
Differential analysis of the ZUC-256 initialisation
Steve Babbage1 and Alexander Maximov2

1 Vodafone Group R&D, Newbury, UK
steve.babbage@vodafone.com

2 Ericsson Research, Lund, Sweden
alexander.maximov@ericsson.com

Abstract. This short report contains results of a brief cryptanalysis of the initialisation
phase of ZUC-256. We find IV differentials that persist for 26 of the 33 initialisation
rounds, and Key differentials that persist for 28 of the 33 rounds.
Keywords: 3GPP, 5G, ZUC-256

1 Introduction
Both 4G and 5G mobile systems include radio interface encryption and integrity algorithms
constructed using the stream cipher ZUC, which has a 128-bit key [TS3a, TS3b]. As part
of recent initiatives to create a set of 256-bit security algorithms for 5G, the design team of
ZUC has recently proposed an updated version ZUC-256 [The18] that can accommodate a
256-bit secret Key and a 184-bit initialisation vector IV .

Like many stream ciphers, the operation of ZUC-256 takes place in two stages:

• the initialisation phase, in which the Key and IV should be thoroughly mixed into
the algorithm’s internal state;

• the keystream generation phase, in which keystream is produced as the internal state
is updated.

One recent attempt to cryptanalyse this new cipher [YJM20] was focused on the
keystream generation phase of ZUC-256, and it presents an academic attack of complexity
around O(2236). It shows that the generated keystream does not provide a full 256-bit
entropy, although in 5G settings that attack does not impose an immediate threat. However,
there has not been much published analysis on the initialisation phase of ZUC-256.

The initialisation of ZUC-256 is depicted in Figure 1. We refer to the original pa-
per [The18] for more details. Key is represented as a string of 32 bytes Key[0], . . . , Key[31];
IV is represented as a string of 25 bytes IV [0], . . . , IV [24], where IV [0], . . . , IV [16] are
17 full 8-bit bytes and IV [17], . . . , IV [24] are 8 6-bit values. The Key and IV are loaded
into the Linear Feedback Shift Register (LFSR), and then 33 rounds of the state update
algorithm are carried out. In each round of the state update function, 31 bits from the
nonlinear Finite State Machine (FSM) are combined into the LFSR feedback, as depicted
in Figure 1. The LFSR consists of 16 words of 31 bits each, with a feedback function
operating over the prime field GF(p) where p = (231 − 1).

An ideal initialisation phase should map a (Key, IV) pair into a pseudo-random state
that is hard to distinguish from random. In this paper we examine both Key- and IV-
differentials with respect to the ZUC-256 initialisation phase. Although it is easier to see
how IV-differentials might be exploited in an attack, an analysis of Key-differentials is also
important to understand the effectiveness of the cipher initialisation procedure.

mailto:steve.babbage@vodafone.com
mailto:alexander.maximov@ericsson.com

2 Differential analysis of the ZUC-256 initialisation

Figure 1: The initialisation phase of the ZUC-256 stream cipher.

In our brief study we found a number of features of ZUC-256 that one may exploit for
a differential attack on ZUC-256 initialisation. As a result, we found that the state word
S0 is highly biased after 26 of the 33 rounds for an IV-differential case, and up to 28 of
the 33 rounds for a Key-differential scenario.

2 Key-differentials and spectral search approach
ZUC-256 initialisation consists of the initial loading of (Key, IV) into the LFSR, and
then 33 state update rounds, before it starts producing the keystream. It is important to
consider both Key- and IV-differentials; we want to be assured that the state of ZUC-256
is pseudo-random after the initialisation, i.e. that each register of the state has a very
small correlation or differential bias by the time that keystream generation begins. In this
short study, we look for differentials that persist through as many of the 33 initialisation
rounds as possible.

Our first observation is that if after t rounds of the initialisation we find a large
differential bias in the LFSR word S15, then that differential bias will also appear in the
word S0 after t + 15 rounds. This way, we can focus our efforts on S15 and try to detect
the bias there with as many rounds as possible.

In the Key-differential approach, we tried to introduce a differential in a small number
of Key bits (1-5 bits). For a fixed differential we then simulate the initialisation of
ZUC-256 for t = 1, 2, . . . rounds as follows: take a random pair (Key, IV) (we used a
PRNG with large enough entropy); change the selected bits of the Key so that we get
another pair (Key′, IV); load both pairs into two ZUC states and perform t initialisation
rounds on both of them; we then collect a 31-bit multidimensional distribution ∆D(t) of
∆S15(t) = S15(t) ⊕ S15′(t) from N such samples, where S15(t) denotes the value of S15
after t initialisation rounds.

Steve Babbage and Alexander Maximov 3

It is computationally hard to construct an accurate 31-bit distribution ∆D(t) purely
from simulations, because in order for the observed bias to be reliable, we would need to
collect O(231) times more samples than just for a binary case with the same bias. However,
we can still use the collected distribution ∆D(t) containing N samples to search for a good
binary approximation, as follows.

If we take a nonzero 31-bit linear mask L, then

Pr{L ·∆(S15(t) ⊕ S15′(t)) = 1} = (1−W(∆D(t))L)/2,

whereW(∆D(t))L is the value of the Walsh-Hadamard Transform (WHT) of the distribution
table ∆D(t) at the index L. I.e., in order to find a good linear mask L we just take the
WHT of the distribution ∆D(t) in time complexity O(31 · 231), then loop through the
spectrum in time O(231) and find the nonzero index L where the absolute value is the
largest. This way we can test all 231 − 1 nonzero binary approximations with the cost of a
single simulation run.

If the observed binary bias is around 2−q, i.e. if

Pr{L ·∆(S15(t) ⊕ S15′(t)) = 1} ≈ 1
2 ± 2−q,

then we provisionally declare that the bias is detected, with a small probability of error
(false-positives), if the number of collected samples N satisfies

N ≥ 22q+4.

This rule of thumb was selected to prevent too many false-positive results. Afterwards, in
a second stage, we verify the detected bias by collecting a lot more samples≫ N , but
only for selected cases identified by the rule of thumb mentioned above.

As the result of this two-stage search for a good Key-differential we found the following:

Differential: ∆Key[2] = 0x02; ∆Key[6] = 0x10; ∆Key[27] = 0x10;
Detected bias: Pr{∆(S09 ⊕ S010) = 1 after 28 rounds} ≈ 1

2 − 2−10.46.

The above large bias was verified by using ∼ 247 samples that we managed to collect
with help of a cloud cluster. With 247 samples, the standard deviation of the observed
bias is approximately 2−24.5; thus the observed bias of 2−10.46 is highly significant, and
our confidence interval around the observed bias is quite tight.

With this 28-round differential, we are only 5 rounds short of the full initialisation. A
more comprehensive mathematical study, instead of simply simulations and samplings,
could potentially handle smaller biases. However, we leave this idea for further research.

3 IV-differentials in ZUC-256
3.1 New ideas
When we tried a brute-force approach for IV-differentials similar to that in Section 2, we
ended up detecting a large bias of ∆S15 for only 5 rounds of the initialisation, which
translates to a large bias of ∆S0 after 20 rounds. Then we started to look into the structure
of the FSM, and found some ways to prolong an IV-differential by controlling differences
happening in the FSM registers.

First idea. In Figure 2 we can see 3 situations for the FSM registers. Green boxes
represent values that have no differential, while Red boxes contain differentials. We noted
that when two red values are summed up together, then the result may be a green box –
i.e., the difference in the inputs may cancel out and become zero. Also note that, in the

4 Differential analysis of the ZUC-256 initialisation

R1H

<<< 16

S*L1 S*L2

R1L R2H R2L

S11L S9HX1 S7L S5HX2

R1H+S11L R1L+S9H R2HꚛS7L R2LꚛS5H

R1H+S11LR1L+S9H R2HꚛS7L R2LꚛS5H

R1'H R1'L R2'H R2'L

R1H

<<< 16

S*L1 S*L2

R1L R2H R2L

S11L S9HX1 S7L S5HX2

R1H+S11L R1L+S9H R2HꚛS7L R2LꚛS5H

R1H+S11LR1L+S9H R2HꚛS7L R2LꚛS5H

R1'H R1'L R2'H R2'L

R1H

<<< 16

S*L1 S*L2

R1L R2H R2L

S11L S9HX1 S7L S5HX2

R1H+S11L R1L+S9H R2HꚛS7L R2LꚛS5H

R1H+S11LR1L+S9H R2HꚛS7L R2LꚛS5H

R1'H R1'L R2'H R2'L

(a) Introduce an IV differential in R2 (b) Keep R1 with no difference (c) Final correction of both R1 and R2

Figure 2: Sketch ideas for controlling the FSM registers.

initial Key/IV loading, the two registers R1 and R2 are always initialised with 0. This
way, the attacker has full control over the FSM differential for the first steps.

In Figure 2 case (a) we demonstrate how we can introduce an IV-differential as ∆S5H ,
i.e. in the most significant 16 bits of the 31-bit word S5; this results in R2 (but not R1)
containing some difference after the first clock. In (b) we demonstrate how we can control
an existing difference in R2 in such a way that the resulting ∆R1 remains equal to 0. In
(c) we show how to remove the difference in the FSM, such that ∆R1 = ∆R2 = 0. We will
use these observations in our further construction of an IV-differential.

Second idea. We would also like to “correct” the values of S15 and keep ∆S15 = 0
for some initial steps. Note that in the first idea we only ever have a difference in R2,
not in R1; and any difference ∆R2 in the next clock will contribute to the LFSR update
function as (∆R2� 1) mod 231 − 1, where � 1 is the binary right shift to 1 bit. Thus,
when introducing a value ∆R2 we could also keep track of the resulting difference that is
pushed to the LFSR update function, and cancel out that difference in the LFSR feedback
function by means of a corresponding difference in, e.g, ∆S4. Because the ∆R2 difference
occurs after one round, we actually introduce the canceling difference in ∆S5, so that it
has shifted to ∆S4 when we need it. This way we can “correct” the value of S15 and keep
∆S15 = 0 for a few initial rounds.

3.2 Example 1: 2-clock FSM and LFSR recovery, producing an (8+15)
round bias

In this simplified case we will demonstrate how we can use the above new ideas to construct
a differential yielding a large bias of ∆S0 after 23 rounds (compared with 20 rounds for
the brute-force search strategy).

Following the ideas from Subsection 3.1, we would like to introduce some differential
∆S5H such that R1 will not change, but R2 will change after the first clock – this
corresponds to case (a) in Figure 2. During the second clock we will “correct” the FSM
state so that ∆R1 = ∆R2 = 0, by properly selecting two other differential values ∆S7′L
(the shifted value of ∆S8L) and ∆S5′H (= ∆S6H) – this corresponds to case (c) in Figure 2.
Recall that S5H refers to the most significant 16 bits of the 31-bit word S5, and S7L refers
to the least significant 16 bits of the 31-bit word S7.

We always start with R1 = R2 = 0, so we can skip the initial values; in the equations
below, therefore, R1 and R2 represent the values after the first clock. Then we get the

Steve Babbage and Alexander Maximov 5

following set of equations:

R1 = SL1(S9H |S7L),
R2⊕∆R2 = SL2(S5H ⊕∆S5H |S11L).

In order to make the correction to the FSM in the second clock, we need to cancel out that
∆R2 by using some IV-bit differential in the word (S8L|S6H) (which will have shifted to
(S7L|S5H) when the second clock occurs). So, if

Bitwise_AND(∆R2,¬M(S8L|S6H)iv) = 0,

where M is the mask representing where IV bits are placed in the 32-bit word (S8L|S6H)
during the initial loading (see the colour scheme in Figure 1), then we can set

∆(S8L|S6H) = ∆R2.

Finally, we want ∆S5H to contribute to the LFSR update function in such a way that
the difference ∆S15′ is 0 during the second clock – this is the second idea presented in the
previous section. Note that in the second clock S5H will contribute to the LFSR feedback
as (S5H � 15) · 220 mod p, which means the 16-bit value S5H will be rotated to the left
by (15 + 20 mod 31) = 4 bits. We want the contributions of R2 and S5H to the LFSR
feedback in the two different states to match, and thus we get one more condition:

(R2� 1) + (S5H � 4) = ((R2⊕∆R2)� 1) + ((S5H ⊕∆S5H)� 4) mod p.

Simply looping through S5H , S11L, ∆S5H in time ∼ 214+16+14 one can find many
solutions that satisfy all the above conditions, while the other values, such as ∆R2, are
simply derived from these three 16-bit values, i.e.:

∆(S8L|S6H) = ∆R2 = SL2(S5H |S11L)︸ ︷︷ ︸
=R2

⊕SL2(S5H ⊕∆S5H |S11L)︸ ︷︷ ︸
=R2⊕∆R2

.

The search space here is 244 rather than 248 because of restrictions arising from initialisation
constants and IV -bit placement in the initial loading.

The search algorithm found many solutions but let us take the first that appeared in
the search. In the notation below, Key[i]j represents the j’th bit of the byte Key[i], where
bits are numbered from 0 and bit 0 is the least significant bit.

• Pick a random valid state of ZUC-256 after initialisation, but guess 1 key bit
Key[5]7 = 1, and also fix some of the IV values as follows:

S11L = 0x2ce5⇒ IV [6] = 0x2c, IV [13] = 0xe5;
S5H = 0x009b⇒ IV [0] = 0x00, IV [17] = 0x0d, Key[5]7 = 1.

• Introduce differentials into the following IV values (the constants and key bits must
not change), so that we get a differential state:

∆S5H = 0xe852⇒ ∆IV [0] = 0xe8, ∆IV [17] = 0x29;
∆S6H = 0x0a40⇒ ∆IV [1] = 0x0a, ∆IV [18] = 0x20;
∆S8L = 0x0025⇒ ∆IV [3] = 0x00, ∆IV [11] = 0x25.

Then we have that after 2 clocks both the FSM and the LFSR word S15 are “corrected”.
Simulation results for the above case where we guess 1 bit of the Key are as follows:

Pr{∆(S018 ⊕ S019) = 1 after 23 rounds} ≈ 1
2 − 2−5.3.

6 Differential analysis of the ZUC-256 initialisation

3.3 Example 2: 3-clock FSM and LFSR recovery, producing an (11+15)
round bias

In Example 1 we only used cases (a) and (c) from Figure 2, but let us explore how one
can also utilize case (b) in order to keep control of the FSM differentials for more clocks.
The set of conditions is then as follows:

R21 ⊕∆R21 = SL2(S5H ⊕∆S5H |S11L)
(R21 � 1) + (S5H � 4) = ((R21 ⊕∆R21)� 1) + ((S5H ⊕∆S5H)� 4) mod p

R11 = SL1(S9H |S7L)
∆S8L = ∆R21

H

let y = (R11 � (S12L|S10H))� 16
R22 ⊕∆R22 = SL2(R21

L ⊕∆R21
L ⊕ S6H ⊕∆S6H |y)

(R22 � 1) + (S6H � 4) = ((R22 ⊕∆R22)� 1) + ((S6H ⊕∆S6H)� 4) mod p

∆S9L = ∆R22
H

∆S7H = ∆R22
L

Additionally, we may restrict ∆S7H such that the lower 12 bits are 0s. This means
that when this differential contributes to S15 for the first time (as feedback from S4 after
shifting three positions to the right), it will probably affect only the upper 15 bits; and
then another four rounds later, when this new value of S15 has moved to position S11, it
will not change X1 for one more clock. This extra condition is:

∆S7H ≡ 0 mod 212.

On their own, the above tricks guarantee a large bias of ∆S0 after 10+15 rounds.
However, we made an optimized search loop over solutions satisfying the above conditions,
and found that some of the differential results gave us an IV-differential in ∆S0 that can
be detected by simulations even after 11+15 rounds. One such solution is as follows:

S5H = 0x61ac S6H = 0x7ea5 S7L = 0x0000 S9H = 0x0080 S11L = 0x1117

S12L = 0xa483 S1030 = 0
∆S5H = 0x8d2e ∆S6H = 0x6e00 ∆S7H = 0x4000 ∆S8L = 0x0011 ∆S9L = 0x07f2

That translates into the following scenario where we guess 18 bits of the Key:
• Pick a random state of ZUC-256 after initialisation, but guess the following 18 bits

of the Key:

Key[7] = 0x00; Key[9] = 0x00; Key[5]7 = 0; Key[6]7 = 1,

and fix the following IV bits:

IV [0] = 0x61; IV [1] = 0x7e; IV [2] = 0x00; IV [5]7 = 0; IV [6] = 0x11;
IV [7] = 0xa4; IV [12]7 = 0; IV [13] = 0x17; IV [14] = 0x83; IV [17] = 0x16;

IV [18] = 0x12; IV [21] = 0x00.

• Introduce difference into the following IV values

∆IV [0] = 0x8d; ∆IV [1] = 0x6e; ∆IV [4] = 0xf2; ∆IV [10] = 0x40;
∆IV [11] = 0x11; ∆IV [12] = 0x07; ∆IV [17] = 0x17.

We simulated the above scenario and collected a large number of samples to detect
and verify the bias. The results are as follows:

Pr{∆S013 = 1 after 26 rounds} ≈ 1
2 + 2−12.6.

Steve Babbage and Alexander Maximov 7

3.4 Attack scenarios
In the above two example IV-differentials we have to guess 1 or 18 bits of the Key,
respectively. In a simple attack scenario, we can just wait for when these particular key
bits have the desired values, i.e., the attack will work with probabilities 2−1 and 2−18,
respectively.

However, another attack scenario would be to run 21 or 218 parallel differential attacks,
each corresponding to a unique value of those key bits that we have to guess. One of
those attacks will be successful, while other IV-differentials will demonstrate a “random”
case (we assume an attack scenario in which it is possible to detect the presence of the
differential bias).

Conjecture 1. For each combination of the key bits that we have to guess, there exists
an IV-differential solution that satisfies the required set of conditions, similar to those
examples given in Subsection 3.2 and Subsection 3.3.

Justification. In this justification we will consider the concrete example given in Subsec-
tion 3.3, and make additional arguments in order to support the claimed conjecture that
such an IV-differential attack exists for any value of those 18 key bits.

Assume we choose those 18 bits of the Key and fix them. Let’s estimate the num-
ber of expected choices of IV-differentials as follows (see the set of conditions given in
Subsection 3.3).

• Step 1: loop for S5H , S11L, ∆S5H , and deriving ∆S8L

– Loop for S5H : 214 choices, the constant bit and Key[5]7 are fixed
– Loop for S11L : 216 choices, can choose any 16-bit value as they are (IV [6], IV [13])
– Loop for ∆S5H : 214 − 1 choices, a nonzero difference in (IV [0], IV [17])
– Derive ∆S8L = ∆R21

H : must have 0 in the bit 15, so the success probability
2−1

– Probability that the first sum modulo p will coincide is p−1

– Number of choices in this step is thus n1 ≈ 214+16+14 · 2−1p−1 ≈ 212.

• Step 2: loop for y, S6H , ∆S6H , and deriving ∆S7H , ∆S9L

– Loop for a 16-bit random y (later we will ensure that y = (R11�(S12L|S10H))�
16) : 216 choices

– Loop for S6H : 214 choices, the constant bit and Key[6]7 are fixed
– Loop for ∆S6H : 214 − 1 choices, a nonzero difference in (IV [1], IV [18])
– Derive ∆S7H = ∆R22

L : must have the lower 12 bits all zeroes, the success
probability is ≈ 2−12

– Probability that the second sum modulo p will coincide is p−1

– Derive ∆S9L = ∆R22
H : the 15th bit must be 0, the success probability is 2−1

– Number of choices in this step is thus n2 ≈ 216+14+14 · 2−12−1 · p−1 ≈ 20

(together with step 1 we now have ≈ 212 solutions).

• Step 3: loop for S9H , S7L, deriving S12L to satisfy y

– Loop for S7L : 28 choices, the 8 bits of Key[7] are fixed
– Loop for S9H : 27 choices, the constant bit and 8 bits of Key[9] are fixed
– Derive S12L = y � (R11 � 16), to satisfy y : success probability is 1 since

S12L = IV [7]|IV [14]

8 Differential analysis of the ZUC-256 initialisation

– We set one IV-bit S1030 = IV [5]7 = 0 so that it prevents the carry propagation
in the 32-bit addition that might otherwise arrive from the sum of the lower
half of R1�X1 (when X1 = S12L|S10H). Thus, the derived S12L will always
lead to the wanted value y.

– Number of choices in this step is n3 ≈ 28+7 = 215

Accumulating the above, we get that for any choice of those 18 bits of the Key one
could expect to derive the following average number of IV-differentials satisfying all the
conditions:

n1 · n2 · n3 ≈ 227.

I.e., for any selection of those 18 bits of the Key, there should be around 227 variants
of the IV and ∆IV selections that lead to the example as in Subsection 3.3. There is a
very high chance that a solution exists, and thus we have a strong justification for our
conjecture1.

3.5 Search algorithm
In the justification for Conjecture 1, we can organize the three steps of the search algorithm
for a valid IV-differential, conditioned on the “guessed” key bits values, in a manageable
way:

• We first run step 1 in a big loop of size ≈ 214+16+14 = 244, from which we expect to
find around 212 combinations.

• Then we run step 2 on those 212 combinations, requiring a loop of size≈ 212+16+14+14 =
256. We expect this to yield around 212 combinations. If the size of this loop is a
concern2, then we could run it on only a subset of the 212 combinations from step 1.

• In step 3 we have the remaining loop of length 212+7+8 = 227, each providing one
IV-differential satisfying all of the necessary conditions given the particular values of
the 18 bits of Key.

4 Conclusions and further directions
In this paper we presented a very simple way to find high biases in both Key- and IV-
differentials for ∆S0, after 28 and 26 rounds of the initialisation respectively, out of the 33
rounds in total. The biases are large enough that we could detect them by straightforward
simulations even on a laptop, and collect enough samples to confirm our results with high
statistical confidence.

With further research, it seems possible that a Key-differential might be found across
the full 33-round initialisation. At the moment we are only 5 rounds short. Recall that
in the IV-differential we managed to extend the attack for 6 more rounds (from 20 to 26
rounds) by using relatively simple ideas presented in Subsection 3.1. Applying similar
ideas to the Key-differential search may potentially extend it to the full 33 rounds of the
initialisation phase, and create a controllable statistical bias in the register state at the
start of the keystream generation phase.

It also seems possible that the IV-differential attack could be extended further by
guessing more Key bits. As long as the number of key bits to be guessed is much smaller

1For example, we also found an IV-differential for the case in Subsection 3.2, but with Key[5]7 = 0.
2Perhaps, it may be possible to trade the loop for y for a loop for ∆S7H , i.e. where we derive y instead

of deriving ∆S7H , thus reducing the complexity down to 212+4+14+14 = 244. But this idea requires
further thought.

Steve Babbage and Alexander Maximov 9

than 256, and the detected bias is still large enough, such an IV-differential attack might
possibly provide a route to an attack on the overall algorithm.

We stress that the ambitions stated in the two previous paragraphs are pure conjecture.
We have not found an attack on the full ZUC-256 algorithm. We believe there could be
various improvements to our findings, and encourage further research.

References
[The18] The ZUC design team. The ZUC-256 Stream Cipher, 2018. http://www.is.cas.

cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf.

[TS3a] 3GPP TS 33.401, 3GPP System Architecture Evolution (SAE); Security Archi-
tecture. https://www.3gpp.org/DynaReport/33401.htm.

[TS3b] 3GPP TS 33.501, Security Architecture and Procedures for 5G System. https:
//www.3gpp.org/DynaReport/33501.htm.

[YJM20] Jing Yang, Thomas Johansson, and Alexander Maximov. Spectral analysis of
ZUC-256. IACR Transactions on Symmetric Cryptology, 2020(1):266–288, May
2020. https://tosc.iacr.org/index.php/ToSC/article/view/8565.

http://www.is.cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf
http://www.is.cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf
https://www.3gpp.org/DynaReport/33401.htm
https://www.3gpp.org/DynaReport/33501.htm
https://www.3gpp.org/DynaReport/33501.htm
https://tosc.iacr.org/index.php/ToSC/article/view/8565

	Introduction
	Key-differentials and spectral search approach
	IV-differentials in ZUC-256
	New ideas
	Example 1: 2-clock FSM and LFSR recovery, producing an (8+15) round bias
	Example 2: 3-clock FSM and LFSR recovery, producing an (11+15) round bias
	Attack scenarios
	Search algorithm

	Conclusions and further directions

