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Abstract Studying the security and efficiency of blind signatures is an
important goal for privacy sensitive applications. In particular, for large-
scale settings (e.g., cryptocurrency tumblers), it is important for schemes
to scale well with the number of users in the system. Unfortunately, all
practical schemes either 1) rely on (very strong) number theoretic hard-
ness assumptions and/or computationally expensive pairing operations
over bilinear groups, or 2) support only a polylogarithmic number of
concurrent (i.e., arbitrarily interleaved) signing sessions per public key.
In this work, we revisit the security of two pairing-free blind signature
schemes in the Algebraic Group Model (AGM) + Random Oracle Model
(ROM). Concretely,

1. We consider the security of Abe’s scheme (EUROCRYPT ‘01), which
is known to have a flawed proof in the plain ROM. We adapt the
scheme to allow a partially blind variant and give a proof of the new
scheme under the discrete logarithm assumption in the AGM+ROM,
even for (polynomially many) concurrent signing sessions.

2. We then prove that the popular blind Schnorr scheme is secure un-
der the one-more discrete logarithm assumption if the signatures
are issued sequentially. While the work of Fuchsbauer et al. (EURO-
CRYPT ‘20) proves the security of the blind Schnorr scheme for con-
current signing sessions in the AGM+ROM, its underlying assump-
tion, ROS, is proven false by Benhamouda et al. (EUROCRYPT
‘21) when more than polylogarithmically many signatures are issued.
Given the recent progress, we present the first security analysis of the
blind Schnorr scheme in the slightly weaker sequential setting. We
also show that our security proof reduces from the weakest possible
assumption, with respect to known reduction techniques.
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1 Introduction

Blind signatures, first introduced by Chaum [Cha82], are a fundamental cryp-
tographic building block. They find use in many privacy sensitive applications
such as anonymous credentials, eCash, and eVoting. Informally, a blind signature
scheme is a interactive protocol between a user and a signer. Here, the signer
holds a secret key sk and the user holds the corresponding public key pk. The
goal of the interaction is for the user to learn a signature σ on a message m of
its choice such that σ can efficiently be verified using pk. The protocol should
ensure two properties [JLO97]: (1) One-More-Unforgeability: if the protocol is
run ` times, the user should not be able to create ` + 1 or more valid signa-
tures (2) Blindness: the signer cannot link the transcripts of protocol runs to
the signatures that they created. In particular, it does not learn the messages
that it signs. In a practical setting, signer and user might however want a more
relaxed property to include some shared information, e.g. a date when the sig-
nature was issued or an expiration date. To this end, Abe and Fujisaki [AF96]
introduced Partial Blindness which guarantees that signatures with the same
shared information, the so-called tag, are unlinkable to protocol runs using this
tag.

In spite of decades of study, the security guarantees of practical blind and
partially blind signature schemes remain unsatisfactory. Practical constructions
rely on strong number-theoretic hardness assumptions and/or computationally
expensive pairing operations over bilinear groups [Bol03; Bel+03; Oka06; GG14;
FHS15]. Other constructions rely on weaker assumptions (and no pairings) but
allow only for a very small (polylogarithmic) number of signatures to be issued
per public key [PS96; PS97; AO00; PS00; HKL19; Pap+19; BE+20; Hau+20].
The reason for this is that the homomorphic structure of these schemes gives rise
to the so-called ROS attack (Random inhomogenities in Overdetermined System
of equations) when sufficiently many sessions of the scheme are executed concur-
rently (i.e., if session can be interleaved arbitrarily). Shortly after its discovery
by Schnorr [Sch01], Wagner [Wag02] showed how to carry out the ROS attack in
sub-exponential time against the Schnorr and Okamoto-Schnorr [Oka93] blind
signature schemes.4 A recent result of Benhamouda et al. [Ben+21] improved
the parameters of Wagner’s attack, presenting the first polynomial-time attack
(assuming that polylogarithmically many signing sessions can be opened con-
currently).

1.1 Our Results

In this work, we revisit the security properties of two classic blind signature
schemes which do not rely on pairings: Schnorr’s blind signature scheme [Sch90;
Bra94] and Abe’s blind signature scheme [Abe01]. Neither of these schemes have

4 Although the attack can be formulated for all the aforementioned blind signature
schemes, the algebraic structure in the latter two schemes gives rise to an efficient
attack.
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meaningful security guarantees if the number of concurrent signing sessions is
beyond polylogarithmic (in fact, Abe’s blind signature scheme has no security
proof at all in a non-generic model of computation). Given the popularity of
these schemes, we believe that a reassessment of their security properties is long
overdue. We give a summary of our results below.

Abe’s Scheme. In the first part of our work, we study the concurrent security
properties of Abe’s blind signature scheme. This scheme was initially proven
secure under the DL assumption in the ROM (with blindness holding com-
putationally under the DDH assumption). However, a later work by Abe and
Ohkubo[OA03] pointed out that the original proof contained a flaw and gave a
security proof in the generic group model (GGM)+ROM instead. We general-
ize Abe’s scheme to the partially blind setting and prove security of our new
scheme in the more realistic AGM+ROM under the DL assumption. (We note
that Abe’s scheme can be obtained as a special case of our new scheme and thus
our proof of security thus applies also to Abe’s original scheme). As the work
of Abe and Ohkubo is not publicly available, our proof is inspired by Abe’s ori-
ginal proof and does not follow the blue print of a ‘GGM-style proof.’ Instead,
we give a more general (and involved) proof that uses the AGM to avoid the
rewinding step that causes the problem in Abe’s proof. Apart from generalizing
Abe’s scheme to the partially blind setting, avoiding rewinding has the bene-
fit that our reduction is tight, allowing for relatively practical parameter sizes.
We stress that our reduction allows for the scheme to be proven secure with
concurrent signing sessions and for polynomially many signatures per tag.

Schnorr’s Scheme. In the second part of our work, we focus on the security
of Schnorr’s blind signature scheme. As we have already explained, the security
of this scheme is completely broken in the concurrent setting for reasonable
parameters. In spite of this, the Schnorr scheme continues to be one of the most
popular blind signatures due to its simplicity and its efficiency. Hence, it is an
important open question to settle what type of security this scheme actually
does achieve (if any).

We show that the blind Schnorr signature scheme is secure in the algebraic
group model (AGM) [FKL18] + random oracle model (ROM) [BR93] if signing
sessions are sequential, i.e., if the i-th session is always completed before the
(i+ 1)-st session is opened.

In more detail, under the above model assumptions, the blind Schnorr sig-
nature scheme is secure against `-sequential one-more-unforgeability (`-SEQ-
OMUF) under the `-one-more discrete logarithm (`-OMDL) assumption. This
is true even when polynomially many signatures are issued for the same public
key pk. We remark that security under sequential signing sessions is still a very
meaningful security guarantee and has been explored in prior works (see below).
Namely, sequentiality of sessions is easy to ensure (from the signer’s perspective)
at the expense of some efficiency.

Our result improves upon that of Fuchsbauer et al. [FPS20], which proves
that the scheme is secure under the OMDL+ROS assumption (when run con-
currently). While the ROS problem is known to be information theoretically
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hard as long as the number of concurrent signing sessions is polylogarithmic,
the recent work of Benhamouda et al. [Ben+21] shows a polynomial-time attack
for super-polylogarithmically many concurrent signing sessions. Therefore, the
blind Schnorr scheme is concurrently secure (in the AGM+ROM) if and only if
the signer issues at most polylogarithmically many signatures.

Negative Result (Schnorr). As OMDL is a relatively strong assumption (in
fact, [BFL20] showed it is strictly stronger than q-discrete logarithm for known
reduction approaches), a natural question is whether it is actually necessary for
proving Schnorr’s scheme secure. We answer this question by showing that our
reduction for blind Schnorr signatures in the AGM+ROM is optimal in the sense
that it is not possible to reduce `-SEQ-OMUF from (` − 1)-OMDL (or OMDL
with any lower dimension).

We use the meta-reduction technique [Cor02] to rule out reductions in a
very strong sense: we show that any algebraic reduction that reduces `-SEQ-
OMUF from (`− 1)-OMDL in the AGM+ROM, can be turned into an efficient
solver against (` − 1)-OMDL. Our result complements that of Baldimtsi and
Lysyanskaya [BL13b], which also rules out a certain class of reductions for the
blind Schnorr scheme. Concretely, they show that reductions that program the
random oracle in a certain predictable way, can be turned into an efficient solver
against the underlying hardness assumption. While their approach restricts the
type of random oracle programming that the reduction may do, ours allows
for arbitrary programming, but restricts the reduction to be algebraic. On the
other hand, our (algebraic) reductions may themselves work in the AGM, which
further strengthens our result.

1.2 Related Work and Discussion

We have already mentioned several works that study the security of blind sig-
natures in the concurrent signer model. In the sequential model, the work of
Baldimtsi and Lysyanskaya [BL13a] proves that an enhanced version of Abe’s
scheme is secure under DL. Pointcheval and Katz et al. [Poi98; KLR21] give a
transformations that apply (among others) to the blind Schnorr and Okamoto-
Schnorr scheme. The resulting schemes remain secure even in the concurrent
setting, but require communication that grows linear in the number of signa-
tures that have been issued. In terms of practical parameters, these schemes are
also significantly less efficient than the schemes we consider here. Fuchsbauer et
al. [FPS20] gave a (concurrently secure) scheme under the OMDL and modified
ROS assumption in the AGM+ROM. The latter assumption asserts the conjec-
tured hardness of an (apparently harder) version of the ROS problem, even given
unbounded computing power. Nicolosi et al. [Nic+03] use a similar strategy to
ours (i.e., by restricting concurrency) to prove security of a proactive two-party
signature scheme. Interestingly, they encounter similar issues as we do in our
work, if concurrent session are permitted. Drijvers et al. [Dri+19] show how a
ROS based attack can be applied in the context of multi-signatures (and how it
can be overcome at the cost of some efficiency). Finally, various constructions
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of blind signatures in the standard model exist (e.g., [Fis06; Gar+11]), but are
usually not considered practical.

The Algebraic Group Model. [FKL18] introduced the algebraic group model
(AGM) as a formal model to analyze group based cryptosystems. Previous works
had considered algebraic algorithms, for example [BV98; PV05]. In the AGM,
any adversary must output an explanation of how it computed its output group
elements from the group elements in its input. Since its introduction, the AGM
has been readily adopted [FPS20; BFL20; AB21; NRS21; GT21] and has served
as a useful tool to prove the security of schemes that would be too difficult
to analyze in the plain model. [RS20] have furthermore extended the AGM to
decisional assumptions.

While the AGM is a weakening of the GGM, proofs in the AGM are inherently
different from the GGM in the sense that they are reductions from one problem
to another instead of showing information-theoretic hardness. From a qualitative
point of view, proofs in the AGM provide a weaker form of security than proofs
in the plain model, but a much stronger one than proofs in the GGM. The recent
work of Agrikola et al. [AHK20] shows that some results from the AGM can be
transferred to the standard model using strong but falsifiable assumptions. This
suggests that proofs in the AGM indeed hold some meaning for the plain model.

Another benefit of AGM proofs (over GGM proofs) is that they offer more
insight into how secure a scheme actually is when deployed in real-world applica-
tions, as we explain in the following. In the GGM, a proof consists of establishing
bounds on the runtime/success probabilities of an adversary attacking a partic-
ular signature scheme. These bounds often look similar for different schemes
from an asymptotic point of view. Because of this, they do not give much in-
sight into what computational assumptions are needed for the scheme to remain
secure when run in the real world. By comparison, AGM proofs are by means
of reduction from a computational assumption and thus can be used to assess
the real-world disparities between two schemes that ‘look equally secure’ in the
GGM. As a concrete example, our work gives a security proof for Abe’s scheme
under the discrete logarithm assumption. By comparison, we show that proving
Schnorr’s scheme secure (even under sequential signing sessions) requires the
much stronger OMDL assumption. Arguably, this makes Abe’s scheme the more
attractive choice (along with allowing for concurrent sessions) for real world sys-
tems. This insight could not have been gained from proving these schemes secure
in the GGM.

Open Questions. Our work leaves open the question of what can be proven
about both the Abe and Schnorr blind signature schemes in the random oracle
model only. Interestingly, the already mentioned work of Baldimtsi and Lysy-
anskaya [BL13b] rules out a security proof for the blind Schnorr scheme using
standard reduction techniques even in the sequential signing model. Namely,
their result excludes such a reduction from a computational hardness assump-
tion even if the signer just issues a single signature (which trivially restricts the
sessions to being sequential). Another interesting direction for future work could
be a more fine-grained security analysis (in the AGM+ROM) of the Schnorr
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scheme in a less restrictive signing model that allows for a low degree of con-
currency. Namely, the ROS attack requires a polylogarithmic number of signing
sessions to be open at the same time. Thus, it might be possible to prove the
security of the scheme if, say, up to a constant number of signing sessions may
be interleaved at any given point in time. Regarding Abe’s scheme, there might
yet be a glimmer of hope that the original proof can be salvaged (i.e., without
requiring the AGM).

1.3 Organization

We first recall some preliminaries in section 2. In section 3 we introduce our
adaption of Abe’s scheme to the partially blind setting. We provide a proof
of partial blindness under DDH in section 3.1 as well as a proof of one-more-
unforgeability in section 3.2. We then provide the proof of sequential security of
blind Schnorr signatures in the AGM in section 4 and show that this result is
optimal in the number of OMDL-queries in section 4.1.

Acknowledgements. We would like to thank Chenzhi Zhu and Stefano Tessaro
for pointing out a flaw in a previous version of Claim 5. We would further like
to thank the anonymous reviewers for their helpful feedback.

2 Preliminaries

2.1 Notation and Security Games

Notation. For positive integer n, we write [n] for {1, . . . , n}. We write xj for
the j-th entry of vector −→x and write x $← X to denote that x is drawn uniformly
at random from set X . We denote the security parameter with λ.

Security Games. We use the standard notion of (prose-based) security games
[BR04; Sho04] to present our proofs. We denote the binary output of a game G
with an adversary A as GA and say that A wins G if GA = 1.

2.2 The Algebraic Group Model

In the following, let pp be public parameters that describe a group G of prime
order q with generator g. (We assume for simplicity that pp also includes the
security parameter λ.) We denote the neutral element by ε and write all other
group elements in bold face. We further write Zq for Z/qZ.

Definition 1 (Algebraic Algorithm). We say that an algorithm A is algeb-
raic if, for any group element y ∈ G that it outputs, it also outputs a list of
algebraic coefficients −→z ∈ Ztq, i.e.,

(y,−→z ) $← A(−→x )
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such that

y =
∏

xzii

We denote this representation as [y]−→x . For an adversary A that has access to
oracles during its runtime, we impose the above restriction to all group elements
that it outputs to an oracle. Similarly, all group elements that A receives through
oracle interactions are treated as inputs to A; hence, such group elements become
part of −→x when A outputs group elements (and hence algebraic coefficients) at a
later point.

In the algebraic group model (AGM), all algorithms are treated as algebraic
algorithms. Moreover, we define the running time of an algorithm A in the AGM
as the number of group operations that A performs.

2.3 Hardness Assumptions

We introduce the two main hardness assumptions that we will use in the sub-
sequent sections. As before, we will tacitly assume that some public parameters
pp are known and describe a group G of prime order q with generator g.

Definition 2 (Discrete Logarithm Problem (DLP)). For an algorithm A,
we define the game DLP as follows:

Setup. Sample x $← Zq and run A on input g,U := gx.

Output Determination. When A outputs x′, return 1 if gx
′

= U. Otherwise,
return 0.

We define the advantage of A in DLP as

AdvDLP
A := Pr

[
DLPA = 1

]
.

Definition 3 (One-More-Discrete Logarithm Problem (OMDL)). For
a stateful algorithm A and a positive integer `, we define the game `-OMDL as
follows:

Setup. Initialize C = ∅. Run A on input g.
Online Phase. A is given access to the following oracles:

Oracle chal takes no input and samples a group element y $← G. It sets
C := C ∪ {y} and returns y.

Oracle dlog takes as input a group element y. It returns dlogg y. We as-
sume that dlog can be queried at most ` many times.

Output Determination. When A outputs (yi, xi)
`+1
i=1 , return 1 if for all i ∈

[`+ 1]: yi ∈ C, gxi = yi, and yi 6= yj for all j 6= i. Otherwise, return 0.

We define the advantage of A in `-OMDL as

AdvOMDL
A,` := Pr

[
`-OMDLA = 1

]
.
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Definition 4 (Decsional Diffie-Hellman Problem (DDH)). For an al-
gorithm A we define the game DDH as follows:

Setup. Sample x, y, z $← Zq and b $← {0, 1}. Run A on input (g,gx,gy,gxy+bz)
Output determination. When A outputs b′, return 1 if b = b′ and 0 otherwise.

We define the advantage of A in DDH as

AdvDDH
A :=

∣∣∣∣Pr[DDHA = 1]− 1

2

∣∣∣∣ .
2.4 (Partially) Blind Signature Schemes

In this section, we introduce the syntax and security definitions of partially blind
(three-move) signature schemes [HKL19]. We note that a fully blind signature
scheme is a special case of a partially blind signature scheme where there is only
one tag info, the empty string. We will refer to schemes where the tag is always
the empty string as blind signature schemes.

Definition 5 (Three-Move Partially Blind Signature Scheme). A three-
move partially blind signature scheme is a tuple of algorithms BS = (KeyGen,Sign :=
(Sign1,Sign2),User := (User1,User2),Verify) with the following behaviour.

– The randomized key generation algorithm KeyGen takes as input paramet-
ers pp, and outputs a public key pk and a secret key sk. We assume for
convenience that pk contains pp and sk contains pk.

– The signing algorithm Sign := (Sign1,Sign2) is split into two algorithms:
• The randomized algorithm Sign1 takes as input a secret key sk and a tag

info and outputs a commitment C as well as a state stS.
• The deterministic algorithm Sign2 takes as input a secret key sk, a state

stS, and a challenge e. It outputs a response R.
– The user algorithm User := (User1,User2) is split into two algorithms:
• The randomized algorithm User1 takes as input a public key pk, a message
m, a tag info and a commitment C. It outputs a challenge e and a state
stU .

• The deterministic algorithm User2 takes as input a public key pk, a state
stU , and a response R. It outputs a signature σ or ⊥.

– The deterministic verifier algorithm Verify takes as input a public key pk, a
signature σ, and a message m and a tag info. It outputs either 1 (accept) or
0 (reject).

Definition 6 (Correcntess). We say that a partially blind signature scheme
BS = (KeyGen,Sign,User,Verify) is correct if for all messages m, all tags info
the following holds:

Pr

Verify(pk, sig,m, info) = 1:

(pk, sk) $← KeyGen(pp)
(C, stS) $← Sign1(sk, info)

(e, stU ) $← User1(pk,m, info, C)
R $← Sign2(sk, stS , e)
σ $← User2(pk, stU , R)

 = 1
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Definition 7 (Partial blindness under chosen keys). We define partial
blindness of a three-move partially blind signature scheme BS against an ad-
versary M via the following game:

Setup. Sample b $← {0, 1} and run M on input pp.

Online Phase. When M outputs messages m̃0 and m̃1, ˜info0 and ˜info1, and a

public key pk, check if pk is a valid5 public key, and ˜info0 = ˜info1. If so,

assign m0 := m̃b, info0 := ˜info0, m1 := m̃1−b, and info1 := ˜info1. If pk is not
a valid public key or info0 6= info1, abort and output 0. M is given access to
oracles User1,User2, which behave as follows.

Oracle User1: On input a bit b′, and a commitment C, if the session b′ is
not yet open, the game marks session b′ as open and generates a state
and challenge as (stb′ , e)

$← BS.User1(pk,mb′ , C, infob′). It returns e to
the adversary. Otherwise, it returns ⊥.

Oracle User2: On input a response R and a bit b′, if the session b′ is open,
the game creates the signature sigb′ as sigb′ := BS.User2(pk, stb′ , R) to
obtain a signature sigb′ . It marks session b′ as closed and outputs sigb′ .
If both sessions are closed and produced signatures, the oracle outputs
the two signatures sig0, sig1 to the adversary.

Output Determination. If both sessions are closed and produced signatures,
return 1 if the adversary outputs a bit b∗ s.t. b∗ = b. Otherwise, return 0.

We define the advantage of M in game BLINDBS as

AdvBLIND,BS
M :=

∣∣∣∣Pr
[
BLINDM = 1

]
− 1

2

∣∣∣∣ .
Definition 8 (`-(Sequential-)One-More-Unforgeability (`-(SEQ-)OMUF)).

For a stateful algorithm A, a three-move partially blind signature scheme BS,
and a positive integer `, we define the game `-OMUFBS (`-SEQ-OMUFBS) as
follows:

Setup. Sample (pk, sk) $← BS.KeyGen(pp) and run A on input (pk, pp).

Online Phase. A is given access to the oracles Sign1 and Sign2 that behave
as follows.

Oracle Sign1: On input info, it samples a fresh session identifier id (If
sequential, it checks if sessionid−1 = open and returns ⊥ if yes). If info
has not been requested before, it initializes a counter `closed,info := 0. It
sets sessionid := open and generates (Cid, stid)

$← BS.Sign1(sk, info).
Then it returns Cid and id.

5 We include this in case the scheme permits such a check - for example, one can think
of schemes where the public key consists of group elements, in which case a user may
be able to check that the public key consists of valid encodings of group elements.
Another example of such a check is in the original version of Abe’s scheme [Abe01]
where z = H1(g,h,y) which a user may check.
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Oracle Sign2: If
∑

info`closed,info < `, Sign2 takes as input a challenge e and
a session identifier id. If sessionid 6= open, it returns ⊥. Otherwise,
it sets `closed,info := `closed,info + 1 and sessionid := closed. Then it
generates the response R via R $← BS.Sign2(sk, stid, e) and returns R.

Output Determination. When A outputs tuples (m1, σ1, info1), . . . , (mk, σk, infok),
return 1 if there exists a tag info such that

∣∣{(mi, σi, infoi)
∣∣infoi = info

}∣∣ ≥
`closed,info + 1 (where by convention `closed,info := 0 for any info that has not
been requested to the signing oracles) and for all i ∈ [k] : BS.Verify(pk, σi,mi, infoi) =
1 and (mi, σi, infoi) 6= (mj , σj , infoj) for all j 6= i. Otherwise, return 0.

We define the advantage of A in OMUFBS as

AdvOMUF
A,BS,` := Pr

[
`-OMUFA

BS = 1
]
.

And, respectively for SEQ-OMUFBS

AdvSEQ-OMUF
A,BS,` := Pr

[
`-SEQ-OMUFA

BS = 1
]
.

3 Adaption of Abe’s blind Signature Scheme to allow
partial blindness

We begin by describing an adaption of Abe’s blind signature scheme BSA [Abe01]
to the partially blind setting. A figure depicting an interaction between signer
and user can be found in Figure 2 in Appendix D. Let again G be a group of order
q with generator g described by public parameters pp. Let H1 : {0, 1}∗ → G\{ε},
H2 : {0, 1}∗ → G \ {ε}, H3 : {0, 1}∗ → Zq be hash functions.

– KeyGen : On input pp, KeyGen samples h $← G, x $← Zq and sets y := gx. It
sets sk := x, pk := (g,h,y) and returns (sk, pk).

– Sign1 : On input sk, info, Sign1 samples rnd $← {0, 1}λ and u, d, s1, s2
$← Zq.

It computes z := H1(pk, info), z1 := H2(rnd), z2 := z/z1, a := gu, b1 :=
gs1 · zd1, b2 := hs2 · zd2. It returns a commitment (rnd,a,b1,b2) and a state
stS = (u, d, s1, s2, info).

– Sign2 : On input a secret key sk, a challenge e, and state stS = (u, d, s1, s2, info),
Sign2 computes c := e− d mod q, r := u− c · sk mod q and returns the re-
sponse (c, d, r, s1, s2).

– User1 : On input a public key pk and a commitment (rnd,a,b1,b2), a tag
info, and message m, User1 does the following. It samples γ $← Z∗q and
τ, t1, t2, t3, t4, t5

$← Zq. Then, it computes z := H1(pk, info), z1 := H2(rnd),
α := a ·gt1 ·yt2 , ζ := zγ , ζ1 := zγ1 , ζ2 := ζ/ζ1. Next, it sets β1 := bγ1 ·gt3 · ζ

t4
1 ,

β2 := bγ2 · ht5 · ζ
t4
2 , η := zτ , and ε := H3(ζ, ζ1, α, β1, β2, η,m, info). Fi-

nally, it computes a challenge e := ε − t2 − t4 mod q, the state StU :=
(γ, τ, t1, t2, t3, t4, t5,m) and returns e, StU .

– User2 : On input a public key pk, a response (c, d, r, s1, s2) and a state
(γ, τ, t1, t2, t3, t4, t5,m), User2 first computes ρ := r + t1, ω := c + t2, σ1 :=
γ · s1 + t3, σ2 := γ · s2 + t5, and δ := d+ t4. Then, it computes µ := τ − δ · γ
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and ε := H3(ζ, ζ1,g
ρyω,gσ1ζδ1 ,h

σ2ζδ2 , z
µζδ,m). It returns the signature σ :=

(ζ, ζ1, ρ, ω, σ1, σ2, δ, µ) if δ + ω = ε; otherwise, it returns ⊥.6

– Verify : On input a public key pk, a signature (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ) and
a message m, Verify computes first z := H1(pk, info) and then ε := H3(ζ,
ζ1,g

ρyω,gσ1ζδ1 ,h
σ2ζδ2 , z

µζδ,m, info). It returns 1 if δ + ω = ε; otherwise, it
returns 0.

We note that the only change we made to Abe’s scheme is that in our variant,
the z part of the public key is derived as a hash of pk and a tag info instead
of as a hash of the other elements of the public key. It is easy to see that by
using an empty info this yields the original scheme and thus our proofs about
the adapted scheme also apply to the original.

We note that Abe refers to z, z1, ζ, ζ1 as the tags of a signing session or sig-
nature. However, as we are considering partial blindness, we will refer to them as
the linking components. By [Abe01], the original scheme is computationally blind
under the Decisional Diffie-Hellman assumption. For completeness, we provide a
detailed proof of the partial computational blindness of our variant in section 3.1.

3.1 Partial Blindness of the adapted Abe scheme

We provide a formal proof of partial blindness under chosen keys for the Abe
blind signature scheme. Abe [Abe01] proved the scheme to be blind for keys
selected by the challenger.

Lemma 1. Under the decisional Diffie-Hellman assumption in G, Abe’s blind
signature scheme BSA is computationally blind in the random oracle model.

Proof. We use similar techniques as [BL13a].
Game G1 The first game is identical to the blindness game from Definition 7
for Abe’s blind signature scheme.

Setup. G1 samples b $← {0, 1}.
Simulation of oracle H1. G1 simulates H1 by lazy sampling of group ele-

ments.
Online Phase. When M outputs a public key (g,y,h) and messages m̃0 and

m̃1, and tags info0, info1, G1 verifies info0 = info1 assigns m0 = m̃b and
m1 = m̃b−1
Oracle User1. works the same as described in Definition 7
Oracle User2. works the same as described in Definition 7
Simulation of H2. H2 is simulated through lazy sampling
Simulation of H3. H3 is simulated through lazy sampling

Output determination. as described in Definition 7

6 We note that the check for ε = ω + δ implicitly checks that c + d = e as well as
a = ycgr,b1 = zd1g

s1 ,b2 = zd2h
s2 , i.e. it checks that the output of Sign − 2 was

valid.
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The second game replaces the signature for m0 by a signature that is independent
of the run with the signer.
Game G2 The second game generates the signature on m0 independently of
the corresponding signing session.

Setup. G2 samples b $← {0, 1}.
Simulation of oracle H1. G2 simulates H1 by lazy sampling of group ele-

ments.
Online Phase. When M outputs a public key (g,y,h) and messages m̃0 and m̃1

and ĩnfo0, ĩnfo1, G2 verifies that the key is well-formed and that ĩnfo0 = ĩnfo1
and aborts with output 0 if this check fails. It further assigns m0 = m̃b and

m1 = m̃b−1 as well as info0 = ĩnfo0 and info1 = ĩnfo1.

Oracle User1. For message m1, the oracle behaves the same as in G1. For
message m0, it checks that session 0 is not open yet and opens session
0. Then the game picks δ, ω, σ1, σ2, ρ, µ uniformly at random from Zq. It
further draws two random group elements ζ and ζ1 and sets ζ2 := ζ/ζ1.
It then sets H3(yω · gρ, ζδ1 · gσ1 , ζδ2 · hσ2 , ζδ · zµ,m0, info0) := δ + ω. It
draws e $← Zq uniformly at random and returns e as a challenge to the
adversary.

Oracle User2. For message m1, the oracle behaves the same as in G1. For
message m0, on input c, d, r, s1, s2, the game does the following checks7:
e = d+ c, a0 = gr ·yc, b1,0 = gs1 · zd1,0, b2,0 = hs2 · zd2,0. It considers the
produced signature to be the one generated in User1.

Simulation of H2. H2 is simulated through lazy sampling
Simulation of H3. For values not programmed in User1, G2 simulates H3

via lazy sampling

Output determination. as described in Definition 7

Claim 1. The advantage of an adversary B to tell the difference between G1 and

G2 is AdvG1,G2

B =
∣∣∣Pr
[
G1

B = 1
]
− Pr

[
G2

B = 1
]∣∣∣ ≤ AdvDDH

B′ .

Proof. We provide a reduction B′ that receives a random-generator DDH chal-
lenge (W,X,Y,Z) and simulates either G1 or G2 to the adversary. During
the first phase of the online phase, the reduction programs the random oracle
H1 to return values Wfi fi ∈ Zq. For simulation of H2, the reduction chooses
exponents gi

$← Zq and returns values Xgi , yielding uniformly random values
from the group G. In User1 for m0, when the adversary sends the commitment
which contains a random string rnd to be queried to the oracle H2, the reduction
identifies the g = gi that was used as the random exponent for z1 = Xg. Denote
further by f the fi used for generation of z = H1(pk, info1). It sets ζ = Yf and
ζ1 = Zf ·g. The reduction then proceeds to generate a signature by programming
the random oracle H3 as described in G2. For m1, the reduction participates
honestly in the signing protocol. In User2, for m0, the reduction checks that

7 We note that these checks need to be done explicitly here, as they are no longer
implicitly performed through checking that ε = ω + δ,
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the adversary produces a valid signing transcript as described in G2. If both
interactions yield valid signatures (i.e. the adversary produced a valid transcript
for m0 and a valid signature for m1), the reduction outputs both signatures,
otherwise ⊥. If the adversary outputs it was playing game G1, the reduction
outputs 0, otherwise it outputs 1.

We argue that if the challenge is a Diffie-Hellman tuple, the reduction sim-
ulates G1 perfectly. For a tuple W,Wa,Wb,Wab, the tuple z = Wf , z1 =
Wa·f · gf , ζ = Wb·f , ζ1 = Wa·b·f ·g is a valid Diffie-Hellman tuple w.r.t generator
Wf . Furthermore, the user tags ζ and ζ1 can be computed from z and z1 using
blinding factor γ = b. Furthermore, for any c, d, r, s1, s2 and signature compon-
ents ω, δ, ρ, σ1, σ2, µ there are unique choices of t1 = ρ − r, t2 = ω − c, t3 =
σ1 − γ · s1, t4 = δ − d, t5 = σ2 − γ · s2, τ = µ+ δ · γ that explain the signature in
combination with the transcript. Thus, the produced combination of signature
and transcript is identically distributed as an honestly generated signature.

If the challenge is not a Diffie-Hellman tuple, then the reduction simulates
G2 perfectly as the linking components ζi, ζ1,i look like random group elements
and the reduction computes the same steps as G2 to generate the signatures
and its outputs to the adversary. ut

We describe the final game G3 where both signatures are independent from the
runs with the signer.
Game G3

Setup. G3 samples b $← {0, 1}.
Simulation of oracle H1. G3 simulates H1 by lazy sampling of group ele-

ments.
Online Phase. When M outputs a public key (g,y,h) and messages m̃0 and

m̃1, G3 verifies that the key is well-formed and checks that info0 = info1
and aborts with output 0 if this check fails. It further assigns m0 = m̃b and
m1 = m̃b−1
Oracle User1. For session b′, the game checks that session b′ is not open

yet and opens session b′. It sets z := H1(info). Then the game picks
δ, ω, σ1, σ2, ρ, µ uniformly at random from Zq. It further draws two ran-
dom group elements ζ and ζ1 and sets ζ2 := ζ/ζ1. It then sets H3(yω ·
gρ, ζδ1 ·gσ1 , ζδ2 ·hσ2 , ζδ ·zµ,mb′ , infob′) := δ+ω. It draws e $← Zq uniformly
at random and returns e as a challenge to the adversary.

Oracle User2. For both sessions (denoted by i = 0, 1), on input ci, di, ri, s1,i, s2,i,
the game does the following checks: ei = di + ci, ai = gri · yci , b1,i =

gs1,i · zdi1,i, b2,i = hs2,i · zdi2,i. It considers the output signature to be the
one generated for this session in User1.

Simulation of H2. H2 is simulated through lazy sampling
Simulation of H3. For values not programmed in User1, G2 simulates H3

via lazy sampling
Output determination. as described in Definition 7

Claim 2. The advantage of an adversary B to tell the difference between G1 and

G2 is AdvG2,G3

B′′′ = Pr
[
G2

B′′′ = 1
]
− Pr

[
G3

B′′′ = 1
]
≤ AdvDDH

B′′ .
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Proof. Follows along the same lines as Claim 1, embedding the DDH challenge
in the signature for m1 this time. ut

In game G3, the adversary cannot win, as both signatures are completely inde-
pendent from the two runs. As game G3 needs to program the random oracle H3

twice to generate the signatures (this fails with probability at most 2qh
q4·2|m0| , i.e.

if the adversary has made the exact same requests before), we get the following
overall advantage of

AdvBLINDBSA

M =
2 · qh

q4 · 2|m0|
+ AdvDDH

B′ + AdvDDH
B′′

ut

3.2 One-More-Unforgeability

In the following, we provide a proof for the one-more-unforgeability. Similar
to [Abe01] we do this in two steps. First, we show that it is infeasible for an
adversary to generate a signature that does not use a tag that corresponds to
a closed signing session. (Note that the scheme is only computationally blind,
and an unbounded algorithm can link signatures and sessions since (z, z1, ζ, ζ1)
forms a DDH tuple. We call such tuples linking components, and refer to z, z1
as “signer-side” and ζ, ζ1 as “user-side”.) This corresponds to Abe’s restrictive
blinding lemma. Then, as the main theorem, we show that it is also infeasible
for an adversary to win `-OMUF by providing two signatures corresponding to
the same closed signing session.

Our techniques. The main idea for both the lemma and the theorem is to
use the algebraic representations of the group elements submitted to the ran-
dom oracle H3 in combination with the corresponding signature to compute the
discrete logarithm of either y or h or in the tags z. This fails either when the
adversary has not made a hash query for the signature in question, or when the
representation of the hash query does not contain more information than the
signature, i.e., the exponents in the representation already match the signature.
We show that both of these cases only occur with a negligible probability. We
simulate the protocol in two different ways. One way is to use the secret key x
like an honest signer and try to extract the discrete logarithm of h or one of
the z. The other way is to program the random oracles H1 and H2 so that the
reduction can use the discrete logarithms of z, z1, z2 to simulate the other side
of the OR-proof for extraction of the secret key. We also use the programming of
the random oracles to efficiently identify which signature is the “forgery”. This,
in combination with not having to run the protocol twice for forking, renders a
tight proof.

Comparison to the original standard model proof by Abe [Abe01]. We
briefly recall that similar to our proof, the original proof also shows the restrict-
ive blinding lemma first, which, shows that an adversary that wins the OMUF
game and at the same time produces a signature where dlogζ ζ1 6= dlogz z1,i for
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all sessions i, can be used to solve the discrete logarithm problem. The proof
uses the forking technique, i.e. it rewinds the adversary to obtain a second set
of signatures with different hash responses to H3. The original proof of the re-
strictive blinding lemma also uses two signers, one that embeds in y and signs
using the z-side witness, another that embeds in h and signs using the secret key
x. These two signers are indistinguishable for a single run, however, two forking
runs using the same witness reveal the witness being used internally. In partic-
ular, a forking pair of runs using the secret key x to sign, cannot be reproduced
by a signer that does not know the x-side witness. Therefore, the distribution
of signatures obtained from forking runs, in particular the components δ and ω
may depend on which witness was used internally. We note that for example in
‘honestly generated’ signatures (i.e. when the adversary followed the User1 and
User2 algorithms to generate signatures), the a pair of signatures at the forking
hash query reveals exactly the same witness as the signer used to sign while
forking, so it is not clear why a similar thing may not also hold for ‘dishonestly
generated’ signatures.

As our reduction for the restrictive blinding lemma works in the AGM, we can
avoid the rewinding step. The adversary submits representations of all the group
elements contained in a hash query, which gives the reduction information that
would otherwise be obtained from the previous run. As the scheme is perfectly
witness indistinguishable, the representations submitted by the adversary are
independent of the witness used internally. We show in Claim 5, that even a
so-called reduced representation that does use factors that are only determined
after all signing sessions were closed, is likely to reveal enough information for
the reduction to be able to solve the discrete logarithm problem.

The Restrictive Blinding Lemma. We first provide a reduction for the re-
strictive blinding lemma in the AGM + ROM. We therefore define the game
`-RB-OMUFBSA as follows:

Setup: Sample keys via (sk = x, pk = (g,h,y)) $← BSA.KeyGen(pp).
Online Phase: M is given access to oracles Sign1,Sign2 that emulate the be-

havior of the honest signer in BSA. It is allowed to arbitrarily many calls to
Sign1 and allowed to make ` queries to Sign2. In addition, it is given access
to random oracles H1, H2, H3. Let `info denote the number of interactions
that M completes with oracle Sign2 in this phase for each tag info.

Output Determination: When M outputs a list L of tuples (m1, sig1, info1), . . . ,
(mk, sigk, infok), proceed as follows:

– If the list contains a tuple (m, sig, info) s.t. Verify(pk,m, sig, info) = 0,
or does not contain `info + 1 pairwise-distinct tuples for some tag info,
return 0.

– Let zj , z1,j denote the values of z and z1 used in the j-th invocation
of Sign1. If there exists (m, sig, info) ∈ L with signature components
ζ 6= ζ1 (equivalently, ζ2 6= ε), s.t. for all j with H1(pk, info) = zj whose

sessions were closed with an invocation of Sign2, ζ
dlogzj

z1,j 6= ζ1, then
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return 1. Otherwise, return 0. We call the first signature in L with these
mismatched linking components the special signature.

Define AdvRB-OMUF
M,`,BSA := Pr[`-RB-OMUFM

BSA = 1]. We show that an al-
gebraic forger M that wins `-RB-OMUFBSA can be used to solve the discrete
logarithm problem. This reduction is tight and does not require rewinding of the
adversary.

Lemma 2 (Restrictive Blinding, see Lemma 3 in [Abe01]). Let M be
an algebraic algorithm that runs in time tM, makes at most ` queries to oracle
Sign2 in RB-OMUFBSA and at most (total) qh queries to H1, H2, H3. Then, in
the random oracle model, there exists an algorithm B s.t.

AdvDLP
B ≥1

2
AdvRB-OMUF

M,`,BSA − `+ 1

2q

− (
3qh
q

+ AdvdlogR1
+ AdvdlogR2

+ AdvdlogR3
+ AdvdlogR4

)

Proof. Let M be as in the lemma statement. As before, we assume w.l.o.g. that
M makes exactly ` queries to Sign2 and outputs a list of `+ 1 tuples. The proof
goes by a series of games, which we describe below.

Game G0. This is `-RB-OMUFBSA.

Game G1. To define G1, we first define the following event E1. E1 happens if M
returns a list L of `+1 valid signatures on distinct messages m1, ...,m` and there
exists (m, sig, info) = (m, (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ) , info) ∈ L s.t. for all j whose

sessions were closed with an invocation of Sign2, ζ
dlogzj

z1,j 6= ζ1 ∧ ζ2 6= ε and M
did not make a query of the form H3(ζ, ζ1,g

ρyω,gσ1ζδ1 ,h
σ2ζδ2 , z

µζδ,m, info). In
the following, we refer to the first tuple (m, sig, info) ∈ L as the special tuple for
convenience. G1 is identical to game G0, except that it aborts when E1 happens.

Claim 3. Pr[E1] = `+1
q

Proof. The only way for an adversary to succeed without querying H3 for the
signature is by guessing the hash value ε = ω + δ. Since there are ` + 1 valid
signatures in L, the probability of guessing ε correctly for one of them is `+1

q .
ut

By the claim, we have that AdvG1

M ≥ AdvG0

M − `+1
q .

Game G2. Game G2 is identical to G1, except that it keeps track of the
algebraic representations of group elements submitted to H3 by M and aborts
if a certain event E2 happens. In the following, we define the event E2 which
depends on these representations.

Simplifying Notations. For each query to H3, the adversary M submits a set
of group elements ζ, ζ1, α, β1, β2, η along with a message m and info.

As M is algebraic, it also provides a representation of these group elements to

the basis of elements g,h,y,−→z ,−→a ,
−→
b1,
−→
b2,
−→z1 that it has previously obtained via
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calls to H1, H2,Sign1, or Sign2. We note that by programming the oracles H1

and H2 the reduction knows a representation of its responses zi and z1,i. Any
element a,b1,b2 that was returned as reply to a query to Sign1 can be repres-
ented as a = yc · gr,b1 = zd1 · gs1 ,b2 = zd2 · hs2 . Here, z1, z2 = z/z1 correspond
to the call H2(rnd) made as part of answering this query to Sign1. This allows
us to convert any representation provided by M into a reduced representation in
the (simpler) basis g,h,y. For a group element o, we denote this reduced rep-
resentation by [o]−→

I
and its components as g[o]−→

I
, h[o]−→

I
, y[o]−→

I
, respectively, where

−→
I := (g,h,y). If M wins, we denote the special message/signature pair in its
winning output as (m, info, (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ)). The algebraic coefficients of
this tuple define the following integers which we call “preliminary values”:

ω′ := y[α]−→
I

δ′ :=
g[β2]−→I

+ x · y[β2]−→I

x · y[ζ2]−→I + g[ζ2]−→I

δ′′ :=
h[β1]−→I

h[ζ1]−→I
, δ′′′ :=

h[η]−→
I

h[ζ]−→
I

.

We further define the following non-exclusive boolean variables that describe
when which of the above values is actually well-defined:

C0 := (ω′ 6= ω) C1 := (ω′ = ω) ∧ (x · y[ζ2]−→I + g[ζ2]−→I 6= 0)

C2 := (ω′ = ω) ∧ (h[ζ1]−→I 6= 0) C3 := (ω′ = ω) ∧ (h[ζ]−→
I
6= 0)

Claim 4.
∨
i Ci = 1.

Proof. Since GM
2 = 1⇒ ζ2 6= ε, it follows that x·y[ζ2]−→I +g[ζ2]−→I and h[ζ2]−→I cannot

both be 0 when GM
2 = 1. Therefore, either x · y[ζ2]−→I + g[ζ2]−→I 6= 0 or h[ζ2]−→I 6= 0.

Moreover, since [ζ2]−→
I

= [ζ]−→
I
− [ζ1]−→

I
, either h[ζ1]−→I 6= 0 or h[ζ]−→

I
6= 0, whenever

h[ζ2]−→I 6= 0. Therefore, (h[ζ1]−→I 6= 0 ∨ h[ζ]−→
I
6= 0 ∨ x · y[ζ2]−→I + g[ζ2]−→I 6= 0) = 1 and

thus C1 ∨ C2 ∨ C3 = (ω′ = ω). The lemma follows immediately. ut

We now define E2 as the following event: ω′ = ω, and for any of δ′, δ′′, δ′′′,
as long as its denominator is not 0 (i.e., it is well-defined), then it is equal to δ.
That is,

E2 :=(C0 = 0) ∧ (C1 = 0 ∨ (C1 = 1 ∧ (δ′ = δ)))

∧ (C2 = 0 ∨ (C2 = 1 ∧ (δ′′ = δ))) ∧ (C3 = 0 ∨ (C3 = 1 ∧ (δ′′′ = δ))).

Claim 5. Pr[E2] ≤ 3qh
q + AdvdlogR1

+ AdvdlogR2
+ AdvdlogR3

+ AdvdlogR4

The proof for this claim can be found in appendix B.
By the claim, AdvG2

M ≥ AdvG1

M − 3qh
q .
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In the following, we explain how the reduction can simulate game G2 to the
adversary M and win the discrete logarithm game.

Simulation of H1, H2, H3. We begin by describing how S0, S1 simulate the
random oracles H1, H2, H3. These simulations are common to both Sι and are
performed in the straightforward way using lazy sampling. We assume that the
oracles keep respective lists Li for bookkeeping, where Li stores input/output
pairs. More specifically.

– H1 and H2: on each fresh input ξ, Hi samples v $← Zq and returns gv. It
stores (ξ,gv, v) in Li.

– H3 : on each fresh input (ξ, ·), H3 samples ε $← Zq and returns ε. It stores
(ξ,−→rep, ε) in Li.

– On repeated inputs Hi returns whatever it returned the first time that ξ was
queried.

Scheduling of Signing Sessions. We assume that each Si internally schedules
sessions with the oracles Sign1 and Sign2 as required by G2. This can be easily
implemented by using a fresh session identifier for each new session.

Extracting Equations from Forgery. Suppose that M wins game G2, i.e.,
GM

2 = 1. Recall that in this case, M produces a one-more forgery of at least `+1
valid signatures, after having completed at most ` sessions with oracle Sign2. In
addition, we have required that one of the returned tuples (m, info, sig) be special,

i.e., that ζ
dlogzj

z1,j 6= ζ1 for all zj and z1,j (where again zj and z1,j corresponds
to the value of z and z1, respectively, derived during the j-th interaction with
oracle Sign1).

From the verification equation of the special signature (m, info, sig), one ob-
tains the equations α = gρ ·yω, β1 = ζδ1 ·gσ1 , β2 = ζδ2 ·hσ2 , η = zµj · ζδ. Denoting
w0,j := dlog zj , w := dlog h, we obtain the reduced equations

g[α]−→
I

+ x · y[α]−→
I

+ w · h[α]−→
I

= ρ+ x · ω (1)

g[β1]−→I
+ x · y[β1]−→I

+ w · h[β1]−→I
= (g[ζ1]−→I + w · h[ζ1]−→I + x · y[ζ1]−→I ) · δ + σ1 (2)

g[β2]−→I
+ x · y[β2]−→I

+ w · h[β2]−→I
= (g[ζ2]−→I + w · h[ζ2]−→I + x · y[ζ2]−→I ) · δ + σ2 · w

(3)

g[η]−→
I

+ w · h[η]−→
I

+ x · y[η]−→
I

= w0,j · µ+ (g[ζ]−→
I

+ w · h[ζ]−→
I

+ x · y[ζ]−→
I

) · δ. (4)

We continue by describing simulators S0 which covers case C0, and S1 which
covers C1, C2, C3. As we will see, the values c, r, d, s1, s2 inside a signature is-
sued as part of a signing query are all known to Si. Together with the above
observations, it is easy for each simulator to convert a query to H3 into reduced
representation. Moreover, the winning tuple in M’s output can be identified
through knowledge of the logarithms of all zi and all z1,i efficiently.

Case C0 = 1. We describe simulator S0, which simulates G2 using w. On input
a discrete logarithm instance U := gx, it behaves as follows:

Setup: S0 samples w $← Zq and computes the public key pk as pk := (g,h :=
gw,y := U), which implicitly sets sk := x.
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Online Phase. S0 runs M on input pp, pk and simulates the oracles Sign1,
Sign2 as described below. In addition, it simulates the oracles H1, H2, H3 as
outlined above.

Queries to Sign1. When M queries Sign1(info) to open session sid, S0

checks in L1 if pk, info has been previously requested from H1 and if yes
sets w0,sid accordingly, otherwise samples w0,sid and programsH1(pk, info) :=
gw0,j . It samples rndsid

$← {0, 1}λ and sets z1,sid := gw1,sid = H2(rndsid),
which places the tuple (rndsid, z1,sid, w1,sid) into L2. It then sets z2,sid :=

zsid/z1,sid, w2,sid :=
w0,sid−w1,sid

w , csid, rsid, u1,sid, u2,sid
$← Zq, asid :=

ycsid ·grsid , b1,sid := gu1,sid , b2,sid := hu2,sid and returns asid,b1,sid,b2,sid.
Queries to Sign2. When M queries Sign2(sid, esid), S0 sets dsid := esid −

csid, s1,sid := u1,sid− dsid ·w1,sid, s2,sid := u2,sid− dsid ·w2,sid and returns
csid, dsid, rsid, s1,sid, s2,sid.

It is straightforward to verify that the above simulation of G2 is perfect.
Solving the DLP instance. When M returns `+1 message signature pairs, S0

identifies the special signature using the exponents stored in L2. It retrieves
the corresponding hash query to H3 from L3 together with representations
of α, β1, β2, η. S0 uses Eq. (1) and the fact that C0 = 1 ⇔ ω 6= y[α]−→

I
,

to (efficiently) compute and output the value x as x = (ρ − g[α]−→
I
− w ·

h[α]−→
I

)/(y[α]−→
I
−ω). (In case C0 = 0, or there is no hash query corresponding

to the special signature, it aborts.)

If C0 = 1, then S0’s simulation of G2 is perfect.

Case C0 = 0 We describe simulator S1, which simulates G2 using x. On input
a discrete logarithm instance U := gw, it behaves as follows.

Setup. S1 samples x $← Zq. It sets pk := (g,h := U,y := gx), sk := x.
Online Phase. S1 runs M on input pp, pk and simulates the oracles Sign1,

Sign2 as described below. In addition, it simulates the oracles H1, H2, H3 as
outlined above.

Queries to Sign1. When M queries Sign1(info) to open session sid, S1

checks if info was requested to H1 already and if so sets w0,j accord-
ingly, otherwise it samples w0,j

$← Zq and sets H1(pk, info) := w0,j . It
then samples rndsid

$← {0, 1}λ and sets z1,sid := gw1,sid = H2(rndsid)
(hence w1,sid is known to S1 from programming H2). It then samples

usid, dsid, s1,sid, s2,sid
$← Zq and sets asid := gusid , b1,sid := gs1,sid · zdsid1,sid,

b2,sid := hs2,sid · zdsid2,sid and returns asid,b1,sid,b2,sid.
Queries to Sign2. When M queries Sign2 on input (sid, esid), S1 sets

csid := esid−dsid, rsid := usid−csid ·x and returns csid, dsid, rsid, s1,sid, s2,sid
Solving the DLP instance. When M returns `+1 message signature pairs, S1

identifies the special signature using the exponents stored in L2. It retrieves
the corresponding hash query to H3 from L3 together with representations
of α, β1, β2, η. If there is no hash query to H3 corresponding to the special
signature, it aborts. Since C0 = 0 it holds that C1 = 1 ∨ C2 = 1 ∨ C3 = 1.
S1 uses one of the following extraction strategies.
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If C1 = 1: S1 uses Eq. (3) and the fact that C1 = 1⇒ (x · y[ζ2]−→I + g[ζ2]−→I 6= 0),

to (efficiently) compute and output the value w as follows. S1 first computes δ′

as δ′ := (g[β2]−→I
+ x · y[β2]−→I

)/(x · y[ζ2]−→I + g[ζ2]−→I ), which gives the equality

δ′ · (g[ζ2]−→I + x · y[ζ2]−→I ) + w · h[β2]−→I
= g[β2]−→I

+ x · y[β2]−→I
+ w · h[β2]−→I

. (5)

Eqs. (5) and (3) yield

δ′ · (g[ζ2]−→I + x · y[ζ2]−→I ) + w · h[β2]−→I
= g[β2]−→I

+ x · y[β2]−→I
+ w · h[β2]−→I

= δ · (g[ζ2]−→I + x · y[ζ2]−→I + w · h[ζ2]−→I ) + σ2 · w.

If h[β2]−→I
−δ·h[ζ2]−→I −σ2 6= 0, S1 outputs w = ((δ−δ′)·(g[ζ2]−→I +x·h[ζ2]−→I ))/(h[β2]−→I

−
δ · h[ζ2]−→I − σ2). We prove the following claim.

Claim 6. h[β2]−→I
− δ · h[ζ2]−→I − σ2 6= 0.

Proof. Since C1 = 1 and event E2 does not happen (since otherwise GM
2 = 0),

we know that δ 6= δ′. Hence, it suffices to show that if δ 6= δ′, then h[β2]−→I
− δ ·

h[ζ2]−→I − σ2 6= 0. Due to Eq. (3) we get

δ′ · (g[ζ2]−→I + x · y[ζ2]−→I ) + w · h[β2]−→I
= δ · (g[ζ2]−→I + x · y[ζ2]−→I + w · h[ζ2]−→I ) + σ2 · w

= δ · (g[ζ2]−→I + x · y[ζ2]−→I ) + w · h[β2]−→I
,

which yields (δ′ − δ) · (g[ζ2]−→I + x · y[ζ2]−→I ) = 0. Since C1 = 1, we have g[ζ2]−→I + x ·
y[ζ2]−→I 6= 0, which contradicts the assumption that δ′ 6= δ. ut

It is easily verified that whenever C1 = 1, S1’s simulation of G2 is perfect.

If C1 = 0 and C2 = 1: S1 uses Eq. (2) and the fact that C2 = 1 ⇔ (ω =
y[α]−→

I
) ∧ (h[ζ1]−→I 6= 0), to compute and output the discrete logarithm w of the

instance U as follows. S1 first computes δ′′ :=
h[β1]−→

I

h[ζ1]−→
I

which leads to the equality

δ′′ · w · h[ζ1]−→I + g[β1]−→I
+ x · y[β1]−→I

= g[β1]−→I
+ x · y[β1]−→I

+ w · h[β1]−→I
. (6)

Eqs. (6) and (2) yield

δ′′ · w · h[ζ1]−→I + g[β1]−→I
+ x · y[β1]−→I

= g[β1]−→I
+ x · y[β1]−→I

+ w · h[β1]−→I

= (g[ζ1]−→I + w · h[ζ1]−→I + x · y[ζ1]−→I ) · δ + σ1.

By the same argument as in the previous case, δ 6= δ′′, and S1 can compute and
output w as w = (δ ·(g[ζ1]−→I +x ·y[ζ1]−→I )+σ1−g[β1]−→I

+x ·y[β1]−→I
)/((δ−δ′′) ·h[ζ1]−→I ),

as C2 = 1 implies that h[ζ1]−→I 6= 0. Moreover, S1’s simulation of G2 is perfect if
C2 = 1 holds.

If C1 = C2 = 0 and C3 = 1: In this case, S1 uses Eq. (4) and the fact that C3 =
1⇔ (ω = y[α]−→

I
) ∧ (h[ζ]−→

I
6= 0), to compute and output the discrete logarithm w
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of the instance U as we described below. S1 computes δ′′′ := h[η]−→
I
/h[ζ]−→

I
, leading

to

δ′′′ · w · h[ζ]−→
I

+ g[η]−→
I

+ x · y[η]−→
I

= g[η]−→
I

+ x · y[η]−→
I

+ w · h[η]−→
I
. (7)

Equations (4) and (7) imply that

δ′′′ · w · h[ζ]−→
I

+ g[η]−→
I

+ x · y[η]−→
I

= g[η]−→
I

+ x · y[η]−→
I

+ w · h[η]−→
I

= w0 · µ+ (g[ζ]−→
I

+ w · h[ζ]−→
I

+ x · y[ζ]−→
I

) · δ.

As in the previous cases, δ 6= δ′′′, so S1 can output w by computing w =
(δ · (g[ζ]−→

I
+x ·y[ζ]−→

I
)+µ ·w0− (g[η]−→

I
+x ·y[η]−→

I
))/((δ′′′−δ) ·h[ζ]−→

I
), since h[ζ]−→

I
6= 0

due to C3 = 1. Moreover, S1’s simulation of G2 is perfect if C3 = 1 holds. Since

both simulators provide a perfect simulation (in their respective cases) and cover
all cases that can happen whenever GM

2 = 1, B can run the correct simulator to
extract the discrete logarithm with advantage AdvDLP

B ≥ AdvG2

M /2. Moreover,

we have AdvG2

M ≥ AdvG1

M − −( 3qh
q + AdvdlogR1

+ AdvdlogR2
+ AdvdlogR3

+ AdvdlogR4
) ≥

AdvG0

M −−( 3qh
q + AdvdlogR1

+ AdvdlogR2
+ AdvdlogR3

+ AdvdlogR4
)− `+1

q . Hence, tB ≈ tM
and

AdvDLP
B ≥1

2
AdvRB-OMUF

M,`,BSA − `+ 1

2q

− (
3qh
q

+ AdvdlogR1
+ AdvdlogR2

+ AdvdlogR3
+ AdvdlogR4

)

ut

The Main Theorem In the following, we show that Abe’s blind signature
scheme has full one-more-unforgeability. We make use of the restrictive blinding
lemma to identify the forged signature.

Theorem 1. Let M be an algebraic algorithm that runs in time tM, makes at
most ` queries to oracle Sign2 in `-OMUFBSA and at most (total) qh queries
to H1, H2, H3. Then, in the random oracle model, there exists an algorithm B
such that

AdvDLP
B ≥1

4
AdvOMUF

M,`,BSA −
3qh
q
− AdvDLP

R1
− AdvDLP

R2
− AdvDLP

R3

− (AdvDLP
R′1

+ AdvDLP
R′2

+ AdvDLP
R′3

+ AdvDLP
R′4

)

Proof. The proof is similar to the proof of lemma 2. We give a brief overview,
the full proof can be found in appendix C.

The reduction embeds the discrete logarithm challenge in either y or all the zj
and z1,j by programming the random oracle H1 and H2. I.e. on input of a discrete
logarithm challenge U, the reduction sets either y = U and generates zj , z1,j ,h
with known discrete logarithms to base gvi for randomly chosen vi

$← Zq, or
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the reduction sets y = gx for known x $← Zq, h := gv for a known v ∈ Zq,
and generates all zj , z1,j as Uvi for vi

$← Zq. This allows the reduction to either
generate signatures using its knowledge of the discrete logarithms of zj , z1,j ,
and h, or its knowledge of the secret key x. Due to lemma 2 we can assume
that there is one session that produces two signatures. As the responses for H2

have been programmed, this session can be identified and a representation of all
group elements to g,y, zj , z1,j is known to the reduction. Similar to the proof of
lemma 2 the algebraic representations of the group elements submitted in hash
queries to H3 can be used to compute preliminary ω′ and δ′, δ′′, δ′′′ for both
of the special signatures belonging to the same session. As at least one of the
signatures was not created through a run of the honest signing protocol, using
similar arguments as for the special signature in lemma 2, thus the witness can
be computed by the reduction which yields the statement. ut

4 Sequential Unforgeability of Schnorr’s Blind Signature
Scheme

In this section we show that Schnorr’s blind signature scheme satisfies sequential
one-more unforgeability under the one-more DL assumption in the AGM. We
first recall Schnorr’s blind signature scheme BSS below. A figure depicting an
interaction can be found in Appendix D in Appendix D.8 Let H : {0, 1}∗ → Zq
be a hash function.

– KeyGen : On input pp, KeyGen samples x $← Zq and sets x := gx. It sets
sk := x, pk := x and returns (sk, pk).

– Sign1 : On input sk, Sign1 samples r $← Zq and returns the commitment
r := gr and the state StS := r.

– Sign2 : On input a secret key sk, a state StS = r and a challenge c, Sign2
computes s := c · sk + r mod q and returns the response s.

– User1 : On input a public key pk, a commitment r, and a message m, User1
does the following. It samples first samples α, β $← Zq. Then, it computes

r′ := r·gα ·pkβ and c′ := H(r′,m), c := c′+β mod q. It returns the challenge
c and the state StU := (r, c, α, β,m).

– User2 : On input a public key pk, a state StU = (r, c, α, β,m), and a response
s, User2 first checks if gs = r·xc and returns ⊥ if not. Otherwise, it computes
r′ := r · gα · pkβ and s′ := s+ α and returns the signature σ := (r′, s′).

– Verify : On input a public key pk, a signature σ = (r′, s′) and a message m,

Verify computes c′ := H(r′,m) and checks whether gs
′

= r′ · pkc
′
. If so, it

returns 1; otherwise, it returns 0.

8 We use different letters to denote the variables in the scheme than what we used
in the previous section. Our choices are in line with the standard notation for this
scheme.
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Theorem 2. Let M be an algebraic adversary that runs in time tM, makes at
most ` queries to Sign2 in `-SEQ-OMUFBSS, and at most qh random oracle
queries to H. Then there exists an adversary B such that

AdvOMDL
B,` ≥ AdvSEQ-OMUF

M,`,BSS − q2h + qh + 2

2q
,

and B runs in time tB = tM +O(`+ qh).

We briefly explain the proof idea. Many of the ideas and notations are reused
from [FPS20]; we include them for completeness. Since M can query Sign2 a total
of ` times, it is allowed to open `+1 sessions and close the first ` of them (the last
session is never closed). Let x be the public key, and r1, . . . , r`+1 be the group
elements returned by Sign1. Let (m∗1, (r

∗
1, s
∗
1)), . . . , (m∗`+1, (r

∗
`+1, s

∗
`+1)) be M’s fi-

nal outputs, i.e., (r∗i , s
∗
i ) (where i ∈ [`+1]) is M’s forgery on message m∗i . Since M

is algebraic, it also outputs r∗i ’s algebraic representation (γ∗i , ξ
∗
i , ρ
∗
i,1, . . . , ρ

∗
i,`+1)

based on g,x, r1, . . . , r`+1, i.e.,

r∗i = gγ
∗
i · xξ

∗
i ·
∏̀
j=1

r
ρ∗i,j
j · rρ

∗
i,`+1

`+1 = gγ
∗
i +ρ

∗
i,`+1r`+1 · xξ

∗
i ·
∏̀
j=1

r
ρ∗i,j
j

(where r`+1 = dlog r`+1). Suppose M wins `-SEQ-OMUFBSS, i.e., (r∗i , s
∗
i ) is a

valid forgery on message m∗i and we have that

gs
∗
i = r∗i · xc

∗
i , (8)

where c∗i = H(r∗i ,m
∗
i ), for all i ∈ [` + 1]. The two equations above combined

yield

xc
∗
i+ξ

∗
i ·
∏̀
j=1

r
ρ∗i,j
j = gs

∗
i−γ

∗
i −ρ

∗
i,`+1r`+1 . (9)

The reduction to `-OMDL, B, works as follows. B queries its challenge oracle
` + 1 times to obtain x, r1, . . . , r`, samples r`+1

$← Zq and sets r`+1 ← gr`+1 ,
and simulates Sign1() by returning ri. To simulate Sign2(cj) queries, B queries
its dlog oracle and returns sj := dlog(rj · xcj ). Substituting the definition of sj
into Eq. (9), we get

xc
∗
i+ξ

∗
i−
∑`
j=1 ρ

∗
i,jcj = gs

∗
i−γ

∗
i −
∑`
j=1 ρ

∗
i,jsj−ρ

∗
i,`+1r`+1 ,

which can be used to compute x = dlog x as long as χi = c∗i +ξ∗i −
∑`
j=1 ρ

∗
i,jcj 6= 0

for some i.
Now we need to upper bound the probability that χi = 0 for all i = 1, . . . , `+

1. Recall that in [FPS20], this is reduced to the `-ROS problem (which can be
solved in polynomial time when ` ≥ λ, as shown in the recent work of [Ben+21]).
Here, since we are in the sequential setting where the adversary must close one
session before opening another, we can make a statistical argument instead.
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For each message/forgery pair (m∗i , (r
∗
i , s
∗
i )), there is a corresponding random

oracle query H(r∗i ,m
∗
i ). (If M does not make such a query, then Pr[χi = 0] =

1/q.) Call this query the i-th special query. Any special query is made during
a session which is eventually closed (i.e., between M’s j-th Sign1 query and
j-th Sign2 query for some j ∈ [`]), or between two sessions (including before
the first session), or during the last session which is never closed. If there is any
special query (say the i-th) made between two sessions or during the last session,
then it is not hard to see that all coefficients in χi’s expression, except c∗i , are
fixed when M makes its i-th special query. On the other hand, c∗i is a uniformly
random integer in Zq. Therefore, Pr[χi = 0] = 1/q for a single H(r∗i ,m

∗
i ) query.

Otherwise, i.e., if all special queries are made during some session which is
eventually closed, since there are ` such sessions and `+ 1 special queries, there
is at least one session (say the j0-th) with at least two special queries (say the
i-th and (i + 1)-th) during it. At the time when M makes its (i + 1)-th special
query, i.e., when c∗i+1 is chosen at random from Zq, all coefficients in both χi and
χi+1’s expression, except c∗i+1 and cj0 , are fixed. Therefore, at this time whether
M can come up with a cj0 s.t. χi = χi+1 = 0 is already determined, and it
depends on the random choice of c∗i+1. It can be shown (see the full proof) that
there is at most one c∗i+1 s.t. the linear system χi = χi+1 = 0 (with unknown cj0)
has a solution; therefore, Pr[χi = χi+1 = 0] ≤ 1/q for a single pair of H(r∗i ,m

∗
i )

and H(r∗i+1,m
∗
i+1) queries.9

Proof. Let M be as in the theorem statement. Without loss of generality, we as-
sume that M makes exactly `+1 many Sign1() and exactly `many Sign2 queries,
and returns exactly ` + 1 valid signatures (r∗1, s

∗
1), . . . , (r∗`+1, s

∗
`+1) of messages

m∗1, . . . ,m
∗
`+1.10 We further assume that pairs (m∗1, r

∗
1), . . . , (m∗`+1, r

∗
`+1) are all

distinct; otherwise M could not win `-SEQ-OMUFBSS as we prove in the fol-
lowing simple claim.

Claim 7. The pairs (m∗i , r
∗
i ), . . . , (m

∗
j , r
∗
j ) are pairwise distinct for all i, j ∈ [`+

1].

Proof. Suppose (m∗i , r
∗
i ) = (m∗j , r

∗
j ) for i 6= j ∈ [` + 1]. If s∗i = s∗j then M

outputs two identical message/signature pairs, violating the winning condition.
Otherwise it cannot be the case that both (r∗i , s

∗
i ) and (r∗i , s

∗
j ) are both valid

signatures of m∗i , since given m∗i and r∗i , s
∗
i as in the valid signature is uniquely

defined (as in Eq. (8)). ut

Let x be the public key, r1, . . . , r`+1 be the group elements returned by Sign1,
and M’s Sign2 queries be Sign2(c1), . . . ,Sign2(c`). The proof goes by a sequence

9 We remark that this is essentially the 1-ROS problem, which is statistically hard.
10 Since the security game is sequential OMUF, and M can make at most ` many Sign2

queries, this implies that M can make at most `+ 1 many Sign1 queries. Obviously,
any adversary who makes less than ` + 1 many Sign1 queries, or less than ` many
Sign2 queries, or returns more than ` + 1 valid signatures, can be turned into an
adversary who makes exactly `+ 1 many Sign1 and exactly ` many Sign2 queries,
and returns exactly `+ 1 valid signatures, with the same advantage and roughly the
same running time.
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of games, which we describe below. For convenience, we set AdvGi

M := Pr[GM
i =

1].

Game G0. This is the `-SEQ-OMUF game. We have that

AdvG0

M = AdvSEQ-OMUF
M,`,BSS .

Game G1. In G1 we make the following change. When M returns its final
outputs (m∗1, (r

∗
1, s
∗
1)), . . . , (m∗`+1, (r

∗
`+1, s

∗
`+1)), together with r∗i ’s algebraic rep-

resentation (γ∗i , ξ
∗
i , ρ
∗
i,1, . . . , ρ

∗
i,`+1) based on g,x, r1, . . . , r`+1, for each i ∈ [`+1]

for which H(r∗i ,m
∗
i ) is undefined, we emulate a query c∗i := H(r∗i ,m

∗
i ) via lazy

sampling. (If M has not seen a certain rj when outputting r∗i , then the game
naturally sets ρ∗i,j = 0, as M is not allowed to use rj as a base.) After that, we

define χi := c∗i + ξ∗i −
∑`
j=1 ρ

∗
i,jcj , and abort if χi = 0 for all i. (Note that ρ∗i,`+1

does not appear in the definition of χi.)
G1 and G0 are identical unless χi = 0 for all i ∈ [`+ 1]. Call this event E.

Claim 8. Pr[E] ≤ q2h+qh+2
2q

Proof. If M does not query H(r∗i ,m
∗
i ) for some i, then c∗i is a uniformly random

element of Zq in M’s view, so Pr[χi = 0] = 1/q.
Next we assume that M queries H(r∗i ,m

∗
i ) for all i; call such query the i-th

special query. Since (m∗i , r
∗
i ) pairs are all distinct, c∗i = H(r∗i ,m

∗
i ) is a uniformly

random element in Zq (independent of everything else) when M makes the i-
th special query. Also, r∗i ’s algebraic representation (γ∗i , ξ

∗
i , ρ
∗
i,1, . . . , ρ

∗
i,`+1) is

already determined when M makes its i-th special query. Any special query is
made either during a session which is eventually closed (i.e., between M’s j-th
Sign1 query and j-th Sign2 query for some j ∈ [`]), or between two sessions
(including before the first session), or during the last session which is never closed
(i.e., after M’s (`+ 1)-th Sign1 query). We consider these cases separately:

Case C1. Suppose that there is any special query (say the i-th) made (a) between
two sessions (including before the first session); say the i-th special query is
made after the j0-th Sign2 query and before the (j0 + 1)-th Sign1 query, or
(b) after the (` + 1)-th Sign1 query. Consider the time when M makes its i-th
special query H(r∗i ,m

∗
i ). In case (a), at this point all group elements M has

seen are g,x, r1, . . . , rj0 , so ρ∗i,j0+1 = . . . = ρ∗i,` = 0; furthermore, the algebraic
coefficients (for r∗i ) ξ

∗
i , ρ
∗
i,1, . . . , ρ

∗
i,j0

are all fixed. Finally, cj (where j ∈ [j0])
is fixed when M makes its j-th Sign2 query, which happens before M’s i-th
special query. Similarly, in case (b), at this point the algebraic coefficients (for
r∗i ) ξ

∗
i , ρ
∗
i,1, . . . , ρ

∗
i,`+1 are all fixed, and c1, . . . , c` are fixed when M makes its

`-th Sign2 query, which happens before M’s i-th special query. This means that
in both cases (a) and (b), all coefficients in χi’s expression, except c∗i , are fixed
when M makes its i-th special query. On the other hand, c∗i is a uniformly random

element in Zq. Therefore, Pr[χi = c∗i + ξ∗i −
∑j0
j=1 ρ

∗
i,jcj = 0] = 1

q , for a single

H(r∗i ,m
∗
i ) query. Since M makes qh random oracle queries in total, we have that

Pr[χi = 0 ∧ C1] ≤ qh
q , and hence Pr[E ∧ C1] ≤ qh

q .
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Case C2. Suppose that all special queries are made during some session which
is eventually closed. Since there are ` such sessions and ` + 1 special queries,
there is at least one session with at least two special queries during it; say the
i-th and (i+1)-th special queries are made during the j0-th session. Consider the
time when M makes its (i+ 1)-st special query. At this point all group elements
M has seen are g,x, r1, . . . , rj0 , so ρ∗i,j0+1 = . . . = ρ∗i,` = 0; furthermore, the
algebraic coefficients (for r∗i and r∗i+1) ξ∗i , ρ

∗
i,1, . . . , ρ

∗
i,j0
, ξ∗i+1, ρ

∗
i+1,1, . . . , ρ

∗
i+1,j0

are all fixed. The output of M’s i-th special query c∗i is also fixed right after M
makes its i-th special query, which happens before M’s (i+ 1)-th special query.
Finally, cj (where j ∈ [j0−1]) is fixed when M makes its j-th Sign2 query, which
again happens before M’s (i+ 1)-th special query. (This is because M’s (i+ 1)-th
special query is made during the j0-th session, which is started after the j-th
session is closed.) This means that all coefficients in χi and χi+1’s expressions,
except cj0 and c∗i+1, are fixed when M makes its (i+ 1)-th special query.
Next consider the time when M makes its j0-th Sign2 query (i.e., when the j0-th
session is closed). At this point c∗i+1 is also fixed, so the only coefficient in χi
and χi+1’s expressions which is not fixed is cj0 (to be chosen by M). In sum, the
last coefficient fixed is cj0 (chosen by M), and the second last coefficient fixed is
c∗i+1 (uniformly random in Zq).
Consider the linear system with unknown cj0{

χi = c∗i + ξ∗i −
∑j0
j=1 ρ

∗
i,jcj = 0,

χi+1 = c∗i+1 + ξ∗i+1 −
∑j0
j=1 ρ

∗
i+1,jcj = 0.

(10)

Denote A :=

(
ρ∗i,j0 c∗i + ξ∗i −

∑j0−1
j=1 ρ∗i,jcj

ρ∗i+1,j0
c∗i+1 + ξ∗i+1 −

∑j0−1
j=1 ρ∗i+1,jcj

)
and B :=

(
ρ∗i,j0
ρ∗i+1,j0

)
the

augmented matrix and coefficient matrix, respectively, of (10). We first note
that if ρ∗i,j0 = ρ∗i+1,j0

= 0 all factors in eq. (10) are fixed when M makes his

query. Thus, the probability that χi = χi+1 = 0 is at most 1
q over the choice of

c∗i and c∗i+1. In the following we assume that ρ∗i,j0 6= 0 or ρ∗i+1,j0
6= 0. Then

Pr[χi = χi+1 = 0] = Pr[cj0 is the solution of (10)] ≤ Pr[(10) has a solution]

= Pr [rank(A) = rank(B)] ≤ Pr [rank(A) ≤ 1] = Pr [det(A) = 0]

= Pr

[
ρ∗i,j0c

∗
i+1 + ρ∗i,j0(ξ∗i+1 −

∑j0−1
j=1 ρ∗i+1,jcj)

−ρ∗i+1,j0
(c∗i + ξ∗i −

∑j0−1
j=1 ρ∗i,jcj) = 0

]
=

1

q
,

for a single pair of H(r∗i ,m
∗
i ) and H(r∗i+1,m

∗
i+1) queries. (The last equation

is true because when M makes its (i + 1)-th special query, c∗i+1 is a uniformly
random element of Zq, and all other coefficients are fixed.) Since M makes qh

random oracle queries in total, we have that Pr[χi = χi+1 = 0∧C2] ≤ (qh2 )
q , and

hence Pr[E ∧ C2] ≤ (qh2 )
q .
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In sum, we have that (let case C0 be “M does not make the i-th special query
for some i ∈ [`+ 1]”)

Pr[E] = Pr[E ∧ C0] + Pr[E ∧ C1] + Pr[E ∧ C2]

≤ 1

q
+
qh
q

+

(
qh
2

)
q

=
q2h + qh + 2

2q
.

ut

By the claim, AdvG1

M ≤ AdvG0

M − q2h+qh+2
2q .

Reduction to `-OMDL. We now upper bound AdvG1

M via a reduction B from
`-OMDL. B runs on input (G,g, q), and is given oracle access to chal and dlog.
B first queries x := chal() and runs M(G,g, q,x). B runs the code of G1 except
that (1) on M’s j-th Sign1 query (j ∈ [`]), B returns rj := chal(); (2) on M’s j-th
Sign2 query, B returns sj := dlog(g, rj · xcj ). (B answers M’s (`+ 1)-th Sign1

query just as in G1, i.e., by sampling r`+1
$← Zq and returning r`+1 := gr`+1 .)

Finally, when M returns its final outputs, if there exists an i ∈ [`+ 1] s.t. χi 6= 0,
B computes

x :=
s∗i − γ∗i −

∑`
j=1 ρ

∗
i,jsj − ρ∗i,`+1r`+1

χi

and
rj := sj − cjx,

and outputs (x, r1, . . . , r`). (If χi = 0 for all i, B aborts.)
Clearly, B runs in time tM +O(`+ qh). We claim that B wins `-OMDL if M

wins G1. Since M is algebraic, we have that

r∗i = gγ
∗
i · xξ

∗
i ·
∏̀
j=1

r
ρ∗i,j
j · rρ

∗
i,`+1

`+1 = gγ
∗
i +ρ

∗
i,`+1r`+1 · xξ

∗
i ·
∏̀
j=1

r
ρ∗i,j
j .

On the other hand, since M wins G1, i.e., (r∗i , s
∗
i ) is a valid forgery on message

m∗i , we have that

gs
∗
i = r∗i · xc

∗
i .

The two equations above combined yield

xc
∗
i+ξ

∗
i ·
∏̀
j=1

r
ρ∗i,j
j = gs

∗
i−γ

∗
i −ρ

∗
i,`+1r`+1 . (11)

By definition of sj , we have that

rj =
gsj

xcj
, (12)

substituting (12) into (11), we get

xχi = xc
∗
i+ξ

∗
i−
∑`
j=1 ρ

∗
i,jcj = gs

∗
i−γ

∗
i −
∑`
j=1 ρ

∗
i,jsj−ρ

∗
i,`+1r`+1 ,
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so x = dlog x. By (12) again, rj = dlog rj . This means that B wins `-OMDL.
We have that

AdvOMDL
B,` = AdvG1

M .

We conclude that

AdvOMDL
B,` ≥ AdvSEQ-OMUF

M,`,BSS − q2h + qh + 2

2q
,

completing the proof. ut

4.1 Optimality of Our Reduction

In this section, we show an impossibility result which states (roughly) that re-
ducing `-sequential one-more unforgeability of Schnorr’s blind signature scheme
from `-OMDL (as shown in section 4) is the best one can hope for. Concretely,
we show that any algebraic reduction B that solves (`−1)-OMDL when provided
with black-box access to a successful algebraic forger A in `-SEQ-OMUFBSS,
can be turned into an efficient adversary M against (`− 1)-OMDL.

Algebraic Black Boxes. We consider a type of algebraic adversary that, apart
from providing algebraic representations for each of its output group elements to
the reduction, does not provide any further access (beyond black-box access). In
particular, the reduction does not get access to the code of the adversary. This
notion was previously put forth and used by Bauer et al. [BFL20].

Theorem 3. 11 Let B be an algebraic reduction that satisfies the following: if
algorithm A is an algebraic black-box algorithm that runs in time tA then

AdvOMDL
B,`−1 = εB

(
AdvSEQ-OMUF

A,`,BSS

)
and B runs in time tB(tA). (Here, εB and tB are functions in the success prob-
ability and running time of A). Then there exists an algorithm M (the meta-
reduction) such that

AdvOMDL
M,`−1 ≥ εB

((
1− 1

q

)`)
and M runs in time tM = tB(O(`3)).

Proof Idea. We give a brief overview of the proof here, the detailed proof can
be found in Appendix A. We employ the meta-reduction technique [Cor02]. Our
meta-reduction provides the reduction with interfaces from the one-more dis-
crete logarithm game as well as an algebraic black box forger for blind Schnorr
signatures. It plays the OMDL game itself and forwards all oracle queries and
responses, thereby providing the reduction with the interfaces of an OMDL chal-
lenger. The meta-reduction (in the role of the forger) first opens and closes all

11 This theorem even holds for a weaker version of `-SEQ-OMUFBSS where the ad-
versary A is required to output signatures for `+ 1 distinct messages.

28



signing sessions before it makes its first hash query. We note that up to this point
the only outputs made by the meta-reduction in the role of the forger have been
uniformly random queries to the Sign2 oracle provided by the reduction, and
thus independent of the algebraic representations output by the meta-reduction
during the process. It then uses the algebraic representations output by the re-
duction as well as the responses from Sign2 to compute the secret key through
means of linear algebra. The meta-reduction then starts making queries to the
random oracle provided by the reduction and generating signatures, providing
the discrete logarithm of its random commitments as a representation. Thus, all
representations as well as all queries made by the reduction are independent from
the algebraic representations that the reduction provides to the meta-reduction
but not a to a real adversary. When the meta-reduction has output its signatures
to the reduction, the reduction solves the OMDL challenge. The meta-reduction
at this point only forwards the solution to its own OMDL challenger and wins
whenever the reduction wins.

Doesn’t this also contradict Section 3? One may ask if it is possible to apply a
similar meta-reduction technique to Abe’s blind signature scheme or our partially
blind variant, which would contradict our result from Section 3. However, this
is not possible as the algebraic representations output by the reduction break
the witness-indistinguishability of the scheme. The meta-reduction would only
be able to compute the witness used by the reduction. Thus, the combination
of representations provided by the adversary and signatures provided by the
adversary would be dependent on the algebraic representations provided by the
reduction.
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Supplementary Material

A Proof of Theorem 3

We give the full proof of theorem 3 below.

Theorem 3. 12 Let B be an algebraic reduction that satisfies the following: if
algorithm A is an algebraic black-box algorithm that runs in time tA then

AdvOMDL
B,`−1 = εB

(
AdvSEQ-OMUF

A,`,BSS

)
and B runs in time tB(tA). (Here, εB and tB are functions in the success prob-
ability and running time of A). Then there exists an algorithm M (the meta-
reduction) such that

AdvOMDL
M,`−1 ≥ εB

((
1− 1

q

)`)
and M runs in time tM = tB(O(`3)).

Proof. The meta-reduction M needs to provide the oracles from (`− 1)-OMDL
as well as simulate an adversary A playing the `-SEQ-OMUF.

Interactions with (`− 1)-OMDL. M forwards all queries to the oracles dlog
and chal made by B to the corresponding oracles provided by the interface
of its own game (`− 1)-OMDL. We denote the ith challenge value returned
by chal in (`− 1)-OMDL with Ui.

Public key. When B outputs a public key x, M obtains its algebraic represent-
ation −→z0 such that

x = gz0,0 ·
∏̀
i=1

U
z0,i
i .

Signing sessions. To simulate the behaviour of an adversary in signing sessions
j = 1, . . . , ` of `-SEQ-OMUF, M does as follows. It first queries rj ←
Sign1() (as a query to B made by an algebraic forger), and obtains rj ’s
algebraic representation −→zj such that

rj = gzj,0 ·
∏̀
i=1

U
zj,i
i .

Then M picks cj
$← Zq and queries sj := Sign2(cj). M knows that

gsj = rj · xcj .

If the above equation does not hold, M aborts. This is consistent with a real
adversary A as then the verification equation does not hold.

12 This theorem even holds for a weaker version of `-SEQ-OMUFBSS where the ad-
versary A is required to output signatures for `+ 1 distinct messages.



Obtaining the secret key. Combining all equations above, M obtains a linear
system of ` equations

sj − cj ·

(
z0,0 +

∑̀
i=1

z0,i · dlog Ui

)
︸ ︷︷ ︸

x=dlog x

= zj,0 +
∑̀
i=1

zj,i · dlog Ui︸ ︷︷ ︸
dlog rj

(∗)

for j = 1, . . . , `. We will show below that either (1) with probability at least
(1− 1

q )` this linear system yields a solution for dlog Ui (i = 1, . . . , `), or (2)
M can compute the secret key x = dlog x without solving dlog Ui. In case
(1), M can compute x = z0,0 +

∑`
i=1 dlog Ui

z0,i .
Either way, M now knows the secret key x with probability at least (1− 1

q )`,
conditioned on B being able to answer all signing queries.

Forging signatures. After obtaining x, M runs the standard Schnorr signing
protocol `+ 1 times. Concretely, for k = 1, . . . `+ 1, M picks random distinct
mk

$← {0, 1}λ and rk
$← Zq, computes r′k = grk , and queries H(r′k,mk)

(using rk the algebraic representation of r′k). Then M computes sk := rk +
x ·H(r′k,mk) and outputs (m1, (r

′
1, s1)), . . . , (m`+1, (r

′
`+1, s`+1)) to B.

Solving OMDL. Once B outputs the final outputs (supposed to be dlog Ui for
i = 1, . . . , `), M forwards them to its own challenger. We note that this step
is necessary because M may not have received all of dlog U1, . . . ,dlog U` in
the “obtaining the secret key” step.

Analysis of success probability. We now analyze the linear system (∗) in step
‘obtaining the secret key’ (recall that the unknowns are dlog U1, . . . ,dlog U`).
Its augmented matrix is

A =

 (−c1 · z0,1 − z1,1) · · · (−c1 · z0,` − z1,`) z1,0 − s1 + c1 · z0,0
...

...
(−c` · z0,1 − z`,1) · · · (−c` · z0,` − z`,`) z`,0 − s` + c` · z0,0


Claim 9. If the first j − 1 rows of A are linearly independent, then either (1)
the j-th row is linearly independent of the previous rows with probability at least
1 − 1

q (over the choice of cj), or (2) M can compute the secret key x from the

j-th row. (In the case of j = 1 or 2, a single vector is linearly independent iff it
is non-zero.)

Proof. Suppose that the first j − 1 rows of A are linearly independent. The
algebraic representation −→zj of rj is provided by the reduction B, and the algebraic
representation −→z0 of x has been provided by B at the beginning of the game. As
`-SEQ-OMUF is played in a sequential manner, in session j, all parameters in
the first j − 1 rows of A (and thus their corresponding equations) are known to
both B and M. We want to analyze for which possible choices of cj the j-th row of
A can be linearly expressed by the first j − 1 rows. This is equivalent to asking
for which parameters d1, . . . , dj−1, cj it is possible, for any i ∈ [j], to express
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(−cj · z0,i− zj,i) as d1 · (−c1 · z0,i− z1,i) + ...+ dj−1 · (−cj−1 · z0,i− zj−1,i). Thus,
we are led to analyze the following linear system with unknowns d1, . . . , dj−1, cj
(where we only consider the left-hand side of the matrix A):

 (−c1 · z0,1 − z1,1) . . . ·(−cj−1 · z0,1 − zj−1,1) z0,1
...

(−c1 · z0,` − z1,`) . . . ·(−cj−1 · z0,` − zj−1,`) z0,`

 ·


d1
...

dj−1
cj

 =

−zj,1...
−zj,`


(∗∗)

There are three possibilities:

(∗∗) has no solution. In this case, for any possible choice of cj , the j-th row
of A is linearly independent of the first j − 1 rows.

(∗∗) has a solution and the kernel is trivial. In this case, there is exactly
one cj such that the j-th row of A is not linearly independent of the first
j − 1 rows. Note however, that the coefficient matrix in (∗∗) is independent
and fixed before M returns cj to B. Therefore, the probability that the j-th
row of A is linearly independent of the first j − 1 rows is 1− 1

q .

(∗∗) has a solution and the kernel has dimension 1. We argue that in
this case the meta-reduction M can compute the secret key x. M first solves
(∗∗) and puts cj as the variable term; that is, the values for di are expressed
dependent on cj . Fixing any cj ∈ Zq, M can thus compute the corresponding
d1, . . . , dj−1 (which are uniquely defined). Plugging this back into (∗) yields
that

zj,0 − sj + cj · z0,0 =

j−1∑
i=1

di · (zi,0 − si + ci · z0,0),

so M can compute

sj = −
j−1∑
i=1

di · (zi,0 − si + ci · z0,0) + zj,0 + cj · z0,0.

M can thus choose two arbitrary cj , c
′
j ∈ Zq with cj 6= c′j . It sends cj as a

challenge to B and obtains sj . (It does this only in order to close the current
session with B). It computes s′j for c′j according to the above formula. It
obtains

sj − x · cj = s′j − x · c′j = dlog rj ,

hence x =
sj−s′j
cj−c′j

.

ut

Given the claim, we analyze the probability that M is able to compute the
secret key x. Let Ej be the event that the first j rows of A are linearly inde-
pendent or that the meta-reduction can compute the secret key after round j by
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means of case three. We have that

Pr [M can compute x] ≥ Pr [E`]

= Pr


`-th row lies outside the span

of the previous rows
∨

case three applies in rows ≤ `

∧ E`−1



= Pr


`-th row lies outside the span

of the previous rows
∨

case three applies in rows ≤ `

∣∣∣∣∣∣∣∣E`−1
 · Pr [E`−1]

≥
(

1− 1

q

)
· Pr [E`−1] ≥ . . . ≥

(
1− 1

q

)`−1
· Pr
c1

$←Zq
[E1]

=

(
1− 1

q

)`−1
· Pr
c1

$←Zq
[∃i : − c1 · z0,1 − z1,i 6= 0]

≥
(

1− 1

q

)`
We thus obtain that M simulates a successful algebraic adversary in

`-SEQ-OMUFBSS to B with probability at least (1 − 1
q )` over the choice of

c1, . . . , c`. Furthermore, M wins (`−1)-OMDL whenever B wins (`−1)-OMDL.

Since B solves (` − 1)-OMDL with probability εB

(
AdvSEQ-OMUF

A,`,BSS

)
for any

adversary algebraic black box adversary A against `-SEQ-OMUFBSS, M has
advantage

AdvOMDL
M,`−1 = εB

((
1− 1

q

)`)
Running Time. M needs to solve the linear system of equations A or the
system of equations given in Claim 9. This takes time O(`3), for example using
Gaussian elimination. The signatures (in case M is successful in computing the
secret key) can be generated in time O(`). Thus the running time of M for
signature generation is O(`3). For a reduction B that takes time tB(tA) where tA
is the running time of an adversary, M thus takes time tM = tB(O(`3)). ut

B Proof of Claim 5

Proof strategy. We give a brief overview over our proof strategy. The main idea
is that if E2 happens, the adversary M must influence the reduced representation
of the group elements that are hashed for the special signature after it has
seen the hash value ε. In particular, this corresponds to changing the y and h
components of group elements in the special signature by adapting Sign2 queries
to the hash value. It is easy to see that responses to Sign2 queries only affect the
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reduced representation if group elements from that particular session have been
used in the representation. We further note that the relevant group elements from
each session i are ai and b2,i, as ai contains a y component and b2,i contains
an h component that is affected by the choice of ei (and thus the choices of ci
and di).

To provoke the event E2, the adversary M needs to make sure that the pre-
liminary values ω′ and any of δ′, δ′′, δ′′′ (if defined) add up to the corresponding
hash value. We first show via a statistical argument that if there is a session
where only the z-side components or only the y-side components are used (i.e.,
a session i where ai is used in the representation but b2,i is not, or vice versa),
M has a low probability of causing E2 to happen. This corresponds to cases 1
and 2. We further make the observation in case 3 that if any of δ′, δ′′, δ′′′ is
undefined, but the numerator in their definition is non-zero, the signatures give
away the discrete logarithm of h which can be used by a reduction. This is a
helpful observation that we can use in other cases. We then observe that oc-
currence of b2,i in the representations of ζ, ζ1 makes M completely oblivious to
the denominators of the fractions that define δ′, δ′′, δ′′′ and so it only has a low
chance of influencing these values in a way that provokes E2 — this corresponds
to case 4. It remains to consider the cases that b2,i occurs in β1, β2, η. The cases
for β1, η are very similar to each other and we consider them in case 5.

The remaining case is that β2 has a non-zero b2,i exponent (case 6). In this
case, we essentially want to argue that M needs to either behave like an honest
user (i.e. not produce a signature with mismatched linking components), see
case 6.2.4, or to know the discrete logarithm of z, z1,i, z2,i to compute the z-side
part of the proof. To this end, we consider the representations of ζ, ζ1, ζ2 in a
more fine-grained manner. First, we observe that if the representation of ζ2 is
unequal to z2,i raised to some exponent, an adversary that produces the event E2

must know the discrete logarithm of z2,i (see case 6.1). We then distinguish sub-
cases of the case that the representation of ζ2 is a multiple of z2,i in case 6.2. We
consider a more fine-grained representation of ζ and ζ1 to the base of g, z, z1,ι.
We first show that ζ and ζ1 cannot have a non-zero g component in case 6.2.1.
We then consider the occurrence of z1,ι in ζ and rule it out using case 6.2.2.1 in
case 6.2.2.2. This leaves that the representation of ζ consists entirely of a z com-
ponent, whereas the representation of ζ1 may contain a z and a z1,ι component.
We then rule out the case that ζ1 contains a z component in case 6.2.3. After we
have ruled this out, the only remaining option is that ζ is comprised entirely of
z, ζ1 entirely of z1,ι and seeing that we assumed ζ2 is comprised entirely of z2,ι,
we get to case 6.2.4 where the signature in question does not fulfill the special
signature property.

Proof. Denote by n the number of open signing sessions at the time the H3 query
for the special signature is made, that are eventually closed before the adversary
M outputs its list of signatures. For these sessions, let a1, . . . ,an, b1,1, . . . ,b1,n

and b2,1, . . . ,b2,n be the group elements returned by the algorithm Sign1. For
sessions that are opened but never closed, we consider the representations of
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ai,b1,i,b2,i to be fixed as the internal representation that was computed during
the Sign1 call.

Note that by the time the hash query is made, the factors d1, ..., dn, c1, ..., cn
corresponding to the open signing session are information-theoretically hidden
to the M.

We recall that for session i, the call Sign2(ei) reveals the decompositions
ai = yci · gri , b1,i = zdi1,i · gs1,i and b2,i = zdi2,i · hs2,i to M.

We want to upper bound the probability that after M has closed the sign-
ing sessions (and thus the representations of all ai,b1,i,b2,i are known), the
preliminary ω′ and δ′, δ′′, δ′′′ are equal to the real ω and δ, respectively.

We note that if two or more of δ′, δ′′, δ′′′ are defined, and at least two of them
are unequal, then E2 does not happen. In the following, we therefore assume that
whenever two or more of δ′, δ′′, δ′′′ are defined, all of them are equal.

Denote by ai the exponent of ai in the representation of α, and b2,i(o) the
exponent of b2,i in the representation of group element o. We make the following
case distinction:
Case 1: there exists a session i such that ai 6= 0 and b2,i(β1) = b2,i(β2) =

b2,i(η) = b2,i(ζ1) = b2,i(ζ) = 0:
We only consider the case that δ′ 6= ⊥; the cases for δ′′ and δ′′′ follow in an

analogous fashion. Note that ω′ depends on the value of ci, since ω′ = y[αi]−→I
and αi contains the factor aaii = yai·ci · gai·ri and changes if ci were to change
(in fact, each distinct ci is mapped to a different ω′ when everything else, except
di, is fixed). However, as we assumed that b2,i(β2) = b2,i(ζ2) = 0 (note that
b2,i(ζ2) is implied by b2,i(ζ1) = b2,i(ζ) = 0), the value of δ′ is identical regardless
of the choice of ci. To see this, consider a hypothetical version of the game
in which z1,i, z2,i are internally computed by raising g to a random exponent.

Then, the reduced expressions of b1,i = zdi1,i · gs1,i ,b2,i = zdi2,i · hs2,i correspond

to b1,i = gdlogg z1,i·di+s1,i and b2,i = gdlogg z2,i·di · hs2,i . Note that out of all
possible group elements that contribute to β2, only b2,i simultaneously depends
on g, di and h when expressing this element in the reduced form (whereas
the reduced expression of b1,i only depends on g and di). Hence, given that
the adversary M’s view is fixed, out of all the group elements that M uses to
compute β2, changing di only affects the exponents of g and h inside the element
b2,i. On the other hand changing di does not affect the exponent of g in the
reduced representation of b1,i, as b1,i is fixed; hence, so is the exponent of
g in b1,i’s reduced representation. Since we have assumed that b2,i(β2) = 0,

δ′ =
g[β2]−→

I
+x·y[β2]−→

I

x·y[ζ2]−→
I
+g[ζ2]−→

I

is unaffected by these changes and hence does not depend

on di.
Then, since ci and di are information-theoretically hidden from M before it

makes a Sign2 query to close session i, the probability that ω′+ δ′ = ε is at most
1
q for a single ε. Note that if E2 happens and δ′ 6= ⊥, then ω′ + δ′ = ω + δ = ε,

so its probability is also at most 1
q for a single ε. As M can obtain qh possible ε

values, the overall probability that E2 happens and δ′ 6= ⊥ is at most qh
q . Adding

up the three subcases for δ′, δ′′, δ′′′, we have that Pr[E2] ≤ 3qh
q in this case.
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In the following, we assume that for all sessions i, either ai = 0 or at least
one of the values b2,i(β1), b2,i(β2), b2,i(η), b2,i(ζ1), b2,i(ζ) is not zero. Intuitively,
this means that if the y-side of a session was used in the representation, then
the z-side must also be used.
Case 2: there exists a session i such that ai = 0 and ((b2,i(β1) 6= 0 ∨
b2,i(ζ1) 6= 0) ∧ δ′′ 6= ⊥) ∨ ((b2,i(η) 6= 0 ∨ b2,i(ζ) 6= 0) ∧ δ′′′ 6= ⊥) ∨ ((b2,i(β2) 6=
0 ∨ b2,i(ζ2) 6= 0) ∧ δ′ 6= ⊥):

In this case, the value of ω′ is identical regardless of the choice of ci whereas
the values of the defined δ′, δ′′, δ′′′ are sensitive to changes in di. By a similar
argument as in case 1, E2 occurs in this case with probability at most 3qh

q .

In the following, we assume that ai = 0 implies that δ′ = ⊥ whenever
(b2,i(β2) 6= 0 ∨ b2,i(ζ2) 6= 0), that δ′′ = ⊥ whenever (b2,i(β1) 6= 0 ∨ b2,i(ζ1) 6= 0),
and that δ′′′ = ⊥ whenever (b2,i(η) 6= 0 ∨ b2,i(ζ) 6= 0), i.e. whenever the z-side
of a session was used in the representation, the y-side must also be used.
Case 3: (h[ζ]−→

I
= 0∧h[η]−→

I
6= 0)∨ (h[ζ1]−→I = 0∧h[β1]−→I

6= 0)∨ (g[ζ2]−→I +x ·y[ζ2]−→I =

0 ∧ g[β2]−→I
+ x · y[β2]−→I

6= 0):

That is, at least one of the values δ′, δ′′, δ′′′ is undefined (i.e., its denominator
is zero), but the corresponding numerator is non-zero. We sketch a reduction R1

that solves the discrete logarithm problem. R1 embeds the discrete logarithm
challenge in h and uses the y-side witness x to generate signatures. It samples
z, z1,1, . . . , z1,n and responses to H1, H2 at random (in particular, z = gw0), with
known discrete logarithms to base g. When the case described above occurs, the
reduction R1 can compute dlogg h from the signature. R1 first checks which of the
subcases occurs. Suppose the subcase of δ′′′ occurs, i.e., h[ζ]−→

I
= 0 and h[η]−→

I
6= 0.

Recall that from the verification equation, we have

zµ · ζδ = η

and thus

µ · w0 + δ · (g[ζ]−→
I

+ x · y[ζ]−→
I

) = g[η]−→
I

+ x · y[η]−→
I

+ dlogg h · h[η]−→
I

(note that we omitted h[ζ]−→
I

from the representation of ζ, as h[ζ]−→
I

= 0). This
equation can be solved for dlogg h when h[η]−→

I
6= 0. For the other two subcases

of δ′ and δ′′, R1 can derive a similar equation that allows it to compute dlogg h.
We therefore assume in the following that whenever δ′, δ′′ or δ′′′ are undefined,

the corresponding numerator, i.e., x · y[β2]−→I
+ g[β2]−→I

, h[β1]−→I
, or h[η]−→

I
, is 0.

Let ι be the session that is closed last among the sessions that are open at
the time of the hash query for the special signature, and for which at least one of
the elements aι,b1,ι,b2,ι appears with a non-zero exponent in a representation
of a group element submitted as part of the hash query made for the special
signature. Note that we ruled out the above cases for all sessions that are open
at this time, so in particular these cases do not occur for session ι.
Case 4: b2,ι(ζ) 6= 0 ∨ b2,ι(ζ1) 6= 0 ∨ b2,ι(ζ2) 6= 0:

We first show that in this case, with probability at most 3qh
q over the choice

of dι, h[ζ]−→
I

= 0, or h[ζ1]−→I = 0, or g[ζ2]−→I + x · y[ζ2]−→I = 0. To see this, fix all
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factors cj , dj , rj , s1,j , s2,j with j 6= ι (note that as session ι is the last session
closed, all of these values are already known to M by the time it closes session ι).
We consider the case of ζ (the cases of ζ1, ζ2 work analogously). After the hash
query for the special signature, the representation of ζ w.r.t. the input elements
is fixed. More specifically, b2,ι(ζ) is fixed. However, before closing the session ι,
the factors dι and cι are information-theoretically hidden to M. As h[ζ]−→

I
contains

a component b2,ι(ζ) · s2,ι (recall that b2,ι = zdι2,ι ·hs2,ι), with probability at most
1
q over the choice of dι (and thus s2,ι), h[ζ]−→

I
= 0.

In the following, we assume that none of h[ζ]−→
I

, h[ζ1]−→I , and g[ζ2]−→I + x · y[ζ2]−→I
is 0.

Recall that aι is the exponent of aι in the representation of α. After closing
all sessions, the value eι and thus also dι = eι − cι is known. This in turn fixes
δ′, δ′′, δ′′′ and ω′. We now consider the sensitivity of ω′ and the defined δ′, δ′′, δ′′′

to different choices of cι, dι.

Specifically, if we replace cι by cι + υ for some υ ∈ Zq, we need to replace
dι by dι − υ as eι = cι + dι is fixed. For simplicity of the proof, we consider the
case of υ = 1. Assume, fixing all other values output by the signer, cι is replaced
by cι + 1 and dι is replaced by dι − 1. Then there is a new ω′ (denote by ω′)
with ω′ = ω′+ aι (to see this, recall that aι = ycι · grι = ycι+1 · grι−x, and thus
y[α]−→

I
= ω′ is increased by 1 · aι) Assume wlog that δ′′ is defined,the case of δ′′′

works analogously. Let δ′′ be the value of δ′′ that is derived when we decrease
dι by 1. It is easy to see that in order for ω′ + δ′′ = ε, we need δ′′ = δ′′ − aι.

Plugging in the definitions of δ′′ and δ′′ into the equation δ = δ′′−aι, we get

h[β1]−→I
− b2,ι(β1) · dlogh z2,ι

h[ζ1]−→I − b2,ι(ζ1) · dlogh z2,ι
=
h[β1]−→I

h[ζ1]−→I
− aι,

and thus

aι · h[ζ1]−→I =

(
aι · b2,ι(ζ1) + b2,ι(β1)− b2,ι(ζ1) ·

h[β1]−→I

h[ζ1]−→I

)
· dlogh z2,i.

Note that the case that aι = 0 has been ruled out in case 2, as we assumed that
δ′′ is defined, (i.e. h[ζ1]−→I 6= 0) and b2,ι(ζ1) 6= 0. Therefore, aι · h[ζ1]−→I 6= 0, and
thus

aι · b2,ι(ζ1) + b2,ι(β1)− b2,ι(ζ1) ·
h[β1]−→I

h[ζ1]−→I
6= 0.

We now extend the reduction R1 from case 3 that solves the discrete logar-
ithm problem. Recall that R1 embeds the discrete logarithm challenge in h and
simulates the RB-OMUF game to the adversary M. R1 computes

dlogh z2,ι =
aι · h[ζ1]−→I

aι · b2,ι(ζ1) + b2,ι(β1)− b2,ι(ζ1) ·
h[β1]−→

I

h[ζ1]−→
I

,
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and given M’s algebraic decomposition of z2,ι, dlogg z2,ι, R1 can further compute

dlogg h =
dlogh z2,ι
dlogg z2,ι

(where we assume that z2,ι 6= ε, as this occurs only with probability `
q over the

choice of the random oracle responses of H2). Summing up, we conclude that
Pr[E2] ≤ AdvDLP

R1
+ 3qh+`

q in this case.

We have therefore now ruled out the cases that ζ, ζ1, ζ2 contain b2,ι in their
representation. It remains to consider how changes in dι affect δ′, δ′′, δ′′′ through
affecting the reduced representations of β2, β1, η.

Case 5: b2,ι(ζ) = b2,ι(ζ1) = b2,ι(ζ2) = 0 ∧ (b2,ι(η) 6= 0 ∨ b2,ι(β1) 6= 0):

Using a similar argument to case 4, with probability at most 1
q over the

choice of dι, h[η]−→
I

= 0 (resp. h[β1]−→I
= 0). In case 3 we have already ruled out

the possibility that h[ζ]−→
I

= 0 ∧ h[η]−→
I
6= 0 (resp. h[ζ1]−→I = 0 ∧ h[β1]−→I

6= 0), so

h[ζ]−→
I
6= 0 (resp. h[ζ1]−→I 6= 0). In this case, reduction R1 can solve for dlogg h as

described in case 4. Therefore, Pr[E2] ≤ AdvDLP
R1

+ `
q .

We note that the cases analyzed above cover all situations in which a change
of dι can affect a defined δ′, δ′′, or δ′′′, apart from the case that b2,ι(β2) 6= 0.

It remains to look into the following case:

Case 6: b2,ι(ζ) = b2,ι(ζ1) = b2,ι(ζ2) = 0 ∧ b2,ι(β2) 6= 0:

Consider again what happens to δ′ if we change dι by 1. By definition of δ′,
we obtain that

aι =
g[β2]−→I

+ x · y[β2]−→I

g[ζ2]−→I + y[ζ2]−→I
−
g[β2]−→I

+ x · y[β2]−→I
− b2,ι(β2) · dlogg z2,ι

g[ζ2]−→I + y[ζ2]−→I

=
b2,ι(β2) · dlogg z2,ι

g[ζ2]−→I + y[ζ2]−→I
.

(If δ′ is undefined, we do not need to consider its behaviour with respect to
dι; recall that in particular we required that b2,ι(ζ2) = 0 in this case and thus
δ′ cannot become defined as dι varies, sinceg[ζ2]−→I + x · y[ζ2]−→I is not affected by

changes in dι.)

For every group element in M’s output, we now compute its representation
w.r.t. a new set of basis g, z, z1,ι where we use that z2,ι = z/z1,ι. For group
elements m and o, let exm(o) be the exponent of m in the representation of o.
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We define the following components:

z[o]g,z,z1
= exz(o) +

∑̀
i=j

exb2,j (o) · dj

z1[o]g,z,z1
=
∑̀
j=1

exz1,j
(o) · dlogz1,ι

z1,j +
∑̀
j=1

exb1,j
(o) · dlogz1,ι

z1,j · dj −
∑̀
i=1

exb2,j
(o) · dlogz1,ι

z1,j · dj

g[o]g,z,z1
= exg(o) + x · exy(o) + exh(o) · dlogg h +

∑̀
j=1

exaj (o) · (rj + x · cj)

+
∑̀
j=1

exb1,j
(o) · s1,j +

∑̀
j=1

exb2,j
(o) · s2,j · dlogg h.

Intuitively, we consider here that z1,i and z are contained in b1,i and b2,i, and
for compactness we lump in everything that does not contain z or z1,i together
in the g-component.

We now make a subcase distinction over the representations of ζ, ζ1 w.r.t.
bases g, z, z1,ι. Noting that the representation of ζ2 is computed from the rep-
resentations of ζ, ζ1, we begin with the subcase that M provides representations
such that the reduced representation of ζ2 is not zk2,ι for some k ∈ Zq.
Case 6.1: g[ζ2]g,z,z1

6= 0 ∨ z[ζ2]g,z,z1 6= −z1[ζ2]g,z,z1 : Equivalently, the represent-

ation of ζ2 is unequal to zk2,ι for some k.
Consider a reduction R2 that embeds a discrete logarithm challenge in z2,ι

(or rather in all z2,i as z2,i = U · gvi for vi
$← Zq) and signs using the y-

side witness. Recall that aι =
b2,ι(β2)·dlogg z2,ι

g[ζ2]−→
I
+y[ζ2]−→

I

, so R2 can solve for dlogg z2,ι

accordingly. Therefore, Pr[E2] ≤ AdvdlogR2
in this subcase.

We now turn to the case that ζ2 was computed as zk2,ι, and consider various
options for the representations of ζ and ζ1. The goal is to come to the conclusion
that in order to provoke E2, the adversary M needs to compute ζ, ζ1 like an
honest user would, i.e., in such a way that they match the linking components
z, ζ1,ι — which is a contradiction to M winning the restrictive blinding game.
Case 6.2: There exists k ∈ Zq such that g[ζ2,ι]g,z,z1

= 0, z[ζ2]g,z,z1
= k and

z1[ζ1]g,z,z1
= −k: This yields ζ2 = zk2,ι, as z2,ι = z/z1,ι.

We first rule out the case that M leaves a g component in ζ1, by constructing
a reduction R3 that embeds the discrete logarithm challenge as dlogz z1,ι.
Case 6.2.1: g[ζ1]g,z,z1

6= 0: As we assumed that g[ζ2]g,z,z1
= 0, it follows from

g[ζ1]g,z,z1
+ g[ζ2]g,z,z1

= g[ζ]g,z,z1
that g[ζ]g,z,z1

= g[ζ1]g,z,z1
6= 0. We construct

a reduction R3 that embeds the discrete logarithm challenge as dlogz z1,ι. We

define δη := g(η)
g(ζ) , and consider the behaviour of δη when c and d are replaced

by c + 1 and d − 1. Noting that we can assume that b2,ι(η) = 0 (otherwise, if
h[ζ]−→

I
= 0 with probability 1 − 1

q over the choice of dι, case 3 occurs, and if
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h[ζ]−→
I
6= 0 case 5 occurs as then δ′′′ is defined and b2,ι(η) 6= 0)we only need to

consider the exponent of b1,ι in the representation of η. We get

aι =
g[η]g,z,z1

+ b1(η) dlogg z · dlogz z1,ι

g[ζ]g,z,z1
+ b1(ζ) · dlogg z · dlogz z1,ι

−
g[η]g,z,z1
g[ζ]g,z,z1

from the difference of the values of δη when choosing two dι that differ by 1.
Similar to case 4, this allows for solving for dlogg z ·dlogz z1,ι. It thus holds that

in this case the event E2 is bounded with probability AdvdlogR3
+ qh

q .
Case 6.2.2: g[ζ1]g,z,z1

= 0: Then also g[ζ]g,z,z1
= 0. That is, the representa-

tion of ζ1 is of the form z
z[ζ1]g,z,z1 z

z1[ζ1]g,z,z1
1,ι . We consider the case z1[ζ1]g,z,z1

6=
−z1[ζ2]g,z,z1 . If z1[ζ1]g,z,z1

= −z1[ζ2]g,z,z1 , then the linking components match,

contradicting our assumption that M wins the RB-OMUF game. Therefore, we
only need to consider the case that z1[ζ1]g,z,z1

6= −z1[ζ2]g,z,z1 , i.e., z1[ζ]g,z,z1
=

z1[ζ1]g,z,z1
+ z1[ζ2]g,z,z1

6= 0. We define another preliminary value

δη,z1,ι
=
z1,ι(η)

z1,ι(ζ)
.

Consider the following subcases:
Case 6.2.2.1: b1,ι(η) 6= 0: In this case, with probability 1 − 1

q , g[η]g,z,z1
6= 0.

Then a reduction R4 that embeds the discrete logarithm challenge in z, can sign
with the y-side witness and sample z1,i as zvi for vi

$← Zq, and can solve for
dlogg z as in case 3, since we assumed that ζ has no g-component. We therefore

rule out the case that b1,ι(η) 6= 0. Therefore, Pr[E2] ≤ AdvDLP
R1

+ qh
q in this

subcase.
Case 6.2.2.2: b1,ι(η) = 0 ∧ z1[ζ]g,z,z1 6= 0: Note that we ruled out b2,ι(η) 6= 0

before (see case 5). Thus, δη,z1,ι
remains the same regardless of the choice of dι.

In this subcase, the reduction R4 can solve for dlogg z similar to the reduction in
case 1, with probability (1− qh

q ) in that case once it sees the resulting signature.
Having excluded these two cases, we assume in the following that g[ζ1]g,z,z1

=

0 and z1[ζ]g,z,z1
= 0. It remains to be seen that ζ1 does not contain a z component.

Case 6.2.3: z1[ζ1]g,z,z1
= −z1[ζ2]g,z,z1 ∧ z[ζ1]g,z,z1 6= 0 ∧ g[ζ1]g,z,z1 = 0: We con-

sider again the reduction R4. Define another preliminary value δβ1 =
z[β1]g,z,z1

z[ζ1]g,z,z1

.

We note that we have covered the case that b2,ι(β1) 6= 0 in case 5 and thus,
z[β1]g,z,z1

remains the same regardless of the choice of dι. This is because dι only

appears in the internal decomposition of b1,ι = zdι1,ιg
s1,ι and b2,ι = zdι2,ιh

s2,ι . The

same holds for z[ζ2]g,z,z1
, as we have already covered the case that b2,ι(ζ1) 6= 0

in case 4. Thus, the probability that ω′+ δβ1
= ε is at most 1

q over the choice of
dι and therefore the reduction R4 can extract the discrete logarithm in this case
with probability 1

2 . Therefore, Pr[E2] ≤ 2AdvDLP
R1

in this subcase.
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The remaining case is that the linking components match those of session ι:
Case 6.2.4: z1[ζ1]g,z,z1

= −z1[ζ2]g,z,z1 = z[ζ2]g,z,z1
∧ z[ζ1]g,z,z1 = 0 ∧ g[ζ1]g,z,z1 =

0 ∧ g[ζ2]g,z,z1 = 0 As ζ = ζ1 · ζ2, it holds that z[ζ]g,z,z1
= z1[ζ1]g,z,z1

, i.e., there

exists k such that ζ = zk and ζ1 = zk1,ι. This contradicts the assumption that
the linking components are mismatched in the special signature.

We note that some of the reductions embed the discrete logarithm challenge
in the z1,i or z2,i. Thus, when trying to solve for the discrete logarithm, they
need to try all signatures with the corresponding last closed session. This can
be done in time O(`) and thus the reduction is still tight. ut

C Proof of Theorem 1

In the following, we show that our modification of Abe’s blind signature scheme
has full one-more-unforgeability. We make use of the restrictive blinding lemma
to identify the forged signature. We recall the theorem:

Theorem 1. Let M be an algebraic algorithm that runs in time tM, makes at
most ` queries to oracle Sign2 in `-OMUFBSA and at most (total) qh queries
to H1, H2, H3. Then, in the random oracle model, there exists an algorithm B
such that

AdvDLP
B ≥1

4
AdvOMUF

M,`,BSA −
3qh
q
− AdvDLP

R1
− AdvDLP

R2
− AdvDLP

R3

− (AdvDLP
R′1

+ AdvDLP
R′2

+ AdvDLP
R′3

+ AdvDLP
R′4

)

Proof. Let M be as in the lemma statement. As before, we assume w.l.o.g. that
for any tag info M makes exactly `closed,info queries to Sign2 and returns a list
of `closed,info + 1 tuples. The proof goes by a series of games, which we describe
below.

Game G0. This is the original `-OMUFBSA game.

Game G1. This game is identical to G0, except that it aborts if M returns a pair
(m, sig, info) = (m, (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ) , info) ∈ L (where info is the tag with∣∣{(m, sig, info)

∣∣info = info
}∣∣ ≥ `closed,info + 1)s.t. for all j with zj = H1(pk, info)

corresponding to a session that was previously closed via an interaction with

Sign2 (i.e., a session from which M learned a signature), we have: ζ
dlogzj

z1,j 6=
ζ1∧ζ2 6= ε. We denote this abort event by E1. Due to Lemma 2, an adversary that
outputs such a signature can be used to solve the discrete logarithm problem.
We state this in the following claim:

Claim 10. There exists an algorithm Brb such that Pr[E1] ≤ AdvDLP
Brb

and Brb

runs in time Brb ≈ tM.

Proof. Here, Brb is the reduction algorithm from Lemma 2. The claim follows
from the lemma. ut
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Thus, if M wins G1, there must exist two signatures sig, sig′ s.t. dlogζ ζ1 =
dlogζ′ ζ

′
1, i.e., the two pairs ζ, ζ1 and ζ ′, ζ ′1 were derived from the same pair

z, z1. Analogous to Lemma 2, we call these two signatures the special signatures.
Game G2. This game is identical to G1 except that it aborts if M did not make

both of the hash queries to H3 that correspond to the two special signatures. We
denote this event as E2.

Claim 11. Pr[E2] ≤ `+1
q

Proof. Analogous to Claim 3. ut

Game G3. This game is the same as G2 but analogously to G2 in Lemma 2, it
has an additional abort event E3 depending on the representation of the group
elements submitted to the hash oracle H3. In the following we explain some
preliminaries for this condition.

Simplifying notations and assumptions. As in the proof of Lemma 2, the
reduction obtains representations of all group elements output by the adversary
because the adversary is algebraic. Through the lists L1, L2 and its own compu-
tation of the elements output by Sign1, it knows a representation of all input
group elements to the basis g,y, z0 where z0 is a generator of the group that is
used to derive all zj , and can thus compute a reduced representation to basis
g,y, z0 for all output group elements of the adversary. We denote its components
for a group element o as g[o]−→

K
, y[o]−→

K
, z[o]−→

K
. To make this notation compact we

define
−→
K := (g,y, z0).

We further define the following values:

δ′ :=
g[η]−→

K
+ y[η]−→

K
· x

g[ζ]−→
K

+ y[ζ]−→
K
· x
, δ′′ :=

z[β1]−→K

z[ζ1]−→K
, δ′′′ :=

z[β2]−→K

z[ζ2]−→K
,

and describe the following cases in which at least one of the above variables is
defined:

Equations to extract the discrete logarithm. When M queries H3 it also
submits a representation of all group elements contained in the query. Given that
M wins G3, the two special signatures exist and for both of them, these queries
to H3 were indeed made (otherwise the abort events E1 or E2 happen and M
does not win G3). We denote the group elements submitted to the random oracle
for special signature i ∈ {1, 2} in these queries by αi, β1,i, β2,i, ηi and consider
below their algebraic coefficients. More concretely, we consider the following four
(non-exclusive) cases for each of two special signatures:

– C0,i := (ωi 6= y[αi]−→K )

– C1,i := (ωi = y[αi]−→K ∧ g[ζi]−→K + x · y[ζi]−→K 6= 0)

– C2,i := (ωi = y[αi]−→K ∧ z[ζ1,i]−→K 6= 0)

– C3,i := (ωi = y[αi]−→K ∧ z[ζ2,i]−→K 6= 0)

Claim 12.
∨
j Cj,i = 1 for i ∈ {1, 2}
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Proof. For simplicity, we omit the index i. Since for a valid signature, none of
the components ζ, ζ1, ζ2 can be the neutral element ε, it must be the case that
g[ζ]−→

K
+ y[ζ]−→

K
· x 6= 0 or z[ζ]−→

K
6= 0. In other words, if g[ζ]−→

K
+ x · y[ζ]−→

K
= 0, then

z[ζ]−→
K
6= 0. As [ζ2]−→

K
= [ζ]−→

K
− [ζ1]K , this means that z[ζ1]−→K 6= 0 or z[ζ2]−→K 6= 0.

Hence if C0 = 0, then C1 = 1 ∨ C2 = 1 ∨ C3 = 1 must be true. ut

Let ε1, ε2 be the random oracle outputs of the two special signatures and let
αi, β1,i, β2,i, ηi denote the group elements submitted to H3 to obtain ε1, ε2 (re-
call that in G3, these queries are always made if GM

3 = 1). Moreover, let
δ′i, δ

′′
i , δ
′′′
i , y[αi]−→K denote the values computed from the corresponding algebraic

representations. We define the abort events E3 := E3,1 ∧ E3,2 where

E3,i :=¬(C0,i = 1) ∧ (¬(C1,i = 1) ∨ (C1,i = 1 ∧ (δ′i = δi)))

∧ (¬(C2,i = 1) ∨ (C2,i = 1 ∧ (δ′′i = δi)))

∧ (¬(C3,i = 1) ∨ (C3,i = 1 ∧ (δ′′′i = δi))).

Claim 13. Pr[E3] = 3qh
q + AdvDLP

R1
+ AdvDLP

R2
+ AdvDLP

R3
.

Proof. Similar to the proof of Claim 5, we employ a case distinction depending
on the representations of the group elements in the hash queries of the special
signatures. We give a brief overview over the strategy: First, we make the ob-
servation that if the representations are not multiples of each other, a reduction
can extract the discrete logarithm of z in case 1. This will be useful later on as it
allows us to make assumptions about the representations. Analogous to Claim 5
we also observe that a reduction can extract if a δ′, δ′′, δ′′′ is undefined but has a
non-zero numerator in case 2. Again, similar to Claim 5, we note that if ai affects
ω′, then b1,i and b2,i must affect δ′, δ′′, δ′′′ in cases 3 to 5. We also consider the
opposite direction, i.e. that ai does not affect ω′ but b1,i,b2,i affect δ′, δ′′, δ′′′ in
cases 6 to 8. In cases 9 to 11, we consider the case that the z component of ζ1,j ,
ζ2,j , or ζj is affected by di - this corresponds to case 4 in Claim 5. It remains to
consider how a change in di affects the components of β1, β2, and η and thus the
values of δ′, δ′′, δ′′′. We do this by actually looking into the representations of ζ
and ζ1 to see that the adversary must behave somewhat ‘honestly’, or otherwise
solve a hard problem. To this end, we first rule out that δ′ 6= ⊥ in case 12 - this
yields that in the reduced representation, ζ consists only of a z component. We
then again have to consider a more fine-grained reduced representation where
the z part is split into z and z1. This allows us to see in cases 13 and 14 that in
fact, the representations of ζj and ζ1,j must be like an honest user would com-
pute these group elements. Next, we consider the representations of the group
elements β1, β2, η - the goal is to show that for the special signatures, in order
to provoke E3, the adversary needs to have computed these group elements like
an honest user would. To this end, we first rule out the occurrence of b2,i in
the representation of β1 (note that an honest user would only use b2,i in β2) in
case 15 or that b1,i occurs in β2 in case 16. It then remains to rule out that the
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adversary may provoke E3 using group elements from another session. We do
this in cases 17 and 18.

The last remaining case is that the adversary’s representations conform to
what an honest user would do. We show that in this case, provoking E3 solves
the 1-ROS problem which we do at the end of our case distinction.
Case 1: z[ζ1]−→K /z[ζ]−→K 6= (g[ζ1]−→K + x · y[ζ1]−→K )/(g[ζ]−→

K
+ x · y[ζ]−→

K
) for either of the

special signatures: We use the convention that z[ζ1]−→K /z[ζ]−→K = (g[ζ1]−→K + x ·
y[ζ1]−→K )/(g[ζ]−→

K
+ x · y[ζ]−→

K
) in the case that either side of the equation becomes

0
0 , but inequality holds if one side is defined whereas the other side is undefined
and not 0

0 .
Using that ζ1 = ζdlogz z1,i , we get that dlogz z1,i · (z[ζ]−→

K
· dlogg z) + g[ζ]−→

K
+x ·

y[ζ]−→
K

) = z[ζ1]−→K · dlogg z + g[ζ1]−→K + x · y[ζ1]−→K .
We employ a reduction R1 that embeds the discrete logarithm challenge in

z, generates z1,i values as zvi for known vi
$← Zq, and signs using the y-side

witness. If the above case occurs, the reduction solves the equation for dlogg z.

The probability of this case is therefore bounded by AdvDLP
R1

.
We now want to consider the probability that ω′+δ′ = ω′+δ′′ = ω′+δ′′′ = ε

for both of the special signatures.
We denote by ai(αj) the exponent of ai in the representation of αj . Further-

more, for a group element c we denote by b2,i(c) the exponent of b2,i in the
representation of c. Similarly, we denote by b1,i(c) the exponent of b1,i in the
representation of c.
Case 2: z[ζ1]−→K = 0 ∧ z[β1]−→K

6= 0 ∨ z[ζ2]−→K = 0 ∧ z[β2]−→K
6= 0 ∨ (g[ζ]−→

K
+ x · y[ζ]−→

K
=

0 ∧ g[η]−→
K

+ x · y[η]−→
K
6= 0): In this case, similar to case 3 in the proof of Claim 5,

the reduction R1 described above can solve for dlogg z from the signatures. The

probability of E3 in this case is therefore bounded by AdvDLP
R1

. We exclude this
case in the following.
Case 3: there exists a session i and a special signature j such that

ai(αj) 6= 0 ∧ (b1,i(β1,j) dlogz z1,i + b2,i(β1,j) · (1 − dlogz z1,i) = 0 ∧ b1,i(ζ1,j) ·
dlogz z1,i+b2,i(ζ1,j) · (1−dlogz z1,i) = 0∧z[ζ1]−→K 6= 0) In this case, ω′ is sensitive

to changes in ci, di, whereas δ′′ 6= ⊥ and δ′′ is not sensitive to these changes.
Thus, the probability for ω′ + δ′′ = ε is 1

q . Summing over all hash queries yields

the upper bound qh
q .

Case 4: there exists a session i and a special signature j such that

ai(αj) 6= 0 ∧ (b1,i(β2,j) dlogz z1,i + b2,i(β1,j) · (1 − dlogz z1,i) = 0 ∧ b1,i(ζ2,j) ·
dlogz z1,i + b2,i(ζ2,j) · (1 − dlogz z1,i) = 0 ∧ z[ζ1]−→K 6= 0): Analogous to case 3.

This bounds E3 by qh
q .

Case 5: there exists a session i and special signature j such that ai(αj) 6=
0∧g[ζj ]−→K +x ·y[ζj ]−→K 6= 0∧ (b1,i(ηj) = 0∧b2,i(ηj) = 0): In this case ω′j is sensitive

to changes in ci, di whereas δ′j is not. Analogous to cases 3 and 4. This bounds
E3 by qh

q .
Case 6: there exists a session i and a special signature j such that

ai(αj) = 0 ∧ (b1,i(β1,j) dlogz z1,i + b2,i(β1,j) · (1 − dlogz z1,i) = 0 ∧ b1,i(ζ1,j) ·
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dlogz z1,i+b2,i(ζ1,j) · (1−dlogz z1,i) 6= 0∧z[ζ1]−→K 6= 0) In this case, ω′ is sensitive

to changes in ci, di, whereas δ′′ 6= ⊥ and δ′′ is not sensitive to these changes.
Thus, the probability for ω′ + δ′′ = ε is 1

q . Summing over all hash queries yields

the upper bound qh
q .

Case 7: there exists a session i and a special signature j such that

ai(αj) = 0 ∧ (b1,i(β2,j) dlogz z1,i + b2,i(β1,j) · (1 − dlogz z1,i) 6= 0 ∧ b1,i(ζ2,j) ·
dlogz z1,i + b2,i(ζ2,j) · (1 − dlogz z1,i) 6= 0 ∧ z[ζ2,j ]−→K 6= 0): Analogous to case 6.

This bounds E3 by qh
q .

Case 8: there exists a session i and special signature j such that ai(αj) =

0∧g[ζj ]−→K +x ·y[ζj ]−→K 6= 0∧ (b1,i(ηj) 6= 0∨b2,i(ηj) 6= 0): In this case ω′j is sensitive

to changes in ci, di whereas δ′j is not. Analogous to cases 6 and 7. This bounds
E3 by qh

q .

Case 9: b1,i(ζ1,j)·dlogz z1,i+b2,i(ζ1,j)·(1−dlogz z1,i) 6= 0 In this case, z[ζ1,j ]−→K =

0 occurs with probability at most 1
q . Furthermore, assuming ω′+δ′′ = ε regardless

of ci, di it must hold that

ai =
z[β1,j ]−→K

+ b1,i(β1,j) · dlogz z1,i + b2,i(β1,j) · (1− dlogz z1,i)

z[ζ1,j ]−→K + b1,i(ζ1,j) · dlogz z1,i + b2,i(ζ1,i) · (1− dlogz z1,i)
−
z[β1,j ]−→K

z[ζ1,j ]−→K
.

Case 9.1: z[β1,j ]−→K
= di · (b1,i(β1,j) · dlogz z1,i + b2,i(β1,j) · (1− dlogz z1,i)) and

z[ζ1,j ]−→K = di · (b1,i(ζ1,j) · dlogz z1,i + b2,i(ζ1,i) · (1 − dlogz z1,i)). In this case, it

holds that δ′′j is identical regardless of the value of di and thus the analysis from
case 3 can be applied to obtain a probability of at most qh

q for E2.
Case 9.2: Otherwise As di is information-theoretically hidden from the ad-

versary at the time of querying the RO H3, this only holds with probability 1
q

over the choice of di. Summing over all hash queries yields a bound of qh
q .

Case 10: b1,i(ζ2,j) · dlogz z1,i + b2,i(ζ2,j) · (1 − dlogz z1,i) 6= 0 Analogous to

case 9. The probability that E3 happens in this case is at most qh
q .

Case 11: b1,i(ζj) 6= 0 or b2,i(ζj) 6= 0: We distinguish two subcases:

Case 11.1: b1,i(ζj) · dlog z · dlogz z1,i + b2,i(ζj) · dlog z · (1− dlogz z1,i) = 0. It

then holds that either b1,i(ζj) · dlogz z1,i + b2,i(ζj) · (1− dlogz z1,i) = 0, in which
case a reduction R2 embedding in z1,i can solve for dlogz z1,i (the reduction can
embed in all z1,i by choosing dlogg z and then setting z1,i = (U · gvi)dlogg z), or
otherwise dlogg z = 0 which we excluded in the definition of H1. This bounds

the probability of E3 by AdvDLP
R2

.
Case 11.2: g[ζj ]−→K + x · y[ζj ]−→K changes depending on di. Similarly to the

above cases the probability for having δ′ change in the same intervals as ω′ is at
most 1

q . Summing over all hash queries yields a bound of qh
q .

Case 12: δ′ 6= ⊥: Assume that ω′ + δ′ = εj holds. We consider how a change

from ci to c′i = ci + 1 and di to d′i = di − 1 affects ω′ and δ′. We note that ω′

changes to ω′ + ai(αj). Assuming that after the change the equation still holds,
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and plugging in the formula for δ′ and the decompositions of b1,i and b2,i, we
get the following:

ai(αj) =
dlogz z1,i · dlog z · b1,i(ηj) + dlog z(1− dlogz z1,i) · b2,i(ηj)

g[ζj ]−→K + x · y[ζj ]−→K

This equation can be solved for dlog z by reduction R1. This bounds the prob-
ability of E3 in this case by AdvDLP

R1
.

We thus in the following assume that δ′ = ⊥, i.e. g[ζj ]−→K + x · y[ζj ]−→K = 0.

By case 1, this also yields that g[ζ1,j ]−→K +x ·y[ζ1,j ]−→K = g[ζ2,j ]−→K +x ·y[ζ2,j ]−→K = 0.

We assume in the following that whenever δ′ = ⊥, g[η]−→
K

+ x · y[η]−→
K

= 0,

whenever δ′′ = ⊥, z[β1]−→K
= 0, and whenever δ′′′ = ⊥, z[β2]−→K

= 0.

We consider a refined reduced representation where the z[ζ]−→
K

is split into z

and z1,i with z1,i = zdlogz z1,i and z2,i = z1−dlogz z2,i (this also transfers to the
decompositions of b1,i and b2,i).

Case 13: [ζ]g,y,z,z1,i
= zkzl1,i with l 6= 0 We consider reduction R2. It computes

a preliminary δη,z1,i
=

z1,i(η)
l where z1,i(η) is the exponent of z1,i in the repres-

entation of η. We note that if in the final signature δη,z1,i
6= δ, the reduction can

compute the discrete logarithm z1,i.

As we assumed that δ′ = ⊥ (otherwise refer to case 12), we also assume that
b1,i(η) ˙dlogzz1,i+b2,i(η)·(1−dlogz z1,i) = 0 as otherwise, with probability 1− qh

q ,
g[η]−→

K
6= 0 and by case 2 a reduction can solve for dlogg z.

Thus, the preliminary δη,z1,i is identical over all choices of di, and thus, the
probability that ω′ + δη,z1,i

= ε is qh
q . Therefore, the probability for E3 in this

case is at most AdvDLP
R + qh

q .

In the following we asume that l = 0, i.e. [ζ]g,y,z,z1,i
= zk.

Case 14: [ζ1,j ]g,y,z,z1,i
= zk1zl11,i with k1 6= 0: Knowing that the special

signature matches z, z1,i, we get the following equation: ζ1,j = zk1 · zl11,i = zk1,i
where k is known from the representation of ζj . If k1 6= 0, a reduction embedding
in z1,i can compute dlogz z1,i, which upper bounds the probability of this case

to AdvDLP
R2

.

We thus assume in the following that [ζ1,j ]g,y,z,z1,i
= zk1,i.

Case 15: b2,i(β1) 6= 0: We look into δ′′ and how it is affected by a change in di

- this yields the following equation:

b1,i(β1,j) · dlogz z1,i + b2,i(β1,j)(1− dlogz z1,i)

k · dlogz z1,i
= ai(αj)

This can be solved for dlogz z1,i if b2,i(β1,j) 6= 0. Thus, the reduction R2 that em-
beds its discrete logarithm challenge in z1,i can win in this case. The probability

of E3 is therefore bounded by AdvDLP
R2

.

Case 16: b1,i(β2,j) 6= 0: We look into δ′′′ and how it is affected by a change in
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di - this yields the following equation

b1,i(β2,j) · (1− dlogz z1,i) + b2,i(β2,j) dlogz z1,i
k · (1− dlogz z1,i)

= ai(αj)

which can be solved for dlogz z1,i by reduction R2. This bounds the probability

of E3 in this case by AdvDLP
R2

.

Case 17: there exists i′ 6= i such that b1,i(β1,j) · dlogz z1,i′ + b2,i(β1,j) · (1−
dlogz z1,i′) 6= 0 ∨ b1,i(β2,j) · dlogz z1,i′ + b2,i(β2,j) · (1 − dlogz z1,i′) 6= 0 In this
case, we note that if a reduction R3 embeds the discrete logarithm challenge in
z1,i′ , it can solve for dlogz z1,i′ using a similar strategy as in the case that δ′′ or
δ′′′ are undefined.
Case 18: there exists i′ 6= i such that b1,i(β1,j) · dlogz z1,i′ + b2,i(β1,j) · (1−
dlogz z1,i′) = 0∧b1,i(β1,j) 6= 0∨b1,i(β2,j)·dlogz z1,i′+b2,i(β2,j)·(1−dlogz z1,i′) =
0∧b1,i(β2,j) 6= 0: Wlog we show the case for β1,j , the case of β2,j works the same.
Let R3 be a reduction embedding in z1,i′ . This reduction solves the following
equation: b1,i(β1,j) · dlogz z1,i′ + b2,i(β1,j) · (1 − dlogz z1,i′) = 0 for dlogz z1,i′

which it can do as we assumed that b1,i(β1,j) 6= 0.
We thus obtain that the representations of the special signatures are both

generated ‘honestly’, i.e. the representations match what a real user would do.
In particular, combining cases 3 to 5, 17 and 18 we get that in both special

signatures j, j′, there is only one session i such that ai(αj) 6= 0, ai(αj′) 6= 0.
Assuming that none of the above cases occur, and we are running reduction

R1 that embedded its discrete log challenge in z. In particular, we now consider
that the preliminary δ′′, δ′′′ are defined and equal, i.e. δ′′j = δ′′′j and δ′′j′ = δ′′′j′ .

This yields a variant of the 1-ROS problem which is information-theoretically
hard. Namely, in order to obtain δ′′j +ω′j = εj and δ′′j′ +ωj′ = εj′ , the adversary
needs to find ei such that ci = ei − di has the following properties:

εj = ci + y[
αj ·a

−ai(αj)
i

]
−→
K

+ δ′′j (13)

εj′ = ci + y[
αj′ ·a

−ai(αj′ )
i

]
−→
K

+ δ′′j′ (14)

This has a solution with probability at most 1
q over the choice of εj , εj′ .

ut

In the following, we describe how a reduction algorithm B′ can simulate G3

to M and use the obtained representations of the two special signatures to solve
the discrete logarithm problem.

Because M is allowed to use any group element in its input as part of the
algebraic representation, it is again necessary for the reduction to program the
random oracles H1, H2 so that it can compute the reduced representation for all
input elements of the adversary. The reduction will embed its discrete logarithm
challenge in either y or z and then try to compute the discrete logarithm from
the algebraic representation submitted when originally querying the hash oracle
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and from the corresponding signature. We describe two simulators S0, S1 that
simulate the G3 to an adversary. S0 answers the signing queries by simulating
using the discrete logarithms of z, z1,i, z2,i and tries to compute the discrete
logarithm of y from the representation of the group element α submitted as part
of the queries to H3. S1 answers signing queries using the discrete logarithm x of
y. Depending on the algebraic representation of ζ, ζ1, ζ2, it has different strategies
for extracting w0 of z.

Implementation of the hash oracles H1, H2, H3. All simulators implement
the hash oracles H1, H2, H3 in almost the same way, namely by lazy sampling
similar to the implementations in the proof of Lemma 2. However, the responses
to H2 are sampled with respect to z0 and S1 hardcodes its discrete logarithm
challenge at the appropriate place to be returned by H1 in the tag keys. We
describe the implementation in the following.

– H1: at the beginning of the game H1 sets z0 := gv0 On a fresh input ξ, H1

samples v $← Zq and returns zv0. It stores (ξ, zv0, v) in L1.

• For S1: before the first call to H1, S1 sets z0 := U.

– H2: on a fresh input ξ, H2 samples v $← Zq and returns zv0. It stores (ξ, zv, v)
in L2.

– H3: on a fresh input (ξ,−→rep), H3 samples ε $← Zq and returns ε. It stores
(ξ,−→rep, ε) in L3.

Scheduling of signing sessions. As before, all simulators use unique session
identifiers sid to match corresponding oracle calls to Sign1 and Sign2.

Identification of the forgery. If M wins G3, the special signatures can easily
be identified through the list L2 used by oracle H2, since the simulators know
the discrete logarithms of the values z1,i and zj to base z0. Thus, the simulators

can identify j s.t. ζ1,i = ζ
dlogzj

z1,j

i for i ∈ {1, 2}. In the following, we denote
dlog z0 as w0, dlog zj as wj , dlog y as x, and dlog h as w. For simplicity and
legibility, we restrict ourselves to describing the cases for the first of the two
special signatures and assume that the event E3,1 has not happend. Hence, in
the following, we have omitted the index i = 1. For every simulator below, we
remark that we can describe an analogous simulator that attempts extraction
on the second special signature, i.e., for i = 2 and where E3,2 has not happened.

Case C0 = 1. We describe the simulator S0. This simulator embeds the discrete
logarithm challenge in y and uses knowledge of w0, wj , w1,j , w2,j to generate its
signatures.

Setup For DLP challenge U, S0 samples w $← Zq and sets h := gw, and y := U.
It initializes all random oracle query lists as L1, L2, L3 := ∅ and the session
id counter with sid = 0.

Online phase The public key pk := (g,h,y) is given to the adversary. The
simulator responds to oracle calls to H1, H2, H3 as described before and to
signing queries as follows.
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Queries to Sign1 on input info S0 increases the session id counter, sets
zsid = H1(pk, info), and samples csid, rsid, u1,sid, u2,sid

$← Zq. It sets
asid := ycsid · grsid , b1,sid := gu1,sid and b2,sid := hu2,sid . Furthermore it
samples rndsid

$← {0, 1}λ and calls the oracle H2 on it to define z1,sid. It
outputs sid,asid,b2,sid,b2,sid, rndsid as the response.

Queries to Sign2 On input esid, sid, S0 retrieves the variables for the ses-
sion marked by sid and computes dsid := esid− csid. It retrieves w1,sid :=

(dlogz0
z1) · w0 through L2 as well as w2,sid :=

wj−w1,sid

w . It computes
s1,sid := u1,sid − d · w1,sid and s2,sid := u1,sid − d · w2,sid and returns
csid, dsid, rsid, s1,sid, s2,sid to the adversary.

It is straightforward to see that the above simulation of G3 is perfect if C0

holds.
Solving the DLP instance. If C0 = 0, S0 aborts. Otherwise, it looks up the

two special signatures and their reduced algebraic representations. Since
C0 = 1, S0 can compute the discrete logarithm x of y as

x =
g[α]−→

K
+ w0 · z[α]−→

K
− ρ

ω − y[α]−→
K

.

The simulator S1 embeds the DLP challenge as z0. It can thus answer the
signing queries using the secret key x as in the original scheme. For a tight proof
in the AGM, our techniques differ from Abe’s proof technique (which embedded
the challenge in one of the z1). We describe the simulator S1 in the following.

Setup. For DLP challenge U, the simulator samples x,w $← Zq and sets y := gx

and h := gw. It initializes all random oracle lists L1, L2, L3 := ∅ and then
programs the random oracle H1 to return z = U on input (pp,g,h,y). It
initializes the session counter sid := 0.

Online phase The simulator starts the adversary on input pk = (g,h,y, z). It
responds to hash queries to H1, H2, H3 as above and to signing queries as
follows:
Queries to Sign1. On input infoS1 increases the session counter and sampļ es

usid, dsid, s1,sid, s2,sid
$← Zq and rndsid

$← {0, 1}λ to query z1,sid :=

H2(rndsid). It defines asid := gusid , b1,sid := zdsid1,sid · gs1,sid and b2,sid :=

zdsid2,sid · hs2,sid . It returns sid,asid,b1,sid,b2,sid, rndsid to the adversary.
Queries to Sign2. On input sid, esid, S1 retrieves the exponents used the

first signing query of session sid and computes csid := esid − dsid. It then
further computes rsid := usid−csid·x and returns csid, dsid, rsid, s1,sid, s2,sid.

Solving DLP. If C1 = C2 = C3 = 0, S1 aborts. Otherwise it computes the
discrete logarithm of U as follows: If C1 = 1: If g[ζ]−→

K
+ x · y[ζ]−→

K
6= 0 we use

δ′ =
g[η]−→

K
+ x · y[η]−→

K

g[ζ]−→
K

+ x · y[ζ]−→
K

Claim 14. z[η]−→
K
− δ · z[ζ]−→

K
− µ 6= 0.
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Proof. The proof works analogous to the proof of Claim 6. ut

By the claim, S1 can then solve for w0 as

w0 :=
(δ − δ′) · (g[ζ]−→

K
+ x · y[ζ]−→

K
)

z[η]−→
K
− δ · z[ζ]−→

K
− µ

.

If C1 = 0 but C2 = 1: We know that in this case,

δ′′′ =
z[β2]−→K

z[ζ2]−→K

is well-defined and δ 6= δ′′′.

w0 :=
g[β1]−→K

+ x · y[β1]−→K
− δ · (g[ζ1]−→K + x · y[ζ1]−→K )− σ1

(δ − δ′′) · z[ζ1]−→K
If C1 = C2 = 0 but C3 = 1

w0 =
g[β2]−→K

+ x · y[β2]−→K
− δ · (g[ζ2]−→K + x · y[ζ2]−→K )− σ2 · w

(δ − δ′′′) · z[ζ2]−→K
Calculation of success probability. All simulators above give a perfect sim-
ulation of game G3 in their respective cases. The overall reduction algorithm B
flips a coin. On heads, it samples one of the 2 simulators at random and runs
it. On tails, it instead internally runs Brb from lemma 2. The reduction runs in
time

tB ≈ tM
and has advantage

AdvDLP
B ≥

AdvG3

M

2 · 2
+

AdvDLP
Brb

2
≥

AdvG2

M − 3qh
q − AdvDLP

R1
− AdvDLP

R2
− AdvDLP

R3

2 · 2
+

AdvDLP
Brb

2

≥
AdvG1

M − `+1
q −

3qh
q − AdvDLP

R1
+ AdvDLP

R2
− AdvDLP

R3

2
+

AdvDLP
Brb

2

≥
AdvG0

M − AdvRB-OMUF
M − 4·qh

q − AdvDLP
R1

+ AdvDLP
R2

− AdvDLP
R3

2 · 2
−

AdvDLP
Brb

2

≥
AdvG0

M − AdvRB-OMUF
M − 4·qh

q − AdvDLP
R1

− AdvDLP
R2

− AdvDLP
R3

2 · 2

+

1
2Adv

RB-OMUF
M − `+1

2q − ( 3qh
q + AdvDLP

R′1
+ AdvDLP

R′2
+ AdvDLP

R′3
+ AdvDLP

R′4
)

2

and the total advantage of B is

AdvDLP
B ≥1

4
AdvOMUF

M,`,BSA −
3qh
q
− AdvDLP

R1
− AdvDLP

R2
− AdvDLP

R3

− (AdvDLP
R′1

+ AdvDLP
R′2

+ AdvDLP
R′3

+ AdvDLP
R′4

)

ut
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D Figures of Interactions between signer and user for
Schnorr’s and Abe’s schemes

Here you can find two communication diagrams of the blind signature schemes
discussed in the main body.

Signer
sk = x

User
pk = x = gx

m

r $← Zq

α, β $← Zq
r′ := r · gα · xβ
c′ := H(r′,m)
c := c′ + β

s := c · x+ r

gs
?
= r · xc

s′ := s+ α
⇓

(m,σ = (r′, s′))

r = gr

c

s

Figure 1. Interaction between Signer and User for BSS
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Signer
sk = x

pk = (g,h,y = gx)
info

User
pk = (g,h,y)

m, info

z := H1(pk, info)
u, d, s1, s2

$← Zq
rnd $← {0, 1}λ

z1 := H2(rnd), z2 := z/z1
a := gu

b1 := gs1 · zd1
b2 := hs2 · zd2

z := H1(pk, info)
γ $← Z∗q

τ, t1, t2, t3, t4, t5
$← Zq

z1 := H2(rnd)
α := a · gt1 · yt2

ζ := zγ , ζ1 := zγ1 , ζ2 := ζ/ζ1
β1 := bγ1 · gt3 · ζ

t4
1

β2 := bγ2 · ht5 · ζ
t4
2

η := zτ

ε := H3(ζ, ζ1, α, β1, β2, η,m, info)
e := ε− t2 − t4

c := e− d
r := u− c · x

ρ := r + t1, ω := c+ t2
σ1 := γ · s1 + t3
σ2 := γ · s2 + t5
δ := d+ t4
µ := τ − δ · γ

δ + ω
?
= H3(ζ, ζ1,g

ρyω,gσ1ζδ1 ,h
σ2ζδ2 , z

µζδ,m, info)
⇓

(m, (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ))

rnd,a,b1,b2

e

c, r, d, s1, s2

Figure 2. Interaction between Signer and User for the partially blind version of BSA
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