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Abstract—I describe a blockchain design that hides the 

transaction graph from Blockchain Analyzers. The design is 
based on the realization that today the miner creating a block 
needs enough information to verify the validity of transactions, 
which makes details about the transactions public and thus 
allows blockchain analysis. Some protocols, such as 
Mimblewimble, obscure the transaction amounts but not the 
source of the funds which is enough to allow for analysis. The 
insight in this technical note is that the block creator can be 
restricted to the task of ensuring no double spends. The task of 
actually verifying transaction balances really belongs to the 
receiver. The receiver is the one motivated to verify that she is 
receiving a valid transaction output since she has to convince the 
next receiver that the balances are valid, otherwise no one will 
accept her spending transaction. The bulk of the transaction can 
thus be encrypted in such a manner that only the receiver can 
decrypt and examine it. Opening this transaction allows the 
receiver to also open previous transactions to allow her to work 
her way backward in a chain until she arrives at the coin 
generation blocks and completely verify the validity of the 
transaction. Since transactions are encrypted on the blockchain a 
blockchain analyzer cannot create a transaction graph until he is 
the receiver of a transaction that allows backward tracing 
through to some target transaction.  

Keywords—cryptocurrency, Bitcoin, confidential transaction, 
blockchain analyzer, stealth address, privacy, Mimblewimble, 
Sword 

I. INTRODUCTION 
Blockchain-based cryptocurrencies enable peer-to-peer 

electronic transfer of value by maintaining a global distributed 
but synchronized ledger, the blockchain. Any independent 
observer can verify both the current state of the blockchain as 
well as the validity of all transactions on the ledger. In Bitcoin, 
this innovation requires that all details of a transaction are 
public: the sender key, the receiver key, and the amount 
transferred. Bitcoin provides some weak anonymity through 
the unlinkability of Bitcoin addresses to real world identities, 
but it lacks any confidentiality for the amounts transferred. 

Mimblewimble gave us confidential transaction amounts. It 
uses confidential transactions in which every transaction 
amount involved is hidden from public view using a 
commitment to the amount. Public validation of the blockchain 
is possible because an observer can check that the sum of 
transaction inputs is greater than the sum of transaction 
outputs, and that all transaction values are positive. There is a 
range check called Bulletproof that shows that all transaction 
values are positive. 

In Sword we add confidential senders and receivers. The 
links between transaction outputs and the inputs in the 
spending transaction are not visible to third parties. Since these 

links are key to creating transaction graphs, hiding them makes 
creating transaction graphs problematic. 

The receiver of a transaction output has the responsibility 
of tracing the source of the funds all the way back to the coin 
origination blocks. To do this she is given a secret that allows 
her to decrypt the current transaction which when decrypted 
reveals, among other things, the secrets needed to decrypt 
previous transactions in the chain. She is motivated to do this 
correctly since she will expect the next receiver, when she 
spends her coins, to perform the same check and refuse her 
transaction if she fails to catch an improper transaction in the 
chain. 

The only way a third party blockchain analyzer can trace 
the inputs and outputs of this transaction is for the analyzer to 
be the recipient of a later transaction funded by an output of 
this transaction. Thus, the transaction graph for a target 
transaction is hidden from third parties until at some future 
time, when the current transaction is buried deep in the 
blockchain, a blockchain analyzer is the recipient of a 
transaction that allows backward tracing through to the target 
transaction. Unspent transactions in the past are safe and new 
transactions are also safe. They have their sources and 
destination hidden. 

The description of this protocol is preliminary, but the 
following sections describe a roadmap to a final design. 
Section II gives the public view of transactions: a description 
of the encrypted transaction, a description of the fingerprints 
that disallow double spends, and a description of how miner 
fees are handled. Section III gives the private (i.e. the 
transmitter and receiver) view of transactions: a description of 
the keys used in the transaction, and the structure of the 
transaction. Finally, section IV lists open issues and 
conclusions. 

II. PUBLIC VIEW OF TRANSACTIONS 

A. The Sword Blockchain  
The Sword Blockchain is a proof of work blockchain 

similar to the Bitcoin blockchain. Blocks are created by miners 
who validate pending transactions and add them to their 
potential block up to some maximum size and then search for a 
proof of work hash for the block that chains it to a previous 
block. A valid block is published and, if accepted by 
consensus, extends the blockchain. 

Unique to Sword is that the miner validation of transactions 
is limited to ensuring that transactions with double spends are 
disallowed and that each transaction has a valid proof of work. 
The heart of a Sword transaction is encrypted and called an 
encrypted Saltpack [2]. It is therefore not visible to the miner 
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or any other third party. However, visible to anyone are 
transaction input fingerprints, each consisting of a public key 
and a signature on the Saltpack. Also visible is a proof of work 
generated by the sender. Double spends are disallowed by 
disallowing transactions that have an input fingerprint public 
key that has been seen before in the blockchain. The proof of 
work is necessary to protect from transaction spamming and is 
involved in miner fees. 

A diagram of the encrypted transaction and a description of 
fingerprints and the proof of work is shown below. 

 
Fig 1. Encrypted Transaction and Surrounding Fields 

B. Transaction Input Fingerprints 
Outside the encrypted Saltpack is a list of input fingerprints 

that are bound to the Saltpack by a signature on the hash of the 
Saltpack. The proof of work hash encloses everything. The 
miner is responsible for ensuring that an input fingerprint 
public key never appears more than once on the blockchain. If 
a candidate transaction has an input fingerprint public key that 
appeared in the blockchain in the past, that transaction is 
invalid and cannot be added to the new block. Fingerprints 
have the following properties: 

• Fingerprints are created, and can only be created, by the 
transaction sender who knows the transaction outputs 
that fund this transaction. 

• A funding transaction output is used to create a secret 
and a public key pair. The secret key is used to create a 
signature on the hash of the encrypted Saltpack 
including the header with the sending and receiving 
public keys and the number (count) of input fingerprint 
public keys. Together the public key and the signature 
form the input fingerprint. 

• There can only be one and only one input fingerprint 
public key for each funding output. 

• A fingerprint cannot be traced back to the funding 
transaction except after the transaction Saltpack is 
decrypted by the receiver and its inputs are examined. 

• A Saltpack decrypted by a back trace from a spend 
cannot be used to trace forward in time to reveal the 
spending transactions of other outputs from this 
transaction. 

• Third parties cannot create valid fingerprints since they 
do not know the secret key of the fingerprint. 

• No one can execute a replay attack once a fingerprint 
appears on the blockchain since copies of the same 

fingerprint public key cannot be added to the 
blockchain at that point. 

• Denial of service attacks by third parties that can see 
transactions still in the transaction pool are also 
impossible. The attacker can try creating fake 
transactions that display the same fingerprint public 
keys, but they cannot create a signature for a fake 
encrypted Saltpack. 

 
Fig 2. Fingerprint Signatures must be checked by miner to avoid 

denial of service using a fake transaction 

C. Transaction Proof of Work and Miner Fees 
A problem that must be solved by Sword is how to handle 

what would normally be miner fees for each transaction. 
Including an explicit fee in Sword transactions is not desirable 
since the source of the funds must be publicly verifiable, which 
allows transaction graph analysis. Eliminating fees will also 
not work since the miner will no longer have an incentive to 
verify and include transactions in his block. 

The miner should receive a separate transaction reward 
based on the number of transactions included in the block as 
well as a block reward for completing the block. In Sword the 
transaction reward is newly minted coins similar to the block 
reward. However, this is not yet a complete solution since the 
miner is incentivized to pack his block with transactions of his 
own creation. 

The solution Sword adopts is to require that every 
transaction include a proof of work (POW). This work must be 
easy enough that the sender can create the transaction and yet 
difficult enough that the miner would rather gather and verify 
real transactions than try to create his own transactions to stuff 
the block. Consider if the miner needs 3500 transactions to fill 
his block. He is incentivized to use 3500 real transactions 
rather than do the work required to create 3500 manufactured 
transactions of his own. 

So, each Sword transaction comes with a POW. This work 
is performed by the transaction sender and is verified by the 
miner. This proof of work is not to be confused with the proof 
of work performed by the miner when building a blockchain 
block. Transaction reward and transaction POW have the 
following properties: 

• The transaction reward amount is based on the total 
work that went into all the transactions added to the 
block. 
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• The transaction reward amount per unit work is 
adaptively adjusted to move the average transaction 
reward to a desired level. This is similar to the way that 
block difficulty is adaptively adjusted to move the 
average delay between blocks to a desired level. 

• The simplest design is to target the transaction reward 
to be fixed. Another design is to target the transaction 
reward to be a fixed fraction of the block reward. More 
complicated schedules are also possible with the 
transaction reward decaying to a long-term positive 
value over time. 

• The amount of work that goes into a particular 
transaction’s POW can be increased by the sender of 
this transaction at his discretion. The sender would do 
this to raise the priority of his transaction since the 
miner will sort transactions by the amount of work in 
each and would preferentially include the higher work 
transactions first. For the miner this raises the total 
work in the block and increases his transaction reward. 

• The increase in transaction reward payouts for higher 
work levels is temporary as the transaction reward per 
unit work will adjust to bring the total transaction 
reward to its target. 

III. PRIVATE VIEW OF TRANSACTIONS 
By private view of a transaction we mean a transaction that 

has been privately decrypted by a receiver allowing her to 
verify the validity of the transaction and to spend at least one 
output from the transaction. The core transaction corresponds 
to a Mimblewimble Non-Interactive transaction [1] on a 
normal blockchain in that it is possible to verify that the 
input/output amounts balance and that the verifier can verify 
the funding transactions without knowing the actual amounts 
coming in and going out. Of course, the receiver knows her 
own received balance because she knows the blinding factor 
for her output. Again, the receiver does not know the actual 
balances in the transactions she opens as she works her way 
backward verifying balances through the blockchain since she 
has the blinding factor for only the last output meant for her. 
This is similar to the situation on the public Mimblewimble 
blockchains today. 

A. The Keys in a Transaction 
This section defines the keys used in a transaction. There is 

one transmitter and one or more receiver. 

1) The Transaction Transient Key 
Denoted (k, R), this is a temporary private and public key 

pair created for this transaction by the transmitter. R = k * G. 
Note we use k rather than r for the secret part. 

• Creation: k is randomly created at transaction creation 
time. 

2) The Transmitter’s Spending Keys 
Created for each output from a funding transaction (p-, P-): 

The transmitter must use his spending keys to sign each input 
to the current transaction using the appropriate p-, which only 
he knows, indicating he is spending the funding output. The 

public key used to verify this, P-, is available in the funding 
transaction. Hence the receiver must open the funding 
transaction to get to P- for the verification. 

• Creation: Each key pair was created by the transmitter 
of each of the funding transactions previous to this one 
in a manner described for the pair (p, P) below. 

3) The Transmitter’s Blinding Factors 
Called q-, this is needed for each of transaction input to this 

transaction. 

• Creation: Each blinding factor was created by the 
previous transmitter of each of the funding transactions 
in a manner described for the blinding factor q below. 

4) Keying the Funding Transaction Saltpack 
Called (j-, J-), this keypair is needed to receive the funding 

transaction for each of the current inputs to this transaction. 

• Creation: Each Saltpack receive keypair was created 
by the previous transmitter of each of the funding 
transactions in a manner described for the Saltpack 
receive keypairs (j, J) below. 

5) The Receiver Spending Key 
 There may be more than one receiver. Each has a key pair 

for each output from the transaction (p, P): Each output from 
the current transaction has a public key, P, that the receiver 
will need to prove she knows the secret part of, p, for a 
spending transaction to be valid. She will have to do this by 
providing a signature using p that can be verified using P when 
she finally creates a transaction to spend her output. This will 
prove she has ownership of this transaction output. See [1]. 
Notably, this key pair is analogous to the key pair (p-, P-) 
described above for the transmitter. 

• Creation: This is based on the work of Gary Yu [1]. 
Each receiver has a well-known public view key and 
public spend key, A and B.  The transmitter creates an 
anonymous spending public key, P, for the receiver as 
follows: 

𝐴’ = 𝐻(𝑘∗𝐴) ∗	𝐺  

𝑃 = 𝐴’ + 𝐵  

Note the receiver, knowing R, can recreate this using the 
fact that 𝑘∗𝐴	=	𝑎∗𝑅. 

𝐴’ = 𝐻(𝑎∗𝑅) ∗	𝐺 

𝑃 = 𝐴’ + 𝐵  

Also, only the receiver can calculate the secret part since 
only she knows secret b. The transmitter cannot do this. 

p = 𝐻(𝑎∗𝑅) + b 

Only with p can you spend the output and you must know b 
to do it. 

6) The Receiver Blinding Factor 
Needed for her particular transaction output, q. 
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• Creation: Again, this is based on the work of Gary Yu 
[1]. The transmitter creates a blinding factor for each 
receiver as follows: 

𝐴’ = 𝐻(𝑘∗𝐴) ∗	𝐺 

	 	 𝑞	=	𝐻(𝐻(𝐴’)	∗	𝐺	+	𝐵) 
Both the transmitter and receiver will know q. It is because 

both know the blinding factor that an additional secret, p, is 
created to ensure only the receiver can spend this output. 

7) Keying the Transaction Saltpack 
Transactions are encrypted using the protocol described in 

Saltpack [2]. In this protocol a Saltpack is a message from a 
public key to one or more public key recipients. We use an 
anonymous public key as the sender representing the 
transaction transmitter. We use the option to explicitly include 
the receiver public keys as message recipients in the Saltpack. 
We ensure, however, that the recipient keys are anonymous as 
well. 

• Saltpack transmitter key: (k, R) selected at random by 
the transmitter. 

• Saltpack receiver key: (j, J) one pair per receiver.  
Where: 

j = H(𝑞, 𝑃) + a 

J = H(𝑞, 𝑃) * G + A 

Note the transmitter will only know J. He knows 𝑞, 𝑃 and 
A but doesn’t know a. The transmitter can send the Saltpack 
but only a receiver who knows j can receive it. The reason the 
receiver key is created in this manner is to allow an auditor to 
receive the Saltpack. The auditor can calculate 𝑞 and 𝑃 then j 
knowing a as shown below. This allows him to open 
transactions meant for the receiver and determining the 
committed amount sent and adding it to the receiver balance 
sheet. 

Similarly, we didn’t simply use (p, P) for the Saltpack 
receiver key. We do not want the auditor or the transmitter to 
know p since we don’t want to allow either of them to spend 
the funds being sent. Spending requires knowing p. 

Note that R and each J are anonymous and globally unique 
and are visible to everyone since they are in the unencrypted 
header of the Saltpack. See [2]. This allows the receiver as well 
as an auditor to check whether a Saltpack is meant for them by 
calculating: 

A’ = 𝐻(𝑎 ∗ 𝑅) ∗ 𝐺  

𝑃’ = A’ + 𝐵  

	 	 𝑞’	=	𝐻[𝐻(A’) ∗ 𝐺 + 𝐵]	
J’ = 𝐻(𝑞’, 𝑃’) ∗ 𝐺 + A	

Then	check	that						J’	=		J 

 

Finally, to decrypt transactions further back in the 
verification chain, each input to a transaction must include j- to 
allow the receiver to find and unencrypt the previous funding 

transactions. This is in addition to the signature using p- that 
shows valid ownership of that input. So, the transmitter has his 
own (j-, J-) for receiving the funding transaction as well as his 
(p-, P-) that prove ownership of the funds. 

8) The receiver’s Auditor 
By sharing A and B and the private part of 𝐴, which is a, 

the receiver can appoint an auditor capable of computing the 
values 𝑞 and 𝑃, since 𝑘	 ∗	 𝐴	 =	 a	 ∗	 R. The auditor cannot create 
the value p. This allows the auditor to detect and open every 
incoming transaction sent to this receiver’s Stealth Address and 
see the commitment to the value sent but prevents the auditor 
from spending the coins. We will see below that R is made 
available to both receivers and their auditors. 

9) Creating the Transaction Input Fingerprints 
Fingerprints are created by the transmitter when he is ready 

to spend. The transmitter must create a separate fingerprint for 
each funding outputs that goes into this transaction. He creates 
the fingerprint using the value p-, his own private spending key 
for the funding output, and j-, his own version of j, the 
receiving key for the funding output. Note the fingerprint is 
globally unique and only the transmitter (the spender) can 
create it.  

The transmitter calculates the fingerprint key-pair and, 
using the fingerprint private key, signs the transaction Saltpack, 
including the header, and the number of inputs: 

  f = (j-)(p-) 

  F = f  *  G = j- * P- 

  fsig = [Saltpack, n] f       - Signature using f 

F and fsig form the fingerprint. The signature binds F to this 
Saltpack and to n, the total number of inputs. This ensures a 
fingerprint cannot be deleted or attached to another transaction. 

The receiver and auditor can check the validity of the 
fingerprint since they can calculate F from j- and P-. When 
tracing back to the funding transaction they will find P- to 
create F.  

The miner simply checks the uniqueness of F and the 
validity of fsig. 

The auditor cannot create a fake fingerprint for his own 
employer’s (the receiver) future outputs since he does not 
know p and will not be able to create an fsig on a transaction. 

B. The Transaction Structure 
Figure 3 below shows the structure of a transaction with the 

various keys called out. Note the signature, Ps-, is the Schnorr 
signature of 𝑃- using p-. It is there showing ownership of the 
input by the transmitter and it verifies that the transmitter 
created F. It F doesn’t check out the receiver should reject the 
transaction. The funding transaction is found by using j- to 
calculate a J- and finding, then opening (receiving), the 
funding transaction. This gives the receiver P- to verify Ps-. 
This is what the receiver of an output from this transaction will 
have to do as part of her backtrack to verify the validity of this 
transaction. 
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Fig 3. Transaction Showing the Keys 

On the output side the q is the blinding factor and is hidden 
per the Mimblewimble standard and the P will be used to prove 
the receiver’s ownership of this output when the time comes 
that she will want to spend this output. 

Inside the dotted box is a Mimblewimble non-interactive 
transaction as described in [1]. Appended to it is a list of all j- 
allowing a verifier to walk back through funding transactions. 
This is all encrypted in a pack as described in [2]. Outside of 
the Saltpack is the (anonymous) public key of the transmitter 
and the (anonymous) public keys of the receivers. Also 
appended to it are the fingerprints of all the inputs to the 
transaction that are used by the miner to block double 
spending. The fingerprints are bound to this Saltpack by the 
signature fsig, which can be checked by F. The receiver has the 
task of making sure F is formed correctly from the funding 
transaction outputs. 

IV. OPEN ISSUES AND CONCLUSIONS 
As mentioned before, the description of this protocol is 

preliminary. However, this paper describes a roadmap to a final 
design.  It shows that protocols that do not reveal information 
necessary to form a full transaction graph is possible. What 
follows is a brief description of issues that require more 
attention. 

A. The Correctness of the Design 
This design was conceived over a few days.  I have tried to 

ensure that there are no leaks etc. that would break the privacy 
of transactions. I have also tried to make sure the miner can 
prohibit double spends and is motivated to do so. Finally, I 
have tried to ensure the receiver has all the information she 
needs to verify the validity of her received transactions. The 
design needs to be vetted against these goals.   

B. The Limits to Transaction Privacy 
Unfortunately, the linkage between transactions is revealed 

to the receiver. This is necessary to allow verification of the 
funding from minted coins to this transaction. This is much 
more privacy than is afforded by current blockchain designs 
but in the end an entity bent on mapping the transaction graph 
will receive an input that allows tracing back through the graph 
to a target transaction. Some observations: 

• Creating a complete graph is impossible 

• Transactions that have not been spent are safe 
since tracing can only be backwards through the 
graph. This is true no matter how deep in the 
blockchain they are. 

• New spending transactions are safe for a while 
since the likelihood of a spend arriving at an entity 
mapping the transaction graph is low. 

• Groups that transact among themselves can 
maintain a bit of privacy by being careful of which 
funding transactions are used to spend outside the 
group. For example, sources of funds used to pay 
salaries in a corporation can be kept relatively 
private and a user receiving a large payment can 
privately break it up into a number of wallets 
before spending any of it also keeping a level of 
privacy. 

• Since Mimblewimble is used for the basic 
transaction, verifying correctness by the receiver 
does not require revealing the balances in older 
transactions. This makes tracing the amounts 
being moved problematic. 

C. The Low Efficiency of the Protocol 
Transactions in this protocol are large. Maybe there are 

shortcuts that would reduce its size. 

The work needed to determine if a transaction belongs to 
you seems large. This is an area that could be improved. 

The work needed to walk back to a funding transaction also 
seems large. This and the previous inefficiency result from the 
desire to enable an auditor to do the work of maintaining a 
wallet by searching for transaction you own and do the work of 
verifying the transaction while at the same time keeping him 
from spending your funds. 
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