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Abstract.  Multivariate cryptography studies applications of  endomorphisms of K[x1, x2, …, xn]  where K is a finite 

commutative ring  given in the standard form xi →fi(x1, x2,…, xn),  i=1, 2,…, n. The importance of this direction for 
the constructions of  multivariate digital signatures systems  is well known. Close attention of researchers directed 
towards studies of perspectives of quadratic  rainbow oil and vinegar system and  LUOV  presented for NIST 
postquantum certification. Various cryptanalytic studies of these signature systems were completed. 
      Recently some options to modify theses algorithms as well as all multivariate signature systems  which alow to 
avoid  already known attacks were suggested. One of the modifications is to use protocol of noncommutative mul-
tivariate cryptography based on platform of endomorphisms of degree 2 and 3. The secure protocol allows safe 
transfer of quadratic multivariate map from one correspondent to another. So the quadratic map developed for digi-
tal signature scheme can be used in a private mode. This scheme requires periodic usage of the protocol with the 

change of generators and the modification of quadratic multivariate maps. 
    Other modification suggests combination of multivariate  map of unbounded degree of size O(n) and density of 
each fi of size O(1). The resulting map F in its standard form is given as the public rule.  
    We suggest the usage of the last algorithm on the secure El Gamal mode. It means that correspondents use proto-
cols of Noncommutative Cryptography with two multivariate platforms to elaborate safely a collision endomor-
phism G: xi → gi of linear unbounded degree such that densities of each gi  are of size O(n2). One of correspondents 
generates mentioned above F and sends F+G to his/her partner. 
The security of the protocol and entire digital signature scheme rests on the complexity of NP hard word problem of 

finding decomposition of given endomorphism G of   K[x1,x2,…,x n ] into composition of given generators 1G, 2G, 
…tG, t>1 of the semigroup of End(K[x1 ,x 2 ,…,xn]). Differently from the usage of quadratic map on El Gamal mode 
the case of unbounded degree allows single usage of the protocol because the  task to approximate F via intercep-
tion of hashed messages and corresponding signatures is unfeasible in this case.  

      
Keywords: Noncommutative Cryptography, Multivariate Cryptography, key exchange protocols, semigroups of 

transformations, decomposition problem, multivariate digital signature.  
 

1. On Multivariate Digital Signature Schemes of Post Quantum Cryptography. 
      Post Quantum Cryptography (PQC) is an answer to a threat coming   from a full-scale quantum 

computer able to execute Shor’s algorithm. With this algorithm implemented  on a quantum computer, 

currently used public key schemes, such as RSA  and elliptic curve cryptosystems, are no longer secure. 

The U.S. NIST made a step toward mitigating the risk of quantum attacks by announcing the PQC 

standardisation process for new public key algorithms. In March 2019 NIST published a list of candi-

dates qualified to the second round of the standardisation process. The cryptosystems are designed for  
tasks of information exchange and  digital signatures.  

     In the case of digital signatures  preliminary analysis indicates some advantages of algorithms based 

on quadratic public rules of Multivariate Cryptography. These systems provide the smallest sizes of the 

used hashed messages  and digital signatures. 

      Cryptanalytic studies  of perspectives of quadratic  rainbow oil and vinegar systems and  LUOV  

have their own history. Papers [1] and [2] investigates various options of attacks on the systems. These 

studies show some advantages of  ROUV in comparison with LOUV but NIST competition goes on. 

        We start the search for the possible modifications of general multivariate digital signature schemes 

based on quadratic public rules such that attacks described in [1] and [2] (in the case of ROUV and 

LOUV)   will be eliminated. Recall that classical multivariate signature system is based on public quad-
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ratic map  P' of vector space Fq
m onto Fq

 n of kind P’= T1PT2  where the map  P is given by rule 

xi→fi(x1, x2,… , xm), i=1,2,…,n  defined by quadratic polynomials fi and bijective affine transformations  

T1,T2 of spaces Fq
 m and Fq

 n. Users Alice and Bob use selected encryption function F and hash function 

which creates hash vector H(c) from vector space Fq
m. Alice writes the plaintext p  and computes corre-

sponding ciphertext c.  The knowledge of the decomposition  T1PT2 and private algorithm to compute 

value of P-1 in a given point allows Alice to compute some reimage P'-1(H(c))=(u1, u2, …, un)=u of H(c) 

(so called signature) and to send u to Bob via an open channel. He checks the identity P'(u)=v(c). This 
is his confirmation that ciphertext is sent by Alice. Finally  he decrypts.The security of presented above 

algorithm  rests on the complexity of the problem of computation of reimage for non-bijective  P’. This 

is  a well known general NP hard  problem.  

 Noteworthy that in the case of Unbalanced Oil and Vinegar the partition of variables into two parts 

of ‘’ oil’’ and ‘’vinegar’’ unknowns and special form of P allows Alice to compute element from P-

1(H(c)). She uses a specialisation of  ‘’vinegar’’ variables via substitution of pseudorandom parameters, 

such specialisation  reduces the search for reimage to solving the system of linear equations. 

    We start the search for the options to modify  general digital scheme of multivariate cryptography, 

which eliminate attacks investigated in [1] and [2].  We suggest the following three modifications.  

     The first of them is based on the idea that the map P' is not given publicly [3]. Correspondents exe-

cute the protocol of non-commutative cryptography based on the platform of stable multivariate trans-

formations of degree 2 in n variables (see [5]). They elaborate the quadratic collision map G from the 
vector space  Fq

m onto  Fq
n. The security of this  protocol  rests on the complexity of finding the decom-

position of nonlinear element of the subsemigroup of  endomorphisms of Fq[x1, x2,…,xn] into the com-

position of its given generators. Postquantum algorithm to solve this problem in polynomial time is 

unknown. Secondly one of correspondents selects quadratic map P’ and sends  G+P' to his/her partner. 

So correspondents can use digital signature system defined by P’ which is unknown to adversary. The 

postquantum protocol has to be used periodically with different data. Users can change maps T1, T2, 

internal parameters of P keeping the class of chosen schemes as well as generators of stable semigroups 

of degree 2.  

        In the second modification the map  T1 has to be changed for a  composition ST1 of T1with a bijec-

tive map S of kind xi →si(x1, x2, …,xn) of unbounded  linear degree  >m  such that each  si has density 

O(1) [4]. Thus  P'=ST1PT2 is  a map of degree O(n) and density O(n2). The map  P' of the second 
scheme is given to the public. Attacks investigated in [1] and [2] are eliminated because the degree of 

P’ is not bounded by a small constant. 

The third scheme, which is introduced in this paper, is based on the usage of multivariate protocol of 

non-commutative cryptography with two distinct platforms which allows to elaborate collision map G 

of unbounded degree of size  O(n) and density of size O(n2) (see [5]). On receiving  the collision map 

one of correspondents sends G+P' to his/her partner. The protocol can be used only once because the 

adversary is unable to approximate unknown P' of unbounded degree via interception of hash vectors 

and corresponding signatures.  

  Several multivariate digital signature schemes (m.d.s.s.) with the usage of protocols of non-

commutative cryptography as above were integrated with the state  electronic management networks  

for the tasks of telemedicine and e-governing in Ukraine. These m.d.s.s. are used for the authentication 

of users. Some of them will be presented for the standardisation and certification processes conducted 

by the State Service  of Special Communication and Information Protection of Ukraine (Kyiv).  

Section 2 is dedicated to the definitions of the most important semigroups in Noncommutative Mul-

tivariate Cryptography such as formal and affine Cremona semigroups and their reduced version. 
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In Section 3 we consider  elements of theory of linguistic graphs. Section 4 is dedicated to the usage 

of linguistic graphs for the construction of stable subsemigroups and elements of formal Cremona 

groups of linear degree and prescribed density. 

We also presented  the modification of quadratic m. d. s. s. based on reduced endomorphism of Fq[x1, 

x2,…, xn] of linear degree and density O(n2). In Section 5 

we consider the concept of Unbalanced Oil and Vinegar signature systems. 

Section 6 is dedicated to the abstract schemes of protocol of multivariate non-commutative cryptog-

raphy which allows correspondents to elaborate common collision multivariate endomorphism  of linear 

degree and polynomial density. The scheme uses two platforms  which are subsemigroups of formal 

Cremona semigroup En(Fq) of all endomorphisms of Fq[x1, x2,…, xn] and their homomorphic images. 

One of them can be a large stable subsemigroup S of degree 2, i.e subgroup  formed by quadratic endo-

morphisms. 

The second platform is a semigroup of Eulerian transformation, i. e. endomorphisms moving single 

variable xi into monomial term. 

Protocols  based on subsemigroups of Eulerian transformations is considered in [8],[5].  Security of 

these algorithms rests on the complexity of word problem to decompose given multivariate map into 

generators of affine Cremona semigroup End(K[x1, x2,…,xn]) (see [9] for the first application of word 

problem in the case of group).   

In  Section 7 we consider implementation of general scheme of the protocol of Section 6. We use stable 

and Eulerian platforms based on special linguisti graphs defined over commutative ring and its multipli-

cative group. This section presents the algorithm of safe transition of public key m.d. s. s. of section 4 

on the private mode. 

Section 8 contains conclusive remarks and complexity estimates for m.d.s.s. of Sections 4 and 7.   

        Noteworthy  that  property of stability is very restrictive because the composition  

of two randomly chosen quadratic transformations has degree 4 with probability close to 1. The obser-

vation of known explicit constructions are given in [5], [6], [7], [10].  

 Thus we have been working in the area of intersection of Multivariate and Non-commutative cryptog-

raphy which is an active  area of cryptology where the cryptographic primitives and systems are based 

on algebraic structures like groups, semigroups and noncommutative rings (see [11]-[25]). It is im-

portant that this direction is well supported by Cryptanalytic research (see [26]-[29]).  Semigroup based 

cryptography consists of general cryptographic schemes defined in terms of wide classes of semigroups 

and their implementations for chosen semigroup  families (so called platform semigroups.  

2. On Formal Cremona Group, Reduced Multivariate Transformation of Finite Vector Spaces 

and Eulerian Transformations.  

     2.1. Formal and affine Cremona groups. 

        Let K[x1, x2,… , xn] be commutive ring of all polynomials in variables x1, x2, … , xn  defined over a 

commutive ring K. Each endomorphism F ϵ En(K) is uniquely determined by its values on formal gener-

ators x1, i=1,2,…, n.   Symbol  End(K[x1, x2,… , xn])=En(K) stands for semigroup of all endomorphisms 

of  K[x1, x2,… , xn]. So we can identify F and the formal rule  x1→f1(x1, x2,… , xn),   x2→f2(x1, x2,… , xn), 
…, xn→fn (x1, x2,… , xn)  where fiϵ K[x1, x2,… , xn].   Element F naturally induces the transformation 

∆(F) of affine space Kn given by the following rule ∆(F):(α1, α2,…, αn)→( f1 (α1,  α2,…, αn), f2(α1, α2,…, 

αn),…, fn(α1, α2,…, αn)) for each (α1, α2,…, αn)ϵ Kn. Luigi Cremona [30]   introduced  ∆(En(K))= CS(Kn) 

which is currently called affine Cremona semigroup. A group of all invertible transformations of  

CS(Kn) with an inverse from CS(Kn) is known as  affine Cremona group  CG(Kn) (shortly Cremona 

group, see for instance [31], [32]).          



4 

      We refer to infinite En(K) as formal affine Cremona semigroup.    Density of the map F is the max-

imal number of monomial terms in  fi, i=1,2,…,n. 

       2.2. Reduced formal Cremona group. 

    Let Let us consider the case K=Fq.  Noteworthy that xq=x for each x ϵ Fq  and  

xq-1=1 for x≠0 and  xq-1 =0  for x=0. So xm=x m mod q-1  where  m  modulo q-1 is different from 0. We de-

fine x0=1 for x ≠ 0 and x0=0 for x=0. We introduce m’ as m mod q-1. 

 For the monomial term ax1
m(1)x2

m(2)…xt
m(t) we introduce its  reduced form as ax1

’m(1)x2
’m(2)…xt

’m(t).  For f ϵ 

K[x1, x2,…, xm]  we define ‘f as linear combination of reduced form  of monomial terms of f. 

Let us consider the totality ‘En(Fq) of  formal rules ‘F of kind xi→’fi(x1, x2,…, xn), i=1,2,…,n,  fi ϵ K[x1, 

x2,…, xn]. We define ‘F’G as natural superposition of ‘F  and  ‘G. We refer to ‘En(Fq) as reduced for-

mal Cremona semigroup of rank n. 

The map χn sending xi →fi , i=1,2,…n to xi →f’i , i=1,2,…,n is a homomorphism of En(Fq) onto’En(Fq). 

Noteworthy that En(Fq) is an infinite semigroup but ‘En(Fq) is the finite one. We introduce ‘K[x1, 

x2,…,xn] as totality of ‘f such that f ϵ K[x1, x2,…,xn]. 

2.3. Eulerian semigroups. 

    Let K be a finite commutative ring with the unit such   that multiplicative group K* of regular ele-

ments of this ring contains at least 2 elemments. We take Cartesian power nE(K) =(K*)n  and consider 

an Eulerian semigroup nES(K) of transformations of kind  

x1 → ϻ1x1 a(1,1) x2 a(1,2) … xm a(1,n) ,  
x2 → ϻ2x1 a(2,1) x2 a(2,2) … xm a(2,n) ,                            (1) 

… 

xm →ϻnx1 a(n,1) x2 a(n,2) … xm a(n,n) , 

where a(i,j) are elements of arithmetic ring Zd, d=|K*|, ϻiϵK*. 

Let nEG(K) stand for Eulerian group of invertible transformations from nES(K). Simple example of an 

element from nEG(K) is a  written above transformation where a(i,j)=1 for i ≠ j or  i=j=1, and a(j,j)=2 

for j ≥2. It is easy to see that the group of monomial linear transformations  Mn  is a subgroup of 
nEG(K).  So semigroup nES(K) is a highly noncommutative algebraic system.  Each element from 
nES(K) can be considered  as transformation of a free module Kn.  

    Let π and δ be two permutations on the set {1,2,..., n}. Let us consider a transformation of (K*)n, 

K=Zm or K= Fq and d =|K*|. We define transformation AJG(π, δ), where A is triangular matrix with 

positive integer entries 0≤a(i,j)≤d, i≥d defined by the following closed formula. 
yπ(1)=ϻ1xδ(1)

a(1,1)
 

yπ(2)= ϻ2xδ(1)
a(2,1) xδ(2)

a(2,2)
  

… 

yπ(n)= ϻnxδ(1)
a(n,1) xδ(2)

a(n,2)
 …xδ(n)

a(n,n)   
where (a(1,1),d)=1, (a(2,2),d)=1,…,( a(n,n),d)=1. 

          We refer to  AJG(π, δ) as Jordan - Gauss multiplicative transformation or simply JG element. It is 

an invertible element of  nES(K) with the inverse of kind  BJG(δ, π) such that a(i,i)b(i,i)=1 (mod d). No-

tice that in the case K= Zm  straightforward process of computation the inverse of JG element is con-

nected to the factorization problem of integer m. If n=1 and m is a product of two large primes p and q 

the complexity of the problem is used in RSA public key algorithm. The idea to use composition of JG 

elements or their generalisations with injective maps of  Kn into Kn was used in [33] (K=Zm) and [34] 
(K= Fq). 
        We say that   is a tame Eulerian element over Zm or Fq.  if it is a composition of several Jordan 

Gauss multiplicative maps over commutative ring or field respectively.  It is clear that  sends variable 

xi to a certain monomial term. The decomposition of  into product of Jordan Gauss  transformation 
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allows us to find the solution of equations bx )( for x from 
n

mZ )( *
 or (F*q) m .  So tame Eulerian 

transformations over Zm  or  Fq.  are special elements of nEG(Zm) or  nEG(Fq) respectively. 

We refer to elements of  nES(K)  as multiplicative  Cremona element. Assume that the order of 

K is a constant. As it follows from the definition the computation of the value of element from nES(K) 

on the given element  of  Kn   is estimated by O(n2). The product of two multiplicative  Cremona ele-

ments can be computed in time O(n4). 

        We are not discussing here the complexity of computing the inverse for general element gϵ nEG(K) 

on Turing machine or Quantum computer  and the problem  of finding the inverse for computationally 

tame Eulerian elements. 

Remark 2.1. Let G be a subgroup of   nEG(K)  generated by Jordan-Gauss elements  g1, g2, …, , gt. The 
word problem of finding the decomposition of  gϵG into product of generator gi is a difficult one, i. e. 

polynomial algorithms  to solve it with  Turing machine or Quantum Computer are unknown. If the 

word problem is solved and the inverses of gi is computable then the inverse of g is determined.  Notice 

that if n=1,  K=Zm, , m=pq  where p and q are large primes and G is generated by  g1=ϻg1
a the problem 

is unsolvable by Turing machine but it can be solved with the usage of Quantum Computer. 

  3. Some Subsemigroup and Subgroups Defined via Linguistic Graphs over Commutative Rings. 

Let us assume that K=Fq and consider some graph based constructions of  semigroups of for-

mal Cremona semigroup  ‘En(K). Constructions of this section are very similar to schemes of [5] which 

define some subsemigroups of  En(K). 
Element x1 → ‘fi(x1, x2, …, fn), i=1,2,…,n of ‘En(K).   will be identified with the tuple of ele-

ments (‘f1, ‘f2,…, ‘fn), ‘fi ϵ’K[x1, x2,…,xn] when it is convenient. 

Let us consider a totality sBS’(K) of sequences of  kind u=(H0, G1, G2, H3,H4,G5, G6,…, Ht-1, 

Ht), t=4i, where Hkϵ ‘Es(K), Gj ϵ’Es((K).  We refer to sBS’(K) as a totality of  free symbolic strings of 

rank s. We define a product of u with u’=(H’0, G’1, G’2, H’3, H’4, G’5, G’6,…, H’l-1, Hl) as w=(‘H0, ‘G1, 

‘G2, ‘H3, ‘H4, ‘G5, ‘G6,…,’ Ht-1, H’0(Ht),G’1(Ht), G’2(Ht),  H’3(Ht), H’4(Ht),  G’5(Ht), G’6(Ht), …, H’l-

1(Ht),  H’l(Ht)). Notice that the compositions of maps are computed in ‘Es(K). 

It is easy to see that this operation transforms sBS(K) into the semigroup with the unity element 

(H0), where E0 is an identity transformation from ‘Es(K). Elements of kind (H0, G1, G2, H3, H4) are  gen-

erators of the semigroup. We refer to sBS’(K) as semigroup of regular reduced strings  of dimension s.  

Let us assume that Ht  of written above u ϵ sBS’(K)  is automorphism of K[x1, x2,…, xs]. So its 

inverse is well defined. Then we can consider a reverse linguistic string Rev(u)= (Ht-1(Ht
-1), Gt-2(Ht

-1), 

Gt-3,(Ht
-1), Ht-4(Ht

-1),Ht-5
1(Ht), …,G2(Ht

-1),  G1(Ht
-1), H0(Ht

-1), Ht
-1) and refer to u as reversible string.  Let 

sBR’(K) stand for the semigroup of reversible strings. 

Let K be a finite commutative ring. We refer to an incidence structure with a point set 

P=Ps,m=Ks+m and a line set L=Lr,m=Kr+m as linguistic incidence structure Im  if point   x=(x1, x2,…, xs, 

xs+1, xs+2, …,  xs+m) is incident to line y=[y1, y2, … , yr , ,yr+1, yr+2 , …, yr+m] if and only if the following 

relations hold 

a1xs+1+b1yr+1=f1 ( x1, x2 ,… , xs, y1, y2, …  , yr) 

a2xs+2+b2yr+2=f2 ( x1, x2 ,… , xs, xs+1, y1, y2, …  , yr, yr+1) 

                                … 

amxs+m+bmyr+m=fm ( x1, x2 ,… , xs, xs+1,…, xs+m, y1, y2, …  , yr, yr+1, …,  yr+m) 

where  aj, and bj , j=1,2,,,,m are distinct from zero, and fj are multivariate polynomials with coefficients 

from K. Brackets and parenthesis allow us to distinguish points from lines. 

         Noteworthy that polynomials fi can be changed for ‘fiϵ’K[x1, x2,…, xs]. 
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The colour ρ(x)=ρ((x)) (ρ(y)=ρ([y])) of point  x  (line [y])  is defined as projection of an element (x) 

(respectively [y]) from a free module on its initial s (relatively r) coordinates. As it follows from the 

definition of linguistic incidence structure for each vertex of incidence graph there exists the unique 

neighbour of a chosen colour. 

We refer to ρ((x))=(x1, x2 ,… , xs) for  (x)=(x1, x2 ,… , xs+m) and  ρ([y])=(y1, y2, …  , yr) for 

[y]=[y1, y2, …  , yr+m] as the colour of the point and the colour of the line respectively. For each bϵKr 

and p=(p1, p2 ,… , ps+m)  there is the unique neighbour of the point [l]=Nb(p)=N((p),b) with the colour 

b. Similarly for each cϵKs and line l=[l1, l2 ,… , lr+m] there is the unique neighbour of the line (p)= 

Nc([l])=N([l],b) with the colour c. We refer to the operator of taking the neighbour of vertex in accord-

ance with the  chosen colour as sliding operator.  On the sets P and L of points and lines of linguistic 

graph we define jump operators  1J=1Jb(p)=J((p),b)=(b1, b2,…,bs, p1, p2 ,… , ps+m), where (b1, 

b2,…,bs)ϵKs  and 2J=2Jb ([l])=J([l],b) =[b1, b2,…,br, l1, l2 ,… , lr+m], where (b1, b2,…,br)ϵKr. We refer to 

tuple (s, r, m) as type of the linguistic graph I=I(K).  

Notice that we can consider the same set of above mentioned equations with coefficients from 

K for variables xi and yi  from the extension K’ of K and define graph K’I=K’I(K). Let  s=r and K’=’K[x1, 

x2 ,…, xn], n=m+s. We consider induced subgraph in  I’ of all vertices of K’I with colours from ‘K[x1, 

x2,…, xs ] (tuples of ‘K[x1, x2,…, xs ] s). 

 We form the sequence of vertices (walk with jumps) of graph I’with the usage of string u from free 

linguistic semigroup sBS’(K). 

We take the initial point (x)=(x1, x2,…, xs, xs+1, xs+2,…, xs+m)  formed by the generic variables of K’ and 

consider a skating chain 

(x),J((x),H0)=(1x),N((1x),G1)=[2x],J([2x],G2)=[3x],N([3x],H3)=(4x),J((4x),H4)=(5x),…, J([t-2x],Gt-2)=[t-

1x],N([t-1x],Ht-1)=(tx),J((tx),Ht)=(tx). 

Let (tx) be the tuple (Ht, F2, F3,…,Fn) where Fi ϵK[x1, x2,…, xn]. We define IΨ(u), I=I(K) as the map 

(x1, x2,…, xn)→(Ht, F2, F3,…,Fn) and refer to it as reduced chain transition of point variety. 

The statement written below follows from the definition of the map.    

Lemma 1. The map ψ=Iψ: sBS’(K)→’En(K) is a homomorphism of semigroups,  ψ( sBR’(K))is a 

group .   

We refer to Iψ(sBS’(K))=ICT’(K) as a semigroup of reduced  chain transitions  of linguistic graph 

I(K) and to map ψ as reduced linguistic compression map. Notice that   composition Δψ of homomor-

phism Δ and ψ maps finite semigroup into finite set of  elements of Δ( ICT’(K)). 

4.  Some Subsemigroup and Subgroups Defined via Linguistic Graphs over Groups. 

 Similarly to the case of commutative ring we introduce a linguistic graph I= Г(G) over abelian 

group G defined as a bipartite graph with a point set P=Ps,m=Gs+m and a line set L=Lr,m=Gr+m as a lin-

guistic incidence structure Im  if point x=(x1, x2,…, xs, xs+1, xs+2, …, xs+m) is an incident to line  y=[y1, y2, 

… , yr , ,yr+1, yr+2 , …, yr+m ] if and only if the following relations hold 
 

   xs+1/1yr+1= a1 w1 ( x1, x2 ,… , xs, y1, y2, …  , yr) 

 

 xs+2/2yr+2= a2w2 ( x1, x2 ,… , xs, xs+1, y1, y2, …  , yr, yr+1) 

                                … 

 xs+m/yr+m=amwm ( x1, x2 ,… , xs, xs+1,…, xs+m, y1, y2, …  , yr, yr+1, …,  yr+m) 

 where  aj, j=1,2,,,, m are elements of G and  wi are words in characters  xi  and yj  from G. Brackets and 

parenthesis allow us to distinguish points from lines similarly  to the case of linguistic graphs over 

commutative rings. 
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We define colours ρ((p)) and  ρ([l]) of the point (p) and the  line [l] as the tuple of their   first 

coordinates of kind a=(p1,  p2,  …, ps) or  a=(l1, l2 , … , lr )  and introduce well defined operator N(v, a)  

of computing the neighbour of vertex v of colour aϵGsor aϵGr. Similarly to the case of linguistic graph 

over commutative ring we define  jump operator J(p, a), aϵGs on partition set  P and J(l,a), aϵGr  on 

partion set L by conditions J(p,a)=(a1,  a2, … as, p1+s,  p2+s,  …, ps+n) and ρ(J(l,a))=[a1,  a2, … ar, p1+r,  p2+r,  

…, pr+m].  We also consider symplectic and linguistic homomorphisms of linguistic graphs over groups 

defined similarly to the case of commutative rings.  
Let us use various linguistic graphs with r=s over the multiplicative group G=K* and subsemi-

group of monomial strings sBS(K*) from sBS(K), 0<s<n, 0<r<n, s=r  for generation of pairs of mutually 

inverse elements of  nEG(K). Let us consider the homomorphism of the semigroup sBSr(K*) into Euleri-

an semigroup nES(K), n=s+m defined in terms of linguistic graph I=I(K*) over K* of type (s,r,m).  

Let  Na  be an operator of taking neighbour of given vertex with the colour a in the  graph I. Let 

us consider the commutative group  K’=K*[x1, x2,…,xs, xs+1, …, xn]  of monomial terms of K[x1, x2,…,xs, 

xs+1, …, xn] with coefficients from K*  and linguistic graphs I’ over group  K’  defined by the same 

equations with I but over the larger commutative group K’. We assume that Na  and N’a  are operators of 

taking neighbour of given vertex with the colour a in the graph I and I’ respectively.  Let us consider the 

string of kind v=(x1, x2, …, xs, xs+1, xs+2, …, xs+m) from Ks+m (or (K’) s+m ). We define jump operator sJ(v, 

a), a=(y1, y2, …, ys,)  moving  v  to (y1, y2, …, yt, ,  xs+1, xs+2, …, xs+m) from Kt+m.  

We consider an infinite graph  I’(K’), n=m+s with partition sets P’=(K’)m+s and L’=(K’)m+r. 
After that we take a string u=(H0, G1, G2, H3, H4, G5, G6,…, Ht-1, Ht) from sBSr(K*) and the  point 

(x)=(x1, x2,…, xn) formed by generic elements of K’. This data defines uniquely a skating chain  

(x),J((x),H0)=(1x),N((1x),G1)=[2x], J([2x],G2)=[3x],N([3x],H3)=(4x), J((4x),H4)=(5x),…, J([t-2x],Gt-2)=[t-

1x],N([t-1x],Ht-1)=(tx),J((tx),Ht)=(tx).  

Let (tx)be the tuple (Ht, F2, F3,…,Fn) where Fi ϵK[x1, x2,…, xn]. We define IΨ(u) as the map (x1, 

x2,…, xn)→(Ht, F2, F3,…,Fn) and refer to it as chain transition of point variety.The statement written 

below follows from the definition of the map.    

Lemma 2. The map ψ=Iψ: sBS(K*)→ nES(K) is a homomorphism of semigroups.  

      We refer to Iψ(sBSr(K*))=ICT(K*) as a chain transitions semigroup of linguistic graph I(K*) over 

K* and to map ψ as multiplicative linguistic compression map. 

 4. Stable Subsemigroups in ‘En(Fq)  of  Arbitrary Degree and Elements of Unbounded Degree 

and Bounded Density. 

     4. 1. Stable subsemihroup and graphs. 
We say that subsemigroup of Sn of En(K) or ‘En(Fq) is stable if maximal degree of elements from Sn is d, 

where d is some constant. 
   Families of stable  subsemigroups of En(K) in terms of Double Schubert Graphs are  

constructed in [7].  In this section we introduce similar constructions for the case of En(Fq). 

       Graph  DS(k,K) is defined  over commutative ring K as incidence structure defined as disjoint union 

of  partition sets PS=Kk(k+ 1)  consisting of points which are tuples of kind x =(x1 , x2, … , xk, x11 , x12, … , 

xkk) and LS=Kk(k+1) consisting of lines which are tuples of kind y =[y1 ,y2, … ,yk, y11 ,y12, … ,ykk], where x 

is incident to y, if and only if xij - yij=xi yj for i=1, 2,..., k and j=1, 2,..., k. It is convenient to assume that 

the indices of kind i,j are placed for tuples  of Kk(k+1) in the lexicographical order. 

   The term Double Schubert Graph is chosen because points and lines of DS(k, Fq)  can be treated as 

subspaces of Fq
(2k+1) of dimensions k+1 and k which form two largest Schubert cells. Recall that the 

largest Schubert cell is the largest orbit of group of unitriangular  matrices acting on the variety of sub-

sets of given dimensions.  
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    We define the colour of point x =(x1 , x2, … , xk, x11 , x12, … , xkk )  from  PS as a tuple(x1, x2, … , 

xk,) and the colour of a line y =[y1 ,y2, … ,yk,y11 ,y12, … ,ykk] as a  tuple (y1, y2, … ,yk). For each vertex v  

of DS(k, K), there is the unique neighbour  y=Na(v) of a given colour a=(a1,a2, … ,ak). It means that 

graphs  DS(k, K) form a family of linguistic graphs.  

In the case of K=Fq  the subsemigroup kY’(d, K)  of  kBS’(K) consists of strings u=(H0, G1, G2, H3, 

H4, G5, G6,…, Ht-1, Ht) from  sBS’(K)  such that maximum of parameters deg(H0)+deg(G1), 

deg(G2)+deg(H3), deg(H4)+deg(G5), 

deg(G6)+deg(H7), …, deg(Gt-2)+deg(Ht-1),  deg(Ht)=1 is equal to constant d, 1<d<(q-1)n. 

Theorem 1. Let I(K) be an incidence relation of Double Schubert graph DS(k, K) defined over finite 

field K. Then Iψ(kY’(d, K))=kU’(d,K) forms a family of stable semigroups of degree d in ‘En(K).  

 The proof is based on the fact that the chain transition u from kU’(d, K) moves xi,j into expres-

sion xi,j+T(u), where T(u) is a linear combination of products ‘fϵK[x1, x2,…, xk],  gϵK[y1, y2,…, 
yk] where deg( f)+deg(g)≤d. 

       New semigroup kU(d, K) consists of transformations of a  free module Kt, t=(k+1)k. If 

d=2 then kU(d, K) contains semigroups of quadratic transformations defined in [6].  
        Let J be subset of  Cartesian square of M={I,2,…,k}. We can identify its element (i,j) with 

the index ij of  Double Schubert Graph DS(k,K). 
Proposition 1. Each subset J of M2 defines symplectic homomorphism δJ of DS(k, K) onto linguistic 

graph DSJ (k,K). 

       Corollary 1. Let I(J, K)) be an incidence relation of linguistic graph DSJ (k, K). Then I(J,K)ψ(kY’(d, 

K))=kU’J
 (d,K) form a family of stable semigroups of degree d.  

         Remark. If d<q-1 then groups kU’J
 (d,K) and kU’J

 (d,K) ( kU (d,K) and kU’ (d,K)) are isomorphic. 

        Recall that density of element f of K[x1, x2,…, xn]  (or  ‘K[x1, x2,…, xn], K=Fq) is its number den(f) 

of monomial terms. The density den(F)  of a map F: xi →fi(x1, x2,…, xn), i=1,2,…,n is a maximum of 

den(fi). .  

Lemma 3. Let u be the string (H0, G1, G2, H3, H4, G5, G6,…, Ht-1, Ht) from sBS(K) ( or sBS’(K), K=Fq) 

such that maximum of parameters deg(H0)+deg(G1), deg(G2)+deg(H3), deg(H4)+deg(G5), 

deg(G6)+deg(H7), …, deg(Gt-2)+deg(Ht-1),  deg(Ht) is a constant d. Then degree of I(J ,K)ψ(u) is bounded 

by d. 

Lemma 4. Let u be the string (H0, G1, G2, H3, H4, G5, G6,…, Ht-1, Ht) from sBS(K) (or sBS’(K), K=Fq) 

such that maximum of parameters den(H0)den(G1), den(G2)den(H3), den(H4)den(G5), den(G6)den(H7), 

…, den(Gt-2)den(Ht-1),  den(Ht) is a constant d. Then density  of  I(J,K)ψ(u) is bounded by d+1. 

        Let u be a string from sBS’(K), K=Fq  satisfying Lemma 2 such that Ht is a composition DT of the 

map D  of kind xi→λixi+1
α(i) , i=1,2,…, s-1, xs = λsx1

 α(s)  where (α(i), q-1)=1,  λi≠0 for i=1,2,…,s  and 

element Tϵ AGLs(K) with the  density d.Then density of invertible element   I(J,K)ψ(u)=G is bounded by 

d and degree ≤ s(q-1).  Let L={1. 2,…s}UJ be set of indices for x1, x2,…,xs,, xij, , (i,j)ϵ J and π be a per-

mutation on L. We consider  an element H of ‘Em(Fq), m=|J|+s of kind xi→μixπ(i)
β(i), i=1,2,…s.  

Lemma 5. 

An element FJ=HG ϵ‘Em(Fq) has the  density bounded by d and the order at least s. 

        It is easy to choose string u and transformations D and H such that degree of G is of kind γm(q-1) 

wher γ  is a constant 0<γ≤1. 

4.2. On the graph based m.d.s.s. of linear degree and density O(n2). 
Alice selects  a finite field and sequence of pairs (sm, Jm), sm>1, |Jm|<(sm)2 such that |sm+|Jm|=m  and 

generates defined above transformation FJ=(d1(x1, x2, …, xm), d2(x1, x2, …, xm),…, dm(x1, x2, …, xm)) 

ϵ‘Em(Fq). She selects a public rule of kind  P’=T1PT2 written in the form  xi →Qi(x1, x2,…,xm), 
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i=1,2,…,n, where n=n(m). Alice computes composition FJ and P’, i.e standard form of xi→Qi(d1(x1, x2, 

…, xm), d2(x1, x2, …, xm),…, dm(x1, x2, …, xm))=R1(x1, x2, … xm), i=1,2,…n.  in fact she computes Ri as 

elements of commutative ring  ‘Fq[x1, x2,…,xm] of reduced multivariate polynomials. 

Alice uses the nature of FJ=HG, where G is graph based transformations.  She computes   Gm-1  as 
I(J,K)ψ(Rev(u)) and H-1 in an obvious way. The knowledge of decomposition G-1H-1 for  (FJ) -1  and de-

composition T1PT2 of P’ allows Alice to create a signature efficiently.   

Remark 4.2. We implement this m. d. s. s. with sm=[m1/2]’ where [,]’ is the ceiling function. 

5. On Examples of Multivariate Digital  Signatures Schemes. 

It is commonly  admitted that Multivariate cryptography turned out to be more successful as an ap-

proach to build signature schemes primarily because multivariate schemes provide the shortest  signa-

ture among post-quantum algorithms.   Such signatures use system of nonlinear polynomial equations 

1p(x1,x2 , . . . , xn) = 1pi,j · xixj+1pi · xi+ 1p0 

2p(x1, x2, . . . , xn) = 2p i,j · xixj +2pi · xi +2p0 

   … 

mp(x1,x2 , . . . , xn) = mpi,j · xixj+mpi · xi+ mp0 

where kp i,j,  kp i are elements of selected commutative ring K. 

   The quadratic multivariate cryptography map  consists of two bijective affine  transformations, S 

and T of dimensions n and m, and a quadratic element  P’ of kind  xi →ip of formal Cremona group, 

where ip are written above elements of  K[x1, x2,…,xn].We denote via Δ(P’) -1(y) some reimage of 

y=Δ(P(x)). The triple Δ(S) -1, Δ(P’) -1,  Δ(T) -1 is the private key which is also known as the trapdoor.  

     The public key is the composition S, P’ and T which is by assumption hard to invert without the 

knowledge of the trapdoor. Signatures are generated using the private key and are verified using the 

public key as follows.  

The message is hashed to a vector y via a known hash  function. The signature is Δ(T) -1 (Δ(P’) -1)( 

Δ(S) -1). The receiver of the signed document must have the public key P in posession. He computes the 

hash y  and checks that the signature  x fulfils Δ(P)(y)=x. 

EXAMPLE. Assume that we have two groups of variables  z1, z2, …, zr and z’1 , z’2, …, zn-r    such  that  
the substitution  x1=z1, x2=z2,…, xr =zr, xr+1=z’1, xr+2=z’2,…, xn =z’n-r  converts every single element ip  

to expression in  the  form  Σγijkzjz’k+ Σλijkz’jz’k+ Σςijzj+ Σς’ijz’j+ϭi.  In this situation we have to  sign a 

given message y and the result is a valid signature x .The coefficients, γijk, λijk, ςij, ς’ij and ϭi must be 

chosen secretly. The vinegar variables z’i are chosen randomly (or pseudorandomly).The resulting linear 

equations system gets solved for the oil variables zi. 

Described above  unbalanced oil and vinegar (UOV) scheme is a modified version of the oil and vine-

gar scheme designed by J. Patarin. Both are digital signature protocols. They are algorithms 

of multivariate cryptography. The security of this signature scheme is based on an NP-

hard mathematical problem. To create and validate signatures a minimal quadratic equation system must 

be solved. Solving m equations with n variables is NP-hard. While the problem is easy if m is either 

https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Multivariate_cryptography
https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/NP-hard
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essentially larger or essentially  smaller than n, importantly for cryptographic purposes, the problem is 

thought to be difficult in the average case when m and n are nearly equal, even when using a quantum 

computer. Multiple signature schemes have been devised based on multivariate equations with the goal 

of achieving quantum resistance. We assume that parameter n can be selected in a free way and parame-

ters n and m are connected via linear equation αn+βm+b where α≠0,β≠0. So m=O(n). We take integer k 

which ≥ max(n, m), k=O(n) and commutative ring K[x1,x2,…,xn, xn+1, xn+2,…, xk] where xi, i=1,2,…,n are 

variables of public equations  jp(x1,x2 , . . . , xn), j=1,2, …,m and xn+1, xn+2,…,xk are formal variables.   

6.. Multivariate Protocol for Stable Cremona Generators and Eulerian 

Systems with Growing Periods. 

            6.1.  The Case of Stable Generators. 
     Recall that a monogenic semigroup or a cyclic semigroup S is a semigroup generated by a single 

element, which is called a generating element of semigroup S. Now we shall determine the general 

structure of monogenic semigroups. Let S = { a, a2, a3, …} be a monogenic semigroup with a generating 

element a. It is a well known  fact that all infinite monogenic semigroups S are isomorphic to (N; +). In 

the case of finite cardinality  of S, there exists natural numbers k and l such that k ≠l and ak = al. Let m 

be the smallest natural number such that am = am=x  for some x > 0 and let r be the smallest natural 

number such that am= ajm+r. Then we call m  the index of a denoted by m = ind(a) and r  the period of a 

denoted by r = per(a). All  finite monogenic semigroups S are determined up to isomorphism by the 

height m and the period r of their generator.  

     Let iZ= { ig1 ,  ig2, … ,  igt} be a sequence of sets of elements from En(i)(K), where n(i)>1 is an in-

creasing  sequence of positive integers.  We say that  iZ  is  a noncommutative  system   of  stable Cre-
mona generators of degree d and  rank t if 

(1) Δ( igk
igj) ≠  Δ( igj

igk)  for arbitrary k ≠ j. 

(2) iSZ= <ig1, ig2,  … , igt> are stable semigroups of  degree d. 

(3) For each j period of elements igj, i=1,2,…,t tends to infinity. 

Proposition 2.(see [3] and further references).  For each commutative ring K, sequence n(i)=i ,i≥2 and 

each value of parameters  d and t there is a noncommutative  system   of  stable Cremona  generators  

of degree d and  rank t.  

   We say that  iZ is a regular  noncommutative system of stable Cremona generators if n(i)=i for each 

value of i.  

      Let   n(i), m(i),  m(i) ≤ n(i) be two increasing sequences  of natural numbers and iZ,  iZ1 are corre-

sponding  stable systems of growing periods of degrees d and d' (d' ≤d) and rank t, t>1.   
      We say that iZ' ={ ig'1, ig'2, … , ig't}  is a quotient of stable Cremona system iZ if the rule φ(igj)= ig'j, 

j=1, 2,…, t defines computationally tame homomorphism of semigroup iSZ onto  iSZ1 , i. e. a homomor-

phism computable in time O(ni
α) for some positive constant α. We refer to iZ as stable cover of non-

commutative system of stable Cremona  generators. 

        Theorem 2 (see [6] and further references). For each finite commutative ring K  and natural num-

bers d,  d>0 and t, t ≥ 2 there is an increasing sequence n(i)  of natural numbers and noncommutative  

system of stable Cremona generators  iZ ={ ig 1, ig2, … ,  ig t} of  degree d and rank t which has a regular 

quotient  iZ'. 

        We say that stable Cremona system of elements of degree d has  enveloping family of stable sub-

semigroup EZi(K) of degree d  if E(i)(K)>EZi(K)>SZi(K). 

      Word tahoma stands here for the abbreviation of ‘’tame homomorphism’’. 

Noteworhy that Tahoma is a name of the mountain in North America and a popular shrift in a text pro-
cessing.   

https://en.wikipedia.org/wiki/Quantum_computer
https://en.wikipedia.org/wiki/Quantum_computer
https://en.wikipedia.org/wiki/Post-quantum_cryptography
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     Let us assume that Alice selects a  noncommutative  system Z(K) of stable Cremona generators  of 

degree d and rank t with quotient Z'(K) such that there is  an  enveloping  family EZ(K) of   Z(K) and 

enveloping family EZ1(K) of  Z'(K). 

  Alice chooses parameter i  and bijective affine transformation T , deg(T)=1 and T',  deg(T')=1 acting 

on (K ) 
n(i) and (K ) 

m(i). She selects elements E and 1E from EZn(i)(K)   and  EZ'm(i)(K). Alice takes  gen-

erators g1 ,  g2, …  , gt of SZ i (K) and corresponding images  g'1,   g'2  , …, g't in the SZ' i(K).  

 So she forms aj = TEgjE-1T-1, j=1,2,…,t    and bj = T'E' g'j(E')-1(T') -1, j=1,2,…,t  written in a standard 
form of En(i)(K) and Em(i)(K).  

    Alice sends (aj, bj) and j=1,2,…,t to Bob. He takes alphabet {z1, z2,… , zt} and  selects word w(z1, z2, 

…, zt), =zi(1)
α(1)zi(2)

α (2) … z2i(l)
α (l), where α(j)>0, j=1,2, …, l, l >1, i(s)ϵ{1,2,…,t}, i(j)≠i(j+1) for 

j=1,2,...,t-1. 

  Bob computes b=w(b1, b2,…,bt) and keeps it safely for himself. He forms a=w(a1, a2, … at) and sends 

this element of En(i)(K) to Alice. 

      She uses the following restoration process to get w(b1, b2,…,bt). Alice computes E-1T-1aTE=c. She  

uses tame  homomorphism φ corresponding to noncomutative  system Z and  its quotient Z1 and com-

putes φ(c)=c'. Secondly she computes b=w(b1, b2,…,bt) as  T'E'c1(E')-1(T')-1. 

Remark. Adversary has to decompose available multivariate map a=w(a1, a2, …, at ) from En(i) into word 

in given  generators a1, a2 , …, at written in their standard form. So security rests on the word problem 

in semigroup 
En(i)(K) (or stable semigroup  <a1, a2, …, at>). 

   Noteworthy that due to this algorithm  correspondents Alice and Bob can safely elaborate  collision 

quadratic transformation of (K)m(i) with the chosen dimension m(i). In the case of regular quotient 

m(i)=i.  

   So correspondents have an algorithm to elaborate safely stable collision  map of selected degree d 

acting on free module Kl of an arbitrarily chosen  dimension.   

6.2 The Case of Toric Generators. 
Let iZ= { ig1, ig2, …,  igt} be a set of elements ESn(i)(K),where n(i) is increasing sequence of positive 

integers. We say that iZ is a system of Eulerian generators with growing periods  (SEG)  and rank t if 
(1) For each j, 1≤j≤t  values per(Δ(igj)) tends to ∞ when i grows. 

(2) kgi 
kgj ≠  kgj 

kgi for i ≠ j. 

        We refer to semigroups iSZ=<ig1,ig2, …, igt>  as toric subsemigroups of ESn(i)(K). We say that sub-

sets  iZ1={ig1
1,    ig1

2 , …, ig1
t}  of ESm(i)  ,where m(i) is increasing sequence of positive integers form, a 

quotient of Eulerian system  iZ with growing periods  if  

(1) n(i) ≥ m(i) , 

(2)  the rules  iφ (igj)= ig1
j,  j=1, 2, … , t define computationally tame homomorphisms of semigroups 

iSZ onto iSZ1=< iZ1>, i. e. homomorphisms computable in time O(n(i)α)  for some positive constant α .  

(3)      iZ1 is also Eulerian system with growing periods. 

     We say that   iZ1 is a regular Eulerian  quotient if n(i)=i for each value of i and n(i) is polynomial 

expressions in variable i of bounded degree. 

  In the section 7.1 we constructively prove the following statement.   

Theorem 3. 

For each finite commutative ring K with unity and natural number   t ≥ 2 there is an increasing se-

quence n(i)  of natural numbers and  Eulerian system iZ= { ig1, ig2, …,  igt} of  rank t with  growing pe-

riods (orders) which has a regular quotient iZ1. 

Multivariate Eulerian Protocol. 

               Let us assume that Alice selects a  noncommutative  system Z(K) of  Eulerian generators  of  

rank t with quotient Z'(K). 
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  Alice chooses parameter i  and bijective  transformations Tϵ EGn(i)(K)   and T'ϵ EGm(i)(K)  acting on 

(K* ) 
n(i) and (K* ) 

m(i). Alice takes  generators g1 ,  g2, …  , gt of SZ i (K) and corresponding images  g'1,   

g'2  , …, g't in the SZ' i(K).  

 So she forms aj = TgjET-1, j=1,2,…,t    and bj = T' g'j(T') -1, j=1,2,…,t  written in a standard form of 

ESn(i)(K) and ESm(i)(K).  

    Alice sends (aj, bj) and j=1,2,…,t to Bob. He takes alphabet {z1, z2,… , zt} and  selects word w(z1, z2, 

…, zt), =zi(1)
α(1)zi(2)

α (2) … z2i(l)
α (l), where α(j)>0, j=1,2, …, l, l >1, i(s)ϵ{1,2,…,t}, i(j)≠i(j+1) for 

j=1,2,...,t-1. 

  Bob computes b=w(b1, b2,…,bt) and keeps it safely for himself. He forms a=w(a1, a2, … at) and sends 

this element of ESn(i)(K) to Alice. 

      She uses the following restoration process to get w(b1, b2,…,bt). Alice computes T-1aT=c. She  uses 

tame  homomorphism φ corresponding to noncomutative  Eulerian system Z and  its quotient Z1 and 

computes φ(c)=c'. Secondly she computes b=w(b1, b2,…,bt) as  T'c1(T')-1. 

       Tandem of Protocols. Let us consider  two protocols in a natural combination.. 

          Assume that Alice has data to set protocols 6.1 and 6.2 in the case of regular quotients.   

   She has system  CZ(K) of  stable Cremona generators of degree d and  rank t with regular quotient 

CZ'(K) such that there is  an  enveloping  family EZ(K) of   CZ(K) and enveloping family EZ1(K) of  

CZ'(K). 

      Alice also has  a  noncommutative  system Z(K) of  Eulerian generators  of  rank t with regular quo-
tient Z'(K), i. e system of Eulerian generators corresponding to the sequence n1=i , i=1,2,…,n. 

 So Alice uses these data to execute algorithms 6.1 and 6.2 together with Bob 

 For  the parameter i selected by Alice correspondents elaborate collision elements bC and bE of these 

protocols. Notice the bE is an element of En(K). Thus correspondents have element bEbC  which has den-

sity O(nd) and a linear degree. 
7.  Implementation of the Tandem of Protocols. 

7.1.   Family of linguistic graphs over multiplicative group of a commutative ring and graph 

based multivariate Eulerian protocol. 

    We define Eulerian Double Schubert Graph  DS(k,K*) over multiplicative group K as incidence struc-

ture defined as disjoint union of  partition sets PS=(K*)k(k+ 1)  consisting of points which are tuples of 

kind x =(x1 , x2, … , xk, x11 , x12, … , xkk ) and LS=(K*)k(k+1) consisting of lines which are tuples of kind y 

=[y1 ,y2, … ,yk, y11 ,y12, … ,ykk], where x is incident to y, if and only if xij / yij=xi yj for i=1, 2,..., k and j=1, 

2,..., k. It is convenient to assume that the indices of kind i,j are placed for tuples  of (K*)k(k+1) in the 

lexicographical order. 

       We define the colour of point x =(x1 , x2, … , xk, x11 , x12, … , xkk )  from  PS as tuple(x1 , x2, … , xk,) 

and the colour of a line y =[y1 ,y2, … ,yk,y11 ,y12, … ,ykk] as the tuple (y1 , y2, … ,yk). For each vertex v  of 

DS(k, K*), there is the unique neighbour  y=Na(v) of a given colour a=(a1,a2, … ,ak). It means  that 

graphs  DS(k, K*) form a family of linguistic graphs.  

Let us consider the subsemigroup kY( K*)  of  kBS(K*) consisting of strings u=(H0, G1, G2, H3, H4, 

G5, G6,…, Ht-1, Ht). 

         Let I*=I(K*) be an incidence relation of Eulerian Double Schubert graph DS(k, K*). Then 
I*ψ(kY(K*))=kU(K*) form a family of stable semigroups of ESn(K), n=k+k2.  

                 Let J be subset of the Cartesian square of M={I,2,…,k}. We can identify its element (i,j) with 

the index ij of  Eulerian Double Schubert Graph DS(k,K*). 

For each subset J of M2  deleting the coordinates of points and lines with coordinates indexed by ele-

ments M-J  defines symplectic homomorphism δJ of DS(k, K*) onto a linguistic quotient DSJ (k,K*). 
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      Let I*(J, K)) be an incidence relation of linguistic graph DSJ (k, K). Then homomorphism δJ induces 

tame homomorphism of semigroup kU(K*) onto its linguistic quotient  I*(J,K)ψ(kY( K*))=kUJ
 (K*).  

    Let K be a commutative ring with a unity. For each pair (n, m), n≥ m an element T of ESn(K) with 

per(T)≥m can be constructed. Let us consider a  subset {1,2, …,m} of {1,2, …n} and transformation T 

such that  

T(xj)= xj+1
λ(j), j=1,2,…m-1, T(xm) = x1

λ(m),  (λ(i)i, |K*|), i-1,2,…,m. Noteworthy that elements of kind  

STS-1 where S  is a  monomial transformation from 

ESn(K) have periods >m. 

         Let  f : N→R be real function in a natural variable and  [ ,]’ stands for ceiling function, i.e [f(n)]’ 

is closest to f(n) parameter n’ such that n’≥n. 

 Alice considers family of  r(i)Y(K)) where r(i)=[i1/2 ]’ , i=2,3,… So the point set of  DS(r(i), K*)) is a 

variety (K*)m of dimension m=[ i1/2 ]’ +([ i1/2 ]’ )2 which is at least [ i1/2 + i ]’. 

   For each i she can select the strings u(1,i), u(2,i), …, u(t,i), t ≥ 2  with coordinates from ESr(i)(K) of 

kind u(k,i)=( k,iH0, ,k,iG1, k,iG2, k,iH3, k,iH4, k,iG5, k,iG6,…, k,iHt(k,i)-1, k,iHt(k,i)), k=1,2,…,t, t(k,i)≥4 such that 
k,iHt(k,i)

 j,iHt(j,i) ≠ji Ht(j,i)
 k,iHt(k,i) for distinct  k and j and period of  k,iHt(k,i) is >r(i) α, 0<α<1. 

The last conditions insure that for Iψ(u(k,i))=a(k,i), k=1,2,…,t conditions a(k,i)a(j,i)≠a(j, i)a(k,i) hold 

and period of a(k,i), i=1,2,… tends to infinity for each k. So  elements  a(l,i)ϵESr(i),  l=1,2,…,t, i=2,3,… 

form   

Eulerian system EZ of generators of growing periods corresponding to the sequence r(i). Alice can take 

DS(r(i), K*) and subset J(i) which defines an incidence system I(J, K)) such that |J(i)|=i-r(i). So the 

point set of I(J(i), K) is Ki. 

    Symplectic homomorphism of DS(r(i), K*)) onto I(J(i),K*) induces homomorphism ϕ*(i,J(i)) of 

semigroup r(i)U(K*) onto iUJ(i)(K). It is easy to see that ϕ*(i,J(i))(a(k,i))=a’(k,i) forms the regular quo-

tient EZ’ of the system EZ. 

    So correspondents can use toric tahoma protocol with the System EZ ofEulerian generators with 

growing periods and its regular quotient  EZ’. 

     7.2. Example of  a family of linguistic graphs over commutative ring and corresponding proto-

col. 

      In the second protocol we use already defined  symbol [ , ]’ and already defined graphs DS(k, K). 

      Alice considers family of  r’(n)Y(d, K)),  where r’(i)=[i1/2 ]’ +γ, where γ is an integer constant.  So the 

point set  r(i)DS(d, K)) is a free module of dimension [ i1/2 ]’ +([ i1/2 ]’ )2 which is at least [ i1/2 + i ]’. 

   For each i she can select the strings u(1)=u(1,i), u(2,i), …, u(t,i), t ≥ 2  of kind u(k,i)=( k,iH0, ,k,iG1, 
k,iG2, k,iH3, k,iH4, k,iG5, k,iG6,…, k,iHt(k,i)-1, k,iHt(k,i)), k=1,2,…,t from kU(d, K) such that Δ(k,iHt(k,i) 

 j,iHt (j,i))≠ji 

Δ(j,iHt (j,i)
 k,iHt(k,i)) for distinct  k and j and period of  k,iHt(k,i) from AGLr’(i)(K)> r’(i) α, 0<α<1. 

The last condition insures that for Iψ(u(k,i))=b(k,i), k=1,2,…,t conditions b(k,i)b(j,i)≠b(j, i)b(k,i) hold if j 

≠k and  period of b(k,i), i=1,2,… tends to infinity for each k. 

So  endomorphisms b(l,i)ϵEr’(i),  l=1,2,…,t, i=2,3,… form stable  

Noncommutative Cremona system CZ of degree d corresponding to the sequence r’(i). Semigroups 
r’(‘i)U(d, K) form enveloping family of Z. Alice can take r(i)DS(d, K)) and subset J’(i) which defines an 

incidence system I(J’, K)) such that |J’(i)|=i-r’(i). So the point set of I(J’(i), K) is Ki. 

    Symplectic homomorphism of r’(i)DS(d, K)) onto I(J’(i),K) induces homomorphism ϕ(i,J’(i)) of semi-

group r’(i)U(d, K) onto iUJ(i)(d,K). It is easy to see that ϕ(i,J(i))(b(k,i))=b’(k,i) form the quotient EZ’ of 

the system EZ with enveloping family iUJ’(i)(d,K). 

7.3. The combination and its  usage for the privatization of public rules. 
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    Correspondents select parameter i. They use both protocols to elaborate collision map HϵESi(K), 

K=Fq of linear degree s(i) and stable transformation G from Ei(K). They compute G’=HG of linear de-

gree and density O(id).  

Assume that d=2.  One of correspondents (Alice)  consider the public rule F=(f1, f2,…, fm)  of m.d.s.s. of 

Section 4 with n variables and m equations.  Parameter   i is selected  as maximum of n  and m.. If m<n 

we consider transformation F’=(f1, f2,…, fm, xm+1, xm+2,…, xi) where xj are generic variables of K[x1, 

x2,…, xi] and sends G’+F’ to Bob. He restores F’ and they use the m.d.s.s. scheme of Section 4. 

8.Complexity Aspects. 
  Let us assume that correspondents use m.d. s.s. based on the composition of a quadratic multivariate 

public rule P’ with m=O(n) equations in  n variables over finite field Fq with the endomorphism  H from 

E n(Fq).  Bob substitutes received signature string in the G=HP’ given in the standard form of each 

equation in time O(n3). So the check of the signature takes him O(n4) time. 

   Let us compute the time required for the generation of  H. 

       Notice that choice of string with bounded length costs O(n1/2). The computation of the value of 

linguistic homomorphism takes time evaluated by  O(n2+1/2). Each coordinate of H has O(1) monomial 

terms of degree  bounded by qn1/2. The generation of D of density 1 and degree q takes time O(n). The 

computation of D and H takes O(n1+1/2).  Each coordinate of DH has density O(1)  and degree qn. The 

computation of each coordinate of (DH)P’  takes O(n3). So the complexity of computation of new pub-

lic rule is O(n4). 

  The knowledge of the inverse string  allows to compute   inverse of H in time O(n2+1/2). The inverse of 

D is computable for O(n). So Alice can find appropriate signature for the time required for the computa-

tion of reimage of P’.  

      Finally we evaluate the complexity of execution of each protocol. 

In the case of our stable platform of degree 2 Bob has a finite set of stable quadratic tranformations. The 

computation of composition of several generators in stable case can be evaluated via computation of 

two generators. It takes O(n7) elementary operations. It means that  the total time for the execution of 

the protocol by Bob is O(n7).   It is easy to see that Alice can generate data for the first stage essentially 

faster than O(n7). 

          For the computation of the collision quadratic endomorphism she need to compute the com-

position of linear and quadratic elements in two different orders.  It can be done in time O(n5). Addi-

tionally Alice has to compute the product of two stable quadratic elements.  We already noticed that it 

required O(n7) elementary steps.  So O(n7)  is the appropriate upper bound for time execution of the 

protocol by each correspondent. 

   Similarly we will see that in the case of Eulerian platform  the protocol can be executed in time  O(n4)  

which is necessary to compute the product of two Eulerian transformations.  Correspondents has to 

multiply Eulerian element with quadratic transformation.  It can be done in time O(n4). 

9. Conclusion. 

      In paper [3] the method of conversion of multivariate digital signature scheme based on quadratic 

public map P’ was proposed. So instead P’ the combination of HP’ with bijective element H ϵ En(K) of 

linear degree l(n) and  density O(1) is used. We notice that in the  case K=Fq we can work with reduced 

polynomials which are linear combinations of monomial terms  x1
α(1)x2 α(2)…xn

α(n) where α(i) , i=1,2,…, 

n are a residue modulo q-1. We modify the technique [4] of construction H via walk on special graphs 

defined by equations (‘’linguistic graphs over field Fq’’) and construct bijective  map ‘H from the re-

duced Cremona semigroup. 



15 

New scheme of usage ‘HP’ has better estimates for time of execution presented in Section 7. Attacks 

presented in [1], [2] can not be used against new schemes. 

The main objective of the paper is the algorithm of safe transition of multivariate digital signature 

scheme of linear degree onto private El Gamal type mode. 

 This algorithm uses a combination of two  protocols of Multivariate Noncommutative Cryptography 

with platform formed by a family of quadratic stable subsemigroups of formal Cremona semigroup and 

platform  formed by a family of semigroups of Eulerian transformations. The second platform is defined 

via families of linguistic graphs over groups which were introduced in this paper.   

    The combination of protocols allows correspondents to elaborate  family  Gn of elements of ’En(Fq) , 

n=2,3,…of linear degree and density O(n2). One correspondent selects combination Fn=HP’  and sends 

Gn+Fn to his/her partner. 

   Breaking the word problem is currently unsolvable post quantum problem, so the remaining option for 

adversary is to intercept many pairs of kind hash vector/corresponding signature  and try to approximate 

Fn.The approximation task for the non bijective map of unbounded degree and density O(n2) is unfeasi-

ble one. 
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