
A Verifiable and Practical Lattice-Based
Decryption Mix Net with External Auditing

Xavier Boyen1, Thomas Haines2, and Johannes Müller3[0000−0003−2134−3099]

1 Queensland University of Technology, Australia,
2 Norwegian University of Science and Technology, Norway,

3 SnT, University of Luxembourg, Luxembourg

Abstract. Mix nets are often used to provide privacy in modern security
protocols, through shuffling. Some of the most important applications,
such as secure electronic voting, require mix nets that are verifiable. In
the literature, numerous techniques have been proposed to make mix
nets verifiable. Some of them have also been employed for securing real
political elections.
With the looming possibility of quantum computers and their threat
to cryptosystems based on classical hardness assumptions, there is sig-
nificant pressure to migrate mix nets to post-quantum alternatives. At
present, no verifiable and practical post-quantum mix net with external
auditing is available as a drop-in replacement of existing constructions.
In this paper, we give the first such construction.
We propose a verifiable decryption mix net which solely employs practi-
cal lattice-based primitives. We formally prove that our mix net provides
a high level of verifiability, and even accountability which guarantees
that misbehaving mix servers can also be identified. Verification is ex-
ecuted by a (temporarily trusted) public auditor whose role can easily
be distributed. To demonstrate practicality for real-world systems, we
provide detailed performance benchmarks on our stand-alone implemen-
tation based only on the most conservative lattice hardness assumptions.

Keywords: lattice-based · verifiability · accountability · mix net · e-
voting

1 Introduction

Mix nets are indispensable building blocks of many secure e-voting systems. Es-
sentially, a mix net consists of a sequence of mix servers which take as input
the encrypted messages provided by the senders (e.g., the voters’ ballots), se-
cretely shuffle them, and eventually output the permutated plain messages (e.g.,
votes). Unless all mix servers are corrupted, the mixing breaks the individual
connections between the senders and their revealed messages in the output. In
the context of e-voting, this property guarantees vote privacy.

However, for secure e-voting, it is also important to ensure that the voters’
intent be reflected correctly in the election result, even if the mix servers are
corrupted and actively try to tamper with the votes. Therefore, the employed

mix net must be verifiable to guarantee that manipulating the senders’ input,
and generally incorrect mixing, can be detected. Moreover, in order to deter
parties from misbehaving in the first place, accountability is often also desirable.
This stronger form of verifiability provides identification of misbehaving parties
and adjudication of possible disputes. In the literature, numerous mix nets [1, 2,
4, 9, 10, 13, 14, 16, 18–20, 23, 27, 28, 31–33, 35–37] have been proposed that aim
to achieve verifiability and, in some cases, accountability. Some of them have
also been used for securing real political elections (see, e.g., [11, 34]).

With more and more powerful quantum computers on the horizon (see,
e.g., [3]), it is important to protect mix nets even when actively targeted by
quantum attackers, either contemporary or future. Due to the stark possibility
that future quantum attackers could retrospectively break vote privacy, there is
significant pressure to employ verifiable post-quantum mix nets already today.

Unfortunately, to the best of our knowledge, only a single verifiable mix net
scheme [23], named sElect, has been proposed so far that could employ practi-
cal post-quantum, e.g., lattice-based, cryptosystems. The unique characteristic
of sElect, in contrast to all other known verifiable mix nets, is to avoid (zero-
knowledge) proofs of correct decryption, for which, at present, there exist no
practical solutions whose security can be reduced to hardness assumptions over
lattices (see Section 2 for more details). Alas, although sElect is provably secure,
its security relies on the assumption that the senders/voters themselves verify
the correctness of the final outcome. While this assumption is reasonable for
some election scenarios, it cannot be justified in general; in particular, recourse
and adjudication in case of voter-detected fraud is problematic.

Therefore, it is still an open problem to construct a practical and provably
secure mix net with external auditing that can defend against quantum attacks.

Our contributions. In this paper, we present the first highly efficient and prac-
tically realizable lattice-based decryption mix net that provides a high level of
verifiability and even accountability. Verification is completely executed by a
(temporarily trusted) public auditor whose role can easily be distributed. This
structure is the same as the one of the prominent randomized partial checking
(RPC) technique [19] which was, for instance, used for elections in the Australian
state of Victoria [11].

To be more precise, our mix net employs a generalized version of the trip
wire technique that was, in a specific variant, originally employed in the mix
net by Khazaei et al. [20] as a subroutine. At a high level, in this technique,
the input to the mix net consists of the real input messages plus a number of
trip wire messages which to a mix server are indistinguishable from the real
ones. Now, if a mix server wants to manipulate the outcome, it faces the risk
of “touching” at least one trip wire, in which case the mix server would be
caught cheating. In contrast to the specific variant in the mix net by Khazaei
et al. [20], where each mix server can only inject a single trip wire in order to
be able to guarantee correctness of the verification (which furthermore requires
a proof of correct decryption), we depart from this as follows. First, we do not
assume that the mix servers themselves inject the trip wires to “verify each

2

other”, but place that responsibility on a number of public auditors. Just one
of these auditors needs to be trusted, and in fact only temporarily, because
each auditor opens its inner state once mixing has finished—which incidentally
greatly simplifies adjudication in case of dispute, and could not be done to the
mixers themselves. Second, each auditor does not inject just a single but many
trip wires, so that the probability of being caught cheating can be made very
high even for manipulating just a few messages. Trip wires are cost effective, and
since we further use only the most basic and black-box cryptographic primitives
(namely, public-key encryption and digital signatures), the resulting mix net
can be run with extremely efficient (lattice-based) primitives that more than
compensate for the trip wires’ overhead compared to ZKP-based approaches.

Altogether, our contributions are as follows:

1. We first discuss the unique constraints that come into play when building
mix nets with quantum resistance, and related works (Section 2).

2. We describe how to extend an arbitrary plain (i.e., unverifiable, proof-less)
decryption mix net (Section 3) with our general version of the trip wire
technique (Section 4).

3. We precisely characterize how a decryption mix net with trip wires provides
a high level of verifiability and even accountability (Section 6). A formal
proof is provided in Appendix D.

4. We instantiate the generic trip wire decryption mix net using practical lattice-
based cryptography from conservative hardness assumptions (plain LWE).
We have created a self-contained optimized implementation of the lattice
construction, and provide detailed benchmarks that demonstrate its practi-
cality for real-world elections at a high level of security (Section 7).

5. We candidly discuss the general properties, benefits and drawbacks of trip
wire mix nets (Section 8) and conclude in Section 9.

2 Feasibility of Post-Quantum Secure Mixing

Existing mix nets can be divided into two classes: decryption mix nets and re-
encryption mix nets. In this section, we describe the main ideas of these two
different approaches, and explain why the re-encryption approach is currently
impractical for defending against quantum attackers.

In a decryption mix net, originally proposed by Chaum [7], an IND-CCA2
secure public-key encryption scheme is employed. Each mix server holds a pub-
lic/secret key pair. Each sender iteratively encrypts its input message under the
mix servers’ public keys in reverse order, forming a multi-layered onion. Mixing
starts with the first mix server, which “peels off” the outermost encryption layer,
shuffles the result, forwards it to the second mix server, and so on. Eventually, all
encryption layers have been removed and the plain input messages are published
in the resulting random order.

In a re-encryption mix net, originally proposed by Park et al. [29], an IND-
CPA secure public-key encryption scheme with re-encryption is employed. There
is one public key whose secret key shares are distributed among a number of

3

trustees. Each sender encrypts its input message under this public key. Mixing
starts with the first mix server which re-encrypts its input ciphertexts, shuffles
the result, forwards it to the second mix server, and so on. Eventually, all re-
encrypted input ciphertexts are published in random order. Depending on the
application, the output ciphertexts are either decrypted by the trustees or not.

In their plain unverifiable modes, re-encryption mix nets are more lightweight
than decryption mix nets because input messages are not encrypted iteratively
but only once under a single public key. However, when verifiability in the pres-
ence of quantum attackers is required, the trade-offs get more complicated. In
general, there are two different approaches for making re-encryption mix nets
verifiable, namely, by using randomized partial checking (RPC) [19] or by a
proof of correct shuffle [1, 2, 4, 9, 10, 13, 14, 16, 18, 27, 28, 32, 33, 36]. On
the positive side, RPC could potentially be used for making a lattice-based re-
encryption mix net verifiable, for instance using one of three recently proposed
lattice-based proofs of correct shuffle [9, 10, 32], although it is unclear whether
or not these are practical. On the negative side, both proof-based approaches
merely guarantee that the output ciphertexts are in fact shuffled re-encryptions
of the input ciphertexts. In order to be useful for our motivating application, i.e.,
secure e-voting, we also have to decrypt the output ciphertexts verifiably. Un-
fortunately, to the best of our knowledge, no practical zero-knowledge proofs of
correct decryption for lattice-based encryption have been proposed so far, whose
security can itself be reduced to lattice-based hardness assumptions. Even with
recent developments on sublinear arguments from lattices [6], ZK proofs tend
to be, and will likely remain, much heavier and more cumbersome than simple
primitives such as public-key encryption based on comparable assumptions.

As the main purpose of our mix nets would be for quantum-secure e-voting
where integrity, performance and simplicity of implementation are paramount,
our best bet is to devise a lattice-based decryption mix net that provides external
auditability using only the simplest fastest primitives as building blocks.

3 Plain Decryption Mix Net

In this section, we first recall the main idea of a plain unverifiable decryption
mix net [7] and then precisely describe its protocol. In Section 4, we describe the
generic trip wire technique to endow a plain decryption mix net with correctness
verification (and external/third-party adjudication) of its outcome.

3.1 Idea

At a high level, a decryption mix net works as follows. It consists of a num-
ber of mix servers M1, . . . ,MnMS

each of which holds a public/private (encryp-
tion/decryption) key pair (pkk, skk). Each sender iteratively encrypts its plain
input message m under the public keys pk1, . . . , pknMS

of the mix servers in
reverse order, and submits the resulting “nested” ciphertext c to the first mix
server M1. The first mix server uses its secret key sk1 to “peel off” the outermost

4

encryption layer of all input ciphertexts, then shuffles the decrypted messages,
and forwards the permutated list to the second mix server M2. The second mix
server uses its secret key sk2 to “peel off” the second encryption layer, then
shuffles the result, and so on. Eventually, the last mix server MnMS

outputs all
the plain messages initially chosen by the senders in random order.

3.2 Protocol

We now precisely describe the protocol of a plain decryption mix net.

Protocol participants. A plain decryption mix net protocol is run among senders,
S1, . . . ,SnS

, and mix servers, M1, . . . ,MnMS
, using a public, append-only bulletin

board B.

Channels. For each sender Si, we assume that there is an authenticated channel
from Si to the bulletin board B. These channels ensure that only eligible senders
are able to submit their inputs.4

Cryptographic primitives. We use the following cryptographic primitives:

– An IND-CCA2-secure public-key encryption scheme E .5

– An EUF-CMA-secure signature scheme S.

Protocol overview. A protocol run consists of the following consecutive phases.
In the setup phase, parameters are generated. In the submission phase, the
senders generate and submit their input. In the mixing phase, the mix servers
collaboratively mix the input.

We now describe each of the protocol phases in more detail.

Setup phase. Each mix server Mk runs the key generation algorithm of the
digital signature scheme S to generate its public/private (verification/signing)
keys. The verification keys are published on the bulletin board B.

Each mix server Mk runs the key generation algorithm KeyGen of the public-
key encryption scheme E to generate its public/private (encryption/decryption)
key pair (pkk, skk), and posts its public key pkk on the bulletin board B.

Submission phase. Each sender Si iteratively encrypts its secret input mi under
the mix servers’ public keys in reverse order, i.e., starting with the public key
pknMS

of the last mix server MnMS
to the public key pk1 of the first mix server

M1:
ci = Enc(pk1, (. . . ,Enc(pknMS

,mi))).

Mixing phase. The list of ciphertexts C0 ← (ci)
nS
i=1 posted by the senders on the

bulletin board B is the input to the mixing phase. Starting with the first mix

4 By assuming such authenticated channels, we abstract away from the exact method
the senders use to authenticate to the bulletin board; in practice, several methods
can be used, such as one-time codes, passwords, or external authentication services.

5 We also require that E , for every public-key and any two plaintexts of the same
length, always yields ciphertexts of the same length. This seems to be satisfied by
all practical schemes in existence, unless implemented with entropic compression.

5

server M1, each mix server Mk takes Ck−1 as input and performs the following
tasks:

1. Mk decrypts all ciphertexts in Ck−1 under its private key skk:

∀i ∈ {1, . . . , nS} : C ′k[i]← Dec(skk, Ck−1[i])

2. Mk chooses a permutation πk over {1, . . . , nS} uniformly at random, and sets

∀i ∈ {1, . . . , nS} : Ck[πk(i)]← C ′k[i].

3. Mk posts Ck on the bulletin board B.

The output CnMS
of the last mix server MnMS

is the output of the mixing
phase. It equals (mπ(i))

nS
i=1, where π = πnMS

◦ . . . ◦ π1 is the overall permutation
of the mix net.

4 Trip Wire Technique

We describe how to extend a plain decryption mix net (Section 3) with trip
wires. We will show in Section 6 that the resulting mix net provides a high level
of verifiability and accountability in the presence of fully malicious mix servers.

Fig. 1: Examplified run of a decryption mix net with trip wires, where nAD = 3, nMS = 3,
nS = 3, and ntw = 1. Rectangles and circles symbolize senders’ and auditors’ message
traces, respectively.

6

4.1 Idea

At a high level, the trip wire technique works as follows. The plain decryption
mix net is extended with a number of auditors AD1, . . . ,ADnAD

each of which
executes the submission program of the senders ntw times. For this purpose, ADj
chooses dummy input messages (e.g., 0l) and encrypts them in layers as a normal
user would. The resulting ciphertexts are called ADj ’s trip wires. Furthermore,
ADj stores the random coins that it has used to generate its ntw trip wires.

Now, the plain decryption mix net (with only “main mixing” servers for now)
is run with this extended set of inputs. Once mixing has finished, each auditor
ADj reveals its inner states, including its trip wires’ random coins. With this,
the traces of ADj ’s trip wires through the mix net can publicly be verified. If a
mix server Mk did manipulate one of these dummy traces, this can be detected,
and furthermore Mk can be held accountable through its digital signature (more
on this later).

Even though this high-level description gives some intuition on the “integrity
challenge” underlying the trip wires, verifiability is obviously not yet guaranteed:

1. At the start of the mix, it is clear which input ciphertexts belong to the
senders and which ones to the auditors. Hence, if the first mix server M1 is
malicious, then the adversary can completely manipulate the outcome of the
mix net without being detected.

2. In general, we cannot assume that the auditors are able to simulate the
senders’ message distribution. Therefore, realistically, the auditors’ and the
senders’ plaintext distributions are distinguishable. Now, recall that the last
mix server MnMS

knows the final plaintext output before it publishes it.
Hence, if MnMS

is malicious, then the adversary can undetectably manipulate
the outcome of the mix net.

We propose the following additional mechanisms to address the above problems:

1. Prior to the main mixing, the input ciphertexts are “pre-mixed” using the
same kind of plain decryption mix net, but now run by the auditors. This
phase is called explicit mixing (see below for the reason). Unless all auditors
are corrupted, it is no longer possible, for the original main mixing servers,
to distinguish between the senders’ ciphertexts and the auditors’ trip wires.

2. An additional layer of encryption (whose private key is secret-shared among
the auditors) is added directly to the plain input messages. This is called the
repetition layer. Unless all auditors are corrupted, the last mix server gets
to know only the still encrypted output.

Since secrecy of the explicit mixing and of the repetition layer is required
only during main mixing, these two phases can be verified explicitly once the
main mixing has finished. For this purpose, each auditor is supposed to reveal
its explicit-mixing secret key as well as its secret key share of the repetition
encryption layer after the final mix server has published its output.

7

4.2 Protocol

In this section, we precisely describe how to extend a plain decryption mix net
(Section 3) with the trip wire technique.

To preserve readibility, we make the following implicit assumptions:

– Whenever a party (mix server or auditor) holding a verification/signing key
pair publishes information, it signs this data with its secret signing key.

– Whenever a mix server or an auditor deviates from its honest program in
an obvious way (e.g., refuses to participate, or publishes an invalid secret
key), then the protocol aborts immediately and the misbehaving party is
held accountable.

– In order to protect against replay attacks which may affect message privacy
of senders (see, e.g., [8]), ciphertext deduplication is always in effect, where
only the first instance of a multiply occurring ciphertext is retained.

Protocol participants. The set of protocol participants is extended by a number
of auditors AD1, . . . ,ADnAD

.

Cryptographic primitives. We additionally use an IND-CCA2-secure (nAD, nAD)-
threshold public-key encryption scheme Ed.6

Setup phase. The following additional steps are executed.
Each auditor ADj runs the key generation algorithm of the digital signature

scheme S to generate its public/private (verification/signing) keys. The verifica-
tion keys are published on the bulletin board B.

Each auditor ADj runs the key generation algorithm KeyGen of the public-

key encryption scheme E to generate a public/private key pair (pkexplj , skexplj), and

posts the public key pkexplj on the bulletin board B.
Each auditor ADj runs the key share generation algorithm KeyShareGen of

the distributed public-key encryption scheme Ed to generate a public/private
key share pair (pkrepj , skrepj), and posts the public key share pkrepj on the bulletin
board B. From those, using the deterministic algorithm PublicKeyGen, everyone
can then compute the joint public key pkrep.

Altogether, the public parameters consist of the public keys pkexpl1 , . . . , pkexplnAD

for the explicit decryption mix net, the public keys pk1, . . . , pknMS
for the main

decryption mix net, and the joint public key pkrep for the repetition encryption
layer.

Submission phase (senders). Each sender Si first encrypts its message mi under
the auditors’ joint public key pkrep:

crepi = Enc(pkrep,mi).

After that, Si encrypts crepi under the mix servers’ public keys pk1, . . . , pknMS

of the main decryption mix net in reverse order:

cmain
i = Enc(pk1, (. . . ,Enc(pknMS

, crepi))).

6 Note that to jointly decrypt a ciphertext in Ed, all secret key shares are required.

8

Afterwards, Si encrypts cmain
i under the auditors’ public keys pkexpl1 , . . . , pkexplnAD

of the explicit decryption mix net in reverse order:

cexpli = Enc(pkexpl1 , (. . . ,Enc(pkexplnAD
, cmain
i))).

The resulting ciphertext ci ← cexpli is Si’s input to the mix net.

Submission phase (auditors). Each auditor ADj executes ntw times the senders’
submission steps described above, every time with (dummy) input message m =
0l (where l is the bit size of a sender’s message). We denote ADj ’s trip wire
ciphertexts by (cnS+(j−1)·ntw+l)

ntw

l=1. Furthermore, ADj stores the random coins
that were used to generate its trip wire ciphertexts.

Mixing phase. The input to the mixing phase is (ci)i∈Iexpl which consists of
(a subset of)7 the nS ciphertexts submitted by the senders and the nAD · ntw
ciphertexts submitted by the auditors. Then, the overall mixing phase consists
of two consecutive parts:

1. Explicit mixing: The auditors use their secret decryption keys skexpl1 , . . . ,
skexplnAD

to run the plain decryption mix net (Section 3) with input (ci)i∈Iexpl . The

output of this mix net is (c̃main
i)i∈Imain , where Imain ⊆ Iexpl.

2. Main mixing: The mix servers use their secret decryption keys sk1, . . . , sknMS

to run the plain decryption mix net (Section 3) with input (c̃main
i)i∈Imain . The out-

put of this mix net is (c̃repi)i∈Irep , where I rep ⊆ Imain.

Auditing phase. Each auditor ADj publishes its secret key skexplj associated to
the explicit decryption mix net. With this, everyone can verify that the explicit
mixing was executed correctly. If verification fails, a misbehaving auditor is iden-
tified through its signature and the whole protocol stops.

After that, each auditor ADj publishes the random coins that it used to
create its trip wires. With this, everyone can verify the integrity of trip wires’
traces through the main decryption mix net. If verification fails, a misbehaving
mix server is identified and the whole protocol stops.

Final decryption phase. Each auditor ADj publishes its secret key share skrepj
on the bulletin board B. Then, for each ciphertext c̃repi (i ∈ I rep), the decryption
key share is publicly computed: decrepj,i ← DecShare(skrepj , c̃repi). After that, the

decryption shares are combined to decrypt c̃repi : m̃i ← Dec(decrep1,i , . . . , dec
rep
nAD,i

).
Alternatively, and more efficiently if the threshold encryption scheme supports
it (it normally would), the joint secret key skrep iz explicitly reconstituted from
the published secret key shares (skrepj)j∈[nAD] and from there using skrep each

ciphertext c̃repi is directly decrypted into m̃i.
The list of decrypted messages (m̃i)i∈Irep is the final outcome of the mix net.

5 Protocol Model

The general computational model that we use follows the one in [25]. This model
introduces the notions of processes, protocols, and instances, which we briefly

7 Recall that ciphertext duplicates or invalid ciphertexts are continuously removed.

9

recall. In this way, we then model the decryption mix net extended with the trip
wire technique.

Process. A process is a set of probabilistic polynomial-time (ppt) interactive
Turing machines (ITMs, also called programs) which are connected via named
tapes (also called channels). We write a process π as π = p1‖ · · · ‖pl, where
p1, . . . , pl are programs. If π1 and π2 are processes, then π1‖π2 is a process,
provided that the processes have compatible interfaces. A process π where all
programs are given the security parameter 1` is denoted by π(`). In the processes
we consider, the length of a run is always polynomially bounded in `. Clearly, a
run is uniquely determined by the random coins used by the programs in π.

Protocol. A protocol P is defined by a finite set of agents Σ (also called parties
or protocol participants), and for each agent a ∈ Σ its honest program π̂a, i.e.,
the program this agent is supposed to run. Agents are pairwise connected by
tapes/channels and every agent has a channel to the adversary (see below). If
π̂a1 , . . . , π̂al are the honest programs of the agents of P , then we denote the
process π̂a1‖ . . . ‖π̂al by π̂P .

The process π̂P is always run with an adversary A, an arbitrary ppt program
with channels to all protocol participants in π̂P . For any program πA run by
the adversary, we call π̂P ‖πA an instance of P . Now, a run r of P with the
adversary πA is a run of the process π̂P ‖πA. We consider π̂P ‖πA to be part of
the description of r so that it is always clear to which process, including the
adversary, the run r belongs to.

We say that an agent a is honest in a protocol run r if the agent has not
been corrupted in this run: an adversary πA can corrupt an agent by sending
a corrupt message; once corrupted, an adversary has full control over an agent.
For the mix net protocol studied in this paper, we assume static corruption,
i.e., agents can only be corrupted at the beginning of a run. In particular, the
corruption status of each party is determined at the beginning of a run and does
not change during a run. Also, for some agents we will assume that they cannot
be corrupted (see below).

Model of the trip wire mix net. The decryption mix net extended with the
trip wire technique can be modeled in a straightforward way as a protocol
P tw
DMN(nS, n

hon
S , nMS, nAD, ntw), as described next. The protocol participants con-

sist of nS senders (in total), nhonS honest senders, nMS mix servers, nAD auditors,
a scheduler SC, and a public append-only bulletin board B. The scheduler SC
plays the role of the mix net authority and schedules all other agents in a run
according to the protocol phases. We assume that SC and the bulletin board B
are honest, i.e., they are never corrupted. While SC is merely a virtual entity, in
reality, B should be implemented in a distributed way (see, e.g., [12, 21]). The
parameter ntw denotes the number of trip wires per auditor.

6 Verifiability

In this section, we formally analyze verifiability of the decryption mix net with
trip wires using the generic verifiability framework by Küsters, Truderung, and

10

Vogt [25]. We briefly recall this framework in Section 6.1, and then state the
verifiability result in Section 6.2.

6.1 Verifiability Framework

Intuitively, a mix net is verifiable if an incorrect final outcome is accepted only
with small probability δ ∈ [0, 1].

Judge. To model whether the final outcome of a protocol run should be accepted,
the verifiability definition by Küsters et al. assumes an additional protocol par-
ticipant J, called the judge. The judge can be thought of as a “virtual” entity:
in fact, the program of J can be carried out by any party, including external ob-
servers and even senders themselves, since its input is solely public information.
On a high level, the judge performs certain checks to ensure the correctness of
the final outcome (e.g., verifying trip wires). Typically, as for decryption mix net
with trip wires, the program of J follows immediately from the protocol descrip-
tion. Formally, to either accept or reject a protocol run, the judge writes accept
or reject on a dedicated channel decisionJ.

Goal. To specify which runs are “correct” in some protocol-specific sense,
Küsters et al. use the notion of a goal γ. Formally, a goal γ is simply a set
of protocol runs. For mix nets, γ would contain those runs where the announced
mix net result corresponds to the actual messages of the senders.

In what follows, we describe the goal γ(k, ϕ) that we use to analyze the
decryption mix net with trip wires. This goal has already been applied in [17,
23, 24, 26] to analyze further mix nets. The parameter ϕ is a Boolean formula
that describes which protocol participants are assumed to be honest in a run,
i.e., not corrupted by the adversary. On a high level, the parameter k denotes
the maximum number of choices made by honest senders that the adversary is
allowed to manipulate. So, roughly speaking, the goal γ(k, ϕ) contains all those
runs of a mix net protocol P where either ϕ is false, or where ϕ holds true and
the adversary has manipulated at most k messages of honest senders.

Now, we formally define the goal γ(k, ϕ) for an arbitrary result function ρ
that takes as input a vector of input messages (as provided by the senders) and
then outputs the overall result (e.g., a vector of plain messages or a vector of
encrypted messages).

Definition 1 (Goal γ(k, ϕ)). Let P (nS, nMS) be a mix net protocol, let π be
an instance of P (nS, nMS), and let r be a run of π. Let S1, . . . ,Snhon

S
be those

senders that are honest in r. Let m = m1, . . . ,mnhon
S

be the inputs of the honest

senders in r. Then, γ(k, ϕ) is satisfied in r if either (a) the trust assumption ϕ
does not hold true in r, or if (b) ϕ holds true in r and there exist valid messages
m̃1, . . . , m̃nS

such that the following conditions are satisfied:

– The multiset {m̃1, . . . , m̃nS
} contains at least nhonS −k elements of the multiset

{m1, . . . ,mnhon
S
}.

– The mix net outcome as published in r (if any) equals to ρ({m̃1, . . . , m̃nS
}).

11

If ϕ does not hold true in r and no outcome is published in r, then γ(k, ϕ) is
not satistied in r.

Verifiability. Now, the idea behind the verifiability definition is very simple. The
judge J should accept a run only if the goal γ is met: as discussed, if γ = γ(k, ϕ),
then this essentially means that the published mix net result corresponds to
the actual messages of the senders up to k messages of honest senders. More
precisely, the definition requires that the probability (over the set of all protocol
runs) that the goal γ is not satisfied but the judge nevertheless accepts the run is
δ-bounded.8 Although δ = 0 is desirable, this is typically only achieved by a proof
of correct shuffle for which, to date, there do not exist efficient post-quantum
instantiations (much less practical ones). Hence, if we strictly required δ = 0,
then this would deem reasonable mix nets insecure even though they still provide
good (but not perfect) levels of verifiability, e.g., for some δ which converge
exponentially fast to 0 in the number of manipulated inputs. The parameter δ
is called the verifiability tolerance of the protocol.

By Pr[π(`) 7→ ¬γ, (J : accept)] we denote the probability that a run, produced
by π with security parameter 1`, is not in γ but nevertheless accepted by J.

Definition 2 (Verifiability). Let P be a protocol with the set of agents Σ. Let
δ ∈ [0, 1] be the tolerance, J ∈ Σ be the judge, and γ be a goal. Then, we say
that the protocol P is (γ, δ)-verifiable by the judge J if for all adversaries πA
and π = (π̂P ‖πA), the probability Pr[π(`) 7→ ¬γ, (J : accept)] is δ-bounded as a
function of `.9

6.2 Verifiability Result

We are now able to precisely state the verifiability level offered by the decryption
mix net with trip wires according to Definition 2. The level depends on the
number of honest senders nhonS and the number of dummy messages per auditor
ntw, as described in Section 5.

Assumptions. We prove the verifiability result for the goal γ(k, ϕ), with γ(k, ϕ)
as defined in Section 6.1, and under the following assumptions:

(V1) The public-key encryption scheme E is IND-CCA2-secure.
(V2) The (nAD, nAD)-threshold public-key encryption scheme Ed is IND-CCA2-

secure.
(V3) The signature scheme S is EUF-CMA-secure.

8 A function f is δ-bounded if, for every c > 0, there exists `0 such that f(`) ≤ δ+ `−c

for all ` > `0.
9 We note that the original definition in [25] also captures soundness: if the protocol

runs with a benign adversary, which, in particular, would not corrupt parties, then
the judge accepts all runs. This kind of soundness can be considered to be a sanity
check of the protocol, including the judging procedure, and is typically easy to check.
For brevity of presentation, we omit this condition here.

12

(V4) The scheduler SC, the bulletin board B, the judge J, and at least one

auditor are honest, i.e., ϕ = hon(SC) ∧ hon(J) ∧ hon(B) ∧
(∨nAD

j=1 ADj
)

.

(V5) For all honest senders and auditors, the length of the message plaintext
has the same size in each run of the protocol (given a security parameter).

(V6) For E and Ed, we require that for any two plaintexts of the same length,
their encryption always yields ciphertexts of the same length.

Result. The judging procedure performed by J essentially involves performing
the checks in the auditing phase (Section 4). If one of these checks fails, the
judge rejects the protocol run and hence the result.

Intuitively, the following theorem states that the probability that in a run
of the decryption mix net with trip wires more than k inputs of honest senders
have been manipulated but the judge J nevertheless accepts the run is bounded
by δk(nhonS , ntw).

Theorem 1 (Verifiability). Under the assumptions (V1) to (V6) stated above,
the decryption mix net protocol with trip wires P tw

DMN(nS, n
hon
S , nMS, nAD, ntw) is

(γ(k, ϕ), δk(nhonS , ntw))-verifiable by the judge J, where

δk(nhonS , ntw) =

(
nhon
S

k+1

)(nhon
S +ntw

k+1

) .
The main reasoning behind this theorem is as follows. Since the explicit mix-

ing and the shared decryption of the repetition layer are perfectly verifiable, an
adversary can only manipulate honest senders’ messages in the main mix net
without being detected. However, due to the IND-CCA2-security of the under-
lying public-key encryption schemes, the adversary has to do this manipulation
“blindly” as the nhonS + ntw ciphertexts related to the honest input parties (one
ciphertext for each of the nhonS honest senders plus ntw ciphertexts by the honest
auditor) are indistinguishable. Now, if an adversary wants to manipulate k + 1
honest inputs, the probability that he is not caught cheating is captured by the
following urn experiment. An urn contains nhonS white and ntw black balls, rep-
resenting honest messages and trip wires respectively. Upon picking k + 1 balls
from this urn without replacement, the probability that none of the removed

balls was black (i.e., no trip wire was touched) is exactly
(
nhon
S

k+1

)
/
(
nhon
S +ntw

k+1

)
.

Importantly, for all k, the verifiability tolerance δk(nhonS , ntw) is bounded by
(nhonS /(nhonS + ntw))k+1 which converges exponentially fast to 0 in the number
of manipulated honest inputs k. For example, if we choose ntw = nS, then the
adversary’s risk is more than 90% for manipulating more than 4 honest messages,
and even more than 99% for manipulating more than 7 honest messages.

The correctness of Theorem 1 follows immediately from an even stronger
result which we state in Appendix C and formally prove in Appendix D. In fact,
the decryption mix net with trip wires even provides accountability. This security
property not only guarantees that the correctness of the mix net’s outcome
can be verified but also that misbehaving parties can be identified and held

13

accountable. Since Küsters et al. [25] proved that accountability is a stronger
form of verifiability, the formal proof of our accountability result (Theorem 2)
implies the verifiability result (Theorem 1) stated above.

7 Implementation

In terms of efficiency, the core component of the verifiable mix net protocol is
the (post-quantum) IND-CCA2-secure public-key encryption scheme: this com-
ponent must be fast and robust enough to process thousands, possibly millions,
of untrusted encrypted ballots, and do so safely and efficiently. Decryption per-
formance is of particular importance since each mix server will be decrypting
(one layer of) the entire set of encrypted ballots, while encryption is naturally
done piecemeal in a distributed way by the individual voters. Encryption perfor-
mance will start to matter (for the auditors) if the number of trip wires is large,
or (for the voters) if there are many mix servers hence encryption layers.

7.1 Design

We implement essentially the textbook Regev scheme (technically its dual),
which is provably secure under the now-classic LWE hardness assumption [30].
Our implementation attempts to remain faithful to the theoretical scheme, but
rearranges it to optimize its computation. We merely summarize the salient
points in Appendix A, while referring the reader to standard texts or surveys on
lattice-based cryptography for background. We also elaborate on our implemen-
tation rationale in Appendix B, in particular on why we refrained from choosing
one of the current NIST proposals.

7.2 Technical Details

The concrete IND-CCA2-secure scheme we implement is a hybrid consisting of
a lattice-based CCA2-secure KEM, combined with an AES256-based DEM with
MAC. The KEM closely follows the original Regev cryptosystem [30]. For effi-
ciency, much of the secret data is obtained from privately or randomly seeded
AES256-based PRNG, and likewise much of the public key is generated on the
fly from a publicly seeded AES128-based PRNG. The data is aligned and ordered
so as to maximize performance of decryption over that of encryption. Standard
techniques are used to provide chosen-ciphertext security for each of the KEM
and the DEM, albeit only implicitly in the sense of [5], causing malformed cipher-
texts to decrypt indistinguishably randomly rather than be explicitly rejected.

Our implementation targets the 240-bit security level, and accordingly uses
240-bit or wider data paths everywhere including the KEM-crypted symmetric
session key and the DEM redundancy. As stated, we erred on the side of over-
shooting our target, and used lattices of dimension n = 1024, modulus q = 216

and sampler-mandated LWE discrete Gaussian noise σ ≈ 2, providing sufficient
headroom to reliably encode 5-bit payload per 16-bit ciphertext component.

14

These parameters are conservative but not normative, and were selected mainly
for the purpose of conducting a realistic performance evaluation.

As stated in the theoretical part of the paper, the final decryption (in the
repetition layer) does not need to operate as a true threshold scheme, as long as
the private key can be reconstituted from the revealed private-key shares. Regev
key generation supports this, by linearity of the public key in the private key.
We can thus reuse the same implementation for the final layer, by letting each
auditor create its own private-key share and publish the corresponding share
of the public key. The “dependent part” of the public key is reconstituted as
the modular sum of the public shares. The “independent part” of the public key,
namely the large public matrix “A”, does not need to be shared and continues to
be pseudorandomly expanded from a public random seed that the auditors will
have agreed on. The private-key shares eventually revealed by the auditors can
be verified for correctness based on the corresponding public-key shares, before
the final decryption of the repetition layer takes place.

Our implementation is completely independent and does not borrow any code
from anywhere, other than a few lines for the canonical usage of AESNI.

7.3 Local-Scale Performance

Our test platform is a 2019 Dell XPS 13 Intel i7-8565U CPU, fully mitigated
in microcode and OS (Linux) against all known speculative execution/loading
attacks, and running a single core at 4.1GHz measured clock frequency. At the
240-bit target security level, using 1024-dimension lattices, the performance of
our IND-CCA2 subsystem (assuming 240-bit canary and 16-bit payload for the
DEM plaintext) is as follows:

– Public-key size: 93 kB

– Ciphertext overhead incl. canary: 2.3 kB

– Key generation time: 36 µs (0.036 s)

– Encryption time: 201 µs (0.000201 s)

– Decryption time: 133 µs (0.000133 s)

For the verifiable mix net application, except when the number of ballots is
extremely small, the processing time for each mix layer will be almost entirely
dominated by the time it takes to decrypt the incoming ballots. As one would
expect, the total decryption time for one layer of the mix net using a single core
scales almost perfectly linearly with the number of ballots (see Section 7.4), and
we measure (on the same hardware as above):

– 7500 ballots in 1.02 s, or

– 1 million ballots in 132.22 s.

In practice, the decryption running time for a large number of independent
ciphertexts can be divided almost exactly by the number of available CPU cores.

15

7.4 Whole-System Performance

The random permutation of the ballots in each layer of the mix net does not add
any appreciable time to the mixing, as long as it can be assumed that the entire
set fits in random-access memory (normally a reasonable assumption). Likewise,
while lattice-based signatures are generally much more expensive than lattice-
based encryption, the overhead of issueing a single signature on the published
mix does not make any difference with a large number of ballots.

Therefore, when considering the performance of the entire mix net, the two
principal factors are the sequential nature of the encryption and decryption
operations (by the voter and the mix servers respectively), and the growth of
the multi-layer encrypted ballot with the number of layers. Clearly, the first
consideration introduces a linear factor in the total mixing time, since each mix
server must finish its mixing task on the entire set of ballots before certifying
the result and passing the baton to the next mix server.

The ciphertext growth is also linear in the number of layers (or equivalently,
mix servers). In our implementation at 240-bit security level, each layer adds an
overhead of 2.3 kB (consisting of 2.1 kB of KEM data plus 0.2 kB of redundancy,
to be added to the size of the plaintext, which in every layer except the first one
is the total size of the previous layer’s ciphertext). In theory, this makes the total
mixing time quadratic in the number n of mix servers as n → ∞. In practice,
however, the hybrid encryption and decryption running times are dominated
by the public-key KEM component, the processing of which at each layer is
independent of the size of the DEM hence the number of layers.

Our experiments (Table 1) show the evolution of encryption and decryption
running time of one layer of the ”onion” or encrypted ballot, in function of the
number of layers of encryption beneath it (level 0 indicates direct encryption of
the plaintext vote, while level 1,000,000 is clearly impractical and provided only
to show asymptotic behavior).

Table 1: Encryption/decryption times and ciphertext size in function of layer height.

layers ctx size (kB) encrypt time decrypt time

0 2,144 201 us 133 us
1 4,256 201 us 134 us
10 23,264 209 us 141 us
30 65,504 214 us 154 us
100 213,344 254 us 194 us
300 635,744 368 us 308 us

1,000 2,114,144 792 us 753 us
1,000,000 2,112,002,144 0.641 s 0.607 s

In practice, each layer corresponds to a different mixing server, so the total
number of layers will likely remain small (less or much less than 100). Nev-
ertheless, the experiments show that encryption and decryption times remain

16

essentially constant (per layer) far beyond the range of practical applications,
and that it is the size of the encrypted onions, rather than the time to encrypt
or decrypt them, that is likely to be a limiting factor. The asymptotic linearity
of encryption and decryption times (for each layer) only starts to show at very
high numbers of layers. We also note that only the total number of layers and
the total number of ciphertexts will matter, in terms of performance. How these
are partitioned between explicit and main mixers, as well as between actual and
trip wire ballots, has no significant impact on running time.

On the voter’s size, encrypting a complete onion even for an exceedingly
large 1000-layer mixnet would still require less than one second on most modern
commodity consumer hardware.

8 Discussion

In this section, we discuss the main properties of the decryption mix net with
trip wires.

Verifiability and Accountability. We have formally proven that, even if all mix
servers are malicious, an adversary’s risk of being caught cheating is high.

More precisely, our accountability result implies that, if an adversary wants
to manipulate more than k honest inputs, then (at least) one misbehaving mix
server is identified with probability at least 1 − (nhonS /(nhonS + ntw))k+1, where
nhonS is the given number of honest senders and ntw is the given number of trip
wires per auditor. In particular, an adversary knows upfront that its risk of
being caught cheating converges exponentially fast against 1 in the number of
manipulated messages k.

Moreover, recall that during the main mixing, both the explicit mixing and
the repetition layer are still locked. Hence, even if the race between two candi-
dates A and B was very close, an adversary trying to manipulate the election
outcome in favor of A by swapping just a few votes from B to A, has to do this
“blindly”. In particular, the adversary may accidentally swap a message from A
to A. Hence, an adversary’s chance of successfully manipulating the outcome is
significantly reduced, independently of whether the adversary is caught cheating
or not.

Altogether, for applications like secure e-voting where misbehaving parties
have to face severe financial or legal penalties, an adversary knows a priori that
manipulating the mix net outcome would be completely unreasonable.

External auditing. At a high level, the verification procedure of the trip wire
mix net can be regarded as an “integrity experiment” that is run between an
adversary (controlling all mix servers) and an external auditor who challenges
the adversary by “injecting” trip wires. If the adversary is able to manipulate (a
significant number of) honest inputs without touching one of the trip wires, then
the adversary wins. Our verifiability/accountability result (see above) provides
an upper bound for an adversary’s advantage in this experiment.

Obviously, the external auditor needs to be trusted for the integrity experi-
ment but this trust assumption is mitigated by two means. First, the auditor’s

17

role can easily be distributed among several auditors, only one of which needs
to be trusted. Second, the auditor opens its complete inner states once the in-
tegrity challenge has finished so that the correctness of its internal computation
can publicly be verified.

Privacy. The original purpose of employing a mix net is to break the individual
links between the senders and their plain input messages. This property is called
(message) privacy. Assuming one honest mix server and one honest auditor, the
trip wire mix net guarantees privacy. A formal proof of this statement can be
based on a sequence of games similar to the one of our accountability proof.

Post-quantum practicality. We experimentally benchmarked our verifiable mix
net scheme using an optimized post-quantum IND-CCA2-secure hybrid encryp-
tion scheme, consisting of a lattice-based CCA2-secure KEM, combined with
an AES256-based DEM/MAC. The benchmarks on our prototype demonstrate
that our verifiable mix net with trip wires is highly practical, even for large-scale
elections run entirely on commodity hardware.

Example: Practical PQ-secure e-voting. We now demonstrate how to put all
these pieces together. For this purpose, we consider two different kinds of elec-
tions, one with few and one with many voters. Clearly, for an election with few
voters, manipulating just a single message can have a major impact on the elec-
tion result with significant probability, whereas this is much less likely for an
election with many voters. In what follows, we exemplify how the decryption
mix net with trip wires can be set up to take this aspect into account.

Assume we have one election with 100 and one with 100,000 voters. We choose
ntw = 100, 000 for both elections. (For the sake of simplicity, we assume that all
voters are honest, i.e., nS = nhonS .) From the verifiability theorem, it follows
that the risk of being caught cheating is ≥ 99% both in the election with 100
voters for manipulating k ≥ 1 votes, and in the election with 100,000 voters for
manipulating k ≥ 7 votes. Therefore, in both cases, an adversary knows upfront
that tampering significantly with the election result is extremely risky.

At the same time, our benchmarks demonstrate that increasing ntw, and
hence tightening the verifiability tolerance, is practically negligible for appli-
cations like secure e-voting where the tallying phase is typically not too time-
critical.

9 Conclusion

We have presented the first practical and verifiable lattice-based decryption mix
net with external auditing which can be dropped into existing e-voting schemes.
Our mix net is fully implemented and supports arbitrarily many authorities.

Acknowledgements

All authors acknowledge support from the Luxembourg National Research Fund
(FNR) and the Research Council of Norway for the joint INTER project SUR-
CVS (Number 11747298).

18

Xavier Boyen thanks the Australian Research Council for support as Future
Fellow under ARC grant FT140101145.

19

Bibliography

[1] Ben Adida and Douglas Wikström. How to Shuffle in Public. In TCC 2007,
Proceedings, pages 555–574, 2007.

[2] Ben Adida and Douglas Wikström. Offline/Online Mixing. In ICALP 2007,
Proceedings, pages 484–495, 2007.

[3] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin,
Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao,
David A. Buell, et al. Quantum Supremacy using a Programmable Su-
perconducting Processor. Nature, 574(7779):505–510, 2019.

[4] Stephanie Bayer and Jens Groth. Efficient Zero-Knowledge Argument for
Correctness of a Shuffle. In EUROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 263–280. Springer, 2012.

[5] Xavier Boyen. Miniature CCA2 PK Encryption : Tight Security With-
out Redundancy. In ASIACRYPT 2007, volume 4833 of Lecture Notes in
Computer Science, pages 485–501. Springer, 2007.

[6] Baum C., Bootle J., Cerulli A., del Pino R., Groth J., and Lyubashevsky V.
Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits.
In CRYPTO 2018, volume 10992 of Lecture Notes in Computer Science.
Springer, 2018.

[7] David Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM, 24(2):84–88, 1981.

[8] Véronique Cortier and Ben Smyth. Attacking and Fixing Helios: An Anal-
ysis of Ballot Secrecy. In IEEE CSF, 2011, pages 297–311, 2011.

[9] Núria Costa, Ramiro Mart́ınez, and Paz Morillo. Proof of a Shuffle for
Lattice-Based Cryptography. In NordSec 2017, Proceedings, pages 280–296,
2017.

[10] Núria Costa, Ramiro Mart́ınez, and Paz Morillo. Lattice-Based Proof of a
Shuffle. IACR Cryptology ePrint Archive, 2019:357, 2019.

[11] Chris Culnane, Peter Y. A. Ryan, Steve A. Schneider, and Vanessa Teague.
vVote: A Verifiable Voting System. ACM Trans. Inf. Syst. Secur., 18(1):3:1–
3:30, 2015.

[12] Chris Culnane and Steve A. Schneider. A Peered Bulletin Board for Robust
Use in Verifiable Voting Systems. In IEEE CSF 2014, pages 169–183, 2014.

[13] Prastudy Fauzi, Helger Lipmaa, Janno Siim, and Michal Zajac. An Efficient
Pairing-Based Shuffle Argument. In ASIACRYPT 2017, Proceedings, Part
II, pages 97–127, 2017.

[14] Prastudy Fauzi, Helger Lipmaa, and Michal Zajac. A Shuffle Argument
Secure in the Generic Model. In ASIACRYPT 2016, Proceedings, Part II,
pages 841–872, 2016.

[15] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure Integration of Asymmetric
and Symmetric Encryption Schemes. In CRYPTO ’99, Proceedings, pages
537–554, 1999.

[16] Jun Furukawa and Kazue Sako. An Efficient Scheme for Proving a Shuffle.
In CRYPTO 2001, Proceedings, volume 2139 of Lecture Notes in Computer
Science, pages 368–387. Springer, 2001.

[17] Thomas Haines and Johannes Müller. SoK: Techniques for Verifiable Mix
Nets. In IEEE CSF 2020, to appear, 2020.

[18] Chloé Hébant, Duong Hieu Phan, and David Pointcheval. Linearly-
Homomorphic Signatures and Scalable Mix-Nets. IACR Cryptology ePrint
Archive, 2019:547, 2019.

[19] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making Mix Nets
Robust for Electronic Voting by Randomized Partial Checking. In USENIX
Security Symposium, 2002, pages 339–353, 2002.

[20] Shahram Khazaei, Tal Moran, and Douglas Wikström. A Mix-Net from Any
CCA2 Secure Cryptosystem. In ASIACRYPT 2012, Proceedings, volume
7658 of Lecture Notes in Computer Science, pages 607–625. Springer, 2012.

[21] Aggelos Kiayias, Annabell Kuldmaa, Helger Lipmaa, Janno Siim, and
Thomas Zacharias. On the Security Properties of e-Voting Bulletin Boards.
In SCN 2018, Proceedings, pages 505–523, 2018.

[22] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Exploit-
ing Speculative Execution. In 2019 IEEE SP 2019, pages 1–19, 2019.

[23] Ralf Küsters, Johannes Müller, Enrico Scapin, and Tomasz Truderung. sE-
lect: A Lightweight Verifiable Remote Voting System. In IEEE CSF 2016,
pages 341–354, 2016.

[24] Ralf Küsters and Tomasz Truderung. Security Analysis of Re-Encryption
RPC Mix Nets. In IEEE EuroS&P 2016, pages 227–242, 2016.

[25] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Accountability: Defi-
nition and Relationship to Verifiability. In ACM CCS 2010, pages 526–535,
2010.

[26] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Formal Analysis of
Chaumian Mix Nets with Randomized Partial Checking. In IEEE SP 2014,
pages 343–358, 2014.

[27] Helger Lipmaa and Bingsheng Zhang. A More Efficient Computationally
Sound Non-Interactive Zero-Knowledge Shuffle Argument. In SCN 2012.
Proceedings, pages 477–502, 2012.

[28] C. Andrew Neff. A Verifiable Secret Shuffle and its Application to E-Voting.
In ACM CCS 2001, pages 116–125. ACM, 2001.

[29] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient Anonymous
Channel and All/Nothing Election Scheme. In EUROCRYPT ’93, Proceed-
ings, volume 765 of Lecture Notes in Computer Science, pages 248–259.
Springer, 1993.

[30] Oded Regev. On Lattices, Learning with Errors, Random Linear Codes,
and Cryptography. In Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, 2005, pages 84–93, 2005.

[31] Bruce Schneier. Applied Cryptography - Protocols, Algorithms, and Source
Code in C, 2nd Edition. Wiley, 1996.

21

[32] Martin Strand. A Verifiable Shuffle for the GSW Cryptosystem. In FC
2018 International Workshops, BITCOIN, VOTING, and WTSC, Revised
Selected Papers, pages 165–180, 2018.

[33] Björn Terelius and Douglas Wikström. Proofs of Restricted Shuffles. In
AFRICACRYPT 2010, volume 6055 of Lecture Notes in Computer Science,
pages 100–113. Springer, 2010.

[34] Verificatum Mix Net (VMN). https://www.verificatum.org/html/

product_vmn.html.
[35] Douglas Wikström. A Sender Verifiable Mix-Net and a New Proof of a

Shuffle. In ASIACRYPT 2005, Proceedings, pages 273–292, 2005.
[36] Douglas Wikström. A Commitment-Consistent Proof of a Shuffle. In ACISP

2009, Proceedings, pages 407–421, 2009.
[37] Douglas Wikström and Jens Groth. An Adaptively Secure Mix-Net Without

Erasures. In ICALP 2006, Proceedings, Part II, pages 276–287, 2006.

A Optimizations

As mentioned in Section 7, our implementation attempts to remain faithful to
Regev’s theoretical scheme [30], but rearranges it to optimize its computation.
In what follows, we summarize the salient points.

Our first optimization, which does deviate from the theoretical scheme, is,
rather than to publish the encryption key as a truly random matrix, we publish
a random seed from which the key is pseudo-randomly generated it using AES.
This is a trick used by several NIST submissions, including the “front runners”
still in play, but we have the opportunity to do it much faster without function
calls as explained in Appendix B.

We also mentioned the use of a strictly data-independent integer Gaussian
sampler for generating the secret LWE noise. Using the Central Limit Theo-
rem, we build a novel circuit-based sampler, which, when paired with hardware-
accelerated AES, is able to produce i.i.d. integer samples of zero mean and small
fixed variance (e.g., σ ≈ 2) with provable 64-bit or 128-bit accuracy, suitable as
LWE noise, in a few clock cycles. 10 For comparison, we note that FrodoKEM
which also implements plain-LWE Regev encryption, samples from a cumula-
tive probability table of about 20-bit effective accuracy, and goes to lengths to
show that this is okay. Our equally fast sampler is far more accurate, and closely
matches the theoretical Regev scheme which requires high accuracy. It is also
data-independent (unlike table lookups whose access patterns could lead to cer-
tain cache-based side-channel leakage). The main downside of our sampler is
that it is highly inflexible and specifically suited for that particular usage. 11

10 Sampling accuracy is here meant in the sense of KL divergence to a true integer
Gaussian; clearly the output itself is just a small integer that fits in a few bits.

11 Describing and analyzing the sampler is very much out of the scope of this paper,
but it is one example of a very impactful optimization we could make that does not
involve what we compute, only how we do it.

22

Another extension to the textbook Regev scheme that we make, is the ad-
dition of an “all-or-nothing” transform such as [15] to obtain chosen-ciphertext
security, as is standard practice. Unlike [15], though, our all-or-nothing trans-
form does not cause invalid ciphertexts to be rejected, but only scrambled (or
randomized), as proposed in [5]. We do this to ensure that there truly is no data-
dependent test anywhere in the crypto code. We still get true CCA2 security,
and we can recover the classic explicit rejection behavior simply by adding and
testing a known string such as 0λ to the plaintext, i.e., outside of the crypto
code, to act as a “canary”.

Other that those differences, the mathematical functions computed by our
implementation are functionally very similar to the NIST submission FrodoKEM,
which both implement the Regev scheme. This allows us to borrow from its ex-
tensive security analyses and use similar lattice dimension parameters to tar-
get similar security levels. In particular, we were pleasantly surprised that the
FrodoKEM designers chose a Gaussian noise variance parameter close to that
which was forced on us by our optimized but inflexible sampler circuit design—
making their analysis a good match for our implementation. Nevertheless, to
err on the side of caution, we collected lattice hardness estimates from multiple
sources and, seeing that they loosely agreed with the FrodoKEM recommenda-
tions, we still rounded up the main lattice dimension to the higher power of 2.
Minor optimizations included selecting the modulus q = 216 “sizeof(short)”
for its ability to give us vectorized (SIMD) modular reductions for free. 12

We reiterate that our optimizations mostly affect not what we compute but
how we compute it. Unbound from the NIST rules, our code is not only faster, but
also safer, not in a cryptographic sense but against side-channel attacks. None
of our code borrows from the NIST contest; we merely frame this discussion in
relation with NIST to preempt any preconception than official standardization
would necessarily produce an optimal outcome.

B Implementation Rationale

The NIST post-quantum competition13 provides many PKE implementations to
choose from, some quite elaborate, and others quite elegant; many but not all of
the NIST proposals actually propose new schemes with varying levels of novelty,
as opposed to merely novel implementations.

For performance and security reasons, we elected to follow the tried-and-
true Regev scheme [30] as closely as possible, but in our own highly optimized
independent implementation. There are several reasons for writing our own soft-
ware. Aside from flexibility, they boil down to the unfortunate rules of the NIST
contest, which caused all of the (compliant) submissions to turn up rather inad-
equate. Let us explain.

12 FrodoKEM had nearly the same idea, but for reasons unclear chose q = 215 not 216,
perhaps because they could not use x86 64 vectorization intrinsics.

13 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

23

The NIST post-quantum contest rules (archived on their US government
web site) sought optimized submissions for the x86 64 architecture, but forbade
the use of any x86 64 “compiler intrinsics” and/or assembly language, except
through external calls to third-party libraries. Since assembly and intrinsics are
the only ways to unlock the 1-to-2-order-of-magnitude performance gain pro-
vided by hardware acceleration such as AESNI, this rule virtually guaranteed
that most submissions would make external library calls (and they did). Since
making an external call is itself quite costly compared to, say, the one AES
block operation that the call might perform, the rule had the further side-effect
of favouring submissions that could use hardware acceleration in larger batches
rather than point data, in order to amortize the cost. Because of this, it can
be argued that NIST sought (and obtained) suboptimal implementations. Fur-
thermore one should not expect that merely replacing library calls with inlined
compiler intrinsics, would magically make those implementations optimal.

For our first goal of creating a high-performance implementation, we found
the penalty for making library calls to be simply too high. Accordingly, we
rearranged the Regev scheme to achieve maximum performance without any
library calls at all (besides stdio.h for basic I/O), and wrote it as a concise
self-contained C program making heavy use of inlined intrinsics (no assembly
though). Free from arbitrary rules, we believe that our optimizations go far
beyond what NIST submissions could have been doing while following theirs.

The second reason we wrote our own code, was for security reasons. The
absence of library calls allowed us to achieve a completely data-independent
“straight-line” re-implementation of the Regev scheme [30]. While we still use
loops for conciseness hence cache efficiency, all conditional branches bear on
data-independent counters that can be statically unrolled at compile time. Even
our LWE integer Gaussian sampler is strictly data-independent, contrarily to
many NIST submissions which use data-dependent table lookups (including
FrodoKEM, which implements essentially the same Regev scheme as we do).
We note that many NIST submissions achieve constant-time execution, which
was an explicit requirement of the contest, but weaker than our data-independent
execution flow.

Data-independent flow makes our code naturally immune to the class of spec-
ulative execution attacks that include Spectre and Meltdown. In a twist
of irony, those attacks [22] landed two weeks after the NIST submission close
in 2017, and are still with us in 2020. Their main vectors are precisely data-
dependent memory accesses and tests and function calls. Eliminating those had
a long time been absolute best practice for cryptographic code, which we espouse.

Lastly, we could have adopted a ring-LWE rather than plain-LWE construc-
tion, as most lattice-based NIST submissions have done (except for FrodoKEM),
but since our optimizations already put us within grasp of ring-LWE performance
with plain-LWE security, we chose to stick with the conservative construction.
(Long-term security is our main reason for using post-quantum cryptography.)

24

C Accountability

In this section, we formally analyze accountability of the decryption mix net with
trip wires using the generic accountability framework by Küsters, Truderung,
and Vogt [25]. We briefly recall this framework in Section 6.1 and then state
the accountability result in Section 6.2 which we formally prove in Appendix D
using a sequence of games.

C.1 Accountability Framework

To specify accountability in a fine-grained way, Küsters et al. [25] used the
notions of verdicts and accountability properties which we briefly recall here.

Verdicts. A verdict can be output by the judge and it states which parties are to
be blamed, i.e., which ones have misbehaved, according to the judging procedure.
In the simplest case, a verdict can state that a specific party misbehaved. Such
an atomic verdict is denoted by dis(a) (or ¬hon(a)). It is also useful to state
more expressive or weaker verdicts, such as “a or b misbehaved”. Therefore, in
the general case, we will consider verdicts which are Boolean combinations of
atomic verdicts.

Accountability constraints. Who should be blamed in which situation is ex-
pressed by a set of accountability constraints. Intuitively, for each undesired
situation, e.g., when the goal γ(k, ϕ) is not met in a run of a mix net proto-
col, we would like to describe who to blame. The accountability theorem for
the decryption mix net with trip wires (see below) states that if the adversary
breaks the goal γ(k, ϕ) in a run of P tw

DMN, then (at least) one misbehaving audi-
tor or mix server can be blamed individually (with a certain probability). The
accountability constraint for this situation is

¬γ(k, ϕ)⇒ dis(AD1)| . . . |dis(ADnAD
)|dis(M1)| . . . |dis(MnMS

).

A judge J ensures this constraint in a run r if r ∈ γ(k, ϕ) or the verdict output
by J in r implies dis(ADj) for some auditor ADj or dis(Mk) for some mix server
Mk mentioned in the constraint.

Accountability property. A set Φ of accountability constraints for a protocol P is
called an accountability property of P . An accountability property Φ should be
defined in such a way that it covers all relevant cases in which a desired goal is not
met. For P tw

DMN and the goal γ(k, ϕ), we define the accountability property Φk to
consist of the constraint mentioned above. Clearly, this accountability property
covers ¬γ(k, ϕ) by construction, i.e., if γ(k, ϕ) is not satisfied, this constraint
requires the judge J to blame some party. Note that in the runs covered by
the constraint of Φk all verdicts are atomic. This means that Φk requires that,
whenever the goal γ(k, ϕ) is violated, an individual party is blamed, so-called
individual accountability.

Notation. Let P be a protocol with the set of agents Σ and an accountability
property Φ of P . Let π be an instance of P and J ∈ Σ be an agent of P . We write

25

Pr[π(`) 7→ ¬(J : Φ)] to denote the probability that π, with security parameter 1`,
produces a run such that J does not ensure Γ in this run for some Γ ∈ Φ.

Definition 3 (Accountability). Let P be a protocol with the set of agents Σ.
Let δ ∈ [0, 1] be the tolerance, J ∈ Σ be the judge, and Φ be an accountability
property of P . Then, the protocol P is (Φ, δ)-accountable w.r.t. the judge J if
for all adversaries πA and π = (π̂P ‖πA), the probability Pr[π(`) 7→ ¬(J : Φ)] is
δ-bounded as a function of `.14

C.2 Accountability Result

We are now able to precisely state and formally prove the accountability level
offered by the decryption mix net with trip wires according to Definition 3
w.r.t. the accountability property Φk defined in Section C.1. As mentioned above,
the accountability level equals to the verifiability level δk(nhonS , ntw) of the mix
net, both under the same assumptions (V1) to (V6) made for the verifiability
result (Theorem 1).

Theorem 2 (Accountability). Under the assumptions (V1) to (V6) (Sec-
tion 6.2), the protocol P tw

DMN(nS, n
hon
S , nMS, nAD, ntw) provides (Φk, δk(nhonS , ntw))-

accountability.

Since, whenever the judge rejects the final result, a misbehaving auditor or
mix server is caught cheating, the intuition behind the accountability result is
essentially the same as the one behind the verifiability level that we explained
in Section 6.2.

We formally prove the accountability theorem in Appendix D using a se-
quence of games. Following [25], the correctness of the accountability result
(Theorem 2) implies the verifiability result (Theorem 1).

D Accountability Proof

Let P tw
DMN = P tw

DMN(nS, n
hon
S , nMS, nAD, ntw) be the decryption mix net protocol

with trip wires, as defined above. Now, let π = (π̂P ‖πA) be an instance of P tw
DMN,

where π̂P is the composition of the (honest) programs of all honest parties in π,
and πA is the composition of all remaining parties controlled by the adversary.
Recall that we assume that the judge J, the scheduler SC, the bulletin board B,
one auditor ADj , and nhonS senders are honest; hence, π̂P is the composition of
their programs.

In order to prove the accountability theorem, we need to show that for all
such instances π = (π̂P ‖πA) of P tw

DMN, the probability of the event

X = ¬γ(k, ϕ) ∧ ¬IB
14 Similarly to the verifiability definition, we also require that the judge J is computa-

tionally sound in P , i.e., for all instances π of P , the judge J states false verdicts only
with negligible probability. For brevity of presentation, this is omitted here (see [25]
for details). This condition is typically easy to check.

26

is δk(nhonS , ntw)-bounded as a function of `, where

IB = dis(AD1) ∨ . . . ∨ dis(ADnAD
) ∨ dis(M1) ∨ . . . ∨ dis(MnMS

).

In other words, ¬IB describes the event that none of the auditors AD and none
of the mix servers M are individually blamed by the judge J.

In order to prove the result, we use a sequence of games. We start with Game
0 which is simply the original protocol P 0 = P tw

DMN. Step by step, we transform
Game 0 into Game 5. For each protocol P i, we will show that for all instances
πi = (π̂iP ‖πiA) of P i, there exists an instance πi+1 = (π̂i+1

P ‖π
i+1
A) of P i+1 such

that the probability of X in πi either equals to the probability of X in πi+1 or
is negligibly close to it (Lemma 1 to Lemma 5). At the same time, it will be
straightforward to see that for all instances π5 of P 5, the probability of X is
δk(nhonS , ntw)-bounded (Lemma 6).

We start with Game 0.

Game 0. This is the original protocol P 0 = P tw
DMN. 4

In the first step, we modify the original protocol P 0 such that the honest
auditor ADj is not supposed to prove that it behaved correctly in the explicit
mixing phase. Since an honest auditor does not manipulate any (honest) mes-
sages, the probability that more than k honest inputs can be manipulated (i.e.,
¬γ(k, ϕ)) without anyone being blamed individually (i.e., ¬IB) is bounded by
the same tolerance for both games (Lemma 1).

Game 1. For Game 1, we modify P 0 in the following way to obtain P 1. Apart
from the modifications below, P 0 and P 1 are identical.

Auditing phase (modified): In contrast to P 0, it is no longer verified whether
the honest auditor ADj behaved correctly in the explicit mixing phase, i.e., ADj
is not asked to reveal its secret key related to the explicit mixing phase. 4

In the second step, we construct Game 2 which exploits the IND-CCA2-
security of the public-key encryption scheme E . More precisely, at the beginning
of the explicit mixing phase, the adversary will only receive fake input ciphertexts
from the honest input parties (i.e., honest senders and honest auditor) encrypting
random strings. Then, in the explicit mixing phase, the honest auditor replaces
these fake messages by ciphertexts encrypting the real messages (by the honest
senders and itself).

Before we describe this modification in more details, we make the following
observation. Recall that we denote Si’s plain input message by mi and its input
ciphertext to the main mix net by cmain

i . Then, from assumptions (V5) and (V6),
it follows that for each auditor ADj , the size of

αij := Enc(pkexplj , (. . . ,Enc(pkexplnAD
, cmain
i)))

is independent of the specific sender Si. Hence, there exists a function ηj in the
security parameter such that for every instance π(`) of the protocol P tw

DMN =
P tw
DMN(nS, n

hon
S , nMS, nAD, ntw) and for every honest sender Si in π(`) and every

run of π(`), the size |αij | of αij is ηj(`). In what follows, we simply write ηij = ηij(`).
In order to determine ηj , one can take an arbitrary message (of correct size) and

27

encrypt it under the public keys pkrep, pknMS
, . . . , pk1, pk

expl
nAD

, . . . , pkexplj (in this
order).

Game 2. For Game 2, we modify P 1 in the following way to obtain P 2. Apart
from the modifications below, P 1 and P 2 are identical.

Input creation (simulated): Recall that, in order to create its input ciphertext
c, an honest input party (sender or auditor) first chooses its message m. After
that, the input party encrypts m under the public keys of the mix servers and
auditors, starting with the shared public key pkrep of the auditors, then under
the public keys of the main mix net, and eventually under the public keys of the
explicit mix net.

To simulate the process of an arbitrary honest input party (sender or auditor)
in the submission phase, the simulated process follows the original one until the
encryption of m under the public key pkexplj of the honest auditor ADj in the
explicit mixing phase. Now, however, the honest input party does not encrypt
its input to the next mix server ADj+1 further. Instead, the honest input party
encrypts a random string (of size ηj , where ηj is defined as above) under the
remaining keys of the auditors ADj ,ADj−1, . . . ,AD1. The pair of faked and real
ciphertexts is logged for replacement later on. After that and before simulating
the process of ADj (see below), all honest processes remain the same. This means
that the input ciphertext to the explicit mix net encrypting a random bit string
of length ηj is supposed to fake the original input ciphertext of the honest input
party.

Honest mixing (simulated): The honest process of the honest auditor ADj
in the explicit mixing phase is simulated in the following way. For all input
parties whose associated (fake) ciphertext is in the input to ADj (recall that
ciphertexts can be dropped or manipulated), the auditor ADj adds the (logged)
real ciphertext of this input party to its output. Apart from this, the process of
ADj remains the same. In particular, if the input to ADj contains a ciphertext
which was not logged (as described above), then this ciphertext is decrypted
(using the decryption key of ADj) and, if successful, added to the output of
ADj . 4

We modify the honest parties in Game 2 in such a way that the point when
the honest input parties are supposed to choose their messages is postponed to
the point in the explicit mix net when the honest auditor ADj is triggered to
mix its input.

Game 3. For Game 3, we modify P 2 in the following way to obtain P 3. Apart
from the modifications below, P 2 and P 3 are identical.

Input creation (simulated): In contrast to Game 2, each honest input party
(sender or auditor) does not choose its message when creating its input ciphertext
to the explicit mix net. Instead of logging the pair of fake and real ciphertexts,
the pair of fake ciphertext and input party’s name is logged.

Honest mixing (simulated): For all (honest) input parties whose associated
fake ciphertext is in the input to ADj , the auditor chooses a message m (ei-
ther according to the underlying message distribution of the honest senders or
a dummy message, respectively). Then, ADj encrypts this message under the

28

remaining public keys, starting with the shared public key of the auditors pkrep

to the public key pkexplj+1 of the next auditor ADj+1. 4
In the next step, we completely remove the repetition decryption step. Since

each auditor ADj has to reveal its secret key share skrepj in the decryption phase,
this step is perfectly verifiable: it is not possible for any corrupted auditor to
manipulate/drop any ciphertext during the decryption without being blamed
individually. Therefore, the probability that more than k honest inputs can be
manipulated (i.e., ¬γ(k, ϕ)) without anyone being blamed individually (i.e., ¬IB)
is bounded by the same tolerance for both games (Lemma 4).

Game 4. For Game 4, we modify P 3 in the following way to obtain P 4. Apart
from the modifications below, P 3 and P 4 are identical.

Decryption phase (removed): In contrast to P 3, the complete decryption
phase is removed in P 4. The final outcome of P 4 (if any) consists of the ci-
phertexts that would be decrypted in P 3 after the auditing phase. 4

In the next step, we construct Game 5 which exploits the IND-CCA2-security
of the (nAD, nAD)-threshold public-key encryption scheme Ed. More precisely, in
the explicit mixing phase, the honest auditor ADj does not choose the honest
inputs according to the original message distribution (or a dummy message) but
instead chooses these messages uniformly at random. Hence, at the beginning of
the (main) mixing phase, the adversary will only receive fake input ciphertexts
from the honest input parties (i.e., honest senders and honest auditor) encrypting
random strings.

Game 5. For Game 5, we modify P 4 in the following way to obtain P 5. Apart
from the modifications below, P 4 and P 5 are identical.

Honest mixing (simulated): For all (honest) input parties whose associated
fake ciphertext is in the input to ADj , the auditor chooses a random message
m. Then, ADj encrypts this random message under the remaining public keys,
starting with the shared public key of the auditors pkrep to the public key of the
next auditor ADj+1. 4

Now, we inductively prove that for any adversary πA, its advantage of break-
ing γ(k, ϕ) without being blamed individually in the original protocol (Game 0)
is bounded by any adversary’s advantage of doing so in Game 5 (Lemma 1 to
Lemma 5). At the same time, it is straightforward to see that the latter advan-
tage is always bounded by δk(nhonS , ntw) (Lemma 6). (Of course, we have designed
Game 5 such that this property is straightforward to see.) This will conclude the
proof of Theorem 2.

Lemma 1. Under the assumptions (V1) to (V6), for all instances π0 = (π̂0
P ‖π0

A)
of P 0, there exists an instance π1 = (π̂1

P ‖π1
A) of P 1 such that the probability of

X in π0 equals to the probability of X in π1.

Proof. An honest auditor does not manipulate (honest) messages.

Lemma 2. Under the assumptions (V1) to (V6), for all instances π1 = (π̂1
P ‖π1

A)
of P 1, there exists an instance π2 = (π̂2

P ‖π2
A) of P 2 such that the probability of

X in π1 is negligibly close to the probability of X in π2.

29

Proof. Assume that there exists an instance π1 = (π̂1
P ‖π1

A) of P 1 such that for
all instances π2 = (π̂2

P ‖π2
A) of P 2, the probability of X in π1 is greater than

the probability of X in π2. Then, there exists an adversary who can distinguish
between a vector of encrypted messages secretly chosen according to the message
distribution of the honest senders and a vector of encrypted messages secretly
chosen uniformly at random (both w.r.t. the public key pkexplj of the honest audi-
tor ADj). This is a contradiction to the IND-CCA2-security of E , i.e., assumption
(V1).

Lemma 3. Under the assumptions (V1) to (V6), for all instances π2 = (π̂2
P ‖π2

A)
of P 2, there exists an instance π3 = (π̂3

P ‖π3
A) of P 3 such that the probability of

X in π2 equals to the probability of X in π3.

Proof. The differences between P 2 and P 3 are purely syntactical.

Lemma 4. Under the assumptions (V1) to (V6), for all instances π3 = (π̂3
P ‖π3

A)
of P 3, there exists an instance π4 = (π̂4

P ‖π4
A) of P 4 such that the probability of

X in π3 equals to the probability of X in π4.

Proof. The decryption step in P 3 is perfectly verifiable.

Lemma 5. Under the assumptions (V1) to (V6), for all instances π4 = (π̂4
P ‖π4

A)
of P 4, there exists an instance π5 = (π̂5

P ‖π5
A) of P 5 such that the probability of

X in π4 is negligibly close to the probability of X in π5.

Proof. Assume that there exists an instance π4 = (π̂4
P ‖π4

A) of P 4 such that for
all instances π5 = (π̂5

P ‖π5
A) of P 5, the probability of X in π4 is greater than

the probability of X in π5. Then, there exists an adversary who can distinguish
between a vector of encrypted messages secretly chosen according to the original
message distribution of the honest senders and a vector of encrypted messages
secretly chosen uniformly at random (both w.r.t. the (nAD, nAD)-shared public
key pkrep of which the honest auditor ADj holds one secret share skrepj). This is
a contradiction to the IND-CCA2-security of Ed, i.e., assumption (V2).

Lemma 6. Under the assumptions (V1) to (V6), for all instances π5 of P 5, the
probability of X is δk(nhonS , ntw)-bounded.

Proof. Let π5 be an instance of P 5. The only opportunity for an adversary in π5

to break γ(k, ϕ), i.e., to manipulate more than k honest messages, without being
blamed (individually) is to do so during the main mixing phase. Since the input
to the main mixing phase consists of (encrypted) messages chosen uniformly at
random, the adversary effectively has to “blindly” pick k+ 1 messages of honest
senders out of nhonS +ntw honest messages in total. (If the adversary picks one of
the ntw dummy messages injected by the honest auditor, he will be caught and
blamed individually.) The probability of this event is δk(nhonS , ntw).

30

