) A Decode((uj) () = 0| ;

(p},oj)je[n*] + E(Rphp, ck, srs,auxz) ;

by < /\ (G (X, {9} (vr,; (X)) }eme1, {5 }ieme)) = 0) A\ (deg(pi,) < di) A /\ VerCom(ck, cx, Pk, 0k)
k k k

for j € [r] : (pi,j, 0i,5)jemiy <+ Ej(VKopn, ck, auxz) ; b{, — /\ VerCom(ck, ¢i,j, Pi,j; 0i,5)
J€[n(9)]

let (pj)jerme) = (ij)ici,jeln@) 3 bes < Vi1 pj ij ;
b < b Aby A (A;b)/\bcs ;

Let €ink, be the knowledge soundness error of CPjik.

Lemma 18. Pr[b;,] < Pr[b3,] + ek, + ecs.

The proof follows almost identically to Lemma[9and Lemma specifically we can reduce to the knowledge
soundness of CPj,x or the binding property of CS, the proof of the lemma is therefore omitted. Consider the
following PPT sampler algorithm:

Sampler D(17):

pp ParGen(l)‘) ; ck < Setup(pp) ; srs:= (ek,vk) «+ KeyGen(pp,ck,N) ; auxz < Z(srs) ;

(R,x, st) +— Ao(R,ck,srs,auxg,auxz) ; auxy := (R,ck, srs,auxg,auxz) ; return (R,x,auxy)
Similarly to the proof of Thm. [f]

Lemma 19. There exists a prover P* such that

Pr[(P*(F,R,x, z), VREERN(F x)) = 1: (R,x,auxy) «sD(1*)] = Pr[bl,] (37)

We define P* to be the prover that emulates H; almost identically as done in Thm. [5, the proof follows
similarly thus is omitted. By the knowledge soundness of the PHP with straight-line extractor we have that

Pr[(R, x, WitExtract((p;)jen+])) € R : (R,x,auxy) <= D(1")] + eprp > Pr{bjy].
We are ready to define the extractor £*. Let £*(R, srs, auxg, auxz) be the algorithm that:

1. computes ((5;) ;e (05) e (P3)jem> (05)jeme]) <= Eink(Riinks €k, STSiink, auxg, aux®);
2. outputs ((p;) e[, (07) e, WitExtract((p;) je(+]))-

Assuming that bj;, is true then we have (p;)jef = (P})jerm=) in Hy (thus by definition of the extractor the
polynomial extracted by Ejink are the same as the one sent by P*) and that for any j the opening 6; is a valid
opening for the polynomial p;, moreover by straight-line extractability we have that WitExtract((p;) cin+])
is a valid witness.

87

I Scheme |[x] (BN128)||r| (BLS12-381)]]

Marlin 672 880
PLONK (small proof) 448 560
PLONK (fast prover) 512 656

LunarLite 384 544
Lunarlcs (fast & short) 416 592
Lunarlcs (short vk) 544 736

Fig. 8. Comparison of proof sizes, in bytes, among our schemes (last three rows) and previous work.

D Experimental Evaluation

PRrROOF si1zE. Figure [§] compares concrete proof sizes of our schemes with those in previous work. LunarLite

shows a gain in proof size of approximately 15% (over curve BN128) when compared to the smallest argument
in PLONK.

PROVING TIME. Our experimental evaluation for proving running times is summarized in Figure [9] We
have implemented both our commitment schemes and compiler’s building blocks in a Rust library. We plan
to release our code, which we are currently extending to include a domain-specific language (embedded in
Rust) to define algebraically-flavored information-theoretic protocols and automatically compile them into
zkSNARKSs with universal SRS.

We evaluate our systems on relations with different constraints size n. Results are summarized in Figure
@ We assume each matrix in the system of constraints (of type R1CS-lite for LunarLite, R1CS for the other
schemes) to have a number of non-zero elements approximately equal to 3n. This ratio is representative, for
example, of the relation for Merkle Tree opening with SHA256.

We choose to compare only to Marlin and not to PLONK—currently one of the most efficient argument
systems with universal SRS—because, as also observed in [33], PLONK uses different basic measures than
Marlin and Lunar, due to the different constraint systems. This makes a concrete comparison less straight-
forward.

Although still preliminary, these experimental results confirm that some of our schemes can provide con-
crete practical benefits, in particular constructions LunarlLite and Lunarlcs (fast & short). Although Lunarlcs
(short vk) has better constants than Marlin on paper, it runs with virtually the same performance. This may
be due to our preliminary implementation, still not as optimized as the one in Marlin’s codebase. We plan
to investigate this as future work.

Additional details on evaluation

We ran all benchmarks on CPU i7-5500U with 7.5GiB of RAM, running at 2.40 GHz. We do not implement
our Lunar* schemes as full systems, although we plan to. The cryptographic components (committing and CP-
SNARKS) work as described and on the parameter sizes reported in our compiler; we skip the inner workings
of the information-theoretic components by simulating its polynomials from appropriate distributions. For
a fair comparison we modify the code for Marlin in an analogous way, measuring only the sum of the
cryptographic components and skipping field operations.

This evaluation is likely to be faithful as our PHPs and Marlin’s AHP have field operations of very
similar nature. Because our PHPs perform fewer of them compared to Marlin, we expect the overhead of
field operations in the Lunar* scheme to be even lower.

88

Proving Time (s)

65

60

35

— LunarLite

= = Lunarics (Fast & Short)
— - Lunarics (Short vk)
..... Marlin

1

12

12

Mumber of Constraints (log)

14

15

	Lunar: a Toolbox for More Efficient Universal and Updatable zkSNARKs and Commit-and-Prove Extensions
	Introduction
	Our Contribution
	Other Related Work
	Outline

	Basic Preliminaries
	Polynomial Holographic IOPs
	PHP Verifier Relation
	Compiling PHPs and AHPs into One Another

	Our PHP Constructions
	Algebraic Preliminaries
	Rank-1 Constraint Systems
	Our PHPs for R1CS-lite
	Our PHP for R1CS

	Preliminaries on Commitments and zkSNARKs
	Commitment Schemes
	Preprocessing zkSNARKs with Universal and Specializable SRS
	Universal Commit-and-Prove SNARKs

	Our Compiler from PHPs to zkSNARKs with Universal SRS
	Building Blocks
	Compiling to Universal Interactive Arguments

	CP-SNARKs for Pairing-Based Polynomial Commitments
	Bilinear Groups and Assumptions
	The Commitment Schemes
	CP-SNARKs for Ropn
	CP-SNARK for evaluation of a single polynomial
	CP-SNARK for batch evaluation of many polynomials
	CP-SNARK for Polynomial Equations
	CP-SNARK for CS2 for quadratic polynomial equations
	CP-SNARKs for degree of committed polynomials
	A general-purpose CP-SNARK for Rphp

	Our Compiler for Universal Commit-and-Prove zkSNARKs
	Compiling to Commit-and-Prove Universal Interactive Arguments
	Pairing-Based Instantiations of our Building Blocks

	Instantiating Our Compiler: Our Universal zkSNARKs
	Available Options to Compile Our PHPs
	Instantiating the PHPs with the appropriate zero-knowledge bounds
	Our zkSNARKs
	Our CP-SNARKs

	Constraint Systems
	Proof of Lemma 5
	Proof of Lemma 6
	Reduction to Arithmetic Circuit Satisfiability
	Comparing R1CS and R1CS-lite

	Our Protocol for Lincheck
	Preliminaries
	An Holographic Protocol for Points of Sparse Matrices
	The linear check protocol

	Additional Material for Section 6
	Universal Interactive Arguments in the SRS.
	Proof of Theorem 5
	Proof of Theorem 15

	Experimental Evaluation

