
Efficient Composable Oblivious Transfer from
CDH in the Global Random Oracle Model

Bernardo David1? and Rafael Dowsley2

1 IT University of Copenhagen
2 Monash University

Abstract. Oblivious Transfer (OT) is a fundamental cryptographic pro-
tocol that finds a number of applications, in particular, as an essential
building block for two-party and multi-party computation. We construct
the first universally composable (UC) protocol for oblivious transfer se-
cure against active static adversaries based on the Computational Diffie-
Hellman (CDH) assumption. Our protocol is proven secure in the observ-
able Global Random Oracle model. We start by constructing a protocol
that realizes an OT functionality with a selective failure issue, but shown
to be sufficient to instantiate efficient OT extension protocols. In terms
of complexity, this protocol only requires the computation of 6 mod-
ular exponentiations and the communication of 5 group elements, five
binary strings of security parameter length, and two binary strings of
message length. Finally, we lift this weak construction to obtain a pro-
tocol that realizes the standard OT functionality (without any selective
failures) at an additional cost of computing 9 modular exponentiations
and communicating 4 group elements, four binary strings of security
parameter length and two binary strings of message length. As an inter-
mediate step before constructing our CDH based protocols, we design
generic OT protocols from any OW-CPA secure public-key encryption
scheme with certain properties, which could potentially be instantiated
from more assumptions other than CDH.

1 Introduction

Oblivious transfer (OT) [39,28] is a fundamental cryptographic primitive that
serves as a building block for a number of interesting applications, such as secure
two-party and multi-party computation. In this work, we mainly focus on 1-
out-of-2 string oblivious transfer, which is a two-party primitive. In this flavor
of OT, the sender Alice inputs two strings m0 and m1, and the receiver Bob
inputs a choice bit c, obtaining mc as the output. Bob must not be able to learn
m1−c, while Alice must not learn c. Since oblivious transfer is normally used
within other protocols as a primitive, it is desirable to ensure that its security is
guaranteed even under arbitrary composition.

? This work was supported by a grant from Concordium Foundation and by Inde-
pendent Research Fund Denmark grants number 9040-00399B (TrA2C) and number
9131-00075B (PUMA).

The Universal Composability (UC) framework [8] is the most widely used
methodology for analyzing protocol security under arbitrary composition. OT
protocols UC-secure against static malicious adversaries can be designed under
several computational assumptions, such as: Decisional Diffie-Hellman (DDH) [30,38],
strong RSA [30], Quadractic Residuosity (QR) [38], Decisional Linear (DLIN) [34,17],
Decisional Composite Residuosity (DCR) [34,14], McEliece Assumptions [19],
low noise Learning Parity with Noise (LPN) [18] and Learning with Errors
(LWE) [38]. Furthermore, there exist constructions based on simple generic prim-
itives such as enhanced trapdoor functions [12] and public-key encryption plus
semi-honest stand alone oblivious transfer [33], which mostly do not achieve the
same efficiency as the constructions that leverage properties of specific compu-
tational assumptions.

It is a well-known fact that UC-secure OT protocols require a setup assump-
tion [10]. Coincidentally, most of the UC-secure OT protocols (including the
aforementioned ones) are based in the Common Reference String (CRS) model,
where the parties are assumed to have access to a string randomly sampled
from a given distribution before execution starts. While this setup assumption
allows for the construction of efficient UC-secure OT protocols under a number
of assumptions, questions have been raised about its practicality [11,15], since a
local CRS is not readily available for a real world implementation of a protocol.
Notice that OT can be UC-realized under a number of alternative setup assump-
tions, such as the public-key infrastructure model [16], the random oracle model
(ROM) [4,6], noisy channels [24], tamper-proof hardware [35,23,25]. However,
these models still require each instance of the protocol to access a local instance
of the setup assumption. Informally, it means that each instance of the protocol
uses an instance of the ideal functionality representing the setup assumption
that is independent from all other instances and accessible only to the parties
participating in the protocol execution but not to the environment.

Assuming that each protocol instance has local access to an independent
setup in order to obtain secure composition is far from optimal and results in
several issues that have been pointed out in previous works [9,5,11]. In particular,
assuming the existence of independent random oracles (RO) for each protocol
instance contradicts the common practice of replacing a random oracle by a
standardized hash function, which is freely accessible and used by everybody.
Such issues were first analyzed and addressed by Canetti et al. [9], who proposed
the “Generalized UC model”, where it is assumed that the instance of the trusted
setup is globally available (and therefore also accessible by the environment) and
used by all protocol instances. This formalism was subsequently extended to the
random oracle setting by Canetti et al. [11], who define a global random oracle
model, where a single instance of the random oracle FgRO is directly accessible by
all parties, the adversary and the environment. Such a model precludes the use
of proof techniques that require the simulator to “program” the random oracle’s
answers to a given query, which are usually employed in random oracle based
constructions. UC protocols based on a local programmable CRS also suffer from
issues similar to those of local programmable ROs [11], and formally the security

2

guarantees for protocols based on local setups (e.g. local CRS or programmable
RO) only hold if a new fresh setup is available for each individual instance
of the protocol, which is unrealistic. It is not known how to generate even a
single CRS without heuristics, let alone a fresh one for each execution. Quoting
Canetti et al. [11] on the strength of the global random oracle model: “This
model provides significantly stronger composable security guarantees than the
traditional random oracle model of Bellare and Rogaway [4] or even the common
reference string model”. Note that more than one trusted setup instance can
be available (in our construction we use 3 instances of global RO), but they
should be globally available and not local for a protocol instance. Surprisingly,
Canetti et al. [11] showed that using FgRO as a setup assumption it is possible
to construct universally composable DLOG based commitments and DDH based
two-party computation and non-interactive secure computation secure against
static malicious adversaries. Recently, new results in the global ROM were proven
assuming certain relaxations of the model [7]. However, no efficient oblivious
transfer protocol in the global random oracle model has been proposed so far.

1.1 Our contributions

We first propose a generic protocol for universally composable oblivious transfer
secure against active static adversaries in the global random oracle model of [11].
The central building block of this construction is a One-Way Chosen Plaintext
Attack (OW-CPA) secure public-key encryption (PKE) scheme with a number
of properties. We show that such a scheme can be efficiently instantiated un-
der the Computational Diffie Hellman (CDH) assumption. Our results can be
summarized as follows:

– The first UC-secure OT protocol based on the CDH assumption. 3

– The first UC-secure OT protocol in the Global Random Oracle model [11]
that achieves efficiency for single executions (without OT extension) compa-
rable to the most efficient previous work [38], which requires a programmable
CRS.4

In order to obtain a protocol based on an assumption as weak as CDH, we
introduce novel simulation techniques for extracting choice bits and messages in
the simulation without resorting to programming the random oracle, which is
not possible in the global random oracle model of Canetti et al. [11]. Notice that
previous works required stronger computational assumptions (e.g. DDH [38,6])
even though they relied on stronger local setup assumptions (e.g. CRS [38] and
programmable random oracles [6]). Hence, in comparison to such previous works,
our results improve on both the computational and setup assumptions required
for UC-secure OT.
3 Döttling et al. [26] proposed an independent UC secure OT protocol in the CRS

model with other techniques that yield CDH instantiations.
4 The DDH based NISC of [11] is orders of magnitude less efficient than our approach

and the protocol [13] has been introduced recently as independent work.

3

In terms of efficiency, our protocols compare favorably to previous works
based on stronger assumptions. In the setting where one wishes to execute a
large number of OTs through OT extension, the costs of each seed OT with our
CDH based protocol are only the computation of 6 modular exponentiations and
the communication of 5 group elements, 5 binary strings of security parameter
length, and 2 binary strings of message length. In the setting where few OTs
are needed, our CDH based protocol requires 15 modular exponentiations and
the communication of 9 group elements, 9 binary strings of security parameter
length, and 4 binary strings of message length. We remark that, in contrast to
previous works based on local setup assumptions, our protocols can be readily
implemented while retaining their security properties by substituting the global
random oracle by an extensively tested cryptographic hash function (e.g. SHA3).

As an intermediate step towards our CDH based construction, we first de-
sign a generic protocol based on a public-key encryption scheme with certain
properties. We start by constructing a generic protocol that realizes an OT func-
tionality that captures a selective failure issue, which is nevertheless sufficient
for instantiating efficient OT extension protocols as shown in [22]. Interestingly,
our protocol achieves high efficiency, requiring only one key generation oper-
ation, two encryption operations and one decryption operation, apart from a
few calls to the random oracle. In terms of communication, our protocol only
requires the transfer of one public-key, two ciphertexts, five binary strings of se-
curity parameter length, and two binary strings of message length. Later on, we
obtain a generic protocol that realizes the standard OT functionality (without
any selective failure) by augmenting our original protocol with four encryptions,
one decryption, two ciphertexts, two binary strings of security parameter length
and two binary strings of message length. If hundreds of OTs are needed, our
OT with selective failures represents a new option of base OT for use with OT
extension schemes. If only tens of OTs are needed, our OT without selective
failures is a good option for usage. Besides yielding a CDH based instantiation,
these generic protocols can be potentially instantiated under other assumptions,
paving the way to post-quantum secure constructions of UC-secure OT under
lattice and coding based assumptions.

1.2 Related Works

The global random oracle model has been established by Canetti et al. in [11],
where they also build UC-secure commitments, two-party computation and non-
interactive secure computation (NISC) secure against static malicious adver-
saries. In their construction of NISC in the global ROM, they state that a natu-
ral way to construct such a protocol would be to instantiate existing approaches
based on 2-round OT with a global ROM version of the originally CRS based
UC-secure OT protocol by Peikert et al. [38]. However, they observe that there
are significant challenges in obtaining such a global ROM version of the protocol
by Peikert et al., and instead construct a one-side simulatable OT protocol that
is only UC-secure against a malicious receiver. Their solution is not generic but
intrinsically based on DDH via non-black-box use of the OT protocol of [38], only

4

implying 2-round UC OT based on DDH, and with communication/computation
costs several orders of magnitude higher than ours. On the other hand, ours is
the first UC OT in the GRO built in a black-box way from a generic primitive
(a PKE that we define), yielding the first UC OT based on CDH (a weaker as-
sumption) while achieving much lower computation/communication costs. Even
though the global ROM was recently revisited in [7], allowing for relaxations
such as programming the random oracle in specific situations, no new results
related to oblivious transfer were proposed in this relaxed model.

The idea of constructing OT using two public-keys — the “pre-computed”
one and the “randomized” one dates back to early days of OT development [28,3].
Naor and Pinkas [37] presented an improved stand alone CDH-based protocol in
the (local) random oracle model under the same approach that is proven secure
in the half-simulation paradigm. A recent result by Friolo et al. [29] shows how
to construct 4 round fully simulatable OT from key agreement protocols with
certain properties without requiring setup assumptions, which yields a protocol
based on CDH. However, their results fundamentally fall short of UC security
(since UC-secure OT protocols necessarily require a setup assumption [10]) and
cannot be easily adapted to this setting.

We remark that the “Simplest OT” protocol [15] and the protocol by Hauck
and Loss [32] have been found to suffer from a number of issues [31,6] and are
not UC secure. The CDH based protocol of [22] only realizes an OT functionality
with a selective failure (as our first simple construction) and it is unclear how to
use it to realize the standard OT functionality (without selective failure). The
UC OT protocol of [1] can also be instantiated from a similar generic public key
encryption scheme, for which a CDH instantiation is presented (among other
assumptions). However, in order to prove the security of the construction of [1],
it is also necessary to assume that the public key encryption scheme has circular
security, which is an ad-hoc assumption not proven under CDH.

Independent and concurrent works: Döttling et al. [26] proposed a generic round
optimal UC-secure OT protocol in the CRS model that can be instantiated
from CDH. However, even though their protocol solves the important problem
of achieving round optimality, it has computational and communication com-
plexities orders of magnitude higher than our protocol, making it impractical.
These overheads are intrinsic to the use of generic zero-knowledge proofs and
garbled circuits in their construction. Canetti et al. [13] introduced a CDH based
OT protocol that is UC-secure in the Global Random Oracle model. Similarly
to our initial result, they focus on obtaining OT with selective failures in order
to achieve better efficiency when using their protocol as basis for OT extension.
However, differently from our final result, they do not show how to eliminate
selective failures in their protocol without using OT extension.

1.3 Our Techniques

At a high level, we start by building a simple generic protocol that realizes a
weak version of the OT functionality, which allows for a selective failure attack.

5

Starting from this weak flavor of OT is useful because it allows us to showcase
our techniques more clearly while still being useful for performing OT exten-
sion, which results in an unlimited number of standard OTs (without selective
failures) at very high efficiency. We then lift our protocol with selective failures
to a generic protocol that realizes the standard OT functionality by leveraging
subtleties of the first, simpler, construction. The central building block for both
protocols is a public-key encryption (PKE) scheme satisfying a number of prop-
erties, which we construct based on the CDH assumption departing from the
ElGamal cryptosystem. In order to provide some intuition on the design of our
schemes, we informally describe properties we require from our PKE scheme and
discuss how they are used to build our protocols:

– Property 1 (informal): Let the public-key space PK form a group with
operation denoted by “?”. Then, for the public-keys (pk0, pk1), such that
pk0 ? pk1 = q, where q is chosen uniformly at random from PK, one can-
not decrypt both ciphertexts encrypted using pk0 and pk1, respectively. In
particular, when a public/secret-key pair (pkc, skc) is generated, the above
relationship guarantees that pk1−c that is chosen to satisfy the constraint
pk0 ? pk1 = q is “substantially random”, so that learning the messages en-
crypted with pk1−c is hard.

– Property 2 (informal): pk obtained using the key generation algorithm is
indistinguishable from a random element of PK. Note that we assume in
this work that not all the elements of PK may represent valid public-keys.

– Property 3 (informal): The PKE scheme must be “committing”, meaning
that it must be impossible to generate two pairs of randomness and plain-
text messages (r0,m0) and (r1,m1) with m0 6= m1 such that encrypting m0

with randomness r0 under a uniformly random public-key pk yields the same
ciphertext as encrypting m1 with randomness r1 under the same public-key.

– Property 4 (informal): Property 3 only holds for key pairs generated ac-
cording to the key generation algorithm or picked at random, but not for
arbitrary key pairs, which could be crafted to be “non-committing”. Intu-
itively, this property says that encrypting a message under such an arbitrary
“non-committing” public key will also cause some message bits to be lost,
which will come in handy in the security proof.

– Property 5 (informal): The PKE scheme has a witness-recovering decryp-
tion algorithm that outputs the randomness used to generate the decrypted
ciphertext along with the plaintext message.

A Toy Example: Consider a very simple protocol where the receiver generates
a key pair (pkc, skc), queries a global RO with a random seed value s to obtain q,
computes pk1−c such that pk0 ? pk1 = q, and sends pk0 and s to the sender. The
latter recomputes pk1 from pk0 and s with the help of the RO and uses the public-
keys to encrypt random seeds. The sender then uses these seeds to generate
one-time pads (using the global RO) that she uses to encrypt her messages,

6

sending both the PKE ciphertexts containing the seeds and the one-time pad
encryptions of the actual messages to the receiver. The receiver can retrieve the
seed encrypted under pkc (since he has skc), compute the one-time pad with the
help of the global RO and retrieve the message associated with his choice bit
c. Intuitively, Property 2 now prevents the sender from learning the choice bit,
while Property 1 ensures that the receiver learns at most one of the inputs.

While this simple protocol intuitively implements a stand alone oblivious
transfer, it is hard to construct a simulator to prove it UC-secure in the global
RO model. If programming the RO was allowed, the simulator could program
the answer of the RO to a query s in such a way that it knows the secret keys
corresponding to both pk0 and pk1, allowing it to extract the messages from a
corrupted sender. In the case of a corrupted receiver, the simulator could wait
for the RO to be queried on one of the one-time pad seed (extracting the choice
bit), retrieve the message associated to that choice bit and program the answer
of this RO query in such a way that the one-time pad encryption related to that
seed decrypts to the message obtained from the OT functionality. However, the
global RO model precludes us from using any of these techniques. Instead, we
develop novel techniques for extracting both a corrupted receiver’s choice bit
and a corrupted sender’s messages solely by observing global RO queries.

OT with Selective Failures: As a starting point, we design a protocol that
UC-realizes a weaker version of the OT functionality, which captures a selective
failure attack. This attack allows a malicious sender to try and “guess” the re-
ceiver’s choice bit, only being caught if her guess is wrong. Allowing this selective
failure makes it easier to implement mechanisms used by the simulator to extract
the choice bit from a malicious receiver without the need to program the random
oracle. Even though this protocol has a selective failure issue, it has been shown
in [22] that it is sufficient to instantiate efficient OT extension protocols such
as the one of [36]. Many applications require such a high number of oblivious
transfers that it makes sense to use an actual OT protocol only to seed an OT
extension, which can then be used for an unlimited number of OTs at very low
cost. In order to simulate an execution with a corrupted receiver, we augment
our simple protocol with a challenge-response mechanism inspired by [22] that
forces the receiver to query the global RO in such a way that it reveals its choice
bit to the simulator. In the real world protocol, the adversary can mount a se-
lective failure attack where it can “guess” the receiver’s choice bit, being caught
if it guesses the wrong bit. However, a simulator who can observe the queries
made to the global RO can easily determine the receiver’s choice bit without re-
sorting to a selective failure attack. This mechanism works by having the sender
pick two random values p0, p1, compute a challenge ch = H(H(p0)) + H(H(p1))
where H(·) is the random oracle and send this challenge to the receiver along
with encryptions of p0, p1. The receiver decrypts pc corresponding to its choice
bit and answers with chr = H(H(pc))+c ·ch, which will always be H(H(p0)) when
ch is computed correctly. After receiving chr, the sender provides the receiver
with H(p0) and H(p1), so that it can check that ch was correctly computed and
that H(pc) is consistent with the value it decrypted. However, a malicious sender

7

can always guess the receiver’s choice bit and compute ch in such a way that it
will learn the actual choice bit but only be caught if it guesses wrong. Due to
Properties 1 and 3, the simulator can be assured that the query pc done by the
receiver corresponds to its choice bit. The case of a corrupted sender is handled
by a novel technique where the sender is forced to query the global RO in a way
that reveals both of its messages to a simulator who can observe RO queries.
The basic idea is to modify the challenge-response mechanism by having the
sender query the global RO not only with the challenge seed pi but also adding
the public-key pki, and randomness ri used to encrypt pi to the query. Using
Property 5, the receiver can complete the challenge-response mechanism since
it can recover ri used in the encryption of pi. Using Property 3, the simulator
is assured that a malicious sender could only have generated one such query for
each pair of value pi and randomness ri. Hence, the simulator can check which
pairs ri, pi in the list of queries to the global RO results in the ciphertexts sent
by the sender when used as input to an encryption under pki. After extracting
both p0, p1, the simulator detects whether the adversary is trying to guess the
choice bit (as well as the bit being guessed), which it forwards to the function-
ality. Later on, the sender uses the same pi and corresponding randomness ri to
query a different instance of the global RO and obtain a one-time pad used to
encrypt the actual messages it wants to transfer. Hence, the simulator can also
use p0, p1 to extract both messages transferred by a malicious sender.

Eliminating Selective Failures: We are also interested in solving the prob-
lem of directly UC-realizing a standard OT functionality in the observable global
random oracle model. In order to do so, we must eliminate the selective failure
issue of our first protocol. We observe that we can do so by basically running
two instances of our first protocol in parallel with the same public-keys pk0 and
pk1. Notice that these public-keys encode the choice bit, meaning that the same
choice bit is used in both instances. The first instance will be used to extract the
receiver’s choice bit while ensuring a malicious sender cannot learn it through a
selective failure attack. The other instance will be used to execute an oblivious
transfer with the previously extracted choice bit and random messages, which
can be later derandomized through standard techniques. We will run both pro-
tocol instances with a random choice bit, so that the receiver’s actual choice bit
does not leak in case the sender mounts a selective failure attack, which will
be detected causing the execution to abort. In one of these instances, we will
execute the challenge-response mechanism with the additional requirement that
the sender must reveal both p0, r0 and p1, r1, allowing the receiver to be sure
no selective failure attack occurred. With this instance we are able to extract
the receiver’s random choice bit while ensuring that in the second instance the
same bit will be used (because it is encoded in the keys pk0 and pk1, also used
in the second instance). In the second instance, we do not execute the challenge-
response mechanism but use pk0 and pk1 to encrypt a second pair of seeds p̂0, p̂1
with randomness r′0, r

′
1, which the sender queries to another instance of the global

RO to obtain one-time pads for random messages being transferred. Due to Prop-

8

erty 3, the simulator can extract p̂0, p̂1 from the queries to the global RO and
retrieve these random messages. At this point we have executed a random obliv-
ious transfer, which is then derandomized to the receiver’s actual choice bit and
the sender’s actual messages using standard information theoretical techniques.

2 Preliminaries

We denote by κ the security parameter. Let y
$← F (x) denote running the ran-

domized algorithm F with input x and random coins, and obtaining the output
y. When the coins r are specified we use y ← F (x; r). Similarly, y ← F (x) is

used for a deterministic algorithm. For a set X , let x
$← X denote x chosen uni-

formly at random from X ; and for a distribution Y, let y
$← Y denote y sampled

according to the distribution Y. We will denote by negl(κ) the set of negligible
functions of κ. We abbreviate probabilistic polynomial time as PPT.

Encryption Schemes: The main building block used in our OT protocol is
a public-key encryption scheme PKE. It has public-key PK, secret-key SK,
message M, randomness R and ciphertext C spaces that are functions of the
security parameter κ, and consists of a PPT key generation algorithm KG, a
PPT encryption algorithm Enc and a deterministic decryption algorithm Dec.

For (pk, sk)
$← KG(1κ), any m ∈ M, and c

$← Enc(pk,m), it should hold that
Dec(sk, ct) = m with overwhelming probability over the used randomness.

We should emphasize that for some encryption schemes not all p̃k ∈ PK are
“valid” in the sense of being a possible output of KG. The same holds for c̃t ∈ C
in relation to Enc and all possible coins and messages. Our OT protocol uses as
a building block a PKE that satisfies a variant of the OW-CPA security notion:
informally, two random messages are encrypted under two different public-keys,
one of which can be chosen by the adversary (but he does not have total control
over both public-keys). His goal is then to recover both messages and this should
be difficult. Formally, this property is captured by the following definition.

Property 1 (Double OW-CPA Security). Consider the public-key encryption scheme
PKE and the security parameter κ. It is assumed that PK forms a group with
operation denoted by “?”. For every PPT two-stage adversary A = (A1,A2)
running the following experiment:

q
$← PK

(pk0, pk1, st)
$← A1(q) such that pk0, pk1 ∈ PK and pk0 ? pk1 = q

mi
$←M for i = 0, 1

cti
$← Enc(pki,mi) for i = 0, 1

(m̃0, m̃1)
$← A2(ct0, ct1, st)

it holds that

Pr[(m̃0, m̃1) = (m0,m1)] ∈ negl(κ).

9

We also need a property about the indistinguishability of a public-key gen-
erated using KG and an element sampled uniformly at random from PK.

Property 2 (Pseudorandomness of Public-Keys). Consider the public-key en-

cryption scheme PKE and the security parameter κ. Let (pk, sk)
$← KG(1κ) and

pk′
$← PK. For every PPT distinguisher A, it holds that

|Pr[A(pk) = 1]− Pr[A(pk′) = 1]| ∈ negl(κ).

Moreover, we need the PKE scheme to be committing, meaning that an adver-
sary can only generate two different pairs of randomness and plaintext message
that result in the same ciphertexts when encrypted under a uniformly random
public-key with negligible probability.

Property 3 (Committing Encryption). Consider the public-key encryption scheme
PKE and the security parameter κ. For every PPT adversary A, it holds that:

Pr

Enc(pk,m0; r0) = Enc(pk,m1; r1)

∣∣∣∣∣∣∣∣
pk

$← PK,
(r0, r1,m0,m1)

$← A(pk),
r0, r1 ∈ R,m0,m1 ∈M,

m0 6= m1

 ∈ negl(κ)

Note that if Properties 2 and 3 hold for some PKE, then the modified version
of Property 3 in which pk is chosen using KG also trivially holds. Moreover, we
will need a variation of the committing property stating that even if an adver-
sary is allowed to provide an arbitrary secret and public-key pair, it cannot both
decrypt a ciphertext generated under that public-key and break the standard
committing property. The rationale behind this property is that, for some com-
mitting encryption schemes, an adversary can generate an arbitrary public-key
that breaks the standard committing property. However, in most cases, such a
public-key will also cause plaintext information to be lost, making it impossible
for the adversary to recover the original message from a ciphertext encrypted
under this key with probability 1. This property is formalized in Property 4.

Property 4 (Committing Encryption with Arbitrary Keys). Consider the public-
key encryption scheme PKE and the security parameter κ. For every PPT two-
stage adversary A = (A1,A2) running the following experiment:

(pk, st)
$← A1(1κ)

m
$←M, r

$← R
ct← Enc(pk,m; r)

((m′, r′), (m1, r1), . . . , (mn−1, rn−1))
$← A2(ct, st)

it holds that

Pr[m′ = m∧r′ = r∧(mi, ri) 6= (m, r)∧ct← Enc(pk,mi, ri) ∀ i = 1, . . . , n− 1] ≤ 1

n
+negl(κ).

10

We require PKE to have a witness-recovering decryption algorithm. Infor-
mally, this property means that the decryption algorithm also recovers the ran-
domness used to generate the ciphertext it takes as input. Witness-recovering
decryption is formally defined in Property 5.

Property 5 (Witness-Recovering Decryption). A public-key encryption scheme
PKE = (KG,Enc,Dec) has a witness-recovering decryption algorithm Dec if it
takes as input the secret-key sk ∈ SK and a ciphertext ct ∈ C and outputs
either a pair (m, r) for m ∈ M and r ∈ R or an error symbol ⊥. For any

(pk, sk)
$← KG(1κ), any m ∈M, any r

$← R and c← Enc(pk,m; r), it should hold
that Dec(sk, ct) = (m, r) with overwhelming probability over the randomness
used by the algorithms.

In Appendix D, we prove that Properties 1, 2, 3 and 4 hold for the ElGamal
cryptosystems based on the CDH assumption, yielding an efficient instantia-
tion of our generic protocol. Even though the ElGamal cryptosystem does not
have a straightforward witness-recovery decryption algorithm, we show how any
OW-CPA secure public-key encryption scheme used on random messages can be
augmented with such a decryption algorithm to achieve Property 5. This can be
done through the encrypt-with-hash paradigm, where the randomness used for
encryption is obtained by hashing the message being encrypted, which can be
proven secure in the non-programmable random oracle model.

Universal Composability in the Global Random Oracle Model: We
analyze our protocol in the UC model with global random oracles as presented
in [11]. We refer interested readers to the original work for more details on the
UC framework [8]. In the UC model with global random oracles, the parties are
assumed to have access to a global random oracle functionality FgRO (see Figure
1 for details) and interfaces that leak the list of illegitimate queries Q|s to the
adversary. Differently from the basic UC model, the global random oracle model
allows all parties (including the environment) to access a single instance of FgRO.
The FgRO functionality functions as a regular random oracle but is augmented
with a mechanism for leaking queries performed by parties that are not part
of a given execution. In the UC model parties are identified by a unique pair
of program id (PID) and session id (SID). Queries that are no prepended with
the same SID as the one identifying the party P = (pid, sid) making the query
are added to a list of illegitimate queries that can be requested by instances
of functionalities whose session id match the one in the query. This mechanism
allows the simulator to learn queries made by the environment or adversary but
keeps the queries made by honest parties secret (as honest parties will follow
the protocol and prepend their queries with the correct SID). Moreover, the
functionalities in the global random oracle model take into consideration the
existence of this list of illegitimate queries, requesting it from FgRO and handing
it to the adversary, if requested by the adversary. Our construction will actually
use three instances of FgRO: FgRO1 with range PK, FgRO2 with range {0, 1}λ
and FgRO3 with range {0, 1}κ.

11

Functionality FgRO

FgRO is parameterized by a range D and a list of ideal functionalities F .
– Upon receiving a query x from some party P = (pid, sid) or from the adversary
S do:

• If there is a pair (x, v) for some v ∈ D in the (initially empty) list Q of

past queries, return v to P . Else, sample v
$← D and store the pair (x, v)

in Q. Return v to P .
• Parse x as (s, x′). If sid 6= s, then add (s, x′, v) to the (initially empty) list

of illegitimate queries for SID s, denoted by Q|s.

– Upon receiving a request from an instance of an ideal functionality in the list
F , with SID s, return to this instance the list Q|s of illegitimate queries for
SID s.

Fig. 1. Functionality FgRO.

We consider a static malicious adversary. I.e., it can deviate from the pre-
scribed protocol in an arbitrary way, but has to corrupt the parties before the
execution starts.
Oblivious Transfer: The functionality Fλ,`OT that provides ` instances of the
1-out-of-2 string (of length λ) oblivious transfer in the FgRO-hybrid model is
presented in Appendix A. This work focus on obtaining a weaker form of obliv-
ious transfer that allows selective failure attacks, aiming for the same type of
weaker OT as in Doerner et al. [22]. The ideal functionality FλSFOT for 1-out-
of-2 string oblivious transfer with selective failure in the FgRO-hybrid model is
described in Figure 2. Essentially, the sender is given the option of trying to
guess the choice bit of the receiver. If she makes a wrong guess, the cheating
is detected and the execution aborts. If she makes a right guess, she learns the
choice bit and nothing is detected by the receiver. As proved by Doerner et al.
in the full version of their work [21], FλSFOT can be used as the base OTs in the

OT extension protocol of Keller et al. [36] to UC-realize Fλ,`OT.

Lemma 1. The OT extension protocol of Keller et al. [36] UC-realizes Fλ,`OT in
the FλSFOT,FgRO-hybrid model.

Proof. This follows directly from Lemma D.3 of [21], which proves that the first
part of the OT extension protocol UC-realizes the correlated OT with errors
functionality FCOTe in the FλSFOT,FgRO-hybrid model, and the reduction from

Fλ,`OT to FCOTe using the remaining steps of the OT extension protocol [36].

3 The Generic Protocol

Our protocol uses as a building block a public-key encryption scheme that satis-
fies Properties 1, 2, 3, 4 and 5 (defined in Section 2). The basic high-level idea is

12

Functionality FλSFOT.

FλSFOT is parameterized by the length of the messages λ ∈ N, which is publicly
known. FλSFOT interacts with a sender Alice and a receiver Bob, proceeding as fol-
lows:

– Upon receiving a message (choose, sid, c) from Bob, where c ∈ {0, 1},
record (sid, choice, c), send (chosen, sid) to Alice, and ignore future messages
(choose, sid, ·) with the same sid.

– Upon receiving a message (guess, sid, ĉ) from Alice, where ĉ ∈ {0, 1,⊥, force},
if a tuple (sid, choice, c) is recorded, then record (sid, guess, ĉ), ignore future
messages (guess, sid, ·) with the same sid and do the following:
1. If ĉ = ⊥, send (no− cheat, sid) to Bob.
2. If ĉ = c, send (cheat− undetected, sid) to Alice and (no− cheat, sid) to Bob.
3. If ĉ 6= c or ĉ = force, send (cheat− detected, sid, c) to both Alice and Bob.

– Upon receiving a message (send, sid,x0,x1) from Alice, where each xi ∈ {0, 1}λ,
if there are tuples (sid, choice, c) and (sid, guess, ĉ) recorded such that ĉ = ⊥ or
ĉ = c, then send (output, sid,xc) to Bob and ignore further messages from Alice
with the same sid.

– When asked by S, obtain from FgRO the list Q|sid of illegitimate queries for SID
sid and send it to S.

Fig. 2. Functionality FλSFOT in the Global Random Oracle model.

that Bob picks two public-keys pk0, pk1 such that he only knows the secret-key
corresponding to pkc (where c is his choice bit) and hands them to Alice. She
then uses the two public-keys to transmit two messages in an encrypted way, so
that Bob can only recover the message for which he knows the secret-key skc.

A crucial point in such schemes is making sure that Bob is only able to
decrypt one of the messages. In order to enforce this property, our protocol relies
on Property 1 and uses the random oracle to force the element q to be chosen
uniformly at random from PK. After generating the pair of public and secret-key
(pkc, skc), Bob samples a seed s, queries the random oracle FgRO1 with s to obtain
q, and computes pk1−c such that pk0 ? pk1 = q. Bob then hands the public-key
pk0 and the seed s to Alice, enabling her to also compute pk1. Since the public-
keys are indistinguishable according to Property 2, Alice learns nothing about
Bob’s choice bit. Next, Alice picks two uniformly random strings p0, p1, queries
them to the random oracle FgRO2 obtaining p̃0, p̃1 as response, and then she
computes one-time pad encryptions of her messages m0,m1 as m̃0 = m0⊕ p̃0 and
m̃1 = m1 ⊕ p̃1. Alice also computes ct0 ← Enc(pk0, p0; r0), ct1 ← Enc(pk1, p1; r1)
and sends (m̃0, m̃1, ct0, ct1) to Bob. Bob can use skc to decrypt ctc obtaining pc.
He then queries pc to the random oracle FgRO2 obtaining p̃c as response, and
retrieves mc = m̃c ⊕ p̃c. Due to Property 1, Bob will not be able to recover p1−c

13

Protocol πSFOT

Let PKE be a public-key encryption scheme that satisfies Properties 1, 2, 3, 4 and
5, and κ be the security parameter. Protocol πSFOT is executed between Alice with
inputs m0,m1 ∈ {0, 1}λ and Bob with input c ∈ {0, 1}. Three instances of the
random oracle ideal functionality FgRO are used: FgRO1 with range PK, FgRO2

with range {0, 1}λ, and FgRO3 with range {0, 1}κ. Alice and Bob proceed as follows:

1. Bob generates a pair of keys (pkc, skc)
$← KG(1κ). He samples a random string

s
$← {0, 1}κ and sends (sid, s) to FgRO1, obtaining q as answer. Bob computes

pk1−c such that pk0 ? pk1 = q and sends (sid, s, pk0) to Alice.

2. Upon receiving (sid, s, pk0) from Bob, Alice queries FgRO1 with (sid, s), ob-
taining answer q. Alice computes pk1 such that pk0 ? pk1 = q. She sam-

ples p0, p1
$← {0, 1}κ, r0, r1

$← R and queries FgRO3 with (sid, pk0, p0, r0)
and (sid, pk1, p1, r1), obtaining p′0 and p′1 as answers. She then queries FgRO3

with (sid, p′0) and (sid, p′1), obtaining p′′0 and p′′1 as answers, and computes
ch ← p′′0 ⊕ p′′1 . Alice computes ct0 ← Enc(pk0, p0; r0), ct1 ← Enc(pk1, p1; r1),
and sends (sid, ch, ct0, ct1) to Bob.

3. Upon receiving (sid, ch, ct0, ct1) from Alice, Bob computes (pc, rc) ←
Dec(skc, ctc). Bob queries FgRO3 with (sid, pkc, pc, rc) obtaining p′c as the an-
swer, and then with (sid, p′c) obtaining p′′c . Bob computes chr ← p′′c ⊕ (c · ch)
and sends (sid, chr) to Alice.

4. Upon receiving (sid, chr) from Bob, Alice verifies that chr = p′′0 . If this check
fails, Alice aborts. Otherwise, Alice queries FgRO2 with (sid, pk0, p0, r0) and
(sid, pk1, p1, r1), obtaining p̃0 and p̃1 as answers. Alice computes m̃0 = p̃0 ⊕m0,
m̃1 = p̃1 ⊕m1. Alice sends (sid, m̃0, m̃1, p

′
0, p
′
1) to Bob.

5. Upon receiving (sid, m̃0, m̃1, p
′
0, p
′
1) from Alice, Bob checks if the p′c that he

received from Alice matches the one he locally computed. He also queries FgRO3

with (sid, p′1−c) obtaining p′′1−c, and checks if ch = p′′0 ⊕ p′′1 . If any check fails,
Bob aborts. Otherwise, he queries FgRO2 with (sid, pkc, pc, rc) obtaining p̃c as
answer, and computes mc ← m̃c ⊕ p̃c. Bob outputs mc.

Fig. 3. Protocol πSFOT

in order to query it to the random oracle and to decrypt m̃1−c. Therefore, the
security for Alice is also guaranteed.

Even though this simple protocol seemingly performs an oblivious transfer,
it poses significant challenges for a proof in the Global Random Oracle model of
Canetti et al. [11], where the simulator cannot program the answers to random
oracle queries. In the case of a malicious sender, the simulator would need to
generate a seed s and public key pk0 such that it knows both secret keys asso-
ciated to the resulting public keys pk0 and pk1, which it needs to know in order
to extract the messages m0 and m1. However, while this is easy if the simulator

14

could program an arbitrary random oracle answer given the seed s, it cannot
be done in this model. In the case of a malicious receiver, Property 2 ensures
that the simulator cannot learn any information about the choice bit c before
the adversary queries the random oracle on pc, which only happens after the
simulator has sent its last message. The simulator could possibly program the
random oracle answer given pc so that the result is mc (received from the OT
functionality), but this is not possible in this setting. In order to circumvent
these challenges, we augment the simple protocol described before with mecha-
nisms that allow the simulator to extract the choice bit c and messages m0 and
m1 without resorting to programming the random oracle.

In order to obtain security against a malicious receiver, we use a challenge-
response mechanism that follows the approach of Doerner et al. [22]. Basically,
before carrying out the actual transfer, Alice queries (pk0, p0, r0) and (pk1, p1, r1)
to the random oracle FgRO3 (note that this oracle is different from FgRO2) ob-
taining p′0, p

′
1, and then queries p′0, p

′
1 to the random oracle FgRO3 obtaining

p′′0 , p
′′
1 . Alice fixes the challenge as ch← p′′0⊕p′′1 and sends ch to Bob. Bob queries

FgRO3 with (pkc, pc, rc), which is possible because PKE has witness-recovering
decryption according to Property 5, obtaining p′c and then with p′c obtaining
p′′c . Bob returns p′′c ⊕ (c · ch) to Alice, who checks if the returned value is equal
to p′′0 . Alice then sends p′0, p

′
1 to Bob, who checks if these values are compatible

with the values he previously computed and ch. After receiving a valid response
from Bob, Alice proceeds with the transfer. A crucial aspect of this mechanism
is that in order to obtain p′′c , Bob is forced to first issue a query associated to its
choice bit c to the random oracle, allowing for extraction. In the proof, the sim-
ulator can extract c solely by observing the adversary’s queries after it receives
the challenge, allowing it to obtain mc from the OT functionality and prepare
the last message to the adversary accordingly. This mechanism allows selective
failure attacks, but the resulting scheme fulfills the requirements to be used as
base OTs in the OT extension scheme of Keller et al. [36] (see Section 2).

Instead of querying FgRO2 with p0, p1, we query it with (pk0, p0, r0) and
(pk1, p1, r1) to obtain p̃0, p̃1. These queries of the form (pki, pi, ri) to FgRO2 and
FgRO3 allow the simulator to extract both of the corrupt sender’s messages solely
by observing the queries to the random oracle. In the simulation, the simulator
reconstructs ciphertexts ĉtj = Enc(pki, p̂j , r̂j) from all random oracle queries of
the form (pki, p̂j , r̂j), looking for a ciphertext ĉtj that matches ciphertext cti
(for i ∈ {0, 1}) in the adversary’s message. Having found these ciphertexts the
simulator can proceed to recover each message mi. An adversary could try to
confuse the simulator by making two different queries to the random oracle that
pass the tests above. However, this is not possible due to Properties 3 and 4.

Protocol πSFOT is described in Figure 3 and its security if formally stated
in Theorem 1, which we prove in Appendix B. A CDH based instantiation is
described in Appendix D.

Theorem 1. Let PKE be a public-key encryption scheme that satisfies Proper-
ties 1, 2, 3, 4 and 5. When instantiated with PKE, Protocol πSFOT UC-realizes

15

functionality FλSFOT with security against static malicious adversaries in the
global random oracle model.

4 Realizing Fλ,1
OT directly

Our previous generic protocol can be modified to directly realize the standard
1-out-of-2 OT functionality Fλ,1OT without any selective failure issues, instead of
first realizing FλSFOT and then employing the OT extension of Keller et al. to

realize Fλ,`OT. However, we will rely directly on the specific CDH based PKE of
Appendix D instead of a generic PKE with Properties 1, 2, 3, 4 and 5. This is
necessary since the simulator will now need to extract messages encrypted under
this PKE that it cannot extract by simply observing queries to the random oracle
instances used in the protocol but that can be extracted by observing queries to
the random oracle instance used by this specific PKE construction.

In order to eliminate the potential selective failure from our first protocol,
we need to provide Bob with a proof that Alice has used exactly the values
p0, p1 contained in ciphertexts ct0, ct1 to generate challenge ch. The main idea
is to use two instances of our original protocol that are run using the same
public keys pk0, pk1 (encoding the same choice bit). One of them is used to
execute the challenge-response mechanism and the other is used to execute a
random OT, which can be later derandomized. In our previous protocol, Alice
only reveals the outputs of FgRO3 upon being queried with (sid, pki, pi, ri), which
only allows Bob to check that these were the values used in the challenge with
probability 1

2 . In order to prove that those values were indeed used, we will
leverage the committing property (Property 3) of the underlying cryptosystem
and have Alice reveal p0, p1, r0, r1 to Bob upon getting a valid response to the
challenge. Using these values, Bob can recompute the challenge (checking that

it matches ch received from Alice) and check that cti
$← Enc(pki, pi; ri), for

i = {0, 1}. If those checks fail, the receiver aborts but, if they succeed, it is
assured by the committing property that those values were used in computing
ct0, ct1 and ch (meaning the choice bit was not leaked). Having both p0, p1
revealed to Bob, we will need to have Alice generate new p̂0, p̂1 and corresponding
ĉt0, ĉt1 to complete the OT as in our first protocol. However, notice that this
protocol still leaks Bob’s choice bit to an adversary who mounts a successful
selective failure attack, even though the attack is detected and the protocol is
aborted. In order to deal with this, Bob uses a random choice bit to execute a
random OT that is derandomized after Bob is certain no selective failure attack
occurred.

The simulator for a corrupt Alice does not have to extract the “guess” bit of
the adversary, just acting as an honest Bob and extracting the messages m0,m1

using the same techniques as the simulator in πSFOT. However, it will need to
extract messages p̂0, p̂1 from the ciphertexts ĉt0, ĉt1 by observing queries to the
random oracle used in the CDH based PKE from Appendix D. The simulator
for a corrupt Bob uses the same techniques as the simulator in πSFOT to extract
the choice bit. The difference is that the ciphertexts ct′0, ct

′
1 obtained from the

16

challenger in the game of Property 1 are given to the adversary as ctc, ĉt1−c in
the reduction showing that an adversary that obtains m1−c when interacting
with this simulator breaks Property 1.

Protocol πOT is described in Figure 4 and its security if formally stated in
Theorem 2, which we prove in Appendix C. The CDH based PKE instantiation
is described in Appendix D.

Theorem 2. Under the CDH assumption, Protocol πOT UC-realizes functional-
ity Fλ,1OT with security against static malicious adversaries in the global random
oracle model.

References

1. Paulo S. L. M. Barreto, Bernardo David, Rafael Dowsley, Kirill Morozov, and An-
derson C. A. Nascimento. A framework for efficient adaptively secure composable
oblivious transfer in the rom. Cryptology ePrint Archive, Report 2017/993, 2017.
https://eprint.iacr.org/2017/993.

2. Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and effi-
ciently searchable encryption. In Alfred Menezes, editor, CRYPTO 2007, volume
4622 of LNCS, pages 535–552. Springer, Heidelberg, August 2007.

3. Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 547–557.
Springer, Heidelberg, August 1990.

4. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73.
ACM Press, November 1993.

5. Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser. Phys-
ically uncloneable functions in the universal composition framework. In Phillip
Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 51–70. Springer,
Heidelberg, August 2011.

6. Megha Byali, Arpita Patra, Divya Ravi, and Pratik Sarkar. Efficient, round-
optimal, universally-composable oblivious transfer and commitment scheme with
adaptive security. Cryptology ePrint Archive, Report 2017/1165, 2017. https:

//eprint.iacr.org/2017/1165.

7. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gre-
gory Neven. The wonderful world of global random oracles. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS,
pages 280–312. Springer, Heidelberg, April / May 2018.

8. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

9. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Salil P. Vadhan, editor, TCC 2007, volume
4392 of LNCS, pages 61–85. Springer, Heidelberg, February 2007.

10. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Hei-
delberg, August 2001.

17

https://eprint.iacr.org/2017/993
https://eprint.iacr.org/2017/1165
https://eprint.iacr.org/2017/1165

Protocol πOT

Let PKE be the CDH based public-key encryption scheme of Appendix D that
satisfies Properties 1, 2, 3, 4 and 5, and κ be the security parameter. Protocol
πOT is executed between Alice with inputs m0,m1 ∈ {0, 1}λ and Bob with input
c ∈ {0, 1}. Bob and Alice interact with each other and with four instances of the
random oracle ideal functionality: FgRO1 with range PK, FgRO2 with range {0, 1}λ,
FgRO3 with range {0, 1}κ, and FgRO4 with range R (used by PKE). Protocol πOT

proceeds as follows:

1. Bob samples c′
$← {0, 1} and generates a pair of keys (pkc′ , skc′)

$← KG(1κ). He

samples a random string s
$← {0, 1}κ and sends (sid, s) to FgRO1, obtaining q

as answer. Bob computes pk1−c′ such that pk0 ? pk1 = q and sends (sid, s, pk0)
to Alice.

2. Upon receiving (sid, s, pk0) from Bob, Alice queries FgRO1 with (sid, s), obtaining
answer q and computing pk1 such that pk0?pk1 = q. For i ∈ {0, 1}, Alice samples

pi, p̂i
$← {0, 1}κ and ri, r̂i

$←R, queries FgRO3 with (sid, pki, pi, ri), obtaining p′i
as answer, and then queries FgRO3 with (sid, p′i), obtaining p′′i as answer. Alice
computes ch ← p′′0 ⊕ p′′1 . For i ∈ {0, 1}, Alice computes cti ← Enc(pki, pi; ri),
ĉti ← Enc(pki, p̂i; r̂i). Alice sends (sid, ch, ct0, ct1, ĉt0, ĉt1) to Bob.

3. Upon receiving (sid, ch, ct0, ct1, ĉt0, ĉt1) from Alice, Bob computes (pc′ , rc′) ←
Dec(skc′ , ctc′), queries FgRO3 with (sid, pkc′ , pc′ , rc′), obtaining p′c′ as the an-
swer, and then queries FgRO3 with (sid, p′c′), obtaining p′′c′ as the answer. Bob
computes chr← p′′c′ ⊕ (c′ · ch) and sends (sid, chr) to Alice.

4. Upon receiving (sid, chr) from Bob, Alice verifies that chr = p′′0 . If this check fails,
Alice aborts. Otherwise, for i ∈ {0, 1}, Alice queries FgRO2 with (sid, pki, p̂i, r̂i)

(obtaining p̃i as answer), samples m̂i
$← {0, 1}λ and computes m̃i = p̃i ⊕ m̂i.

Alice sends (sid, m̃0, m̃1, p0, p1, r0, r1) to Bob.

5. Upon receiving (sid, m̃0, m̃1, p0, p1, r0, r1) from Alice, for i ∈ {0, 1}, Bob checks
that cti = Enc(pki, pi, ri) and queries FgRO3 with (sid, pki, pi, ri) (obtaining p′i
as answer) and queries FgRO3 with (sid, p′i) (obtaining p′′i as answers). Next Bob
checks that ch = p′′0 ⊕ p′′1 . If any checks fail, Bob aborts. Otherwise, Bob com-
putes (p̂c′ , r̂c′)← Dec(skc′ , ĉtc′). If this decryption fails with ⊥← Dec(skc′ , ĉtc′),

Bob samples a random (p̂c′ , r̂c′)
$← {0, 1}κ×R in order to avoid a selective fail-

ure. Bob queries FgRO2 with (sid, pkc′ , p̂c′ , r̂c′), obtaining p̃c′ as answer, com-
putes m̂c′ ← m̃c′ ⊕ p̃c′ , sets d← c⊕ c′ and sends (sid, d) to Alice.

6. Upon receiving (sid, d) from Bob, Alice sets m′0 ← m̂d ⊕m0,m
′
1 ← m̂1−d ⊕m1.

Alice sends (sid,m′0,m
′
1) to Bob.

7. Upon receiving (sid,m′0,m
′
1) from Alice, Bob computes mc = m′c⊕ m̂c′ , outputs

mc and halts.

Fig. 4. Protocol πOT

18

11. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with
a global random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors,
ACM CCS 14, pages 597–608. ACM Press, November 2014.

12. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th ACM STOC, pages
494–503. ACM Press, May 2002.

13. Ran Canetti, Pratik Sarkar, and Xiao Wang. Blazing fast OT for three-round UC
OT extension. IACR Cryptology ePrint Archive, 2020:110, 2020. To appear at
PKC 2020.

14. Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient,
adaptively secure, and composable oblivious transfer with a single, global CRS.
In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of
LNCS, pages 73–88. Springer, Heidelberg, February / March 2013.

15. Tung Chou and Claudio Orlandi. The simplest protocol for oblivious trans-
fer. In Kristin E. Lauter and Francisco Rodŕıguez-Henŕıquez, editors, LATIN-
CRYPT 2015, volume 9230 of LNCS, pages 40–58. Springer, Heidelberg, August
2015.

16. Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient multi-
party computation from threshold homomorphic encryption. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 247–264. Springer, Heidelberg, Au-
gust 2003.

17. Ivan Damg̊ard, Jesper Buus Nielsen, and Claudio Orlandi. Essentially optimal
universally composable oblivious transfer. In Pil Joong Lee and Jung Hee Cheon,
editors, ICISC 08, volume 5461 of LNCS, pages 318–335. Springer, Heidelberg,
December 2009.

18. Bernardo David, Rafael Dowsley, and Anderson C. A. Nascimento. Universally
composable oblivious transfer based on a variant of LPN. In Dimitris Gritzalis,
Aggelos Kiayias, and Ioannis G. Askoxylakis, editors, CANS 14, volume 8813 of
LNCS, pages 143–158. Springer, Heidelberg, October 2014.

19. Bernardo Machado David, Anderson C. A. Nascimento, and Jörn Müller-Quade.
Universally composable oblivious transfer from lossy encryption and the McEliece
assumptions. In Adam Smith, editor, ICITS 12, volume 7412 of LNCS, pages
80–99. Springer, Heidelberg, August 2012.

20. Yevgeniy Dodis, Victor Shoup, and Shabsi Walfish. Efficient constructions of
composable commitments and zero-knowledge proofs. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 515–535. Springer, Heidelberg, Au-
gust 2008.

21. Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party
threshold ECDSA from ECDSA assumptions. Cryptology ePrint Archive, Report
2018/499, 2018. https://eprint.iacr.org/2018/499.

22. Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Secure two-party
threshold ECDSA from ECDSA assumptions. In 2018 IEEE Symposium on Secu-
rity and Privacy, pages 980–997. IEEE Computer Society Press, May 2018.

23. Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Unconditional and
composable security using a single stateful tamper-proof hardware token. In Yuval
Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 164–181. Springer, Heidel-
berg, March 2011.

24. Rafael Dowsley, Jörn Müller-Quade, and Anderson C. A. Nascimento. On the
composability of statistically secure random oblivious transfer. Entropy, 22(1):107,
2020.

19

https://eprint.iacr.org/2018/499

25. Rafael Dowsley, Jörn Müller-Quade, and Tobias Nilges. Weakening the isolation
assumption of tamper-proof hardware tokens. In Anja Lehmann and Stefan Wolf,
editors, ICITS 15, volume 9063 of LNCS, pages 197–213. Springer, Heidelberg,
May 2015.

26. Nico Dttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and Daniel
Wichs. Two-round oblivious transfer from cdh or lpn. Cryptology ePrint Archive,
Report 2019/414, 2019. https://eprint.iacr.org/2019/414.

27. Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In G. R. Blakley and David Chaum, editors, CRYPTO’84,
volume 196 of LNCS, pages 10–18. Springer, Heidelberg, August 1984.

28. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6):637–647, June 1985.

29. Daniele Friolo, Daniel Masny, and Daniele Venturi. A black-box construction
of fully-simulatable, round-optimal oblivious transfer from strongly uniform key
agreement. Cryptology ePrint Archive, Report 2018/473, 2018. (To appear in
TCC 2019) https://eprint.iacr.org/2018/473.

30. Juan A. Garay. Efficient and universally composable committed oblivious transfer
and applications. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages
297–316. Springer, Heidelberg, February 2004.

31. Ziya Alper Gen, Vincenzo Iovino, and Alfredo Rial. ”the simplest protocol for
oblivious transfer” revisited. Cryptology ePrint Archive, Report 2017/370, 2017.
https://eprint.iacr.org/2017/370.

32. Eduard Hauck and Julian Loss. Efficient and universally composable protocols for
oblivious transfer from the cdh assumption. Cryptology ePrint Archive, Report
2017/1011, 2017. http://eprint.iacr.org/2017/1011.

33. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On black-box com-
plexity of universally composable security in the CRS model. In Tetsu Iwata and
Jung Hee Cheon, editors, ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages
183–209. Springer, Heidelberg, November / December 2015.

34. Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation
on committed inputs. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of
LNCS, pages 97–114. Springer, Heidelberg, May 2007.

35. Jonathan Katz. Universally composable multi-party computation using tamper-
proof hardware. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS,
pages 115–128. Springer, Heidelberg, May 2007.

36. Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension
with optimal overhead. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 724–741. Springer, Heidelberg,
August 2015.

37. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao
Kosaraju, editor, 12th SODA, pages 448–457. ACM-SIAM, January 2001.

38. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for effi-
cient and composable oblivious transfer. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 554–571. Springer, Heidelberg, August 2008.

39. Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
Technical Memo TR-81, Aiken Computation Laboratory, Harvard University, 1981.

20

https://eprint.iacr.org/2019/414
https://eprint.iacr.org/2018/473
https://eprint.iacr.org/2017/370
http://eprint.iacr.org/2017/1011

A OT Functionality

The functionality Fλ,`OT that provides ` instances of the 1-out-of-2 string (of length
λ) oblivious transfer in the FgRO-hybrid model is presented in Figure 5.

Functionality Fλ,`OT.

Fλ,`OT is parameterized by the length of the messages λ ∈ N and by the number of
message pairs `, which are publicly known. Fλ,`OT interacts with a sender Alice and
a receiver Bob, proceeding as follows:

– Upon receiving a message (send, sid,x0,1,x1,1, . . . ,x0,`,x1,`) from Alice, where
each xi,j ∈ {0, 1}λ, store the tuple (sid, sent,x0,1,x1,1, . . . ,x0,`,x1,`) and send
(sent, sid) to Bob. Ignore further messages from Alice with the same sid.

– Upon receiving a message (choose, sid, c1, . . . , c`) from Bob, where each cj ∈
{0, 1}, check if a tuple (sid, sent,x0,1,x1,1, . . . ,x0,`,x1,`) was recorded. If yes,
send (output, sid,xc1,1, . . . ,xc`,`) to Bob and (received, sid) to Alice, and ignore
further messages from Bob with the same sid. Otherwise, send nothing, but
continue running.

– When asked by S, obtain from FgRO the list Q|sid of illegitimate queries for SID
sid and send it to S.

Fig. 5. Functionality Fλ,`OT in the Global Random Oracle model.

B Security Analysis of Protocol πSFOT

In this appendix we analyse the security of Protocol πSFOT and present a full
proof of Theorem 1. First we discuss the correctness of Protocol πSFOT. In Steps 2
and 3, if the message (sid, ch, ct0, ct1) is correctly generated by Alice, Bob is able
to decrypt ctc with the secret-key skc to obtain pc and rc (due to Property 5),
allowing him to compute the right answer to the challenge, and also to decrypt
mc in Step 5. We now formally state the security of πSFOT in Theorem 1.

Theorem 1 Let PKE be a public-key encryption scheme that satisfies Properties
1, 2, 3, 4 and 5. When instantiated with PKE, Protocol πSFOT UC-realizes the
functionality FλSFOT against static malicious adversaries in the global random
oracle model.

Proof. In order to prove the security of πSFOT, we will construct a simulator
S such that no environment Z can distinguish between interactions with an
adversary A through πSFOT in the real world and with S and FλSFOT in the ideal
world. For the sake of clarity, we will describe the simulator S separately for

21

different corruption scenarios. In all cases, S writes all the messages received from
Z in A’s input tape, simulating A’s environment. Also, S writes all messages
from A’s output tape to its own output tape, forwarding them to Z. Notice
that simulating the cases where both Bob and Alice are corrupted or honest is
trivial. If both parties are corrupted, S simply runs A internally. In this case, A
generates the messages from both corrupted parties. If neither Alice nor Bob are
corrupted, S runs the protocol between honest Alice and Bob internally on the
inputs provided by Z and all messages are delivered to A. We analyze the cases
where only Bob is corrupted and where only Alice is corrupted below.

Simulator S (Corrupted Bob)

Let λ be the length of the messages and κ be the security parameter. The simulator
S interacts with an environment Z, functionality FλSFOT and an internal copy A of
the adversary that corrupts only Bob, proceeding as follows:

1. S forwards all messages between A and global random oracles FgRO1, FgRO2

and FgRO3. Moreover, it keeps up-to-date lists of adversarial and illegitimate
queries (and associated answers) for each global random oracle.

2. Upon receiving (sid, s, pk0) from A, S follows the instructions of an honest Alice
in Step 2 of πSFOT to generate and send (sid, ch, ct0, ct1) to A:
(a) S sends (sid, s) to FgRO1, receiving q as answer. S computes pk1 such that

pk0 ? pk1 = q.

(b) For i ∈ {0, 1}, S samples pi
$← {0, 1}κ, ri,

$← R, computes cti ←
Enc(pki, pi; ri), and queries FgRO3 with (sid, pki, pi, ri) to obtain p′i, and
with (sid, p′i) to obtain p′′i .

(c) S computes ch← p′′0 ⊕ p′′1 and sends (sid, ch, ct0, ct1) to A.

3. Whenever the first query (sid, pkc, pc, rc) from A to FgRO2 or FgRO3 where
c ∈ {0, 1} happens, S sends (choose, sid, c) to FλSFOT. Upon receiving
(output, sid,mc) from FλSFOT, S stores mc.

4. Upon receiving (sid, chr) from A, S checks that chr = p′′0 , aborting otherwise
(as an honest Alice would). If no query of the form (sid, pkc, pc, rc) has been
recorded in the lists of FgRO3 or FgRO2, S outputs fail and halts. Otherwise,

S samples m1−c
$← {0, 1}λ and executes Step 4 of Protocol πSFOT as an honest

Alice to generate and send (sid, m̃0, m̃1, p
′
0, p
′
1) to A:

(a) For i ∈ {0, 1}, S queries FgRO2 with (sid, pki, pi, ri) obtaining p̃i and com-
putes m̃i = p̃i ⊕mi.

(b) S sends (sid, m̃0, m̃1, p
′
0, p
′
1) to A.

5. When A halts, S also halts and outputs whatever A outputs.

Fig. 6. Simulator S for the case where only Bob is corrupted.

22

Simulator for the case only Bob is corrupted. In the case where only Bob is
corrupted, the simulator S interacts with FλSFOT and an internal copy A of
the real world adversary (S acts as Alice in this internal simulated execution
of the protocol). Additionally, S also receives queries from A to the instances
of FgRO (i.e. FgRO1, FgRO2 and FgRO3), which it forwards. When the query is
answered, S forwards the answer to A. The goal of the simulator is to extract
the corrupted receiver’s choice bit c in order to request the correct message from
FλSFOT, which is later transferred to the adversary. The simulator S is presented
in Figure 6. Notice that, unless S outputs fail, it executes all the steps of an
honest Alice in the real protocol with the sole difference that it uses a random

message m1−c
$← {0, 1}λ instead of the real message. We will show that S only

outputs fail with negligible probability and that simulation with a uniformly
random m1−c is indistinguishable from a real execution.

First, notice that S only outputs fail if it receives a message (sid, chr) from A
such that chr = p′′0 without a query (sid, pkc, pc, rc), where c ∈ {0, 1}, being made
to FgRO3 or FgRO2 beforehand, meaning that S cannot extract the choice bit c.
We remark that, in this argument, c is defined as the bit corresponding to the
pi value contained in the first such query and may not correspond to the actual
choice bit. At this stage we are only interested in showing that A must issue a
query (sid, pki, pi, ri) to FgRO3 in order to obtain the correct chr, resulting in S
proceeding without outputting fail. Later on, we will show that the extracted bit
c is indeed A’s choice bit, or rather that A cannot obtain m1−c without violating
one of the properties of PKE.

Notice that ch = p′′0 ⊕ p′′1 (where p′′0 and p′′1 are outputs of a random oracle)
and that the adversaryA only receives ch, ct0, ct1 up to the challenge phase of the
protocol. Hence, in order to obtain p′′0 and pass the challenge-response test with
non-negligible probability, A needs to: either (1) query FgRO3 on (sid, pk0, p0, r0)
to obtain p′0 and then p′′0 ; or (2) query FgRO3 on (sid, pk1, p1, r1) to obtain p′1
followed by p′′1 and then compute p′′0 ← ch⊕ p′′1 .

Given that S does not output fail, it extracts a choice bit c and obtains
the message mc from FλSFOT. The only difference between the simulation and
a real execution is that S computes (sid, m̃0, m̃1, p

′
0, p
′
1) using a random mes-

sage m1−c ← {0, 1}λ instead of the real message. Notice that m1−c is “one-
time pad encrypted” in m̃1−c = p̃1−c ⊕ m1−c. Hence, A can only learn any
information about m1−c with non-negligible probability if it queries FgRO2 with
(pk1−c, p1−c, r1−c) to obtain p̃1−c. We will show that even though m1−c is chosen
uniformly at random, the simulation is indistinguishable from the real execution
because A cannot learn anything about m1−c without breaking some property
of PKE. The main idea is to show that we can build an adversary A1 that breaks
Property 1 with probability p given black-box access to a pair of A and Z such
that Z distinguishes the ideal execution with FλSFOT and S from a real exe-
cution with A and πSFOT with probability p, i.e. where A queries FgRO3 with
(pkc, pc, rc) and later manages to query FgRO2 with (pk1−c, p1−c, r1−c) also with
probability p.

23

Reduction from a pair (Z,A) for which simulation fails to A1 that
breaks Property 1: Given a pair of A and Z such that Z distinguishes the
ideal execution with FλSFOT and S from a real execution with A and πSFOT

with probability p, we construct an adversary A1 that breaks Property 2 with
probability at least p. A1 interacts with the challenger in the game of Property 1
and with copies of A and Z, for which it simulates S, FgRO1, FgRO2 and FgRO3.
A1 first receives q from the challenger in the game of Property 1, then randomly
picks a query (sid, s) from the set of A’s queries to FgRO1 and answers it with
(sid, q), where q was received from the challenger of the security game. We remark
that the no programming is done by S in the simulation of πSFOT. Notice that A1

programs the random oracle emulated inside this reduction where copies of Z
andA are used in a black-box way to break Property 1. In this reduction,A1 (but
not S) uses copies of both Z and A and emulates all the ideal functionalities and
parties towards these copies. A1 does not interact with the actual environment
Z nor with the actual ideal functionalities in the simulation. It also does not
interfere with the ideal functionalities simulated by S towards its internal copy
of A. The steps of A1 only affect its own copies of Z,A inside this reduction
and and S only observes queries to FgRO1 in its simulation. While this approach
may seem counter-intuitive, similar techniques are used by Dodis et al. [20] and
shown to be compatible with the Global UC framework.

A1 waits for pk0, s
′ from A and, if s 6= s′, rewinds A to the the previous step,

randomly picks a different query (sid, s) from the set of A’s queries to FgRO1 and
answers it with (sid, q), repeating the same procedure after receiving a new pk0, s

′

from A. Notice that A1 (but not S) rewinds copies of both the environment Z
and the adversary A only as a step of this reduction where these copies are used
in a black-box way to break Property 1. A1 does not interact with the actual
environment Z or S’s copy of A but only with its own copies of A and Z towards
which it emulates all the ideal functionalities and parties. The steps of A1 only
affect its own copies of Z,A inside this reduction and no rewinding is done by
S in the simulation of πSFOT. While this approach may seem counter-intuitive,
similar techniques are used by Dodis et al. [20] and shown to be compatible with
the Global UC framework.

If s = s′, A1 computes pk1 and sends pk0, pk1 to the challenger as public keys
pk0, pk1 of the game. Upon receiving ciphertexts ct0, ct1 from the challenger in

the game of Property 1, A1 samples ch
$← {0, 1}κ and sends (sid, ch, ct′0, ct

′
1)

to A. Upon receiving a query (sid, pki, pi,j , ri,j) to FgRO3 or FgRO2 such that
cti = Enc(pki, pi,j ; ri,j), A1 adds (pi,j , ri,j) to an initially empty list Li and

answers the query to FgRO3 as p′i,j
$← {0, 1}κ and the query to FgRO2 as

p̃i,j
$← {0, 1}λ. Upon receiving a query (sid, p′i,j) from A to FgRO3, if p′′1−i is

not defined, A1 answers with p′′i,j
$← {0, 1}κ. Otherwise, it answers with p′′1−i,j

such that ch = p′′0,j ⊕ p′′1,j . Upon receiving (sid, chr) from A, A1 checks that
chr = p′′0,j or ch ⊕ p′′1,j (for one of the values p′′i,j given as answer from FgRO3),

failing otherwise. A1 samples m0,m1
$← {0, 1}λ and, for i ∈ {0, 1}, queries

FgRO2 with (sid, pki, pi,j , ri,j) obtaining p̃i,j (simulating this answer accoding

24

to the procedure described before) and computes m̃i = p̃i,j ⊕ mi. A1 sends
(sid, m̃0, m̃1, p

′
0,j , p

′
1,j) to A. Finally, when A terminates, A1 chooses a random

p0 ∈ L0 and p1 ∈ L1 and sends (p0, p1) to the challenger in the game of Prop-
erty 1.

Notice that the queries to FgRO3 will appear consistent with (sid, ch, ct′0, ct
′
1).

Moreover, notice that, for each i ∈ {0, 1}, an adversary A that obtains any infor-
mation about mi with probability p must first recover (pki, pi, ri) from cti also
with probability p. Due to Property 4, for any arbitrary public key pki, A can
only both obtain (pi, ri) from cti such that cti ← Enc(pki, pi, ri) and generate
n − 1 alternative message and randomness pairs (pi,1, ri,1), . . . , (pi,n−1, ri,n−1)
different from (pi, ri) such that cti ← Enc(pki, pi,j , ri,j) for j = 1, . . . , n− 1 with
probability ≤ 1

n + negl(κ). Notice that an adversary that can generate ni − 1
such alternative message and randomness pairs for a ciphertext generated un-
der public key pki can only recover pair pi, ri necessary for obtaining mi with
probability 1

n . Hence, an A who is able to generate n0− 1 (resp. n1− 1) such al-
ternative message and randomness pairs for a ciphertext generated under public
key pk0 (resp. pk1) can only both query FgRO3 with (pkc, pc, rc) and later man-
age to query FgRO2 with (pk1−c, p1−c, r1−c) with probability ≤ 1

n0

1
n1

+ negl(κ).
Without loss of generality, we assume that n = n0 = n1. Notice that for an A
that does this, L0 and L1 must contain (p0, r0) and (p1, r1) such that p0, p1 win
the game against the challenger of Property 1, since it must extract the exact
pairs (p0, r0) and (p1, r1) used in generating ct0 and ct1. Since A1 samples a
random pair (pi, ri) from the list Li of all pairs (pi,j , ri,j) that result in cti under
pki, if Li has n elements, it selects both the correct value p0 and value p1 with
probability 1

n2 . However, if A is also able to generate n − 1 alternative pairs
(pi,j , ri,j) that result in cti under pki, it is also only able to recover (pi, ri) from
cti with probability 1

n and, consequently, only able to recover both (p0, r0) and
(p1, r1) with probability 1

n2 . Hence, A1 wins the game of Property 1 with the
same probability that Z in the pair of A and Z distinguishes the ideal execution
with FλSFOT and S from a real execution with A and πSFOT. Notice that A1

needs to rewind its own copies of the environment Z and the adversary A and
program the random oracle it simulates towards these copies only as a step of the
reduction where Z,A are used to break Property 1. A1 does not interact with
the actual environment Z nor with the actual (or simulated) ideal functionalities
in the simulation. The steps of A1 only affect its own copies of Z,A inside that
specific reduction and no programming or rewinding is done by the simulator
S in the simulation of πSFOT. While this approach may seem counter-intuitive,
similar techniques are used and shown to be compatible with the Global UC
framework by Dodis et al. [20].

Simulator for the case only Alice is corrupted. In the case where only Alice is
corrupted, the simulator S interacts with FλSFOT and an internal copy A of the
real world adversary (S acts as Bob in this internal simulated execution of the
protocol). Additionally, S also receives queries from A to the instances of FgRO

(i.e. FgRO1, FgRO2 and FgRO3), which it forwards. When the query is answered,
S forwards the answer to A. The goal of the simulator is to extract the messages

25

Simulator S (Corrupted Alice)

Let λ be the length of messages and κ be a security parameter. Simulator S interacts
with an environment Z, functionality FλSFOT and an internal copyA of the adversary
that corrupts only Alice, proceeding as follows:
1. S forwards all messages between A and global random oracles FgRO1, FgRO2

and FgRO3. Moreover, it keeps up-to-date lists of adversarial and illegitimate
queries (and associated answers) for each global random oracle.

2. S samples c
$← {0, 1} and follows the instructions of an honest Bob in Step 1 of

Protocol πSFOT to generate (sid, s, pk0): S generates a pair of keys (pkc, skc)
$←

KG(1κ), samples s
$← {0, 1}κ, sends (sid, s) to FgRO1, obtaining q as answer.

Bob computes pk1−c such that pk0 ? pk1 = q and sends (sid, s, pk0) to A.
3. Upon receiving (sid, ch, ct0, ct1) from A, S checks whether the challenge ch is

valid or if A is trying to guess the choice bit by proceeding as follows:
(a) For i ∈ {0, 1}, S checks if there exist queries (sid, pki, pi, ri) to FgRO3

such that cti = Enc(pki, pi; ri). If these checks fail for both i ∈ {0, 1}, S
sends (guess, sid, force) to FλSFOT (as an honest Bob would abort with over-
whelming probability when checking the values ch, p′0, p

′
1). If these checks

succeed for both i ∈ {0, 1} and ch is computed correctly from p0, p1, S
sends (guess, sid,⊥) to FλSFOT and goes to 3(c).

(b) If there exists only one query (sid, pkc′ , pc′ , rc′) to FgRO3 such that ctc′ =
Enc(pkc′ , pc′ ; rc′) or ch is invalid with respect to p0, p1 and FgRO3, S checks
that there exists a query (sid, p′c′) to FgRO3 with output p′′c′ such that p′c′
was obtained as the output of a query (sid, pkc′ , pc′ , rc′) to FgRO3 and that
p′′c′ satisfies p′′c′ ⊕ ch = G′, for G′ ∈ {0, 1}κ obtained as the output of a
query (sid, G) to FgRO3. If such a query exists, S sends (guess, sid, c′) to
FλSFOT. Otherwise, S sends (guess, sid, force).

(c) If (guess, sid,⊥) was sent to FλSFOT, S computes chr according to p0 and
FgRO3, sends (sid, chr) to A and goes to Step 4. Otherwise, S sets c =
c′ (resp. c = c̃) if FλSFOT answers with (cheat− undectected, sid) (resp.
(cheat− dectected, sid, c̃)). S computes chr according to ch, pc, c and FgRO3,
and sends (sid, chr) to A.

4. Upon receiving (sid, m̃0, m̃1, p
′
0, p
′
1) from A, if (guess, sid,⊥) was sent to FλSFOT

or if FλSFOT answered (guess, sid, c) with (cheat− undectected, sid), S runs the
procedure of an honest Bob to check if p′0, p

′
1 are valid according to ch, pc, c

(set as in step 3(c)) and FgRO3. If this check fails, S aborts as an honest
Bob would. If FλSFOT answered (guess, sid, c) with (cheat− dectected, sid, c̃), S
allows the deliver of this message to Bob at this point. In the other cases, S sends
(sid, pkc, pc, rc) to FgRO2 obtaining p̃c as response and computing mc = p̃c⊕m̃c.
If (guess, sid,⊥) was sent to FλSFOT, S sends (sid, pk1−c, p1−c, r1−c) to FgRO2

obtaining p̃1−c as response and computing m1−c = p̃1−c ⊕ m̃1−c; otherwise S
sets m1−c

$← {0, 1}λ. Finally, S sends (send, sid,m0,m1) to FλSFOT.
5. When A halts, S also halts and outputs whatever A outputs.

Fig. 7. Simulator S for the case where only Alice is corrupted.

26

of the corrupted sender that it needs to deliver to FλSFOT. Moreover, the simulator
must extract the choice bit “guess” that the adversary might make and forward
it to FλSFOT. Again, we will adopt an strategy where the simulator executes all
the steps of an honest Bob exactly as in the real protocol but using a random
choice bit, as well as observing the queries to FgRO1, FgRO2 and FgRO3.

The first difference between the simulation performed by S and a real exe-

cution of πSFOT is that S uses a random choice bit c
$← {0, 1} instead of the real

one. This affects the messages sent in Step 2 and Step 3 of the simulation but we
will show that the simulation with a random choice bit is indistinguishable from
the real execution. In Step 2, pk0 and pk1 are computed exactly as in πSFOT but
a random pkc is the valid public key. Nevertheless, the message (sid, s, pk0) (and
the pk1 it defines) are indistinguishable from those generated in a real execution
because a valid pkc is indistinguishable from an invalid pk1−c by Property 2.

In the case of Step 3, we will show that we can extract A’s guessed choice
bit (if it attempts a guess), provide it to FλSFOT and generate a response chr
consistent with a real execution. In Step 3(a), S extracts the pairs (pi, ri) used
to generate each cti from the list of queries (sid, pki, pi, ri) to FgRO3 using the
fact that there must be exactly one pair (pi, ri) such that cti = Enc(pki, pi; ri),
which is guaranteed by Property 3. Moreover, we leverage Property 5, which
guarantees that an honest Bob would obtain the same (pi, ri) from cti for i =
c. First, if for both cti there is no query (sid, pki, pi, ri) to FgRO3 such that
cti = Enc(pki, pi; ri), then S sends (guess, sid, force) to FλSFOT, as an honest Bob
would abort with overwhelming probability regardless of its choice bit c when
he checks the consistency of the values p′0 and p′1 sent by A with p′c that he
computed locally and ch. Next, it checks that ch is consistent with (pki, pi, ri)
used to generate cti, which means that A is not trying to guess the choice bit as
a correctly computed ch consistent with ct0, ct1 has an answer chr that reveals
no information about c. If everything is right, S sends (guess, sid,⊥) to FλSFOT.

In case ch is not consistent with pki, pi, ri or for one cti there is no query
(sid, pki, pi, ri) to FgRO3 such that cti = Enc(pki, pi; ri), A might be mounting
a selective failure attack and S must extract the choice bit that S might be
trying to guess. A can guess that an honest Bob’s choice bit is i by providing
cti with a consistent a challenge ch generated from (pki, pi, ri) and a random
p′1−i for which there is no query (sid, p1−i) to FgRO3 with output p′1−i. In this
scenario, if an honest Bob has choice bit i, it will be able to validate cti and
ch with respect to pi, p

′
1−i, since it does not see any inconsistency between p′1−i

and the contents of ct1−i (which he cannot recover). However, if an honest bob
has choice bit 1− i, he will be able to detect the inconsistency. Since S does not
know the actual choice bit c, it tests ch, ct0, ct1 with respect to the p0, r0, p1, r1
extracted (or not) from the list of queries to FgRO3 in order to check that A is
trying to guess the choice bit is i using the strategy previously described. In case
S detects that A is trying to guess that the choice bit is i, it sends (guess, sid, i)
to FλSFOT. On the other hand, if ch could not be generated by querying FgRO3

with pi and a random p′1−i, an honest Bob would detect that A is cheating with
all but negligible probability. Hence, S sends (guess, sid, force) to FλSFOT. In any

27

case, S uses the answer from FλSFOT to set c and generate chr as an honest Bob
would.

In Step 4, S checks the validity of ch as an honest Bob would. Namely,
if S has not detected that A tried to guess the choice bit or if FλSFOT an-
swered with (cheat− undetected, sid), S performs these checks as an honest
Bob would using p′0, p

′
1, pc, c (with c set in step 3(c)). If FλSFOT answered with

(cheat− detected, sid), S aborts as an honest Bob would upon detecting a cheat-
ing Alice. Hence S validates ch as an honest Bob would with all but negligible
probability.

It remains to show that S can extract the necessary messages in case the
checks with ch succeed. If that happens, either (1) the message (guess, sid,⊥)
was sent to FλSFOT and S needs to extract both m0 and m1; or (2) the message
(guess, sid, c) was sent to FλSFOT with the correct guess and S needs to extract
mc. In the first case, both (p0, r0) and (p1, r1) were already extracted from the
list of queries to FgRO3. Similarly, in the second case the values (pc, rc) were
extracted. Property 3 guarantees that there is a single pair (pi, ri) such that
cti = Enc(pki, pi; ri) and Property 5 guarantees that this same pair would be
recovered by an honest Bob with choice bit i. Hence, the simulator can use
these values to query FgRO2, obtain the necessary one-time pads and extract the
correct messages to send to FλSFOT.

C Security Analysis of Protocol πOT

In this appendix we analyse the security of Protocol πOT and present a full proof
of Theorem 2, re-stated below.

Theorem 2 Let PKE be a public-key encryption scheme that satisfies Proper-
ties 1, 2, 3, 4 and 5. When instantiated with PKE, Protocol πOT UC-realizes
the functionality Fλ,1OT against static malicious adversaries in the global random
oracle model.

Proof. In order to prove the security of πOT, we will construct a simulator S such
that no environment Z can distinguish between interactions with an adversary
A through πOT in the real world and with S and Fλ,1OT in the ideal world. For the
sake of clarity, we will describe the simulator S separately for different corruption
scenarios. In all cases, S writes all the messages received from Z in A’s input
tape, simulating A’s environment. Also, S writes all messages from A’s output
tape to its own output tape, forwarding them to Z. Notice that simulating the
cases where both Bob and Alice are corrupted or honest is trivial. If both parties
are corrupted, S simply runs A internally. In this case, A generates the messages
from both corrupted parties. If neither Alice nor Bob are corrupted, S runs the
protocol between honest Alice and Bob internally on the inputs provided by Z
and all messages are delivered to A. We analyze the cases where only Bob is
corrupted and where only Alice is corrupted below.

28

Simulator S (Corrupted Bob)

Let λ be the length of the messages and κ be the security parameter. The simulator
S interacts with an environment Z, functionality Fλ,1OT and an internal copy A of
the adversary that corrupts only Bob, proceeding as follows:

1. S forwards all messages between A and global random oracles FgRO1, FgRO2,
FgRO3 and FgRO4. Moreover, it keeps up-to-date lists of adversarial and illegit-
imate queries (and associated answers) for each global random oracle.

2. Upon receiving (sid, s, pk0) from A, S follows the instructions of an honest Alice
in Step 2 of Protocol πOT to generate and send (sid, ch, ct0, ct1, ĉt0, ĉt1) to A.
Notice that an honest Alice’s inputs are not used in this step of Protocol πOT, so
S’s message to A is distributed exactly as in a real execution of Protocol πOT.

3. Whenever the first query (sid, pkc′ , pc′ , rc′) from A to FgRO2 or FgRO3 where
c′ ∈ {0, 1} happens, S stores c′ (i.e. the random choice bit used by A, which
will be used in Step 5 to determine the actual choice bit c).

4. Upon receiving (sid, chr) from A, S checks that chr = p′′0 , aborting otherwise
(as an honest Alice would). If no query of the form (sid, pkc, pc, rc) has been
recorded in the lists of FgRO3 or FgRO2, S outputs fail and halts. Otherwise,
S executes Step 4 of Protocol πOT as an honest Alice to generate and send
(sid, m̃0, m̃1, p0, p1, r0, r1) to A. Once again, notice that an honest Alice’s inputs
are not used in this step of Protocol πOT, so that S’s message to A is distributed
exactly as in a real execution of Protocol πOT.

5. Upon receiving (sid, d) from A, S sends (choose, sid, d ⊕ c′) to Fλ,1OT (i.e. using
choice bit c = d ⊕ c′ where the random choice bit c′ has been extracted in Step
3). Upon receiving (output, sid,mc) from Fλ,1OT , S samples a random message

m1−c
$← {0, 1}λ and uses mc,m1−c as Alice’s inputs to execute Step 6 of Pro-

tocol πOT as an honest Alice, generating and sending (sid,m′0,m
′
1) to A. Notice

that the only deviation from Protocol πOT is that m1−c is sampled at random.

6. When A halts, S also halts and outputs whatever A outputs.

Fig. 8. Simulator S for the case where only Bob is corrupted.

Simulator for the case only Bob is corrupted. In the case where only Bob is
corrupted, the simulator S interacts with Fλ,1OT and an internal copy A of the
real world adversary (S acts as Alice in this internal simulated execution of the
protocol). Additionally, S also receives queries from A to the instances of FgRO

(i.e. FgRO1, FgRO2, FgRO3 and FgRO4), which it forwards. When the query is
answered, S forwards the answer to A. The goal of the simulator is to extract
the corrupted receiver’s choice bit c in order to request the correct message from
Fλ,1OT, which is later transferred to the adversary. The simulator S is presented in
Figure 8. Notice that, unless S outputs fail, it executes all the steps of an honest
Alice in the real protocol with the sole difference that it uses a random message

29

m1−c
$← {0, 1}λ instead of the real message. We will show that S only outputs

fail with negligible probability and that simulation with a uniformly random
m1−c is indistinguishable from a real execution.

The fact that S only outputs fail with negligible probability has been estab-
lished in the proof of Theorem 1. First, notice that S’s challenge consisting of
ch, ct0, ct1 is generated exactly as in Protocol πSFOT. In the proof of Theorem 1 it
is shown that A can only provide a valid response (sid, chr) to this challenge if it
first queries FgRO2 or FgRO3 with (sid, pkc′ , pc′ , rc′), except with negligible prob-
ability. Moreover, it is shown that, if A’s first such query to FgRO2 or FgRO3 is
(sid, pkc′ , pc′ , rc′), then it can only decrypt ciphertext ctc′ (i.e. it only has secret
key skc′) but not ciphertext ct1−c′ .

In order to show that our simulation with a uniformly random m1−c is indis-
tinguishable from a real execution, we first argue that A cannot decrypt ĉt1−c′ .
Notice that ĉt1−c′ (resp. ĉtc′) is generated under public key pk1−c′ (resp. pkc′),
which is the same public key used to generate ct1−c′ (resp. ctc′). Hence, we can
repeat the argument from the proof of Theorem 1 to show that A cannot de-
crypt ĉt1−c′ (and can only decrypt ĉtc′) if it has first queried FgRO2 or FgRO3

with (sid, pkc′ , pc′ , rc′). Since A cannot decrypt ĉt1−c′ , it cannot recover p̃1−c′ ,
which it needs in order to compute m̂1−c′ ← m̃1−c′ ⊕ p̃1−c′ and subsequently
m1−c = m′1−c ⊕ m̂1−c′ . Hence m′1−c appears uniformly distributed towards A
regardless of m1−c, which S samples uniformly at random (as opposed to us-
ing Alice’s actual input as in Protocol πOT). On the other hand, S recovers the

correct message mc from Fλ,1OT using A’s message (d, sid,) and c′, resulting in A
obtaining the same message mc as it would in the real protocol execution.

Simulator for the case only Alice is corrupted. In the case where only Alice is
corrupted, the simulator S interacts with Fλ,1OT and an internal copy A of the
real world adversary (S acts as Bob in this internal simulated execution of the
protocol). Additionally, S also receives queries from A to the instances of FgRO

(i.e. FgRO1, FgRO2, FgRO3 and FgRO4), which it forwards. When the query is
answered, S forwards the answer to A. The goal of the simulator is to extract
the messages of the corrupted sender that it needs to deliver to Fλ,1OT. Again, we
will adopt an strategy where the simulator executes all the steps of an honest
Bob exactly as in the real protocol but using a random choice bit, as well as
observing the queries to FgRO1, FgRO2, FgRO3 and FgRO4. We argue that such a
simulation with a random choice bit is indistinguishable from a real execution,
since the (random) choice bit does not leak and both of A’s messages can be
extracted if S does not abort, which it only does if an honest Bob would abort.

First, as in Protocol πSFOT, we remark that message (sid, s, pk0) does not
leak information about the random choice bit c′ used in the first step of Pro-
tocol πOT due to Property 2. The only way A can learn c′ is by mounting a
selective failure attack where it generates the challenge consisting of ch, ct0, ct1
maliciously in such a way that it can guess c′ and confirm its guess by observing
S’s response chr to the challenge. Notice that this is the selective failure attack
to which Protocol πSFOT is vulnerable. However, in Protocol πOT, A must re-
veal the messages and randomness p0, p1, r0, r1 used to generate the challenge

30

Simulator S (Corrupted Alice)

Let λ be the length of the messages and κ be the security parameter. The simulator
S interacts with an environment Z, functionality Fλ,1OT and an internal copy A of
the adversary that corrupts only Alice, proceeding as follows:

1. S forwards all messages between A and global random oracles FgRO1, FgRO2,
FgRO3 and FgRO4. Moreover, it keeps up-to-date lists of adversarial and illegit-
imate queries (and associated answers) for each global random oracle.

2. S follows the instructions of an honest Bob in Step 1 of Protocol πOT to compute
(sid, s, pk0) and send it to A. Notice that the choice bit of an honest Bob is not
used at this step of Protocol πOT, so S’s message is distributed exactly as in
the real execution.

3. Upon receiving (sid, ch, ct0, ct1, ĉt0, ĉt1) from A, S follows the instructions of
an honest Bob in Step 3 of Protocol πOT to compute (sid, chr) and send it to
Alice. Notice that the choice bit of an honest Bob is not used at this step of
Protocol πOT, so S’s message is distributed exactly as in the real execution.

4. Upon receiving (sid, m̃0, m̃1, p0, p1, r0, r1) from A, S samples a random choice

bit c
$← {0, 1} and follows the steps of an honest Bob in Step 5 of Protocol πOT

to compute (sid, d) and send it to Alice (aborting if an honest Bob would have
aborted).

5. Upon receiving (sid,m′0,m
′
1) from A, S proceeds as follows:

(a) For i ∈ {0, 1}, check that there exists a query (sid, pki, p̂i) to FgRO4 with
answer r̂i such that ĉti ← Enc(pki, p̂i; r̂i) (checking that ciphertexts ĉti
were correctly generated from values p̂i using randomness r̂i obtained by
querying FgRO4 with p̂i).

(b) If the previous check fails for i ∈ {0, 1}, set p̃i
$← {0, 1}λ (since in this

case an honest Bob with choice bit c = i would output a random mes-
sage). For i ∈ {0, 1}, if the check succeed obtaining values p̂i, r̂i, send query
(sid, pki, p̂i, r̂i) to FgRO2 obtaining answer p̃i.

(c) For i ∈ {0, 1}, compute m̂i = p̃i ⊕ m̃i and mi = m′i ⊕ m̂i as an honet Bob
would.

(d) Send (send, sid,m0,m1) to Fλ,1OT .

6. When A halts, S also halts and outputs whatever A outputs.

Fig. 9. Simulator S for the case where only Alice is corrupted.

ch, ct0, ct1 so that S (following the steps of an honest Bob) can check that the
challenge was constructed correctly and that consequently its response chr does
not leak any information about c′. Due to Property 3, A cannot generate alter-
native messages and randomness (p′0, p

′
1, r
′
0, r
′
1) 6= (p0, p1, r0, r1) that result in the

same challenge ch, ct0, ct1 such that (p′0, p
′
1, r
′
0, r
′
1) passes the check performed by

S (i.e. the check of an honest Bob) but in fact (p0, p1, r0, r1) is maliciously con-

31

structed and used to generate ch, ct0, ct1 in such a way that chr reveals c′. Hence,
if S does not abort in Step 4 (due to the check on p0, p1, r0, r1, ch, ct0, ct1 failing),
A can only learn anything about c′ if it breaks Property 2 and Property 3.

In Step 4, S only aborts if an honest Bob would have aborted due to the check
on p0, p1, r0, r1, ch, ct0, ct1 failing, so that the abort would be indistinguishable
of an execution of Protocol πOT with an honest Bob. If this check succeeds and
S does not abort, we have established that A would not have learnt anything

about c′. Hence, the message (sid, d) where d = c⊕ c′ and c
$← {0, 1} sent to A

by S is indistinguishable from the message sent by an honest Bob, since A does
not know c′ (which acts as a one-time pad key in d) and consequently cannot
distinguish d generated from a random c (as done by S) from the d generated
by an honest Bob.

Finally, having established that a simulation with a random c is indistin-
guishable from an real execution with an honest Bob, we show that S correctly
extracts A’s messages m0,m1. Notice that both pairs of ciphertexts ct0, ct1 and
ĉt0, ĉt1 are generated with the same pair of public keys pk0, pk1. Due to the
underlying PKE being committing (Property 3), for i ∈ {0, 1}, there exists a
unique triple (pki, p̂i, r̂i) such that ĉti ← Enc(pki, p̂i; r̂i) unless A breaks Prop-
erty 3, which only happens with negligible probability. Hence, if there is a query
(sid, pki, p̂i) to FgRO4 with answer r̂i such that ĉti ← Enc(pki, p̂i; r̂i), there is a
unique value p̃i that an honest Bob with c′ = i obtains by successfully decrypting
ĉti and querying FgRO2 with (sid, pki, p̂i, r̂i). In this case, S obtains exactly the
same p̃i that an honest Bob with c′ = i would obtain. On the other hand, if there
is no query (sid, pki, p̂i) to FgRO4 with answer r̂i such that ĉti ← Enc(pki, p̂i; r̂i),
decryption would fail and an honest Bob with c′ = i would obtain ⊥ when
computing (p̂c′ , r̂c′) ← Dec(skc′ , ĉtc′). In this case, S obtains a random value
p̃i, which is distributed exactly as the value an honest Bob with c′ = i would
obtain in the protocol. Once an honest Bob (and S) obtain p̃0, p̃1, the rest of
the computation is deterministic since it only involves computing m̂i = p̃i ⊕ m̃i

and mi = m′i⊕ m̂i. Hence, S obtains m0,m1 and sends (send, sid,m0,m1) to Fλ,1OT

in a way indistinguishable from a real world execution with A. This completes
the proof that an ideal world simulation with S is indistinguishable from a real
world execution of Protocol πOT with A.

D Instantiating the Protocol with the CDH Assumption

We will instantiate our scheme by showing that the ElGamal cryptosystem is
OW-CPA secure and has Properties 1, 2, 3, 4 and 5 under the Computational
Diffie-Hellman (CDH) assumption in the Global Random Oracle model. First
we will recall the CDH assumption:

Assumption 1 The Computational Diffie-Hellman assumption requires that
for every PPT adversary A it holds that

Pr[A(G, w, g, ga, gb) = gab] ∈ negl(κ).

32

where the probability is taken over the experiment of generating a group G of

order w with a generator g on input 1κ and choosing a, b
$← Zq.

The classical ElGamal cryptosystem [27] is parametrized by a group (G, g, w)
of order w with generator g where the CDH assumption holds. We assume that
(G, g, w) is known by all parties. The cryptosystem consists of a triple of algo-
rithms PKE = (KG,Enc,Dec) that proceed as follows:

– KG samples sk
$← Zw, computes pk = gsk and outputs a secret and public-key

pair (pk, sk).

– Enc takes as input a public-key pk and a message m ∈ G, samples r
$← Zp

computes c1 = gr, c2 = m · pkr and outputs a ciphertext ct = (c1, c2).

– Dec takes as input a secret-key sk, a ciphertext ct and outputs a message
m = c2/c

sk
1 .

The ElGamal cryptosystem described above is well-known to be OW-CPA
secure [27], leaving us to prove that it has Properties 1, 2, 3, 4 and 5. Property 2
follows trivially from the fact that pk is chosen uniformly over all elements of G.

Observation 1 The ElGamal cryptosystem described above satisfies Property 1
under the CDH assumption.

Proof. First we observe that PK is G, which is a group. Assume by contra-
diction that an adversary A succeeds in the experiment of Property 1. Under
the CDH assumption, A must know both sk1 and sk2 corresponding to pk1 and

pk2. However, we know that pk1 · pk2 = q for a uniformly random q
$← G (us-

ing multiplicative notation for G). If A freely generated pk1 and pk2 such that
pk1 · pk2 = q and knows secret-keys sk1 and sk2, then it knows the discrete log-
arithm of q, since it is equal to sk1 + sk2. The CDH assumption implies that
computing discrete logarithms is hard, hence we have a contradiction and the
observation holds.

Alternatively, we can construct an algorithm B solving the CDH problem
from an adversary A breaking Property 1. B plays the game of Property 1 acting
as the challenger towards A = (A1,A2). Given a CDH instance (g, gx, gy), B
sets q = gx and gives q to A1, who outputs state st and public keys pk0 =
gsk0 , pk1 = gsk1 such that pk0 · pk1 = q = gx (i.e. sk0 + sk1 = x). B computers

ct0 = (gy, h0)andct1 = (gyr, h1), where r
$← Zq and h0, h1

$← G, and gives
ct0, ct1, st to A2. If A breaks Property 1, it outputs two correct messages m0,m1.

B computes gxy = h0

m0
· h1

m1

1
r = g(x−sk1)y · gsk1y.

Properties 3 and 4 hold for the ElGamal cryptosystem as the ciphertext is a
one-to-one function of the plaintext and randomness. Property 5 can be achieved
using the encrypt-with-hash technique as discussed below.

33

D.1 Obtaining Witness-Recovering Decryption

Not all OW-CPA PKE schemes with the other properties we require immediately
have Property 5. Nevertheless, for encryption scheme that do not enjoy witness-
recovering decryption, we can obtain it with the following technique. By using the
encrypt-with-hash technique [2] in the global random oracle model, it is possible
to obtain a secure public-key encryption scheme with witness-recovering and
that satisfies Property 1 given any secure public-key encryption that satisfies
Property 1. Let PKE = (KG,Enc,Dec) be a secure public-key encryption that
satisfies Property 1 and let FgRO be a global random oracle with outputs in
R. Now define the modified cryptosystem PKE′ = (KG′,Enc′,Dec′) with: (1)
KG′ that is the same as KG except that it includes the public key pk into the
secret key sk; (2) an encryption procedure Enc′ that given a public key pk and
a message m, first queries FgRO with input (sid, pk,m) to get an output r and
outputs ct for ct ← Enc(pk,m; r); (3) a decryption procedure Dec′ that given a
secret key sk and a ciphertext ct first computes m ← Dec(sk, ct), outputting ⊥
if Dec outputs ⊥. Then it queries FgRO with input (sid,m) to get an output r
and checks if Enc(pk,m; r) = ct, outputting ⊥ if they are not equal; and (m, r)
otherwise.

Note that since M is exponentially large in the security parameter (since
otherwise an adversary A against PKE could trivially break its Property 1) and
in the game defining Property 1 the challenge messages are independent and
chosen uniformly at random in M, the probability that the challenge messages
m1,m2 are equal (resulting in the same ciphertext) is negligible. Basically, the
only extra advantage that the adversary has when attacking PKE′ is that it can
test whether a challenge ciphertext encrypts a given message m by encrypting it
and checking whether the resulting ciphertext matches the challenge ciphertext.
However, the adversary can only test if a challenge ciphertext contains a given
message m by performing a re-encryption test if he queries FgRO with input
(sid,m). Given that there is an exponential number of messages in M and that
the adversary can only perform a polynomial number of queries to FgRO, it is
trivial to get an adversary A that breaks Property 1 of PKE from an adversary
A′ that breaks Property 1 of PKE′.

34

	Efficient Composable Oblivious Transfer from CDH in the Global Random Oracle Model

