
 1

Sword: An Opaque Blockchain Protocol
Farid Elwailly

Sword@elwailly.com
September 26, 2020

Abstract—I describe a blockchain design that hides the

transaction graph from Blockchain Analyzers. The design is
based on the realization that today the miner creating a block
needs enough information to verify the validity of transactions,
which makes details about the transactions public and thus
allows blockchain analysis. Some protocols, such as
Mimblewimble, obscure the transaction amounts but not the
source of the funds which is enough to allow for analysis. The
insight in this technical note is that the block creator can be
restricted to the task of ensuring no double spends. The task of
actually verifying transaction balances really belongs to the
receiver. The receiver is the one motivated to verify that she is
receiving a valid transaction output since she has to convince the
next receiver that the balances are valid, otherwise no one will
accept her spending transaction. The bulk of the transaction can
thus be encrypted in such a manner that only the receiver can
decrypt and examine it. Opening this transaction allows the
receiver to also open previous transactions to allow her to work
her way backward in a chain until she arrives at the coin
generation blocks and completely verify the validity of the
transaction. Since transactions are encrypted on the blockchain a
blockchain analyzer cannot create a transaction graph until he is
the receiver of a transaction that allows backward tracing
through to some target transaction.

Keywords—cryptocurrency, Bitcoin, confidential transaction,
blockchain analyzer, stealth address, privacy, Mimblewimble,
Sword

I. INTRODUCTION
Blockchain-based cryptocurrencies enable peer-to-peer

electronic transfer of value by maintaining a global distributed
but synchronized ledger, the blockchain. Any independent
observer can verify both the current state of the blockchain as
well as the validity of all transactions on the ledger. In Bitcoin,
this innovation requires that all details of a transaction are
public: the sender key, the receiver key, and the amount
transferred. Bitcoin provides some weak anonymity through
the unlinkability of Bitcoin addresses to real world identities,
but it lacks any confidentiality for the amounts transferred.

Mimblewimble gave us confidential transaction amounts. It
uses confidential transactions in which every transaction
amount involved is hidden from public view using a
commitment to the amount. Public validation of the blockchain
is possible because an observer can check that the sum of
transaction inputs is greater than the sum of transaction
outputs, and that all transaction values are positive. There is a
range check called Bulletproof that shows that all transaction
values are positive.

In Sword we add confidential senders and receivers. The
links between transaction outputs and the inputs in the
spending transaction are not visible to third parties. Since these

links are key to creating transaction graphs, hiding them makes
creating transaction graphs problematic.

The receiver of a transaction output has the responsibility
of tracing the source of the funds all the way back to the coin
origination blocks. To do this she is given a secret that allows
her to decrypt the current transaction which when decrypted
reveals, among other things, the secrets needed to decrypt
previous transactions in the chain. She is motivated to do this
correctly since she will expect the next receiver, when she
spends her coins, to perform the same check and refuse her
transaction if she fails to catch an improper transaction in the
chain.

The only way a third party blockchain analyzer can trace
the inputs and outputs of this transaction is for the analyzer to
be the recipient of a later transaction funded by an output of
this transaction. Thus, the transaction graph for a target
transaction is hidden from third parties until at some future
time, when the current transaction is buried deep in the
blockchain, a blockchain analyzer is the recipient of a
transaction that allows backward tracing through to the target
transaction. Unspent transactions in the past are safe and new
transactions are also safe. They have their sources and
destination hidden.

The description of this protocol is preliminary, but the
following sections describe a roadmap to a final design.
Section II gives the public view of transactions: a description
of the encrypted transaction, a description of the fingerprints
that disallow double spends, and a description of how miner
fees are handled. Section III gives the private (i.e. the
transmitter and receiver) view of transactions: a description of
the keys used in the transaction, and the structure of the
transaction. Finally, section IV lists open issues and
conclusions.

II. PUBLIC VIEW OF TRANSACTIONS

A. The Sword Blockchain
The Sword Blockchain is a proof of work blockchain

similar to the Bitcoin blockchain. Blocks are created by miners
who validate pending transactions and add them to their
potential block up to some maximum size and then search for a
proof of work hash for the block that chains it to a previous
block. A valid block is published and, if accepted by
consensus, extends the blockchain.

Unique to Sword is that the miner validation of transactions
is limited to ensuring that transactions with double spends are
disallowed and that each transaction has a valid proof of work.
The heart of a Sword transaction is encrypted and called an
encrypted Saltpack [2]. It is therefore not visible to the miner

Version 0.4 – October 3, 2020
This work is released under the MIT open-source license.

 2

or any other third party. However, visible to anyone are
transaction input fingerprints, each consisting of a public key
and a signature on the Saltpack. Also visible is a proof of work
generated by the sender. Double spends are disallowed by
disallowing transactions that have an input fingerprint public
key that has been seen before in the blockchain. The proof of
work is necessary to protect from transaction spamming and is
involved in miner fees.

A diagram of the encrypted transaction and a description of
fingerprints and the proof of work is shown below.

Fig 1. Encrypted Transaction and Surrounding Fields

B. Transaction Input Fingerprints
Outside the encrypted Saltpack is a list of input fingerprints

that are bound to the Saltpack by a signature on the hash of the
Saltpack. The proof of work hash encloses everything. The
miner is responsible for ensuring that an input fingerprint
public key never appears more than once on the blockchain. If
a candidate transaction has an input fingerprint public key that
appeared in the blockchain in the past, that transaction is
invalid and cannot be added to the new block. Fingerprints
have the following properties:

• Fingerprints are created, and can only be created, by the
transaction sender who knows the transaction outputs
that fund this transaction.

• A funding transaction output is used to create a secret
and a public key pair. The secret key is used to create a
signature on the hash of the encrypted Saltpack
including the header with the sending and receiving
public keys and the number (count) of input fingerprint
public keys. Together the public key and the signature
form the input fingerprint.

• There can only be one and only one input fingerprint
public key for each funding output.

• A fingerprint cannot be traced back to the funding
transaction except after the transaction Saltpack is
decrypted by the receiver and its inputs are examined.

• A Saltpack decrypted by a back trace from a spend
cannot be used to trace forward in time to reveal the
spending transactions of other outputs from this
transaction.

• Third parties cannot create valid fingerprints since they
do not know the secret key of the fingerprint.

• No one can execute a replay attack once a fingerprint
appears on the blockchain since copies of the same

fingerprint public key cannot be added to the
blockchain at that point.

• Denial of service attacks by third parties that can see
transactions still in the transaction pool are also
impossible. The attacker can try creating fake
transactions that display the same fingerprint public
keys, but they cannot create a signature for a fake
encrypted Saltpack.

Fig 2. Fingerprint Signatures must be checked by miner to avoid

denial of service using a fake transaction

C. Transaction Proof of Work and Miner Fees
A problem that must be solved by Sword is how to handle

what would normally be miner fees for each transaction.
Including an explicit fee in Sword transactions is not desirable
since the source of the funds must be publicly verifiable, which
allows transaction graph analysis. Eliminating fees will also
not work since the miner will no longer have an incentive to
verify and include transactions in his block.

The miner should receive a separate transaction reward
based on the number of transactions included in the block as
well as a block reward for completing the block. In Sword the
transaction reward is newly minted coins similar to the block
reward. However, this is not yet a complete solution since the
miner is incentivized to pack his block with transactions of his
own creation.

The solution Sword adopts is to require that every
transaction include a proof of work (POW). This work must be
easy enough that the sender can create the transaction and yet
difficult enough that the miner would rather gather and verify
real transactions than try to create his own transactions to stuff
the block. Consider if the miner needs 3500 transactions to fill
his block. He is incentivized to use 3500 real transactions
rather than do the work required to create 3500 manufactured
transactions of his own.

So, each Sword transaction comes with a POW. This work
is performed by the transaction sender and is verified by the
miner. This proof of work is not to be confused with the proof
of work performed by the miner when building a blockchain
block. Transaction reward and transaction POW have the
following properties:

• The transaction reward amount is based on the total
work that went into all the transactions added to the
block.

Mimblewimble Non-
Interactive Transaction

In
pu

t 1
 P

ub
lic

-K
ey

Encrypted Saltpack

Proof of Work

In
pu

t 1
 S

ig
na

tu
re

…

In
pu

t n
 P

ub
lic

-K
ey

PO
W

 N
on

ce
 &

 H
as

h

In
pu

t n
 S

ig
na

tu
re

Mimblewimble Non-Interactive Transaction

In
pu

t 1
 F

in
ge

rp
rin

t

Encrypted Box

Proof of Work

In
pu

t 2
 F

in
ge

rp
rin

t

…

In
pu

t n
 F

in
ge

rp
rin

t

PO
W

 N
on

ce
 &

 H
as

h

Transaction
Mimblewimble Non-Interactive Transaction

In
pu

t 1
 F

in
ge

rp
rin

t

Encrypted Box

Proof of Work

In
pu

t 2
 F

in
ge

rp
rin

t

…

In
pu

t n
 F

in
ge

rp
rin

t

PO
W

 N
on

ce
 &

 H
as

h

Mimblewimble Non-Interactive Transaction

In
pu

t 1
 F

in
ge

rp
rin

t

Encrypted Box

Proof of Work

In
pu

t 2
 F

in
ge

rp
rin

t

…

In
pu

t n
 F

in
ge

rp
rin

t

PO
W

 N
on

ce
 &

 H
as

h

Mimblewimble Non-Interactive Transaction

In
pu

t 1
 F

in
ge

rp
rin

t

Encrypted Box

Proof of Work

In
pu

t 2
 F

in
ge

rp
rin

t

…

In
pu

t n
 F

in
ge

rp
rin

t

PO
W

 N
on

ce
 &

 H
as

h

Fake Transaction denied

Authentic
transaction
allowed due to
valid signatures
In fingerprints

Pool

 3

• The transaction reward amount per unit work is
adaptively adjusted to move the average transaction
reward to a desired level. This is similar to the way that
block difficulty is adaptively adjusted to move the
average delay between blocks to a desired level.

• The simplest design is to target the transaction reward
to be fixed. Another design is to target the transaction
reward to be a fixed fraction of the block reward. More
complicated schedules are also possible with the
transaction reward decaying to a long-term positive
value over time.

• The amount of work that goes into a particular
transaction’s POW can be increased by the sender of
this transaction at his discretion. The sender would do
this to raise the priority of his transaction since the
miner will sort transactions by the amount of work in
each and would preferentially include the higher work
transactions first. For the miner this raises the total
work in the block and increases his transaction reward.

• The increase in transaction reward payouts for higher
work levels is temporary as the transaction reward per
unit work will adjust to bring the total transaction
reward to its target.

III. PRIVATE VIEW OF TRANSACTIONS
By private view of a transaction we mean a transaction that

has been privately decrypted by a receiver allowing her to
verify the validity of the transaction and to spend at least one
output from the transaction. The core transaction corresponds
to a Mimblewimble Non-Interactive transaction [1] on a
normal blockchain in that it is possible to verify that the
input/output amounts balance and that the verifier can verify
the funding transactions without knowing the actual amounts
coming in and going out. Of course, the receiver knows her
own received balance because she knows the blinding factor
for her output. Again, the receiver does not know the actual
balances in the transactions she opens as she works her way
backward verifying balances through the blockchain since she
has the blinding factor for only the last output meant for her.
This is similar to the situation on the public Mimblewimble
blockchains today.

A. The Keys in a Transaction
This section defines the keys used in a transaction. There is

one transmitter and one or more receiver.

1) The Transaction Transient Key
Denoted (k, R), this is a temporary private and public key

pair created for this transaction by the transmitter. R = k * G.
Note we use k rather than r for the secret part.

• Creation: k is randomly created at transaction creation
time.

2) The Transmitter’s Spending Keys
Created for each output from a funding transaction (p-, P-):

The transmitter must use his spending keys to sign each input
to the current transaction using the appropriate p-, which only
he knows, indicating he is spending the funding output. The

public key used to verify this, P-, is available in the funding
transaction. Hence the receiver must open the funding
transaction to get to P- for the verification.

• Creation: Each key pair was created by the transmitter
of each of the funding transactions previous to this one
in a manner described for the pair (p, P) below.

3) The Transmitter’s Blinding Factors
Called q-, this is needed for each of transaction input to this

transaction.

• Creation: Each blinding factor was created by the
previous transmitter of each of the funding transactions
in a manner described for the blinding factor q below.

4) Keying the Funding Transaction Saltpack
Called (j-, J-), this keypair is needed to receive the funding

transaction for each of the current inputs to this transaction.

• Creation: Each Saltpack receive keypair was created
by the previous transmitter of each of the funding
transactions in a manner described for the Saltpack
receive keypairs (j, J) below.

5) The Receiver Spending Key
 There may be more than one receiver. Each has a key pair

for each output from the transaction (p, P): Each output from
the current transaction has a public key, P, that the receiver
will need to prove she knows the secret part of, p, for a
spending transaction to be valid. She will have to do this by
providing a signature using p that can be verified using P when
she finally creates a transaction to spend her output. This will
prove she has ownership of this transaction output. See [1].
Notably, this key pair is analogous to the key pair (p-, P-)
described above for the transmitter.

• Creation: This is based on the work of Gary Yu [1].
Each receiver has a well-known public view key and
public spend key, A and B. The transmitter creates an
anonymous spending public key, P, for the receiver as
follows:

𝐴’ = 𝐻(𝑘∗𝐴) ∗	𝐺

𝑃 = 𝐴’ + 𝐵

Note the receiver, knowing R, can recreate this using the
fact that 𝑘∗𝐴	=	𝑎∗𝑅.

𝐴’ = 𝐻(𝑎∗𝑅) ∗	𝐺

𝑃 = 𝐴’ + 𝐵

Also, only the receiver can calculate the secret part since
only she knows secret b. The transmitter cannot do this.

p = 𝐻(𝑎∗𝑅) + b

Only with p can you spend the output and you must know b
to do it.

6) The Receiver Blinding Factor
Needed for her particular transaction output, q.

 4

• Creation: Again, this is based on the work of Gary Yu
[1]. The transmitter creates a blinding factor for each
receiver as follows:

𝐴’ = 𝐻(𝑘∗𝐴) ∗	𝐺

	 	 𝑞	=	𝐻(𝐻(𝐴’)	∗	𝐺	+	𝐵)
Both the transmitter and receiver will know q. It is because

both know the blinding factor that an additional secret, p, is
created to ensure only the receiver can spend this output.

7) Keying the Transaction Saltpack
Transactions are encrypted using the protocol described in

Saltpack [2]. In this protocol a Saltpack is a message from a
public key to one or more public key recipients. We use an
anonymous public key as the sender representing the
transaction transmitter. We use the option to explicitly include
the receiver public keys as message recipients in the Saltpack.
We ensure, however, that the recipient keys are anonymous as
well.

• Saltpack transmitter key: (k, R) selected at random by
the transmitter.

• Saltpack receiver key: (j, J) one pair per receiver.
Where:

j = H(𝑞, 𝑃) + a

J = H(𝑞, 𝑃) * G + A

Note the transmitter will only know J. He knows 𝑞, 𝑃 and
A but doesn’t know a. The transmitter can send the Saltpack
but only a receiver who knows j can receive it. The reason the
receiver key is created in this manner is to allow an auditor to
receive the Saltpack. The auditor can calculate 𝑞 and 𝑃 then j
knowing a as shown below. This allows him to open
transactions meant for the receiver and determining the
committed amount sent and adding it to the receiver balance
sheet.

Similarly, we didn’t simply use (p, P) for the Saltpack
receiver key. We do not want the auditor or the transmitter to
know p since we don’t want to allow either of them to spend
the funds being sent. Spending requires knowing p.

Note that R and each J are anonymous and globally unique
and are visible to everyone since they are in the unencrypted
header of the Saltpack. See [2]. This allows the receiver as well
as an auditor to check whether a Saltpack is meant for them by
calculating:

A’ = 𝐻(𝑎 ∗ 𝑅) ∗ 𝐺

𝑃’ = A’ + 𝐵

	 	 𝑞’	=	𝐻[𝐻(A’) ∗ 𝐺 + 𝐵]	
J’ = 𝐻(𝑞’, 𝑃’) ∗ 𝐺 + A	

Then	check	that						J’	=		J

Finally, to decrypt transactions further back in the
verification chain, each input to a transaction must include j- to
allow the receiver to find and unencrypt the previous funding

transactions. This is in addition to the signature using p- that
shows valid ownership of that input. So, the transmitter has his
own (j-, J-) for receiving the funding transaction as well as his
(p-, P-) that prove ownership of the funds.

8) The receiver’s Auditor
By sharing A and B and the private part of 𝐴, which is a,

the receiver can appoint an auditor capable of computing the
values 𝑞 and 𝑃, since 𝑘	 ∗	 𝐴	 =	 a	 ∗	 R. The auditor cannot create
the value p. This allows the auditor to detect and open every
incoming transaction sent to this receiver’s Stealth Address and
see the commitment to the value sent but prevents the auditor
from spending the coins. We will see below that R is made
available to both receivers and their auditors.

9) Creating the Transaction Input Fingerprints
Fingerprints are created by the transmitter when he is ready

to spend. The transmitter must create a separate fingerprint for
each funding outputs that goes into this transaction. He creates
the fingerprint using the value p-, his own private spending key
for the funding output, and j-, his own version of j, the
receiving key for the funding output. Note the fingerprint is
globally unique and only the transmitter (the spender) can
create it.

The transmitter calculates the fingerprint key-pair and,
using the fingerprint private key, signs the transaction Saltpack,
including the header, and the number of inputs:

 f = (j-)(p-)

 F = f * G = j- * P-

 fsig = [Saltpack, n] f - Signature using f

F and fsig form the fingerprint. The signature binds F to this
Saltpack and to n, the total number of inputs. This ensures a
fingerprint cannot be deleted or attached to another transaction.

The receiver and auditor can check the validity of the
fingerprint since they can calculate F from j- and P-. When
tracing back to the funding transaction they will find P- to
create F.

The miner simply checks the uniqueness of F and the
validity of fsig.

The auditor cannot create a fake fingerprint for his own
employer’s (the receiver) future outputs since he does not
know p and will not be able to create an fsig on a transaction.

B. The Transaction Structure
Figure 3 below shows the structure of a transaction with the

various keys called out. Note the signature, Ps-, is the Schnorr
signature of 𝑃- using p-. It is there showing ownership of the
input by the transmitter and it verifies that the transmitter
created F. It F doesn’t check out the receiver should reject the
transaction. The funding transaction is found by using j- to
calculate a J- and finding, then opening (receiving), the
funding transaction. This gives the receiver P- to verify Ps-.
This is what the receiver of an output from this transaction will
have to do as part of her backtrack to verify the validity of this
transaction.

 5

Fig 3. Transaction Showing the Keys

On the output side the q is the blinding factor and is hidden
per the Mimblewimble standard and the P will be used to prove
the receiver’s ownership of this output when the time comes
that she will want to spend this output.

Inside the dotted box is a Mimblewimble non-interactive
transaction as described in [1]. Appended to it is a list of all j-
allowing a verifier to walk back through funding transactions.
This is all encrypted in a pack as described in [2]. Outside of
the Saltpack is the (anonymous) public key of the transmitter
and the (anonymous) public keys of the receivers. Also
appended to it are the fingerprints of all the inputs to the
transaction that are used by the miner to block double
spending. The fingerprints are bound to this Saltpack by the
signature fsig, which can be checked by F. The receiver has the
task of making sure F is formed correctly from the funding
transaction outputs.

IV. OPEN ISSUES AND CONCLUSIONS
As mentioned before, the description of this protocol is

preliminary. However, this paper describes a roadmap to a final
design. It shows that protocols that do not reveal information
necessary to form a full transaction graph is possible. What
follows is a brief description of issues that require more
attention.

A. The Correctness of the Design
This design was conceived over a few days. I have tried to

ensure that there are no leaks etc. that would break the privacy
of transactions. I have also tried to make sure the miner can
prohibit double spends and is motivated to do so. Finally, I
have tried to ensure the receiver has all the information she
needs to verify the validity of her received transactions. The
design needs to be vetted against these goals.

B. The Limits to Transaction Privacy
Unfortunately, the linkage between transactions is revealed

to the receiver. This is necessary to allow verification of the
funding from minted coins to this transaction. This is much
more privacy than is afforded by current blockchain designs
but in the end an entity bent on mapping the transaction graph
will receive an input that allows tracing back through the graph
to a target transaction. Some observations:

• Creating a complete graph is impossible

• Transactions that have not been spent are safe
since tracing can only be backwards through the
graph. This is true no matter how deep in the
blockchain they are.

• New spending transactions are safe for a while
since the likelihood of a spend arriving at an entity
mapping the transaction graph is low.

• Groups that transact among themselves can
maintain a bit of privacy by being careful of which
funding transactions are used to spend outside the
group. For example, sources of funds used to pay
salaries in a corporation can be kept relatively
private and a user receiving a large payment can
privately break it up into a number of wallets
before spending any of it also keeping a level of
privacy.

• Since Mimblewimble is used for the basic
transaction, verifying correctness by the receiver
does not require revealing the balances in older
transactions. This makes tracing the amounts
being moved problematic.

C. The Low Efficiency of the Protocol
Transactions in this protocol are large. Maybe there are

shortcuts that would reduce its size.

The work needed to determine if a transaction belongs to
you seems large. This is an area that could be improved.

The work needed to walk back to a funding transaction also
seems large. This and the previous inefficiency result from the
desire to enable an auditor to do the work of maintaining a
wallet by searching for transaction you own and do the work of
verifying the transaction while at the same time keeping him
from spending your funds.

D. Acknowlegment
I would like to thank Gary Yu for inspiring this work by

publishing his design for a Mimblewimble Non-Interactive
Transaction Scheme.

REFERENCES

[1] Yu, Gary, “Mimblewimble Non-Interactive Transaction Scheme”,
August 2020. https://eprint.iacr.org/2020/1064.pdf

[2] “Saltpack, a modern crypto messaging format”, A binary message
format, using MessagePack and NaCl, Started 2015.
 https://saltpack.org/encryption-format-v2.

fsigF1

fsigFn

P1q1

Pnqn

Ps-1j-1

Ps-nj-n

J1

Jn

Encrypted SaltpackR

J
.
.
.

. . .

Ps-j-
. . .

Pq

M
im

bl
ew

im
bl

e
N

on
-

In
te

ra
ct

iv
e

Tr
an

sa
ct

io
n

fsigF

Fi
ng

er
pr

in
ts

Sa
ltp

ac
k

re
ce

iv
er

s

Saltpack sender

