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Abstract

The algebraic group model, introduced by Fuchsbauer, Kiltz and Loss (CRYPTO ’18), is
a substantial relaxation of the generic group model capturing algorithms that may exploit the
representation of the underlying group. This idealized yet realistic model was shown useful for
reasoning about cryptographic assumptions and security properties defined via computational
problems. However, it does not generally capture assumptions and properties defined via de-
cisional problems. As such problems play a key role in the foundations and applications of
cryptography, this leaves a significant gap between the restrictive generic group model and the
standard model.

We put forward the notion of algebraic distinguishers, strengthening the algebraic group model
by enabling it to capture decisional problems. Within our framework we then reveal new insights
on the algebraic interplay between a wide variety of decisional assumptions. These include the
decisional Diffie-Hellman assumption, the family of Linear assumptions in multilinear groups,
and the family of Uber assumptions in bilinear groups.

Our main technical results establish that, from an algebraic perspective, these decisional
assumptions are in fact all polynomially equivalent to either the most basic discrete logarithm
assumption or to its higher-order variant, the g-discrete logarithm assumption. On the one hand,
these results increase the confidence in these strong decisional assumptions, while on the other
hand, they enable to direct cryptanalytic efforts towards either extracting discrete logarithms or
significantly deviating from standard algebraic techniques.
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1 Introduction

One of the most successful and influential idealized models in cryptography is the generic group model
[Nec94, BLI6, Sho97, Mau05|, most often used to analyze the security of group-based cryptographic
assumptions and constructions. The generic group model captures group-based computations that
do not exploit any specific property of the representation of the underlying group, by withholding
from algorithms the concrete representations of group elements. At a high level, the access of generic
algorithms to group elements is mediated by an oracle, and is restricted to the abstract group
operation and to checking equalities among group elements throughout the computation. On the
one hand, the generic group model captures a wide and natural class of algorithms, and a proof of
security in this model means that a successful adversary must step outside this class. This enables, in
particular, to direct candidate constructions and cryptanalytic efforts away from generic impossibility
or hardness results. On the other hand, however, the assumption that adversaries are completely
oblivious to the representation of the group and its elements is often unrealistic to some extent (see
for example [FKL18, JS13] and the discussion therein).

The algebraic group model. With this gap in mind, Fuchsbauer, Kiltz and Loss [FKL18| ele-
gantly introduced the algebraic group model, as an intermediary model between the generic group
model and the standard model.! Roughly speaking, an algebraic algorithm may use the representa-
tion of group elements in any arbitrary manner, but whenever it outputs a group element, it must
supply together with it an “algebraic explanation” for how it came up with this element. Informally,
this explanation is a representation of the outputted element, in the basis of all group elements that
the algorithm has received so far.

Fuchsbauer et al. showed that though a considerable weakening of the generic group model, the
algebraic group model provides a very advantageous framework for proving security reductions which
are unknown to hold in the standard model. For example, within the algebraic group model, they
reduced the security of very useful cryptographic schemes such as the BLS signature scheme [BLS01]
and Groth’s zero-knowledge SNARK [Grol6], to the hardness of very simple variants of the discrete
logarithm problem. Follow-up works have continued to exemplify the usefulness of the model, by
providing security reductions from the hardness of a large class of computational Diffie-Hellman-like
problems to the hardness of the discrete logarithm problem [MTT19[; and from the unforgeability of
blind Schnorr signatures [Sch91, Sch01] and variants thereof to the hardness of simple computational
problems in cyclic groups [FPS20]. Moreover, the recent work of Agrikola, Hofheinz and Kastner
[AHK20] provided a standard-model implementation of (a relaxation of) the algebraic group model.

Computational vs. decisional problems. One commonality which is shared by all of the afore-
said results, is that they all deal with assumptions and security properties that are defined via
computational problems (i.e., search problems in which an algorithm is required to output group
elements). This should come as no surprise: Algorithms for decisional problems are challenged with
outputting a decision bit, and do not, generally speaking, output any group elements. As Fuchsbauer
et al. point out, this means that such algorithms (to which we refer as distinguishers) are vacuously
algebraic, and that in principal, decisional problems are not captured within the algebraic group
model. Fuchsbauer et al. posed the important open problem of whether or not their approach can
be extended to capture decisional algebraic problems and algebraic distinguishers, as these play key
roles in the foundations and applications of cryptography. Developing such a model will enable to

IPrevious, extraction-based, definitions may be found in the earlier works of Boneh and Venkatesan [BV98| and of
Paillier and Vergnaud [PV05].



analyze the security of indistinguishability-based cryptographic problems and constructions while
enjoying the key advantages of the algebraic group model.

1.1 Owur Contributions

Algebraic distinguishers. We put forward a generalized framework that captures algebraic dis-
tinguishers within the algebraic group model. Following Fuchsbauer et al. [FKL18|, our framework
fits the intuition according to which the algebraic group model “lies in between the standard model
and the generic group model”. Concretely, our notion of algebraic distinguishers allows such algo-
rithms to rely on the explicit representation of group elements in any arbitrary manner, while still
requiring that they “explain” their decision via an “algebraic witness”.

In our framework this witness corresponds to a non-trivial equality relation satisfied by a subset
of the group elements which the algebraic distinguisher has received or has computed throughout
its execution. We carefully formulate an additional requirement regarding this witness in order to
guarantee its non-triviality and usefulness: Loosely speaking, we ask that whenever the algebraic
distinguisher can tell two distributions apart, then this witness serves as a “good differentiator” be-
tween these two distributions. Our requirement is a rather mild one (much stronger requirements
hold in the generic group model), and it is sufficient for proving highly non-trivial reductions, as
discussed below. Our notion of algebraic distinguishers is formulated in a general manner, allowing
for flexibility and versatility in its applications (e.g., it can be used to reason about the indistin-
guishability of hybrid distributions that are introduced within proofs of security and are not part
of the original formulation of the problem under consideration — as we demonstrate, for example, in
Section 5). We refer the reader to Section 1.2 for a high-level description of our framework.

From discrete logarithms to decisional Uber assumptions. Within our framework we re-
veal new insights on the algebraic interplay between a wide variety of decisional assumptions. These
include the seemingly modest decisional Diffie-Hellman assumption and the family of Linear assump-
tions [Sha07], as well as the seemingly substantially stronger family of decisional Uber assumptions
[BBGO05, Boy08].

Our main technical results show that, from an algebraic perspective, these decisional assumptions
are in fact all polynomially equivalent to either the most basic discrete logarithm assumption (in
the case of the decisional Diffie-Hellman and Linear assumptions) or to its generalized higher-order
variant, the g-discrete logarithm assumption (in the case of the entire family of decisional Uber
assumptions). We refer the reader to Section 1.2 for a high-level description of our results and for
informal theorem statements.

Interpreting our framework and results. Prior to our work, these decisional assumptions that
we consider were simply known to unconditionally hold in the generic group model, without any
indication of a non-trivial interplay among them. Moreover, prior to our work, the algebraic group
model enabled to reason only about computational problems, whereas our framework enables both
to reason about decisional problems and to reduce their algebraic hardness to that of computational
problems. In this light, the contributions of our framework and technical results can be interpreted
in the following, somewhat equivalent, manners:

e From the perspective of designing cryptographic schemes, our equivalence between the algebraic
hardness of extracting discrete logarithms and that of seemingly much stronger assumptions
increases the confidence in such stronger assumptions.



e From the perspective of cryptanalytic efforts, the introduction of the family of Uber assump-
tions [BBGO5, Boy08| enabled directing nearly all such efforts towards a specific and well-
defined family of decisional assumptions. Our results show that these efforts either can be
significantly further directed towards extracting discrete logarithms, or should deviate from all
algebraic techniques that are captured within our framework.

1.2 Overview of Our Framework and Results

In this section we provide a high-level overview of our framework and technical results. We start by
reviewing our definition of algebraic distinguishers, and the intuition behind it, in more detail. For
a formal exposition and discussion of the definition, see Section 3.

A first attempt. As a first attempt of defining algebraic distinguishers, consider demanding that
whenever an algebraic distinguisher accepts (i.e., outputs 1), it should output a “decision” vector
such that [[, ¢;"* = 1, where g1, g2, ... are the group elements that the distinguisher has observed,
and 1 is the unity of the group. This is inspired by the approach of Fuchsbauer et al. who adapted
from the generic group model the restriction of producing new group elements only as combinations of
previously observed elements. The above requirement couples this restriction with another constraint
posed on algorithms in the generic group model: The fact that essentially the only useful information
on which generic algorithms can base their decisions is the equality pattern among the group elements
that they have observed. Put differently, the basic algebraic information which can lead a generic
distinguisher to accept (or to reject), is a non-trivial equality relation among the group elements
that it has observed. Thus, the vector w captures the zero test induced by this relation.

Of course, such a zero test can always be produced by setting w to be the all-zeros vector, and
so we need to add some non-triviality requirement. A possible route is demanding that whenever
an algebraic algorithm accepts, the vector @ has to be non-zero (i.e., @ # 0). Such a demand,
however, seems unrealistic since a distinguisher can always accept even without “having knowledge”
of such a non-zero vector @. Moreover, it is not enough to ask that @ # 0. Consider, for example,
the decisional Diffie-Hellman problem in which the distinguisher is asked to distinguish between a
tuple of the form (g, g%, ¢¥,¢9%Y) and a tuple of the form (g, ¢", g¥, g*) for a uniform choice of z,y
and z. In this case, a vector @ whose any of the last three entries is 0, cannot be used in order to
distinguish between the distributions, since when projected onto the support of such a vector @, the
two distributions coincide.

Our definition. In light of the above discussion, our definition of algebraic distinguishers is some-
what more subtle. Informally, it asks that if an algebraic distinguisher A runs in time ¢ and distin-
guishes between two distributions Dy and D; with advantage €, then there exists some bit b € {0, 1}
such that the following holds: On input drawn from Dy, the distinguisher A outputs a “good” vec-
tor « with probability at least e/t* (this is in addition to the requirement that [, g;** = 1 with
probability 1). We define a “good” vector @ to be such that Dy and D; remain distinct even when
projected onto the support of . Informally, by projecting a distribution onto the support of w, we
mean “erasing” all group elements whose corresponding entry in @ is 0 (See section 3.2 for a formal
definition of this operation). This requirement (and even stronger forms thereof) indeed holds in
the generic group model (as we discuss in Section 3.3), implying that our definition of the algebraic
group model in fact lies between the generic group model and the standard one. We remark that
even stronger requirements might be justifiable, and refer the reader to Section 3.2.

In groups which are equipped with a k-linear map, a distinguisher has additional algebraic power:
It can infer information from equalities in the target group as well. Whereas in the generic group



model, equalities in the source group induce linear polynomials in the exponent, equalities in the
target group induce polynomials of degree up to k. We capture this fact by allowing the distinguisher
to output a “degree k zero test” as its algebraic witness, and refer the reader to Section 6.1 for the
formal definition.

The algebraic hardness of the decisional Uber assumption in bilinear groups. In the
setting of bilinear groups, Boneh, Boyen and Goh [BBGO05] and Boyen [Boy08] introduced the Uber
family of decisional assumptions. Each assumption in the family is parameterized by two tuples of
m-variate polynomials ¥ = (r1,...,7) and § = (s1,...,s) and an m-variate polynomial f. Roughly,
the assumption states that given a generator g of the source group, and given the group elements
gr@newm) - gre(@nestn) and e(g, g)* 1 @0erm) | e(g, g)*tFoTm) it s infeasible to distinguish
between e(g, g)7 (@1,-%m) and a uniformly-random element in the target group for a uniform choice
of x1,...,x,. Boneh et al. proved that as long as 7, § and f do not admit a trivial solution, the
(7, 8, f)-Uber problem is hard in the generic group model.

Within our framework, we reduce the hardness of the (7, 5, f)-Uber problem to the hardness of
the ¢-discrete logarithm problem in the source group, where in the g-discrete logarithm problem an
adversary needs to retrieve a secret exponent z given (g, g%, ...,¢"" ), and ¢ is polynomial in the
number of polynomials in 7 and in § and in the their degree.

Theorem 1.1 (Informal). Let (7, 3, f) represent m-variate polynomials which do not admit a trivial
solution to the (7, 8, f)-Uber problem, and let A be an algebraic algorithm for the (7, 8, f)-Uber problem
relative to a source group G and a target group Gp. Then, there exists an algorithm B for the q-
Discrete Logarithm problem in G, whose running time and success probability are polynomially-related
to those of A.

The proof of Theorem 1.1 consists of two parts. First, inspired by the work of Ghadafi and
Groth [GG17|, we consider an intermediate variant of the Uber assumption which is univariate, in
the sense that it involves only a single secret exponent x (instead of m secret exponents 1, ..., Zm,).
We observe that the work of Ghadafi and Groth immediately implies that for any triplet (7, S, f), the
existence of a successful algebraic distinguisher for the (7, §, f)-Uber assumption implies the existence
of a successful algebraic distinguisher for the univariate variant as well.

In the second (and main) part of the proof, we reduce within our framework the hardness of this
univariate variant to that of the g-discrete logarithm problem. Technical details omitted, the main
idea is to embed the secret exponent x of the g-discrete logarithm challenge as the secret exponent
used to generate the input in the univariate Uber assumption. This is where the parameter ¢ comes
into play; since the polynomials (7, 5, f) may be of high degree, generating the input to the univariate
Uber assumption may require knowledge of group elements of the form ¢* for different values of
1. As discussed above, a successful algebraic distinguisher for univariate Uber assumption returns a
zero test as an algebraic witness for its decision. We observe that if (7,5, f) do not admit a trivial
solution to the (7,3, f)-Uber problem, this witness induces a non-zero univariate polynomial with
one of its roots being x. Consequently, we can retrieve = by finding the roots of this polynomial (for
example, by using the Berlekamp-Rabin algorithm [Ber70, Rab80|) and searching for the root which
is consistent with the input to the ¢-discrete logarithm problem.

The algebraic hardness of the decisional k-Linear problem in k-linear groups. In the
Decisional k-Linear problem introduced by Shacham [Sha07]|, a distinguisher is given an input of
the form (g,g%',..., g%, g%, g™ ..., g ") and needs to distinguish between the group element

gﬂ'zﬁ:l” and a uniformly random group element g®. Observe that this family of assumptions



generalizes the Decisional Diffie-Hellman assumption (which corresponds to & = 1) and the Decisional
Linear assumption [BBS04| (which corresponds to k = 2). Seemingly, this family forms a hierarchy;
for any k, the k-Linear assumption implies the (k+ 1)-Linear assumption. As for the other direction,
Shacham proved that in a generic group equipped with a (k + 1)-linear map the (k + 1)-Linear
assumption holds, even though it is easy to break the k-Linear assumption. Within our algebraic
framework, we prove a more refined relation among the different assumptions in the family: For
k-linear groups, we show an equivalence between the k-Linear problem in the source group and the
discrete logarithm in the source group.

Theorem 1.2 (Informal). Let A be an algebraic algorithm for the k-Linear problem relative to a
group G equipped with a k-linear map. Then, there exists an algorithm B for Discrete Logarithm
assumption in G, whose running time and success probability are polynomially-related to those of A.

An immediate corollary of Theorem 1.2 is an equivalence (within our framework) between the
Decisional Diffie-Hellman assumption and the discrete logarithm assumption in groups without a
bilinear map (see Section 3.2 for our model which captures such groups); and an equivalence between
the Decisional Linear assumption and the discrete logarithm assumption in bilinear groups (without
a trilinear map — see Section 5.1 for definition of such groups in our model).

The high-level idea behind the proof of Theorem 1.2 can be described as follows. Given a discrete
logarithm challenge g*, we embed x in the input to the k-Linear problem instead of one member of
the set S :={ay,...,ak,r1,..., 7k, B, 2} of secret exponents. The choice of which of these exponents
is replaced by x is done uniformly at random. Then, given the algebraic witness @ returned by
the distinguisher for the k-Linear problem, we define a collection of 2k + 2 univariate polynomials
fis- -+, fokto, one per each member of S. We prove that if the witness o is a “good differentiator” (in
the sense loosely discussed at the beginning of this section and formally defined in Section 6.1), then
at least one of these polynomials is not the zero polynomial, and the corresponding member, denoted
by vy, of the set S is one of its roots. Hence, if z was embedded instead of y (which happens with
probability 1/(2k 4 2)), then we can use the corresponding polynomial to find z, by computing all
roots of this polynomial and checking which one is consistent with the discrete logarithm challenge.

For concreteness, we now provide a more detailed account of the proof outline for Theorem 1.2
for the simple case of k = 1.

Warm-up: From Decisional Diffie-Hellman to discrete logarithms. Consider an algebraic
distinguisher D which runs in time ¢ and has advantage € in breaking the Decisional Diffie-Hellman
assumption in a group G. As discussed above, this means that on input of the form (g, g%, g¥, g% ¥%%)
for some b € {0,1} and a uniform choice of x,y and z, D outputs a vector @ = (wp, w1, wa, w3) such
that:

L gwo-gui . g2y . gus (vt a) = 15 and

2. There exists o € {0,1} such that if b = o, then with probability at least e/t? it holds that
w1, w9 and ws are all non-zero.

These facts can be used to construct an algorithm A breaking the discrete logarithm problem in G.
For concreteness and brevity, in this overview we focus on the case in which o = 0.2 The adversary
A receives as input a group element R := ¢" and embeds it as part of the input to D: With
probability 1/2, it embeds r instead of x by sampling y on its own and invoking D on (g, R, ¥, RY);

2In the full reduction (Section 4), we consider two attacks, one per each possible value of o, and the adversary A
chooses which one of them to execute uniformly at random.



and with probability 1/2 it embeds r instead of y. Suppose that D returns a vector @ for which
0 ¢ {wi,ws, w3} (which, according to condition 2 above, happens with probability at least €/t?).
We can rewrite the first condition in additive notation to deduce the bilinear bivariate equation
wo+wi - x +ws-y—+ws-x-y=0. If r was embedded to replace z then A, knowing y, can solve the
equation for x and output the correct discrete logarithm r. This works as long as the coefficient of x
in this equation is non-zero; i.e., as long as wy + w3 -y # 0. But whenever 0 ¢ {w1, wy, w3}, this can
only happen if y = —w; /ws. Hence, if r was embedded to replace y, A may simply return —w; /ws
in order to output the correct discrete logarithm 7.

1.3 Additional Related Work

Beullens and Wee [BW19] have put forth the Knowledge of Orthogonality Assumption (KOALA),
which is similar in spirit to our extension of the algebraic group model. The assumption deals with
the problem of distinguishing between vectors of group elements whose exponents are uniformly
drawn from some linear subspace V' and vectors of independently (and uniformly) sampled group
elements. Roughly speaking, KOALA holds if for any probabilistic polynomial-time algorithm which
can distinguish between the two afore-described distributions, there exists an extractor which outputs
a vector from the orthogonal complement V+. Though similar in spirit, our model significantly
generalizes KOALA. First, our model supports interactive security games, whereas KOALA considers
a non-interactive game. In interactive games, our model also accounts for the entire view of the
adversary, which may extend beyond just vectors of group elements. Second, and more importantly,
KOALA seems to be tailored to prove the security of concrete obfuscation schemes, and hence only
deals with the pseudorandomness of very specific distributions. In contrast, even when restricted to
non-interactive games, our model can be used to reason about the ability to distinguish between any
two distributions over group elements.

More generally speaking, these aforesaid differences between our model and KOALA precisely
exemplify the motivation of the our work. Over the years, various knowledge assumptions in cyclic
groups have been introduced in order to reason about the security of different constructions. The
algebraic group model provides a unified framework for capturing computational knowledge assump-
tions. The motivation behind the introduction of our model is to capture in a similar manner
decisional knowledge assumptions, such as KOALA, as well.

In a recent and independent work, Bauer, Fuchsbauer and Loss [BFL20] have considered (among
other things) the computational variant of the Uber problem of Boneh, Boyen and Goh [BBGO5,
Boy08] in bilinear groups. Concretely, Bauer et al. reduced this variant to the ¢-Discrete Logarithm
problem within the algebraic group model of Fuchsbauer et al. [FKL18|, where ¢ is the maximum
(total) degree of the challenge polynomials in the instance of the Uber problem. Our result regarding
the Uber problem (Theorem 1.1) differs from theirs in that we consider the decisional variant of the
Uber problem within our decisional algebraic group model. Both our work and theirs utilize a similar
technique of embedding randomizations of the secret exponent of the g-Discrete Logarithm instance
into the secret exponents of the Uber problem instance (the concrete randomizations, however, are
different). This is in contrast to our proof of Theorem 1.2, which employs a different technique.

1.4 Paper Organization

The remainder of this paper is organized as follows. First, in Section 2 we review the basic notation
and definitions underlying the algebraic group model. In Section 3 we present our generalized
framework capturing algebraic distinguishers, and as a warm-up, Section 4 includes a proof of the
equivalence within our framework of the decisional Diffie-Hellman problem and the discrete logarithm



problem. In Section 5 we extend our framework to bilinear groups, and prove our hardness result
for the Uber family of decisional problems in such groups. Finally, In Section 6, we generalize our
framework to multilinear groups, and prove our hardness result for the decisional k-Linear problem
in k-linear groups.

2 Preliminaries

In this section we briefly review the basic notions and definitions underlying the algebraic-group
model [FKL18]. Throughout this work, for a distribution X we denote by = +— X the process of
sampling a value x from the distribution X. Similarly, for a set X we denote by x <— X the process of
sampling a value z from the uniform distribution over X'. For an integer n € N, we use the notation
[n] to denote the set {1,...,n}.

Game-based security definitions. Notions of security within the algebraic-group model are
formalized using “security games”, following the classic framework of Bellare and Rogaway [BRO6].
A game G is parameterized by a set par of public parameters, and is comprised of an adversary A
interacting with a challenger via oracle access. Such a game is described by a main procedure and
possibly additional oracle procedures, which describe the manner in which the challenger replies to
oracle queries issued by the adversary. We denote by Gyer a game G with public parameters par,
and we denote by Gﬁ‘ar the output of Gpq, when executed with an adversary A (note that Gﬁ‘ar
is a random variable defined over the randomness of both A and the challenger). We denote by

. Gpar . . .
Time, """ the worst-case running time of G, when executed with an adversary A. An adversary

A participating in a game Gy, is said to win whenever GQM = 1, and the advantage of A in Gq,
is defined as Advg™ < Pr[GA, =1].

All security games in this paper are algebraic, which means that their public parameters consist
of a description G = (G, p,g) of a cyclic group G of prime order p generated by the generator g
(generally speaking, one can consider definitions in which par may include additional parameters,
but this will not be necessary for our purposes). In actual instantiation of cryptographic primitives
that rely on cyclic groups, such a description G is usually generated via a group-generation algorithm
Groquen(l)‘), where A € N is the security parameter that determines the bit-length of the prime
p. However, we will abstract this fact away in the paper, since our reductions hold for fixing of the
security parameter or of the underlying group.

Similarly to Fuchsbauer et al. we use boldface upper-case letters (e.g., Z) to denote elements
of the group G in algebraic games, in order to distinguish them from other variables in the game.
Figure 1 exemplifies the notion of an algebraic game by describing the games associated with the
Discrete Logarithm problem and the g-Discrete Logarithm problem that we consider in Sections 4
and 5, respectively.

Algebraic algorithms. Fuchsbauer et al. [FKL18| presented the following notion of algebraic
algorithms. In order to differentiate their notion from our extension which captures algorithms
in decisional security games as well, we will refer to algorithms that satisfy their definition as
computationally-algebraic ones. Roughly speaking, an algorithm A is computationally algebraic if
whenever it outputs a group element Z, it also outputs a representation of this element in the basis
comprised of all group elements A has observed so far.

Definition 2.1 (|[FKL18|). Let G = (G,p,g) be a description of a cyclic group. An algorithm
A participating in an algebraic game with parameters G is said to be computationally algebraic if



DLOG4 ¢-DLOG3

1. 2+ 7, 1. 2+ 7,

2. X:=g" 2. X; :=g" foralli € [q]

3. ' + A(X) 3.7+ AXy,...,X,)

4. If 2’ = x output 1, and other- | 4. If 2/ = z output 1, and otherwise
wise output 0 output 0

Figure 1: Examples of algebraic games relative to a cyclic group G = (G,p,g) and an adversary A. The game
DLOGS (on the left) captures the Discrete Logarithm problem, and the game q—DLOGé (on the right) captures the
g-Discrete Logarithm problem (note that setting ¢ = 1 corresponds to the Discrete Logarithm problem).

whenever A outputs a group element Z € G, it also outputs a vector Z = (zp,...,2x) € Z’;H such

that Z = Hf:o X7, where X4, ..., X}, are the group elements that A has received so far in the game
and Xg = g.

3 Owur Framework: Algebraic Distinguishers

In this section we present our framework, extending that of Fuchsbauer et al. [FKL18| to consider
algebraic distinguishers. We start by defining decisional algebraic games; then move on to present and
discuss our notion of (fully-)algebraic algorithms, which covers in particular algebraic distinguishers;
and finally, we observe that every generic algorithm is also an algebraic one within our framework.

3.1 Decisional Algebraic Games

The game-based definitions presented in Section 2 are suitable for computational games, which are
aimed at capturing the hardness of computational problems (e.g., the computational Diffie-Hellman
problem) and computational security properties of cryptographic primitives (e.g., unforgeability of
signature schemes).

Decisional games on the other hand are aimed at capturing decisional cryptographic problems
(e.g., the decisional Diffie-Hellman problem) and indistinguishability-based security properties of
cryptographic primitives (e.g., semantic security of an encryption scheme). At the end of a decisional
game, the adversary outputs either the acceptance symbol Acc, in which case the output of the game
is 1, or the rejection symbol Rej, in which case the output of the game is 0. The advantage of an
adversary A in distinguishing between two decisional games Gy, and G',q, is defined as

Gpa’!‘yG/par/ def
Adv, =

par

Pr [GA - 1} —Pr [G’fm, - 1} ‘ .

Typically, a decisional security definition will be obtained by a single decisional game G with an
additional parameter bit b, where the adversary needs to distinguish between the cases b = 0 and

b = 1. For brevity, we will refer to the advantage of an adversary A in distinguishing between

Gpar,o and Gypgr1 simply as the advantage of A in Gpg,, and we will use the notation Advf'p” def

A

G arT. 7G arT. . . . . . .
Adv 7 Pert - The running time of G/ _is defined as the maximum of the running times of Gluro

par
and of Gz‘ar,l.

Figure 2 exemplifies the notion of a decisional algebraic game by presenting the game associated
with the Decisional Diffie-Hellman problem that we consider in Section 4. As discussed in Section
2, recall that we use boldface upper-case letters (e.g., Z) to denote elements of the underlying group

G in order to distinguish them from other variables in the game.



DDH},

1. 2,y,2 < Z

2. X := gl"Y = gy’ 7 = gnyr(lfb)z

3. Sym+ A(X,Y,Z)

4. If Sym = Acc then output 1, and
otherwise output 0

Figure 2: An example of a decisional algebraic game relative to a cyclic group G = (G, p, g) and an adversary A. The
game DDH@yb captures the Decisional Diffie-Hellman problem.

3.2 Extending the Notion of Algebraic Algorithms

In order to define (fully-)algebraic algorithms, we first introduce some additional notation. For an
algebraic game G, a group description G = (G, p,g) and an algorithm A, we use Viewfg to denote
the random variable which is the view of A in the game Gg. As is standard, the view of A consists
of its randomness, its input, and all incoming messages that it receives throughout the game (if any
such messages exist). Moreover, for an additional fixed vector @ of elements in Z,, we denote by

[Viewf g} supp (D)

corresponding entry in «f is 0 (where the ith group element observed by A is naturally associated
with the ith entry of @). That is, for a fixed vector w of k group elements, the distribution associated

the random variable obtained from Viewfg by omitting all group elements whose

with [Viewfg] @) is defined by first sampling a view V according to Viewfg; and then for each
supp(wW

i € [min{k, m}] for which w; = 0, replacing the ith group element in V' with the unique erasure
symbol 1, where m is the number of group elements in V. Hence, fixing @, the random variable

[Viewfg} @) is defined over the randomness of A and of the challenger in Gg. For two random
supp(w
variables X7 and Xo, we use the notation X; # X5 to indicate that X; and Xs are not identically

distributed.

Definition 3.1. Let G = (G, p, g) be a description of a cyclic group. An algorithm A participating
in an algebraic game with parameters G is said to be algebraic if it is computationally-algebraic (per
Definition 2.1) and in addition, whenever A outputs either the Acc or the Rej symbols, it also outputs
a vector w of elements in Z, such that the following conditions hold:

1. Hf:o X" = 1g, where Xy,..., X}, are the group elements that A has received so far in the
game, Xg = ¢g and 1g is the identity element of G.

2. For any two decisional algebraic games G and G’, there exists H € {G, G’} such that

€

ITEr HViewE’g} Supp(w)] > ok

= [Viewf’lg}

supp (W)

where € = Advfg’G,g, t= Timefg , and the probability is taken over the choice of @ induced
by a random execution of Hg with A.

We clarify that the probability in the second condition of Definition 3.1 is over the choice of
vector w in a random execution of Hg with A; meaning, it is taken over the randomness of A and
of the challenger in Hg. The event inside the probability means that for the chosen W, the random

variable [Viewfg} is distributed differently than the random variable [Viewflg}

supp(i) supp()’



Intuitively, whenever an algebraic algorithm accepts or rejects in an algebraic game, it also
produces a zero test, defined by the vector w, which is passed by the group elements that the
algorithm has observed during the game. Of course, such a zero test can always be produced by
simply setting the vector @ to be the all zeros vector.

One possible way to mend this situation is by requiring that whenever an algebraic algorithm
accepts (by outputting the symbol Acc), the vector & which it outputs has to be non-zero. Alas,
this approach suffers from two caveats. Firstly, this requirement is unrealistic, as an algorithm can
always accept even without “having knowledge” of such a non-zero vector w. Concretely, following
Fuchsbauer et al. [FKL18|, we aim to have a definition which distills some fundamental algebraic
principle from many hardness results in the generic group model; while simultaneously getting rid
of the unrealistic assumption that algorithms are oblivious to the concrete representation of group
elements. Secondly, the intuition behind Definition 3.1 is that the vector w serves as a “witness”
which explains the adversary’s decision and differentiates between the two games (just like the vector
Z in the definition of Fuchsbauer et al. — Definition 2.1 — serves as a witness which explains how the
algorithm has come up with the group element Z). Therefore, it is not enough to ask that @ # 0,
since even then it might be that the joint distribution of the group elements in the support of & is
identical in both games, rendering the zero test associated with W useless in distinguishing between
them.

The second condition in Definition 3.1 accommodates these two lines of reasoning. It is descriptive
of generic group algorithms (see Section 3.3 for further details; this also sheds light as to where the
term 2 comes from), and it makes sure that the views of the adversary in both games remain different
even when projected onto the support of w. Theoretically speaking, it still might be the case that
the zero test associated W passes with equal probabilities in both games,? but we are not aware of a
natural construction or assumption for which this is the case, and in particular for the applications
of the model presented in this paper the second condition of Definition 3.1 is sufficient. Hence, we
opted not to strengthen our definition beyond that. We do believe however, that if one finds an
application for which it is necessary to require that the zero test associated w passes with distinct
probabilities in both games, then such a strengthening of the definition is justifiable.

3.3 Generic Algorithms are Algebraic

Our definition of algebraic algorithms fits the intuition provided by Fuchsbauer et al. [FKL18| ac-
cording to which the algebraic group model “lies in between the standard model and the generic
group model”. Informally, the generic group model captures algorithms that do not exploit the rep-
resentation of the underlying group in any way, and as such, they should perform identically among
all groups which are isomorphic to each other.

This intuition is typically formalized by withholding the group description from the generic
algorithm and supplying it only with the group order p. The concrete representation of group
elements is then replaced with some representation-independent handle (a random label in Shoup’s
model [Sho97] and an opaque “pointer” in Maurer’s model [Mau05|). Group operations are performed
via queries to an oracle which curates the “true values” behind the handles.

Fuchsbauer et al. observed that any generic algorithm for a computational problem is an algebraic
algorithm according to their framework (recall Section 2). Here, we show that our framework enables

3Consider for example a decisional game Gg,p in which if b = 0, then the adversary A receives as input the tuple
(X,X*Y,Y*?) for some distinct fixed X and Y and a randomly chosen a, and if b = 1 then A receives as input the
tuple (Y, Y% X,X*). On the one hand, the witness @ = (a, —1, a, —1) satisfies both of the conditions of Definition
3.1. On the other hand, it is always the case that X" - (X%)*2.Y"3 . (Y*)"* =1 =YY" - (Y*)"2 . X3 . (X%)"4,
and hence the zero test induced by w is not actually helpful in distinguishing Gg,o from Gg, 1.
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in addition to capture generic algorithms for decisional problems, thus providing a unified framework
for relaxing the somewhat too-strict generic group model. This is captured by the following informal
proposition.

Proposition 3.2. Let G = (G, p, g) be a description of cyclic group, and let Gy and G be decisional
algebraic games. Let Agen be a generic algorithm that distinguishes between Go and Gy with advantage
€ = €(p) in time t = t(p). Then, there exists an algebraic algorithm Ayg such that Advfi’g’Gl’g /€

and Apig Tuns in time = t.

The proof of Proposition 3.2 is based on the fact that the algebraic algorithm A,z can run the
generic algorithm Age, and return the same output, while simulating the generic group oracle to Agen.
This simulation relies on the following two well-established observations resulting from the fact that
Agen is a generic algorithm:

1. For any group element Y which Age, computes throughout the game, A, can produce a
representation of Y as [[, X?*, where {X;}; are the group elements which Agen has observed
so far and {v;}; are values in Z, known to A,j.

2. Since the access that Age, has to the group is representation independent, the only useful
information it acquires throughout the game is the equality pattern among the group elements
that it receives or produces during the game. Hence, in order to distinguish between Gg and
G, with advantage €, then with probability at least e there must exist an equality relation
which occurs in one game with different probability than in the other game.

Once Agen terminates, A,ig can choose at random one pair of elements out of all pairs of equal elements
that arose throughout the computation, allowing repetition (that is, Ayg may chose the same element
twice, so there is always at least one pair of equal elements). Let the representation of these two

equal elements be [], X" and []; Xfi The vector @ which A, outputs together with its decision
symbol is then defined by w; = v; — v} for each i. The fact that the two group elements are equal
guarantees that [, X?"" = 1g (this guarantees the first requirement of Definition 3.1). Moreover,
there exists a bit b € {0,1}, such that with probability at least e the list of elements produced by

Agen i Gy includes a pair [, X" and [, X;" such that |Viewj # |View | .
a supp(w

2l Lum(ﬁ)
w=1- z;;) This is due to the fact that with probability €, there exists b € {0,1} for which some
equality arises in Gy but not in G1_p. Finally, conditioned on such a pair being present in the list of
elements produced by Agen, the probability that A, chooses it is at least 1/ t2, since Agen produces
at most ¢ group elements; meaning there are at most ¢2 pairs of elements (this guarantees the second
requirement of Definition 3.1).

(for

4 Warm-Up: The Algebraic Equivalence of DDH and DLog

As a first example for the usefulness of our new framework, we show that the hardness of the
Decisional Diffie-Hellman problem with respect to algebraic distinguishers is implied by that of the
Discrete Logarithm problem. Recall that the Discrete Logarithm and Decisional Diffie-Hellman
problems are defined via the computational algebraic game DLOGg and the decisional algebraic
game DDHg described in Figures 1 and 2, respectively. We prove the following theorem:

Theorem 4.1. Let G = (G, p, g) be a description of a cyclic group . For any algebraic algorithm A
there exists an algorithm B such that AdV]BDLOGg > e/(4-t%) and Time]B)LOGg < t + poly(logp),

DDH . DDH
where e = Adv, ¢ and t = Time,  “.
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Note that Theorem 4.1 implies an equivalence between the algebraic hardness of the Decisional
Diffie-Hellman problem and the hardness of the Discrete Logarithm problem. Informally, given as
input (in addition to G) a triplet of group elements (X,Y,Z) and (black-box) access to an algorithm
ApLocg breaking the Discrete Log problem, an algebraic distinguisher Appy can be defined as
follows. First, it invokes Aprog on X to retrieve its potential discrete logarithm z, and then checks
whether Z = Y. If so, it accepts and outputs the vector W = (z, —1, —z, 1), and if not (or if Aproc
fails), it rejects and outputs @ = 0. This straightforward algorithm satisfies our two requirements
specified in Definition 3.1 (note that a similar algorithm that outputs the vector @ = (0,0, —z,1)
instead of the vector @ = (z, —1, —x, 1) would satisfy our first requirement but not our second one).

Proof of Theorem 4.1. Let A be an algebraic algorithm participating in DDHg, for b € {0,1}.
We construct an algorithm B participating in DLOGg.

Algorithm B

Input: A group element X sampled uniformly at random by the challenger.

1. Sample b < {0,1} and y, z < Z,, and set Y := g¥.
2. Ifb=0:
(a) Set Z := g*.

(b) Invoke A(X,Y,Z) to obtain a decision symbol Sym € {Acc, Rej} along with a vector
W = (wp, wy, ws,ws) € Z;l, such that g¥o - X% .YW2.Z%s = 1g.

(¢) If wy = 0 then output L, and otherwise x* := —(wp + wa - y + w3 - 2) /w;.
3. Ifb=1:

(a) Set Z := XV.

(b) Sample ¢ + {0,1} and set X := X'©. Y¢and Y := X°. Y!~¢

(c) Invoke A(X,Y,Z) to obtain a decision symbol Sym € {Acc,Rej} along with a vector
W = (wp, wy,ws,ws) € Zg such that g*o - X%1 .YWw2.Z"s = 1g.

(d) Ifc=0:
o If wi+ws-y = 0 then output L, and otherwise output z* := —(wo+ws-y) /(w1 +ws-y).
(e) Ife=1:
e If ws = 0 then output L, and otherwise output * := —w; /ws.
Let € := AdvEDHg and t := TimeEDHg. By our definition of an algebraic algorithm, there
exists a bit b* € {0, 1} such that
. DDH . DDH €
Pr HVlewA g‘o} # [VlewA g’l} ﬁ} > =,
w supp(w) supp(w) t

where the probability is taken over the choice of w induced by a random execution of DDHg j-
with A. Say that the vector @ outputted by A is good if 0 & {w1, w2, w3}, where wy, wa, w3 are the
entries of @ which correspond to the three group elements that A receives as inputs. The predicate
inside the probability is satisfied if and only if @ is good; hence, Pr [i# is good] > €/t? over a random
execution of DDHg ;- with A.

Denote by Hit the event in which the bit b = b*, where b is the bit chosen by B in Step 1.
Regardless of the value of b*, it holds that Pr[Hit] = 1/2, and that Pr [ is good|Hit] > ¢/t? since
conditioned on Hit, B perfectly simulates the game DDHg ;- to A. Consider two cases:

12



1. If b* = 0: In this case, when @ is good and Hit occurs, the linear equation X - wi + wg + ws -
y + ws - z = 0 in the indeterminate X has a unique solution X = x* and this is the output of
B. Moreover, by the requirement ¢*° - X1 . Y¥2.Z%3 = 1¢, it holds that g*° = X. Therefore,

Advg % = Pr|DLOGE = 1|

> Pr {DLOGS = l‘u_f is good A Hit| - Pr [ is good A Hit]

= % - Pr[@ is good|Hit]

S _€

= 2.2

2. If b* = 1: Let C be the random variable describing the bit ¢ sampled by B in Step 3(b), and
let E denote the event in which w1 4+ w3 -y = 0 in an execution of DDHg ; with A, where g7
is the group element given as the second input to A in the game. On the one hand, when w0 is
good and E and Hit occur, the linear equation X - (w1 +ws-y)+wy+wy-y+ws-2z=01in
the indeterminate X has a unique solution X = z*. Moreover, conditioned also on C' = 0, this
is the output of B, and by the requirement g*“° - XW . Yw? . Zws = 1g, it holds that ¢*" = X.
Hence,

Pr [DLOGE = 1] is good A Hit A E]
> Pr [DLOGE = 1A C = 0| is good A Hit A E|

— Pr [DLOGE = 1(@ is good A Hit AEAC =0] - Pr[C=0]  (4.1)

1
== 4.2
2 ? ( )
where (4.1) follows from the fact that the bits b and ¢ that B samples are chosen independently,
and since the view of A as invoked by B is independent of the bit ¢, and hence the events E
and w is good are independent of the event C' = 0.

On the other hand, when @ is good, the linear equation X - ws + w; = 0 in the indeterminate
X has a unique solution X = z*. Moreover, conditioned on Hit and on C = 1, this z* is the
output of B, and conditioned on E, it also holds that ¢** = X. It follows that,

Pr [DLOGE = 1] is good A Hit A E]
> Pr [DLOGE = 1A C = 1| is good A Hit A |

— Pr [DLOGE = 1

Wisgood/\Hit/\E/\Czl}-Pr[Czl] (4.3)

: (4.4)

N | =

where (4.3) holds for the same reasons as (4.1).
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Putting (4.2) and (4.4) together,

Advg"?% — Pr |DLOGE - 1]

> Pr [DLOGS = 1‘117 is good A Hit} - Pr [ is good A Hit]

> 6t2 : (Pr [DLOGS - 1‘@ is good A Hit A E} - Pr[E|d is good A Hit]
+Pr [DLOGE = 1/ is good A Hit A E| - Pr [E|d@ is good A Hit] )

> ¢

=1

This concludes the proof of Theorem 4.1.

5 The Algebraic Hardness of the Uber Family of Decisional Problems

In this section we prove that the hardness of the Uber family of decisional problems in bilinear groups
[BBGO5, Boy08| with respect to algebraic distinguishers is equivalent to that of the computational
g-discrete logarithm problem, for an appropriate choice of ¢, in the source group (we formally define
these assumptions in Section 5.2).

5.1 Algebraic Algorithms in Bilinear Groups

Before presenting our main theorem for this section, we first need to extend our framework to bilinear
groups. We focus on symmetric bilinear groups for ease of presentation, but the definitions in this
section easily generalize to capture asymmetric pairings as well. An algebraic game which is defined
with respect to a symmetric bilinear group is parameterized by a group description of the form
G = (G,Gr,p, g,¢e), where G and G are both cyclic groups of order p, g is a generator of G, and
e: G x G — Gr is a non-degenerate bilinear map. We will often use the notation gr := e(g, g).

Mizuide et al. [MTT19] extended the definition of Fuchsbauer et al. [FKL18| of computationally-
algebraic algorithms to the setting of symmetric bilinear groups. We start by reviewing their defini-
tion (with slight notational modifications).

Definition 5.1. Let G = (G, Gr, p, g, €) be a description of a symmetric bilinear group. An algorithm
A participating in an algebraic game with parameters G is said to be computationally-algebraic if:

1. Whenever A outputs a group element Z € G, it also outputs a vector z of elements in Z, such
that Z = Hf:o X7, where Xy, ..., X}, are the elements of G that A has received so far in the
game and Xg = g.

2. Whenever A outputs a group element V € G, it also outputs vectors v and v of elements in
Zy, such that V = Hogigjgk e (X, X;) kit Hle Y;’i, where Xy, ..., X} are the elements of
G and Y1,..., Yy are the elements of Gy that A has received so far in the game and Xy = g.

Before defining fully-algebraic algorithms in bilinear groups, we introduce some additional nota-
tion. The random variable Viewfg is defined analogously to its definition in Section 3.2. For vectors

7 and o/ , we denote by [Viewfg} . the random variable obtained from Viewfg by:

supp(T,v’)
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1. Omitting each element of G for which all of the corresponding entries in ¢ are 0. That is, we
omit the ith element of G that A observes if for all j > ¢ it holds that vj.;4; = 0 and for all
0 < j < it holds that vy.j4; = 0 (where k is the number of elements of G that A observes in
the game).

2. Omitting all elements of G whose corresponding entry in v is 0 (where the ith element of Gp
observed by A is naturally associated with the ith entry of v/).

Definition 5.2. Let G = (G, Gr, p, g, €) be a description of a symmetric bilinear group. An algorithm
A participating in an algebraic game with parameters G is said to be algebraic if it is computationally-
algebraic (per Definition 5.1) and in addition, whenever A outputs either the Acc or the Rej symbols,
it also outputs a pair (v, o ) of vectors of elements in Z, such that the following conditions hold:

L Tlocicjr € (X, Xj) 49 Hle Y," = lg,, where Xy,...,X}, are the elements of G and
Yi,..., Y, are the elements of Gy that A has received so far in the game, and 1lg, is the
identity element in Gr.

2. For any two decisional algebraic games G and G’, there exists H € {G, G} such that

Pr [[Viewfg} L [Viewf'g} ﬂ] > =
50) supp(

(v,v’ v') supp(v,v’)

where € = Advﬁg’G 9.t = TimeEg , and the probability is taken over the choice of (17, o )

induced by a random execution of Hg with A.

5.2 Algebraic Equivalence of the Uber and ¢-DLOG Problems

Before presenting the main reduction of this section, we first define the g-discrete logarithm prob-
lem and the Uber family of decisional problems [BBG05, Boy08]. The g-discrete logarithm problem
is a parameterized generalization of the discrete logarithm problem, in which the adversary re-

ceives (g‘”1> (o) and needs to compute x. The “Uber assumption” is a family of decisional
i Jeens
assumptions in bilqinear maps: It is parameterized by two tuples of m-variate polynomials 7 =
(ri,...,m) and § = (s1,...,s;) and an m-variate polynomial f; each choice of 7,§ and f yields
a specific assumption. Roughly, the assumption states that given g™ (@--@m)  gre(@i.om) and
Sl(ml""’xm), . ,g;f(m""’xm), it is difficult to distinguish between g{q(zl""’xm) and a uniformly-random
element in Gt for a uniform choice of z1,...,z,, in Z,. Both assumptions are formally defined via
the algebraic games ¢-DLOG and (7, s, f)-UBER in Figure 3.
Note that there are choices of 7, 3 and f for which the (7, 3, f)-UBER game can be easily won.
If given access to g"X1Xm) and to gi(Xl""’X"‘), one can obtain g£(X1""’Xm) through a sequence of
group operations and bilinear map operations (where X; is a indeterminate replacing x;), then one
can distinguish between the case where b = 0 and the case where b = 1 by comparing g:];(Xl""’XM) to

Z. To rule out such trivial attacks, Boneh et al. introduced the following definition.

Definition 5.3. Let p € N be a prime, let t,m € N, let 7,5 € (Fp[Xl,...,Xm])t be t-tuples of
polynomials such that 11 = s; = 1, and let f € F[Xy,..., X,,] be a polynomial. We say that f is
dependent on (7, 5) if there exist integers {c j}o<i<j<t and {Bk}re[ such that

f= Z ai,j‘ri‘rj+25k'3k-

0<i<j<t kelt]

If f is not dependent on (7, §), we say that it is independent of (7, 5).
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(
¢-DLOG} 1
1. <+ Z, 2
2. Fori=1,...,q¢: X;:=g%. | 3. Y : —g;(zh ),
3. 2« AXy, ..., X,) A
4. If 2/ = x output 1, and oth- | 5
erwise output 0 6

. Sym + AX, Y, Z).
. If Sym = Acc output 1, and oth-
erwise output 0

Figure 3: The game q-DLOGé (on the left) captures the g-Discrete Logarithm assumption; and the game (7, §, f)-
UBERY, (on the right) defines the Uber assumption of Boneh, Boyen and Goh [BBGO5] parametrized by a triplet
(7, 8, f) where 7 and § are vectors of m-variate polynomials and f is an m-variate polynomlal The notation X :=
g ®1®m) g a shorthand for X = = (gn@uemm) o gre(@ne ””"”) and the notation Y := gs(gc1 """ *m) is defined
similarly. Both games are defined relative to a blhnear group G = (G,Gr,p, g,¢e) and an adversary A. The ¢-DLOG
game in bilinear groups is the same as the game defined in Section 2, when considering the discrete logarithm to the
source group.

Observe, that we can only hope to reduce (7, 3, f)-UBER to ¢-DLOG for triplets (7, 8, f) such
that f is independent of (7, §). The following theorem, which is the main result of this section, states
that such a reduction in fact applies to any such triplet (7, S, f).

Theorem 5.4. Let G = (G,Gr,p, g,e) be a description of a symmetric bilinear group, let t,m € N,
let 7,5 € (Fp[Xy,... , Xom])" be t-tuples of polynomials of degree at most d, and let f € F[X1, ..., Xp]
be a polynomial of degree at most d which is independent of (7, §). Then, for any algebraic algorithm
A there exists an algebraic algorithm B such that Advy ¢-DLOGg €/(4-T?) —d-(t*+t+2)/(8p)

and Timeg >4 0% < T 4 poly(m, 1, d, logp), where g = d- (12 + 1 +2)/2, ¢ = Advyy /"7 4ng

T = Time 5:5 f)- "UBERg

As a first step towards proving Theorem 5.4, we define an intermediate assumption which we call
the “Randomized Univariate Uber Assumption”. This assumption is obtained from (7, s, f)-UBER
by the following modification: Instead of sampling z1,...,x,, uniformly at random from Z,, the
challenger samples a single x <— Z,, alongside m random polynomials ci, ..., ¢y, and sets z; := ¢;(z).
The Randomized Univariate Uber assumption is formalized via the game (7, 5, f)-RUU described
in Figure 4.

The following lemma follows from the work of Ghadafi and Groth |[GG17|, and reduces the
security of the Uber assumption to that of the Randomized Univariate Uber assumption.

Lemma 5.5 (|[GG17]). Let G = (G,Gr,p,g,e) be a description of a symmetric bilinear group,
let t,m € N, let 7,5 € (Fp[Xy,... , Xm))! be t-tuples of polynomials of degree at most d, and let
feF[Xy,...,Xm] be a polynomial which is independent of (7,§). Then, the following holds:
(r 5.f)-RUU,

1. For any algebraic algorithm A there exists an algebraic algorithm B such that Adv =
Adv (r 5,f) -UBERg4 and Time (r 5,f) -RUU, < Tim X“,s,f) UBER, I poly(m,t, logp),
2. With probability at least 1 — d - (t> +t + 2)/(2 - p) over the choice of ci,...,cm, the uni-

variate polynomial f(¢(X)) is independent of( 18", where &(X) = (c1(X),...,en(X)), ' =
(ri(@X)); -, re(E(X))) and 8" = (s1(&(X)), ..., 5:(8(X))).
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1.

2. ¢1,...,0m 4 {c € Zp[X]|deg(c) = (2 +t +2) /2}
3. Fori=1,...,m: z; :== ¢i(x).

£ X e g eman),

5.Y = gi(wl""’xm).

6
7
8

7= g£(wl,...,zm)+(1—b)z.

. Sym « A(c, X,?,Z), where ¢ = (c1,...,¢0m).
. If Sym = Acc output 1, and otherwise output 0

Figure 4: The game (7, 3§, f )—RUUSJ, which captures our Randomized Univariate Uber assumption. The assumption
is parametrized by a triplet (7,85, f) where 7 and § are vectors of m-variate polynomials and f is an m-variate
polynomial. The game is defined relative to a bilinear group G = (G, Gr,p, g,¢) and an adversary A.

We note that there are some small technical differences between the theorem proven by Ghadafi
and Groth and Lemma 5.5. Ghadafi and Groth deal with a computational variant of the Uber
assumption, in which the adversary can choose the polynomial f.# Additionally, they do not consider
algebraic adversaries. We stress, however, that their reduction readily applies to imply Lemma 5.5.%

The main part of the proof of Theorem 5.4 is consists of the following lemma which reduces the
security of the randomized univariate Uber assumption (against algebraic adversaries) to the security
of the ¢-DLOG assumption. Together with Lemma 5.5, this immediately implies Theorem 5.4.

Lemma 5.6. Let G = (G,Grp,p,g,€) be a description of a symmetric bilinear group, let t,m € N,
let 7,5 € (Fp[Xy,... ,Xm])t be t-tuples of polynomials of degree at most d, and let f € F[X1,..., Xpm]
be a polynomial of degree at most d which is independent of (7, 5). Then, for any algebraic algorithm

A there exists an algebraic algorithm B such that Adqu'DLOGg >e/(4-T?) —d- (2 +t+2)/(8 p)

and Time§""*%9 < T 4 poly(d,t,logp), where g = d- (> + 1 +2)/2, ¢ = Advg """ 4nd

T= Time(BF’g’f)_RUUg )

Proof. Let A be an algebraic algorithm participating in (7, 3, f)—RUUgJ) for b € {0,1}. We con-
struct an algorithm B participating in ¢-DLOGg.

Algorithm B

Input: A sequence of ¢ group elements Xy, ...,X,, where X; := g”i and = € Z,, is uniformly sampled
by the challenger.

1. Sample b < {0,1} and y < Z,,.
2. Sample polynomials c1, ..., ¢p + {c € Zy[X]|deg(c) = (2 +t +2) /2}.
3. Ifb=0:

(a) For i = 1,...,t: Set Y; := ¢g"(€W) and Y/} := g;i(a(y)). Let Y := (Yy,...,Y,) and
Y = (Y'q,..., Y.
(b) Set Z :=e(g,X1). [note that Z = gF]

4In fact, in their work the adversary can choose a rational (partial) function instead of a polynomial.
SConcretely, in their proof the adversary B simply forwards its input to A (without the vector & of sampled
polynomials); hence, B can simply output the same vector W that is returned by A.
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(c¢) Invoke A(?7 f’, Z) to obtain a decision symbol Sym € {Acc, Rej} along with vectors @, o
such that Z't+1 - Mo<icics & (Yi, Y5)™ 5 - TTicy (Y1) = le,-

(d) If v;,; =0, output L and terminate. Otherwise, compute and output

(Cosicict veits - ral@u)) - 75 W) + Tiepy v - 5:(2w)))

= — -
Vt41

4. Ifb=1:
(a) Fori=1,...,t, set Y; := ¢g"(€@) and Y'; := g;f(a(x)).

[note that for every ¢ € [t], the polynomials r;(¢(-)) and s:(&(-)) are univariate polynomials of

degree at most d’ = d - (> + t + 2)/2. Since B receives as input g for every 0 < j < d’, it can

compute g @@ and ¢5“®) golely via group operations and bilinear maps applies to its input
g 9 Yy g

elements.|
(b) Set Z := gf(pf(a(z))).
(c) Invoke A(Y,Y’,Z) to obtain a decision symbol Sym € {Acc, Rej} along with vectors 7, v’
such that Z¥+1 - TJoc;c ;<o € (Yo, Y5) - Ty (YD = 1g,.
d) Find all roots z7,..., 2} € Z, of the polynomial
1 k< %p

w(X) = D vnig - ra@X)) (@) + Y 0 s:(@X) + vy - FEX)).

0<i<j<t i€(t]

(e) For i = 1,...,k, check if g(zz)j = X, for each j € [g]. If so, output z} and terminate;
otherwise, continue. If none of the checks passes, output L.

Let € := Advf’g’f)_RUUg and T := Timef’g’f)_RUUg. By the definition of an algebraic algo-

rithms, there exists a bit b* € {0,1} such that

(75./)-RUUg ,

Pr HView v (75,5 RUU
w

e [ViewA 4)} > %, (5.1)

] supp(¥,07) ] supp(¥,v

where the probability is taken over the choice of (¥, o ) induced by a random execution of (7, &, f )—RUUQb*
with A. Say that the pair (¥, v ) outputted by A is good if it satisfies the predicate inside the proba-
bility in (5.1).

Denote by Hit the event in which the bit b = b*, where b is the bit chosen by B in Step 1.
Regardless of the value of b*, it holds that Pr[Hit] = 1/2, and that Pr [(17,1?’) is good‘Hit] > €/T?
since conditioned on Hit, B perfectly simulates the game (7,5, f)-RUUjg , to A. Denote by Ind the
event in which f(¢(X)) is independent of (r',5'), and recall that r’ = (r1(2(X)),...,r(d(X))) and
s' = (s1(c(X)),...,s:(c(X))). Consider two cases:

—

1. If b* = 0: In this case, when (7, v’) is good and Hit and Ind occur, the linear equation

Do iy ri@y)) (@) + )i si(@y)) + v - X =0

0<i<j<t ielt]

in the indeterminate X has a unique solution X = z*, since v;,; # 0 (due to (7,v') being
good) and f(¢(X)) is not the zero polynomial (thanks to Ind). By definition, this * is the
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output B. Moreover, by the requirement Z'+1 - [o<icjcre (Y3, Y5)000H9 I, (Yg)vg = 1,
it holds that g%* = Z = g7, and hence z* = x. Therefore,

AdvPLOSs _ p; [q-DLOGE _ 1}

—

(#,17) is good A Hit A Ind} -Pr [(ﬁ,J) is good A Hit A Ind]

v

Pr [¢-DLOGE = 1

_ % Pr[(#,7) is good A Ind|Hit]

> % . <Pr [(17,27) is good‘Hit} —Pr [m]) (5.2)
€ d- (2 +1t+2)

SNl 4-p 7 )

where (5.2) follows from union bound and the fact that Hit and Ind are independent events,
and (5.3) is by the second item of Lemma 5.5.

2. If b* = 0: In this case, when (7,v') is good and Hit and Ind occur, the polynomial u(X)
defined in Step 4(d) is non-trivial. Moreover, the requirement Zvt+1 Tlo<icjcr e (Yi, Y5)70
I, (Yg)vg = 1g, means that x is a root of u(X). The algorithm B can use a randomized
algorithm for finding all roots of u(X), including x, with probability 1/2, and runs in time
which is polynomial in the degree of u (which is O(d - t?)) and in logp (e.g., the Berlekamp-
Rabin algorithm [Ber70, Rab80]). In case the root = has been found, B will output the correct
exponent x* = x. Overall, by a similar analysis to that in the first case, we conclude that

Ady@PLOGs & € d-(t*+t+2)
B — 4.7 8-p '

6 The Algebraic Hardness of the Decisional Linear Problems

In this section we prove that for any integer £ > 1 the hardness of the decisional k-Linear problem in
k-linear groups [Sha07| with respect to algebraic distinguishers is equivalent to that of the computa-
tional discrete logarithm problem in the source group. This establishes a dichotomy theorem within
our framework for the family of decisional k-linear problems: The hardness of the decisional k-Linear
problem implies the hardness of the decisional (k + 1)-Linear problem, and given a (k + 1)-linear
map it is easy to solve the k-Linear problem.

6.1 Algebraic Algorithms in Multilinear Groups

Similarly to Section 5.2, we first define algebraic algorithms in groups which are equipped with a
multilinear map. For an integer k, an algebraic game which is defined with respect to a k-linear
group is parameterized by a group description of the form G = (G, Grp,p, g, k, e), where G and Gp
are both cyclic group of order p, g is a generator of G and e : G¥ — G is a non-degenerate k-linear
map. We will often use the notation gr :=e(g,...,g).

The definition of computationally-algebraic algorithms in k-linear groups is a straightforward
generalization of Definition 5.1. Since we will not use this definition in this section, we skip it
for the sake of brevity and turn to define fully-algebraic algorithms in k-linear groups. We first
define some notation. For a game G and a description G of a k-linear group, the random variable
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Viewf’g is defined analogously to its definition in Section 3.2. For vectors ¢ and v , we denote by

[Viewfg} the random variable obtained from Viewfg by:

supp(V,v’)

1. Omitting each element of G for which all of the corresponding entries in ¢ are 0. That is, we
parse U as a k-dimensional tensor and; for 0 < 43 < --- < 4 < £, we let v;, . 4, = v; for
Jj= 22:1 0F=" 4y, where £ is the number of elements of G that A observes in the game. Then,
we omit the ith element of G that A observes if for every j € [k], the (k — 1)-dimensional sub-
tensor obtained from ¥ be fixing i; to be ¢ is the all-zero tensor. We will use this k-dimensional
indices notation in the remainder of the section.

2. Omitting all elements of G whose corresponding entry in o' is 0 (where the ith element of G
observed by A is naturally associated with the ith entry of v’).

Definition 6.1. Let G = (G,Gr,p,g,k,e) be a description of a k-linear group. An algorithm A
participating in an algebraic game with parameters G is said to be algebraic if it is computationally-
algebraic and in addition, whenever A outputs either the Acc or the Rej symbols, it also outputs a
pair (¥, v ) of vectors of elements in Z, such that the following conditions hold:

1. H0<i1<~~<ik<£€ (Xipy oo, Xy )it T YZ" = 1g,, where Xy,..., X, are the elements of
G and Y7q,...,Y,, are the elements of Gr that A has received so far in the game, and 1g,. is
the identity element in Gr.

2. For any two decisional algebraic games G and G’, there exists H € {G, G} such that

€

(ﬁf},) [[View/? gLupp(a,J ) # [View‘(\; lg:|supp(17,17 )] = t2’

where € = Advfg’G,g, t = Timefg , and the probability is taken over the choice of <17, 1?’)

induced by a random execution of Hg with A.

Note that when an algorithm A observes ¢ elements of the group G, the length of ¥’ is roughly
¢%, which might be super-polynomial for super-constant values of k. We therefore assume that A
outputs ¥ using a succinct representation, by listing the indices of all non-zero entries of ¢ along with
their value.

6.2 Algebraic Equivalence of the k-Lin and DLOG Problems in k-Linear Groups

For an integer k, the k-linear assumption [Sha07| stipulates that given k£ + 1 random group elements
90,91, - - -, g along with the values gi',...,g;* for uniformly chosen ry,...,r in Z,, the group

DT

element g is indistinguishable from a uniformly sampled group element. Following Shacham, we
will consider this assumption with respect to a source group which is equipped with a k-linear map
to some target group. The assumption is formally defined by the game k-LIN in Figure 5.

Theorem 6.2. Let G = (G,Gr,p,g,k,e) be a description of a k-linear group. For any alge-

braic algorithm A there exists an algorithm B such that Adv]é)LOGg > €/(4-t*- (2k+2)) and
TimegLOGg <t + poly(k,logp), where e = Advlz\'LINg and t = Timei'LINg.

In the proof of Theorem 6.2 we use the following notation. When an algebraic adversary A
participates in k-LINg; (for b € {0,1}), it outputs vector @' such that

Viq,..i _
11 e(Vig, ..., Vi )livie = 1g,.,
0<iq <+ <ip <2k+2

20



By T Ty 2 S L.

R := ¢~

Fori=1,...,k X;:=¢% and Y, := X"
7 .= gB (Tl r)+(1-b)z,

Sym + A(Xy,..., Xk, Y1,..., Y, R, Z).

If Sym = Acc, output 1; otherwise, output 0

S

Figure 5: The game k-LING , which defines the k-Linear assumption [Sha07]. The game is defined relative to a
k-linear group G = (G, Gr,p, g, k, e) and an adversary A.

where Vo =g, V; = X, for every i € [k], V; =Y, for every j € {k+1,...,2k}, Vo1 = R and
Vorio = Z (note that A does not receive any elements of G, so it does not output a second vector
o ). Let Xi,..., Xogio be indeterminates, which will have the following interpretation: Xji,..., Xk
will correspond to ai,...,ax, respectively; Xgy1,...,Xor to 71,...,7, respectively; Xopi1 will
correspond to f; and Xopio to z. Then, the vector ¥ and the bit b € {0,1} naturally define a
polynomial

fop(Xa, ..o, Xoggo) = > Vir oo || Wiy (X1, Xopaa) |
0<e1 <<, <2k+2 JElk]
where
1, if j=0
X; ifl<j<korj=2k+1
uj,b(Xla ooy Xopyo) = X x- X, if k<j<2k :

Xokr1* Diee) Xuri + (1 = b) - Xopyo, if j = 2k 42
We will call the polynomial f5; the polynomial associated with (%, b).

Proof of Theorem 6.2. Let A be an algebraic algorithm participating in k-LINg, for b € {0, 1}.
We construct an algorithm B participating in DLOGg.

Algorithm B

Input: A group element X = ¢g* sampled uniformly at random by the challenger.
1. Sample b+ {0,1} and a1, ..., %, T1,. .., Tk, B, 2 < Zyp.
2. Set R:=g¢” and Z := gﬂ‘zfﬂ”‘*‘(l_b)‘z, and fori =1,...,k, set X; := g% and Y; := g*".
3. Sample i* + [2k + 2], and:
(a) If 1 <i* <k, then set X;« := X and Y« := X",

[meaning, in this case we embed the challenge exponent z instead of z;+, by overwriting the value
of X;» and the value of Y]

(b) If k41 < i* < 2k, then set Y- := X"+ and Z := XP . gF Ziemngs—ry it (1=0)2,

[in this case we embed the challenge exponent z instead of 7= _1|

(¢) If i* =2k + 1, then set R:= X and Z := X517 .g=bz,

[in this case we embed the challenge exponent z instead of S|
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(d) If i* = 2k + 2, then set Z := g% Xi=175 . X(1=b),

[in this case we embed the challenge exponent x instead of z|

4. Tnvoke A(Xq,..., Xk, Y1,..., Y, R, Z) to obtain a decision symbol Sym € {Acc, Rej} along with
a vector ¥ such that HOSZ‘lS---SikS%H e(Viy,..., Vi )" = 1g,, where Vg = g, V; = X;
for every i € [k], V; = Y;_j for every j € {k+1,...,2k}, Vory1 = R and Vapyo = Z. Let
fop(X1, ..., Xokt2) be the polynomial associated with (7, b).

5. Let fi = fyp, and for ¢ =0,...,4* — 1: [if ¢* =1 then this loop is skipped altogether|

(a) Write f;(X;,..., Xokto) as Z?:o 9; (X1, ... ,X2k+2)-Xg, and let j* be the minimal index
for which g;- is not the zero polynomial.

(b) Set fi+1(Xi+17 00 ,Xk) = gj*(Xi—i-h 000 ,Xk).

6. Find all roots z7, ..., z} of the univariate polynomial w(X;+) = fi= (Xi=, ¥ir+1, - - - , Y2k+2), Where

a, f1<i<k

ik iR+ 1<i < 2%
Yi=\pB, ifi=2k+1
2, ifj=2k+2

7. For every i = 1,..., ¢, check if g% = X. If so, output x; and terminate; otherwise, continue.

8. If reached, output L and terminate.
Let € := Ade\'LINg and t := Time/]i'LINg. By the definition of an algebraic algorithms, there
exists a bit b* € {0, 1} such that

. k-LIN . k-LIN €
Pﬁr |:|:VIeWA gﬁo:|supp(17) i [VIeWA g’li|supp(17):| = th’

where the probability is taken over the choice of ¥ induced by a random execution of k-LINg ;- with
A. Say that ¢ outputted by A is good if Z is in the support of ¥ (recall that Z is the challenge group
element which A receives as its last input).

Denote by bHit the event in which the bit b = b*, where b is the bit chosen by B in Step 1.
Regardless of the value of b*, it holds that Pr [bHit] = 1/2, and that Pr [¥ is good|bHit] > ¢/t? seeing
that conditioned on bHit, B perfectly simulates the game k-LINg ;- to A and since the condition

Viewi_LINg’O} % {View']z_LH\Ig’1 implies that Z is in the support of .
supp(D) supp(¥)

The remainder of the proof uses the following lemma, whose proof is deferred to the end of this
section.

Lemma 6.3. Let f € Z,[ X1, ..., X,,] be a non-zero polynomial such that for every j € [m] the degree
of Xj in f is at most d. Let fi = f and for i =2,...,m define the polynomial f; € Zy[X;, ..., Xim):
Write fi—1(Xi—1,...,Xm) = Z?:o 9i(Xiy. ooy Xom) - X& 1, and let f; = gj+ for the minimal index
Jj* €{0,...,d} for which g is not the zero polynomial. If no such index exists, let f; be the zero
polynomial. Then:

1. f1,..., fm are all non-zero polynomials.
2. Letx,...,xp € Zy such that f(x1,...,2y) = 0. There exists an index i* such that the univari-
ate polynomial wix(Xi«) = fir(Xix, Tix41, ..., Tm) 8 not the zero polynomial and w(x+) = 0.
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Shacham ([Sha07], in the proof of Lemma B.2) proved that whenever ¥ is good, the polynomial
fup obtained by B in step 4 is not the zero polynomial.> Moreover, the requirement that

[T eVi Vi) = 1g,
0<iq << <2k+2

implies that fi,(y1,...,y2k42) = 0, where y;+ = x and for every 7 # i*, y; is defined as in Step 6 of
B (recall that i* is the index chosen by B in Step 3 and x = log, X). Hence, by Lemma 6.3 below,
whenever ¥ is good there exists an index I € [2k + 2] such that the following holds: If i* = I, then
the polynomial u(X;+) from Step 7 of the algorithm B is not the zero polynomial and u(z) =0 (i.e.,
x is a root of u). Let IndHit denote the event in which ¢* = I. This means that if ¥ is good, IndHit
occurs, and B finds all roots of the polynomial w in Step 6, then it successfully finds and outputs «.
Assuming again that B uses a randomized algorithm which finds all roots of «(X), including x, with
probability at least 1/2 (e.g., the Berlekamp-Rabin algorithm |Ber70, Rab80]), it holds that

Advg 0% = Pr|DLOGE = 1|

> Pr[DLOGE = 1

¥ is good A bHit A IndHit} - Pr[7 is good A Hit A IndHit]

1
> 3 Pr [¢' is good A bHit A IndHit] (6.1)
1
> 1 Pr [0 is good|bHit] - Pr [IndHit] (6.2)
> ¢
=42 (2k+2)

where (6.1) holds since when ¢ is good and bHit and IndHit occur, x is a root of u and B finds it
with probability at least 1/2; and (6.2) follows from the fact that i* is chosen independently of the
bit b and of the view of A, and hence the event IndHit is independent of the event (7' is good) A bHit.
This concludes the proof of Theorem 6.2. |

We conclude this section with the deferred proof of Lemma 6.3.

Proof of Lemma 6.3. The proof is by induction on the number of variables m. For m = 1 the
statement trivially holds. For m > 1, write f1(X1,...,Xm) = Y0_ 9;(Xa, ..., Xpn) - X{. Since fi

is not the zero polynomial, there exist at least on index j* for which g;+(Xo,...,X,,) is not the
zero polynomial. Hence f = gj« (for the minimal such j*) and f is not the zero polynomial. By
the induction hypothesis, fs,..., fi, are also all non-zero polynomials. To prove the second item of

Lemma 6.3 consider two cases:

1. If fa(ze,...,zm) # 0: then the coefficient of Xf* in the univariate polynomial u;(X;) =
f1(X1, o, ..., xy) is non-zero. Hence, the polynomial u1(X7) is not the zero polynomial, but
it holds that ui(z1) = f(z1,22,...,2m,) = 0. This means that the statement holds for i* = 1.

2. If fo(x2,...,oy) = 0: then f5is an (m—1)-variate non-zero polynomial for which fa(zo, ..., xm,)
= 0. Therefore, by the induction hypothesis, there exists an index i* € {2,...,m} for which
us+ (X;+) is not the zero polynomial and w;«(x;+) = 0.

This concludes the proof of Lemma 6.3. [

6Shacham proved this statement (in different terminology) for the case where b = 0. The case where b = 1
immediately follows from his proof.
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