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Abstract. Impossible differentials cryptanalysis and impossible poly-
topic cryptanalysis are the most effective approaches to estimate the se-
curity of block ciphers. However, the previous automatic search methods
of their distinguishers, impossible differentials and impossible polytopic
transitions, neither consider the impact of key schedule in the single-key
setting and the differential property of large S-boxes, nor apply to the
block ciphers with variable rotations.

Thus, unlike previous methods which focus on the propagation of the
difference or s-difference, we redefine the impossible differentials and
impossible (s+ 1)-polytopic transitions according to the propagation of
state, which allow us to break through those limitations of the previous
methods. Theoretically, we prove that traditional impossible differentials
and impossible (s+ 1)-polytopic transitions are equivalent to part of our
redefinitions, which have advantages from broader view. Technically, we
renew the automatic search model and design an SAT-based tool to
evaluate our redefined impossible differentials and impossible (s + 1)-
polytopic transitions efficiently.

As a result, for GIFT64, we get the 6-round impossible differentials which
cannot be detected by all previous tools. For PRINTcipher, we propose
the first modeling method for the key-dependent permutation and key-
dependent S-box. For MISTY1, we derive 902 4-round impossible differ-
entials by exploiting the differential property of S-boxes. For RC5, we
present the first modeling method for the variable rotation and get 2.5-
round impossible differentials for each version of it. More remarkable,
our tool can be used to evaluate the security of given cipher against
the impossible differentials, and we prove that there exists no 5-round 1
input active word and 1 output active word impossible differentials for
AES-128 even consider the relations of 3-round keys. Besides, we also get
the impossible (s + 1)-polytopic transitions for PRINTcipher, GIFT64,
PRESENT, and RC5, all of which can cover more rounds than their
corresponding impossible differentials as far as we know.
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1 Introduction

Impossible differential cryptanalysis was proposed by Biham et al. and Knudsen
respectively, where Biham et al. used it to analyze the security of Skipjack [5],
and Knudsen utilized it to analyze the security of DEAL [15]. Up to now, im-
possible differential cryptanalysis has been applied to lots of block ciphers, such
as AES [19], SIMON [9], XTEA [10], and so on. There is no doubt that it is one
of the most effective cryptanalytic approaches to evaluate the security of block
ciphers.

In the impossible differential cryptanalysis, attackers derive the right keys by
discarding the wrong keys that lead to the impossible differentials inherent to
the given cipher. Thus how to find an impossible differential as longer as possible
is the most essential and critical problem in regard to this kind of attacks.

Impossible (s + 1)-polytopic cryptanalysis was proposed by Tiessen [30],
which is a generalization of impossible differential cryptanalysis. Unlike the im-
possible differentials are constructed by considering the interdependencies of the
differences of two plaintexts and the accordingly two ciphertexts, the distin-
guishers of impossible (s+ 1)-polytopic cryptanalysis, named impossible (s+ 1)-
polytopic transitions, are constructed by considering the interdependencies be-
tween the s-differences of (s+ 1) plaintexts and (s+ 1) ciphertexts 4.

In the last 20 years, using automatic tools to search the distinguishers be-
comes a new trend. The first automatic tool for the impossible differentials is
presented by Kim et al. [14], named U-method. Then, Luo et al. [18] extended
it as UID-method. After that, Wu and Wang [32] introduced another method
using the idea of solving equations, called WW-method. However, those tools
to search impossible differentials cannot describe the details of S-boxes, which
waste plenty of differential property of the propagation.

This problem is settled with the application of the Mixed Integer Linear
Programming (MILP) method to symmetric cryptography. The MILP problem
is a mathematical optimization problem that finds the minimum or maximum
value of some objective function under the conditions of linear equations and
inequalities of integer variables. Mouha et al. [23] first introduced it to symmetric
cryptography to find the lower bound on the number of active S-boxes for both
differential and linear cryptanalysis. Later, Sun et al. [29] proposed the modelling
method to depict the valid differential propagation of small S-boxes (typically 4
bits), and Fu et al. [13] presented the modelling method to depict all the valid
differential/linear characteristics propagations of modular addition. Thus, the
differential propagation of any round for the small S-boxes based block ciphers
and ARX block ciphers can be modeled by a set of linear inequalities accurately.

4 Convention. In our paper, the impossible (s+ 1)-polytopic transition is uniformly
defined for (s ≥ 2), excluding the case of the impossible differential, since it has been
studied in-depth separately.
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On that basis, Cui et al. [11] proposed a MILP-based tool to search the im-
possible differentials for lightweight block ciphers, and an algorithm to verify the
impossible differentials. Soon after, Sasaki and Todo [28] presented a MILP-based
tool to search the impossible differential for SPN block ciphers. In particular,
they proposed the best search method at present for large S-boxes based block
ciphers, named the arbitrary S-box mode, which only treats the large S-boxes
as permutations in order to make their tool valid to detect the contradiction in
linear components.

However, the previous automatic search tools for impossible differentials have
the following limitations in general.

– Previous tools cannot take into account the key schedule in the single-key
setting.

– Previous tools cannot consider the differential property of large S-boxes.
– Previous tools cannot be applied to the block ciphers with variable rotation.

As to impossible polytopic transitions, there was only a search method pro-
posed for DES and AES in the original paper [30]. However, due to the lim-
itation that the searching spaces increase rapidly with the number of rounds,
this method can only be confined to a small number of rounds. Besides, this
tool cannot take into account the key schedule in the single-key setting and be
applied to the block ciphers with variable rotations either.

Our Contributions. In this paper, we define a series of new notations, s-
polygon to describe a tuple with s states, s-polygonal trail to depict the propa-
gation of s-polygon, possible s-polygons and impossible s-polygons to depict the
relations between two s-polygons.

Then, unlike the traditional impossible differentials and impossible (s + 1)-
polytopic transitions that are constituted according to the propagation of dif-
ference and s-difference, we redefine the impossible differentials and impossible
(s+ 1)-polytopic transitions based on the propagation of the s-polygon5. Thus,
the key schedule in the single-key setting can be considered in the construction
of redefined impossible differentials and impossible (s+ 1)-polytopic transitions.
We define the i-impossible differential (resp. i-impossible (s+ 1)-polytopic tran-
sition) to represent the redefined impossible differential (resp. impossible (s+1)-
polytopic transition) which is constituted in the round key independent setting
and d-impossible differential (resp. d-impossible (s+ 1)-polytopic transition) to

5 This idea can be traced back to [22]. In [22], Mironov et al. used the idea of the
transition of states to search two states that satisfy a fixed differential path, which is
the critical step to find a collision of the hash function. Recently, two papers [17,27]
that also used the idea of the transition of states appeared in the ePrint. As we
understand, [17] applied the transition of two states to the non-linear layer. [27]
utilized the idea to determine whether a given differential path of ARX based block
ciphers is compatible or not. In our paper, we exploit the idea of the transition of
multi-states to search the impossible differential and the impossible (s+1)-polytopic
transition for block ciphers.
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represent the redefined impossible differential (resp. impossible (s+1)-polytopic
transition) which is constituted by considering the key schedule.

Next, we study the relation between our redefined impossible differential (re-
sp. impossible (s+1)-polytopic transition) and traditional impossible differential
(resp. impossible (s+ 1)-polytopic transition). We show that the i-impossible d-
ifferential (resp. i-impossible (s+ 1)-polytopic transition) is equivalent to tradi-
tional impossible differential (resp. impossible (s+1)-polytopic transition) which
is constructed by taking into account the inside property of S-boxes for the block
ciphers with SPN or Feistel structures and the block cipher MISTY1.

Finally, we model the propagations of states by the statements in the CVC
format of STP6 (a solver of the SAT problem) for each operation, and design an
SAT-based unified automatic tool for searching the redefined impossible differ-
ential and impossible (s + 1)-polytopic transition. Since traditional impossible
differential is equivalent to the i-impossible differential and traditional impossi-
ble (s+1)-polytopic transition is equivalent to the i-impossible (s+1)-polytopic
transition, our tool can be used to search the traditional impossible differential
and traditional impossible (s + 1)-polytopic transition. Furthermore, our tool
has the following advantages.

Able to search the distinguishers by considering the impact of key
schedule in the single-key setting. Our automatic search tool focuses
on the propagations of states, which are impacted by the value of key. By
adding the constraints of key variables according to the key schedule, it can
be used to search the impossible differentials and impossible (s+1)-polytopic
transitions in the single-key setting confirming the key schedule. As far as we
know, this is the first automatic search tool that considers the impact of key
schedule in the single-key setting for impossible differentials and impossible
(s+ 1)-polytopic transitions.

Able to search the distinguishers for the block ciphers with variable
rotation. In this paper, by exploiting the conditional term of the CVC
format, we propose a novel method to model the propagations of states for
variable rotation. This method allows us to search the impossible differentials
and impossible (s + 1)-polytopic transitions for block ciphers with variable
rotation automatically. As far as we know, this is the first automatic search
method for such type of block ciphers.

Able to search impossible differentials for block ciphers with large
S-boxes by considering the differential property of large S-boxes.
We make use of the conditional terms to model the propagations of states for
large S-boxes. This way allows us to search the impossible differentials for
the block ciphers with large S-boxes by considering the differential property
of large S-boxes. As far as we know, this is the first automatic tool to search
the impossible differentials for such ciphers taking account in the differential
property of large S-boxes.

New proving tool for resisting impossible differentials in aspect of
cipher design. Our tool not only can be used to evaluate the security of

6 http://stp.github.io/
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block ciphers against traditional impossible differentials for block cipher-
s with large S-box in the case of considering the differential property of
large S-boxes, but also can be used to evaluate the security of block ciphers
(includes block ciphers with key-dependent permutation) against the impos-
sible differentials in the case of considering the key schedule in the single-key
setting. It is very favorable in aspect of block ciphers design and assessment.

We apply our tool to various block ciphers, these results can be divided into
three aspects7. All the new distinguishers we got are shown in the Table 1.
Deriving new impossible differentials.

- For GIFT64 [3], we get the 6-round impossible differentials, which cannot be
detected by Cui et al.’s method or Sasaki et al.’s method. This result shows
that, our tool can detect more contradictions than the previous methods.

- For PRINTcipher48/96 [16], we can not only give the first modeling method
for the key-dependent permutation, but also give the first direct modeling
method for the key-dependent S-box, which is consisted of the key-dependent
permutation and the fixed S-box. Take either of the two modeling method-
s, by considering all the details of the key schedule, we found 730 4-round
impossible differentials for PRINTcipher48 and 234 5-round impossible dif-
ferentials for PRINTcipher96.

- For MISTY1 [21], we found 902 4-round i-impossible differentials by exploit-
ing the differential property of S-boxes, while only 28 4-round i-impossible
differentials were got by implementing the arbitrary S-box mode of Sasaki et
al.’s method.

- For RC5-32/64/128 [25], we propose the first modeling method for variable
rotation, which allows us to get the 2.5-round impossible differentials for
them in the key independent setting.

Evaluating the resistance against the impossible differentials. Besides
applying our tool directly, we also propose three phases technique and inside
value technique to speed up our proving process.

- For GIFT64, PRESENT [7], Midori64 [2], PRINTcipher48, and PRINTci-
pher96, we prove that, in the search space where the input difference on-
ly actives one S-box in the first substitution and the output difference only

7 Illustrantion. Note that, when to search the r-round distinguishers by considering
the key schedule in our model, different beginning round lead to different final mod-
els, since the round constants are different from each round. To a common format,
we place the distinguishers of our model in the 1st round by default (except GIFT64,
since the round key is not XORed with plaintext in the first round, we place the
distinguishers in the 2nd). That is, when we say a distinguisher is an r-round dis-
tinguisher, it is an r-round distinguisher placed from 1st round to the r-th round.
Similarly, when we say there exists no r-round impossible differentials in the search
space, it means that for all the input differences and output differences where the
input differences placed at the 1st round and the output differences placed at the
r-th round, the differences cannot be connected. Actually, in other cases that the
distinguishers do not begin with the 1st round, the distinguisher can be searched
similarly.
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actives one S-box in the last substitution, there exists no 7-round, 7-round, 6-
round, 5-round, and 6-round impossible differentials for GIFT64, PRESENT,
Midori64, PRINTcipher48, and PRINTcipher96 even taking account in the
details of the key schedule.

- For AES [12], by adopting the new proposed three phases technique, we prove
that even considering the relations of middle three-round keys, there still
exists no 5-round 1 input active word and 1 output active word impossible
differentials.

- For 5-round MISTY1 [21] with the FL layers placed at the even rounds, by
adopting the three phases technique and inside value technique, we prove
that there exists no 1 input active bit and 1 output active bit impossible
differentials.

Resulting in new impossible (s+ 1)-polytopic transition (s ≥ 2). Besides
applying our tool directly, we further propose the step by step strategy to speed
up the search.

- For PRINTcipher, by considering all the details of the key schedule, we obtain
the 6-round d-impossible 3-polytopic transition and 7-round d-impossible 4-
polytopic transition for PRINTcipher48, and 7-round d-impossible 3-polytopic
transition and 8-round d-impossible 4-polytopic transition for PRINTci-
pher96. Moreover, we investigate the impact of the restraints of the xor
keys (i.e. the keys which are xored with the state) and control keys (i.e. the
keys which are used to control the key-dependent permutation). The result
shows that, both the restraints of the xor keys and control keys will lead to
more contradictions.

- For GIFT64, we get a 7-round d-impossible 3-polytopic transition.
- For RC5-32, we get 108 3-round i-impossible 3-polytopic transitions. Similarly,

we get a 3-round i-impossible 3-polytopic transition for RC5-64.
- For PRESENT, we get a 7-round i-impossible 4-polytopic transition.

Table 1. Overview of new distinguishers

Block ciphers Imp. Diff Remark of Imp. Diff Imp 3-poly Imp 4-poly

GIFT64 6* more distinguishers than [3] 7* -

PRINTcipher48 4* first 6* 7*

PRINTcipher96 5* first 7* 8*

MISTY1 4 more distinguishers - -

RC5-32/64 2.5 first 3 -

RC5-128 2.5 first - -

PRESENT - - 7 -

Imp. Diff means impossible differential, Imp 3-poly(resp. 4-poly) means impossible
3-polytopic(resp. 4-polytopic) transition.

The number add * means the distinguishers we got in the case of considering key
schedule, while the number without * means the distinguishers we got in the key

independent setting.
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Outline. We introduce the notations and related work in Section 2. Our re-
defined impossible differentials and impossible (s+ 1)-polytopic transitions and
the relations between our redefinitions and traditional definitions are shown in
Section 3. The SAT modeling methods and our search algorithm are detailed in
Section 4. We apply our method to impossible differentials from the cryptanaly-
sis aspect and design aspect in Section 5 and Section 6, respectively. In Section
7, we apply our method to impossible polytopic transitions. In Section 8, we
conclude this paper.

2 Preliminaries

2.1 Notations

The following notations are used in this paper.

- xm,s: the tuple (x0, . . . , xs−1), where xi ∈ Fm2 (0 ≤ i ≤ s− 1).
- xm,si : the tuple (xi,0, . . . , xi,s−1), where xi,j ∈ Fm2 (0 ≤ j ≤ s− 1).
- xm,s||ym,s: the tuple (x0||y0, . . . , xs−1||ys−1), where xi, yi ∈ Fm2 (0 ≤ i ≤

s− 1).
- xm,s+1 Bαm,s: the tuple xm,s+1 satisfy x0 ⊕ xj+1 = αj (0 ≤ j ≤ s− 1).
- 0p1q: the concatenation of p successive 0s and q successive 1s.
- apbq: the concatenation of p-bit constant a and q-bit constant b.
- W (a): the hamming weight of a, i.e., the 1’s number in the bit representation

of a.
- enI : an n bits value, whose i-th bit is 1 for i ∈ I, and 0 otherwise.
- BC(n,m, l): the set of all iterated block ciphers whose block size is n-bit,

master key size is m-bit, and round key size is l-bit.
- Erk(x): the output of encryption E ∈ BC(n,m, l) on the state x ∈ Fn2 after

r-round under k ∈ (Fl2)r.
- Erk(xn,s): the tuple (Erk(x0), . . . , Erk(xs−1)).
- IKSlr: the set {(k1, . . . , kr)|ki ∈ Fl2, 1 ≤ i ≤ r}.
- DKSm,lr : the set {(k1, . . . , kr)|k ∈ Fm2 , ki ∈ Fl2, ki = Gi(k), 1 ≤ i ≤ r}, where

Gi denotes the key schedule to generate the round key ki from the master
key k for a block cipher E ∈ BC(n,m, l).

- Di,j
α : a 4×4 matrix over the finite fields F8

2 which all the positions are 0 except
the position (i, j) equals α.

2.2 A Brief Introduction of Impossible Differentials and Impossible
(s+ 1)-polytopic Transitions

Impossible differential is the distinguisher of impossible differential cryptanaly-
sis, and impossible (s+ 1)-polytopic transition is the distinguisher of the impos-
sible polytopic cryptanalysis. Here, we only recall the definitions of impossible
(s + 1)-polytopic transition, since impossible differential is the special case of
s = 1. First, let us recall the definition of s-polytope and s-difference.
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Definition 1 (s-polytope [30]). An s-polytope in Fn2 is an s-tuple of values
in Fn2 .

Definition 2 (s-difference [30]). An s-difference over Fn2 is an s-tuple of
values in Fn2 . For an (s + 1)-polytope (m0,m1, . . . ,ms) , the corresponding s-
difference is definited as (m0 ⊕m1,m0 ⊕m2, . . . ,m0 ⊕ms−1).

Next, we recall the propagation rule of s-difference and the valid (s + 1)-
polytopic trail.

Definition 3 (The Propagation Rule of The s-difference [30]). Let f :
Fn2 → Fq2 be a function. For the input s-difference αn,s and the output s-
difference βq,s, if there exists x such that, f(x⊕αi)⊕ f(x) = βi(0 ≤ i ≤ s− 1),

we call that αn,s can propagate to βq,s, denoted as αn,s
f→ βq,s. Otherwise, we

call that αn,s cannot propagate to βq,s, denoted as αn,s
f9 βq,s.

Definition 4 (Valid (s + 1)-polytopic Trail [30]). Let f : Fn2 → Fn2 be a
function that is the iterated composition of round functions fi : Fn2 → Fn2 :

f := fr ◦ · · · ◦ f2 ◦ f1.
Let αn,s0 be the input s-difference and αn,sr be the output s-difference. Then, a
valid (s+1)-polytopic trail for (αn,s0 ,αn,sr ) on f is an (r+1)-tuple (αn,s0 ,αn,s1 , . . . ,

αn,sr ), where αn,si
fi+1→ αn,si+1(0 ≤ i ≤ r − 1).

By exploiting the definition of the valid (s+1)-polytopic trail, the definitions
of possible (s+1)-polytopic transition and impossible (s+1)-polytopic transition
can be re-expressed as follows.

Definition 5 (Possible (s+ 1)-polytopic Transition [30]). A pair of input
and output s-differences (∆i

n,s,∆0
n,s) is called an r-round possible (s + 1)-

polytopic transition if and only if there exists an r-round valid (s+ 1)-polytopic
trail for (∆i

n,s,∆0
n,s).

Definition 6 (Impossible (s + 1)-polytopic Transition [30]). A pair of
input and output s-differences (∆i

n,s,∆0
n,s) is called an r-round impossible

(s + 1)-polytopic transition if and only if there exists no r-round valid s + 1-
polytopic trail for (∆i

n,s,∆0
n,s).

2.3 SAT Problem & STP

The Boolean Satisfiability Problem (SAT) is a classic scientific computation
problem aiming to determine whether a given boolean formula has a solution.
STP is the openly available solver for the SAT problem, which supports the CVC
format as the file-based input formats.

When to solve an SAT problem, we first model it by the statements in CVC
format and save those statements as a file. Then, we invoke the STP for this
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file. If the target SAT problem has not a solution, STP will return “Valid.”.
Otherwise, it will return a solution of the SAT problem and ”Invalid.”.

In particular, it is worth to mention that the CVC format supports the con-
ditional term, i.e., the statement “IF a THEN b ELSE c ENDIF”, where a is
a boolean term, and b and c are bitvector terms. By exploiting the conditional
term, we give our modeling methods for S-boxes and variable rotation in Sec-
tions 4.1.

3 New Definitions of Impossible Differentials and
Impossible (s+ 1)-polytopic Transitions

In this section, we define the notations of s-polygon, possible s-polygons, and
impossible s-polygons. Based on this, we redefine the impossible differentials and
impossible (s+1)-polytopic transitions. Then, we study the relations between our
redefinitions and traditional definitions of impossible differentials and impossible
(s+ 1)-polytopic transitions.

3.1 New Definitions of Impossible Differentials and Impossible
(s+ 1)-Polytopic Transitions

Let us think over the definitions of traditional impossible differentials and impos-
sible (s+ 1)-polytopic transitions. For E ∈ BC(n,m, l), suppose (∆i

n,s,∆o
n,s)

is an r-round traditional impossible (s+ 1)-polytopic transition of it. Then, for
∀k ∈ (F l2)r, ∀xin,s+1 B ∆i

n,s and ∀yin,s+1 B ∆o
n,s, it holds Erk(xi

n,s+1) 6=
yi
n,s+1. In particular, if (∆i, ∆0) is an r-round impossible differential. Then, for
∀k ∈ (F l2)r, ∀x ∈ Fn2 and ∀y ∈ Fn2 , it holds (Erk(x), Erk(x ⊕∆i)) 6= (y, y ⊕∆o).
Thus, it is important to research the relations between two (resp. s + 1) input
states and two (resp.s+ 1) output states for forming the impossible differentials
(resp.impossible (s+ 1)-polytopic transitions). To investigate such relations, we
define the s-polygon firstly.

Definition 7 (s-polygon). For ∀E ∈ BC(n,m, l), its s-polygon is a tuple with
s elements, where each element belongs to Fn2 .

For an iterated block cipher, the s-polygon propagates through round by
round, which constitutes the s-polygonal trail.

Definition 8 (s-polygonal Trail). Let E ∈ BC(n,m, l) and r ∈ Z. For any
s-polygon xn,s and ∀k = (k1, . . . , kr) ∈ (Fl2)r, we have the following chain of
propagation:

xn,s → E1
(k1)

(xn,s)→ E2
(k1,k2)

(xn,s)→ · · · → Erk(xn,s).

We call (xn,s, E1
(k1)

(xn,s), . . . , Erk(xn,s)) an r-round s-polygonal trail. More-

over, if k ∈ IKSlr, the trail is called an r-round i-s-polygonal trail; if k ∈
DKSm,lr , the trail is called an r-round d-s-polygonal trail.
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Based on the definitions of s-polygon and s-polygonal trail, according to the
compatibility of a pair of input and output s-polygons, the possible s-polygon
and impossible s-polygon are defined as follows.

Definition 9 (Possible s-polygons). Let E ∈ BC(n,m, l), a pair of input and
output s-polygons (xn,s,yn,s) is called r-round possible s-polygons of E, if
there exists k = (k1, . . . , kr) ∈ (Fl2)r and s-polygonal trail (xn,s, E1

(k1)
(xn,s), . . . ,

Erk(xn,s)) s.t. yi = Erk(xi)(0 ≤ i ≤ s − 1). Moreover, if k ∈ IKSlr, (xn,s,yn,s)
is called r-round i-possible s-polygons; if k ∈ DKSm,lr , (xn,s,yn,s) is called
r-round d-possible s-polygons.

Definition 10 (Impossible s-polygons). Let E ∈ BC(n,m, l), a pair of input
and output s-polygons (xn,s,yn,s) is called r-round i-impossible s-polygons
(resp. r-round d-impossible s-polygons) of E, if (xn,s,yn,s) is not the r-
round i-possible s-polygons (resp. r-round d-possible s-polygons).

Now, based on the definition of impossible s-polygons, we propose two defi-
nitions of impossible (s+ 1)-polytopic transitions: i-impossible (s+ 1)-polytopic
transition and d-impossible (s+ 1)-polytopic transition.

Definition 11 (The i-impossible (resp.d-impossible) (s + 1)-polytopic
Transition). Let E ∈ BC(n,m, l), a pair of input and output tuples (αn,s,βn,s)
is called an r-round i-impossible (resp.d-impossible) (s + 1)-polytopic
transition, if for ∀xn,s+1 B αn,s and ∀yn,s+1 B βn,s, (xn,s+1,yn,s+1) are
r-round i-impossible (resp.d-impossible) (s+ 1)-polygons.

Here, we give the definitions of i-impossible differential and d-impossible
differential independently for clarity, while actually impossible differential is a
particular case of impossible (s+ 1)-polytopic transition.

Definition 12 (The i-impossible (resp. d-impossible) Differential). Let
E ∈ BC(n,m, l), α ∈ Fn2 , and β ∈ Fn2 , (α, β) is called an r-round i-impossible
(resp. d-impossible) differential, if for ∀(x0, x1) ∈ {(α0, α1) ∈ Fn2 ×Fn2 |α0⊕
α1 = α} and ∀(y0, y1) ∈ {(β0, β1) ∈ Fn2 × Fn2 |β0 ⊕ β1 = β}, (x0, x1) and (y0, y1)
are r-round i-impossible (resp. d-impossible) 2-polygons.

According to the definitions of d-possible (s + 1)-polygons and i-possible
(s + 1)-polygons, the relation between i-impossible (s + 1)-polytopic transition
and d-impossible (s+ 1)-polytopic transition is obviously as follows.

Theorem 1. Let E ∈ BC(n,m, l). Then an i-impossible (s+ 1)-polytopic tran-
sition of E must be a d-impossible (s+1)-polytopic transition of E. In particular,
an i-impossible differential of E must be a d-impossible differential of E.

3.2 The Equivalence of i-impossible (s + 1)-polytopic Transitions
and Traditional Impossible (s+ 1)-polytopic Transitions

SPN structure and Feistel structure are widely used in the design of block ci-
phers. In this subsection, we show that the i-impossible (s + 1)-polytopic tran-
sitions are equivalent to traditional impossible (s + 1)-polytopic transitions for
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the block ciphers with SPN structure or Feistel structure. Moreover, with the
same approach, the equivalence also holds for the block cipher MISTY1. Note
that, since impossible differentials are the particular case of impossible (s+ 1)-
polytopic transitions, we are not going to state the equivalency for impossible
differentials solely here.

First, for narrative purposes, we define a class of round function, which is
widely used in block ciphers.

Definition 13 (Common Round Function). A function Fr is called com-
mon round function(CRF), if it can be represented as Fr = (P

′
r ◦ Sr ◦Pr ◦Kr) ◦

· · · ◦ (P
′
1 ◦ S1 ◦ P1 ◦K1) ◦ (P

′
0 ◦ S0 ◦ P0), where Si(0 ≤ i ≤ r) denotes the substi-

tution layer which is composed of a set of S-boxes in parallel, Pi(0 ≤ i ≤ r) and
P

′
i (0 ≤ i ≤ r) denote the linear permutation layers, and Ki(1 ≤ i ≤ r) denotes

the key mixing layer, where the key is fully Xored with the state. In particular,
in the case of r = 0, denote F0 = (P

′
0 ◦ S0 ◦ P0).

The above definition of CRF includes a lot of round functions, which are
broadly used in block ciphers. For example, the round function of AES [12] is of
the “SP” structure, in which the substitution layer precedes the linear layer. It
is the CRF in the case of r = 0 and P0 is the identical permutation. The round
function of Prince [8] in the last half rounds is of the “PS” structure, in which
the linear layer precedes the substitution layer. It is the CRF in the case of r = 0
and P

′
0 is the identical permutation. The round function of RoadRunneR [4] is

of the “SPKSPKSPKS” structure. It is the CRF in the case of r = 3 and P
′
3 is

the identical permutation.
Since the common round function is widely used in block ciphers, we study

the relationship between the valid (s + 1)-polytopic transitions and i-possible
(s+ 1)-polygons of it.

↵0
n,s P0 S0 P

0
0 P1 S1 P

0
1 P2 S2 P

0
2 ↵3

n,s

K1 K2

�0
n,s �0

n,s
↵1

n,s ↵1
n,s �1

n,s �1
n,s

↵2
n,s ↵2

n,s �2
n,s �2

n,s

x0
n,s+1 P0 S0 P

0
0 P1 S1 P

0
1 P2 S2 P

0
2 w2

n,s+1

K1 K2

y0
n,s+1 z0

n,s+1 w0
n,s+1 x1

n,s+1 y1
n,s+1 z1

n,s+1 w1
n,s+1 x2

n,s+1 y2
n,s+1 z2

n,s+1

Fig. 2. The Valid (s+1)-polytopic Trail and (s+1)-polygonal Trail for Common Round
Function

Theorem 2 (The Equivalency of CRF). Let Fr be the CRF. Then, (↵0
n,s,↵r+1

n,s)
is the valid polytopic transition of Fr if and only if there exists i-possible (s +
1)-polygons (x0

n,s+1, wr
n,s+1) of Fr , where x0

n,s+1 B ↵0
n,s and wr

n,s+1 B
↵r+1

n,s.

Proof. We prove this theorem in the case r = 2. The other cases can be proved
analogously.

If (↵0
n,s,↵3

n,s) is the valid polytopic transition of F2. Then, there exists a
valid (s + 1)-polytopic trail, as shown in the above of Figure 3.2. For 0  i  2,
since (�i

n,s,�i
n,s) is the valid polytopic transition of Si, there exists ai, such

that Si(ai) � Si(ai � �i,j) = �i,j(0  j  s � 1). Let yi
n,s+1 = (yi,0, . . . , yi,s)

and zi
n,s+1 = (zi,0, . . . , zi,s), where yi,0 = ai and yi,j+1 = ai � �i,j , and zi,0 =

Si(ai) and zi,j+1 = S(ai) � �i,j , we have S(yi,j) = zi,j(0  j  s). Donate
xi

n,s+1 = (xi,0, . . . , xi,s) and wi
n,s+1 = (wi,0, . . . , wi,s), where xi,j = P�1

i (yi,j)

and wi,j = P
0
i (zi,j)(0  j  s). Since ↵i,j = P�1

i (�i,j), we have xi,0 � xi,j+1 =
↵i,j(0  j  s�1). Similar, we have wi,0�wi,j+1 = ↵i+1,j(0  j  s�1). Thus,
for 1  i  2, we have wi�1,0 � wi�1,j+1 = ↵i,j = xi,0 � xi,j+1(0  j  s � 1).
Let Ki = wi�1,0 � xi,0, we have xi,j = wi�1,j � Ki(0  j  s). Therefore, as
shown in the below of Figure 3.2, (x0

n,s+1, w2
n,s+1) is i-possible (s+1)-polygon

of F2, and x0
n,s+1 B↵0

n,s and w2
n,s+1 B↵3

n,s.
Since all the procedures above are invertible, it is easily to show that if there

exist x0
n,s+1 B ↵0

n,s and w2
n,s+1 B ↵3

n,s, such that (x0
n,s+1, w2

n,s+1) is the
i-possible (s + 1)-polygons of F2. Then, (↵0

n,s,↵3
n,s) is the valid polytopic

transition of F2.

In the next two theorems, we show the equivalency between traditional im-
possible (s+1)-polytopic transition and the i-impossible (s+1)-polytopic transi-
tion for the block ciphers with SPN structure and Feistel structure respectively.

Theorem 3 (The Equivalency of SPN Structure Block Ciphers). Let
E 2 BC(n, m, l) be an SPN structure block cipher whose round function is a
CRF, and the round keys fully xor with the state. Then, (↵0

n,s,↵r
n,s) is the

r-round traditional impossible (s + 1)-polytopic transition if and only if it is the
r-round i-impossible (s + 1)-polytopic transition.

14

Fig. 1. The Valid (s+ 1)-polytopic Trail and (s+ 1)-polygonal Trail for CRF

Theorem 2 (The Equivalence of CRF). Let Fr be a CRF. Then, (α0
n,s,

αr+1
n,s) is a valid polytopic transition of Fr if and only if there exist i-possible

(s+1)-polygons (x0
n,s+1,wr

n,s+1) of Fr , where x0
n,s+1Bα0

n,s and wr
n,s+1B

αr+1
n,s.

Proof. We only prove this theorem in the case of r = 2. The other cases can be
proved analogously.
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Suppose (α0
n,s,α3

n,s) is a valid polytopic transition of F2. Then there exists
a valid (s+ 1)-polytopic trail (α0

n,s,α1
n,s,α2

n,s,α3
n,s), as shown in the upper

half of Figure 1. For 0 ≤ i ≤ 2, since (βi
n,s,γi

n,s) is a possible (s+ 1)-polytopic
transition of Si, there exists ai such that Si(ai) ⊕ Si(ai ⊕ βi,j) = γi,j(0 ≤ j ≤
s − 1). Let yi

n,s+1 = (yi,0, . . . , yi,s) and zi
n,s+1 = (zi,0, . . . , zi,s), where yi,0 =

ai, yi,j+1 = ai ⊕ βi,j , zi,0 = Si(ai) and zi,j+1 = S(ai) ⊕ γi,j , then we have
S(yi,j) = zi,j(0 ≤ j ≤ s). Denote xi

n,s+1 = (xi,0, . . . , xi,s) and wi
n,s+1 =

(wi,0, . . . , wi,s), where xi,j = P−1i (yi,j) and wi,j = P
′
i (zi,j)(0 ≤ j ≤ s). Since

αi,j = P−1i (βi,j), we have xi,0 ⊕ xi,j+1 = αi,j(0 ≤ j ≤ s − 1). Similar, we
have wi,0 ⊕ wi,j+1 = αi+1,j(0 ≤ j ≤ s − 1). Thus, for 1 ≤ i ≤ 2, we have
wi−1,0 ⊕ wi−1,j+1 = αi,j = xi,0 ⊕ xi,j+1(0 ≤ j ≤ s− 1). Let Ki = wi−1,0 ⊕ xi,0,
then we have xi,j = wi−1,j ⊕Ki(0 ≤ j ≤ s). Therefore, we have constructed i-
possible (s+1)-polygons of F2, which is (x0

n,s+1,w2
n,s+1) with w2

n,s+1Bα3
n,s

and x0
n,s+1 Bα0

n,s, as shown in the lower half of Figure 1.
Since all the procedures above are invertible, it is easy to show that if there

exist x0
n,s+1 B α0

n,s and w2
n,s+1 B α3

n,s, such that (x0
n,s+1,w2

n,s+1) is the
i-possible (s+ 1)-polygons of F2, then (α0

n,s,α3
n,s) is the valid polytopic tran-

sition of F2. ut

With the same technique, we also can show the equivalence between tradition-
al impossible (s+ 1)-polytopic transition and the i-impossible (s+ 1)-polytopic
transition for the block ciphers with SPN structure and Feistel structure as fol-
lows.

Theorem 3 (The Equivalence of SPN Structure Block Ciphers). Let
E ∈ BC(n,m, l) be an SPN structure block cipher whose round function is a
CRF, and the round keys are fully Xored with the state. Then, (α0

n,s,αr
n,s) is

an r-round traditional impossible (s+ 1)-polytopic transition if and only if it is
an r-round i-impossible (s+ 1)-polytopic transition.

Proof. This is equivalent to prove that (α0
n,s,αr

n,s) is an r-round valid (s+1)-
polytopic transition of E if and only if there exist r-round i-possible (s + 1)-
polygons (x0

n,s+1,yr
n,s+1) of E, where x0

n,s+1 B α0
n,s and yr

n,s+1 B αrn,s.
In particular, we prove this in the case of r = 3. The other cases can be proved
analogously.

Suppose (α0
n,s,α3

n,s) is an 3-round possible (s + 1)-polytopic transition.
Then, there exists an 3-round valid (s + 1)-polytopic trail, as shown in the left
of Figure 2. For 0 ≤ i ≤ 2, since (αi

n,s,αi+1
n,s) is the valid (s + 1)-polytopic

transition of Gi, according to the Theorem 2, there exist yi
n,s+1 B αin,s and

xi+1
n,s+1 B αi+1

n,s such that (yi
n,s+1,xi+1

n,s+1) is the i-possible (s + 1)-
polygons. For 1 ≤ i ≤ 2, let Ki = yi,0 ⊕ xi,0, since yi,0 ⊕ yi,j+1 = αi,j =
xi,0 ⊕ xi,j+1(0 ≤ j ≤ s − 1), then we have yi,j = xi,j ⊕ Ki. Let x0

n,s+1 =
y0

n,s+1, y3
n,s+1 = x3

n,s+1, K0 = 0 and K3 = 0, we have y0,j = x0,j ⊕K0 and
y3,j = x3,j ⊕K3(0 ≤ j ≤ s). Therefore, we have constructed 3-round i-possible
(s + 1)-polygons of E, which is (x0

n,s+1,y3
n,s+1) with x0

n,s+1 B α0
n,s and

y3
n,s+1 Bα3

n,s, as shown in the right of Figure 2.
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n,s
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Fig. 2. The valid (s + 1)-polytopic trail (left) and (s + 1)-polygonal trail (right) for
3-round SPN

Since all the procedures above are invertible, it is easy to show that if there
exist x0

n,s+1 B α0
n,s and y3

n,s+1 B α3
n,s, such that (x0

n,s+1,y3
n,s+1) is 3-

round i-possible (s + 1)-polygons of E, then (α0
n,s,αr

n,s) is an 3-round valid
polytopic transition.

Theorem 4 (The Equivalence of Feistel Structure Block Ciphers). Let
E ∈ BC(2n,m, l) be a Feistel structure block cipher whose round function is a
CRF and the round keys are fully Xored with the branch. Then, (α0

n,s||β0
n,s,

αr
n,s||βrn,s) is an r-round traditional impossible (s + 1)-polytopic transition if

and only if it is an r-round i-impossible (s+ 1)-polytopic transition.

Proof. This is equivalent to prove that (α0
n,s||β0

n,s,αr
n,s||βrn,s) is an r-round

valid (s + 1)-polytopic transition if and only if there exists r-round i-possible
(s+1)-polygons (x0

n,s+1||y0n,s+1,xr
n,s+1||yrn,s+1), where (x0

n,s+1||y0n,s+1)B
(α0

n,s||β0
n,s) and (xr

n,s+1||yrn,s+1) B (αr
n,s||βrn,s). In particular, we prove

this in the case of r = 3. The other cases can be proved analogously.
Suppose (α0

n,s||β0
n,s,α3

n,s||β3
n,s) is an 3-round valid (s + 1)-polytopic

transition. Then, there exists an 3-round valid (s+ 1)-polytopic trail, as shown
in the left of Figure 3. For 0 ≤ i ≤ 2, since (αi

n,s, δi
n,s) is the valid (s + 1)-

polytopic transition of Gi, according to the Theorem 2, there exist zi
n,s+1 B

αi
n,s and wi

n,s+1 B δin,s such that (zi
n,s+1,wi

n,s+1) is the i-possible (s+ 1)-
polygons of Gi. For 1 ≤ i ≤ 3, ∀x0

n,s+1 B α0
n,s and ∀y0n,s+1 B β0

n,s, let
yi
n,s+1 = (yi,0, . . . , yi,s) and xi

n,s+1 = (xi,0, . . . , xi,s), where yi,j = xi−1,j
and xi,j = yi−1,j ⊕ wi−1,j(0 ≤ j ≤ s), then we have xi

n,s+1 B αin,s and
yi
n,s+1 B βin,s. For 0 ≤ i ≤ 2, let Ki = xi,0 ⊕ wi,0, since xi,0 ⊕ xi,j+1 =

13



αi,j = wi,0 ⊕ wi,j+1(0 ≤ j ≤ s − 1), then we have wi,j = xi,j ⊕Ki(0 ≤ j ≤ s).
Therefore, we have constructed 3-round i-possible (s+ 1)-polygons of E, which
is (x0

n,s+1||y0n,s+1,x3
n,s+1||y3n,s+1) with (x0

n,s+1||y0n,s+1) B (α0
n,s||β0

n,s)
and (x3

n,s+1||y3n,s+1)B (α3
n,s||β3

n,s), as shown in the right of Figure 3.
Since all the procedures above are invertible, it is easy to show that if there

exist (x0
n,s+1||y0n,s+1)B (α0

n,s||β0
n,s) and (x3

n,s+1||y3n,s+1)B (α3
n,s||β3

n,s)
such that (x0

n,s+1||y0n,s+1,x3
n,s+1||y3n,s+1) is 3-round i-possible (s+1)-polygons,

then (α3
n,s||β3

n,s) is an 3-round valid (s+ 1)-polytopic transition.
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Fig. 3. The valid (s + 1)-polytopic trail (left) and (s + 1)-polygonal trail (right) for
3-round Feistel

The block cipher MISTY1 [21] is designed by adopting the theory of prov-
able security [24]. In Appendix C, We generalize the MISTY1 structure as
Generalized-MISTY1 structure, and show the equivalence of traditional im-
possible (s + 1)-polytopic transition and i-impossible (s + 1)-polytopic tran-
sition for Generalized-MISTY1 structure. Since MISTY1 is a block cipher with
Generalized-MISTY1 structure, the following theorem is obviously.

Theorem 5 (The Equivalence of MISTY1). Let E denote the block ci-
pher MISTY1. Then, (α0

32,s||β0
32,s,αr

32,s||βr32,s) is an r-round traditional
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impossible (s+ 1)-polytopic transition if and only if it is an r-round i-impossible
(s+ 1)-polytopic transition.

The advantages of i-impossible differentials and i-impossible (s + 1)-
polytopic transitions. Since i-impossible differentials (resp. i-impossible (s+
1)-polytopic transitions) are equivalent to traditional impossible differentials (re-
sp. traditional impossible (s + 1)-polytopic transitions), our method gives new
view of traditional impossible differentials and impossible (s+1)-polytopic tran-
sitions, which allows us to get the distinguishers for the block cipher with large
S-boxes or variable rotation in the key independent setting using full knowledge
of their differential or s-differential property. In particular, by exploiting this
new view, we can evaluate the security of block ciphers against traditional im-
possible differentials for block ciphers with large S-box in the case of considering
the differential property of large S-boxes.

4 Automatic Search Method

In this section, we propose the automatic search algorithms for our redefined
impossible differentials and impossible (s+ 1)-polytopic transitions. Firstly, we
give the statements in CVC format to model the propagation of the state under
each operation.

4.1 Model the Propagation of the State by Statements in CVC
Format

Here, we model the propagation of the state under the operations (Generalized-)
Copy, (Generalized-) Xor, (Generalized-) Modular Addition, Linear Transforma-
tions, S-box and Variable Rotation by statements in CVC format.

Model 1 ((Generalized-)Copy) Let F be a (Generalized-)Copy function, where
the input x takes value from Fq2, and the output is calculated as (y0, y1, . . . , yt−1) =
(x, x, . . . , x). Then, the following statements can describe the propagation of the
state under the (Generalized-)Copy operation.

ASSERT(y0 = x);
ASSERT(y1 = x);

...
ASSERT(yt−1 = x);

Model 2 ((Generalized-)Xor) Let F be a (Generalized-)Xor function, where
the input (x0, x1, . . . , xt−1) take values from (Fq2)t, and the output is calculated
as y = ⊕i=t−1i=0 xi. Then, the following statement can describe the propagation of
the state under the (Generalized-)Xor operation.

ASSERT(y = BVXOR(· · · (BVXOR(BVXOR(x0, x1), x2), . . . , xt−1)); 8

8 BVXOR: Bitwise XOR function which is supported by the CVC format of STP
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Model 3 ((Generalized-)Modular Addition) Let F be a (Generalized-) Mod-
ular Addition function, where the input (x0, x1, . . . , xt−1) take values from (Fq2)t,
and the output is calculated as y = �i=t−1i=0 xi. Then, the following statement can
describe the propagation of the state under the (Generalized-)Modular Addition
operation.

ASSERT(y = BVPLUS(q, x0, . . . , xt−1)); 9

The linear transformations of block ciphers have various representations, such
as the permutation layer of PRESENT [7], and the MDS matrix in AES [12].
Since all the representations of linear transformations can be converted to the
binary matrix multiplication, we only show the modeling method for the binary
matrix multiplication here.

Model 4 (Binary Matrix Multiplication) Let M = (mi,j)0≤i≤s−1,0≤j≤t−1
be a binary matrix, where the input x = (x0, x1, . . . , xt−1) take values from Ft2,
and the output of multiplication y = (y0, y1, . . . , ys−1) is calculated as

yi =

{
xk, if mi,k = 1 and |{j|mi,j 6= 0}| = 1,
⊕{j|mi,j 6=0}xj , otherwise.

Then, the statements to describe the propagation of the state under binary matrix
multiplication operation can be combined by the modeling methods for Copy and
(Generalized-) Xor.

S-box is often used to provide confusion for block ciphers. By exploiting
the conditional term, we can describe the propagation of the state under it
specifically.

Model 5 (S-box) Let S be an S-box which substitutes t-bit to s-bit, where the
input x takes values from Ft2, and the output y ∈ Fs2 is calculated as y = S(x).
Then the statement generated by Algorithm 1 can describe the propagation of the
state under S-box operation.

Algorithm 1 Function for Modeling S-box

1: Input: S, x, y
2: Output: The statement to describe the propagation of the state under S-box
3: statement1 = S[0]
4: for j = 1 to 2t − 1 do
5: statement1 = “IF x = j THEN S[j] ELSE statement1”
6: endfor
7: statement = “ASSERT (y = statement1);”
8: return statement

Variable rotation is a novel operation used in some typical block ciphers,
such as RC5 [25] and RC6 [26]. Due to the output of variable rotation operation

9 BVPLUS: Bitvector Add function which is supported by the CVC format of STP
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is closely related to the input values, it is hard to model the propagation of
difference and s-difference under it. In our new model, we exploit the conditional
term to describe the propagation of the state under the variable rotation.

Model 6 (Variable Rotation) Let F be a variable rotation function, the in-
put (x, y) take values from Fq2×Fq2, and the output is calculated as z = x≪y∈ Fq2.
Then, the statement generated by the Algorithm 2 can describe the propagation
of the state under variable rotation operation.

Algorithm 2 Function for Modeling Variable Rotation

1: Input: q, x, y, z
2: Output: The statement to describe the propagation of the state under variable

rotation
3: statement1 = x
4: for j = 1 to q − 1 do
5: statement1 = “IF (y mod q) = j THEN x≪j ELSE statement1”
6: endfor
7: statement = “ASSERT (z = statement1);”
8: return statement

4.2 The Automatic Search Method for Redefined Impossible
Differentials and Impossible (s+ 1)-polytopic Transitions

In this subsection, we show our automatic search algorithm for the i-impossible
(resp. d-impossible) (s+ 1)-polytopic transitions. Since an i-impossible (resp. d-
impossible) differential is an i-impossible (resp. d-impossible) 2-polytopic tran-
sition, the automatic search algorithm for i-impossible (resp. d-impossible) dif-
ferentials can be derived from the algorithm for i-impossible (resp. d-impossible)
(s + 1)-polytopic transitions with s = 1. First, we propose our method for de-
termining whether a pair of input and output s-differences is an i-impossible
(resp. d-impossible) (s+ 1)-polytopic transition. Then, we discuss the selection
of parameter s and the search space of our method.

The i-impossible (resp. d-impossible) (s+1)-polytopic Transition De-
termining Method.
Our method for determining whether a pair of input and output s-differences
(αn,s,βn,s) is an i-impossible (resp. d-impossible) (s+1)-polytopic transition can
be divided into two phases: statements generated phase and STP invoked phase.
In the statements generated phase, we generate a system of statements as a file
to describe the (s+ 1)-polygons xn,s+1 propagate to yn,s+1 with xn,s+1 B αn,s
and yn,s+1 B βn,s. In the STP invoked phase, we invoke the STP for the file
to determine whether (αn,s,βn,s) is an i-impossible (resp. d-impossible) (s+ 1)-
polytopic transition.
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Specification of the statements generated phase.
The algorithm shown in Algorithm 3 generates the statements for judging
whether a pair of input and output s-differences (αn,s,βn,s) is an r-round
impossible (s+ 1)-polytopic transition.

Algorithm 3 Generating statements in CVC format

1: Input: the number of rounds r, the input s-difference αn,s, the output s-difference
βn,s and keyflag∈ {True, False}

2: Output: System of statements in CVC format
3: Declare the input and output (s+ 1)-polygons of xn,s+1 and yn,s+1.
4: Declare the intermediate variables and key variables.
5: for i = 0 to s do
6: Model the r-round propagation of (xi, yi).
7: endfor
8: Generate the constraint of xn,s+1 such that xn,s+1 B αn,s.
9: Generate the constraint of yn,s+1 such that yn,s+1 B βn,s.

10: if keyflag then
11: Generate the constraint of key variables according to key shedule.
12: endif
13: Add the statements “QUERY(FALSE);” and “COUNTEREXAMPLE;”.

We present certain illustrations for Algorithm 3 as follows.
- Line 3-4. Declare the variables which are used in the system of statements,

including the variables which are used to represent the input (s + 1)-
polygon and output (s+ 1)-polygon, the intermediate variables and key
variables used to describe the propagation from the input (s+1)-polygon
to the output (s+ 1)-polygon.

- Line 5-7. According to the propagation rules for each operation which
are given in Section 4.1, model the propagation from the input (s+ 1)-
polygon xn,s+1 to the output (s+ 1)-polygon yn,s+1 with the aid of the
intermediate variables and key variables.

- Line 8-9. Generate the statements in CVC format such that the input
(s+1)-polygon xn,s+1 satisfies the input s-difference αn,s and the output
(s+ 1)-polygon yn,s+1 satisfies the output s-difference βn,s.

- Line 10-12. If “keyflag=True”, then the algorithm generates the statements
to constraint the key variables according to the key schedule. In this
case, the algorithm generates the statements to judge whether a pair of
input and output s-differences (αn,s,βn,s) is an r-round d-impossible
(s + 1)-polytopic transition; Otherwise, it generates the statements to
judge whether a pair of input and output s-differences (αn,s,βn,s) is an
r-round i-impossible (s+ 1)-polytopic transition.

- Line 13. The statements “QUERY(FALSE);” and “COUNTEREXAM-
PLE;” are added to the system of statements. This is a common method
in STP to determine whether an SAT problem has a solution. By adding
those two statements, if the SAT problem has solutions, the STP will
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return one of the solutions and the statement “Invalid.”; Otherwise, it
returns “Valid.”.

Specification of the invoke STP phase.
We invoke the STP for the file which is consisted of the system of statements.
If the statements generated in the case of keyflag=True, then the s-differences
(αn,s,βn,s) is an r-round d-impossible (s+ 1)-polytopic transition when the
STP returns “Valid.”, and (αn,s,βn,s) is not an r-round d-impossible (s+1)-
polytopic transition when the STP returns an r-round d-(s + 1)-polygonal
trail and “Invalid.”. Similarly, if the statements generated in the case of
keyflag=False, then the s-differences (αn,s,βn,s) is an r-round i-impossible
(s+ 1)-polytopic transition when the STP returns “Valid.”, and (αn,s,βn,s)
is not an r-round i-impossible (s + 1)-polytopic transition when the STP
returns an r-round i-(s+ 1)-polygonal trail and “Invalid.”.

Work as a proof tool. Once the search space fixed, we can run our tool
for all the input and output s-differences in such space. If none of the input
and output s-differences is an r-round i-impossible (resp. d-impossible) (s+ 1)-
polytopic transition, we can declare that there exists no r-round i-impossible
(resp. d-impossible) (s+ 1)-polytopic transition in this space.

The Select of parameter s and Search Space.
In our automatic search method for impossible (s+ 1)-polytopic transition, the
total time cost mainly depends on the size of the search space and the time
cost for determining whether an element in the search space is an impossible
(s+ 1)-polytopic transition.

The time cost for determining whether an element in the search space is an
impossible (s+ 1)-polytopic transition is closely related to operations which the
block cipher contains and the value of parameter s we selected. In our exper-
iment, we choose s at most 4, since the search time will cost quite a lot if s
increases beyond this range.

For the search space, traditional automatic tools focus on search the µ input
active bits (resp. nibbles) and ν output active bits (resp. nibbles) impossible
differentials. Since the impossible (s+1)-polytopic transition is the generation of
impossible differential, we define the (µ0, . . . , µs−1) active bits and (µ0, . . . , µs−1)
active nibbles to generate the search space.

Definition 14 ((µ0, . . . , µs−1) Active Bits). For a block cipher E ∈ BC(n,m, l),
we call the s-difference αn,s satisfied the (µ0, . . . , µs−1) active bits, if there are
µi bits of the binary representation of αi(0 ≤ i ≤ s− 1) are non-zero.

Definition 15 ((µ0, . . . , µs−1) Active Nibbles). For a block cipher E ∈ BC(n,m, l)
whose S-box size is q, for any s-difference αn,s, the binary representation of
αi (0 ≤ i ≤ s−1) can be divided into n

q pieces, where αi,j = {αi,q·j , . . . , αi,q·j+q−1}
(0 ≤ j ≤ n

q − 1). We call the s-difference αn,s satisfied the (µ0, . . . , µs−1) active

nibbles, if there are µi pieces of αi(0 ≤ i ≤ s− 1) have non-zero items.
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Our method focuses on searching the (µ0, . . . , µs−1) input active bits and
(ν0, . . . , νs−1) output active bits or (µ0, . . . , µs−1) input active nibbles and
(ν0, . . . , νs−1) output active nibbles, or the subset of those two spaces according
to the experimental result. Due to the limitation of the size of the executable
search space, we mainly search some small values of active bits and active nibbles.
Assume the value µ′i (0 ≤ i ≤ g) appears ϕi times in the tuple (µ0, . . . , µs−1)
and value ν′i (0 ≤ i ≤ h) appears φi times in the tuple (ν0, . . . , νs−1). Then,
for a block cipher E ∈ BC(n,m, l), the number of pairs of input and output s-
differences with (µ0, . . . , µs−1) input active bits and (ν0, . . . , νs−1) output active
bits is(( n

µ′
0

)
ϕ0

)
×· · ·×

(( n
µ′
g

)
ϕg

)
×
(( n

ν′
0

)
φ0

)
×· · ·×

(( n
ν′
h

)
φh

)
∼ O(nµ

′
0ϕ0+···+µ′

gϕg+ν
′
0φ0+···+ν′

hφh).

For a block cipher E ∈ BC(n,m, l) whose S-box size is q, let p = n
q , the number

of pairs of input and output s-differences with (µ0, . . . , µs−1) input active nibbles
and (ν0, . . . , νs−1) output active nibbles is(( p

µ′
0

)
· (2q − 1)

ϕ0

)
×· · ·×

(( p
µ′
g

)
· (2q − 1)

ϕg

)
×
(( p

ν′
0

)
· (2q − 1)

φ0

)
×· · ·×

(( p
ν′
h

)
· (2q − 1)

φh

)
,

which is O(pµ
′
0ϕ0+···+µ′

gϕg+ν
′
0φ0+···+ν′

hφh · 2q·(µ′
0+···+µ′

g+ν
′
0+···+ν′

h)).
According to the above analysis, the size of the search space is still large even

we only search for small values of active bits and active nibbles for impossible
(s+ 1)-polytopic transitions with small value of parameter s. For example, if we
search the (1, 1) input active bits and (1, 1) output active bits for the impossible
3-polytopic transition of a block cipher whose block size is 64, the number of

pairs of input and output s-differences is
((64

1 )
2

)
×
((64

1 )
2

)
= 4064256 ≈ 222. Thus,

we propose the following step by step strategy, which is quite helpful to search
the impossible (s+ 1)-polytopic transitions when the search space is too large.

Step by step strategy. The core of this strategy is to search the impos-
sible (s + 1)-polytopic(s ≥ 2) transition based on the result of the impossible
s-polytopic transition. To be specific, for a block cipher E ∈ BC(n,m, l), if
we know that (αn,s−1,βn,s−1) is an impossible s-polytopic transition, then we
search the impossible (s+ 1)-polytopic(s ≥ 2) transition in the set

{(α0, . . . , αs−2, α)× (β0, . . . , βs−2, β)|the active bits (nibbles) of α and β is u

and v respectively},

where u and v are the predetermined values.

5 Applications to Impossible Differentials from the
Aspect of Cryptanalysis

In this section, we apply our method to various block ciphers, including the
block cipher GIFT64 [3], the key-dependent permutation (or the key-dependent
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S-box) based block cipher PRINTcipher [16], the large S-boxes based block
cipher MISTY1 [21], and the variable rotation based block cipher RC5 [25].
Only concise descriptions of those block ciphers are specified here. For more
details, please refer to their coresponding references. All the experiments in
this paper are conducted on this platform: Intel(R) Xeon(R) CPU E5-2650 v2
@2.60GHz, 64.00G RAM, 64-bit Windows 7 system. The source codes are avail-
able in https://github.com/HugeChaos/Impossible-differentials-and-impossible-
polytopic-transitions. The overview of time costs for getting our results is shown
in Table H in Appendix H.

5.1 GIFT64

GIFT64 was designed by Banik el at. [3], it is a 64-bit block cipher with 128-
bit master key. Interestingly, its round key is 32-bit while it adopts the SPN
structure.
Previous best result. In [3], they searched the impossible differentials by
limiting the input difference activates only one of the first four S-boxes and the
output difference activates only one S-box. The maximum number of rounds of
impossible differentials they got in this search space is 6.
Advantage of our tool. Compared with the previous tools, our tools can search
the impossible differentials taking into account the key schedule.
Configurations for the tool. Firstly, in the search space where the input and
output difference activates only one S-box, the maximum number of rounds of
the impossible differentials we got is also 6. Then, we try to find the 6-round
impossible differentials in which the contradiction cannot be detected by the
previous method. To achieve this purpose, we randomly pick the input difference
activates at most the right 16 bits and the output difference activates at most the
i-th (i ∈ {0, 4, 8, 12, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63}) bit. In this way, it
allows at most the 0th, 4th, 8th and 12th S-box to be active in the 2nd round
by propagating the input difference in the forward direction, and at most the
0th, 1st, 2nd and 3rd S-box to be active in the 5th round by propagating the
output difference in the backward direction. After 65536 random tests, we find
3 6-round impossible differentials that the previous tools cannot detect.
Example of 6-round d-impossible differentials. One of the 6-round d-
impossible differentials is

0x0000000000000600
6−round9 0x0000004020000110.

As shown in Appendix E, according to the propagation rules of traditional d-
ifference, (0x0000000000000600, 0x0000004020000110) is the 6-round possible
differential.
Automatic verification for the above example of impossible differen-
tial of GIFT64. Since this impossible differential cannot be detected by the
propagation of difference, verifying this impossible differential by manual is d-
ifficult, we modify the verification algorithm in [11] as shown in Algorithm 4.
We apply it to verify the example of impossible differential, one contradiction
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occurs in the bit positions of the set G = {0, 1, 2, 3} at the input of the 4-th
round. Moreover, let un,s+1 and vn,s+1 be two (s + 1)-polygons as declared in
Algorithm 4, all the possible values of (u0,3||u0,2||u0,1||u0,0, u1,3||u1,2||u1,1||u1,0)
and (v0,3||v0,2||v0,1||v0,0, v1,3||v1,2||v1,1||v1,0) are shown in the Table 2, it is easy
to see that those values are incompatible, which leads to the contradiction of the
6-round impossible differential.

Table 2. The possible values of (u0,3||u0,2||u0,1||u0,0, u1,3||u1,2||u1,1||u1,0) and
(v0,3||v0,2||v0,1||v0,0, v1,3||v1,2||v1,1||v1,0)

.

u0,3||u0,2||u0,1||u0,0(v0,3||v0,2||v0,1||v0,0) u1,3||u1,2||u1,1||u1,0 v1,3||v1,2||v1,1||v1,0
0 [0, 1, 8, 9] [10, 11, 14, 15]
1 [0, 1, 8, 9] [10, 11, 14, 15]
2 [2, 3, 10, 11] [8, 9, 12, 13]
3 [2, 3, 10, 11] [8, 9, 12, 13]
4 - [9, 10, 13, 14]
5 - [8, 11, 12, 15]
6 - [8, 11, 12, 15]
7 - [9, 10, 13, 14]
8 [0, 1] [2, 3, 5, 6]
9 [0, 1] [2, 3, 4, 7]
10 [2, 3] [0, 1, 4, 7]
11 [2, 3] [0, 1, 5, 6]
12 - [2, 3, 5, 6]
13 - [2, 3, 4, 7]
14 - [0, 1, 4, 7]
15 - [0, 1, 5, 6]

5.2 PRINTcipher

PRINTcipher [16] is proposed by Lars et al. at CHES 2010, consisting of two
versions: PRINTcipher48 and PRINTcipher96. PRINTcipher48 is a block cipher
with 48-bit block and 80-bit key. PRINTcipher96 is a block cipher with 96-bit
block and 160-bit key.

Advantage of our tool. Previous tools cannot apply to PRINTcipher directly
due to that they cannot handle the operation of key-dependent permutation.
By making use of the conditional term, we propose the first modeling method
to describe the propagation of state for key-dependent permutation. Besides,
the PRINTcipher also can be regarded as the key-dependent S-box based block
cipher, where the key-dependent S-box is consisted of the key-dependent per-
mutation and the fixed S-box. We also propose the first modeling method to
describe the propagation of state for key-dependent S-box directly. The model-
ing methods for key-dependent permutation and key-dependent S-box are shown
in Appendix B.
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Configurations for the tool. By considering all the details of key schedule,
we search the impossible differentials for PRINTcipher48 and PRINTcipher96
in the space where the input differences activate only one S-box in the first
substitution layer and the output differences activate only one S-box in the last
substitution layer. Finally, we found 730 4-round d-impossible differentials for
PRINTcipher48 and 234 5-round d-impossible differentials for PRINTcipher96
in total.
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Fig. 7. The 4-round Impossible Di↵erence for PRINTcipher48

Example of 5-Round Impossible Di↵erentials of PRINTcipher96. One of the 1304 5-round impossible
di↵erentials is

(0000, 0000, 0000, 0002, 0000, 0000)
5�round9 (0000, 0000, 0000, 0000, 0000, 1000).

Manual Verification The 5-round Example Impossible Di↵erentials of PRINTcipher96. Similar
to the Observation 1, we have the following observation.

Obsetvation 2 Let PSk = Pk � S, where S donates the S-box of PRINTcipher and Pk donates the key-

dependent permutation. Then, 2
PS00�! {2, 3, 6, 7}, 2

PS01�! {4, 5, 6, 7}, 2
PS10�! {1, 3, 5, 7}, and 2

PS11�! {2, 3, 6, 7}.

22

Fig. 4. The 4-round impossible differential for PRINTcipher48

Example of d-impossible differentials of PRINTcipher. One of the 730
4-round d-impossible differentials of PRINTcipher48 is

0x000000000001
4−round9 0x000000000008.
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One of the 234 5-round d-impossible differentials of PRINTcipher96 is

0x000000000000000200000000
5−round9 0x000000000000000000001000.

Manual verification for the above example of impossible differential
of PRINTcipher. As the impossible differentials are detected by consider-
ing the key schedule, the verification is completely different from the previous
impossible differentials. We only verify the 4-round example of impossible dif-
ferential of PRINTcipher48 here, the 5-round example of impossible differential
of PRINTcipher96 is verified in Appendix D. First, we have the following obser-
vation for the composition of key-dependent permutation and S-box.

Obsetvation 1 Let SPk = S ◦ Pk, where S denotes the S-box of PRINTcipher and

Pk denotes the key-dependent permutation. Then, 1
SP0−→ {1, 3, 5, 7}, 1

SP1−→ {1, 3, 5, 7},
1
SP2−→ {2, 3, 6, 7}, and 1

SP3−→ {4, 5, 6, 7}. On the contrary, we have {1, 3, 5, 7} SP0−→ 1,

{1, 3, 5, 7} SP1−→ 1, {2, 3, 6, 7} SP2−→ 1, and {4, 5, 6, 7} SP3−→ 1.

Theorem 6. The input difference 0x000000000001 cannot propagate to the out-
put difference 0x000000000008 after 4 rounds of PRINTcipher48 by considering
all the details of the key schedule.

Proof. In Figure 4, the input difference is propagated in forwards by 3 rounds,
and the output difference is propagated in backwards by 1 round.

In the forward propagation, only the S-box S3
i (i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}) may

active, and in the backward propagation, only the S-box S3
j (j ∈ {0, 5, 11}) may

active. Thus, if current propagation is compatible, only if S3
5 or S3

0 is active.
Denote Spij = Sij ◦ pij , where Sij denotes the S-box and pij denotes the key-
dependent permutation as shown in Figure 4.

1. If S3
5 is active, we have 1

Sp22−→ 4. Thus, the control key of p22 is 3. Since the
control key of p42 is the same with p22, all possible difference of output of p42
in the backward direction is {0x4, 0x5, 0x6, 0x7}. In this situation, the S3

11

is active, this is a contradiction.

2. If S3
0 is active, we have 1

Sp10−→ 1. Thus, the control key of p10 is 0 or 1. Since
the control key of p30 is the same with p10, all possible differences of output
of S3

0 are {1, 3, 5, 7}, this is a contradiction with the output difference of S3
0

is 2.

All in all, the input difference 0x000000000001 cannot propagate to the out-
put difference 0x000000000008 after 4 rounds of PRINTcipher48.

5.3 MISTY1

The block cipher MISTY1 was designed by Matsui [21]. It is a 64-bit block cipher
which adopts the theory of provable security [24] against differential attack [6]
and linear attack [20].
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The result by Sasaki et al.’s method. Sasaki et al.’s method is the most
advanced previous method to search the impossible differential for block ciphers
with large S-boxes. We employ this method to search the 1 input active bit
and 1 output active bit impossible differentials by limiting the input difference
activates only the right branch and the output difference activates only the left
branch. After 32× 32 = 1024 tests, the maximum number of rounds we got is 4
and a total of 28 4-round impossible differentials are found.
Advantage of our tool. Compared with previous tools, our tool is the first tool
that can search the impossible differentials for large S-boxes based block ciphers
taking into account the differential property of the S-boxes in the independent
key setting.
Configurations for the Tool. We run our tool to search the i-impossible dif-
ferentials in the search space as that by Sasaki et al.’s method. Finally, we found
902 4-round i-impossible differentials, and all the 4-round impossible differentials
derived by Sasaki et al’s method are detected by our tool.
List of 4-round i-impossible differentials. All the 4-round impossible dif-
ferentials we found are shown in the Table 3, where Z32 = {0, 1, . . . , 31} and
A = {33, 35, 36, 46, 49, 50, 51, 52, 53, 57, 58, 62}.

Table 3. 4-Round Impossible Differentials of MISTY-1

ID ∆P ∆C Number

001 e64i (i ∈ Z32/{3, 12, 19, 28}) e6432 28
002 e64i (i ∈ Z32/{14, 30}) e6434 30
003 e64i (i ∈ Z32/{7, 23}) e6437 30
004 e64i (i ∈ {0, 9, 11, 12, 13, 14, 15, 16, 25, 27, 28, 29, 30, 31}) e6438 14
005 e64i (i ∈ {1, 4, 5, 6, 7, 10, 17, 20, 21, 22, 23, 26} e6443 12
006 e64i (i ∈ {4, 5, 6, 7, 10, 20, 21, 22, 23, 26}) e6444 10
007 e64i (i ∈ {0, 3, 4, 5, 6, 7, 8, 10, 16, 19, 20, 21, 22, 23, 24, 26} e6445 16
008 e64i (i ∈ Z32/{12, 28}) e6448 30
009 e64i (i ∈ Z32/{6, 22}) e6454 30
010 e64i (i ∈ Z32) e64j (j ∈ A) 384
011 e64i (i ∈ Z32/{12 + j, 28 + j}) e6455+j(j ∈ {0, 1}) 60
012 e64i (i ∈ Z32/{11, 27}) e64j (j ∈ {47, 63}) 60
013 e64i (i ∈ Z32/{11, 12, 13, 27, 28, 29}) e64j (j ∈ {59, 60, 61}) 78
014 e64i (i ∈ Z32/{12 + j, 28 + j}) e6439+j(j ∈ {0, 1, 2, 3}) 120

Manual verification for the 4-round i-impossible differentials (e64i , e
64
52)(i ∈

Z32) of MISTY1. We finish this work in Appendix A.

5.4 RC5

RC5 is designed by Rivest in 1994 [25]. The block size of it can be 32, 64, or 128
bits. For each block size n, the version is denoted as RC5-n(n = 32, 64, 128).
Advantage of our tool. The operation variable rotation highly depends on the
value of state, which cannot be handled by the previous automatic search tools
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for impossible differentials. In our model, by exploiting the modeling method we
proposed in Section 4.1, we give the first automatic method for searching the
impossible differentials of RC5.
Configurations of our tool. The key schedule of RC5 is very complex. Thus,
we focus on searching i-impossible differentials. By observing the structure of
RC5-n, the difference en(i,i+n

2 ) propagates to the difference en(i+n
2 ) after 0.5-round

in the encryption direction. Thus, we search the i-impossible differentials for
RC5-n(n = 32, 64, 128) by limiting the input difference and output difference in
the set (en(i,i+n

2 ), e
n
(j))(0 ≤ i ≤ n

2 − 1, 0 ≤ j ≤ n− 1).

List of 2.5-round i-impossible differentials. As a result, our tool found 12 i-
impossible differentials for RC5-32, 27 i-impossible differentials for RC5-64, and
58 i-impossible differentials for RC5-128. This is the first result of impossible
differentials for RC5. All the results are shown in Table 4.

Table 4. 2.5-Round i-impossible Differentials of RC5

Block Size ∆P ∆C Number

32 e32(i,i+16)(4 ≤ i ≤ 15) e32(15) 12

64 e64(i,i+32)(5 ≤ i ≤ 31) e64(31) 27

128 e128(i,i+64)(6 ≤ i ≤ 63) e128(63) 58

Manual verification for the i-impossible differential (en(n
2−1,n−1)

, en(n
2 )−1)

of RC5-n. Specifically speaking, we verify the 2.5-round i-impossible differential
(e32(15,31), e

32
(15)) of RC5-32, (e64(31,63), e

64
(31)) of RC5-64, and (e128(63,127), e

128
(63)) of RC5-

128 together. First, we study the relation of a pair of input values and a pair of
output values for the operation variable rotation.

Proposition 1. Let z = x≪ y, w = u≪ v, where x, y, z, u, v, w ∈ Fm2 . Then,
the parity of W (z ⊕ w) is the same as W (x⊕ u).

Proof. Let (xm−1, . . . , x0), (zm−1, . . . , z0), (um−1, . . . , u0) and (wm−1, . . . , w0) be
the binary representation of x, z, u and w respectively. Since z = x≪ y, w =
u ≪ v, we have z0 ⊕ · · · ⊕ zm−1 = x0 ⊕ · · · ⊕ xm−1 and w0 ⊕ · · · ⊕ wm−1 =
u0⊕· · ·⊕um−1. Therefore, z0⊕w0⊕· · ·⊕zm−1⊕wm−1 = (z0⊕· · ·⊕zm−1)⊕(w0⊕
· · ·⊕wm−1) = (x0⊕· · ·⊕xm−1)⊕(u0⊕· · ·⊕um−1) = x0⊕u0⊕· · ·⊕xm−1⊕um−1.

Based on the proposition above, we verify (en(n
2−1,n−1)

, en(n
2−1)

) is the 2.5-

round i-impossible differential for RC5-n(n = 32, 64, 128).

Theorem 7. The input difference en(n
2−1,n−1)

cannot propagate to the output

difference en(n
2−1)

after 2.5 rounds of RC5-n, where n ∈ {32, 64, 128}.

Proof. As shown in Figure 5, let κ = n
2 , we propagate the input 2-state (x1yκ−1||

z1uκ−1, (x⊕ 1)1yκ−1||(z⊕ 1)1uκ−1) whose difference is en(n
2−1,n−1)

in forward by
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(x1y�1, (x � 1)1y�1) (z1u�1, (z � 1)1u�1)

n

(v, v) (z1u�1, (z � 1)1u�1)

n

(v, v) *

n

(d1e�1, (d � 1)1e�1) (�, � � �0)

n

(d1e�1, (d � 1)1e�1) (b1c�1, (b � 1)1c�1)

n

(a, a) (b1c�1, (b � 1)1c�1)

K2r

K2r+1

K2r+2

K2r+3

K2r+4

Contradict

(�, � � �0)

(↵, ↵� ↵0)

(�, � � �0)(h1l�1, (h � 1)1l�1)

(f1g�1, (f � 1)1g�1)

Fig. 6. The 2.5-Round Impossible Di↵erentials of RC5

20

Fig. 5. The 2.5-round impossible differentials of RC5
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1 round, and the output 2-state (aκ||b1cκ−1, aκ||(b ⊕ 1)1cκ−1) whose difference
is en(n

2 )−1 in backward by 1.5 rounds.

Let us focus on the forward propagation. For any input pair (x1yκ−1||z1uκ−1,
(x⊕1)1yκ−1||(z⊕1)1uκ−1), since the least log2κ bits of z1uκ−1 and (z⊕1)1uκ−1

are the same, the left branch of the output of the first round must be in the form
(vκ, vκ).

On the backward propagation, since the least log2κ bits of d1eκ−1 and (d⊕
1)1eκ−1 are same, the output of the second variable rotation operation in the
2th round in the backward direction must be in the form (α, α ⊕ α′), where
W (α′) = 1. Thus, the right branch of the output of the 1.5th round in backward
diretion must be in the form (β, β ⊕ β′), where W (β′) = 0 or 2.

Let γ = vκ⊕β and γ′ = β′, since W (β′) = 0 or 2, according to Proposition 1,
the weight of (γ ≪ β) ⊕ ((γ ⊕ γ′) ≪ (β ⊕ β′)) is even, while the weight of
(h1lκ−1)⊕ ((h⊕ 1)1lκ−1) is odd. This is a contradiction.

6 Applications to Impossible Differentials from the
Aspect of Design

In this section, we apply our tool to evaluate the security of lightweight block
ciphers against the d-impossible differentials directly. For block ciphers with large
S-boxes, we propose the three phases technique and inside value technique, which
improve the security evaluation efficiency against the impossible differentials.

Three phases technique. For a block cipher, proving that all the input differ-
ences in Λ and output differences in Θ are the r-round possible differentials
may be time-consuming. To overcome this dilemma, we pick two sets Φ and
Ψ satisfied: for ∀α ∈ Λ, there exists α0 ∈ Φ such that α can propagate to α0

after r1 rounds in the forward direction, and for ∀β ∈ Θ, there exists β0 ∈ Ψ
such that β can propagate to β0 after r2 rounds in the backward direction.
In this way, we just need to prove all the difference of the Φ and Ψ are the
(r − r1 − r2)-round possible differentials.

Inside value technique. For a block cipher, proving (α, β) is an r-round i-
possible (resp. d-possible) differential directly may be time-consuming. To
solve this problem, we prove that (0, α) and (0, β) is an i-possible (resp.
d-possible) 2-polygon instead. Our experimental results show that this tech-
nique speeds up our proof process.

6.1 Direct Application to GIFT64, PRESENT, Midori64,
PRINTcipher48, and PRINTcipher96

By exploiting our tool, we prove that, in the search space where the input differ-
ence activates only one S-box in the first substitution and the output difference
activates only one S-box in the last substitution, there exists no 7-round, 7-round,
6-round, 5-round, and 6-round impossible differential for GIFT64, PRESENT,
Midori64, PRINTcipher48, and PRINTcipher96 even considering the details of
the key schedule.

28



6.2 Three Phases Technique: Apply to AES-128

AES-128 is the most famous standard block cipher designed by Vincent Rijmen
and Joan Daemen [12]. It is a 128-bit block cipher with 128-bit key. AES-128
adopts the SPN structure. Its 128-bit internal state s can be represented as a
4× 4 matrix of bytes si,j ∈ F8

2 (0 ≤ i, j ≤ 3), each values in the finite fields F8
2.

For more details of AES, please refer to [12].
Previous result. Wang el at. [31] have proved that there exists no 5-round 1
input active word and 1 output active word impossible differentials for AES-128
without the last MC operation even considering all the details of the S-box in the
key independent setting. But, the influence of the key schedule for the impossible
differentials about AES-128 is still unknown.
Our method. Determine whether a pair of input and output differences is
the 5-round impossible differential by considering all the details of the relations
of the round keys is very time-consuming. To resolve this issue, we adopt the
three phases technique to finish our proof. First, according to the following two
observations and further the propositions by studying the differential property
of the S-box of AES, we propagate the input difference one round in the forward
direction and the output difference two rounds in the backward direction. Then,
we run our algorithm to show that those differences after the propagation can be
connected through two rounds of AES even considering the relation of 3-round
keys.

Obsetvation 2 Let S denote the S-box of AES, define DDTin(β) = {α|∃x ∈
F 8
8 , s.t.S(x) ⊕ S(x ⊕ α) = β}, then we have DDTin(0x01) ∪ DDTin(0x02) ∪
DDTin(0xec) = F8

2.

Obsetvation 3 Let S denote the S-box of AES, define DDTout(α) = {β|∃x ∈
F 8
8 , s.t.β = S(x) ⊕ S(x ⊕ α)}, then we have DDTout(0x01) ∪ DDTout(0x02) ∪
DDTout(0xf7) = F8

2. Moreover, we have

{0x0d, 0x1a, 0xff} = {0x0d× 0x01, 0x0d× 0x02, 0x0d× 0xf7} ∈ DDTout(0x01),

{0x0b, 0x16, 0xfb} = {0x0b× 0x01, 0x0b× 0x02, 0x0b× 0xf7} ∈ DDTout(0x03),

{0x09, 0x12, 0x0e} = {0x09× 0x01, 0x09× 0x02, 0x09× 0xf7} ∈ DDTout(0x06),

{0x0e, 0x1c, 0xfd} = {0x0e× 0x01, 0x0e× 0x02, 0x0e× 0xf7} ∈ DDTout(0x09).

Proposition 2. Let F1 = MC ◦ SR ◦ SB ◦ARK, any difference Di,j
α (0 ≤ i ≤

3, 0 ≤ j ≤ 3, α ∈ F8
2/{0}) can propagate to at least one of the differences of

MC ◦ SR(Di,j
0x01), MC ◦ SR(Di,j

0x02), and MC ◦ SR(Di,j
0xec) through F1.

Proposition 3. Let F2 = ARK ◦ SR ◦ SB ◦ARK ◦MC ◦ SR ◦ SB and

P =


0x09 0x03 0x01 0x06
0x06 0x09 0x03 0x01
0x01 0x06 0x09 0x03
0x03 0x01 0x06 0x09

 .
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Let k = (j + i) mod 4. Then, for any difference Di,j
α (0 ≤ i ≤ 3, 0 ≤ j ≤ 3, α ∈

F8
2/{0}), the difference Gi,j := D0,k

P0,i
+D

1,(k+1)mod4
P1,i

+D
2,(k+2)mod4
P2,i

+D
3,(k+3)mod4
P3,i

can propagate to it through F2.

Proof. Let Q be the inverse matrix of the MDS used in AES10. According to

Observation 3, for ∀z ∈ {0x01, 0x02, 0x7f}, we have Gi,j
SR◦SB−→ D0,k

Q0,i×z +

D1,k
Q1,i×z +D2,k

Q2,i×z +D3,k
Q3,i×z, since the S-box is applied to each byte of the state

in parallel in the SB operation. Then based on the definition of Q, we have
MC(D0,k

Q0,i×z+D1,k
Q1,i×z+D2,k

Q2,i×z+D3,k
Q3,i×z) = Di,k

z . According to Observation 3,

for any difference Di,j
α (0 ≤ i ≤ 3, 0 ≤ j ≤ 3, α ∈ F8

2/{0}), at least one of

Di,k
0x01, D

i,k
0x02, and Di,k

0x7f can propagate to it through SR ◦ SB. Thus, for any

difference Di,j
α (0 ≤ i ≤ 3, 0 ≤ j ≤ 3, α ∈ F8

2/{0}), the difference Gi,j can
propagate to it through F2. ut

Our experiment. Let F3 = ARK◦(MC◦SR◦SB◦ARK)2. For 0 ≤ i, j, s, t ≤ 3,
by considering the relations of K1, K2, and K3 according to the key schedule,
we run our tool to determine whether all the differences of MC ◦ SR(Di,j

0x01),

MC ◦SR(Di,j
0x02), and MC ◦SR(Di,j

0xec) can propagate to Gs,t through F3. After
a total of 16 × 16 × 3 = 768 tests, our result shows that all the differences of
MC ◦SR(Di,j

0x01), MC ◦SR(Di,j
0x02), and MC ◦SR(Di,j

0xec) can propagate to Gs,t
through F3 in our setting, which leads to the following theorem.

Theorem 8. For 5-round AES-128 without the last MC operation, there ex-
ists no 1 input active word and 1 output active word impossible differentials by
considering the relations of K1, K2, and K3.

In Appendix F, we give an example to diagram our three phases method for
AES-128.

6.3 Combination of Three Phases Technique and Inside Value
Technique: Application to MISTY1

The 5-round MISTY1 in which the FL layers were placed at the even rounds
is shown in the right of Figure 6. In this subsection, we prove there exists no 1
input active bit and 1 output active bit impossible differentials for it in the key
independent setting.
Previous result. Since MISTY1 adopts the 7-bit and 9-bit S-boxes, no auto-
matic search tool could be used to evaluate its security taking account into the
differential property of S-boxes so far.

10

Q =


0x0e 0x0b 0x0d 0x09
0x09 0x0e 0x0b 0x0d
0x0d 0x09 0x0e 0x0b
0x0b 0x0d 0x09 0x0e

 .
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Our approach. We combine the three phases technique and inside value tech-
nique to accelerate our tool in this part. Denote β0||α0 be the 1 input active bit
difference and β5||α5 be the 1 output active bit difference, and FO(KI,KO) be
the FO function, where KI and KO are the secret keys in the FO function. Let

β1||α1 =

{
e64i+32, if (β0||α0) = e64i (0 ≤ i ≤ 31),
(FO0,0(0)⊕ FO0,0(e32i−32))||e32i−32, if β0||α0) = e64i (32 ≤ i ≤ 63).

β4||α4 =

{
e32i ||(FO0,0(0)⊕ FO0,0(e32i ))e64i+32, if (β5||α5) = e64i (0 ≤ i ≤ 31),
e64i−32, if β5||α5) = e64i (32 ≤ i ≤ 63).

That is, we propagate the difference β0||α0 through one round to β1||α1 in the
forward direction and the difference β5||α5 through one round to β4||α4 in the
backward direction. Then, we prove that (0, β1||α1) and (0, β4||α4) is the i-
possible 2-polygons.

Our experiment. We run our tool to determine whether the input 2-polygons
(0, β1||α1) and the output 2-polygons (0, β4||α4) are the i-possible 2-polygons
for 3 rounds MISTY1. After a total of 64 × 64 = 4096 tests, our result shows
that all the input 2-polygons (0, β1||α1) and the output 2-polygons (0, β4||α4)
are the i-possible 2-polygons for 3-round MISTY1, which leads to the following
theorem.

Theorem 9. For 5-round MISTY1 in which the FL layers were placed at the
even rounds, there exists no 1 input active bit and 1 output active bit impossible
differentials in the key independent setting.

7 Applications to Impossible (s + 1)-polytopic (s ≥ 2)
Transitions

In this section, we run our tool to search the impossible (s+ 1)-polytopic(s ≥ 2)
transitions for PRINTcipher, GIFT64, PRESENT, and RC5. All the contradic-
tions of the distinguishers in this section can be detected by Algorithm 4, the
details are shown in the Appendix G. First, for S-boxes based block ciphers, we
define some search spaces for the input and output s-differences.

Search space1: In this space, the input 2-difference (b1, b2) is the (1, 1) active
bit which only activates the two right S-boxes in the first round, and the
output 2-difference (e1, e2) is the (1, 1) active bit.

Search space2: In this space, the input 2-difference (b1, b2) is the (1, 1) input
active bit which only activates the first right S-box in the first round and the
2-difference (e1, e2) is the (1, 1) output active bit which activates the same
S-box in the last round.

Search spacei(i = 3, 4): In this space, the input 3-difference is of pattern (b1, b2,
b1⊕b2) and the output 3-difference is of pattern (e1, e2, e1⊕e2), where (b1, b2)
and (e1, e2) are in Search spacei−2.
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7.1 The d-impossible polytopic transitions of PRINTcipher

In this part, we show our method to search the impossible 3-polytopic transitions
and impossible 4-polytopic transitions for PRINTcipher48 and PRINTcipher96
by considering all the details of the key schedule. Besides, we also study the influ-
ence of the Xor key and control key for the d-impossible 3-polytopic transitions
of PRINTcipher48.

For the d-impossible 3-polytopic transitions of PRINTcipher48, we search

such distinguishers in the Search space1. After a total of
((6

1)
2

)
×
((48

1 )
2

)
= 16920

tests, the maximum number of rounds of d-impossible 3-polytopic transitions
in this search space is 6, and a total of 1471 6-round d-impossible 3-polytopic
transitions are found. One of them is

(0x000000000001, 0x000000010000)
6−round9 (0x000000000002, 0x000000000200).

Impact of the constraints of the Xor keys. In our search above, we restrict the Xor
keys and control keys according to the key schedule. To investigate the impact
of the constraints of the Xor keys, we further release the constraints of the Xor
keys and keep the constraints of the control keys. Then, we run our tool to
search the 6-round impossible 3-polytopic transitions in Search space1. Finally,
we get 1448 6-round impossible 3-polytopic transitions. This result shows that,
the constraint of the Xor keys leads to more contradictions for constructing the
impossible 3-polytopic transitions.
Impact of the constraints of the control keys. Similarly, we keep the constraints of
the Xor keys and release the constraints of the control keys over again. Then, we
run our tool to search the 6-round impossible 3-polytopic transitions in Search
space1. Finally, we found that there exists no 6-round impossible 3-polytopic
transitions in such search space. This result shows that the constraints of the
control keys have a very significant impact on constructing the impossible 3-
polytopic transitions.

Those two results show that, both the Xor keys and control keys may have
influences on the results of impossible (s+ 1)-polytopic transitions. Thus, in the
search of impossible (s+ 1)-polytopic transitions, we should consider the details
of key schedule as much as possible if the time cost permits.

For the d-impossible 4-polytopic transitions of PRINTcipher48, we search
such distinguishers in Search space3. Finally, we found one 7-round d-impossible
4-polytopic transition of PRINTcipher48 as follows and stop our tool due to the
limitation of search time.

(0x000000000001, 0x000000010000, 0x000000010001)
7−round9

(0x000000000001, 0x000000000200, 0x000000000201).

For the d-impossible 3-polytopic transitions of PRINTcipher96, we search
such distinguishers in Search space1. Finally, we find one 7-round d-impossible
3-polytopic transition of PRINTcipher96 as follows and stop our tool due to the
limitation of search time.

(0x000000000000000000000001, 0x000000000000000100000000)
7−round9

(0x000000000000000000000001, 0x000000000000000008000000)

32



For the d-impossible 4-polytopic transitions of PRINTcipher96, we search
such distinguishers in Search space3. Finally, we find one 8-round d-impossible
4-polytopic transition of PRINTcipher96 as follows (as the left 48-bit of each
value are 0, we only show the right 48 bits here) and stop our tool due to the
limitation of search time.

(0x000000000001, 0x000100000000, 0x000100000001)
8−round9

(0x000000000001, 0x000000000200, 0x000000000201).

7.2 The 7-round d-impossible 3-polytopic transition of GIFT64

For GIFT64, we search the d-impossible 3-polytopic transitions in Search space2
Finally, we find one 7-round d-impossible 3-polytopic transition as follows and
stop our tool due to the limitation of search time.

(0x0000000000000001, 0x0000000000000002)
7−round9

(0x0000000000000001, 0x0000000000000008).

7.3 The 7-round i-impossible 4-polytopic transition of PRESENT

For the i-impossible 4-polytopic transitions of PRESENT, we search such distin-
guishers in Search space4. Finally, we find one 7-round d-impossible 4-polytopic
transition of PRESENT as follows and stop our tool due to the limitation of
search time.

(0x0000000000000001, 0x0000000000000002, 0x0000000000000003)
7−round9

(0x0000000000000001, 0x0000000000010000, 0x0000000000010001).

7.4 The 3-round i-impossible 3-polytopic transition of RC5-32 and
RC5-64

In this subsection, we show our method for searching the i-impossible 3-polytopic
transition of RC5-32 and RC5-64 by adopting the step by step strategy.

For RC5-32, since (0x80008000, 0x00008000) is the 2.5-round impossible dif-
ferential, we search the i-impossible 3-polytopic transitions by limiting the input
2-difference (b1, b2) in the set {(0x80008000, e32i,i+16)|0 ≤ i ≤ 15} and the output

2-difference (e1, e2) in the set {(0x00008000, e32i )|0 ≤ i ≤ 31}. Finally, we find
108 3-round i-impossible 3-polytopic transitions and result in that there exists
no 3.5-round i-impossible 3-polytopic transitions in such search space. One of
the transitions is

(0x80008000, 0x00100010)
3−round9 (0x80000000, 0x00200000).

By adopting the same method for RC5-32, we find one 3-round i-impossible
3-polytopic transition as follows.

(0x8000000080000000, 0x0000002000000020)
3−round9

(0x8000000000000000, 0x0000004000000000).
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8 Conclusion

In this paper, we redefine the impossible differentials and impossible (s + 1)-
polytopic transitions based on the notation of s-polygon, and design a unity
SAT-based automatic tool to search them. We apply our tool to various block
ciphers. These results show that our tool can not only be used to search the
distinguishers by considering the key schedule in the single-key setting, but also
make the most of the inside property of large S-boxes or variable rotation for
several typical classes of block ciphers.

Moreover, we derive an interesting result that, with the increase of the param-
eter s, the number of rounds in which the impossible (s+1)-polytopic transition
exists also increases. Although due to the limitations of computing power, we
can only search the impossible (s + 1)-polytopic transition with a small value
of s. But, the result indicates a challenge clearly that the impossible (s + 1)-
polytopic transition may bring threats for block ciphers with the development
of the solver of the SAT and the computing power, and it is better to resist this
kind of cryptanalysis in a theoretical way of cipher design.
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A Manual Verification the 4-round i-impossible
Differentials of MISTY1

First, we study the property of the FL and FO function of MISTY1.

Obsetvation 4 Let F denote the FL function of MISTY1, if the input difference
is one of e32i , e32i+16, and e32i,i+16(0 ≤ i ≤ 15), all possible output difference of

F is {e32i , e32i+16, e
32
i,i+16}. Moreover, all possible output difference of F 2 also is

{e32i , e32i+16, e
32
i,i+16}, where F 2 denotes the composition of two FL functions.

Proposition 4. Let F denote the FO function of MISTY1 and γi(0 ≤ i ≤ 1)

be the 16-bit variables, for ∀(γ1||γ0) ∈ {β|e3220
F−→ β}, we have W (γ1) > 1.

Proof. By observing the structure of F , we have γ1 = α||β, where α ∈ Λ =
{S7(x)⊕S7(x⊕0x10)⊕0x10|x ∈ F7

2} and β ∈ Φ = {S9(y)⊕S9(y⊕0x10)⊕α|y ∈
F9
2}. For ∀α ∈ Λ, if W (α) ≥ 2, the conclusion is obvious. Otherwise, we only
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Fig. 5. The 4round Impossible Di↵erence of MISTY-1

encryption process. Thus, those tools cannot model the propagation of di↵erence for the operation variable
rotation precisely, which are failure in searching the impossible di↵erentials for RC5. Since our tool can
model the propagation of states for the operation variable rotation, this is the first automatic tool for search
the impossible di↵erentials of RC5.

Configurations of Our Tool The key schedule of RC5 is very complexity, thus, we focus on search the i-
impossible di↵erentials. By observing the structure of RC5-n, we get the i-impossible di↵erentials by searching
all the pairs of input di↵erence and output di↵erence (en

(i,i+ n
2 ), e

n
(j))(0  i  n

2 � 1, 0  j  n � 1), as the

di↵erence en
(i,i+ n

2 ) propagate to the di↵erence en
(i+ n

2 ) after half round encryption. The total number of pairs

we searched is n
2 ⇥ n = 1

2n2 for RC5-n(n = 32, 64, 128).

List of 2.5-Round i-impossible Di↵erentials As a result, our tool found 12 i-impossible di↵erentials for
RC5-32, 27 i-impossible di↵erentials for RC5-64, and 58 i-impossible di↵erentials for RC5-128. This is the
first result of impossible di↵erentials for RC5. All the result is shown in the Table 3.

Manual Verification The i-impossible Di↵erence (en
( n

2 �1,n�1), e
n
( n

2 )�1) for RC5-n Specifically speak-

ing, we verify the 2.5-round i-impossible Di↵erence (e32
(15,31), e

32
(15)) for RC5-32, (e64

(31,63), e
64
(31)) for RC5-64,
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29

Fig. 6. The 4-round impossible differential of MISTY1 (left) and 5-round MISTY1 in
which the FL layer were placed at the even round (right).

have α = 0x1 or α = 0x4. Since {0x1, 0x4} * {S9(y)⊕S9(y⊕0x10)|y ∈ F9
2}, for

∀β ∈ Φ, we have β 6= 0 when α = 0x1 or α = 0x4. Thus, W (γ1) = W (α||β) ≥ 2.

Theorem 10. For any i(0 ≤ i ≤ 31), the input difference e64i cannot propagate
to the output difference e6452 after 4 rounds of MISTY1 in the key independent
setting.

Proof. In Figure 6, the input difference is propagated in forwards by 2.5 rounds,
and the output difference is propagated in backwards by 1.5 rounds.

Let us focus on the forward propagation. Let ηi(i = 0, 1) be the 16-bit
variables. Assume the output difference of the FL in the right branch of 3-
round is η1||η0. From the Observation 4, if 0 ≤ i ≤ 15, we have η1||η0 ∈
{e32i , e32i+16, e

32
i,i+16}. If 16 ≤ i ≤ 31, we have η1||η0 ∈ {e32i , e32i−16, e32i,i−16}. All

in all, we have W (η1) ≤ 1.
On the backward propagation, according to the Proposition 4, the output

difference in the right branch after 1.5 rounds is γ1||γ0, where W (γ1) ≥ 2.
Since γ1 = η1, this is a contradiction.

B Model the key-dependent permutation

For the key-dependent permutation, assume the input variable is x2||x1||x0, the
output variable is y2||y1||y0, and the control key is k1||k0. Then, the following
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statement can be used to describe the propagation of state through the key-
dependent permutation.

ASSERT(y2@y1@y0 = (IF k1@k0 = 0bin11 THEN x0@x1@x2 ELSE (IF
k1@k0 = 0bin10 THEN x2@x0@x1 ELSE (IF k1@k0 = 0bin01 THEN x1@x2@x0
ELSE x2@x1@x0 ENDIF) ENDIF) ENDIF));

For the key-dependent S-box, assume the input variable is x2||x1||x0, the
output variable is y2||y1||y0, and the control key is k1||k0. Then, the following
statement can be used to describe the propagation of state through the key-
dependent S-box.

ASSERT(y2@y1@y0 = (IF k1@k0@x2@x1@x0 = 0bin11111 THEN 0bin010
ELSE (IF k1@k0@x2@x1@x0 = 0bin11110 THEN 0bin110 ELSE (IF k1@k0@x2@x1@x0
= 0bin11101 THEN 0bin100 ELSE (IF k1@k0@x2@x1@x0 = 0bin11100 THEN
0bin001 ELSE (IF k1@k0@x2@x1@x0 = 0bin11011 THEN 0bin101 ELSE (IF
k1@k0@x2@x1@x0 = 0bin11010 THEN 0bin011 ELSE (IF k1@k0@x2@x1@x0
= 0bin11001 THEN 0bin111 ELSE (IF k1@k0@x2@x1@x0 = 0bin11000 THEN
0bin000 ELSE (IF k1@k0@x2@x1@x0 = 0bin10111 THEN 0bin010 ELSE (IF
k1@k0@x2@x1@x0 = 0bin10110 THEN 0bin100 ELSE (IF k1@k0@x2@x1@x0
= 0bin10101 THEN 0bin101 ELSE (IF k1@k0@x2@x1@x0 = 0bin10100 THEN
0bin111 ELSE (IF k1@k0@x2@x1@x0 = 0bin10011 THEN 0bin110 ELSE (IF
k1@k0@x2@x1@x0 = 0bin10010 THEN 0bin001 ELSE (IF k1@k0@x2@x1@x0
= 0bin10001 THEN 0bin011 ELSE (IF k1@k0@x2@x1@x0 = 0bin10000 THEN
0bin000 ELSE (IF k1@k0@x2@x1@x0 = 0bin01111 THEN 0bin010 ELSE (IF
k1@k0@x2@x1@x0 = 0bin01110 THEN 0bin101 ELSE (IF k1@k0@x2@x1@x0
= 0bin01101 THEN 0bin110 ELSE (IF k1@k0@x2@x1@x0 = 0bin01100 THEN
0bin011 ELSE (IF k1@k0@x2@x1@x0 = 0bin01011 THEN 0bin100 ELSE (IF
k1@k0@x2@x1@x0 = 0bin01010 THEN 0bin111 ELSE (IF k1@k0@x2@x1@x0
= 0bin01001 THEN 0bin001 ELSE (IF k1@k0@x2@x1@x0 = 0bin01000 THEN
0bin000 ELSE (IF k1@k0@x2@x1@x0 = 0bin00111 THEN 0bin010 ELSE (IF
k1@k0@x2@x1@x0 = 0bin00110 THEN 0bin101 ELSE (IF k1@k0@x2@x1@x0
= 0bin00101 THEN 0bin100 ELSE (IF k1@k0@x2@x1@x0 = 0bin00100 THEN
0bin111 ELSE (IF k1@k0@x2@x1@x0 = 0bin00011 THEN 0bin110 ELSE (IF
k1@k0@x2@x1@x0 = 0bin00010 THEN 0bin011 ELSE (IF k1@k0@x2@x1@x0
= 0bin00001 THEN 0bin001 ELSE 0bin00000 ENDIF) ENDIF) ENDIF) EN-
DIF) ENDIF) ENDIF) ENDIF) ENDIF) ENDIF) ENDIF) ENDIF) ENDIF)
ENDIF) ENDIF) ENDIF) ENDIF) ENDIF) ENDIF) ENDIF) ENDIF) EN-
DIF) ENDIF) ENDIF) ENDIF) ENDIF) ENDIF) ENDIF) ENDIF) ENDIF)
ENDIF) ENDIF));

C The Equivalence of Generalized-MISTY1 Structure

The MISTY1 structure is the structure which the block cipher MISTY1 adopted
without specify the detail of the S-boxes. We generalize the MISTY1 structure
in the following two directions, named Generalized-MISTY1 structure.

– The block cipher MISTY1 adopts the FL function, we generalize this func-
tion as FLµ,ν which is shown in the right of Figure 7.
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– Instead of apply the FL layers every two rounds, the FLµ,ν can be placed
at the left branch or the right branch of any round.

One round of the Generalized-MISTY1 structure is shown in the left of Fig-
ure 7, where the function Gs,t is the FLu,v function or the identity function. In
this section, we show that traditional impossible (s + 1)-polytopic transition is
equivalent to the i-impossible (s + 1)-polytopic transition for the Generalized-
MISTY1 structure.

G1,0 G1,1

FO1

kL

kR

≪µ

≪ν

Fig. 7. One round of the Generalized-MISTY1 structure(left) and the FLµ,ν func-
tion(right)

C.1 The Equivalence of FLµ,ν Function

The FLµ,ν function is used in block ciphers to against unknown attacks. For
example, FL0,0 is used in the block cipher MISTY1 and MISTY2, FL1,0 is used
in the block cipher Camellia [1].

Since the FLµ,ν function contains the Bitwise-And-Key operation and the
Bitwise-Or-Key operation, we study the propagation rules of the s-difference for
those two operations first.

Lemma 1. Let Fk(x) = k∧x be the Bitwise-And-Key function, where the input
x takes values of F q2 and the parameter k ∈ F q2 . For any input s-difference
αq,s = (α0, . . . , αs−1), all possible output s-difference of F is 4∧F (αq,s) = {(k ∧
α0, . . . , k ∧ αs−1)|k ∈ F q2 }.

Proof. For ∀xq,s+1 B αq,s, we have (k ∧ x0) ⊕ (k ∧ xj+1) = k ∧ (x0 ⊕ xj+1) =
k ∧ αj(0 ≤ j ≤ s − 1). Thus, for ∀k ∈ F q2 , all possible output difference of F is
4∧F (αq,s) = {(k ∧ α0, . . . , k ∧ αs−1)|k ∈ F q2 }.

Lemma 2. Let Fk(x) = k ∨ x be the Bitwise-Or-Key function, where the input
x takes values of F q2 and the parameter k ∈ F q2 . For any input s-difference
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αq,s = (α0, . . . , αs−1), all possible output s-difference of F is 4∨F (αq,s) = {(k ∧
α0, . . . , k ∧ αs−1)|k ∈ F q2 }.

Proof. For ∀xq,s+1 B αq,s, we have αj ∨ k = (αj ∧ k) ⊕ αj ⊕ k(0 ≤ j ≤ s).
Thus, (k ∨ α0) ⊕ (k ∨ αj+1) = (k ∧ (α0 ⊕ αj+1)) ⊕ (α0 ⊕ αj+1) = k ∧ (α0 ⊕
αj+1)(0 ≤ j ≤ s− 1). Therefore, for ∀k ∈ F q2 , all possible output difference of F
is 4∨F (αq,s) = {(k ∧ α0, . . . , k ∧ αs−1)|k ∈ F q2 }.

Based on Lemma 1 and Lemma 2, we have the following lemma to show
the equivalence of a valid (s+ 1)-polytopic transition and an i-possible (s+ 1)-
polygons for FLµ,ν function.

Lemma 3 (The Equivalence of FLµ,ν Function). Let F denote the FLµ,ν
function as shown in Figure 8. Then, (α0

q,s||β0
q,s,α1

q,s||β1
q,s) is a valid (s+

1)-polytopic transition if and only if for ∀(x0
q,s+1||y0q,s+1) B (α0

q,s||β0
q,s),

there exists a (s + 1)-polygon (x1
q,s+1||y1q,s+1) B (α1

q,s||β1
q,s), such that

(x0
q,s+1||y0q,s+1,x1

q,s+1||y1q,s+1) is i-possible (s+ 1)-polygons.

α0
q,s||β0

q,s

kL

kR

α1
q,s||β1

q,s

≪µ
α0

q,s γ0
q,s

δ0
q,s

≪ν

β1
q,sγ1

q,s
δ1
q,s

x0
q,s+1||y0q,s+1

kL

kR

x1
q,s+1||y1q,s+1

≪µ
x0

q,s+1 z0
q,s+1 u0

q,s+1

≪ν

y1
q,s+1

z1
q,s+1u1

q,s+1

Fig. 8. The valid (s + 1)-polytopic trail (left) and (s + 1)-polygonal trail (right) for
FLµ,ν .

Proof. Suppose (α0
q,s||β0

q,s,α1
q,s||β1

q,s) is a valid (s + 1)-polytopic transi-
tion. Then, there exists a valid (s + 1)-polytopic trail as shown in the left of
Figure 8. Since (α0

q,s,γ0
q,s) is the valid (s + 1)-polytopic transition of the

operation Bitwise-And-Key, according to the Lemma 1, there exists kL ∈ F q2 ,
such that γ0,i = kL ∧ α0,i(0 ≤ i ≤ s − 1). Let z0

q,s+1 = (z0,0, . . . , z0,s) =
(kL ∧ x0,0, . . . , kL ∧ x0,s). Then, z0

q,s+1 B γ0
q,s and (x0

q,s+1, z0
q,s+1) is an

i-possible (s + 1)-polygon for the operation Bitwise-And-Key. Let u0
q,s+1 =

(u0,0, . . . , u0,s) = (z0,0 ≪µ, . . . , z0,s ≪µ) and y1
q,s+1 = (y1,0, . . . , y1,s) =
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(y0,0 ⊕ u0,0, . . . , y0,s ⊕ u0,s), then we have u0
q,s+1 B δ0q,s and y1

q,s+1 B β1
q,s.

Since (β1
q,s,γ1

q,s) is a valid (s+1)-polytopic transition of the operation Bitwise-
Or-Key, according to Lemma 2, there exists kR ∈ F q2 , such that γ1,i = kR ∧
β1,i(0 ≤ i ≤ s−1). Let z1

q,s+1 = (z1,0, . . . , z1,s) = (kR∧y1,0, . . . , kR∧y1,s), then
z1
q,s+1 B γ1q,s and (y1

q,s+1, z1
q,s+1) is an i-possible (s+1)-polygon for the oper-

ation Bitwise-Or-Key. Let u1
q,s+1 = (u1,0, . . . , u1,s) = (z1,0 ≪ν , . . . , z1,s ≪ν)

and x1
q,s+1 = (x1,0, . . . , x1,s) = (x0,0 ⊕ u1,0, . . . , x0,s ⊕ u1,s), then we have

u1
q,s+1 B δ1q,s and x1

q,s+1 B α1
q,s. Therefore, as shown in the right of Fig-

ure 8, for ∀(x0
q,s+1||y0q,s+1) B (α0

q,s||β0
q,s), there exists a (s + 1)-polygon

(x1
q,s+1||y1q,s+1) B (α1

q,s||β1
q,s), such that (x0

q,s+1||y0q,s+1,x1
q,s+1||y1q,s+1)

is i-possible (s+ 1)-polygons.
Since all the procedures above are invertible, it is easy to show that if for

∀(x0
q,s+1||y0q,s+1) B (α0

q,s||β0
q,s), there exists a (s + 1)-polygon (x1

q,s+1||
y1

q,s+1) B (α1
q,s|| β1

q,s), such that (x0
q,s+1||y0q,s+1, x1

q,s+1|| y1q,s+1) is
i-possible (s + 1)-polygons, then (α0

q,s||β0
q,s,α1

q,s||β1
q,s) is a valid (s + 1)-

polytopic transition of FLµ,ν .

C.2 The Equivalence of FO Function of MISTY1

The FO function of MISTY1 is a 3-round, 32-bit, balanced MISTY structure
with the FI function as its F-function. In this part, we show the equivalence of a
valid (s+1)-polytopic transition and a pair of i-possible (s+1)-polygons for the
FO function. Before this, we show the equivalence of a valid (s + 1)-polytopic
transition and a pair of i-possible (s+ 1)-polygons for the FI function.

Lemma 4 (The Equivalence of FI Function). Let F denote the FI func-
tion as shown in Figure 9. Then, (α0

9,s||β0
7,s,β4

7,s||α5
9,s) is the valid (s+ 1)-

polytopic transition if and only if there exist i-possible (s+1)-polygons (x0
9,s+1||

y0
7,s+1,y4

7,s+1||x5
9,s+1), where (x0

9,s+1|| y07,s+1) B (α0
9,s||β0

7,s) and (y4
7,s+1||

x5
9,s+1) B (β4

7,s||α5
9,s).

Proof. Suppose (α0
9,s||β0

7,s,β4
7,s||α5

9,s) is a valid (s + 1)-polytopic transi-
tion. Then, there exists a valid (s + 1)-polytopic trail as shown in the left of
Figure 9. Since (α0

9,s,α1
9,s) is the valid (s + 1)-polytopic transition for the

first S-box S9, then there exist x0
9,s+1 B α0

9,s and x1
9,s+1 B α1

9,s, such
that (x0

9,s+1,x1
9,s+1) is i-possible (s + 1)-polygons. Analogously, there exist

i-possible (s+ 1)-polygons (y1
7,s+1,β1

7,s) for the S-box S7 and (x3
9,s+1,x4

9,s)
for the second S9, where y1

7,s+1 B β1
7,s, y2

7,s+1 B β2
7,s, x3

9,s+1 B α3
9,s and

x4
9,s+1 B α4

9,s.

Let

y0,j = y1,j(0 ≤ j ≤ s),
x2,j = x1,j ⊕ zero-extend(y0,j)(0 ≤ j ≤ s),
w1,j = y2,j ⊕ truncate(x2,j)(0 ≤ j ≤ s),

Then, we have x2
9,s+1 B α2

9,s and w1
7,s+1 B β3

7,s. Let KI1 = x2,0 ⊕ x3,0,
since α2

9,s = α3
9,s and x3

9,s+1 B α3
9,s, we have x3,j = x2,j ⊕ KI1. For any
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KI0,

let

y3
7,s = (y3,0, . . . , y3,s) = (w1,0 ⊕KI0, . . . , w1,s ⊕KI0),

y4
7,s+1 = y3

7,s+1,
x5,j = x4,j ⊕ zero-extend(y3,j), (0 ≤ j ≤ s)

Therefore, we have constructed i-possible (s+1)-polygons of FI, which is (x0
9,s+1||

y0
7,s+1,y4

7,s+1||x5
9,s+1) with (x0

9,s+1||y07,s+1) B (α0
9,s||β0

7,s) and (y4
7,s+1||

x5
9,s+1) B (β4

7,s||α5
9,s), as shown in the right of Figure 9.

α0
9,s β0

7,s

S9

S7

S9

β4
7,s α5

9,s

KI0 KI1

α1
9,s

zero-extend

β1
7,s

α2
9,s

β2
7,s

truncate

α3
9,s

α4
9,s

zero-extend

β3
7,s

x0
9,s+1 y0

7,s+1

S9

S7

S9

y4
7,s+1 x5

9,s+1

KI0 KI1

x1
9,s+1

zero-extend

y1
7,s+1

x2
9,s+1

y2
7,s+1

truncate

w1
7,s+1

x3
9,s+1

x4
9,s+1

zero-extend

y3
7,s+1

Fig. 9. The valid (s+ 1)-polytopic trail (left) and (s+ 1)-polygonal trail (right) for FI
Function of MISTY1

Since all the procedures above are invertible, it is easy to show that if
there exist i-possible (s+1)-polygons (x0

9,s+1||y07,s+1,y4
7,s+1||x5

9,s+1), where
(x0

9,s+1||y07,s+1) B (α0
9,s||β0

7,s) and (y4
7,s+1||x5

9,s+1) B (β4
7,s||α5

9,s), then
(α0

9,s||β0
7,s,β4

7,s||α5
9,s) is a valid (s+ 1)-polytopic transition of FI function.
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16,s β3
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KO1

KO2

KO3

KO4

α0
16,s

α1
16,s

α1
16,s

γ0
16,s

β1
16,s

α2
16,s

α2
16,s

γ1
16,s
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α3
16,s

γ2
16,s

x0
16,s+1 y0

16,s+1

FI1

FI2

FI3

z3
16,s+1 y3

16,s+1

KO1

KO2

KO3

KO4

z0
16,s+1

x1
16,s+1
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16,s+1
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16,s+1

y1
16,s+1
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16,s+1
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16,s+1
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x3
16,s+1

u2
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Fig. 10. The valid (s + 1)-polytopic trail (left) and (s + 1)-polygonal trail (right) for
FO Function of MISTY1
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Lemma 5 (The Equivalence of The FO Function). Let FO denote the
FO function as shown in Figure 10. Then, (α0

16,s||β0
16,s,α3

16,s||β3
16,s) is

a valid (s + 1)-polytopic transition if and only if for ∀(x0
16,s+1||y016,s+1) B

(α0
16,s||β0

16,s), there exists a (s+1)-polygon (x1
16,s+1||y116,s+1) B (z3

16,s+1||y316,s+1),
such that (x1

16,s+1||y116,s+1,x1
16,s+1||y116,s+1) is i-possible (s+ 1)-polygons.

Proof. Suppose (α0
16,s||β0

16,s,α3
16,s||β3

16,s) is a valid (s + 1)-polytopic tran-
sition. Then, there exists a valid (s + 1)-polytopic trail as shown in the left of
Figure 10. For 0 ≤ i ≤ 2, since (αi

16,s,γi
16,s) is a valid (s+ 1)-polytopic transi-

tion of FIi+1, according to the Lemma 4, there exist i-possible (s+ 1)-polygons
(zi

16,s+1,ui
16,s+1) for FIi+1, where zi

16,s+1 Bαi16,s and ui
16,s+1 B γi16,s. For

∀x0
16,s+1Bα0

16,s, ∀y016,s+1Bβ0
16,s and ∀KO4, let xi+1

16,s+1 = yi
16,s+1 and

y16,s+1
i+1,j = y16,s+1

i,j ⊕ u16,s+1
i,j (0 ≤ j ≤ s), then we have xi+1

16,s+1 B αi+1
16,s

and yi+1
16,s+1 B βi+1

16,s. Since zi
16,s+1 B αi16,s, let KOi+1 = xi,0 ⊕ zi,0 and

z3,j = x3,j ⊕KO4. Therefore, we have constructed i-possible (s+ 1)-polygons of
FO, which is (x1

16,s+1||y116,s+1,x1
16,s+1||y116,s+1) with (x0

16,s+1||y016,s+1) B
(α0

16,s||β0
16,s) and (x1

16,s+1||y116,s+1) B (z3
16,s+1|| y316,s+1), as shown in the

right of Figure 10.
Since all the procedures above are invertible, it is easy to show that if for

∀(x0
16,s+1||y016,s+1) B (α0

16,s||β0
16,s), there exists a (s+1)-polygon (x1

16,s+1||
y1

16,s+1) B (z3
16,s+1|| y316,s+1), such that (x0

16,s+1|| y016,s+1,x1
16,s+1||y116,s+1)

is i-possible (s+1)-polygons, then (α0
16,s||β0

16,s,α3
16,s||β3

16,s) is a valid (s+1)-
polytopic transition.

C.3 The Equivalence of Generalized-MISTY1 Structure

Finally, based on the Lemma 3 and Lemma 5, we show the equivalence of tradi-
tional impossible (s+ 1)-polytopic transition and i-impossible (s+ 1)-polytopic
transition for the Generalized-MISTY1 structure.

Theorem 11 (The Equivalence of Generalized-MISTY1 Structure). Let
E be a block cipher with Generalized-MISTY1 structure. Then, (α0

32,s||β0
32,s,

αr
32,s||βr32,s) is an r-round i-impossible (s+ 1)-polytopic transition if and only

if it is an r-round traditional impossible (s+ 1)-polytopic transition.

Proof. This is equivalent to prove that (α0
32,s||β0

32,s,αr
32,s||βr32,s) is the valid

(s+ 1)-polytopic transition if and only if there exist r-round i-possible (s+ 1)-
polygons (x0

32,s+1||y032,s+1,xr
32,s+1||yr32,s+1), where (x0

32,s+1||y032,s+1) B
(α0

32,s||β0
32,s) and (xr

32,s+1||yr32,s+1) B (αr
32,s||βr32,s). In particular, we

prove this in the case r = 3, the other cases can be proved analogously.
Suppose (α0

32,s||β0
32,s,α3

32,s||β3
32,s) is an 3-round valid (s+ 1)-polytopic

transition. Then, there exists an 3-round valid (s+ 1)-polytopic trail, as shown
in the left of Figure 11, where Gr,s(r = 0, 1, 2, s = 0, 1) represents the func-
tion FLu,v or the identity function. According to the Lemma 3, for ∀x0

32,s+1 B
α0

32,s and ∀y032,s+1 B β0
32,s, ∃z032,s+1 B γ032,s and w0

32,s+1 B δ032,s, such
that (x0

32,s+1, z0
32,s+1) and (y0

32,s+1,w0
32,s+1) are i-possible (s+ 1)-polygons
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Fig. 11. The valid (s + 1)-polytopic trail (left) and (s + 1)-polygonal trail (right) for
3-Rounds Generalized-MISTY1 structure
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for G1,0 and G1,1 respectively. Analogously, according to the Lemma 5, for
∀z032,s+1 B γ032,s, there exists v0

32,s+1 B η032,s such that (z0
32,s+1,v0

32,s+1)
are i-possible (s+ 1)-polygons. Let y1

32,s+1 = z0
32,s+1 and x32,s+1

1,j = v32,s+1
0,j ⊕

w32,s+1
0,j , we have (x1

32,s+1 B α1
32,s) and (y1

32,s+1 B β1
32,s). By parity of rea-

soning, we get (x3
32,s+1 B α3

32,s) and (y3
32,s+1 B β3

32,s) such that (x0
32,s+1||

y0
32,s+1,x3

32,s+1||y332,s+1) is 3-round i-possible (s+ 1)-polygons.
Since all the procedures above are invertible, it is easy to show that if

(x0
32,s+1||y032,s+1,x3

32,s+1||y332,s+1) is 3-round i-possible (s + 1)-polygons,
where x3

32,s+1 B α3
32,s and y3

32,s+1 B β3
32,s, then (α0

32,s||β0
32,s,α3

32,s||β3
32,s)

is a 3-round valid (s+ 1)-polytopic transition.

Since MISTY1 is a block cipher with Generalized-MISTY1 structure, we have
the following theorem.

Theorem 12 (The Equivalency of The Block Cipher MISTY1). Let E
denote the block cipher MISTY1. Then, (α0

32,s||β0
32,s,αr

32,s||βr32,s) is the r-
round traditional impossible (s + 1)-polytopic transition if and only if it is the
r-round i-impossible (s+ 1)-polytopic transition.

D Manual Verification The 5-round Example Impossible
Differentials of PRINTcipher96.

Similar to the Observation 1, we have the following observation.

Obsetvation 5 Let SPk = S ◦ Pk, where S denotes the S-box of PRINTcipher

and Pk denotes the key-dependent permutation. Then, 2
SP0−→ {2, 3, 6, 7}, 2

SP1−→
{4, 5, 6, 7}, 2

SP2−→ {1, 3, 5, 7}, and 2
SP3−→ {2, 3, 6, 7}.

Theorem 13. The input difference 0x000000000000000200000000 cannot prop-
agate to the output difference 0x000000000000000000001000 after 5 rounds of
PRINTcipher96.

Proof. In Figure 12, the input difference is propagated in forwards by 4 round,
and the output difference is propagated in backwards by 1 round. For the sake of
brevity, the j-th S-box in the i-round is denoted as Sij and the j-th key-dependent

permutation in the i-round is denoted as P ij .

In the forward propagation, only the S-boxes S4
j (j ∈ {0, . . . , 21}∪{27, . . . , 31})

may active, and in the backward propagation, only the S-boxes S4
j (j = 1, 11, 22)

in the 4-round may active. Thus, if current propagation is compatible, only if at
least one of S4

1 and S4
11 is active. Denote Spij = Sij ◦ pij , where Sij denotes the

S-box and pij denotes the key-dependent permutation as shown in Figure 12.

– If S4
12 is active, we have 1

Sp24−→ 4. Thus, the control key of p24 is 3. Since the
control key of p54 is the same with p24, all possible difference of output of p44
in the backward direction is {0x4, 0x5, 0x6, 0x7}. In this situation, the S4

22

is active, this is a contradiction.

47



�sk1

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

� RC1

�sk1

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

� RC2

�sk1

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

� RC3

�sk1

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

� RC4

�sk1

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

p

s

� RC5

�sk1

Fig. 8. The 5-round Impossible Di↵erence for PRINTcipher96(To make our diagram clearer, we omit the needless
wire of the 4-round permutation)

24

Fig. 12. The 5-round Impossible Differential for PRINTcipher96(To make our diagram
clearer, we omit the needless wire of the 4-round permutation)

48



– If S4
1 is active, we have 2

Sp12−→ 1. Thus, the control key of P 1
0 is 2. Since the

control key of p41 is the same with p11, all possible difference of output of S4
1

is {1, 3, 5, 7}, this is a contradiction with the output difference of S4
1 is 2.

All in all, input difference 0x000000000000000200000000 cannot propagate to
the output difference 0x000000000000000000001000 after 5 rounds of PRINTcipher96.

E Differential trail of the example of 6-round
d-impossible differentials of GIFT64.

According to the propagation rule of difference, the input difference 0x0000000000000600
can propagate to the output difference 0x0000004020000110 after 6 rounds of
GIFT64. One differential trail is shown as follows.

0x0000000000000600
S−→

0x0000000000000700
P−→

0x0002000100000004
S−→

0x0009000900000009
P−→

0x8808000000001101
S−→

0x730b00000000ca0b
P−→

0xe00e3000300a1009
S−→

0x8001800080018001
P−→

0x0000000000009899
S−→

0x00000000000063dc
P−→

0x000f000f00040000
S−→

0x0002000100050000
P−→

0x0000004020000110

F Example of Three Phases Method of AES-128

In this section, we give an example to diagram our three phases method for
AES-128.

Example 1. For any α, δ ∈ F8
2/{0}, the difference (D1,2

α , D3,3
δ ) is the 5-round

possible differentials even considering the relation of K1, K2, and K3. This is
due to
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Fig. 13. The Propagation of the Differential (D1,2
α , D3,3

δ )
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1. As shown in the green part of Figure 13, for any input difference D1,2
α , it can

propagate to one of the following three differences through F1.

Db,0 =


0 0 0 0x03
0 0 0 0x02
0 0 0 0x01
0 0 0 0x01

 , Db,1 =


0 0 0 0x06
0 0 0 0x04
0 0 0 0x02
0 0 0 0x02

 , Db,2 =


0 0 0 0x2f
0 0 0 0xc3
0 0 0 0xec
0 0 0 0xec

 .

2. As shown in the red part of Figure 13, for any output difference D1,2
β , the

following difference can propagate to it through F2.

De =


0x01 0 0 0

0 0x03 0 0
0 0 0x09 0
0 0 0 0x06

 .

3. Our experiment shows that (Db,0, De), (Db,1, De), and (Db,2, De) are possible
differentials even consider the relations of K1, K2 and K3. This process is
depicted as the black part of Figure 13.

G The Contradictory Positions Detected Algorithm.

Verify the 6-round example of impossible differentials of GIFT64 and the exam-
ples of each impossible (s+1)-polytopic transitions are difficult. Thus, we modify
the verification algorithm which is proposed by Cui el at. [11] to detect the con-
tradictory positions by computer. Our algorithm for generating the statements
to detect the contradictory positions is shown in the Algorithm 4.

For a give r-round impossible (s+1)-polytopic transition (αn,s,βn,s), we pick
the position set G and save the statements which are generated from Algorithm 4
as a file. Then, we invoke STP to determine whether the file has a solution. If it
has a solution, we can determine that the contradictions occur in the set G.

We apply our method to verify the examples of the impossible (s + 1)-
polytopic transition of each block cipher, the contradictory positions are shown
in Table 5.
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Algorithm 4 Generating statements for detecting contradiction positions

1: Input: number of rounds r, the input s-difference αn,s, the output s-difference
βn,s, keyflag ∈ {True, False}, the position set G.

2: Output: System of statements to detect contradiction positions
3: Declare the input and output (s+ 1)-polygon xn,s+1 and yn,s+1.
4: Declare the intermediate variables and key variables.
5: Declare two (s+1)-polygons un,s+1 and vn,s+1 placed at the input of the (b r

2
c+1)-

th round.
6: Model the propagation from xn,s+1 to un,s+1.
7: Model the propagation from vn,s+1 to yn,s+1.
8: for i = 0 to s do
9: for j ∈ {0, . . . , n− 1}/{G} do

10: Constraint ui,j = vi,j .
11: endfor
12: endfor
13: Constraint xn,s+1 such that xn,s+1 B αn,s.
14: Constraint yn,s+1 such that yn,s+1 B βn,s.
15: if keyflag then
16: Constraint key variables according to key shedule.
17: endif
18: Add the statements ”QUERY(FALSE);” and ”COUNTEREXAMPLE;”.

Table 5. Contradiction positions

Distinguishers G
Impossible differential of GIFT64 {0, 1, 2, 3}

Impossible 3-polytopic transition of GIFT64 {8, 9, 10, 11}
Impossible 3-polytopic transition of PRINTcipher48 {0}
Impossible 4-polytopic transition of PRINTcipher48 {1}
Impossible 3-polytopic transition of PRINTcipher96 {0}
Impossible 4-polytopic transition of PRINTcipher96 {0, 1, 2}

Impossible 4-polytopic transition of PRESENT {0, 8, 12, 32, 40, 48, 56, 60}
Impossible 3-polytopic transition of rc5-32 {0}
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H Overview of Running Time.

Here, we show the time costs for detecting new distinguishers and proving no
distinguishers exist for a given number of rounds in Table H.

Table 6. Overview of Running Time

Block Cipher Type Time(hour)

GIFT64
6-round d-impossible differential 19.8

No 7-round d-impossible differential exists 25.3
7-round d-impossible 3-polytoipic transition 1.9

PRINTcipher48

4-round d-impossible differential 1.3
No 5-round d-impossible differential exists 2.2

6-round d-impossible 3-polytoipic transition 37.3
No 6-round d-impossible 3-polytoipic exists 340.9
7-round d-impossible 4-polytoipic transition 0.8

PRINTcipher96

5-round d-impossible differential 22.3
No 6-round d-impossible differential exists 34.7

7-round d-impossible 3-polytoipic transition 0.26
8-round d-impossible 4-polytoipic transition 1.16

RC5-32

2.5-round i-impossible differential 0.03
No 3-round i-impossible differential exists 0.07

3-round i-impossible 3-polytoipic transition 18.3
No 3.5-round i-impossible 3-polytoipic exists 22.1

RC5-64
2.5-round i-impossible differential 0.76

No 3-round i-impossible differential exists 1.88
3-round i-impossible 3-polytoipic transition 39.9

RC5-128
2.5-round i-impossible differential 21.6

No 3-round i-impossible differential exists 64.4

MISTY1
4-round i-impossible differential 179.1

No 5-round i-impossible differential 387.6

AES No 5-round impossible differential 350.2

PRESENT
No 7-round d-impossible differential exists 70.6
7-round i-impossible 4-polytopic transition 1.3
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