### Improved (Related-key) Differential Cryptanalysis on GIFT

Fulei Ji<sup>1,2</sup>, Wentao Zhang<sup>1,2</sup>, Chunning Zhou<sup>1,2</sup>, and Tianyou Ding<sup>1,2</sup>

<sup>1</sup> State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China {jifulei, zhangwentao, zhouchunning, dingtianyou}@iie.ac.cn

**Abstract.** In this paper, we reevaluate the security of GIFT against differential cryptanalysis under both single-key scenario and related-key scenario. Firstly, we apply Matsui's algorithm to search related-key differential trails of GIFT. We add three constraints to limit the search space and search the optimal related-key differential trails on the limited search space. We obtain related-key differential trails of GIFT-64/128 for up to 15/14 rounds, which are the best results on related-key differential trails of GIFT so far. Secondly, we propose an automatic algorithm to increase the probability of the related-key boomerang distinguisher of GIFT by searching the clustering of the related-key differential trails utilized in the boomerang distinguisher. We find a 20-round related-key boomerang distinguisher of GIFT-64 with probability  $2^{-58.557}$ . The 25-round related-key rectangle attack on GIFT-64 is constructed based on it. This is the longest attack on GIFT-64. We also find a 19-round related-key boomerang distinguisher of GIFT-128 with probability  $2^{-109.626}$ . We propose a 23-round related-key rectangle attack on GIFT-128 utilizing the 19-round distinguisher, which is the longest related-key attack on GIFT-128. The 24-round related-key rectangle attack on GIFT-64 and 22-round related-key boomerang attack on GIFT-128 are also presented. Thirdly, we search the clustering of the single-key differential trails. We increase the probability of a 20-round single-key differential distinguisher of GIFT-128 from  $2^{-121.415}$  to  $2^{-120.245}$ . The time complexity of the 26-round single-key differential attack on GIFT-128 is improved from  $2^{124.415}$  to  $2^{123.245}$ .

**Keywords:** GIFT  $\cdot$  Related-key differential trail  $\cdot$  Single-key differential trail  $\cdot$  Clustering effect  $\cdot$  Matsui's algorithm  $\cdot$  Boomerang attack  $\cdot$  Rectangle attack

#### 1 Introduction

GIFT is a lightweight Substitution-Permutation-Network block cipher proposed by Banik et al. at CHES'17 [7]. GIFT has two versions named GIFT-64 and GIFT-128, whose block sizes are 64 and 128 bits respectively and round numbers are 28 and 40 respectively. The key length of GIFT-64 and GIFT-128 are both 128 bits. As the inheritor of PRESENT [16], GIFT achieves improvements over PRESENT in both security and efficiency. GIFT is the underlying block cipher of the lightweight authenticated encryption schemes GIFT-COFB [1], HYENA [2], SUNDAE-GIFT [3], LOTUS-AEAD and LOCUS-AEAD [4], which are all the round 2 candidates of the NIST lightweight crypto standardization process [5].

Differential cryptanalysis [13] is one of the most fundamental methods for cryptanalysis of block ciphers. The most important step of differential cryptanalysis is to find differential trails with high probabilities. Boomerang attack [31] and rectangle attack [11,23] are extensions of differential cryptanalysis. Related-key boomerang attack [24,12] is a combination of boomerang attack and related-key differential cryptanalysis [10].

In recent years, the resistance of GIFT against (related-key) differential cryptanalysis have been extensively studied. **In single-key scenario**, Zhou *et al.* [35] succeed in searching the optimal differential trails of GIFT-64 for up to 14 rounds. Ji *et al.* [22] found the optimal differential trails of GIFT-128 for up to 19 rounds. Li *et al.* [25] obtained a 20-round differential trail of GIFT-128 and presented a 26-round attack on GIFT-128. **In related-key scenario**, the designers [7] gave lower bounds of the probabilities of the optimal related-key differential trails of GIFT-64/GIFT-128 for

<sup>&</sup>lt;sup>2</sup> School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

up to 12/9 rounds. Liu and Sasaki [27] searched related-key differential trails of GIFT-64 for up to 21 rounds. They succeed in attacking 21-round GIFT-128 with a 19-round related-key boomerang distinguisher and 23-round GIFT-64 with a 20-round related-key boomerang distinguisher. In [18], Chen et al. constructed a 20-round related-key boomerang distinguisher of GIFT-64 with probability  $Pr = 2^{-50}$ . Based on this 20-round distinguisher, a 23-round related-key rectangle attack was proposed in [18] and a 24-round related-key rectangle attack was proposed by Zhao et al. in [34]. According to the analysis in [32], the probability of the 20-round distinguisher should be corrected to  $Pr = 2^{-68}$ . The 23-round and 24-round attack are invalid since  $Pr < 2^{-64}$  [11]. The detailed proof process is demonstrated in App.C.

Matsui's algorithm [28] is a branch-and-bound depth-first automatic search algorithm proposed by Matsui to search optimal single-key differential and linear trails of DES. Some improvements of Matsui's algorithm have been presented and applied to DESL, FEAL, NOEKEON and SPON-GENT [29,6,8,22]. In [22], Ji et al. applied three methods to speed up the search process of Matsui's algorithm. The improved Matsui's algorithm given in [22] is easy to implement and performs well in searching the optimal single-key differential trails of GIFT.

In this paper, we focus on the following two issues. **Firstly**, the lower bounds of the probabilities of the optimal related-key differential trails of GIFT found in [7,27] are loose. We hope to find related-key differential trails of GIFT with higher probabilities. We apply Matsui's algorithm to search related-key differential trails of GIFT. **Secondly**, both the probability of the single-key differential distinguisher and the related-key boomerang distinguisher can be improved by considering the clustering of the differential trails. The definitions of the clustering of an R-round single-key differential trail and the clustering of the related-key differential trails utilized in an R-round related-key boomerang distinguisher are presented in Definition 4 and Definition 5. We study how to find the clustering of the single-key differential trails and the related-key differential trails utilized in the related-key boomerang distinguisher.

#### **Our Contributions**

- 1 We apply Matsui's algorithm to search related-key differential trails of GIFT. We search related-key differential trails of GIFT according to the following three steps:
  - Firstly, apply the speeding-up methods in [22] to speed up the search process.
  - Secondly, add three constraints to limit the search space.
  - Finally, search the optimal related-key differential trails on the limited search space.

The adjusted Matsui's algorithm devoted to searching related-key differential trails of GIFT is shown in Alg.1.

- We succeed in finding related-key differential trails of GIFT-64/128 for up to 15/14 rounds. The results are summarized in Table 1.
- As we can see from Table 1, compared with the known results in [7,27,18], the relatedkey differential trails of GIFT we find are the best results so far. For GIFT-128, we find related-key differential trails for up to 14 round, while the previous results up to 9 rounds. For both GIFT-64 and GIFT-128, our results provide tighter lower bounds for the probabilities of the optimal related-key trails.

In [27], the authors presented a 9-round related-key differential trail l of GIFT-128 with weight 29.830. Through our verification, we find that l cannot be reproduced. It is because that the round key difference of l cannot be generated from the master key difference.

- 2 We propose an automatic search algorithm to search the clustering of the relatedkey differential trails utilized in the related-key boomerang distinguisher. The new algorithm is presented as Alg.2. The target cipher E of the related-key boomerang distinguisher is decomposed as  $E_1 \circ E_m \circ E_0$ .
  - For GIFT-64, we increase the probability of a 20-round related-key boomerang distinguisher from  $2^{-67.660}$  to  $2^{-58.557}$ . The clustering of the 10-round related-key differential trail utilized in  $E_0$  consists of 5728 trails. The clustering of the 9-round related-key differential trail utilized in  $E_1$  consists of 312 trails.

GIFT-64 GIFT-128 Sect.3 R|7|Sect.3 5 1.415 6.8301.415 7.0006 5.000 4.000 11.000 10.830 7 6.4156.000 20.000 15.830 22.8308 10.000 8.00025.0009 14.000 16.00013.41513.41531.00030.000 10 22.000 20.41537.000 11 27.000 28.83026.00044.000 12 31.000 56.000 13 39.00037.000 65.83014 42.83077.830 15 50.00048.000

**Table 1.** The weight<sup>1</sup> of the *R*-round related-key differential trails of GIFT

The 25-round and 24-round related-key rectangle attacks are achieved taking advantage of the 20-round distinguisher. This is the longest attack on GIFT-64 so far, while the previous longest attack is the 23-round related-key boomerang attack proposed in [27].

- For GIFT-128, we increase the probability of a 19-round related-key boomerang distinguisher from  $2^{-120.00}$  to  $2^{-109.626}$ . The clustering of the 9-round related-key differential trail utilized in  $E_0$  contains 3952 trails. The clustering of the 9-round related-key differential trail utilized in  $E_1$  contains 2944 trails.

Applying the 19-round distinguisher, we propose a 23-round related-key rectangle attack and a 22-round related-key boomerang attack. This is the longest related-key attack on GIFT-128, while the previous longest related-key attack is the 21-round related-key boomerang attack proposed in [27].

Table 2. Summary of the cryptanalytic results on GIFT

| GIFT-64 |
|---------|
|---------|

| Rounds | Approach                 | Setting | Time         | Data        | Memory      | Ref.             |
|--------|--------------------------|---------|--------------|-------------|-------------|------------------|
| 20     | DC                       | SK      | $2^{112.68}$ | $2^{62}$    | $2^{112}$   | [17]             |
| 21     | $\overline{\mathrm{DC}}$ | SK      | $2^{107.61}$ | $2^{64}$    | $2^{96}$    | [17]             |
| 23     | Boomerang                | RK      | $2^{126.6}$  | $2^{63.3}$  | -           | [27]             |
| 24     | Rectangle                | RK      | $2^{106.00}$ | $2^{63.78}$ | $2^{64.10}$ | Sect. 5.2        |
| 25     | Rectangle                | RK      | $2^{120.92}$ | $2^{63.78}$ | $2^{64.10}$ | Sect. <u>5.1</u> |

**GIFT-128** 

| Rounds | Approach                 | Setting | Time          | Data          | Memory       | Ref.     |
|--------|--------------------------|---------|---------------|---------------|--------------|----------|
| 21     | Boomerang                | RK      | $2^{126.6}$   | $2^{126.6}$   | -            | [27]     |
| 22     | Boomerang                | RK      | $2^{112.63}$  | $2^{112.63}$  | $2^{52}$     | App.B    |
| 23     | Rectangle                | RK      | $2^{126.89}$  | $2^{121.31}$  | $2^{121.63}$ | Sect.6.2 |
| 23     | $\overline{\mathrm{DC}}$ | SK      | $2^{120}$     | $2^{120}$     | $2^{86}$     | [36]     |
| 26     | $\overline{\mathrm{DC}}$ | SK      | $2^{124.415}$ | $2^{124.415}$ | $2^{109}$    | [25]     |
| 26     | DC                       | SK      | $2^{123.245}$ | $2^{123.245}$ | $2^{109}$    | Sect.6.1 |

<sup>&</sup>lt;sup>1</sup> The weight is the negative logarithm of the probability to base 2.

### 3 We apply Matsui's algorithm to search the clustering of the single-key differential trails.

- We increase the probability of a 20-round single-key differential distinguisher of GIFT-128 from 2<sup>-121.415</sup> to 2<sup>-120.245</sup>. The clustering of the 20-round single-key differential trail is composed by four trails. We improve the time complexity of the 26-round differential attack on GIFT-128 constructed in [25] from 2<sup>124.415</sup> to 2<sup>123.245</sup>.

The cryptanalytic results are summarized in Table 2.

Organization. The paper is organized as follows. In Sect.2, we give a brief description of GIFT, the speeding-up methods on Matsui's algorithm and the related-key boomerang and rectangle attack. The definitions and notations adopted throughout the paper are also presented in Sect.2. In Sect.3, we introduce how to apply Matsui's algorithm in related-key scenario. Sect.4 declares how to search the clustering of the single-key/related-key differential trails. Sect.5 and Sect.6 provide the details of the 25/24-round attacks on GIFT-64 and the 26/23-round attacks on GIFT-128 respectively. The details of the 22-round attack on GIFT-128 are presented in App.B. Sect.7 is the conclusion and future work.

#### 2 Preliminaries

#### 2.1 Description of GIFT

Let n be the block size of GIFT. The master key is  $iniK := k_7 ||k_6|| \cdots ||k_0||$ , in which |iniK| = 128,  $|k_i| = 16$ . Each round of GIFT consists of three steps: SubCells, PermBits, and AddRoundKey.

**Table 3.** The specifications of the S-box GS in GIFT

| $\overline{x}$ | 0 | 1 | 2 | 3            | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | е | f |
|----------------|---|---|---|--------------|---|---|---|---|---|---|---|---|---|---|---|---|
| GS(x)          | 1 | a | 4 | $\mathbf{c}$ | 6 | f | 3 | 9 | 2 | d | b | 7 | 5 | 0 | 8 | e |

- 1 SubCells. The S-box GS is applied to every nibble of the cipher state. The specifications of GS is given in Table 3.
- 2 PermBits. Update the cipher state by a linear bit permutation  $P(\cdot)$  as  $b_{P(i)} \leftarrow b_i$ ,  $\forall i \in \{0, \dots, n-1\}$ .
- 3 AddRoundKey. An n/2-bit round key RK is extracted from the key state. It is further partitioned into two s-bit words  $RK := U||V = u_{s-1} \cdots u_0||v_{s-1} \cdots v_0, s = n/4.$

For GIFT-64, RK is XORed to the state as  $b_{4i+1} \leftarrow b_{4i+1} \oplus u_i$ ,  $b_{4i} \leftarrow b_{4i} \oplus v_i$ ,  $\forall i \in \{0, \dots, 15\}$ . For GIFT-128, RK is XORed to the state as  $b_{4i+2} \leftarrow b_{4i+2} \oplus u_i$ ,  $b_{4i+1} \leftarrow b_{4i+1} \oplus v_i$ ,  $\forall i \in \{0, \dots, 31\}$ .

For both versions, a single bit "1" and a 6-bit constant C are XORed into the internal state at positions n-1, 23, 19, 15, 11, 7 and 3 respectively.

**Key Schedule.** For GIFT-64,  $RK = U||V = k_1||k_0$ . For GIFT-128,  $RK = U||V = k_5||k_4||k_1||k_0$ . For both versions, the key state is updated as

$$|k_7||k_6||\cdots||k_1||k_0\leftarrow k_1 \gg 2||k_0\gg 12||\cdots||k_3||k_2$$

where  $\gg$  i is an i-bit right rotation within a 16-bit word.

We refer readers to [7] for more details of GIFT.

#### 2.2 Definitions and Notations

**Definition 1** ([20]). The weight of a difference propagation (a',b') is the negative of the binary logarithm of the difference propagation probability over the transformation h, *i.e.*,

$$w_r(a',b') = -\log_2^{P_r^h(a',b')}. (1)$$

a' is the input difference and b' is the output difference.

**Definition 2** ([19]). Let  $\varphi$  be an invertible function from  $\mathbb{F}_2^m$  to  $\mathbb{F}_2^m$ , and  $\Delta_0, \nabla_0 \in \mathbb{F}_2^m$ . The **boomerang connectivity table** (BCT) of  $\varphi$  is defined by a  $2^m \times 2^m$  table, in which the entry for  $(\Delta_0, \nabla_0)$  is computed by:

$$BCT(\Delta_0, \nabla_0) = \sharp \{ x \in \{0, 1\}^n | \varphi^{-1}(\varphi(x) \oplus \nabla_0) \oplus \varphi^{-1}(\varphi(x \oplus \Delta_0) \oplus \nabla_0) = \Delta_0 \}. \tag{2}$$

**Definition 3** ([32]). Let  $\varphi$  be an invertible function from  $\mathbb{F}_2^m$  to  $\mathbb{F}_2^m$ , and  $\Delta_0, \Delta_1, \nabla_0, \nabla_1 \in \mathbb{F}_2^m$ . The **boomerang difference table** (BDT) of  $\varphi$  is a three-dimensional table, in which the entry for  $(\Delta_0, \Delta_1, \nabla_0)$  is computed by:

$$BDT(\Delta_0, \Delta_1, \nabla_0) = \sharp \{ x \in \{0, 1\}^n | \varphi^{-1}(\varphi(x) \oplus \nabla_0) \oplus \varphi^{-1}(\varphi(x \oplus \Delta_0) \oplus \nabla_0) = \Delta_0, \\ \varphi(x) \oplus \varphi(x \oplus \Delta_0) = \Delta_1 \}.$$
(3)

The iBDT, as a variant of BDT, is evaluated by:

$$iBDT(\nabla_0, \nabla_1, \Delta_0) = \sharp \{ x \in \{0, 1\}^n | \varphi(\varphi^{-1}(x) \oplus \Delta_0) \oplus \varphi(\varphi^{-1}(x \oplus \nabla_0) \oplus \Delta_0) = \nabla_0, \\ \varphi^{-1}(x) \oplus \varphi^{-1}(x \oplus \nabla_0) = \nabla_1 \}.$$

$$(4)$$

The notations used in this paper are defined as follows:

 $S(\cdot), P(\cdot), K(\cdot)$ : SubCells operation, PermBits operation, AddRoundKey operation

n : the block size of cipher E : the master key size of cipher E

2ns : the number of the S-boxes in  $S(\cdot)$ ; 2ns = n/4 for GIFT

MKD : the master key difference

 $X_i, Y_i$ : the input and the output of  $S(\cdot)$  in round i

 $Z_i$  : the output of  $P(\cdot)$  in round i  $K_i$  : the round key of round i

 $\Delta X_i, \ \Delta Y_i, \ \Delta Z_i, \ \Delta K_i \ : \ \text{the differential value of} \ X_i, \ Y_i, \ Z_i \ \text{and} \ K_i$ 

W(l) : the weight of the differential trail l  $W(\Delta X_i, \Delta Y_i)$  : the weight of  $\Delta X_i \xrightarrow{S(\cdot)} \Delta Y_i$  in round i

 $B_R := min[\Sigma_{i=1}^R W(\Delta X_i, \Delta Y_i)]$ : the weight of the R-round optimal differential trail

 $Bc_R$ : the upper bound of  $B_R$ 

 $\begin{array}{lll} bw & : \text{ the value of } Bc_R \text{ minus } B_R; \ Bc_R = B_R + bw \\ \text{DDT} & : \text{ the } \textit{difference distribution table of the S-box} \\ \text{LAT} & : \text{ the } \textit{linear approximation table of the S-box} \end{array}$ 

 $E := E_1 \circ E_m \circ E_0$  : the target cipher of the boomerang or rectangle distinguisher  $E' := E_f \circ E \circ E_b$  : the target cipher of the boomerang or rectangle attack

 $E_b$ : the extension cipher added at the start of E: the extension cipher added at the end of E

 $r_b, r_f$ : the number of active bits in the input difference of  $E_b$  and the output difference of  $E_f$ 

 $m_b, m_f$ : the number of key bits needed to be guessed in  $E_b$  and  $E_f$ 



Fig. 1. The Boomerang Distinguisher

Fig. 2. The Sandwich Distinguisher

#### 2.3 Three Methods to Speed Up Matsui's Algorithm

Matsui's algorithm [28] works by induction on the number of rounds and derives the R-round optimal weight  $B_R$  from the knowledge of all i-round optimal weight  $B_i$  ( $1 \le i < R$ ). The program requires an initial value for  $B_R$ , which is represented as  $Bc_R$ . It works correctly for any  $Bc_R$  as long as  $Bc_R \ge B_R$ . In [22], Ji et al. applied three methods to improve the efficiency of Matsui's algorithm. The three speeding-up methods are named (1) Reconstructing DDT and LAT According to Weight, (2) Executing Linear Layer Operations in Minimal Cost and (3) Merging Two 4-bit S-boxes into One 8-bit S-box.

Speeding-up method-1 contributes to pruning unsatisfiable candidates quickly. The authors reconstructed the DDT to sort the input and output differences according to their weights. Speeding-up method-2 and method-3 contribute to reducing the cost of executing linear layer operations. The authors merged 2ns 4-bit S-boxes into ns 8-bit new S-boxes. The new linear table is constructed according to the output differences of each S-box. The SSE instructions are applied to reduce the cost of linear layer operations.

The improved Matsui's algorithm for GIFT is demonstrated as Alg.3 in App.A. We refer readers to [22] for more details of the speeding-up methods.

#### 2.4 Related-key Boomerang Attack and Rectangle Attack

Basic Related-key Boomerang Attack and Rectangle Attack. Related-key boomerang attack is an adaptive chosen-plaintext/ciphertext attack. As is shown in Fig.1, the adversary can split the target cipher E into two sub-ciphers  $E_0$  and  $E_1$ , i.e.,  $E = E_1 \circ E_0$ . Assume that there are a differential trail  $\alpha \to \beta$  under the key difference  $\Delta K$  over  $E_0$  with probability p and a differential trail  $\gamma \to \delta$  under the key difference  $\nabla K$  over  $E_1$  with probability q. Once  $K_1$  is known, the other three keys are determined:  $K_2 = K_1 \oplus \Delta K$ ,  $K_3 = K_1 \oplus \nabla K$ ,  $K_4 = K_2 \oplus \nabla K$ . Given  $P_1 \oplus P_2 = \alpha$  and  $K_1 \oplus K_2 = \Delta K$ , the probability that we obtain two plaintexts satisfying  $P_3 \oplus P_4 = \alpha$  through the boomerang distinguisher is:

$$p^{2}q^{2} = Pr[E^{-1}(E(x, K_{1}) \oplus \delta, K_{3}) \oplus E^{-1}(E(x \oplus \alpha, K_{2}) \oplus \delta, K_{4}) = \alpha]$$
(5)



Fig. 3. A 1-round  $E_m$ 

Fig. 4. A 2-round  $E_m$ 

If  $(P_1, P_2, P_3, P_4)$  can pass the boomerang distinguisher, then it is called a *right quartet*.

For a random permutation, given  $P_1 \oplus P_2 = \alpha$  and  $K_1 \oplus K_2 = \Delta K$ , the probability that two random plaintexts satisfying  $P_3 \oplus P_4 = \alpha$  is  $2^{-n}$ . Therefore, only if  $pq > 2^{-n/2}$  can we count more right quartets than random noise through the related-key boomerang distinguisher.

Related-key rectangle attack is a chosen-plaintext attack, which is a further development of the related-key boomerang attack. In Fig.1, given  $P_1 \oplus P_2 = \alpha$  and  $P_3 \oplus P_4 = \alpha$  under  $K_1, K_2, K_3, K_4$ , the probability that the corresponding ciphertexts  $C_1, C_2, C_3, C_4$  meets  $C_1 \oplus C_3 = \delta$  and  $C_2 \oplus C_4 = \delta$  (or  $C_1 \oplus C_4 = \delta$  and  $C_2 \oplus C_3 = \delta$ ) is  $2^{-n}p^2q^2$ . If  $(P_1, P_2, P_3, P_4)$  can pass the rectangle distinguisher under  $(K_1, K_2, K_3, K_4)$ , then it is called a **right quartet**. For a random permutation, we get a right quartet with probability  $2^{-2n}$  in the rectangle attack. Thus, only if  $pq > 2^{-n/2}$  can we count more right quartets than random noise.

Boomerang Switch. The interaction between the two differential trails over  $E_0$  and  $E_1$  is utilized to improve the boomerang and rectangle attack [14,15], which is called **the boomerang switch** [15]. The idea of the boomerang switch is to minimize the overall complexity of the distinguisher by optimizing the transition between  $E_0$  and  $E_1$ . In [21], a new framework named **sandwich attack** was proposed. As is shown in Fig.2, the sandwich attack decomposes the target cipher E as  $E_1 \circ E_m \circ E_0$ . The propagation of the boomerang switch is captured by the propagation of  $E_m$ . For the fixed  $\beta$  and  $\gamma$ , the probability that a quartet can pass  $E_m$  is denoted as:

$$r := Pr[E_m^{-1}(E_m(x, K_1) \oplus \gamma, K_3) \oplus E_m^{-1}(E_m(x \oplus \beta, K_2) \oplus \gamma, K_4) = \beta]$$
(6)

Thus, the probability that we obtain a right quartet through the sandwich distinguisher (i.e., the boomerang distinguisher with boomerang switch) is  $p^2q^2r$ .

The value of r can be evaluated by the boomerang connectivity table [19] or the boomerang difference table [32] at the S-box level. Let  $\beta[2ns]||\cdots||\beta[1]:=\beta$  and  $\gamma[2ns]||\cdots||\gamma[1]:=\gamma$ . Let S and S be the non-linear and linear layer operations of S,  $S'=S(\beta)$ ,  $S''=S(\beta)$ ,  $S''=S(\beta)$ ,  $S''=S(\beta)$ , and  $S'=S(\beta)$  and  $S'=S(\beta)$ . Then we have

$$r = 2^{-n} \Sigma_{1 \le i \le 2\text{ns}} BCT(\beta[i], \gamma[i]).$$

For a 2-round  $E_m$ , the propagation of  $\beta$  and  $\gamma$  is illustrated in Fig.4. Then we have

$$r = 2^{-2n} \Sigma_{1 < i < 2\text{ns}}(\text{BDT}(\beta[i], \beta'[i], \gamma''[i]) \times \text{iBDT}(\gamma[i], \gamma'[i], \beta''[i])).$$

For a related-key boomerang distinguisher, if there are multiple trails  $\alpha \stackrel{E_0}{\to} \beta_i$  and  $\gamma_j \stackrel{E_1}{\to} \delta$   $(\beta_i \neq \gamma_j)$  under fixed  $\alpha$ ,  $\Delta K$ ,  $\delta$  and  $\nabla K$ , the probability of obtaining a right quartet can be increased to:

$$\hat{p}^2 \hat{q}^2 := \Sigma_{i,j} p_i^2 q_j^2 r_{ij},\tag{7}$$

in which  $p_i = Pr(\alpha \xrightarrow{E_0} \beta_i), q_j = Pr(\gamma_j \xrightarrow{E_1} \delta)$  and  $r_{ij} = Pr(\beta_i \xrightarrow{E_m} \gamma_j).$ 

A new key-recovery model for the related-key boomerang and rectangle attack against block ciphers with linear key schedules was constructed by Zhao *et al.* in [33,34]. This new model is a modification of Liu *et al.*'s model [26]. In this paper, we utilize the model proposed by Zhao *et al.* to perform the key-recovery attack against GIFT.

#### 3 Searching Related-key Differential Trails

#### 3.1 Applying Matsui's Algorithm in Related-key Scenario

Our objective is to find related-key differential trails with high probabilities. We apply Matsui's algorithm to search related-key differential trails of GIFT. Firstly, we apply the speeding-up methods introduced in Sect. 2.3 to improve the search process. Secondly, we add three constraints to limit the search space. Finally, we search the optimal related-key differential trails on the limited search space. The adjusted Matsui's algorithm aiming at searching optimal related-key differential trails of GIFT on limited search space is demonstrated in Alg. 1.

Let R be the round number of E. Let  $\Delta iniK := \Delta k_7 || \cdots || \Delta k_0$  be the master key difference and  $\Delta K_i$  be the round key difference in round i. We utilize the following three constraints to limit the search space:

- 1 Restricting the input difference of round fr to zero and traverse fr from 1 to R. It has been declared in [29] that the number of candidates in the first two rounds of Matsui's algorithm is the dominant factor of the search complexity. In Alg.3, the number of candidates  $\Delta Y_1$  in Procedure Round-1 depends on the value of  $Bc_R B_{R-1}$ . Alg.1 starts from Procedure Round-fr with only one candidate  $\Delta Y_{fr} = 0$ . Since  $\Delta Y_{fr} = 0$ , we can determine the input difference of round i+1 which is  $\Delta K_i$  and the output difference of round i-1 which is  $\Delta K_{i-1}$ . Therefore, the complexity of Matsui's algorithm in related-key scenario is improved benefitting from constraint-1.
- 2 Restricting the number of the active bits in the master key difference.

The key schedule of GIFT is a linear transformation. The value of  $\Delta K_i$  are determined by  $\Delta iniK$ . The input difference of  $S(\cdot)$  in round i is  $\Delta X_i = P(\Delta Y_{i-1}) \oplus \Delta K_{i-1}$ . The related-key differential trails with small weight will not contain too many active S-boxes in  $S(\cdot)$ . Thus, there should not be too many active bits in  $\Delta K_i$  ( $1 \le i \le R$ ). The details of constraint-2 are as follows.

- Restricting the number of the active bits in  $\Delta iniK$  to no more than four when R < 11.
- Restricting the number of the active bits in  $\Delta iniK$  to no more than three when  $R \geq 11$ .
- Restricting the four active bit positions to belong to four different  $\Delta k_j$  ( $0 \le j \le 7$ ) if the number of the active bits is four.

The total number of the candidate  $\Delta iniK$  is  $C_{128}^1 + C_{128}^2 + C_{128}^3 + C_7^4 \cdot (C_{16}^1)^4 = 4\,937\,152$ .

3 Restricting the number of the active S-boxes in round i  $(1 \le i \le R)$  to no more than five when  $R \ge 11$ .

Algorithm 1 The Adjusted Matsui's Algorithm of Searching Optimal Related-key Differential Trails for GIFT on Limited Search Space

```
Require: R (\geq 3); B_0 = 0, B_1, B_2, \dots, B_{R-1}; Bc_R; iniKeyDiff [4 937 152]; ns := n/8 Ensure: B_R = Bc_R; the R-round related-key differential trails with minimal weight
```

```
26: if B_{fr-1} + \sum_{j=fr}^{R} w_j \leq Bc_R then
 1: for each iniKeyDiff [v] do
                                                                            if fr = 1 then
 2:
        gen roundkey \Delta K_i, 1 \leq i \leq R
                                                                    27:
 3:
        for fr = 1 to R do
                                                                    28:
                                                                                Bc_R = \sum_{i=1}^R w_i
           \Delta X_{fr} \leftarrow 0, \ \Delta Y_{fr} \leftarrow 0, \ w_{fr} \leftarrow 0 if fr = R then
                                                                    29:
 4:
                                                                               \Delta Y_{fr-1} \leftarrow P^{-1}(\Delta K_{fr-1}) call Round-i-In
           if fr = R then
                                                                    30:
 5:
               \Delta Y_{fr-1} \leftarrow P^{-1}(\Delta K_{fr-1})
                                                                    31:
 6:
               call Round-i-In
 7:
                                                                    32:
                                                                            end if
                                                                    33: end if
 8:
           else
                                                                    34: return to the upper procedure
               \Delta X_{fr+1} \leftarrow \Delta K_{fr}
 9:
               call Round-i
10:
           end if
                                                                    35: Procedure Round-i-In, 2 \le i \le R - 1:
11:
12:
        end for
                                                                    36: for each \Delta X_i do
13: end for
                                                                    37:
                                                                            w_i \leftarrow W(\Delta X_i, \Delta Y_i)
                                                                            if B_{i-1} + \sum_{j=i}^{R} w_j \geq Bc_R then
                                                                    38:
14: Procedure Round-i, 2 \le i \le R - 1:
                                                                    39:
                                                                                break
15: for each \Delta Y_i do
                                                                    40:
                                                                            else
                                                                                \Delta Y_{i-1} \leftarrow P^{-1}(\Delta X_i \oplus \Delta K_{i-1})
16:
        w_i \leftarrow W(\Delta X_i, \Delta Y_i)
                                                                    41:
        if B_{R-i} + B_{fr-1} + \Sigma_{i=fr}^i w_i \ge Bc_R then 42:
17:
                                                                                call Round-(i-1)-In
                                                                            end if
18:
                                                                    44: end for
19:
           \Delta X_{i+1} \leftarrow P(\Delta Y_i) \oplus \Delta K_i
20:
           call Round-(i+1)
                                                                    45: Procedure Round-1-In:
21:
22:
        end if
                                                                    46: w_1 \leftarrow min_{\Delta X_R} W(\Delta X_R, \Delta Y_R)
                                                                   47: if \Sigma_{j=1}^R w_j \leq Bc_R then
23: end for
                                                                            Bc_R = \sum_{j=1}^R w_j
                                                                    48:
24: Procedure Round-R:
                                                                    49: end if
25: w_R \leftarrow min_{\Delta Y_R} W(\Delta X_R, \Delta Y_R)
                                                                    50: return to the upper procedure
```

#### 3.2 Results on Related-key Differential Trails of GIFT

Applying Alg.1, we find related-key differential trails of GIFT-64/128 for up to 15/14 rounds. The results are summarized in Table 1. Table 10 in App.D presents a 15-round related-key differential trail of GIFT-64 and a 14-round related-key differential trail of GIFT-128 found by Alg.1.

Compared to the previous results in [7,27,18], the optimal related-key differential trails found by Alg.1 on the limited search space are the best results known so far. We find related-key differential trails of GIFT-128 for up to 14 rounds, while the previous results up to 9 rounds. We provide tighter lower bounds for the probabilities of the optimal related-key trails of both GIFT-64 and GIFT-128. It indicates that the three constraints we choose perform well in limiting the search space while preserving the related-key differential trails with high probabilities.

## 4 Increasing the Probability of the Distinguisher Utilizing Clustering Effect

Both the probability of the single-key differential distinguisher and the related-key boomerang distinguisher can be increased by searching the clustering of the differential trails. Next, we give the

definitions of the clustering of an *R*-round single-key differential trail and the clustering of the related-key differential trails utilized in an *R*-round boomerang distinguisher and explain how to search the clustering.

#### 4.1 Single-key Scenario

**Definition 4.** The clustering of an R-round single-key differential trail is defined as:

$$C(R, \eta_{in}, \eta_{out}, Bc_R) := \{ \text{all } R \text{-round single-key differential trails } l^i \mid W(l^i) \le Bc_R, \Delta X_1 = \eta_{in}, P(\Delta Y_R) = \eta_{out} \}.$$
(8)

In fact, for an R-round single-key differential trail  $\mathcal{L}$  with fixed input difference  $\eta_{in}$  and output difference  $\eta_{out}$ , the clustering of  $\mathcal{L}$  is composed by all the differential trails whose input difference is  $\eta_{in}$  and output difference is  $\eta_{out}$ , i.e.,  $\mathcal{C}(R, \eta_{in}, \eta_{out}, \infty)$ . It will take immeasurable time to determine all the trails in  $\mathcal{C}(R, \eta_{in}, \eta_{out}, \infty)$ . Therefore, we only search all the trails with weight no more than  $Bc_R$ . The choice of  $Bc_R$  is heuristic.

We call Alg.3 to search  $C(R, \eta_{in}, \eta_{out}, Bc_R)$ . The greater the value of  $Bc_R$ , the more trails can we find, while the longer the search time is required.

#### 4.2 Related-key Scenario

Definition 5. The clustering of the related-key differential trails utilized in an R-round related-key boomerang distinguisher is defined as:

$$\mathcal{C}(R_0, R_1, R_m, \alpha, \Delta iniK_0, Bc_{R_0}, \delta, \Delta iniK_1, Bc_{R_1}) := \{\text{all combinations of } (l_0^i, l_1^j) \mid l_0^i \in \mathcal{C}_I(R_0, \alpha, \Delta iniK_0, Bc_{R_0}), l_1^j \in \mathcal{C}_O(R_1, \delta, \Delta iniK_1, Bc_{R_1})\}, \tag{9}$$

in which

$$C_{I}(R_{0}, \alpha, \Delta iniK_{0}, Bc_{R_{0}}) := \{ \text{all } R_{0}\text{-round related-key differential trails } l_{0}^{i} \mid W(l_{0}^{i}) \leq Bc_{R_{0}}, \Delta X_{1} = \alpha, \text{MKD} = \Delta iniK_{0} \},$$

$$(10)$$

$$C_O(R_1, \delta, \Delta iniK_1, Bc_{R_1}) := \{ \text{all } R_1\text{-round related-key differential trails } l_1^j \mid W(l_1^j) \le Bc_{R_1}, K(\Delta Z_{R_1}) = \delta, \text{MKD} = \Delta iniK_1 \},$$
(11)

and  $R = R_0 + R_m + R_1$ .

In fact, the clustering of an  $R_0$ -round related-key differential trail  $\mathcal{L}$  with fixed input difference  $\alpha$  and master key difference  $\Delta iniK_0$  contains all the related-key differential trails with arbitrary weight, *i.e.*,  $\mathcal{C}_I(R_0, \alpha, \Delta iniK_0, \infty)$ . It will take immeasurable time to determine all the trails in  $\mathcal{C}_I(R_0, \alpha, \Delta iniK_0, \infty)$ . Therefore, we only search all the trails with weight no more than  $Bc_{R_0}$ . The choice of  $Bc_{R_0}$  is heuristic. The modification above also applies to  $\mathcal{C}_O(R_1, \delta, \Delta iniK_1, \infty)$ .

To construct an R-round related-key boomerang distinguisher  $\mathcal{D}$  for the target cipher  $E = E_1 \circ E_m \circ E_0$ , we firstly determine the round number  $R_0/R_m/R_1$  for  $E_0/E_m/E_1$  satisfying  $R = R_0 + R_m + R_1$ . The general way to determine the probability of the distinguisher  $\mathcal{D}$  is:

- 1 Choose an  $R_0$ -round trail  $l_0$  for  $E_0$ ; Get the input difference  $\alpha$ , the output difference  $\beta$  and the master key difference  $\Delta iniK_0$ .
- 2 Choose an  $R_1$ -round trail  $l_1$  for  $E_1$ ; Get the input difference  $\gamma$ , the output difference  $\delta$  and the master key difference  $\Delta iniK_1$ .
- 3 Apply the BCT to calculate  $Pr(\beta \to \gamma)$  if  $R_m = 1$ ; Apply the BDT and the iBDT to calculate  $Pr(\beta \to \gamma)$  if  $R_m = 2$ .

For a distinguisher  $\mathcal{D}$  with fixed  $\alpha$  and  $\delta$ , there could be mulitiple values of  $\beta$  and  $\gamma$ . To increase the probability of  $\mathcal{D}$ , we hope to find as more combinations of  $(\beta, \gamma)$  as we can. We propose Alg.2 to search  $\mathcal{C}(\mathcal{D})$ , i.e.,  $\mathcal{C}(R_0, R_1, R_m, \alpha, \Delta iniK_0, Bc_{R_0}, \delta, \Delta iniK_1, Bc_{R_1})$  and calculate the probability of  $\mathcal{D}$  by traversing all combinations of  $(l_0^i, l_1^j)$  in  $\mathcal{C}(\mathcal{D})$ . The greater the value of  $Bc_{R_0}$  and  $Bc_{R_1}$ , the more trails can we find.

**Algorithm 2** The Algorithm of Increasing the Probability of the Related-key Boomerang Distinguisher for GIFT

```
Require: R_0, R_1, R_m; bw ; ns := n/8
Ensure: \hat{p}^2\hat{q}^2 \leftarrow max\{\hat{p_i}^2\hat{q_j}^2\}; \alpha_i, \Delta iniK_0^i; \delta_j, \Delta iniK_1^j
 1: Phase 1: Search all the related-key differential trails with minimal weight
 2: call Alg. 1 to search all the R_0-round related-key trails with minimal weight on the limited
     search space for E_0
 3: B_{R_0} \leftarrow the minimal weight of R_0-round trails
 4: l_0^1, \dots, l_0^a \leftarrow all the R_0-round trails with weight B_{R_0}
 5: for each l_0^i, 1 \le i \le a do
        \alpha_i \leftarrow \Delta X_1, \ \Delta ini K_0^i \leftarrow \text{the master key difference}
 7: end for
 8: call Alg. 1 to search all the R_1-round related-key trails with minimal weight on the limited
     search space for E_1
 9: B_{R_1} \leftarrow the minimal weight of R_1-round trails
10: l_1^1, \dots, l_1^b \leftarrow all the R_1-round trails with weight B_{R_1}
11: for each l_1^j, 1 \le j \le b do
        \delta_j \leftarrow K \circ P(\Delta Y_{R_1}), \ \Delta iniK_1^j \leftarrow \text{the master key difference}
13: end for
14: Phase 2: Search all the clustering
15: for each l_0^i, 1 \le i \le a do
        call Alg.1 to search C_I(R_0, \alpha_i, \Delta iniK_0^i, B_{R_0} + bw) /* see Eq.10 for definition */
17:
         l_0^{i_1}, \cdots, l_0^{i_d} \leftarrow \text{all the trails in } \mathcal{C}_I(R_0, \alpha_i, \Delta iniK_0^i, B_{R_0} + bw)
        for each l_0^{i_u}, 1 \le u \le d do
18:
            \beta^{i_u} \leftarrow \check{K} \circ P(\Delta Y_{R_0}), \, B^{i_u}_{R_0} \leftarrow W(l_0^{i_u})
19:
        end for
20:
21: end for
22: for each l_1^j, 1 \le j \le b do
        call Alg.1 to search C_O(R_1, \delta_j, \Delta iniK_1^j, B_{R_1} + bw) /* see Eq.11 for definition */
        l_1^{j_1}, \dots, l_1^{j_e} \leftarrow \text{all the trails in } \mathcal{C}_O(R_1, \delta_j, \Delta iniK_1^j, B_{R_1} + bw)
24:
         \begin{aligned} & \textbf{for each } l_1^{j_v}, \ 1 \leq v \leq e \ \textbf{do} \\ & \gamma^{j_v} \leftarrow P^{-1} \circ K^{-1}(\Delta X_1), \ B_{R_1}^{j_v} \leftarrow W(l_1^{j_v}) \end{aligned} 
25:
26:
        end for
27:
28: end for
29: Phase 3: Determine the boomerang distinguisher with highest probability
30: for each l_0^i (1 \le i \le a) and l_1^j (1 \le j \le b) do
        \hat{p_i}^2 \hat{q_j}^2 \leftarrow \sum_{u,v} 2^{-2B_{R_0}^{i_u}} \cdot 2^{-2B_{R_1}^{j_v}} \cdot \text{Middle}(\beta^{i_u}, \gamma^{j_v}, R_m)
32: end for
33: \hat{p}^2 \hat{q}^2 \leftarrow max_{i,j} \{ \hat{p_i}^2 \hat{q_j}^2 \}
34: Function Middle(\beta, \gamma, R_m):
35: calcutate Pr_{E_m} by the BCT, if R_m = 1
36: calcutate Pr_{E_m} by the BDT and the iBDT, if R_m=2
37: return Pr_{E_m}
```

#### Explanations on Alg.2

- 1 Different choices of  $\alpha$  (or  $\delta$ ) will lead to different amounts and values of  $\beta$  (or  $\gamma$ ). Therefore, in *Phase 1* of Alg.2, we first determine all the choices of  $\alpha$  and  $\delta$ .
- 2 For GIFT, we find the fact that for fixed  $S(\alpha)$  of  $E_0$  and fixed  $S^{-1} \circ P^{-1} \circ K^{-1}(\delta)$  of  $E_1$ , the choices of  $\alpha$  and  $\delta$  will not influence the value of  $\hat{p}^2\hat{q}^2$ . Therefore, in the search process of GIFT, we only care about the value of  $S(\alpha)$  (i.e.,  $\Delta Y_1$  of
- $E_0$ ) and the value of  $S^{-1} \circ P^{-1} \circ K^{-1}(\delta)$  (i.e.,  $\Delta X_{R_1}$  of  $E_1$ ). 3 For fixed  $l_0^i$  and  $l_1^j$  ( $1 \le i \le a, 1 \le j \le b$ ), we get  $\mathcal{C}_I(R_0, \alpha_i, \Delta iniK_0^i, B_{R_0} + bw)$  and  $\mathcal{C}_O(R_1, \delta_j, \Delta iniK_1^j, B_{R_1} + bw)$  through Phase 2. In Phase 3, we traverse all combinations of

$$l_0^{i_u} \in \mathcal{C}_I(R_0, \alpha_i, \Delta iniK_0^i, B_{R_0} + bw), \ l_1^{j_v} \in \mathcal{C}_O(R_1, \delta_j, \Delta iniK_1^j, B_{R_1} + bw),$$

to calculate

 $(l_0^{i_u}, l_1^{j_v})$ , in which

$$\hat{p_i}^2 \hat{q_j}^2 \leftarrow \sum_{u,v} 2^{-2B_{R_0}^{i_u}} \cdot 2^{-2B_{R_1}^{j_v}} \cdot \text{Middle}(\beta^{i_u}, \gamma^{j_v}, R_m).$$

For each  $l_0^{i_u}$  and  $l_1^{j_v}$ , the value of  $\beta^{i_u}$  and  $\gamma^{j_v}$  are determined. The incompatibility between  $\beta^{i_u}$  and  $\gamma^{j_v}$  can be captured by the BCT or the BDT.

4 The value of  $\alpha$  and  $\delta$  should be carefully determined to keep the value of  $r_b$ ,  $m_b$ ,  $r_f$  and  $m_f$  appropriate. The probability of the distinguisher is the main factor affecting the complexity of the key-recovery attack. Nevertheless the value of  $r_b$ ,  $m_b$ ,  $r_f$  and  $m_f$  can also affect the complexity, which is influenced by the value of  $\alpha$  and  $\delta$ .

Therefore, once we get the value of  $max_i : \{\hat{n}_i^2 \hat{a}_i^{2}\}$ ,  $\alpha_i$  and  $\delta_i$  from Alg.2, we should carefully

Therefore, once we get the value of  $\max_{i,j} \{\hat{p}_i^2 \hat{q}_j^2\}$ ,  $\alpha_i$  and  $\delta_j$  from Alg.2, we should carefully adjust the value of  $\alpha_i$  and  $\delta_j$  to reduce the complexity of the attack.

#### 5 Attacks on GIFT-64

#### 5.1 Related-key Rectangle Attack on 25-round GIFT-64

**Determining the Related-key Rectangle Distinguisher.** We utilize a 20-round related-key rectangle distinguisher to attack the 25-round GIFT-64. Choose  $R_0 = 10$  for  $E_0$ ,  $R_1 = 9$  for  $E_1$ ,  $R_m = 1$  for  $E_m$ . Set bw = 4. Apply Alg.2 to search the probability of the 20-round distinguisher.

In Phase 1 of Alg.2, we find sixteen 10-round trails with weight 20.415 for  $E_0$ , marked as  $l_0^1, \dots, l_0^{16}$ . We find eight 9-round trails with weight 13.415 for  $E_1$ , marked as  $l_1^1, \dots, l_1^8$ . The details of  $l_0^1, \dots, l_0^{16}$  and  $l_1^1, \dots, l_1^8$  are listed in Table 12 and Table 13 in App.D.

In Phase 3, we determine the maximum value of  $\hat{p}_i^2 \hat{q}_j^2$ , which is  $\hat{p}_5^2 \hat{q}_8^2 = 2^{-58.557}$ . We choose

In Phase 3, we determine the maximum value of  $\hat{p}_i^2\hat{q}_j^2$ , which is  $\hat{p}_5^2\hat{q}_8^2 = 2^{-58.557}$ . We choose the value of  $\alpha$  and  $\delta$  according to  $S(\alpha_5) = 0x0000000000001000$  and  $S^{-1} \circ P^{-1} \circ K^{-1}(\delta_8) = 0x0000200000000000$ . Finally, we obtain a 20-round related-key rectangle distinguisher with probability  $2^{-n}\hat{p}^2\hat{q}^2 = 2^{-64} \cdot 2^{-58.557}$ . The specifications of the 20-round related-key rectangle distinguisher of GIFT-64 are shown in Table 4. There are 5728 trails in  $C_I(R_0, \alpha, \Delta iniK_0, Bc_{R_0})$  and 312 trails in  $C_O(R_1, \delta, \Delta iniK_1, Bc_{R_1})$ .

Table 4. The specifications of 20-round related-key rectangle distinguisher of GIFT-64

| $R_0 = 10, R_m = 1, R_1 = 9; Bc_{R_0} = 24.415, Bc_{R_1} = 17.415; \hat{p}^2 \hat{q}^2 = 2^{-58.557}$ |                         |                                         |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|--|--|--|--|--|
|                                                                                                       | $\alpha$                | $\Delta iniK_0$                         |  |  |  |  |  |
| $E_0$                                                                                                 | 00 00 00 00 00 00 a0 00 | 0004 0000 0000 0800 0000 0000 0000 0010 |  |  |  |  |  |
|                                                                                                       | δ                       | $\Delta iniK_1$                         |  |  |  |  |  |
| $E_1$                                                                                                 | 04 00 00 00 01 20 10 00 | 2000 0000 0000 0000 0800 0000 0200 0800 |  |  |  |  |  |

We construct the 25-round key-recovery model for GIFT-64, which is shown in Table 5, by appending two rounds at the end of the 20-round distinguisher and appending three rounds at the beginning of the distinguisher.

| input                    | ???? ??? | ?? ???? | ???? | ???? | ???? | ???? | ???? | ???? | ???? | ???? | ???? | ???? | ???? | ???? | ???? |
|--------------------------|----------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| $\Delta Y_1$             | ??0? 1?? | 0 01??  | ?0?? | 1?0? | ?1?0 | 0??? | ?0?? | ??0? | ???0 | 0??? | ?0?? | ??0? | ???0 | 0??? | ?0?? |
| $\Delta Z_1$             | ???? ??? | ?? ???? | ???? | 0000 | 0000 | 0000 | 0000 | 11?? | ???? | ???? | ???? | ???? | 11?? | ???? | ???? |
| $\Delta X_2$             | ???? ??? | ?? ???? | ???? | 0000 | 0000 | 0000 | 0000 | 11?? | ???? | ???? | ???? | ???? | 11?? | ???? | ???? |
| $\Delta Y_2$             | 0?01 003 | 0 000?  | ?000 | 0000 | 0000 | 0000 | 0000 | 0100 | 00?0 | 000? | ?000 | ?000 | 0100 | 00?0 | 000? |
| $\Delta Z_2$             | ???? 000 | 00 ?1?? | 0000 | 0000 | 0000 | 0000 | 0000 | 0001 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ?1?? |
| $\Delta X_3$             | ???? 000 | 00 ?1?? | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ?1?? |
| $\Delta Y_3$             | 1000 000 | 00 0010 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0010 |
| $\Delta Z_3$             | 0000 000 | 0000    | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0010 | 1010 | 0000 | 0000 | 0000 |
| $\Delta X_4 (\alpha)$    | 0000 000 | 00 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 1010 | 0000 | 0000 | 0000 |
| :                        |          |         |      |      |      |      |      |      |      |      |      |      |      |      |      |
| $\Delta X_{24} (\delta)$ | 0000 010 | 0000    | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0001 | 0010 | 0000 | 0001 | 0000 | 0000 | 0000 |
| $\Delta Y_{24}$          | 0000 ??? | 1 0000  | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ???? | ???? | 0000 | ???? | 0000 | 0000 | 0000 |
| $\Delta Z_{24}$          | 00?0 000 | 00 00?? | 0?00 | 0001 | 0000 | ?00? | 00?0 | ?000 | 0000 | ??00 | 000? | 0?00 | 0000 | 0??0 | ?000 |
| $\Delta X_{25}$          | 00?0 000 | 00 00?? | 0?00 | 0001 | 0000 | ?00? | 00?0 | ?010 | 0000 | ??00 | 000? | 0?00 | 0000 | 0??0 | ?000 |
| $\Delta Y_{25}$          | ???? 000 | 00 ???? | ???? | ???? | 0000 | ???? | ???? | ???? | 0000 | ???? | ???? | ???? | 0000 | ???? | ???? |
| $\Delta Z_{25}$          | ??0? ??0 | ???0?   | ??0? | ???0 | ???0 | ???0 | ???0 | 0??? | 0??? | 0??? | 0??? | ?0?? | ?0?? | ?0?? | ?0?? |
| $\overline{output}$      | ??0? ??0 | ???0?   | ??0? | ???0 | ???0 | ???0 | ???0 | 0??? | 0??? | 0??? | 0??? | ?0?? | ?0?? | ?0?? | ?0?? |

Table 5. The 25-round key-recovery model of the related-key rectangle attack for GIFT-64

**Data Collection.** Since there is no whitening key XORed to the plaintext, we collect data in  $\Delta Z_1$ . There are 44 unknown bits in  $\Delta Z_1$  marked as "?", affecting 12 S-boxes in round 1 and three S-boxes in round 2. Thus,  $r_b = 44$  and the number of key bits needed to be guessed in  $E_b$  is  $m_b = 2 \times (12 + 3) = 30$ . Similarly, we have  $r_f = 48$  and  $m_f = 2 \times (12 + 4) = 32$  in  $E_f$ . We utilize the key-recovery model proposed by Zhao *et al.* in [33] to perform the rectangle key-recovery attack.

- 1 Construct  $y = \sqrt{s} \cdot 2^{n/2-r_b}/\hat{p}\hat{q}$  structures of  $2^{r_b}$  plaintexts each. s is the expected number of right quartets. Each structure takes all the possible values of the  $r_b$  active bits while the other  $n-r_b$  bits are fixed to some constant.
- 2 For each structure, query the  $2^{r_b}$  plaintexts by the encryption oracle under  $K_1, K_2, K_3$  and  $K_4$  where  $K_1$  is the secret key,  $K_2 = K_1 \oplus \Delta K$ ,  $K_3 = K_1 \oplus \nabla K$  and  $K_4 = K_1 \oplus \Delta K \oplus \nabla K$ . Obtain four plaintext-ciphertext sets denoted by  $L_1, L_2, L_3$  and  $L_4$ . Insert  $L_2$  and  $L_4$  into hash tables  $H_1$  and  $H_2$  indexed by the  $r_b$  bits of the plaintexts.
- 3 Guess the  $m_b$  bits subkey involved in  $E_b$ , then:
  - (a) Initialize a list of  $2^{m_f}$  counters, each of which corresponds to a  $m_f$  bits subkey guess.
  - (b) For each structure, partially encrypt plaintext  $P_1 \in L_1$  to the position of  $\alpha$  by the guessed subkeys, and partially decrypt it to the plaintext  $P_2$  after XORing the known difference  $\alpha$ . Then we look up  $H_1$  to find the plaintext-ciphertext indexed by the  $r_b$  bits. Do the same operations with  $P_3$  and  $P_4$ . We get two sets:

$$S_1 = \{ (P_1, C_1, P_2, C_2) : (P_1, C_1) \in L_1, (P_2, C_2) \in L_2, E_{b_{K_1}}(P_1) \oplus E_{b_{K_2}}(P_2) = \alpha \},$$

$$S_2 = \{ (P_3, C_3, P_4, C_4) : (P_3, C_3) \in L_3, (P_4, C_4) \in L_4, E_{b_{K_2}}(P_3) \oplus E_{b_{K_4}}(P_4) = \alpha \}.$$

- (c) The size of  $S_1$  and  $S_2$  are both  $M=y\cdot 2^{r_b}$ . Insert  $S_1$  into a hash table  $H_3$  indexed by the  $n-r_f$  bits of  $C_1$  and the  $n-r_f$  bits of  $C_2$  in which the output difference of  $E_f$  are all "0". For each element of  $S_2$ , we find the corresponding  $(P_1,C_1,P_2,C_2)$  satisfying  $C_1\oplus C_3=0$  and  $C_2\oplus C_4=0$  in the  $n-r_f$  bits. In total, we obtain  $M^2\cdot 2^{-2(n-r_f)}$  quartets.
- (d) We use all the quartets obtained in step (c) to recover the subkeys involved in  $E_f$ . This step is a guess and filter procedure. We denote the time complexity in this step as  $\varepsilon$ .
- (e) Select the top  $2^{m_f-h}$  hits in the counter to be the candidates which delivers a h bits or higher advantage.
- (f) Exhaustively search the remaining  $k m_b m_f$  unknown key bits in the master key.

**Key Recovery.** Choose the expected number of right quartets s to be 2, then we have  $y = 2^{17.78}$  and  $M = y \cdot 2^{r_b} = 2^{61.78}$ . Make use of all the  $M^2 \cdot 2^{-2(n-r_f)} = 2^{91.56}$  quartets obtained in step 3(c) to recover the subkeys involved in  $E_f$ .

The following are the details of the guess and filter procedure in step 3(d), which are similar to the process used in [34].  $\Delta X_i[u, \dots, v]$  represents the  $u^{th}$  bit,  $\dots$ , the  $v^{th}$  bit of  $\Delta X_i$ .

- d.1  $\Delta Y_{25}[63, 62, 61, 60]$  can be computed by the cipertext pair  $(C_1, C_3)$  and  $\Delta X_{25}[63, 62, 61, 60]$  is known. We guess the  $2^2$  possible values of the involved key bits in this S-box and partially decrypt the cipertexts  $(C_1, C_3)$  and  $(C_2, C_4)$ . Then check whether  $\Delta X_{25}[63, 62, 60]$  is 0 or not. If yes, we keep the guessed key and the quartet, otherwise discard it. There are about  $2^{91.56} \cdot 2^2 \cdot 2^{-6} = 2^{87.56}$  remaining quartets associated with the guessed 2-bit keys, *i.e.* for each of the  $2^2$  candidate values of the 2-bit involved keys, there are  $2^{85.56}$  quartets remain.
- d.2 Carry out a similar process to all the active S-boxes in round 25. There are about  $2^{87.56} \cdot 2^{(2-4)\times 4} \cdot 2^{(2-6)\times 6} \cdot 2^{(2-8)} = 2^{87.56-38} = 2^{49.56}$  remaining quartets associated with the guessed keys.
- d.3 Partially decrypt all the remaining quartets with the obtained key bits in steps 1 and 2.  $\Delta Y_{24}[59, 58, 57, 56]$  can be calculated from the end of the distinguisher. Guess the  $2^2$  possible values of the key bits involved in this S-box. For each guess, only  $2^{49.56} \cdot 2^{2-8} = 2^{43.56}$  quartets remain. Carry out a similar process to all the active S-boxes in round 24, there are about  $2^{43.56} \cdot 2^{(2-8)\times 3} = 2^{25.56}$  quartets remain.
- d.4 Utilize the remaining quartets to count the  $m_f = 32$  key bits. The two right quartets will all vote for the right key. The  $2^{25.56}$  random quartets will vote for a random key with probability  $2^{25.56-m_f} = 2^{-6.44}$ .
- d.5 Choose h = 22. Select the top  $2^{m_f h}$  hits in the counter to be the candidates. Exhaustively search the remaining  $128 m_b m_f$  unknown key bits in the master key.

Complexity. The data complexity is  $4M = 4y \cdot 2^{r_b} = 2^{63.78}$  chosen plaintexts. We need 4M encryptions in step 2.  $2^{m_b} \cdot 3M = 2^{93.36}$  looking-up-table operations are needed in step 3(b) and 3(c). We need  $2^{m_b} \cdot M^2 \cdot 2^{-2(n-r_f)} \cdot 4 \cdot 2^2/25 = 2^{120.92}$  encryptions and  $2^{k-h} = 2^{106}$  encryptions to recover the master key. So the **time complexity** is bounded by  $2^{120.92}$ . The **memory complexity** is bounded by the size of sets  $H_1, H_2, H_3, S_1$  and  $S_2$ , which is  $5M = 2^{64.10}$ .

Success Probability. According to the success probability calculation method of differential attacks proposed in [30], for both boomerang and rectangle attack, the success probability is

$$P_r = \Phi(\frac{\sqrt{sS_N} - \Phi^{-1}(1 - 2^{-h})}{\sqrt{S_N + 1}}),\tag{12}$$

in which  $S_N = \hat{p}^2 \hat{q}^2 / 2^{-n}$  is the signal-to-noise ratio.

The success probability of the 25-round attack on GIFT-64 is 74.00%.

#### 5.2 Related-key Rectangle Attack on 24-round GIFT-64

**Data Collection and Key Recovery.** To prepare the plaintexts, we collect data in  $\Delta Z_2$  of Table 5. There are ten unknown bits in  $\Delta Z_2$  marked as "?", affecting three S-boxes in round 2. Thus,  $r_b = 10$  and the number of key bits needed to be guessed in  $E_b$  is  $m_b = 2 \times 3 = 6$ . Similarly,

 $r_f = 48$  and  $m_f = 2 \times (12 + 4) = 32$  in  $E_f$ . The following data collection and key recovery process are similar to the process of the 25-round attack in Sect.5.1.

Construct  $y = \sqrt{s} \cdot 2^{n/2-r_b}/\hat{p}\hat{q}$  structures of  $2^{r_b}$  plaintexts each. For each structure, query the  $2^{r_b}$  plaintexts by the encryption oracle under  $K_1, K_2, K_3$  and  $K_4$ . There are about  $M^2 \cdot 2^{-2(n-r_f)}$  quartets left after executing step 3(c). Choosing s = 2, we have  $y = 2^{51.78}$ ,  $M = y \cdot 2^{r_b} = 2^{61.78}$  and  $M^2 \cdot 2^{-2(n-r_f)} = 2^{91.56}$ . After the key guessing and filtering process, there are about  $M^2 \cdot 2^{-2(n-r_f)} \cdot 2^{-66} = 2^{25.56}$  remaining quartets. Choose h = 22 and select the top  $2^{m_f - h}$  hits in the counter to be the candidates. Exhaustively search the remaining  $128 - m_b - m_f$  unknown key bits in the master key.

Complexity and Success Probability. The data complexity is  $4M = 2^{63.78}$  chosen plaintexts. We need  $2^{m_b} \cdot 3M = 2^{69.36}$  looking-up-table operations in step 3(b) and 3(c). We need  $2^{m_b} \cdot M^2 \cdot 2^{-2(n-r_f)} \cdot 4 \cdot 2^2/24 = 2^{96.98}$  encryptions and  $2^{k-h} = 2^{106}$  encryptions to recover the master key. So the **time complexity** is bounded by  $2^{106}$ . The **memory complexity** is bounded by  $5M = 2^{64.10}$ . The success probability is 74.00% according to Eq.12.

#### 6 Attacks on GIFT-128

#### 6.1 Single-key Differential Attack on 26-round GIFT-128

In [25], Li et al. found a 20-round differential trail  $l^0$  of GIFT-128 with probability  $p=2^{-121.415}$ . The propagation of  $l^0$  is shown in Table 11 of App.D. The 26-round differential attack was obtained by extending four rounds backward and two rounds forward. The data complexity is  $2^3/p=2^{124.415}$ . The time complexity is bounded by the data complexity. The memory complexity is the cost of the key filter counter, which is  $2^{109}$ .

Next, we search the clustering of  $l^0$ . According to Definition 4, we choose  $Bc_{20} = 124$ ,

Then call Alg.3 to search  $\mathcal{C}(20, \Delta X_1, P(\Delta Y_{20}), Bc_{20})$ . We find four trails:  $l^0$  with weight 121.415,  $l^2$  and  $l^3$  with weight 122.415 and  $l^4$  with weight 123.415. The probability of the 20-round single-key distinguisher that satisfies Eq.13 is increased to  $\hat{p} = 2^{-120.245}$ . The details of  $l^i(0 \leq i < 4)$  are demonstrated in Table 11.

Hence, the data complexity of the 26-round differential attack on GIFT-128 is reduced to  $2^3/\hat{p} = 2^{123.245}$ . The time complexity is reduced to  $2^{123.245}$  as well. The cost of the key filter counter does not change.

#### 6.2 Related-key Rectangle Attack on 23-round GIFT-128

**Determining the Related-key Rectangle Distinguisher.** We utilize a 19-round related-key rectangle distinguisher to attack the 23-round GIFT-128. Set  $R_0 = 9$  for  $E_0$ ,  $R_1 = 9$  for  $E_1$ ,  $R_m = 1$  for  $E_m$  and bw = 3. Apply Alg.2 to search the probability of the 19-round distinguisher.

In Phase 1 of Alg.2, we find two 9-round trails with weight 30.000 for  $E_0$ , marked as  $l_0^1, l_0^2$ . We find two 9-round trails with weight 30.000 for  $E_1$ , marked as  $l_1^1, l_1^2$ . The details of  $l_0^1, l_0^2$  and  $l_1^1, l_1^2$  are listed in Table 14 and Table 15 of App.D.

Table 6. The specifications of the 19-round related-key rectangle distinguisher of GIFT-128

| $R_0 = 9, R_m = 1, R_1 = 9; Bc_{R_0} = 33.000, Bc_{R_1} = 33.000; \hat{p}^2 \hat{q}^2 = 2^{-109.626}$ |                                     |                                         |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------|--|--|--|--|
| F.                                                                                                    | $\alpha$                            | $\Delta iniK_0$                         |  |  |  |  |
| $E_0$                                                                                                 | 000000000000000a000000000060000000  | 8000 0000 0000 0000 0000 0000 0002 0000 |  |  |  |  |
|                                                                                                       | δ                                   | $\Delta iniK_1$                         |  |  |  |  |
| $E_1$                                                                                                 | 00200000000000000000000000000000000 | 0000 0000 0000 0000 0002 0000 0002 0000 |  |  |  |  |

Finally, we obtain a 19-round related-key rectangle distinguisher with probability  $\mathbf{2}^{-n}\hat{p}^2\hat{q}^2 = \mathbf{2}^{-128} \cdot \mathbf{2}^{-109.626}$ . The specifications of the 19-round distinguisher are shown in Table 6. There are 3952 trails in  $\mathcal{C}_I(R_0, \alpha, \Delta iniK_0, Bc_{R_0})$  and 2944 trails in  $\mathcal{C}_O(R_1, \delta, \Delta iniK_1, Bc_{R_1})$ .

We construct the 23-round key-recovery model for GIFT-128, which is shown in Table 7, by appending two rounds at the end of the 19-round distinguisher and two rounds at the beginning of the distinguisher.

Data Collection and Key Recovery. To prepare the plaintexts, we collect data in  $\Delta Z_1$  of Table 7. There are nine unknown bits in  $\Delta Z_1$  marked as "?", affecting three S-boxes in round 1. Thus,  $r_b = 9$  and the number of key bits needed to be guessed in  $E_b$  is  $m_b = 2 \times 3 = 6$ . We have  $r_f = 52$  and  $m_f = 2 \times (13 + 4) = 34$  in  $E_f$ . The following data collection and key recovery process are similar to the process of the 25-round attack in Sect.5.1.

Construct  $y=\sqrt{s}\cdot 2^{n/2-r_b}/\hat{p}\hat{q}$  structures of  $2^{r_b}$  plaintexts each. For each structure, query the  $2^{r_b}$  plaintexts by the encryption oracle under  $K_1,K_2,K_3$  and  $K_4$ . There are about  $M^2\cdot 2^{-2(n-r_f)}$  quartets left after executing step 3(c). Choosing s=2, we have  $y=2^{110.31},\ M=y\cdot 2^{r_b}=2^{119.31}$  and  $M^2\cdot 2^{-2(n-r_f)}=2^{86.62}$ . After the key guessing and filtering process, there are about  $M^2\cdot 2^{-2(n-r_f)}\cdot 2^{-(48+24)}=2^{14.62}$  remaining quartets. The two right quartets will all vote for the right key. The  $2^{14.62}$  random quartets will vote for a random key with probability  $2^{14.62-m_f}=2^{-19.38}$ . Choose h=22 and select the top  $2^{m_f-h}$  hits in the counter to be the candidates. Exhaustively search the remaining  $128-m_b-m_f$  unknown key bits in the master key.

Complexity and Success Probability. The data complexity is  $4M = 2^{121.31}$  chosen plaintexts. We need  $2^{m_b} \cdot 3M = 2^{126.89}$  looking-up-table operations in step 3(b) and 3(c). We need  $2^{m_b} \cdot M^2 \cdot 2^{-2(n-r_f)} \cdot 4 \cdot 2^2/23 = 2^{92.10}$  encryptions and  $2^{k-h} = 2^{106}$  encryptions to recover the master key. So the **time complexity** is bounded by  $2^{126.89}$ . The **memory complexity** is bounded by  $5M = 2^{121.63}$ . The success probability is 92.01% according to Eq.12.

The related-key boomerang attack on 22-round GIFT-128 is demonstrated in App.B.

#### 7 Conclusion and Future Work

In this paper, we carry out a further research on the resistance of GIFT against single-key and related-key differential cryptanalysis. We succeed in finding related-key differential trails of GIFT-64/128 for up to 15/14 rounds. We find the longest related-key differential trails for GIFT-128 and provide tighter lower bounds for the probabilities of the optimal related-key trails for both GIFT-64 and GIFT-128.

We find a 20-round related-key boomerang distinguisher of GIFT-64 with probability  $2^{-58.557}$  and construct a 25-round related-key rectangle attack, which is the longest attack on GIFT-64. We obtain a 19-round related-key boomerang distinguisher of GIFT-128 with probability  $2^{-109.626}$  and propose a 23-round related-key rectangle attack, which is the longest related-key attack on GIFT-128. The probability of the 20-round single-key differential distinguisher of GIFT-128 is also increased from  $2^{-121.415}$  to  $2^{-120.245}$ . We improve the time complexity of the 26-round differential attack on GIFT-128 from  $2^{124.415}$  to  $2^{123.245}$ .

| input                    | 0000 0000 0000 0000 11?? ???? ???? ????                                         |
|--------------------------|---------------------------------------------------------------------------------|
| inpac                    | 0000 0000 0000 0000 0000 0000 0000 0000 0000                                    |
| $\Delta Y_1$             | 0000 0000 0000 0000 0100 00?0 000? 1000 ?100 0??0 00?? ?00? 0000 0000 0000 0000 |
| $\Delta I_1$             | 0000 0000 0000 0000 0000 0000 0000 0000 0000                                    |
|                          | 0000 11?? ?1?? 0000 0000 0000 0000 0000                                         |
| $\Delta Z_1$             | 0000 0000 0000 0000 0000 0000 0000 0000 0000                                    |
| 4                        | 0000 11?? ?1?? 0000 0000 0000 0000 0000                                         |
| $\Delta X_2$             | 0000 0000 0000 0000 0000 0000 0000 0000 0000                                    |
|                          | 0000 0100 0010 0000 0000 0000 0000 0000 0000 0000 0000                          |
| $\Delta Y_2$             | 0000 0000 0000 0000 0000 0000 0000 0000 0000                                    |
|                          | 0000 0000 0000 0000 0000 0000 0000 0000 0000                                    |
| $\Delta Z_2$             | 0000 0000 0000 0000 0000 0000 0000 0110 0000 0000 0000 0000 0000                |
|                          | 0000 0000 0000 0000 0000 0000 0000 0000 0000                                    |
| $\Delta X_3 (\alpha)$    | 0000 0000 0000 0000 0000 0000 0000 0000 0000                                    |
|                          | 0000 0000 0000 0000 0000 0000 0000 0000 0110 0000 0000 0000 0000 0000 0000      |
| •                        |                                                                                 |
| $\Delta X_{22} (\delta)$ | 0000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000                          |
|                          | 0000 0000 0000 0000 0000 0000 0100 0000 0000 0000 0000 0000 0010 0000 0010      |
| $\Delta Y_{22}$          | 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000                          |
| $\Delta r_{22}$          | 0000 0000 0000 0000 0000 0000 ???1 0000 0000 0000 0000 0000 ???? 0000 ???? 0000 |
| $\Delta Z_{22}$          | 000? 0000 0000 0000 0000 0001 0000 0?0? ?000 0000 0000 0000 0000 ?000 0000 ?0?0 |
| $\Delta Z_{22}$          | 0?00 0000 0000 0000 0000 0?00 0000 0?0? 00?0 0000 0000 0000 0000 00?0 0000 ?0?0 |
| 4 75                     | 000? 0000 0010 0000 0000 0001 0000 0?0? ?000 0000 0000 0000 0000 ?000 0000 ?0?0 |
| $\Delta X_{23}$          | 0?00 0000 0000 0000 0000 0?00 0000 0?0? 00?0 0000 0000 0000 0000 00?0 0000 ?0?0 |
|                          | ???? 0000 ???? 0000 0000 ???? 0000 ???? ???? 0000 0000 0000 0000 ???? 0000 ???? |
| $\Delta Y_{23}$          | ???? 0000 0000 0000 0000 ???? 0000 ???? ???? 0000 0000 0000 0000 ???? 0000 ???? |
|                          | 0?0? ?0?0 0?00 ?0?0 0?00 ?0?0 0?00 ?0?0 ?0?0 0?0? 00?0 0?0? 00?0 0?0? 00?0 0?0? |
| $\Delta Z_{23}$          | 0?0? ?0?0 000? ?0?0 000? ?0?0 000? ?0?0 ?0?0 0?0? ?000 0?0? ?000 0?0? ?000 0?0? |
|                          | 0?0? ?0?0 0?00 ?0?0 0?00 ?0?0 0?00 ?0?0 ?0?0 ?0?0 0?0? 00?0 0?0? 00?0 0?0? 00?0 |
| output                   | 0707 7070 0007 7070 0007 7070 0007 7070 7070 0707 7000 0707 7000 0707 7000 0707 |
|                          | 0.0. 10.0 000. 10.0 000. 10.0 000. 10.0 10.0 0.0. 1000 0.0. 1000 0.0.           |

Table 7. The 23-round key-recovery model of the related-key rectangle attack for GIFT-128

Among the 32 candidates of the NIST lightweight crypto standardization process, there are four candidates which are based on GIFT: GIFT-COFB, HYENA, SUNDAE-GIFT, LOTUS-AEAD and LOCUS-AEAD. In the next work, we will study the security of these four lightweight authenticated encryption schemes against single-key/related-key differential cryptanalysis. Besides, We will try to apply Alg.1 and Alg.2 to other SPN ciphers with linear key schedule, for example, SKINNY [9].

#### Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments. This work is supported by the Natural Science Foundation of China (61379138).

#### References

- The specification of GIFT-COFB, Last accessed 29 March 2019, https://csrc.nist. gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/gift-cofb-spec-round2.pdf
- The specification of HYENA, Last accessed 29 March 2019, https://csrc.nist.gov/CSRC/media/ Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/hyena-spec-round2. pdf

- 3. The specification of SUNDAE-GIFT, Last accessed 29 March 2019, https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SUNDAE-GIFT-spec-round2.pdf
- 4. The specification of LOTUS-AEAD and LOCUS-AEAD, Last accessed 27 September 2019, https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/lotus-locus-spec-round2.pdf
- NIST Homepage: the round 2 candidates of the NIST lightweight crypto standardization process, Last accessed 15 July 2020, https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates
- Aoki, K., Kobayashi, K., Moriai, S.: Best differential characteristic search of FEAL. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 41–53. Springer, Heidelberg (1997), https://doi.org/10.1007/BFb0052333
- Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A small present towards reaching the limit of lightweight encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Heidelberg (2017), https://doi.org/10.1007/978-3-319-66787-4\_16
- 8. Bao, Z., Zhang, W., Lin, D.: Speeding up the search algorithm for the best differential and best linear trails. In: Lin, D., Yung, M., Zhou, J. (eds.) Inscrypt 2014. LNCS, vol. 8957, pp. 259–285. Springer, Heidelberg (2014), https://doi.org/10.1007/978-3-319-16745-9\_15
- 9. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5\_5, https://doi.org/10.1007/978-3-662-53008-5\_5
- Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptology 7(4), 229–246 (1994), https://doi.org/10.1007/BF00203965
- 11. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001), https://doi.org/10.1007/3-540-44987-6\_21
- 12. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer, Heidelberg (2005), https://doi.org/10.1007/11426639\_30
- 13. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1990), https://doi.org/10.1007/3-540-38424-3\_1
- Biryukov, A., Cannière, C.D., Dellkrantz, G.: Cryptanalysis of SAFER++. In: Boneh, D. (ed.) CRYP-TO 2003. LNCS, vol. 2729, pp. 195–211. Springer, Heidelberg (2003), https://doi.org/10.1007/978-3-540-45146-4-12
- 15. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg (2009), https://doi.org/10.1007/978-3-642-10366-7\_1
- Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007), https://doi.org/10.1007/978-3-540-74735-2\_31
- 17. Chen, H., Zong, R., Dong, X.: Improved differential attacks on GIFT-64. In: Zhou, J., Luo, X., Shen, Q., Xu, Z. (eds.) ICICS 2019. LNCS, vol. 11999, pp. 447–462. Springer, Heidelberg (2019), https://doi.org/10.1007/978-3-030-41579-2\_26
- Chen, L., Wang, G., Zhang, G.: MILP-based related-key rectangle attack and its application to GIFT, Khudra, MIBS. Comput. J. 62(12), 1805–1821 (2019), https://doi.org/10.1093/comjnl/bxz076
- 19. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table: A new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 683–714. Springer, Heidelberg (2018), https://doi.org/10.1007/978-3-319-78375-8\_22
- Daemen, J., Rijmen, V.: The Design of Rijndael: AES The Advanced Encryption Standard. Information Security and Cryptography, Springer, Heidelberg (2002), https://doi.org/10.1007/978-3-662-04722-4
- 21. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidelberg (2010), https://doi.org/10.1007/978-3-642-14623-7\_21
- 22. Ji, F., Zhang, W., Ding, T.: Improving matsui's search algorithm for the best differential/linear trails and its applications for DES, DESL and GIFT. IACR Cryptol. ePrint Arch. **2019**, 1190 (2019), https://eprint.iacr.org/2019/1190

- Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2000), https://doi.org/10.1007/3-540-44706-7\_6
- 24. Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The related-key rectangle attack application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004), https://doi.org/10.1007/978-3-540-27800-9\_11
- 25. Li, L., Wu, W., Zheng, Y., Zhang, L.: The relationship between the construction and solution of the MILP models and applications. IACR Cryptology ePrint Archive 2019, 49 (2019), https://eprint.iacr.org/2019/049
- Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey settings (long paper).
   IACR Trans. Symmetric Cryptol. 2017(3), 37–72 (2017), https://doi.org/10.13154/tosc.v2017.
   i3.37-72
- 27. Liu, Y., Sasaki, Y.: Related-key boomerang attacks on GIFT with automated trail search including BCT effect. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 555–572. Springer, Heidelberg (2019), https://doi.org/10.1007/978-3-030-21548-4\_30
- Matsui, M.: On correlation between the order of S-boxes and the strength of DES. In: Santis, A.D. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366-375. Springer, Heidelberg (1994), https://doi.org/10.1007/BFb0053451
- 29. Ohta, K., Moriai, S., Aoki, K.: Improving the search algorithm for the best linear expression. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 157–170. Springer, Heidelberg (1995), https://doi.org/10.1007/3-540-44750-4\_13
- 30. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J. Cryptology **21**(1), 131–147 (2008), https://doi.org/10.1007/s00145-007-9013-7
- 31. Wagner, D.A.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999), https://doi.org/10.1007/3-540-48519-8\_12
- 32. Wang, H., Peyrin, T.: Boomerang switch in multiple rounds. application to AES variants and Deoxys. IACR Trans. Symmetric Cryptol. **2019**(1), 142–169 (2019), https://doi.org/10.13154/tosc.v2019.i1.142–169
- 33. Zhao, B., Dong, X., Jia, K.: New related-tweakey boomerang and rectangle attacks on Deoxys-BC including BDT effect. IACR Trans. Symmetric Cryptol. **2019**(3), 121–151 (2019), https://doi.org/10.13154/tosc.v2019.i3.121-151
- 34. Zhao, B., Dong, X., Meier, W., Jia, K., Wang, G.: Generalized related-key rectangle attacks on block ciphers with linear key schedule: applications to SKINNY and GIFT. Des. Codes Cryptogr. 88(6), 1103–1126 (2020), https://doi.org/10.1007/s10623-020-00730-1
- 35. Zhou, C., Zhang, W., Ding, T., Xiang, Z.: Improving the MILP-based security evaluation algorithm against differential/linear cryptanalysis using a divide-and-conquer approach. IACR Trans. Symmetric Cryptol. 2019(4), 438–469 (2019), https://doi.org/10.13154/tosc.v2019.i4.438-469
- 36. Zhu, B., Dong, X., Yu, H.: MILP-based differential attack on round-reduced GIFT. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 372–390. Springer, Heidelberg (2019), https://doi.org/10.1007/978-3-030-12612-4\_19

#### A Improved Matsui's Algorithm for GIFT

The improved Matsui's algorithm for GIFT proposed in [22] is demonstrated in Alg.3. There are ten different weights of the difference propagations for the new 8-bit S-box in GIFT, wich are denoted by the new table:

 $WeightTable[10] = \{6.000, 5.000, 4.415, 4.000, 3.415, 3.000, 2.830, 2.000, 1.415, 0.000\}.$ 

To implement speeding-up method-1, the output differences of each S-box are classified according to the corresponding weights and one new table is constructed as follows:

#### • DDTwY[SboxN][WeightN][OutN]

DDTwY[t][j][r] represents the  $r^{th}$  output difference of the  $t^{th}$  S-box with weight WeightTable[j]. SboxN represents the index of the S-box. It ranges from 1 to ns. WeightN represents the index of the weights. It ranges from 0 to 9. OutN represents the index of the output difference. It ranges from 0 to 255.

#### Algorithm 3 Improved Matsui's Algorithm for GIFT

**Require:**  $R (\geq 3)$ ;  $B_1, B_2, \dots, B_{R-1}$ ;  $Bc_R$ ; WeightTable[10]; ns := n/8 **Ensure:**  $B_R = Bc_R$ ; the optimal single-key differential trails of R-round

```
1: Generate Tables:
                                                                   21: Procedure Round-1:
 2: DDTwY[SboxN][WeightN][OutN]
                                                                   22: w_1 \leftarrow 0, \Delta Y_1 \leftarrow 0, t \leftarrow 1
                                                                   23: call Sbox-1(t, w_1)
 3: Function Sbox-1(t, w_1):
 4: for j = 9 to 0 do
                                                                   24: Procedure Round-i, 2 \le i \le R - 1:
 5:
        \alpha \leftarrow w_1 + \text{WeightTable}[j]
                                                                   25: \Delta X_i \leftarrow P(\Delta Y_{i-1})
        if [\alpha, B_{R-1}] \geq Bc_R then
                                                                   26: for each \Delta Y_i do
 6:
                                                                   27:
 7:
                                                                           w_i \leftarrow W(\Delta X_i, \Delta Y_i)
                                                                           if B_{R-i} + \sum_{j=1}^{i} w_j \geq Bc_R then
 8:
        else
                                                                   28:
           for each DDTwY[t][j][r] do
 9:
                                                                   29:
               \Delta Y_1^t \leftarrow \text{DDTwY}[t][j][r] 
/* \Delta Y_1^t is the t^{th} byte of \Delta Y_1 */
                                                                   30:
                                                                           else
10:
                                                                   31:
                                                                               call Round-(i+1)
11:
12:
              if t < ns then
                                                                   32:
                                                                            end if
13:
                 call Sbox-1(t+1,\alpha)
                                                                   33: end for
              else
14:
                                                                   34: Procedure Round-R:
                 w_1 \leftarrow \alpha
15:
                                                                   35: \Delta X_R \leftarrow P(\Delta Y_{R-1})
                 call Round-2
16:
                                                                   36: w_R \leftarrow min_{\Delta Y_R} W(\Delta X_R, \Delta Y_R)
37: if \Sigma_{j=1}^R w_j \leq Bc_R then
17:
              end if
18:
           end for
                                                                           Bc_R = \sum_{j=1}^R w_j
        end if
19:
20: end for
                                                                   39: end if
                                                                   40: return to the upper procedure
```

#### B Related-key Boomerang Attack on 22-round GIFT-128

#### B.1 Determining the Related-key Boomerang Distinguisher.

#### B.2 Data Collection.

We collect data of the value of *output* in Table 7. There are 52 unknown bits in *output* marked as "?", affecting 13 S-boxes in round 23 and four S-boxes in round 22. Thus,  $r_f = 52$  and the number of key bits needed to be guessed in  $E_f$  is  $m_f = 34$ . We utilize the key-recovery model proposed by Zhao *et al.* in [33] to perform the boomerang key-recovery attack:

- 1 Choose  $y = s/(2^{r_f} \cdot \hat{p}^2 \hat{q}^2)$  structures of  $2^{r_f}$  ciphertexts each. s is the expected number of right quartets. Each structure takes all the possible values for the  $r_f$  active bits while the other  $n r_f$  bits are fixed to some constant.
- 2 For each structure, we obtain the plaintext  $P_1$  for each ciphertext  $C_1$  by calling the decryption oracle under  $K_1$ . Compute  $P_2$  by  $P_2 = P_1 \oplus \alpha$  and obtain the ciphertext  $C_2$  by  $E_{K_2}(P_2)$ . Here we gain a set:

$$L_1 = \{(P_1, C_1, P_2, C_2) : P_1 = E_{K_1}^{-1}(C_1), P_2 = P_1 \oplus \alpha, C_2 = E_{K_2}(P_2)\}.$$

Construct the set  $L_2$  under  $K_3$  and  $K_4$  in a similar way:

$$L_2 = \{(P_3, C_3, P_4, C_4) : P_3 = E_{K_3}^{-1}(C_3), P_4 = P_3 \oplus \alpha, C_4 = E_{K_4}(P_4)\}.$$

- 3 Insert  $L_1$  into a hash table  $H_1$  indexed by the  $n-r_f$  bits of  $C_2$ . For each element of  $L_2$ , find the corresponding  $(P_1, C_1, P_2, C_2)$  colliding in the  $n-r_f$  bits. We gain a total of  $y \cdot 2^{2r_f (n-r_f)} = y \cdot 2^{3r_f n}$  quartets.
- 4 The process that recovers the subkeys involved in  $E_f$  is the same as the one in the related-key rectangle attack in Sect.5.1, The complexity of this step is denoted as  $\varepsilon$ .
- 5 Select the top  $2^{m_f-h}$  hits in the counter to be the candidates which delivers a h bits or higher advantage. Exhaustively search the remaining  $k m_f$  unknown key bits in the master key.

#### B.3 Key Recovery.

Choose the expected number of right quartets s to be 2, then we have  $y = s/(2^{r_f} \cdot \hat{p}^2 \hat{q}^2) = 2^{58.63}$  and  $y \cdot 2^{r_f} = 2^{110.63}$ . Make use of all the  $y \cdot 2^{3r_f-n} = 2^{86.63}$  quartets obtained in step 3 to recover the subkeys involved in  $E_f$ . The key recovery process are similar to the process of the 25-round attack in Sect.5.1. There are about  $2^{86.63} \cdot 2^{-(48+24)} = 2^{14.63}$  quartets remain after the key guessing and filtering procedure. Choose h = 22 and select the top  $2^{m_f-h}$  hits in the counter to be the candidates. Exhaustively search the remaining  $128 - m_f$  unknown key bits in the key.

#### B.4 Complexity and Success Probability.

The data complexity is  $4y \cdot 2^{r_f} = 2^{112.63}$  adapted chosen ciphertexts and plaintexts. We need  $4y \cdot 2^{r_f}$  chosen ciphertexts and plaintexts and  $y \cdot 2^{r_f}$  looking-up-table operations to construct quartets.  $y \cdot 2^{3r_f - n} \cdot \varepsilon = 2^{86.63} \cdot 4 \cdot 2^2/22$  encryptions are needed in the key recovery process. Thus, the **time complexity** is bounded by  $4y \cdot 2^{r_f} = 2^{112.63}$ . The **memory complexity** is the size of each structure and the size of the key counter, which is bounded by  $2^{r_f} = 2^{52}$ . The success probability is 92.01% according to Eq.12.

# C Analyzing the Probability of the 19-round Distinguisher proposed in [18]

The propagation of the 2-round boomerang switch  $E_m$  is illustrated in Fig.4. The details of  $E_m$  in the 19-round related-key rectangle distinguisher for GIFT-64 proposed in [18] is shown in Table 8. The authors calculated the value of r as 1 according to the BCT. The probability of the rectangle distinguisher is  $2^{-n} \cdot \hat{p}^2 \hat{q}^2 r = 2^{-64} \cdot 2^{-50}$ . It should be noted that at the time the authors write the paper [18], the BDT technology has not been proposed yet.

**Table 8.** The propagation of  $E_m$  of the 19-round related-key rectangle distinguisher for GIFT-64 in [18]

| rounds |                  | $E_0$                                              |                                                        | $E_1$                                              |
|--------|------------------|----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|
| 10     | $\beta$ $\beta'$ | 01 00 00 00 01 02 02 00<br>08 00 00 00 06 0a 06 00 | $\gamma''$                                             | 00 00 09 06 00 00 00 85                            |
| 11     | $\beta''$        | 00 a2 00 00 80 20 00 44                            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 00 00 05 0c 0a 00 00 00<br>00 00 08 02 01 00 00 00 |

 $^{1}\beta' = S(\beta), \ \beta'' = K \circ P(\beta'), \ \gamma' = S^{-1}(\gamma), \ \gamma'' = P^{-1} \circ K^{-1}(\gamma').$ 

It has been proved in [32] that when  $R_m = 2$ , the probability of  $E_m$  should be evaluated by the BDT and the iBDT, which is

$$r = 2^{-2n} \Sigma_{1 \le i \le 2\text{ns}}(\text{BDT}(\beta[i], \beta'[i], \gamma''[i]) \times \text{iBDT}(\gamma[i], \gamma'[i], \beta''[i])).$$

Meanwhile,

BDT(
$$\beta[i], \beta'[i], \gamma''[i]$$
) = DDT( $\beta[i], \beta'[i]$ ), if  $\gamma''[i] = 0$ ;  
iBDT( $\gamma[i], \gamma'[i], \beta''[i]$ ) = DDT( $\gamma[i], \gamma'[i]$ ), if  $\beta''[i] = 0$ ;

 $\beta[2\mathrm{ns}]||\cdots||\beta[1]:=\beta,\ \gamma[2\mathrm{ns}]||\cdots||\gamma[1]:=\gamma.$  We correct the value of r according to the data in Table 8:

$$r = 2^{-2n} \Sigma_{1 \leq i \leq 16}(\text{BDT}(\beta[i], \beta'[i], \gamma''[i]) \times \text{iBDT}(\gamma[i], \gamma'[i], \beta''[i]))$$
  
=  $2^{-2n} \Sigma_{1 \leq i \leq 16}(\text{DDT}(\beta[i], \beta'[i]) \times \text{DDT}(\gamma[i], \gamma'[i]))$   
=  $2^{-18}$ .

The value of the DDT is shown in Table 9. As a result, the probability of the rectangle distinguisher in [18] is  $2^{-n} \cdot p^2 q^2 r = 2^{-64} \cdot 2^{-68}$ .

It has been introduced in Sect.2.4 that only if  $p^2q^2r > 2^{-n}$  can we count more right quartets than random noise through the related-key rectangle distinguisher. For GIFT-64, the distinguisher should satisfy  $p^2q^2r > 2^{-64}$ . Therefore, the 23-round related-key rectangle attack proposed in [18] and the 24-round related-key rectangle attack proposed in [34] are invalid.

3 4 a c d е 2 2  $\overline{2}$  $\Delta_i$ b С d е f 

Table 9. Differential Distribution Table (DDT) of GIFT S-box

#### D (Related-key) Differential Trails

Table 10. Two related-key differential trails of GIFT-64 and GIFT-128

|    | ± /                         |         | 0000 0002 0000 0000 0000, weight = 11.000 |        |  |  |  |
|----|-----------------------------|---------|-------------------------------------------|--------|--|--|--|
|    | $l_0$ : a 15-round trail of | GIFT-64 | $l_1$ : a 14-round trail of GIFT-12       | 8      |  |  |  |
| r  | $\Delta X_r$                | $w_r$   | $\Delta X_r$                              | $w_r$  |  |  |  |
| 1  | 0600000000600000            | 4.000   | 0000c0011200000000000000000000000000000   | 12.000 |  |  |  |
| 2  | 0000000000000000            | 0.000   | 0c600000000000000000000000000000000000    | 7.000  |  |  |  |
| 3  | 0000000000000000            | 0.000   | 00000000000000a00000000060000000          | 4.000  |  |  |  |
| 4  | 0000000000000000            | 0.000   | 000100000000000000000000000000000000000   | 3.000  |  |  |  |
| 5  | 00000000000000000           | 0.000   | c000000000000000000000000000000000000     | 2.000  |  |  |  |
| 6  | 20200000000000000           | 4.000   | 000000000000000000000000000000000000000   | 0.000  |  |  |  |
| 7  | 5000000050000000            | 6.000   | 200000000000000000000000000000000000000   | 2.000  |  |  |  |
| 8  | 00002020000000000           | 5.000   | 600000020000000000000000000000000000000   | 4.000  |  |  |  |
| 9  | 0000000005000a00            | 5.000   | 000000020200000000000000000000000000000   | 6.000  |  |  |  |
| 10 | 0000200100000000            | 5.000   | 0000000000a000000000000000a00000          | 4.000  |  |  |  |
| 11 | 0c000600000000000           | 4.000   | 003000100000000000000000000000000000000   | 6.000  |  |  |  |
| 12 | 220000000000000000          | 5.000   | 112000000000000044000000000000000         | 12.415 |  |  |  |
| 13 | 6000000090000000            | 5.000   | 0000000000003000d0009000e0000000          | 10.000 |  |  |  |
| 14 | 0000000000100000            | 3.000   | 0000040000000000000000000080800           | 5.415  |  |  |  |
| 15 | 0000008000000000            | 2.000   | 01002002000000010400002002000010          |        |  |  |  |
| 16 | 01000000000000200           |         |                                           |        |  |  |  |

Table 11. Four 20-round single-key differential trails with weight  $w_{sum}$  of GIFT-128

 $\begin{array}{l} l^0: u=8, v=8, w_9=4.0, w_{14}=4.0, w_{sum}=121.415.\\ l^1: u=9, v=8, w_9=5.0, w_{14}=4.0, w_{sum}=122.415.\\ l^2: u=8, v=9, w_9=4.0, w_{14}=5.0, w_{sum}=122.415.\\ l^3: u=9, v=9, w_9=5.0, w_{14}=5.0, w_{sum}=123.415. \end{array}$ 

|    | $u = 9, v = 9, w_9 = 5.0, w_{14} = 5.0, w_{sum} = 123$      | .415.    |
|----|-------------------------------------------------------------|----------|
| r  | $\Delta X_r$                                                | $w_r$    |
| 1  | 00 00 00 00 00 00 00 00 00 00 00 00 00                      | 2.000    |
| 2  | 00 00 00 01 00 00 00 00 00 00 00 00 00 0                    | 3.000    |
| 3  | 08 00 00 00 00 00 00 00 00 00 00 00 00 0                    | 2.000    |
| 4  | 20 00 00 00 10 00 00 00 00 00 00 00 00 00                   | 5.000    |
| 5  | 40 40 00 00 20 20 00 00 00 00 00 00 00 00 00                | 8.000    |
| 6  | 50 50 00 00 00 00 00 00 50 50 00 00 00 0                    | 11.000   |
| 7  | 00 00 00 00 00 00 00 00 00 00 00 00 a0 00 a0 00             | 4.000    |
| 8  | 00 00 00 00 00 00 00 00 00 00 00 11 00 00                   | 6.000    |
| 9  | 00 00 0 <del>u</del> 00 00 00 08 00 00 00 00 00 00 00 00 00 | $w_9$    |
| 10 | 02 02 00 00 01 01 00 00 00 00 00 00 00 00 00                | 10.000   |
| 11 | 00 00 00 00 50 50 00 00 00 00 00 00 50 5                    | 12.000   |
| 12 | 00 00 00 00 00 00 00 00 00 00 00 00 00                      | 4.000    |
| 13 | 00 00 00 11 00 00 00 00 00 00 00 00 00 0                    | 6.000    |
| 14 | 0v 00 00 00 08 00 00 00 00 00 00 00 00 00                   | $w_{14}$ |
| 15 | 20 20 00 00 10 10 00 00 00 00 00 00 00 00 00                | 10.000   |
| 16 | 50 50 00 00 00 00 00 00 50 50 00 00 00 0                    | 12.000   |
| 17 | 00 00 00 00 a0 00 a0 00 00 00 00 00 00 0                    | 4.000    |
| 18 | 00 00 00 00 00 00 00 00 00 11 00 00 00 0                    | 6.000    |
| 19 | 00 00 00 00 00 00 c0 00 00 00 60 00 00 00 00 00             | 4.000    |
| 20 | 00 04 00 00 00 00 02 00 00 00 00 00 00 00 00                | 3.415    |
| 21 | 00 00 00 00 40 01 00 00 20 00 00 00 10 04 00 00             |          |

Table 12. Sixteen 10-round related-key differential trails of  $E_0$  with weight 20.415 of GIFT-64

| i   | $\Delta Y_1$ of $l_0^i$ | MKD of $l_0^i$                          |
|-----|-------------------------|-----------------------------------------|
| 1   | 00 00 00 00 00 00 00 01 | 0008 0000 0000 8000 0000 0000 0000 0001 |
| 2   | 00 00 00 00 00 01 00 00 | 0080 0000 0000 4000 0000 0000 0000 0002 |
| 3   | 00 00 00 01 00 00 00 00 | 0800 0000 0000 2000 0000 0000 0000 0004 |
| 4   | 00 01 00 00 00 00 00 00 | 8000 0000 0000 1000 0000 0000 0000 0008 |
| 5   | 00 00 00 00 00 00 10 00 | 0004 0000 0000 0800 0000 0000 0000 0010 |
| 6   | 00 00 00 00 10 00 00 00 | 0040 0000 0000 0400 0000 0000 0000 0020 |
| 7   | 00 00 10 00 00 00 00 00 | 0400 0000 0000 0200 0000 0000 0000 0040 |
| 8   | 10 00 00 00 00 00 00 00 | 4000 0000 0000 0100 0000 0000 0000 0080 |
| 9   | 00 00 00 00 00 00 08 02 | 0040 0004 0000 0000 0000 0000 0000 0000 |
| 10  | 00 00 00 00 00 00 80 20 | 0080 0008 0000 0000 0000 0000 0000 0000 |
| 11  | 00 00 00 00 08 02 00 00 | 0400 0040 0000 0000 0000 0000 0000 0000 |
| 12  | 00 00 00 00 80 20 00 00 | 0800 0080 0000 0000 0000 0000 0000 0000 |
| 13  | 00 00 08 02 00 00 00 00 | 4000 0400 0000 0000 0000 0000 0000 0000 |
| 14  | 00 00 80 20 00 00 00 00 | 8000 0800 0000 0000 0000 0000 0000 0000 |
| 15  | 08 02 00 00 00 00 00 00 | 0004 4000 0000 0000 0000 0000 0000 0000 |
| _16 | 80 20 00 00 00 00 00 00 | 0008 8000 0000 0000 0000 0000 0000 0000 |

Table 13. Eight 9-round related-key differential trails of  $E_1$  with weight 13.415 of GIFT-64

| $\overline{j}$ | $\Delta X_9$ of $l_1^j$ | MKD of $l_1^j$                          |  |  |
|----------------|-------------------------|-----------------------------------------|--|--|
| 1              | 00 00 00 00 00 00 00 02 | 0004 0000 0000 0000 0040 0000 0004 0010 |  |  |
| 2              | 00 00 00 00 00 02 00 00 | 0040 0000 0000 0000 0004 0000 0008 0020 |  |  |
| 3              | 00 00 00 02 00 00 00 00 | 0400 0000 0000 0000 4000 0000 0010 0040 |  |  |
| 4              | 00 02 00 00 00 00 00 00 | 4000 0000 0000 0000 0400 0000 0020 0080 |  |  |
| 5              | 20 00 00 00 00 00 00 00 | 0002 0000 0000 0000 0080 0000 0040 0100 |  |  |
| 6              | 00 00 00 00 00 00 20 00 | 0020 0000 0000 0000 0008 0000 0080 0200 |  |  |
| 7              | 00 00 00 00 20 00 00 00 | 0200 0000 0000 0000 8000 0000 0100 0400 |  |  |
| 8              | 00 00 20 00 00 00 00 00 | 2000 0000 0000 0000 0800 0000 0200 0800 |  |  |

Table 14. Two 9-round related-key differential trails of  $E_0$  with weight 30.000 of GIFT-128

| i | $\Delta Y_1$ of $l_0^i$                 | MKD of $l_0^i$                          |
|---|-----------------------------------------|-----------------------------------------|
| 1 | 0000000000000100000000020000000         | 800000000000000000000000000000000000000 |
| 2 | 042000000000000000000000000000000000000 | 00000000000000000002000000020000        |

Table 15. Two 9-round related-key differential trails of  $E_1$  with weight 30.000 of GIFT-128

| $\overline{j}$ | $\Delta X_9$ of $l_1^j$                 | MKD of $l_1^j$                          |
|----------------|-----------------------------------------|-----------------------------------------|
| 1              | 003000008000000000000000000000000000000 | 800000000000000000000000000000000000000 |
| 2              | 0000000000000000050000000200000         | 00000000000000000002000000020000        |

 $\textbf{Table 16.} \ \textbf{Two 9-round related-key differential trails of GIFT-128}$ 

For  $l_0^1$ , MKD = 8000 0000 0000 0000 0000 0000 0002 0000. For  $l_1^2$ , MKD = 0000 0000 0000 0000 0002 0000 0002 0000.

|    | $l_0^1$ : a 9-round trail with weight 30.000 |       | $l_1^2$ : a 9-round trail with weight 31.000 |       |  |  |  |  |  |
|----|----------------------------------------------|-------|----------------------------------------------|-------|--|--|--|--|--|
| r  | $\Delta X_r$                                 | $w_r$ | $\Delta X_r$                                 | $w_r$ |  |  |  |  |  |
| 1  | 00000000000000a000000000060000000            | 4.0   | 0c60000000000000000000000000100000           | 7.0   |  |  |  |  |  |
| 2  | 000100000000000000000000000000000000000      | 3.0   | 00000000000000a00000000060000000             | 4.0   |  |  |  |  |  |
| 3  | c000000000000000000000000000000000000        | 2.0   | 000100000000000000000000000000000000000      | 3.0   |  |  |  |  |  |
| 4  | 000000000000000000000000000000000000000      | 0.0   | c000000000000000000000000000000000000        | 2.0   |  |  |  |  |  |
| 5  | 200000000000000000000000000000000000000      | 2.0   | 000000000000000000000000000000000000000      | 0.0   |  |  |  |  |  |
| 6  | 600000020000000000000000000000000000000      | 4.0   | 200000000000000000000000000000000000000      | 2.0   |  |  |  |  |  |
| 7  | 000000020200000000000000000000000000000      | 5.0   | 600000020000000000000000000000000000000      | 4.0   |  |  |  |  |  |
| 8  | 0010000000a000000000000000000000000000       | 5.0   | 000000020200000000000000000000000000000      | 4.0   |  |  |  |  |  |
| 9  | 003000080000000000000000000000000000000      | 5.0   | 0000000000000000050000000200000              | 5.0   |  |  |  |  |  |
| 10 | 00200000802000000100000000000000             |       | 00200000000000000000004000002020             |       |  |  |  |  |  |