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Abstract

Byzantine agreement (BA), the task of n parties to agree on one of their input bits in
the face of malicious agents, is a powerful primitive that lies at the core of a vast range of
distributed protocols. Interestingly, in BA protocols with the best overall communication, the
demands of the parties are highly unbalanced: the amortized cost is Õ(1) bits per party, but
some parties must send Ω(n) bits. In best known balanced protocols, the overall communication
is sub-optimal, with each party communicating Õ(

√
n).

In this work, we ask whether asymmetry is inherent for optimizing total communication. In
particular, is BA possible where each party communicates only Õ(1) bits? Our contributions in
this line are as follows:

• We define a cryptographic primitive—succinctly reconstructed distributed signatures
(SRDS)—that suffices for constructing Õ(1) balanced BA. We provide two constructions
of SRDS from different cryptographic and Public-Key Infrastructure (PKI) assumptions.

• The SRDS-based BA follows a paradigm of boosting from “almost-everywhere” agreement
to full agreement, and does so in a single round. Complementarily, we prove that PKI setup
and cryptographic assumptions are necessary for such protocols in which every party sends
o(n) messages.

• We further explore connections between a natural approach toward attaining SRDS and
average-case succinct non-interactive argument systems (SNARGs) for a particular type of
NP-Complete problems (generalizing Subset-Sum and Subset-Product).

Our results provide new approaches forward, as well as limitations and barriers, towards mini-
mizing per-party communication of BA. In particular, we construct the first two BA protocols
with Õ(1) balanced communication, offering a tradeoff between setup and cryptographic as-
sumptions, and answering an open question presented by King and Saia (DISC’09).
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1 Introduction
The problem of Byzantine agreement (BA) [85, 73] asks for a set of n parties to agree on one of their
input bits, even facing malicious corruptions. BA is a surprisingly powerful primitive that lies at
the core of virtually every interactive protocol tolerating malicious adversaries, ranging from other
types of consensus primitives such as broadcast [85, 73] and blockchain protocols (e.g., [31]), to
secure multiparty computation (MPC) [96, 57, 7, 30, 88]. In this work, we study BA in a standard
context, where a potentially large set of n parties runs the protocol within a synchronous network,
and security is guaranteed facing a constant fraction of statically corrupted parties.

Understanding the required communication complexity of BA as a function of n is the subject
of a rich line of research. For the relaxed goal of almost-everywhere agreement [50], i.e., agreement
of all but o(1) fraction of the parties, the full picture is essentially understood. The influential
work of King et al. [70] showed a solution roughly ideal in every dimension: in which each party
speaks to Õ(1) other parties (i.e., polylog degree of communication graph, a.k.a. communication
locality [17]), and communicates a total of Õ(1) bits throughout the protocol, in Õ(1) rounds;1
further, the solution does not require cryptographic and/or trusted setup assumptions and is given
in the full-information model. The main challenge in BA thus becomes extending almost-everywhere
to full agreement.

In this regime, our current knowledge becomes surprisingly disconnected. While it is known how
to employ cryptography and setup assumptions to compute BA with Õ(1) locality [17, 28, 19], the
number of bits that must be communicated by each party is large, Ω(n).2 BA with amortized Õ(1)
per-party communication (and computation) can be achieved [21, 31, 1]; however, the structure of
these protocols is wildly unbalanced: with some parties who must each communicate with Θ(n)
parties and send Ω(n) bits. The existence of “central parties” who communicate a large amount
facilitates fast convergence in these protocols. When optimizing per-party communication, the best
BA solutions degrade to Θ̃(

√
n) bits/party, with suboptimal Õ(n3/2) overall communication [69, 71].

This intriguing gap leads us to the core question studied in this paper: Is such an imbalance
inherent? More specifically:

Is it possible to achieve Byzantine agreement with (balanced)
per-party communication of Õ(1)?

Before addressing our results, it is beneficial to consider the relevant lower bounds. It is well
known that any deterministic BA protocol requires Ω(n2) communication [49] (and furthermore, the
connectivity of the underlying communication graph must be Ω(n) [48, 51]). This result extends
to randomized BA protocols, in the special case of very strong adversarial (adaptive, strongly
rushing3) capabilities [1]. Most closely related is the lower bound of Holtby et al. [61], who showed
that without trusted setup assumptions, at least one party must send Ω( 3

√
n) messages.4 But, the

bound in [61] applies only to a restricted setting of protocols with static message filtering, where

1We follow the standard practice in large-scale cryptographic protocols, where Õ hides polynomial factors in log n
and in the security parameter κ, see e.g., [41, 43].

2In fact, the constructions in [17, 28, 19] are for MPC protocols that enable secure computation of any function
with Õ(1) locality; these protocols are defined over point-to-point networks, and so also provide a solution for the
specific task of BA.

3A strongly rushing adversary in [1] can adaptively corrupt a party that has sent a message m and replace the
message with another m′, as long as no honest party received m.

4The lower bound in [61] easily extends to a public setup such as a common reference string.
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every party decides on the set of parties it will listen to before the beginning of each round (as a
function of its internal view at the end of the previous round). We note that while the almost-
everywhere agreement protocol in [70] falls into the static-filtering model, all other scalable BA
protocols mentioned above crucially rely on dynamic message filtering (which is based on incoming
messages’ content). This leaves the feasibility question open.

1.1 Our Results

We perform an in-depth investigation of boosting from almost-everywhere to full agreement with
Õ(1) communication per party. Motivated by the Õ(1)-locality protocol of Boyle, Goldwasser, and
Tessaro [17], we first achieve an intermediate step of certified almost-everywhere agreement, where
almost all of the parties reach agreement, and, in addition, hold a certificate for the agreed value.
Boyle et al. [17] showed how to boost certified almost-everywhere agreement to full agreement in a
single round, where every party communicates with Õ(1) parties.

Our initial observation is that the protocol from [17] achieves low communication aside from
one expensive piece: the distributed generation of the certificate, which is of size Θ(n), and its
dissemination. We thus target this step and explore.

Our contributions can be summarized as follows.

• SRDS and balanced BA. We define a minimal cryptographic primitive whose existence implies
Õ(1) balanced BA: succinctly reconstructed distributed signatures (SRDS).
We provide two constructions of SRDS, each based on a different flavor of a public-key infrastruc-
ture (PKI): (1) from one-way functions in a “trusted-PKI” model, and (2) from collision-resistant
hash functions (CRH) and a strong form of succinct non-interactive arguments of knowledge
(SNARKs)5 in a model with a “bare PKI” and a common random string (CRS). Roughly,
trusted-PKI setup assumes that parties’ keys are generated properly, whereas bare PKI further
supports the case where corrupt parties may generate keys maliciously. We elaborate on the
difference between the PKI models in Section 1.2.

• Necessity of setup for one-shot “boost.” Our SRDS-based BA follows a paradigm of
boosting from almost-everywhere to full agreement, and does so in a single communication
round. Complementarily, we prove two lower bounds for any such one-shot boost in which every
party sends o(n) messages. The first shows that some form of PKI (or stronger setup, such
as correlated randomness6) is necessary for this task. The second shows that given only PKI
setup (as opposed to stronger, correlated-randomness setup), then computational assumptions
(namely, at least one-way functions) are additionally required.
In contrast to prior lower bounds (e.g., [61, 1]), this holds even against a static adversary, and
where parties can exercise dynamic filtering (i.e., without placing limitations on how parties can
select to whom to listen).

5A SNARK [81, 10] is a proof system that enables a prover holding a witness w to some public NP statement x to
convince a verifier that it indeed knows w by sending a single message. The proof string is succinct in the sense that
it is much shorter than the witness w, and knowledge is formalized via an efficient extractor that succeeds extracting
w from a malicious prover P ∗ with roughly the same probability that P ∗ convinces an honest verifier.

6In the correlated-randomness model a trusted dealer samples n secret strings from a joint distribution and
delivers to each party its corresponding secret string, e.g., a setup for threshold signatures.
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• Connections to succinct arguments. We further explore connections between a natural ap-
proach toward attaining SRDS in weaker PKI models and average-case succinct non-interactive
argument (SNARG) systems7 for a particular type of NP-Complete problems (generalizing
Subset-Sum and Subset-Product). This can be interpreted as a barrier toward this approach for
constructing SRDS without heavy “SNARG-like” tools.

Collectively, our results provide an initial mapping for the feasibility landscape of BA with Õ(1)
per-party communication, including new approaches forward, as well as limitations and barriers.
Our approach yields two BA protocols with Õ(1) communication per party, offering a tradeoff
between the setup assumptions and the cryptographic assumptions. These results answer an open
question presented by King and Saia [68], asking whether cryptography can be used to construct
BA with o(

√
n) communication per party. Our BA results are summarized in Table 1 alongside

other almost-everywhere to everywhere agreement protocols.

protocol rounds per party
max com. setup assumptions

cryptographic
filtering
message corrupt. remark

HKK’08 [61] Ω( 3√n) crs static static lower bound
KS’09 [68] O(1) Õ(n ·

√
n) - - dynamic static

KS’11 [69] polylog(n) Õ(
√

n) - - dynamic adaptive
KLST’11 [71] polylog(n) Õ(

√
n) - - dynamic static

BGH’13 [21] O(1) Õ(n) - - dynamic static
BGT’13 [17] 1 Õ(n) pki owf dynamic static
CM’19 [31]† exp O(1) Õ(n) trusted-pki RO+unique-sig dynamic adaptive
ACD+’19 [1]† exp O(1) Õ(n) trusted-pki bilinear maps dynamic adaptive
CKS’20 [38]† exp O(1) Õ(n) trusted-pki vrf dynamic adaptive asynchronous
BKLL’20 [11]† exp O(1) Õ(n) trusted-pki fhe+nizk dynamic adaptive asynchronous

1 Ω(n) crs dynamic static lower bound
This work 1 Õ(1) pki+crs snarks∗+crh dynamic static

1 Õ(1) trusted pki owf dynamic static

Table 1:
Comparison of protocols boosting from almost-everywhere to full agreement, tolerating (1/3 − ϵ) · n corruptions. The
Õ notation hides polynomial terms in the security parameter κ and in log n. crs stand for a common random string,
pki stands for bare pki, and trusted pki stands for honestly generated pki. By snarks∗ we refer to SNARKs with
linear extraction, i.e., where the size of the extractor is linear in the size of the prover. RO stands for random oracle
and unique-sig for unique signatures. vrf stand for verifiable pseudorandom functions, fhe for fully homomorphic
encryption, and nizk for non-interactive zero-knowledge proofs. Static corruptions are done before the protocol begins
but can be a function of the trusted setup; adaptive corruptions can occur during the course of the protocol. (†)

The protocols from [31, 1, 38, 11] reach agreement from scratch (hence also from almost-everywhere agreement) with
amortized Õ(1) communication per party; the expected round complexity is constant and termination is guaranteed
in polylog(n) rounds. Static message filtering requires honest parties to decide on the parties they will listen to and
process their messages before the beginning of each round, whereas dynamic message filtering allows this decision to
be done during the round and depending on the content of the incoming messages.

7Similarly to a SNARK, a SNARG allows a prover holding a witness w to some public NP statement x to convince
a verifier that x belongs to the language; however, as opposed to a SNARK, here the prover does not prove that
it knows w (only that such a witness exists), hence there is no requirement to extract the witness from a cheating
prover.
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1.2 Technical Overview

We now proceed to present our results in greater detail.

Succinctly reconstructed distributed signatures. Our first contribution is identifying and
formalizing a cryptographic primitive that enables boosting from almost-everywhere agreement to
full agreement on a value, with low per-party communication.

The primitive—succinctly reconstructed distributed signatures (SRDS)—is a new type of a dis-
tributed signature scheme, with a natural motivation: allowing a set of parties to jointly produce
a signature on some message m, which can serve as a succinct certificate for proving that a ma-
jority of the parties agree on m. Interestingly, this task does not seem to be attained by existing
distributed signature notions, such as multi-signatures [64], aggregate signatures [14], or threshold
signatures [47]. For example, while multi-signatures (and, similarly, aggregate signatures) can suc-
cinctly combine signatures of many parties, to verify the signature, the (length-Θ(n)!) vector of
contributing-parties identities must also be communicated.8 As discussed in the related-work sec-
tion (Section 1.3), threshold signatures are implied by SRDS but also do not suffice: while identities
of the signers are no longer needed to verify a combined signature, this information is necessary
to reconstruct the combined signature in the first place (even within specific existing schemes, e.g.,
[54, 12]). We provide a more detailed comparison to different signature notions in Section 1.3.

An SRDS scheme is based on a PKI for signatures, where every party is set with a secret
signing key and a public verification key.9 The parties may receive additional setup information
that may contain, for example, public parameters for the signature scheme or a common random
string (CRS), depending on the actual construction. Given a message m, every party can locally
generate a signature on m, and signatures on the same message can be succinctly aggregated into a
new signature. The new aspect is that given a combined signature and a message m, it is possible
to verify whether is was aggregated from a “large” number of “base” signatures on m, and both
aggregation and verification can be done succinctly.

Three properties are required from an SRDS scheme: robustness means that an adversary cannot
prevent the honest parties from generating an accepting signature on a message; unforgeability
prevents an adversary controlling a minority from forging a signature; and succinctness requires
that the “final” signature (including all information needed for verification) is short (of size Õ(1))
and can be incrementally reconstructed from “base” signatures in small batches of size polylog(n).10

An SRDS scheme is t-secure if it satisfies the above properties even facing t colluding adversarial
parties.

Balanced BA from SRDS. We demonstrate how to attain Õ(1)-balanced BA against βn cor-
ruptions (for β < 1/3) given black-box access to any βn-secure SRDS scheme. We begin by pre-
senting a distilled version of the “certified almost-everywhere agreement” approach from [17] that

8Indeed, the verification algorithm of multi-signatures (and aggregate signatures) must receive the set of parties
who signed the message. This is precisely the culprit for the large Θ̃(n) per-party communication within the low-
locality protocol of [17].

9As mentioned, we will distinguish between a bare PKI, where every party locally chooses its keys and corrupted
parties can set their keys as a function of all verification keys (and any additional public information), and a trusted
PKI, which is honestly generated (either locally or by a trusted party) and where corrupted parties cannot change
their verification keys. See further discussion below.

10polylog(n) denotes logc(n) for some constant c > 1.
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we tailor for Byzantine agreement, where only correctness matters and privacy is not required.11

1. The parties execute the almost-everywhere agreement protocol of King et al. [70]; this estab-
lishes a polylog(n)-degree communication tree (which is essentially a sparse overlay network)
in which each node is assigned with a committee of polylog(n) parties. The guarantees are
that the polylog(n)-size supreme committee (i.e., the committee assigned to the root) has a 2/3
honest majority and almost all of the parties are connected to the supreme committee via the
communication tree.

2. The supreme committee executes a BA protocol on their inputs to agree on the output y, and, in
addition, runs a coin-tossing protocol to agree on a random seed s. Next, the supreme committee
propagates the pair (y, s) to almost all of the parties.

3. Once a party receives the pair (y, s), the party signs it (in [17], using a multi-signature scheme),
and sends the signature back to the supreme committee that aggregates all the signatures. The
aggregated signature attesting to (y, s) is then distributed to almost all of the parties.

Once this form of certified almost-everywhere agreement on (y, s) is reached, full agreement
can be obtained in one round. Every party Pi that receives the signed pair (y, s), evaluates a
pseudorandom function (PRF) on the seed s and its identity i to determine a set of (sufficiently
random) polylog(n) parties, and sends the signed (y, s) to every party in that set. A party that
receives such a signed pair, can verify that a majority of the parties agree on (y, s) (by the guarantees
of multi-signatures) and that it was supposed to receive a message from the sender (by evaluating
the PRF on s and the sender’s identity). In this case, it can output y and halt.

The protocol from [17] achieves Õ(1) locality. However, recall that even though the size of
a multi-signature might itself be “small,” the verification algorithm additionally requires a list of
contributing parties, where the description size of this list will need to be proportional to n. Hence,
the effective size of the aggregated signature, and thus per-party communication, is stuck at Θ(n).

At this point the new notion of SRDS comes into the picture. We use the succinctness property
of SRDS combined with the communication tree established by the protocol from [70] to bound
the size of the aggregated signatures by Õ(1). In essence, the parties aggregate the signatures in a
recursive manner up the communication tree such that in each step at most polylog(n) signatures
are aggregated.

This technique introduces additional subtleties that must be addressed. For example, since the
partially aggregated signature can no longer afford to describe the set of contributing parties, it is
essential to make sure that the same “base” signature is not aggregated multiple times (this may
allow the adversary to achieve more influence on the final aggregated signature than its proportional
fraction of “base” signatures). To address this, we assign polylog(n) (virtual) identities to every
party, one identity for each path from that party to the supreme committee in the communication
tree; this ensures that the fraction of signatures that are generated by corrupted parties is equal to
the corruption threshold. We refer the reader to Section 4.1 for more details.

Theorem 1.1 (balanced BA, informal). Let β < 1/3 be a constant. Assuming the existence of
βn-secure SRDS, there exists an n-party, βn-resilient BA protocol that terminates after polylog(n)
rounds, and where every party communicates polylog(n) · poly(κ) bits.

11The focus of [17] was on MPC and required stronger assumptions and additional rounds; in particular, a naïve
use of their MPC protocol cannot lead to communication-balanced BA as it requires all parties to send information
to a designated polylog(n)-size set, the so-called supreme committee.
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We note that our BA protocol is the first to establish a polylog(n)-degree communication graph
where every party has an “honest path” to a 2/3-honest committee, such that the per-party com-
munication required for establishing it is Õ(1). Thus, we can obtain the following corollaries.

Corollary 1.2 (informal). Let β < 1/3 be a constant. Assuming the existence of βn-secure SRDS:

1. Broadcast: There exists a βn-resilient 1-bit broadcast protocol such that ℓ protocol executions
(potentially with different senders) require ℓ ·polylog(n) ·poly(κ) bits of communication per party.

2. MPC: Assuming fully homomorphic encryption, a function f : ({0, 1}ℓin)n → {0, 1}ℓout can be
securely computed with guaranteed output delivery tolerating a static, malicious βn-adversary,
such that the total communication complexity (of all parties) is n ·polylog(n) ·poly(κ) · (ℓin + ℓout)
bits.

One remark regarding the corruption model is in place. In this work, we consider static adver-
saries that choose the set of corrupted parties before the beginning of the protocol. As mentioned
above, our constructions are based on some form of trusted setup, which, as we prove below, is
necessary. We emphasize that (as standard) we avoid trivialized settings, e.g., where the trusted
setup determines a polylog(n)-degree communication tree for achieving full agreement,12 by con-
sidering the adversarial model where the adversary can corrupt the parties adaptively during the
setup phase given the setup information of the corrupted parties and any public setup information.
During the online phase, the adversary is static and cannot corrupt additional parties.

Constructing SRDS. We present two constructions of SRDS, offering a tradeoff between setup
assumptions and cryptographic assumptions.

Our first construction is influenced by the “sortition approach” of Algorand [31] and merely
requires one-way functions (OWF); however, the public-key infrastructure (PKI) is assumed to be
honestly generated (either by the parties themselves or by an external trusted third party), and
corrupted parties cannot alter their keys. The construction is based on digital signatures augmented
with an oblivious key-generation algorithm for sampling a verification key without knowing the
corresponding signing key.13 Lamport’s signatures [72], which are based on OWF, can easily be
adjusted to support this property. To establish the PKI, every party decides whether to generate
its public verification key obliviously or together with a signing key by tossing a biased coin, such
that with overwhelming probability all but polylog(n) keys are generated obliviously. Since those
with the ability to sign are determined at random (as part of the trusted PKI), only parties who
hold a signing key can sign messages. The oblivious key-generation algorithm ensures that an
adversary who only sees a list of verification keys, cannot distinguish between the keys that have a
corresponding signing key and ones that do not. As a result, even if the adversary chooses the set
of corrupt parties after the keys are sampled, with a high probability, the fraction of honest parties
will be preserved in the signing subset. SRDS signature-aggregation is done by concatenation, and

12If the communication tree is sampled after the corruptions have been fixed and is given to the parties as setup,
then with overwhelming probability all nodes are good (i.e., with more than two-thirds honest majority in the parties
assigned). This ensures that the path from all leaf nodes to the root only contains good nodes and hence all parties
can communicate with the committee assigned to the root node without disruptions to reach full agreement.

13We note that standard signatures can be used if we strengthen the model assumptions, e.g., by assuming that a
party can securely erase its signature key, or by considering a trusted party that only provides the verification keys
to some parties. We opted not to rely on stronger model assumption since we can establish signatures with oblivious
key generation from the minimal assumption of one-way functions.
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verification of an SRDS signature requires counting how many valid signatures were signed on the
message.

It would be desirable to reduce the trust assumption in establishing the PKI, e.g., by using
verifiable pseudorandom functions (VRF) [82] as done in [31]. However, this approach [31] is
defined within a blockchain model where a fresh random string (the hash of the recent block) is
assumed to be consistently available to all parties later in the protocol and serves as the seed for
the sortition; equivalently, that parties have access to a common random string (CRS) independent
of corrupted parties’ public keys. Without this extra model assumption, their VRF approach does
not apply. We note that several recent consensus protocols [1, 26, 36, 27, 38, 11, 95, 94] also follow
the sortition approach of [31]; however, similar to our first construction, their PKI is assumed to
be honestly generated by a trusted third party.

Theorem 1.3 (SRDS from OWF and trusted PKI, informal). Let β < 1/3 and assume that OWF
exist. Then, there exists a βn-secure SRDS in the trusted-PKI model.

Our second construction is based on a weaker bare-PKI setup, in which each party locally
computes its signature keys, and the adversary can corrupt parties and change their keys as a
function of honest parties’ public keys. To illustrate the underlying ideas, consider a simplified
case where all of the nodes in the almost-everywhere communication tree are honest (each node
will essentially be realized by some committee of parties). A naïve construction would be to have
all parties sign the message and send the signature to their respective leaf nodes. Every leaf node
would then count the number of verified signatures received and send the message and the counter
to its parent. In a recursive way, every node would simply add the counters received from its
children and send it to its parent. At the end of this process, the root node would get a final count
of the total number of verified signatures. This approach completely breaks down, however, if even
one node is not honest as it can lie about its count. To enforce an honest behavior of the nodes,
we need to make sure that the aggregation is done in a verifiable way, i.e., ensure that bad nodes
send a valid count of the number of signatures aggregated so far.

Toward this, our first idea is to require each node to attach a “succinct proof” of honest behavior
to their messages. In particular, in addition to the message m and count c that a leaf node sends
to its parent, it must also send a proof to convince the parent that it knows c distinct signatures on
the message m. Similarly, every node must prove that they received sufficiently many valid proofs
backing up its count. To verify, it is sufficient to check at the root node, whether sufficiently many
“base” signatures were aggregated. This approach requires proof systems that support recursive
composition; for this reason, we use proof-carrying data (PCD) systems [32].

A PCD system extends the notion of SNARKs to the distributed setting by allowing recursive
composition in a succinct way. Informally, every party can generate a succinct proof on some
statement, certifying that it satisfies a given local property with respect to its private input and
previously received messages (statements and their proofs). Bitansky et al. [9] proved that PCD
systems for logarithmic-depth DAGs exist assuming SNARKs with linear extraction, i.e., where the
size of the extractor is linear in the size of the prover.14 Extractability assumptions of this kind
have been previously considered in, e.g., [93, 45, 58, 20]. Since PCD systems allow for propagation
of information up a communication tree in a succinct and publicly verifiable way, they seem to
exactly capture our requirements for SRDS.

14We note that although SNARKs with linear extraction are a stronger assumption than standard SNARKs (with
polynomial extraction), standard SNARKs techniques do not separate the two notions.
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This simple idea, however, is vulnerable to an adversary that generates a valid-looking aggregate
signature by using multiple copies of the same signature. Indeed, since the partially aggregated
signature must be succinct, the parties cannot afford to keep track of which base signatures were
already incorporated, leaving them vulnerable to a repeat occurrence. We protect against such an
attack by encoding additional information in the partially aggregated signatures using collision-
resistant hash functions (CRH). We refer the reader to Section 5.2 for the detailed solution.

Theorem 1.4 (SRDS from CRH, SNARKs and bare PKI, informal). Let t < n/3 and assume that
CRH and SNARKs with linear extraction exist. Then, there exists a t-secure SRDS in the CRS
and bare-PKI model.

Necessity of PKI for single-round boost of almost-everywhere agreement. Our SRDS-
based BA protocol (Theorem 1.1) shows how to boost almost-everywhere agreement to full agree-
ment in a single round with small communication. Both our constructions crucially rely on a
public-key infrastructure (PKI) that enables each party to publish its verification key on a bulletin
board. We show that this setup assumption is necessary for this task. That is, given only public
setup—i.e., the common reference string (CRS) model—this task is not possible.

We note that the lower bound of Holtby et al. [61] does not translate to our setting, as it
considers static message filtering, where every party chooses to whom to listen in a given round
based on its view prior to that round (and then may perform additional sanity checks on the
incoming messages from these parties to ensure they are not malformed). The lower bound in [61]
shows that dynamic filtering, i.e., where in any given round, parties may decide to accept or ignore
a message from other parties based on the incoming messages received in that round, is required
(at least in the CRS model). We present the first such lower bound in the dynamic-filtering model.

Theorem 1.5 (no single-shot boost in CRS model, informal). There is no single-round proto-
col from almost-everywhere to everywhere agreement in the CRS model where every party sends
sublinear (i.e., o(n)) many messages.

Recall that almost-everywhere agreement guarantees that all parties agree on the common
output aside from a o(n)-size set of isolated parties, whose identities are unknown to the remaining
honest parties. In the setting of static filtering, one can prove continued isolation of these parties for
any low-communication protocol in a relatively clean manner [61]: The probability that an honest
party Pi will send messages to an honest isolated Pj is independent of the event that Pj will choose
to process messages from Pi in this round, thus placing a birthday-type bound on information
successfully being conveyed. With dynamic filtering, however, Pj may process messages dependent
on some property of this message, e.g., whether it contains particular authentication, which may
only be contained in honest messages.15 In such case, there is strong bias toward accepting honest
messages, and one must work harder to ensure that isolated parties do not reach agreement.

At a high level, the idea of our lower bound is to make a linear set of corrupted parties emu-
late the role of isolated parties during the first part of the protocol (reaching almost-everywhere
agreement). This way, the honest parties cannot distinguish between isolated honest parties and
faking corrupted parties, and must attempt to communicate the output value to all such parties.
However, if each honest party only sends a sublinear number of messages, then with a very high

15In general, message filtering should be via a simple and “light” test, e.g., counting how many messages arrived,
or verifying a signature. We refer to [19] for a discussion on message filtering in protocols over incomplete graphs.
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probability, most isolated honest parties (and faking corrupted parties) only receive messages from
a sublinear number of non-isolated parties in the last round. The adversary can use this fact to
keep an isolated honest party confused in the following sense. In the last round of an execution
with preagreement on 0 (resp., on 1), the adversary sends to this party messages corresponding to
an execution with preagreement on 1 (resp., on 0). Without private-coin setup such as PKI, an
isolated party cannot distinguish between honest messages in the real execution and fake messages
from the simulation.

To carry out this attack, we need to show that there exist parties who receive messages from
a “small” set of neighbors in both scenarios: when all parties start with input 0 and when all
start with input 1 (otherwise, the adversary may not have a sufficient corruption budget for the
attack). Before the protocols begins, the adversary decides on the set of parties to corrupt by first
emulating in its head two executions, one with preagreement on 0 and the other with preagreement
on 1, where the same linear-size set of parties act as isolated parties. We use a counting argument to
show that there exist isolated parties who receive messages from a sublinear set of neighbors in both
executions. The adversary targets one of these parties to attack and corrupts all “simulated isolated
parties” except for the targeted one, along with the pair of neighbor-sets who communicate with
the targeted party in the simulation. We refer the reader to Section 4.2.1 for a formal description
and analysis of the attack.

On the different PKI models. As discussed above, SRDS implies a single-round boost of
almost-everywhere to full agreement, which in turn (by Theorem 1.5) requires some form of private-
coin setup. Given this, one of our goals is to minimize the trust assumptions in the setup phase.
Our SNARK-based construction offers the minimal setup requirement—a bare PKI—where every
party locally generates its own signature keys and publishes the verification key on a bulletin board.
The adversary can adaptively corrupt parties and change their keys as a function of all the public
setup information (including the honest parties’ verification keys and the CRS, in case it exists).
This is the prevalent PKI model that has appeared in, e.g., [24, 66, 67, 25].

Our OWF-based construction, on the other hand, assumes an honestly generated PKI, where the
adversary cannot alter the corrupted parties’ keys. Such a setup assumption is normally captured
by a trusted party who samples the keys for all the parties, and provides each party with its secret
key as well as all public keys; see, e.g., [76, 1, 26, 36, 27]. We note that our trusted-PKI setup
is weaker than a full-blown trusted party in two aspects: First, the distribution from which the
trusted party samples the values is a product distribution, i.e., parties’ keys are independent; this
is weaker than a general correlated randomness setup (as used, e.g., in [2] for threshold-signatures
setup). Second, we consider public-coin sampling in the sense that the sampling coins are revealed
to the corresponding party (i.e., intermediate key-generation values are not kept hidden). In fact,
one can consider the model where every party honestly generates and publishes its public key, and
corrupted parties can deviate from the protocol only in the online phase.

Necessity of OWF for single-round boost in PKI model. Theorem 1.5 states the necessity
of private-coin setup for single-round protocols (from almost-everywhere agreement to full agree-
ment) where every party sends o(n) messages. In the PKI model, where the public/private keys
of each party are independently generated, we further prove that cryptographic assumptions are
necessary. Intuitively, if one-way functions (OWF) do not exist, an adversary can invert the PKI
algorithm with noticeable probability to find a pre-image for each public key. In this case, the
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adversary can carry out the attack for the CRS model, discussed above.

Theorem 1.6 (OWF needed for single-shot boost in PKI model, informal). If OWF do not exist,
there is no single-round protocol from almost-everywhere to everywhere agreement in the trusted
PKI model where every party sends sublinear many messages.

We note that this lower bound does not extend to more complex private-coin setups, where
the parties receive correlated secret strings that are jointly sampled from some distribution, e.g.,
setup for information-theoretic signatures. Indeed, given such a setup it is possible to boost almost-
everywhere to everywhere agreement in a single round with information-theoretic security and where
every party sends polylog many messages (albeit, each of size Ω(n)) [19]. The reason that the proof
approach of Theorem 1.6 does not apply in this case is that when the private keys of two honest
parties are correlated, it is unclear how an (even computationally unbounded) adversary that only
receives partial information about this correlation can consistently invert the setup information and
impersonate honest parties. We leave the feasibility of single-round boost protocols from almost-
everywhere to everywhere in the correlated-randomness model, in which every party sends sublinear
many bits (as opposed to messages), as an interesting open question.

Connection to succinct arguments. Our SRDS construction from CRH and SNARKs works
with minimal setup requirements, but relies on relatively undesirable cryptographic assumptions
(in particular, SNARKs are a non-falsifiable assumption [55]). On the other hand, our construction
from one-way functions uses light computational assumptions, but (as with many other works in
this area, e.g., [1, 26, 36, 27]) requires a stronger assumption of trusted PKI. A clear goal is to obtain
SRDS from better computational assumptions within a better setup model, ultimately reducing to
bare PKI, or even more fine-grained intermediate models such as registered PKI 16 (see [12, 77] and
a discussion in [6]). A natural approach toward doing so is to build upon one of the closest existing
relatives within this setting: multi-signatures.

Recall that multi-signatures almost provide the required properties of SRDS in this setting, in
that they support succinct aggregation of signatures, with the sole issue that multi-signature ver-
ification requires knowledge of the set of parties who contributed to it—information that requires
Θ(n) bits to describe. Multi-signatures have been constructed from (standard) falsifiable assump-
tions in the registered-PKI model, e.g., [77]. A natural approach toward constructing SRDS within
this model is thus to simply augment a multi-signature scheme with some method of succinctly
convincing the verifier that a given multi-signature is composed of signatures from sufficiently many
parties. We demonstrate challenges toward such an approach, by showing that in some cases this
necessitates a form of succinct non-interactive arguments.

More specifically, we observe that asserting approval of a multi-signature by sufficiently many
parties is inherently equivalent to asserting existence of a large subset of parties S ⊆ [n],
such that their corresponding verification keys {vki}i∈S satisfy a given function-target relation
fσ,m({vki}i∈S) = 1. (Here m is the message, σ is the multi-signature and fσ,m is a function
that is derived from the multi-signature verification function.) Such a task can be viewed as a
class of “Subset-f” problems on the verification keys vk1, . . . , vkn, capturing as special cases the
standard Subset-Sum and Subset-Product problems with functions fΣ({xi}i∈S) = ∑

i∈S xi and
fΠ({xi}i∈S) = ∏

i∈S xi, respectively.
16In the registered PKI, every party can arbitrarily choose its public key (just like in bare PKI), but in order to

publish it, the party must prove knowledge of a corresponding secret key.
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Considering even a generous setup model of trusted PKI, where parties’ verification keys
vk1, . . . , vkn are generated independently and honestly, the Subset-f problem begins taking the
form of problems where we do not know (or even possibly believe) that the witness S ⊆ [n] can
be compressed to o(n) bits. As we show, an SRDS of this form implies a type of average-case
non-interactive argument for asserting membership in Subset-f , with succinct proof size: namely, a
form of succinct non-interactive argument (SNARG) as in [9], with average-case soundness guaran-
tees. Although this average-case notion does not directly fall within the negative results of Gentry
and Wichs [55], it appears to be a powerful notion, which may be interpreted as a barrier toward
this approach to SRDS construction without SNARG-like tools.

Motivated by this, we explore hardness of the Subset-f problem for more general classes of
functions f . We show that over rings with appropriate structure (namely, Hadamard product),
NP-hardness results for Subset-Sum and Subset-Product can be extended to include (worst-case)
Subset-ϕ for all elementary symmetric polynomials ϕ.

We make explicit the above connection for the multi-signature scheme of Lu et al. [77] (LOSSW)
in relation to (average-case) Subset-Product, and extend to multi-signature schemes of appropriate
structure in relation to the Subset-ϕ problem for elementary symmetric polynomials ϕ. The reduc-
tion leverages homomorphism, where a combined signature for a set of parties on message m in the
multi-signature scheme corresponds to a valid single-party signature with respect to a specific joint
function of the parties’ verification keys vki; for LOSSW, their product vk∗ = ∏

i vki.

Theorem 1.7 (SRDS from multi-signatures requires average-case SNARGs, informal). Any SRDS
based on the LOSSW [77] multi-signature scheme in a natural way (as we define) implies the
existence of succinct non-interactive arguments for average-case Subset-Product. This extends to a
more general class of multi-signature schemes and Subset-ϕ for elementary symmetric polynomials.

At a high level, the reduction interprets a (random) Subset-Product instance with target
(x1, . . . , xn, t) as a set of uniform verification keys (vk1, . . . , vkn, vkn+1 = t−1) for the multi-signature
scheme. Given a satisfying witness S ⊆ [n] with ∏

i∈S xi = t of appropriate size, this translates to
knowing a large subset of verification keys for which generating an SRDS on their behalf can be
achieved efficiently with respect to the degenerate verification key vk∗ = ∏

i∈S vki · t−1 = 1. On the
other hand, for uniformly sampled keys without such an embedded trapdoor subset, forging such
an SRDS will be hard.

We refer the reader to Section 6 for formal definitions of these notions (including SRDS “based
on” a multi-signature scheme and average-case SNARGs), as well as further discussion and details
of our claims and proofs.

1.3 Additional Related Work

Distributed signatures. Distributed signatures come in many flavors. We compare SRDS to
existing notions from the literature.

Threshold signatures [47, 87, 54, 92, 12, 59] can guarantee that a sufficiently large number of
parties signed the message, while keeping the signature-length (including all information needed
to verify) independent of n. However, threshold signatures require the keys to be generated by a
trusted party in a correlated way (e.g., as a Shamir sharing of the signing key), and the signature-
reconstruction protocol of existing schemes does not offer succinct aggregation in “small” batches.
SRDS imply threshold signatures by having the setup algorithm produce the PKI for the parties,
and using the aggregation algorithm to reconstruct a signature.
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We note that Libert et al. [75] constructed fully distributed threshold signatures that do not
require any setup assumptions. However, this scheme is not applicable in our setting, since it
requires an interactive key-generation protocol to generate the public and secret keys, and this
protocol in turn uses a broadcast channel. In fact, as indicated by our lower bound, some form of
private-coin setup is inherently needed for constructing SRDS.

Multi-signatures [64, 83, 12, 6, 77, 15] guarantee that a subset of parties signed the message.
Unlike threshold signatures, correlated trusted setup is not needed and a bare PKI suffices; in
addition, some of the constructions enable succinct aggregation in “small” batches. Aggregate
signatures [14, 78, 13, 77, 74, 60] are a similar primitive that allows aggregating signatures on
different messages. The main distinction of SRDS is succinctness that enables verification without
knowing the signing parties. This property is crucial for our BA protocol construction.

Group signatures [29] and ring signatures [91] allow any individual party to sign a message on
behalf of a set while hiding their identity. This is different than our setting where we need to prove
that a majority of the parties signed the message.

Large-scale MPC. The focus of this work is communication complexity of Byzantine agree-
ment protocols; however, Corollary 1.2 demonstrates applications with respect to general secure
multiparty computation (MPC). Large-scale MPC was initially studied by Damgård and Ishai [41]
and successors (e.g., [42, 43, 44]), in the sense that the amortized per-party work grows only as
Õ(|C|/n + poly(n)), where C is the circuit to be computed. Dani et al. [46] applied the almost-
everywhere agreement protocol [70] to achieve MPC with amortized per-party communication of
Õ(|C|/n +

√
n). Using cryptographic assumptions (threshold FHE), Zamani et al. [97] reduced the

amortized cost to Õ(|C|/n). Under comparable assumptions, our results achieve amortized cost of
Õ(ℓin + ℓout) (where ℓin and ℓout stand for the function’s input/output length).

The bottleneck complexity of MPC was studied in [20], as the maximum communication com-
plexity required by any party within the protocol execution. It was shown that for some n-party
functions f : {0, 1}n → {0, 1}, some parties must communicate Ω(n) bits to compute f , even if
security is not required. This result rules out generic MPC with balanced, sublinear communication
per party, and motivates our MPC results of amortized sublinear communication per party. Note
that in [18] load-balanced MPC was achieved, however, amortized over large programs (and in a
model that allows each party to have a single use of a broadcast channel).

Communication-efficient BA. Known protocols that break the Ω(n2) communication barrier
from [49] (for deterministic protocols) follow one of two paradigms. The first is starting with
the almost-everywhere agreement protocol of [70] and boost it to full agreement; this approach
includes [68, 69, 71, 21, 17], as well as our results. The second is based on the sortition approach
from Algorand [31], where only a “small” set of parties are allowed to talk in every round, and
includes [31, 1]. The latter approach inherently leads to unbalanced protocols, since parties that
are eligible to talk send messages to all other parties.

We note that while [68, 71, 21, 17] and our results hold in the static-corruptions setting, some
protocols are resilient to adaptive corruptions. Assuming secure data erasures (i.e., where honest
parties can erase some parts of their internal states) Õ(

√
n)-balanced BA [69] and Õ(1)-amortized

BA [31] can be achieved against adaptive corruptions. In the erasure-free setting, [1] achieved
Õ(1)-amortized BA against adaptive corruptions. One of the interesting open questions we pose in
Section 1.4 is whether Õ(1)-balanced BA can be achieved in the adaptive setting.
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1.4 Open Questions

Our results leave open several interesting questions for followup work.
Our constructions of SRDS offer a trade-off between cryptographic assumptions and setup as-

sumptions (indeed, our lower bound indicates that some form of private-coin setup is needed). Is it
possible to get the best of both, i.e., construct SRDS with bare PKI under standard, falsifiable as-
sumptions? This in turn would imply Õ(1)-balanced BA from the corresponding computational as-
sumption and setup. Alternatively, does SRDS in a weak setup model require strong computational
assumptions: For example, do SRDS with bare PKI imply some kind of succinct non-interactive
arguments (SNARGs)?

Taking a step back: Is it possible to achieve Õ(1)-balanced BA unconditionally? While our
SRDS-based approach inherently makes use of computational assumptions (and our lower bound
implies this necessity for a one-shot boost from almost-everywhere to everywhere agreement in the
PKI model), this leaves open the possibility of removing cryptography via an alternative approach.

Can one further extend the lower bound in this work, identifying a minimal required round com-
plexity for generically converting from almost-everywhere to everywhere agreement within various
setup models?

In the Õ(1)-amortized BA setting, known constructions consider stronger security models.
Namely, the protocol in Braud-Santoni et al. [21] is secure against static corruptions (similarly
to our protocols); however, no trusted setup assumptions are required. The protocol of Abraham
et al. [1] guarantees security against adaptive corruptions; however, it requires a trusted PKI as-
sumption. In contrast, the protocol of King and Saia [69] does not require setup assumptions and
is resilient to adaptive corruptions, but it provides suboptimal total communication Õ(n

√
n). It is

interesting to explore if Õ(1)-balanced BA can be achieved without setup or in the adaptive setting.
Regarding the communication model, the vast majority of sub-quadratic BA protocol are defined

in the synchronous model. In the asynchronous setting unbalanced sub-quadratic BA in the trusted
PKI model was recently proposed [38, 11]. We note that balanced sub-quadratic BA is not known
even in the partially synchronous model. An interesting question is to expand our techniques
beyond the synchronous realm.

Finally, all known BA protocols with o(n2) total communication follow either the approach of
King et al. [70] or of Chen and Micali [31], which are based on electing a polylog-size committee.
As such, these protocols only support a non-optimal constant fraction of corruptions. Is it possible
to achieve o(n2) total communication while tolerating the optimal number of corruptions t < n/2?

Paper Organization

In Section 2, we provide basic definitions. SRDS are defined in Section 3. Our BA protocol and the
lower bounds appear in Section 4. Section 5 presents two constructions of SRDS, and in Section 6,
we explore the connection of SRDS based on multi-signatures to succinct non-interactive arguments.
Some of the definitions and proofs are deferred to the appendix.

2 Preliminaries
In this section, we present the security model and the definition of Byzantine agreement. Additional
definitions of proof-carrying data systems, of Merkle hash proof systems, and of multi-signatures,
can be found in Appendix A.
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Protocols. All protocols considered in this paper are PPT (probabilistic polynomial time): the
running time of every party is polynomial in the (common) security parameter, given as a unary
string. For simplicity, we consider Boolean-input Boolean-output protocols, where apart from the
common security parameter, each party has a single input bit, and each of the honest parties
outputs a single bit. We note that our protocols can be used for agreement on longer strings, with
an additional dependency of the communication complexity on the input-string length.

We consider protocols in the PKI model, and we distinguish between two flavors of PKI: a
trusted PKI and a bare PKI. In both settings, a trusted party samples a secret key ski and a public
key vki, for every i ∈ [n], from some distribution. The adversary is allowed to corrupt parties
adaptively based on (vk1, . . . , vkn) and learn the secret key associated with every corrupted party.
In the bare-PKI model, the adversary can replace the public key of every corrupted party by an
arbitrary string vk′

i of its choice, even “after” looking at the public keys of honest parties.
The communication model is synchronous, meaning that protocols proceed in rounds. In each

round, every party can send a message to every other party over a private channel.17 It is guaranteed
that every message sent in a round will arrive at its destinations by the end of that round. The
adversary is rushing in the sense that it can use the messages received by corrupted parties from
honest parties in a given round to determine the corrupted parties’ messages for that round.

Note that an adversary can always blow up the communication complexity of a protocol by
flooding honest parties with many bogus messages. It is therefore standard to count only messages
that are actually processed by honest parties. We follow the model of [19], who formalized this
intuition. Namely, message receival consists of two phases: a filtering phase, where incoming mes-
sages are inspected according to specific filtering rules defined by the protocol, and some messages
may be discarded, followed by a processing phase, where the party computes its next-message func-
tion based on the remaining non-filtered messages. In practice, the filtering procedure should be
“lightweight,” and consist of operations like counting messages or verifying validity of a signature.

Byzantine Agreement. Informally, in an n-party, t-resilient Byzantine agreement protocol, the
honest parties must agree on one of their input bits, even when t parties collude and actively try to
prevent it. We provide two definitions for BA: the first is the standard, property-based definition
and the second is based on the real/ideal paradigm.

We start with the property-based definition. This definition captures the core properties re-
quired for consensus; namely, agreement, validity, and termination. This is a weaker definition than
the simulation-based one, and as such is most suitable for proving lower bounds.

Definition 2.1 (BA, property-based). Let π be an n-party protocol in which every party Pi has
an input bit xi ∈ {0, 1} and outputs a bit yi ∈ {0, 1} at the end of the protocol. The protocol π
is an n-party, t-resilient BA protocol (according to the property-based definition) if the following
properties are satisfied with all but negligible probability when up to t parties maliciously attack the
protocol:

• Agreement. For every pair of honest parties Pi and Pj it holds that yi = yj.

• Validity. If there exists a bit x such that for every honest party Pi it holds that xi = x, then
for every honest party Pi it holds that yi = x.

17We note that using standard techniques, our constructions can be defined over authenticated channels (that do
not provide privacy) by additionally assuming the existence of key-agreement protocols.
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• Termination. Every honest party eventually outputs a bit.

We proceed with the simulation-based definition, which requires the protocol to realize an ideal
BA functionality. Roughly speaking, an ideal functionality represents a trusted third party that
receives inputs from all the parties and provides them with the correct output. A protocol in the
real world (where parties communicate between themselves and no trusted party exists) securely
realizes an ideal functionality if every attack in the real protocol can be simulated in the ideal-world
computation; since by definition no attack can happen in the ideal world, it is concluded that no
attack can happen in the real world as well. We refer the reader to [22, 23, 56] for further details on
the real/ideal paradigm. We follow the standard ideal functionality for Byzantine agreement, see,
e.g., [84, 34, 39, 35, 37], where the functionality collects the inputs from all parties and counts them;
in case of a strong majority of the inputs equals some bit, then this bit is set as the output, and
otherwise the adversary gets to choose the output. This definition implies the property-based one
and is stronger as it guarantees security under composition; we use this definition for our protocol
constructions.

The functionality fba

The functionality fba proceeds as follows, running with parties P1, . . . , Pn and an adversary S, stati-
cally corrupting a subset of parties indexed by a set I ⊆ [n] of size |I| ≤ t.

1. For each i ∈ [n] \ I, party Pi sends a bit xi ∈ {0, 1} as its input; the functionality sends
(Pi, xi)i∈[n]\I to the adversary.

2. The adversary sends input bits (xi)i∈I for the corrupted parties and a “tie-breaker bit” x̃.

3. Once all parties provided their inputs, if there exists a bit b such that |{i | xi = b}| ≥ n − t,
then set y = b; otherwise, set y = x̃. Send y to every party.

Figure 1: The Byzantine agreement functionality

Definition 2.2 (BA, simulation-based). An n-party, t-resilient Byzantine agreement protocol (ac-
cording to the simulation-based definition) is a protocol π that realizes the BA ideal functionality
(defined in Figure 1) tolerating a malicious adversary statically corrupting up to t parties.

Balanced BA. In this work, we design a balanced Byzantine agreement protocol, with Õ(1) per-
party communication; i.e., for all adversarial strategies, the communication complexity incurred by
each honest party is polylog(n) · poly(κ) with overwhelming probability. One can also consider a
slightly relaxed variant, where the per-party communication is Õ(1) in expectation. The relaxed
notion is satisfied by committee-based BA protocols such as [31, 1], where each party has a sim-
ilar probability of being elected in the committee and hence the parties incur a similar per-party
communication when given sufficiently many invocations of the protocol. In this work, however,
we focus on the former stronger notion that is formalized as follows.

Definition 2.3 (Balanced BA). Let α(n, κ) be a function. An n-party, t-resilient Byzantine agree-
ment protocol has α(n, κ)-balanced communication complexity, if for every PPT adversary corrupt-
ing up to t parties, the communication complexity incurred by each honest party is α(n, κ), except
for negligible probability.
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3 Succinctly Reconstructed Distributed Signatures
In this section, we introduce a new notion of a distributed signature scheme for n parties, which can
be used to obtain low-communication BA. As discussed earlier, every party has signing/verification
keys based on some form of PKI, and the parties may receive additional setup information consisting
of public parameters for the underlying signature scheme and potentially a common random string
(CRS). We allow the adversary to adaptively corrupt a subset of the parties before the protocol
begins, based on the setup information and all n verification keys. We consider two PKI models:
a bare PKI, where the adversary can choose the corrupted parties’ keys, and a trusted PKI, where
the keys are honestly generated and cannot be changed. We do not permit adaptive corruptions
once the parties start signing messages.

Below, we define the new signature scheme and the security requirements. Later, in Section 5,
we present two constructions offering a tradeoff between cryptographic and setup assumptions: the
first assuming one-way functions in the trusted-PKI model and the second assuming CRH and
SNARKs with linear extraction in the CRS and bare-PKI model. In Section 6, we show that a
natural approach towards constructing SRDS in an untrusted-PKI model has strong connections
to succinct average-case argument systems for certain NP-Complete problems.

The Definition. We start by presenting the syntax of the definition, and later, define the required
properties from the scheme: succinctness, robustness, and unforgeability.
Definition 3.1 (SRDS syntax). A succinctly reconstructed distributed signatures scheme with mes-
sage spaceM and signature space X for a set of parties P = {P1, . . . , Pn}, is defined by a quintuple
of PPT algorithms (Setup, KeyGen, Sign, Aggregate, Verify) as follows:
• Setup(1κ, 1n) → pp: On input the security parameter κ and the number of parties n, the setup

algorithm outputs public parameters pp.

• KeyGen(pp)→ (vk, sk): On input the public parameters pp, the key-generation algorithm outputs
a verification key vk and a signing key sk.

• Sign(pp, i, sk, m) → σ: On input the public parameters pp, the signer’s identity i, a signing key
sk, and a message m ∈M, the signing algorithm outputs a signature σ ∈ X ∪ {⊥}.

• Aggregate(pp, {vk1, . . . , vkn}, m, {σ1, . . . , σq}) → σ: On input the public parameters pp, the set
of all verification keys {vki}i∈[n], a message m ∈ M, and a set of signatures {σi}i∈[q] for some
q = poly(n), the aggregation algorithm outputs a signature σ ∈ X ∪ {⊥}.

• Verify(pp, {vk1, . . . , vkn}, m, σ)→ b: On input the public parameters pp, the set of all verification
keys {vki}i∈[n], a message m ∈ M, a signature σ ∈ X , the verification algorithm outputs a bit
b ∈ {0, 1}, representing accept or reject.
We assume without loss of generality that each signature encodes the index i of the correspond-

ing verification key vki, and each aggregated signature encodes information about the maxima and
minima of the indices associated with verification keys corresponding to the base signatures that
are aggregated within them.18 Given a base signature/aggregated signature, let max(σ) denote the
function that extracts the maxima associated with σ and min(σ) denote the function that extracts
the maxima associated with σ (in case of a base signature, both max(σ) and min(σ) will return the
same value).

18In Section 5 we will show how this property can be achieved by each of our constructions.
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Remark (Notation n). Here, we use n to denote the number of parties in the SRDS scheme.
Looking ahead, the effective number of (virtual) parties in the SRDS used in our BA protocol in
Section 4 will be larger than the actual (real) participants of the protocol.

We proceed to define three properties of an SRDS scheme: succinctness, robustness, and un-
forgeability. We define these properties with respect to any t < n/3 corruptions. Although the
definitions can be stated for t < n/2, we opted for the former for clarity and concreteness, as both
our BA protocol (Section 4) and our SRDS constructions (Section 5) support n/3 corruptions.

Succinctness. We require that the size of each signature is Õ(1). This holds both for signatures
in the support of Sign and of Aggregate. In order for parties to jointly perform the signature ag-
gregation process with low communication, we also require that the aggregate algorithm can be
decomposed into two algorithms Aggregate1 and Aggregate2. Depending on the set of input sig-
natures {σi}i∈[q] and the verification keys, the first algorithm Aggregate1 deterministically outputs
a subset of the signatures Ssig. The second (possibly randomized) algorithm Aggregate2 then ag-
gregates these signatures without relying on the verification keys. In particular, the input to the
(possibly randomized) step Aggregate2 is short.

Looking ahead at the BA protocol in Section 4.1, subsets of the parties will collectively run
the aggregation algorithm. Although the inputs to the aggregation algorithm need not be kept
private, it could be the case that the randomness used should remain secret. For this reason, the
computation of Aggregate2 in the BA construction will be carried out using an MPC protocol;
to keep the overall communication of every party Õ(1), we require the circuit size representing
Aggregate2 to be Õ(1). The goal of Aggregate1 is to deterministically filter out invalid inputs (using
the verification keys), such that Aggregate2 only depends on the verified signatures and not on the
n verification keys (otherwise the circuit size will be too large).

Definition 3.2 (succinctness). An n-party SRDS scheme is succinct if it satisfies the following:

1. Size of signatures: There exists α(n, κ) ∈ poly(log n, κ) such that X ⊆ {0, 1}α(n,κ).

2. Decomposability: The Aggregate algorithm can be decomposed into 2 algorithms Aggregate1
and Aggregate2, such that the following hold:

• Aggregate1(pp, {vk1, . . . , vkn}, m, {σ1, . . . , σq})→ Ssig, where Ssig is of size poly(log n, κ) and
Aggregate1 is deterministic.

• Aggregate2(pp, m, Ssig)→ σ, i.e., aggregate the signatures in Ssig into a new signature σ.

Robustness. Informally, a scheme is robust if no adversary can prevent sufficiently many honest
parties from generating an accepting signature on a message. We define robustness as a game
between a challenger and an adversary A. The game is formally defined in Figure 2 and comprises
of three phases. In the setup and corruption phase, the challenger generates the public parameters
pp and a pair of signature keys for every party. Given pp and all verification keys vk1, . . . , vkn, the
adversary can adaptively corrupt a subset of (up to) t parties and learn their secret keys. In the
case of a bare PKI (but not of trusted PKI), the adversary can replace the verification key of any
corrupted party by another key of its choice. Unless specified otherwise, we consider the bare PKI
to be the default setup model.
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In the robustness challenge phase, the adversary chooses a tree T describing the order in which
the signatures of all the parties are to be aggregated. The nodes on level 0 correspond to set of
all parties who generate signatures (i.e., all virtual parties in the BA protocol). We slightly abuse
notation and refer to level-1 nodes as leaf nodes, as they correspond to the actual leaves in the
communication tree of [70]. For our application in the BA protocol in Section 4.1, we require this
tree to be an “(n, I)-almost-everywhere-communication tree” (see Definition 3.3), where n is the
number of parties and I is the set of corrupt parties.19 Furthermore, we assume that level-0 nodes
are indexed and ordered by the parties in such a way that when the tree topology is expressed flat
as a planar graph (no crossovers), then the IDs of level-0 nodes are in increasing order. Looking
ahead, we will show that this property of the tree is sufficient for our BA protocol in Section 4.1.
The adversary also chooses messages m ∈M and {mi}i∈N , where N is the subset of honest parties
that are assigned to leaf nodes that do not have a good path (i.e., where more than a third of the
parties assigned to at least one of the nodes on the path are corrupt) to the root.

Given signatures of parties in N on the respective mi’s and of the remaining honest parties
on m, the adversary computes signatures of all corrupt parties. The challenger and adversary
then interactively aggregate all these signatures in the order specified by the tree T . In particular,
partially aggregated signatures corresponding to intermediate nodes in the tree that consist of a
majority of honest parties are computed by the challenger, while partially aggregated signatures
corresponding to the remaining nodes are chosen by the adversary.

Finally, in the output phase, the challenger runs the verification algorithm on the message m and
the final aggregated signature obtained in the root of the tree, and A wins if the verification fails.
We say that an SRDS scheme is robust if no adversary can win this game except with negligible
probability.

We start by formally describing the properties of an (n, I)-almost-everywhere-communication
tree, which is a slight variant of the tree described in King et al. [70].

Definition 3.3 ((n, I)-almost-everywhere-communication tree). Let I ⊆ [n] be a subset of size t for
t < n/3. A directed rooted tree T = (V, E) is an (n, I)-almost-everywhere-communication tree if the
following properties are satisfied:

1. The height of T is ℓ∗ ∈ O(log n/ log log n). Each node v from level ℓ > 1 has log n children in
level ℓ− 1.

2. Each node on level ℓ > 1 is assigned a set of log3 n parties.

3. A node is good if less than a third of the parties assigned to it are in I. Then, it holds that the
root is good.

4. All but a 3/ log n fraction of the leaves have a good path (consisting of good nodes) to the root.

5. The nodes on level 0 correspond to the n parties.

6. Each party (on level 0) is assigned to exactly one leaf node (on level 1).

7. There are n/ log5 n leaf nodes and each leaf node is assigned a set of log5 n parties.

19This tree is a combinatorial object that was first defined by King et al. [70]. They also proposed an interactive
protocol that allows the parties to collectively build such a tree on the fly. This tree and that protocol will be an
integral part of our BA protocol in Section 4.1.
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Definition 3.4 (robustness). Let t < n/3. An SRDS scheme Π is t-robust with a bare PKI (resp.,
with a trusted PKI) if for mode = b-pki (resp., mode = tr-pki) and for any (stateful) PPT adversary
A it holds that:

Pr
[
Exptrobust

mode,Π,A(κ, n, t) = 0
]
≤ negl(κ, n).

The experiment Exptrobust
mode,Π,A is defined in Figure 2.

We note that robustness is a strictly stronger notion than completeness. In a complete scheme,
correctness is guaranteed if all the parties are honest. In a robust scheme, even if a subset of parties
are corrupted, as long as there are sufficiently many honest parties, correctness is still guaranteed.
Hence, any signature scheme satisfying robustness, immediately satisfies completeness.

Experiment Exptrobust
mode,Π,A(κ, n, t)

The experiment Exptrobust is a game between a challenger and the adversary A. The game is
parametrized by an SRDS scheme Π and proceeds as follows:

A. Setup and corruption. In the first phase, the challenger generates the public parameters
and the signature keys for the parties. Given the public information, A can adaptively corrupt
parties, learn their secret information, and potentially change their public keys.

(1) Compute pp← Setup(1κ, 1n).
(2) For every i ∈ [n], compute (vki, ski)← KeyGen(pp).
(3) Invoke A on (1κ, 1n, pp, {vk1, . . . , vkn}) and set I = ∅.
(4) As long as |I| ≤ t and A requests to corrupt a party Pi:

(a) Send ski to A and receive back vk′
i.

(b) If mode = b-pki, set vki = vk′
i.

(c) Set I = I ∪ {i}.

B. Robustness challenge. In this phase, A tries to break the robustness of the scheme.

(1) A chooses an (n, I)-almost-everywhere-communication tree T = (V, E) (as per Defini-
tion 3.3), in which level-0 nodes are indexed and ordered by the parties in such a way
that when the tree topology is expressed flat as a planar graph (no crossovers), then the
IDs of level-0 nodes are in increasing order. Let N be the set of honest parties assigned
to the leaf nodes that do not have a good path to the root.

(2) A also chooses a message m ∈M and a message mi ∈M for each i ∈ N .
(3) For every i ∈ [n] \ (I ∪ N ), let σi ← Sign(pp, i, ski, m) and for every i ∈ N , let σi ←

Sign(pp, i, ski, mi).
(4) Send {σi}i∈[n]\I to A and receive back {σi}i∈I .
(5) For each ℓ = {2, . . . , height(T )} and every node v on level ℓ:

• If v is a good node, compute σv ← Aggregate(pp, {vk1, . . . , vkn}, m, {σu}u∈child(v)),
where child(v) ⊆ V refers to the set of children of the node v ∈ V , and send σv to A.

• Else, if v is a bad node, receive σv from A.

C. Output Phase. Output Verify(pp, {vk1, . . . , vkn}, m, σroot), where root is the root node in T .

Figure 2: Robustness experiment for SRDS
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Unforgeability. Informally, a scheme is unforgeable if no adversary can use signatures of a large
majority of the honest parties on a message m and of a few honest parties on messages of its choice
to forge an aggregated SRDS signature on a message other than m.

In a similar way to robustness, we consider an unforgeability game between a challenger and
an adversary. The setup and corruption phase is identical to that in the robustness game. In the
forgery challenge phase, the adversary chooses a set S ⊆ [n] \ I such that |S ∪ I| < n/3, and
messages m and {mi}i∈S . Given signatures of all honest parties outside of S on the message m
and a signature of each honest party Pi in S on the message mi, the adversary outputs a signature
σ. In the output phase, the challenger checks whether σ is a valid signature on a message different
than m; if so, the adversary wins. An SRDS scheme is unforgeable if no adversary can win the
game except for negligible probability.
Definition 3.5 (unforgeability). Let t < n/3. An SRDS scheme Π is t-unforgeable with a bare
PKI (resp., with a trusted PKI) if for mode = b-pki (resp., mode = tr-pki) and for every (stateful)
PPT adversary A it holds that

Pr
[
Exptforge

mode,Π,A(κ, n, t) = 1
]
≤ negl(κ, n).

The experiment Exptforge
mode,Π,A is defined in Figure 3.

Experiment Exptforge
mode,Π,A(κ, n, t)

The experiment Exptforge is a game between a challenger and the adversary A. The game is
parametrized by an SRDS scheme Π and consists of the following phases:

A. Setup and Corruption. As in the robustness experiment in Figure 2.

B. Forgery Challenge. In this phase, the adversary tries to forge a signature.

(a) A chooses a subset S ⊆ [n] \ I such that |S ∪ I| < n/3. It also chooses messages m and
{mi}i∈S from M.

(b) For every i ∈ S, compute σi ← Sign(pp, i, ski, mi).
(c) For every i /∈ (S ∪ I), compute σi ← Sign(pp, i, ski, m).
(d) Send {σi}i∈[n]\I to A and get back σ′ ∈ X and m′ ∈M.

C. Output Phase. Output 1 if and only if Verify(pp, {vk1, . . . , vkn}, m′, σ′) = 1 and m′ ̸= m.

Figure 3: Forgery experiment for SRDS

We note that as described, the security definition is only for one-time SRDS signatures. Al-
though this is sufficient for our applications in Section 4, it is possible to extend the definition and
provide the adversary an oracle access to signatures of honest parties on messages of its choice.
However, in that case, the adversary must choose the set S before getting oracle access.

Security. We say that an SRDS scheme is secure in the respective PKI model, if it satisfies all
the above properties.
Definition 3.6 (secure SRDS). Let t < n/3. An SRDS scheme Π is t-secure with a bare PKI
(resp., with a trusted PKI) if it is succinct, t-unforgeable and t-robust with a bare PKI (resp., with
a trusted PKI).
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4 Balanced Communication-Efficient Byzantine Agreement
In this section, we consider Byzantine agreement protocols with Õ(1) communication per party. In
Section 4.1, we show how to use succinctly reconstructed distributed signatures (SRDS) to boost
almost-everywhere agreement to full agreement in a balanced way via a single communication round.
In Section 4.2, we show that a similar task cannot be achieved under weaker setup assumptions.

4.1 Balanced Byzantine Agreement from SRDS

We start by showing how to combine succinctly reconstructed distributed signatures (SRDS) with
the protocol of [17] to obtain BA with balanced Õ(1) communication. We prove the following
theorem.

Theorem 4.1 (Theorem 1.1, restated). Let β < 1/3 and assume existence of a βn-secure SRDS
scheme in the bare-PKI model (resp., trusted PKI model). Then, there exists a βn-resilient BA
protocol (according to Definition 2.2) in a hybrid model for generating the SRDS setup and the
relevant PKI, such that:

• The round complexity and communication locality are polylog(n); every party communicates
polylog(n) · poly(κ) bits.

• The adversary can adaptively corrupt the parties based on the public setup and the PKI before
the onset of the protocol. For bare PKI, the adversary can additionally replace the corrupted
parties’ public keys.

By instantiating Theorem 4.1 with our SRDS constructions from Section 5, we get the following
corollaries.

Corollary 4.2. Let β < 1/3. Assuming OWF, there exists a βn-resilient BA protocol in the
trusted-PKI model with balanced Õ(1) communication per party.

Corollary 4.3. Let β < 1/3. Assuming CRH and SNARKs with linear extraction, there exists a
βn-resilient BA protocol in the bare PKI and CRS model with balanced Õ(1) communication per
party.

High-level overview. The protocol is defined in a hybrid model that abstracts the communica-
tion tree of [70]. The parties can communicate in a way that mimics almost-everywhere agreement,
and the adversary is allowed to isolate a o(1) fraction of the parties. Each party is assigned to
z = O(log4 n) leaf nodes and z∗ = O(log5 n) parties are assigned to each leaf node in the communi-
cation tree. Since each party will send a signature to every leaf node he is assigned to, it is essential
to ensure the same fraction of signatures is generated by corrupted parties as their fraction in the
party-set. For this reason, we allocate z “virtual identities” to every party. The SRDS is used for
n · z virtual identities and each party samples separate SRDS keys for each of his virtual identities.
These virtual IDs are assigned to the parties in such a way that the virtual IDs associated with the
kth leaf node belong in the range [(k− 1) · z∗ + 1, k · z∗]. This ensures that when the tree topology
is expressed flat as a planar graph (no crossovers), then the virtual IDs of the leaf nodes are in
increasing order. Looking ahead, this property is necessary for robustness, when using our SRDS
construction from Section 5.2.
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The protocol starts by invoking fae-comm (defined below) to obtain an almost-everywhere-
communication tree where each party is assigned to z leaves. The supreme committee members
(parties assigned to the root-node) run Byzantine agreement on their inputs to agree on the output
y and run a coin-tossing protocol to agree on a random seed s. The supreme committee then makes
use of the communication-tree to distribute these values to all non-isolated parties. The parties
then collectively generate an SRDS signature to certify the pair (y, s).

To compute this signature, each party locally signs the received pair of values; this is done using
a different virtual identity for every leaf node corresponding to the party. Each signature is sent to
all parties assigned to the corresponding leaf node. For each node in the tree, the assigned parties
aggregate the received signatures, while making sure that the maxima and minima of virtual IDs
associated with the signatures that they aggregate indeed lie within the range associated with the
leaf nodes that have a path to the current node, and propagate them to the node’s parent in a
recursive way until reaching the root, where the final aggregated signature is computed.

Next, the supreme-committee again uses the communication-tree to distribute this aggregated
signature to all non-isolated parties. Each non-isolated party evaluates a PRF on the seed s and
its identity to determine a set of parties, to which he sends the pair (y, s) along with the signature.
Isolated parties can now verify the signature and be convinced about the correct output y. Here
correctness crucially relies on the fact that the adversary could not have forged an aggregated SRDS
signature on any other value.

In Section 4.1.1, we define the ideal functionalities to be used in the BA protocol, and in
Section 4.1.2, we describe the protocol and prove its security. Finally, in Section 4.1.3, we present
applications of our protocol to broadcast and MPC.

4.1.1 Functionalities used in the Protocol

We start by describing the functionalities used in our construction.

Almost-everywhere communication. The functionality fae-comm is a reactive functionality
that abstracts the properties obtained by the protocol from [70]. In the first invocation, the adver-
sary specifies a special communication tree that allows all honest parties to communicate, except
for a o(1) fraction of isolated parties D ⊆ [n]. In all subsequent calls, the “supreme committee,”
i.e., the parties associated with the root of the tree, can send messages to all of the parties but D.
We use a slightly modified version of the (n, I)-almost-everywhere-communication tree defined in
Section 3. Specifically, in Definition 3.3, each party was assigned to a single leaf node of the tree.
Here, each party in the BA protocol will be assigned to multiple leaf nodes (but will participate in
the SRDS aggregation as multiple “virtual” parties, one for each appearance).

Definition 4.4 ((n, I)-almost-everywhere-communication tree with repeated parties). Let I ⊆ [n]
be a subset of size βn for a constant β < 1/3. A directed rooted tree T = (V, E) is an (n, I)-
almost-everywhere-communication tree with repeated parties if it satisfies the first four properties
of an (n, I)-almost-everywhere-communication tree (Definition 3.3) and additionally, the following
properties are satisfied:

1. Each leaf node of the tree is assigned a set of log5 n parties.

2. Each party is assigned to O(log4 n) nodes at each level.
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The original protocol of [70] has an inverse-polynomial error in n; the reason is that the com-
mittees are chosen to be O(log n). Boyle et al. [17] adjusted the protocol to have committees of
poly-logarithmic size, thus obtaining poly-logarithmic locality with a negligible error in n. Note
that the security parameter κ is not used in this protocol, so the locality is independent of κ.

As observed in [17], the fact that 1 − o(1) fraction of the leaves are on good paths to the
root implies that for a 1 − o(1) fraction of the parties, a majority of the leaf nodes that they are
assigned to are good. The protocol of King et al. [70] securely realizes fae-comm in the authenticated-
channels model tolerating a computationally unbounded, malicious adversary statically corrupting
βn parties, for a constant β < 1/3. Every invocation requires polylog(n) rounds, and every party
sends and processes polylog(n) bits. Throughout all invocations, every party sends to, and processes
messages received from polylog(n) other parties.

The functionality fae-comm

The n-party reactive functionality fae-comm proceeds as follows:

• First invocation: Upon receiving an init message from each party, the functionality asks the
adversary for a communication tree T = (V, E) and does the following:

1. Verify that T is an n-party almost-everywhere-communication tree with respect to the set of
corrupted parties I (otherwise, output ⊥ to all parties).

2. Let D be the set of isolated parties in T and let C be the set of parties assigned to the root.
3. The functionality sends to each Pi for i ∈ [n] its local view in the tree, consisting of:

– All the nodes that Pi is assigned to (and the parties assigned to them).
– All the parent and children nodes (and the parties assigned to them) of the nodes that Pi is

assigned to.

• Subsequent invocations: Every party Pi with i ∈ C provides a message mi. If more than 2/3 of
the parties in C provided the same message m, send m to the adversary and receive back {m̂j}j∈D.
For every i /∈ D deliver m to Pi and for every j ∈ D deliver m̂j to Pj .

Figure 4: The almost-everywhere communication functionality

Byzantine agreement. We consider the standard Byzantine agreement functionality fba as
defined in Section 2 (to be used within small committees in the larger protocol). Every party
sends its input to the trusted party who forwards the input value to the adversary. If more than
n−t inputs equal the same value y ∈ {0, 1}, then deliver y as the output for every party. Otherwise,
let the adversary choose the value y ∈ {0, 1} to be delivered.

The n-party BA protocol of Garay and Moses [52] realizes fba over authenticated channels
tolerating a computationally unbounded, malicious adversary statically corrupting t < n/3 parties
using t + 1 rounds and poly(n) communication complexity. An immediate corollary is that for
n′ = polylog(n), the n′-party BA functionality fba can be instantiated using polylog(n) rounds and
polylog(n) communication complexity.

Coin tossing. The coin-tossing functionality fct samples a uniformly distributed s ∈ {0, 1}κ and
delivers s to all the parties. The protocol of Chor et al. [33] realizes fct over a broadcast channel
assuming an honest majority (by having each party verifiably secret share (VSS) a random value,
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and later reconstruct all values and XOR them). By instantiating the broadcast channel using the
protocol of [52], n′ = polylog(n) parties can agree on a random κ-bit string in polylog(n) rounds
and polylog(n) · poly(κ) communication.

Signature aggregation. The signature-aggregation functionality faggr-sig (formally described in
Figure 5) is an n′-party functionality, where every party Pi provides a message mi and a set of
signatures. The functionality first determines the set of signatures received from a majority of the
parties and aggregates only those signatures to obtain a new signature σ, which is delivered as the
output for every party.

Note that the inputs to the aggregation procedure are not private, so if the aggregation algorithm
Aggregate2 is deterministic (for example, in the OWF-based SRDS construction in Section 5.1) the
parties simply need to agree on the common set of input signatures Ssig and locally run Aggregate2 to
obtain the same aggregated signature. To agree on Ssig, each party broadcasts its input signatures
and filters-out invalid signatures by running the deterministic algorithm Aggregate1. However, if
the algorithm Aggregate2 is randomized, it may be the case that security relies on keeping the
random coins hidden from the parties. For this reason, after the parties agree on Ssig, we use an
MPC protocol to compute the aggregated signature and realize faggr-sig.

The functionality faggr-sig(P)

The n′-party functionality faggr-sig, running with parties P = {P1, . . . , Pn′} and the adversary, is
parametrized by the public parameters pp and proceeds as follows.

1. Every party Pi sends (mi, Ssigi
) as input, where Ssigi

is a set of signatures.

2. If at least 2/3 of the parties provided the same message m and the same set Ssig, then compute

σ ← Aggregate2
(
pp, m, Ssig

)
.

Else, let the adversary choose σ.

3. Finally, deliver σ to every party Pi.

Figure 5: The signature-aggregation functionality

Assuming the existence of one-way functions, the protocol of Damgård and Ishai [40] can be used
to realize the n′-party functionality faggr-sig, for n′ = polylog(n), over secure channels, tolerating a
malicious adversary corrupting a minority of the parties. In addition, if the size of set Ssig is Õ(1),
the protocol requires polylog(n) · poly(κ) communication. In our construction, this functionality
is used by the parties assigned to a node (in the almost-everywhere communication-tree obtained
from fae-comm) for aggregating signatures received from parties assigned to their children. From
Definition 4.4, we know that each node only has log(n) child nodes and each node is assigned
polylog(n) parties. Therefore, faggr-sig is only used for aggregating at most polylog(n) signatures.
Note that in [40] a broadcast channel is also required and the resulting protocol is constant round.
For n′ = polylog(n) the broadcast can be realized by a deterministic protocol, e.g., from [52], and
the resulting protocol has polylog(n) rounds and polylog(n) · poly(κ) communication.
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4.1.2 The Byzantine Agreement Protocol

Having defined the ideal functionalities, we are now ready to present our BA protocol in Figure 6.
To reduce the security of πba to that of the SRDS scheme, we will show that by robustness every
honest party will receive an accepting signature on (y, s), and by unforgeability, no party will receive
an accepting signature on a different value. Before proceeding to the proof, we discuss a subtlety
in the reduction.

Recall that robustness of an SRDS scheme ensures that an adversary who after the setup and
corruption phase is allowed to choose a message m, and the order of aggregation (using a directed
rooted tree T ), cannot prevent the honest parties from successfully signing m. Note that if in πba, an
adversary can prevent the honest parties from signing (y, s), then we can derive the corresponding
tree and partially aggregated signatures of the corrupted parties to break the robustness of the
SRDS scheme. Note that here, in the robustness game, we will assume that the total number of
parties are n · z (i.e., each virtual party in the Byzantine agreement protocol is a real party in
the SRDS game) and (n, I)-almost-everywhere-communication tree with repeated parties T used in
the Byzantine agreement protocol is transformed into an (n · z, {(i, j)}i∈I,j∈[z])-almost-everywhere-
communication tree by augmenting it with a level 0 comprising of n · z nodes (representing the n · z
parties in the SRDS game), and adding an edge between each of these nodes and the leaf node that
it (i.e., the party that they represent) is assigned to.

Lemma 4.5. Let β < 1/3 and assume the existence of PRF and βn-secure SRDS in the bare-
PKI model (resp., trusted-PKI model). Then, protocol πba is a βn-resilient BA protocol in the
(fae-comm, fba, fct, faggr-sig)-hybrid model such that:

• The round complexity and the locality of the protocol are polylog(n); the number of bits commu-
nicated by each party is polylog(n) · poly(κ).

• The adversary can adaptively corrupt the parties based on the public setup of the SRDS, i.e.,
pp and {vk1,1, . . . , vkn,z} before the onset of the protocol. For bare PKI, the adversary can
additionally replace the corrupted parties’ public keys.

The proof of Lemma 4.5 can be found in Appendix B.1.

4.1.3 Applications

We point out a few applications of our BA protocol.

Broadcast with balanced polylog communication. Consider a single a run of the protocol
(on dummy inputs). The communication graph forms a tree with stronger properties than Defini-
tion 4.4, achieving everywhere agreement of all parties on the supreme committee, such that every
party sends only Õ(1) throughout the protocol constructing it. Having established the communica-
tion tree, it is possible to run a simple broadcast protocol in the PKI model. The sender signs his
input bit and sends it up to the supreme committee, which in turn sends the signed bit to all other
parties. If fact, since the communication tree is reusable, after multiple executions (with different
senders) the communication will grow in a proportional way only to the number of bits that have
been broadcasted. In particular, note that the SRDS PKI is only needed for a single run of the
protocol (to establish the communication tree) and is not needed afterwards.
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Protocol πba
• Common Input: An SRDS scheme and a PRF family F = {Fs}s∈{0,1}κ mapping elements of

[n] to subsets of [n] of size polylog(n).
• Private Input: Every party Pi, for i ∈ [n], has input xi ∈ {0, 1}.
• Setup: Let z = O(log4 n), z∗ = O(log5 n) and let pp ← Setup(1κ, 1n·z). Every party Pi

locally computes (vki,j , ski,j) ← KeyGen(pp) for every j ∈ [z]. The public output consists of
pp and the set of public keys vk = {vki,j}i∈[n],j∈[z]. We assume that there exists a mapping
idmap : [n] × [z] → [n · z] that maps the each (i, j) above to a virtual ID i∗ ∈ [n · z], such that
virtual IDs of the parties assigned and corresponding to the kth leaf node belong in the range
[(k − 1) · z∗ + 1, k · z∗] (This ensures that when the tree topology is expressed flat as a planar
graph (no crossovers), then the virtual IDs of the leaf nodes are in increasing order.).

• Hybrid Model: The protocol is defined in the (fae-comm, fba, fct, faggr-sig)-hybrid model.
• The Protocol:
1. Every party invokes fae-comm and receives back its local view in the communication tree T =

(V, E). Let C denote the supreme committee, i.e., the parties assigned to the root node.
2. Every party Pi in the supreme committee (i.e., with i ∈ C) proceeds as follows:

(a) Invoke fba on his input value xi and receive back y ∈ {0, 1}.
(b) Invoke fct and receive back s ∈ {0, 1}κ.

3. The parties in the supreme committee C send (y, s) to fae-comm. For every i ∈ [n] denote the
output of party Pi as (yi, si).

4. Every party Pi signs the received message (yi, si) for each virtual identity j ∈ [z] as σi,j ←
Sign(pp, idmap(i, j), ski,j , (yi, si)). Let Li = {vi1 , . . . , viz} ⊆ V be the subset of leaves assigned
to Pi. For each j ∈ [z], party Pi sends σi,j to all the parties assigned to the leaf node vij

.
5. Denote by party(v) the set of parties assigned to a node v ∈ V . Similarly, denote by child(v)

and parent(v) the set of children nodes and parent node of v ∈ V , resp. Let range(v) denote the
range of virtual IDs of the parties assigned to the leaf nodes that have a path to node v ∈ V .
For each level ℓ = 1, . . . , ℓ∗ and for each node v on level ℓ, the protocol proceeds as follows:

(a) For each i ∈ party(v), let Si,ℓ,1
sig be the set of signatures received by Pi in the previous

round (for ℓ = 1, i.e., for leaf nodes, from each Pj with v ∈ Lj ; for ℓ > 1, from every party
Pj assigned to a child node of v).

(b) Every Pi with i ∈ party(v) broadcastsa Si,ℓ,1
sig to all the parties in party(v). Let Si,ℓ,2

sig be
the union of all sets received from the parties in party(v).

(c) Every Pi with i ∈ party(v) computes Aggregate1(pp, {vk1,1, . . . , vkn,z}, (yi, si), Si,ℓ,2
sig ) →

Si,ℓ,3
sig . If ℓ = 1, for each sig in Si,ℓ,3

sig it checks if min(sig) = max(sig) and if min(sig) ∈
range(v) and if ℓ > 1, it checks if ∃v′ ∈ child(v) such that the range [min(sig), max(sig)] falls
within the range range(v′). If this check fails for any sig, it updates Si,ℓ,3

sig = Si,ℓ,3
sig \ {sig}.

It invokes faggr-sig on input ((yi, si), Si,ℓ,3
sig ) to obtain the aggregated signature σv.

(d) If ℓ < ℓ∗, for each i ∈ party(v), party Pi sends σv to all parties in parent(v).

6. Let σroot be the signature obtained by the supreme committee. The parties in the supreme
committee send (y, s, σroot) to fae-comm. Let the output of party Pi for i ∈ [n] be (y′

i, s′
i, σ′

i)
7. Each party Pi (for i ∈ [n]) computes Ci = Fs′

i
(i), and sends (y′

i, s′
i, σ′

i) to every party in Ci.
8. A party Pj that receives a valid message (y, s, σ) from a party Pi, satisfying j ∈ Fs(i) and

Verify(pp, {vk1,1, . . . , vkn,z}, (y, s), σ) = 1, outputs y and halts.
aTo ensure that the corrupt parties do not broadcast very long messages, we assume that the parties broadcast each element in S

i,ℓ,1
sig

one-by-one and each party is only allowed to initiate polylogarithmic number of broadcasts.

Figure 6: Byzantine agreement with balanced polylog communication
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Corollary 4.6. Let β < 1/3 be a constant. Assuming βn-secure SRDS schemes, there exists an
n-party binary broadcast protocol tolerating a malicious adversary that can statically corrupt βn
of the parties, such that the communication locality of ℓ executions is polylog(n), and the round
complexity and the number of bits each party communicates is ℓ · polylog(n) · poly(κ).

MPC with amortized polylog communication overhead. Following the MPC protocol
from [17], the supreme committee can run among themselves a protocol establishing an encryp-
tion key of a public-key encryption scheme where the decryption key is secret shared among the
committee members, and broadcast the public key. Every party encrypts its input and sends it up
the tree to the supreme committee that run an MPC protocol for decrypting all ciphertexts and
compute the function. Using FHE-based MPC that minimize the communication (e.g., [4]), we
obtain the following corollary.

Corollary 4.7. Let β < 1/3 be a constant. Assuming βn-secure SRDS and FHE schemes, every
n-party functionality f : ({0, 1}ℓin)n → {0, 1}ℓout can be securely computed tolerating a malicious
adversary that can statically corrupt βn parties, such that communication locality and round com-
plexity are polylog(n), and amortized communication complexity is (ℓin + ℓout) · polylog(n) · poly(κ).

4.2 Lower Bound on Balanced Byzantine Agreement

In the previous section, we showed how to extend almost-everywhere agreement to full agreement
in one round. The minimal setup assumptions used were a bare PKI and CRS. In Section 4.2.1,
we show the some form of private-coin setup is necessary for this task.20 In Section 4.2.2, we show
that in the PKI model, where the public/private keys of each party are independently sampled,
cryptographic assumptions are further needed.

4.2.1 Lower Bound on Balanced Byzantine Agreement in CRS Model

We denote by f∗
ae-comm a weakened version of the functionality fae-comm (from Figure 4) that enables

communication between almost all of the parties, except for an isolated set D that is randomly
chosen by the functionality, rather than by the adversary. We note that this notion is non-standard
and is not achieved by existing protocols for almost-everywhere agreement. The purpose of this
adjustment is to provide a stronger lower bound, as the adversary’s capabilities are more restricted.
In fact, we only require that with some inverse-polynomial probability, there exists a single isolated
party that is chosen by the functionality.

Theorem 4.8 (Theorem 1.5, restated). Let π be a βn-resilient Byzantine agreement protocol in
the (fcrs, f∗

ae-comm)-hybrid model, for β < 1. Assume that π has two parts: the first consists of a
polynomial number of rounds where communication is via f∗

ae-comm, and the second consists of a
single round over point-to-point channels. Then, there exists a party that sends Θ(n) messages in
the last round.

Proof. By classical results [85, 51], BA protocols cannot tolerate one-third of corrupted parties,
even in the CRS model; therefore, we can assume that β < 1/3. Let π be a protocol in the
(fcrs, f∗

ae-comm)-hybrid model that invokes f∗
ae-comm for polynomially many rounds followed by a

20We note that, our lower bound easily extends to the random oracle model, for the sake of simplicity we prove it
merely with a CRS setup.
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single point-to-point round, and assume that the number of messages sent by every party in the
last round is o(n). We will construct an adversarial strategy that violates the validity of π with
noticeable probability.

Choosing the corrupted set. Given the common reference string crs, the adversary starts by
deciding on the set of corrupted parties. The adversary chooses a random subset J ⊆ [n] of size
βn/2 and simulates two executions of π inside its head.

• In the first execution, all parties have input bit 0 where every party Pj with j ∈ J is corrupted
and does not send any message throughout the protocol. For every j ∈ J , denote the set
of parties that sends messages to Pj in the last point-to-point round by C0

j and record the
messages as {m̂0

i→j}i∈C0
j
.

• In the second execution, all parties have input bit 1 where every party Pj with j ∈ J is
corrupted and does not send any message throughout the protocol. For every j ∈ J , denote
the set of parties that sends messages to Pj in the last point-to-point round by C1

j and record
the messages as {m̂1

i→j}i∈C1
j
.

In each of the virtual executions described above, from the joint view of all parties Pi with
i /∈ J , every party Pj with j ∈ J could be an isolated honest party, so they must join forces and
send messages to every such Pj . Note that it could be that some parties in J receive a linear
number of messages, e.g., if every party Pi with i /∈ J sends a message to the same party Pj for
some j ∈ J . However, as each party sends only o(n) messages in this step, the number of such
parties cannot be too large; in particular, there must be a party who receives o(n) messages in both
of the above executions.

Claim 4.9. There exists j ∈ J such that |C0
j ∪ C1

j | ∈ o(n).

Proof. Consider the first virtual execution, where all honest parties start with input 0. Denote by
J ′ = {j ∈ J | |C0

j | ∈ Θ(n)} the set of parties that receive a linear number of messages from {Pi}i/∈J
(i.e., receive δ(n) messages for some δ ∈ Θ(n)). If |J ′| ∈ Θ(n), i.e., there are linear many parties
that receive a linear number of messages, it must be that the number of messages sent from {Pi}i/∈J
to {Pj}j∈J is quadratic. This will contradict to the assumption that every party in {Pi}i/∈J only
sends a sublinear number of messages. Therefore, |J ′| ∈ o(n), and it holds that |C0

j | ∈ o(n) for a
majority of j ∈ J . By an analogue argument, also in the second virtual execution, where all honest
parties start with input 1, it holds that |C1

j | ∈ o(n) for a majority of j ∈ J . Hence, there exists
j ∈ J for which |C0

j ∪ C1
j | ∈ o(n).

The adversary proceeds by choosing uniformly at random i∗ ∈ J . If it holds that |C0
i∗ ∪ C1

i∗ | ≥
βn/2, the adversary aborts the attack and halts. By Claim 4.9, the adversary does not abort with
probability at least 1/n. Next, the adversary chooses a random subset I ⊆ [n] \ {i∗} of size βn,
such that J ∪ C0

i∗ ∪ C1
i∗ \ {i∗} ⊆ I. Denote by E the event where the adversary does not abort

and that party Pi∗ is isolated by f∗
ae-comm with respect to the set of corrupted parties I as defined

above. By the definition of f∗
ae-comm and by Claim 4.9, this event happens with inverse-polynomial

probability. The attack defined below will be analyzed conditioned on the event E .
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The attack. We proceed by defining a series of hybrid experiments to contradict the validity of
π. For the first claim, we define the adversarial strategy A1, where the corrupted parties are Pi

with i ∈ J . The parties in J \ {i∗} do not send messages throughout the protocol, whereas party
Pi∗ does not send any message during the first part of the protocol, but in the last round sends
messages as an honest party with input 0 that was isolated in the first part.

Claim 4.10. Consider an execution of π with A1, where all parties start with input bit 1. Then,
all honest parties output 1 with all but negligible probability.

Proof. The claim follows immediately by the validity property of π.

For the second claim, we define the adversarial strategy A2, where the set of corrupted parties
is I. The parties in J \{i∗} do not send messages throughout the protocol, and the parties in I \J
play honestly on input 1, except that in the last round, the set of parties in C0

i∗ additionally sends
the messages {m̂0

i→i∗}i∈C0
i∗

to Pi∗ .

Claim 4.11. Consider an execution of π with A2, where party Pi∗ starts with input bit 0 and all
other parties with input bit 1. Then, conditioned on E, all honest parties (including Pi∗) output 1
with all but negligible probability.

Proof. Conditioned on E , the view of all honest parties other than Pi∗ , is identically distributed
as in Claim 4.10. It follows that every honest party but Pi∗ will output 1 except for negligible
probability. By agreement, Pi∗ will also output 1 except for negligible probability.

Next, consider the adversarial strategy A3, where the set of corrupted parties is I. The parties
in J \ {i∗} do not send messages throughout the protocol, and the parties in I \ J play honestly
on input 0, except that in the last round, the set of parties in C1

i∗ additionally sends the messages
{m̂1

i→i∗}i∈C1
i∗

to Pi∗ .

Claim 4.12. Consider an execution of π with A3 where all parties starts with input bit 0. Then,
conditioned on the event E, all honest parties output 1 with noticeable probability.

Proof. We will show that, conditioned on E , the view of Pi∗ in this scenario will be distributed as
in previous scenario with noticeable probability; hence, by Claim 4.11, party Pi∗ will output 1 with
the same probability. By agreement so will all other honest parties.

To analyze the view of Pi∗ in the first scenario (where all parties outside of J start with input
1), let B1 be the set of honest parties that send messages to Pi∗ in the last round. Denote by
{m1

i }i∈B1 the messages sent by these parties to Pi∗ . The view of Pi∗ consists of his input bit 0, his
random coins, the crs, the messages {m̂0

i→i∗}i∈C0
i∗

, and messages {m1
i }i∈B1 .

To analyze the view of Pi∗ in the second scenario (where all parties outside of J start with
input 0), let B0 be the set of honest parties that send messages to Pi∗ in the last round. Denote by
{m0

i }i∈B0 the messages sent by these parties to Pi∗ . The view of Pi∗ consists of his input bit 0, his
random coins, the crs, the messages {m̂1

i→i∗}i∈C1
i∗

, and messages {m0
i }i∈B0 .

Recall that by Claim 4.9, when running two independent executions of π in which the parties
in J do not talk till the last round, the first where every Pj with j ∈ [n] \ J starts with 0 and the
second when every such Pj starts with 1, there exists j∗ ∈ J such that Pj∗ receives o(n) messages
in both executions with probability at least 1/n. Since the executions in the first and second
scenarios are independent of each other and also of the two virtual executions run in the head of
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the adversary, it holds that there exists a party Pj∗ with j∗ ∈ J that receives o(n) messages in
each of the four executions with probability at least 1/n2. Since i∗ is chosen uniformly at random
in J , it holds that the sizes of C0

i∗ , C1
i∗ , B0, and B1 are all is o(n) with probability at least 1/n3.

In this case, it holds that the pair of sets {m̂1
i→i∗}i∈C1

i∗
and {m0

i }i∈B0 is identically distributed as
{m̂0

i→i∗}i∈C0
i∗

and {m1
i }i∈B1 , and the view of Pi∗ is identically distributed in both the first and

second scenarios.

Since by assumption, the event E occurs with inverse-polynomial probability, the attack succeeds
with inverse-polynomial probability. This concludes the proof of Theorem 4.8.

4.2.2 Lower Bound on Balanced Byzantine Agreement in PKI Model

We proceed to prove the second lower bound, showing that in the trusted PKI model, where
each party receives an independently sampled pair of public/private keys, one-way functions are
necessary for extending almost-everywhere agreement to full agreement in a single communication
round. Note that a lower bound in the trusted PKI model readily implies a lower bound in weaker
PKI models.

Theorem 4.13 (Theorem 1.6, restated). Let π be a βn-resilient Byzantine agreement protocol in
the trusted PKI and f∗

ae-comm-hybrid model, for β < 1. Assume that π has two parts: the first
consists of a polynomial number of rounds where communication is via f∗

ae-comm, and the second
consists of a single round over point-to-point channels. Then, if one-way functions do not exist,
there exists a party that sends Θ(n) messages in the last round.

At a high level, the proof of the theorem considers an adversary that receives the public keys
(vk1, . . . , vkn) of the PKI setup, where each vki is sampled with a secret ski independently of
other keys. Under the assumption that one-way functions do not exist, with noticeable probability
the adversary can find a corresponding secret key s̃ki (i.e., a pre-image) for every vki, and then
carry out the attack from Section 4.2.1. This intuition, however, is not sufficient for proving the
theorem, since the distribution of randomly generated keys {(vki, ski)}i∈[n] may be different than
the distribution of the inverted keys {(vki, s̃ki)}i∈[n]. In this case, the simulated messages generated
by the adversary when emulating the executions in its head may be different than those generated
in the real protocol, and so honest parties can tell them apart.

To overcome this subtlety, recall that Impagliazzo and Luby [62] showed that the existence of
distributional one-way functions (functions for which it is hard to sample a uniform pre-image)
implies the existence of one-way functions. Stated differently, if one-way functions do not exist,
then for any polynomial p(·) and any polynomial-time computable function f , there exists a PPT
algorithm Inv such that, for infinitely many n, the following distributions are 1/p(n)-statistically
close:

• {(x, f(x)) | x← {0, 1}n}.

• {(Inv(f(y)), y) | x← {0, 1}n, y = f(x)}.

In this case, we say that Inv inverts f with 1/p(n)-statistical closeness. In case the distributions
are identically distributed we call the inverter perfect and denote it by PInv.
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Proof of Theorem 4.13. Without loss of generality, in the following we consider n = κ. The trusted
PKI setup can be modeled by a trusted party that for every i ∈ [n] samples uniformly random
ri ∈ {0, 1}n, computes a polynomial-time function (vk1, . . . , vkn) = fpki(r1, . . . , rn), where for every
i ∈ [n], vki = f i

pki(ri) for some function f i
pki. The trusted party outputs to each party Pi the random

coins ri along with (vk1, . . . , vkn). Denote by 1/p(n) the success probability of the attack in the
proof of Theorem 4.8 and let Inv be the inverter algorithm for fpki that is guaranteed to exist by [62]
with 1/2p(n)-statistical closeness under the assumption that one-way functions do not exist.

Let π be a protocol in the trusted PKI and f∗
ae-comm-hybrid model that invokes f∗

ae-comm for
polynomially many rounds followed by a single point-to-point round, and assume that the number
of messages sent by every party in the last round is o(n). Following the lines of the proof of
Theorem 4.8, we will construct an adversarial strategy that violates the validity of π with non-
negligible probability.

Choosing the corrupted set. Initially, the adversary receives the public keys (vk1, . . . , vkn)
from the trusted party modeling the trusted PKI, and computes (r̃1, . . . , r̃n) ← Inv(vk1, . . . , vkn).
Next, the adversary chooses a random subset J ⊆ [n] of size βn/2 and simulates two executions of
π inside its head.

• In the first execution, every party Pi has input bit 0 and receives r̃i and (vk1, . . . , vkn) from
the trusted PKI. Every party Pj with j ∈ J is corrupted and does not send any message
throughout the protocol. For every j ∈ J , denote the set of parties that sends messages to
Pj in the last point-to-point round by C0

j and record the messages as {m̂0
i→j}i∈C0

j
.

• In the second execution, every party Pi has input bit 1 and receives r̃i and (vk1, . . . , vkn) from
the trusted PKI. Every party Pj with j ∈ J is corrupted and does not send any message
throughout the protocol. For every j ∈ J , denote the set of parties that sends messages to
Pj in the last point-to-point round by C1

j and record the messages as {m̂1
i→j}i∈C1

j
.

Claim 4.14. There exists j ∈ J such that |C0
j ∪ C1

j | ∈ o(n), except for probability 1/2p(n).

Proof. Consider a perfect inverter PInv for fpki. In that case for every j ∈ J , the simulated messages
by the adversary {m̂0

i→j}i∈C0
j

(resp., {m̂1
i→j}i∈C1

j
) are identically distributed as the messages that Pj

receives in the last round in an honest execution where all parties in [n] \ J have input 0 (resp., 1)
and parties in J \{j} are corrupted and do not send messages. Therefore, by an identical argument
to Claim 4.9, there exists j ∈ J such that |C0

j ∪ C1
j | ∈ o(n).

The claim follows since Inv is an inverter with 1/2p(n)-statistical closeness.

The adversary proceeds by choosing uniformly at random i∗ ∈ J , and as before, if |C0
i∗ ∪ C1

i∗ | ≥
βn/2, the adversary aborts the attack and halts. By Claim 4.14 the adversary does not abort with
probability at least 1/n − 1/2p(n) (recall that by the proof of Theorem 4.8, 1/p(n) ≤ 1/n; hence,
1/n−1/2p(n) > 0). Next, the adversary chooses a random subset I ⊆ [n]\{i∗} of size βn, such that
J ∪ C0

i∗ ∪ C1
i∗ \ {i∗} ⊆ I. Denote by E the event where the adversary does not abort and that party

Pi∗ is isolated by f∗
ae-comm with respect to the set of corrupted parties I as defined above. By the

definition of f∗
ae-comm and by Claim 4.14, this event happens with inverse-polynomial probability.

The rest of the proof proceeds exactly as in the proof of Theorem 4.8, with the only difference
that the statistical distance of the PKI private keys in the protocol and those simulated by the
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adversary is bounded by 1/2p(n). Since the attack in the proof of Theorem 4.8 succeeds with
probability 1/p(n), it holds that 1/p(n)− 1/2p(n) is noticeable.

5 Constructions of SRDS
In Section 5.1, we present an SRDS scheme with trusted PKI based on OWF, and in Section 5.2,
an SRDS scheme with bare PKI based on proof-carrying data and CRH.

5.1 SRDS from One-Way Functions

Theorem 5.1 (Theorem 1.3, restated). Let β < 1/3 be a constant. Assuming the existence of
one-way functions, there exists a βn-secure SRDS scheme in the trusted PKI model.

The main building block in our construction is an augmented version of digital signatures with
the ability to obliviously sample a verification key without knowing the signing key. Note that
by assuming secure erasures, or a trusted party that does not reveal the key-generation coins, our
construction can be based on any digital signatures scheme.

Definition 5.2 (signatures with oblivious key generation). A digital signature scheme (DS.KeyGen,
DS.Sign, DS.Verify) has oblivious key generation if there exists an algorithm DS.OKeyGen that on
input the security parameter 1κ outputs a key ovk, such that the following hold:

• Indistinguishability. The distribution of vk, where (vk, sk)← DS.KeyGen(1κ), should be com-
putationally indistinguishable from ovk, where ovk← DS.OKeyGen(1κ).

• Obliviousness. A PPT adversary A can win the following game with negligible probability:

1. Challenger computes ovk = DS.OKeyGen(1κ; r) and sends (ovk, r) to A.
2. A responds with a pair (m, σ), and wins if DS.Verify(ovk, m, σ) = 1.

Claim 5.3. Assuming the existence of one-way functions, there exists a one-time digital signature
scheme with oblivious key generation.

Proof Sketch. Recall the one-time signatures of Lamport [72] for ℓ-bit messages. Given a one-
way function f , the signing key consists of 2ℓ random κ-bits strings x0

1, x1
1, . . . , x0

ℓ , x1
ℓ and the

verification key is y0
1, y1

1, . . . , y0
ℓ , y1

ℓ , where yb
i = f(xb

i). A signature on a message m = (m1, . . . , mℓ)
is σ = (xm1

1 , . . . , xmℓ
ℓ ). To verify a signature σ = (σ1, . . . , σℓ), check for each i ∈ [ℓ] if f(σi) = f(xmi

i ).
By instantiating the one-way function with a length-doubling pseudorandom generator G, we

can define the oblivious key-generation algorithm by sampling 2ℓ random 2κ-bit strings. Indistin-
guishability follows from the pseudorandomness of G, and obliviousness from its one-wayness.

Note that via standard transformations (e.g., [56, Sec. 6.4]) the one-time signature construction
above can be extended to multi-message signatures with oblivious key generation.
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Overview of the construction. Our construction makes use of a digital signature scheme with
oblivious key generation (Definition 5.2). For each party toss a biased coin that outputs heads with
probability ℓ/n, for some ℓ = ω(log(n)). If the output is heads, sample standard signature keys
(vki, ski)← DS.KeyGen(1κ); otherwise, obliviously sample vki ← DS.OKeyGen(1κ). A signature on
a message m can be computed only by parties with a valid signing key. The aggregation algorithm
concatenates these valid signatures.21 Verification of a signature requires counting how many valid
signatures were signed on the message. Since each signature in this construction encodes the index
associated with the corresponding verification key and each aggregate/partially aggregate signature
is essentially a concatenation of the base signatures, it is easy to see that in this construction, given a
signature/aggregate signature, the maxima and minima associated with it can be easily determined.

The construction of the SRDS scheme is formally described in Figure 7 and the proof of Theo-
rem 5.1 can be found in Appendix C.1.

SRDS from OWF

Let (DS.KeyGen, DS.OKeyGen, DS.Sign, DS.Verify) be a signature scheme with oblivious key generation,
let α(n, κ) ∈ poly(log n, κ), and let ℓ = logc(n) for some constant c > 1.

• Setup(1κ, 1n) : Output pp = 1κ.

• KeyGen(pp) : Toss a biased coin that outputs heads with probability ℓ/n. If the outcome is heads,
compute (vk, sk) ← DS.KeyGen(1κ); else compute vk ← DS.OKeyGen(1κ) and set sk = ⊥. Output
(vk, sk).

• Sign(pp, i, sk, m) : If sk ̸= ⊥, compute sig← DS.Sign(sk, m) and set σ = {(i, m, sig)}; otherwise, set
σ = ⊥. Output σ.

• Aggregate1(pp, {vk1, . . . , vkn}, m, {σ1, . . . , σq}): Initialize Ssig = ∅. For every i ∈ [q]:

– Parse σi as a set of signature-tuples {(ij , mij , sigij
)}ij∈Si (for some set Si).

– For every (ij , mij , sigij
) ∈ σi, check whether m = mij and DS.Verify(vkij , m, sigij

) = 1 and
∄(ij , ·, ·, ·) ∈ Ssig. If so, set Ssig = Ssig ∪ {(ij , m, sigij

)}.

Denote by ∥σ∥ the bit length of σ. If
∑

σ∈Ssig
∥σ∥ ≤ α(n, κ), output Ssig; else, output ⊥.

• Aggregate2(pp, m, Ssig) : If
∑

σ∈Ssig
∥σ∥ ≤ α(n, κ), output Ssig; else, output ⊥.

• Verify(pp, {vk1, . . . , vkn}, m, σ): Initialize Sver = ∅.

– Parse σ as a set of signature-tuples {(i, mi, sigi)}i∈S (for some set S).
– For each (i, mi, sigi) ∈ σ, if m = mi and DS.Verify(vki, mi, sigi) = 1 and ∄(i, ·, ·) ∈ Sver, set

Sver = Sver ∪ {(i, mi, sigi)}.
– If

∑
σ∈Sver

∥σ∥ ≤ α(n, κ) and |Sver| > ℓ′/3, where ℓ′ = ℓ/2, output 1; else, output 0.

Figure 7: Succinctly reconstructed distributed signatures from one-way functions

21Since this aggregation process is deterministic, decomposing the algorithm is redundant – we represent it by two
algorithms for completeness, to make the syntax compatible with the BA protocol in Section 4.1.
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5.2 SRDS from CRH and SNARKs

The construction in Section 5.1 was in the trusted PKI model. In this section, we show how to
construct SRDS in the bare PKI, albeit under stronger cryptographic assumptions. Namely, we
consider CRH and SNARKs with linear extraction, where the size of the extractor is linear in the
size of the prover (i.e., |EP∗ | ≤ c · |P∗| for some constant c). An extractability assumption of this
kind has been considered in [93, 45, 58, 20].

Theorem 5.4 (Theorem 1.4, restated). Let t < n/3. Assuming the existence of CRH, digital
signatures, and SNARKs with linear extraction, there exists a t-secure SRDS scheme in the CRS
model with a bare PKI.

The construction of the SRDS scheme is formally described in Figure 8 and the proof of Theo-
rem 5.4 can be found in Appendix C.2.

Overview of the construction. As discussed in the Introduction, a PCD system allows for
propagation of information up the tree in a succinct and publicly verifiable way. Having the parties
locally sign the message and keep track of the number of verified signatures aggregated so far via
the PCD system, seems to capture most of our requirements for SRDS. However, in order to prevent
an adversary from aggregating fake signatures or multiple copies of the same signature, we need to
devise a mechanism of verifying the base signatures in the compliance predicate.

One approach is to hard-wire all verification keys into the compliance predicate and verify each
base-level signature. However, this will blow-up the size of the predicate to O(n) and, as a result,
the PCD-prover algorithm will run in time O(n). In this case, the scheme will no longer be succinct,
as the algorithm Aggregate2 internally runs the PCD prover. Indeed, recall that in the BA protocol
(in Section 4.1.2) Aggregate2 is executed via an MPC protocol; hence, its complexity must be Õ(1).

To get around this barrier, we use a Merkle tree to hash all the verification keys; a Merkle tree
enables a long string (here, the list of all verification keys (vk1, . . . , vkn)) to be hashed to a short
value in a committing way, such that one can prove inclusion of the key vki in the input string by
providing an “opening” to vki in low complexity (here, logarithmic in n) (see Appendix A.3 for
details). Each incoming and outgoing PCD transcript will now contain this hash value Hvk. The
base-level transcript will also consist of:

1. The signature γi and corresponding verification key ki = vki.

2. A Merkle proof pi certifying that ki is the ith verification key in the computation of Hvk.

The compliance predicate, in this case, will verify:

1. The signature γi with respect to the ki.

2. That ki is properly hashed in the Merkle tree.

To prevent an adversary from using a different Hvk value, we add an additional check in the
compliance predicate that the value of Hvk is consistent in all the incoming and outgoing transcripts.
Finally, to prevent an adversary from potentially aggregating multiple copies of the same base
signature, we encode a maxima max and a minima min of the indices of the keys used to sign the
base signatures in each transcript of the PCD proof.
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We proceed to give a more detailed overview of our construction. Each base signature (and
aggregate signature) corresponds to a “truncated” PCD transcript and a corresponding proof.
For base signatures, this proof is set to ⊥ and in the remaining aggregated signatures, this proof
corresponds to a PCD proof. Each truncated transcript z′ = (m, c, max, min, γ) consists of a message
m over which the signature is computed, a counter c to keep a count of the number of distinct keys
used to sign this signature, a maxima max and minima min of the indices of the keys that signed
the message, and a value γ that in the base case is a signature on m corresponding to vkmax and in
all other cases is set to ⊥.

Each party starts by locally signing the message using its signing key ski and preparing z′
i.

The algorithm Aggregate1 collects base signatures and/or partially aggregated signatures, checks
for their validity and prepares their corresponding PCD transcripts. For base signatures (where
z′ = (m, 1, i, i, γ) and π = ⊥), Aggregate1 checks that γ and m verify with respect to vki; if
so, it prepares a Merkle proof p for vki and the PCD transcript is set to z = z||(Hvk, vki, p).
For partially aggregated signatures (where z′ = (m, c, max, min,⊥) and π ̸= ⊥), it completes the
transcript by setting z = z′||(Hvk,⊥,⊥) and runs the PCD verification algorithm on (z, π). The
algorithm Aggregate2 computes the outgoing transcript that is compliant with the valid incoming
PCD transcripts and computes a PCD proof certifying this, i.e., that it is based on c distinct and
valid individual signatures. Finally, to verify (z′, π), set z = z′||(Hvk,⊥,⊥), verify the PCD (z, π),
and count the total number of keys used for signing this signature.

Since each signature/aggregate signature in this construction essentially consists of a transcript
and a proof and the transcript encodes information about maxima and minima associated with
the signature, it is easy to see that in this construction, given a signature/aggregate signature, the
maxima and minima associated with it can be easily determined.

6 Connection with Succinct Arguments
In Section 5, we showed how to construct SRDS with a strong setup assumption (trusted PKI)
from OWF, and with relatively weak setup assumptions (bare PKI) at the expense of strong,
non-falsifiable, cryptographic assumptions (SNARKs with linear extractors). A natural approach
towards constructing SRDS that balances the cryptographic and setup assumptions, is to augment a
multi-signature scheme with some method of convincing the verifier that sufficiently many parties
contributed to the signing process. Indeed, multi-signatures are known to exist under standard
falsifiable assumptions in the registered PKI model [77]. In this model each party locally generates
its own keys (as with bare PKI) but to publish its verification key, the party must prove knowledge
of the corresponding secret key, see [12, 77] and a discussion in [6].

In this section, we discuss challenges toward such an approach, by showing that in some cases
this necessitates some form of succinct non-interactive arguments. We begin in Section 6.1 by
formalizing the notion of SNARGs for average-case instances of a language, and formalizing the
notion of SRDS “based on” multi-signatures. Next, in Section 6.2, we show that any SRDS based on
LOSSW multi-signatures imply SNARGs for average-case instances of the Subset-Product problem.
Finally, in Section 6.3, we explore hardness of various Subset-f problems and their connection to
SRDS based on more general multi-signature schemes.
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SRDS from CRH and SNARKs
Let (DS.KeyGen, DS.Sign, DS.Verify) be a digital signature scheme, let (PCD.Gen, PCD.Prover,
PCD.Verify) be a publicly verifiable proof-carrying data (PCD) system for logarithmic-depth poly-
nomial-size compliance predicates C, and let (Merkle.Setup, Merkle.Hash, Merkle.Proof, Merkle.Verify)
be the Merkle hash proof system corresponding to a hash function H. Let α(n, κ) ∈ poly(log n, κ).
• Setup(1κ): Sample seed← Merkle.Setup(1κ) and PCD keys corresponding to a compliance predicate

C (defined below), as (σpcd, τpcd)← PCD.Gen(1κ, C).
The predicate C: Given an input vector z⃗in of length ℓ, such that for j ∈ [ℓ] the jth entry of z⃗in is
of the form z⃗in[j] = (min,j , cin,j , maxin,j , minin,j , γin,j , Hvk,j , kin,j , pin,j), and output data of the form
zout = (mout, cout, maxout, minout, γout, Hvk,out, kout, pout), the predicate C(z⃗in, zout) equals 1 iff:

1. For every j ∈ [ℓ], it holds that Hvk,j = Hvk,out.
2. For every j ∈ [ℓ], if it is a base level (i.e., if maxin,j = minin,j and γin,j ̸= ⊥), then

DS.Verify(kin,j , min,j , γin,j) = 1 and Merkle.Verify(seed, (maxin,j ||kin,j), Hvk,out, pin,j) = 1.
3. It holds that minin,ℓ ≤ maxin,ℓ and for every j ∈ [ℓ− 1] that minin,j ≤ maxin,j < minin,j+1, i.e.,

max of an input is greater than or equal to its min and less than the min of the next input.
4. min of the output transcript is equal to the min of the first input, i.e., minout = minin,1.
5. max of the output transcript is equal to the max of the last input, i.e., maxout = maxin,ℓ.
6. cout stores a count of the number of signatures aggregated so far, i.e., cout =

∑
j∈[ℓ] cin,j .

The output is pp = (1κ, σpcd, τpcd, seed).

• KeyGen(pp): Parse pp = (1κ, σpcd, τpcd, seed), compute (vk, sk)← DS.KeyGen(1κ), output (vk, sk).

• Sign(pp, i, ski, mi): Compute γi ← DS.Sign(ski, mi), set z′ = (mi, 1, i, i, γi), and output σ = (z′,⊥).

• Aggregate1(pp, {vk1, . . . , vkn}, m, {σ1, . . . , σq}): Parse pp = (1κ, σpcd, τpcd, seed). Compute Hvk =
Merkle.Hash(seed, (1||vk1), . . . , (n||vkn)) and set Ssig = {Hvk}. For each i ∈ [q] do the following:

– Parse σi = (z′
i, πi) and z′

i = (mi, ci, maxi, mini, γi)
– For base level (where maxi = mini, m = mi, πi = ⊥, γi ̸= ⊥ and DS.Verify(vkmaxi

, mi, γi) = 1),
compute pi = Merkle.Proof(seed, (1||vk1), . . . , (n||vkn), (maxi||vkmaxi)), prepare the transcript
zi = z′

i||(Hvk, vkmaxi , pi) and set Ssig = Ssig ∪ {(zi, πi)}.
– Else, set zi = z′

i||(Hvk,⊥,⊥) and check whether PCD.Verify(τpcd, zi, πi) = 1 and m = mi. If
so, set Ssig = Ssig ∪ {(zi, πi)}.

If ∥Ssig∥ ≤ α(n, κ),a output Ssig ; else, output ⊥.

• Aggregate2(pp, m, Ssig): Parse pp = (1κ, σpcd, τpcd, seed) and set cout = 0. Parse Ssig = {Hvk, . . .}.
For each σi ∈ Ssig \{Hvk}, parse σi = (z′

i, πi) and z′
i = (mi, ci, maxi, mini, γi) and set cout = cout +ci.

Let (zin,1, πin,1) be the first element in Ssig where zin,1 = (·, ·, ·, minin,1, ·). Set minout = minin,1. Simi-
larly, denote u = |Ssig| and let (zin,u, πin,u) be the last element in Ssig where zin,u = (·, ·, maxin,u, ·, ·).
Set maxout = maxin,u, set z′

out = (m, cout, maxout, minout,⊥), and set zout = (z′
out, Hvk,⊥,⊥). Com-

pute πout ← PCD.Prover(σpcd, Ssig, linp = ⊥, zout) and output σ = (z′
out, πout).

• Verify(pp, {vki}i∈[n], m, σ): Parse pp = (1κ, σpcd, τpcd, seed), σ = (z′, π), z′ = (m′, c, max, min, γi).
Compute Hvk = Merkle.Hash((1||vk1), . . . , (n||vkn); seed) and z = z′||(Hvk,⊥,⊥). If m′ = m,
PCD.Verify(τpcd, z, π) = 1, c ≥ n/3, and ∥σ∥ ≤ α(n, κ), output 1; else, output 0.

a∥Ssig∥ stands for the bit length of Ssig.

Figure 8: Succinctly reconstructed distributed signatures from CRH and SNARKs
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6.1 Average-Case SNARGs and SRDS Based on Multi-signatures

Average-case SNARGs. We consider a notion of SNARGs for average-case instances of an
NP language L. This constitutes a weaker primitive than standard SNARGs (as per [10]), which
requires soundness against worst-case instances, and may be viewed as a variant of the notion
for cryptographically hard languages considered in [16]. An average-case SNARG for a language
L is parametrized by an efficiently sampleable distribution Dyes over the instance-witness pairs in
L, and an efficiently sampleable distribution Dno over instances outside of L. In a similar way
to regular SNARGs, average-case SNARGs consist of setup, prover, and verification algorithms.
Intuitively, given any instance-witness pair (x, w) in Dyes, the prover algorithm should output a
verifying succinct proof with overwhelming probability. At the same time, it should be hard for an
adversary to compute a verifying proof for a random instance x from Dno.

Definition 6.1 (average-case SNARG for (Dyes,Dno)). Let L be an NP language associated with
a relation RL, and let Dyes and Dno be efficiently sampleable distributions over (x, w) ∈ RL and
x /∈ L, respectively. A succinct non-interactive argument system Π for average-case L, parametrized
by the distributions (Dyes,Dno), is defined by PPT algorithms (S.Setup, S.Prove, S.Verify) as follows:

• S.Setup(1κ, 1n) → crs. On input the security parameter κ and the instance size n, the setup
algorithm outputs a common reference string crs.

• S.Prove(crs, x, w)→ π. On input the crs and an instance-witness pair (x, w) ∈ RL, the prover
algorithm outputs a proof π.

• S.Verify(crs, x, π) → b. On input the crs, an instance x, and a proof π, the verification
algorithm outputs a bit b ∈ {0, 1}.

We require the argument system to satisfy the following properties:

1. Succinctness: |π| = poly(log n, κ) for all (x, w)← Dyes(1n).

2. Completeness: For any instance-witness pair (x, w) in the support of Dyes, it holds that

Pr [S.Verify(crs, x, π) = 1 | crs← S.Setup(1κ, 1n), π ← S.Prove(crs, x, w)] ≥ 1− negl(n, κ).

3. Average-case soundness: For any non-uniform PPT prover P∗, it holds that

Pr [S.Verify(crs, x, π) = 1 | crs← S.Setup(1κ, 1n), x← Dno(1n), π ← P∗(crs, x)] ≤ negl(n, κ).

SRDS based on multi-signatures. We consider implications of SRDS constructions based on
an underlying multi-signature scheme (see Appendix A.4) in the following sense. While rigorously
specifying the notion is rather involved, at a high level, such a scheme is one that satisfies three
natural properties:

1. Structure: The aggregate SRDS signature is a pair (σms, π), where σms is a multi-signature
and π is some (small) auxiliary information (of size Õ(1)).

2. Completeness: Given a valid multi-signature σms on a message m corresponding to a suf-
ficiently large subset of keys {vki}i∈S , together with knowledge of the subset S, it is easy to
compute a valid SRDS signature certifying m.
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3. Soundness: Given a set of honestly generated verification keys, it is difficult to output a
verifying SRDS signature (σms, π) on a message m such that the multi-signature σms does not
verify on m against any sufficiently large subset of keys.

In order to prove that sufficiently many parties agree on a message m, it suffices to certify that there
exists an s-size subset of parties (where s is sufficiently large) who agree on the same message m.
Therefore, moving forward for SRDS based on multi-signatures, we only focus on proving that
exactly s parties agree on a particular message. We now formalize SRDS based on multi-signatures.

Definition 6.2 (SRDS based on multi-signatures). An SRDS scheme Π = (Setup(1κ, 1n),
KeyGen, Sign, Aggregate, Verify) with bare PKI, is based on a multi-signature scheme
(MS.Setup, MS.KeyGen, MS.Sign, MS.Verify, MS.Combine, MS.MVerify) if there exists s(n) ∈ Θ(n),
for which the following hold:

• Structure. The SRDS has the following structure:

– Setup(1κ, 1n): Outputs public parameters of the form ppsrds = (ppms, pp2), where ppms ←
MS.Setup(1κ) and pp2 are (potentially) additional public parameters.

– KeyGen(ppsrds): Parses ppsrds = (ppms, pp2) and outputs (sk, vk)← MS.KeyGen(ppms).
– Aggregate: Any SRDS σ output by Aggregate is of the form (σms, π) ∈ Xms×{0, 1}poly(log n,κ),

where σms ∈ Xms is a multi-signature (in the support of MS.Combine).

• Completeness. There exists a PPT algorithm P, such that with overwhelming probability (in
(n, κ)) over honestly sampled ppsrds = (ppms, pp2) ← Setup(1κ, 1n) and independently sampled
verification keys (vki, ·)← KeyGen(ppsrds) for i ∈ [n], the following holds:
Let m ∈ M, let S ⊆ [n] of size s(n), and let σms ∈ Xms be a multi-signature satis-
fying MS.MVerify(ppms, vk1, . . . , vkn, S, m, σms) = 1. Then, with overwhelming probability
(in (n, κ)) over the auxiliary information π ← P(ppsrds, vk1, . . . , vkn, S, m, σms), it holds that
Verify(ppsrds, vk1, . . . , vkn, m, (σms, π)) = 1.

• Soundness. Every non-uniform polynomial-time adversary A wins the following experiment
with at most negligible probability (in (n, κ)):

1. The challenger samples ppsrds = (ppms, pp2) ← Setup(1κ, 1n) and for every i ∈ [n], sets
(vki, ski)← KeyGen(ppsrds).

2. The challenger gives A the values (ppsrds, vk1, . . . , vkn) and get back (m, (σms, π)).
3. The adversary wins the game if and only if Verify(ppsrds, vk1, . . . , vkn, m, (σms, π)) = 1

and, in addition, there does not exist a subset S ⊆ [n] of size s(n), such that
MS.MVerify(ppms, vk1, . . . , vkn, S, m, σms) = 1.

(Observe that the output of this experiment is not necessarily efficiently computable.)

Note that for our purposes it will suffice to consider soundness against an adversary A who does
not have access to a subset of keys {ski}i∈S or to a signing oracle. This is a weaker requirement
than a comparable soundness guarantee when given corrupted secret keys, which means a barrier
against such primitive is stronger.
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6.2 Multi-signatures of Lu et al. [77] and Subset-Product

We proceed to show that any SRDS based on the multi-signature scheme of Lu et al. [77] (“LOSSW”)
as defined above implies SNARGs for a natural average-case version of Subset-Product. Intuitively,
an LOSSW multi-signature σms for a set of parties S ⊆ [n] is equivalent to a single signature under
the product of the verification keys ∏

i∈S vki. In turn, existence of a large set of approving parties
S for σms is equivalent to existence of a large set of verification keys {vki}i∈S for which ∏

i∈S vki

takes a particular desired value determined by σms.
The multi-signature scheme of Lu et al. [77], is based on the bilinear computational Diffie-

Hellman (BCDH) assumption, parametrized by a bilinear map e : G×G→ GT , where G and GT

are multiplicative cyclic groups of order p. In Appendix A.5, we formally describe the LOSSW
multi-signature scheme; their scheme roughly works as follows:

Construction 6.3 (LOSSW Multi-signatures [77]).

• MS.Setup(1κ): The setup algorithm outputs public parameters ppms = (G,GT , p, g, e).

• MS.KeyGen(1κ): The key-generation algorithm outputs a signing key sk ∈ Zp, and the corre-
sponding verification key vk ∈ GT , computed as e(g, g)sk.

• MS.Sign(ppms, sk, m): There is a deterministic function fmsg that takes the public parameters
ppms and the message m ∈M as input and outputs an element in G (see Appendix A.5 for full
specification). Given this fmsg, a signature on m with secret key sk is generated by sampling
r ← Zp and computing σ = (sig1, sig2) as follows:

sig1 = gsk · (fmsg(ppms, m))r and sig2 = gr.

• MS.Combine(ppms, vk1, . . . , vkn, {σi}i∈S , m): Given a set of individual signatures {σi}i∈S on a
message m ∈M, the combine function parses each σi as (sig(i)

1 , sig(i)
2 ) and computes:

sig1 =
∏
i∈S

sig(i)
1 and sig2 =

∏
i∈S

sig(i)
2 .

The output is the combined multi-signature σms = (sig1, sig2).

Remark. Recall that sig(i)
1 and sig(i)

2 for each i ∈ S, is of the form

sig(i)
1 = gski · (fmsg(ppms, m))ri and sig(i)

2 = gri

for some ri ∈ Zp. Therefore,

sig1 = gsk∗
· (fmsg(ppms, m))r∗

and sig2 = gr∗
,

where sk∗ = ∑
i∈S ski and r∗ = ∑

i∈S ri. Note that the multi-signature σms = (sig1, sig2) can now
be viewed as an individual signature on m corresponding to secret key sk∗ and randomness r∗.

• MS.MVerify(ppms, vk1, . . . , vkn, S, m, σms): Given a message m, a multi-signature σms and the
corresponding set S of verification keys, the verification algorithm outputs 1 if and only if

e(sig1, g) · e(sig2, fmsg(ppms, m))−1 =
∏
i∈S

vki.

Note that the same algorithm can be used to verify individual signatures (with S = {i}).
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Average-case subset-product problem. We proceed to show a connection between any SRDS
based on LOSSW multi-signatures, and the following average-case version of the Subset-Product
problem.

Definition 6.4 (average-case subset-product problem). Let s = s(n) be an integer and let G be
a multiplicative group. Given an instance x = (a1, . . . , an, t) ∈ Gn+1, the (s,G)-Subset-Product
problem is the problem of deciding if there exists a subset S ⊆ [n] of size |S| = s, such that∏

i∈S ai = t. All such instances are said to be in the (s,G)-Subset-Product language L×.
We consider the average-case version of this problem characterized by the following two distri-

butions:

1. Dyes(1n)→ (x, w): For i ∈ [n], sample ai ∈ G uniformly at random. Sample a set S ⊆ [n] of
size s uniformly at random. Set t = ∏

i∈S ai. Output x = (a1, . . . , an, t) and w = S.

2. Dno(1n) → x: For i ∈ [n], sample ai ∈ G uniformly at random. Sample a target t ∈ G
uniformly at random. Output x = (a1, . . . , an, t).

Note that for appropriate parameter regimes, Dno yields instances (x /∈ L×) with high proba-
bility. For example, consider s = n/2 and G = Z∗

M for M = 24n: the probability that there exists
a subset S such that ∏

i∈S ai is equal to a randomly chosen value t is approximately 2−2n.

Remark. Subset-Product is a well-studied problem, with known NP-hardness results in the worst
case, and conjectured hardness in the average-case version considered above.

• Hardness of worst-case subset product: For G = Z∗
M and s ∈ Θ(n), the hardness of worst-

case (s,G)-Subset-Product depends on the density n/ log M of the instance. For M = 2Θ(n)

(i.e., n/ log M ∈ Θ(1)), there exists s ∈ Θ(n) for which the (s,Z∗
M )-Subset-product is NP-

complete [65, 53, 63, 79].22

• Hardness of average-case subset product: The average-case version of Subset-Product is
thought to be computationally hard when n/ log M is constant or even O(1/ log n) [63], with
the best known algorithms requiring at least 2Ω(n) time. Hardness of distinguishing between
distributions Dyes and Dno as above is used (in an indirect way) as a computational hardness
assumption in an assortment of cryptographic systems [63, 3, 89, 90, 86, 79].23

LOSSW-based SRDS implies SNARGs for average-case subset-product. We now show
that an SRDS scheme based on the LOSSW multi-signature scheme implies the existence of
SNARGs for average-case Subset-Product over the target group GT for the underlying bilinear
map e : G×G→ GT . Intuitively, the construction takes the following form.

Given an instance x = (a1, . . . , an, t) ∈ Gn+1
T (coming from either Dyes or Dno), we will interpret

a1, . . . , an and an+1 = t−1 as n+1 verification keys {vki}i∈[n+1] for the SRDS scheme. The succinct
22The Subset-Sum problem for arbitrary subset-sizes in this parameter regime was amongst the initial 21 problems

that were shown to be NP-complete by Karp [65]. There exists a generic reduction to reduce any instance of 3-SAT
to an instance of the Subset-Sum problem for arbitrary subset-sizes. A slight modification to this reduction shows
that there exists some s ∈ Θ(n) for which (s,ZM )-Subset-Sum problem is also NP-complete. There also exists a
generic reduction from any instance of the (s,ZM )-Subset-Sum problem, where ZM is an additive group of order M ,
to an instance of the (s,GM )-Subset-Product problem, where GM is a cyclic multiplicative group of order M (with
efficient exponentiation).

23This follows from the constructions in [63, 3, 89, 90, 86, 79] based on the Subset-Sum problem.
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proof certifying that x is in the language will be an SRDS signature on a message m ∈ M with
respect to the set of parties S∪{n+1} for which ∏

i∈S ai = t. The scheme is succinct by construction;
the required completeness and average-case soundness properties will hold as follows:

• Completeness: If x was generated as (x, w)← Dyes for w = S ⊆ [n], then by definition ∏
i∈S ai =

t and consequently t−1 ·
∏

i∈S ai = 1. Knowledge of the corresponding set of verification keys
thus enables the prover to generate a valid LOSSW multi-signature under these keys, using the
trivial sk∗ = 0 for vk∗ = ∏

i∈S∪{n+1} vki = 1. By the completeness of the LOSSW-based SRDS
(Definition 6.2), the prover can then translate this multi-signature to a valid SRDS.

• Average-case Soundness: On the other hand, if x was generated as x ← Dno, then since t and
consequently t−1 is uniform conditioned on a1, . . . , an, the resulting verification keys {vki}i∈[n+1]
are jointly uniform. Thus (for appropriate parameters n and |GT |), soundness of the argument
system holds from the soundness property of the LOSSW-based SRDS (see Definition 6.2).

Lemma 6.5. Assume there exists an SRDS scheme based on the LOSSW multi-signature scheme,
where Setup(1κ, 1n) generates ppms = (G,GT , p, g, e), as per Definition 6.2, with n/ log |GT | < 1.
Let 0 < α < 1 be a constant and let s(n) = α · n. Then, there exist SNARGs for average-case
(s(n),GT )-Subset-Product (as defined in Definition 6.4).

Proof. We construct average-case SNARGs for (s,GT )-Subset-Product using an SRDS scheme
based on the LOSSW multi-signature scheme as per Definition 6.2. Recall that the LOSSW multi-
signature scheme is parametrized by a bilinear map e : G × G → GT , where G and GT are multi-
plicative cyclic groups of order p. Let M be the message domain of the LOSSW multi-signature
scheme.

1. S.Setup(1κ, 1n) : Run the setup of the SRDS scheme ppsrds = (ppms, pp2)← Setup(1κ, 1n) and
output crs = ppsrds.

2. S.Prove(crs, x, w) : Given an average-case yes instance-witness pair, (x, w) ← Dyes(1n) of the
form x = (a1, . . . , an, t) and w = S, proceed as follows:

• Parse crs = (ppms, pp2) and interpret the set {a1, . . . , an, t−1} as a set of (n+1) verification
keys {vk1, . . . , vkn+1}. Note that ∏

i∈S′ vki = 1 for S′ = S ∪ {n + 1}.
• Since in the LOSSW multi-signature scheme, (aggregate) verification key vk∗ = ∏

i∈S′ vki

corresponds to a valid signing key sk∗ = ∑
i∈S′ ski, where vk∗ = e(g, g)sk∗ , it holds that if

vk∗ = 1, then sk∗ = 0. Choose an arbitrary m ∈ M and sample r ← Zp. Compute an
LOSSW signature σms = (sig1, sig2) on m with respect to vk∗ = 1, where

sig1 = g0 · (fmsg (ppms, m))r and sig2 = gr.

• Use the algorithm P (that is guaranteed to exist by Definition 6.2) to compute the auxiliary
information π ← P(ppsrds, vk1, . . . , vkn+1, S′, m, σms) from the signature σms and the set
S′ ⊆ [n + 1].

• Finally output (m, σms, π).

3. S.Verify(crs, x, (m, σms, π)) : Parse x = (a1, . . . , an, t) and proceed as follows:
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• Parse crs = (ppms, pp2) and interpret the set {a1, . . . , an, t−1} as a set of (n+1) verification
keys {vk1, . . . , vkn+1}.

• Run the verification algorithm of the LOSSW multi-signature scheme with respect to
combined verification key vk∗ = 1, i.e., parse σms = (sig1, sig2) and check if

e(sig1, g) · e(sig2, fmsg(ppms, m))−1 = 1.

In other words, compute

b′ =
{

1, if e(sig1, g) · e(sig2, fmsg(ppms, m))−1 = 1
0, otherwise

.

• Run the verification algorithm of the SRDS scheme on (σms, π) with respect to m:

b← Verify(ppsrds, vk1, . . . , vkn+1, m, (σms, π)).

• Output b ∧ b′.

We now argue succinctness, completeness, and average-case soundness for this construction:
Succinctness. Succinctness follows from the succinctness of the SRDS scheme.
Completeness. Given any average-case yes instance-witness pair (x, w) ← Dyes(1n), with x =
(a1, . . . , an, t) and w = S, it holds that ∏

i∈S aj = t or equivalently t−1 ·
∏

i∈S aj = 1. Let S′ =
S ∪ {n + 1}. Recall that in the LOSSW scheme∏

i∈S′

vki =
∏
i∈S′

e(g, g)ski = e(g, g)
∑

i∈S′ ski ,

where ski is the secret key associated with vki. It follows that if ∏
i∈S′ vki = 1 then ∑

i∈S′ ski = 0.
Hence, σms = ((fmsg (ppms, m))r , gr) is a valid multi-signature on m with respect to {ski}i∈S′ .
Since the multi-signature verifies MS.MVerify(ppms, vk1, . . . , vkn+1, S′, m, σms) = 1, completeness of
SRDS based on a multi-signature scheme (see Definition 6.2) implies that the output of P, given
this signature and S′, will be a valid SRDS signature.
Average-case soundness. Recall that each of the values (a1, . . . , an, t) in x ← Dno(1n) are
sampled uniformly at random. Since t is a randomly sampled value, so is t−1. Therefore, the
verification keys {vk1, . . . , vkn, vkn+1}, where vki = ai for i ∈ [n] and vkn+1 = t−1, are uniformly
distributed over Gn+1

T . Since by assumption, n/ log |GT | < 1, it holds with overwhelming probability
(bounded by 2n+1/|GT |) that there does not exist a subset S′ ⊆ [n + 1] of size s + 1, such that∏

i∈S′ vki = 1.
Given (m, σms, π), we check if: (1) σms is a valid multi-signature on m with respect to vk∗ = 1,

and (2) if (σms, π) is a valid SRDS on m. Recall that given a multi-signature σms = (sig1, sig2),
a message m, the public parameters ppms, and a set of verification keys {vki}i∈S , the verification
algorithm of the LOSSW multi-signature scheme checks if

e(sig1, g) · e(sig2, fmsg(ppms, m))−1 =
∏
i∈S

vki.

In other words, given a valid multi-signature σms on a message m, there exists a unique aggregate
verification key ∏

i∈S vki for which σms verifies. Therefore, if check (1) goes through, then vk∗ = 1 is
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the only aggregate verification key for which σms is a valid multi-signature on m. As argued earlier,
with a high probability there does not exist a subset S′ ⊆ [n + 1] such that Πi∈S′vki = 1. Also,
from the soundness of SRDS based on a multi-signature scheme (Definition 6.2), we know that if
there does not exist a subset S′ ⊆ [n + 1] of size s + 1, such that σms is a valid multi-signature on
m with respect to {vki}i∈S′ , then the probability of an adversary computing a valid SRDS (σms, π)
on a message m is negligible. Soundness now follows from the soundness of SRDS based on a
multi-signature scheme.

6.3 General Multi-Signatures and the Subset-f Problem

Although the proof of Lemma 6.5 depends on the specific LOSSW multi-signature scheme, the
overall approach only depends on certain properties of that scheme; in particular, there is no
inherent reliance on the structure of multiplication of keys and Subset-Product. Motivated by this
observation, in this section, we start by exploring hardness of Subset-f problems for a more general
class of functions f , focusing on the class of elementary symmetric polynomials ϕℓ. We begin by
demonstrating (worst-case) NP-hardness results for Subset-ϕℓ. We then abstract out the properties
used in Lemma 6.5 (deemed “SNARG-compliance”), and show that existence of SRDS based on a
SNARG-compliant multi-signature scheme implies existence of SNARGs for corresponding Subset-
ϕℓ problems.

The subset-f problem. We first define the following analogous variant of average-case Subset-
Product problem for more general functions f . We restrict our attention to the natural setting of
symmetric functions f ; one can extend to arbitrary f , e.g., given a canonical ordering of inputs.

Definition 6.6 (average-case subset-f). Let s = s(n) be an integer, let R be a ring, and let
f : Rs → R an efficiently computable symmetric function. Given an instance x = (a1, . . . , an, t) ∈
Rn+1, the (s, R)-Subset-f problem is the problem of deciding if there exists a subset S ⊆ [n] of size
|S| = s, such that f((ai)i∈S) = t. Such instances are said to be in the (s, R)-Subset-f language Lf .

We consider the average-case version of this problem characterized by the following two distri-
butions:

1. Dyes(1n) → (x, w): For each i ∈ [n], sample ai ∈ R uniformly at random. Sample a set
S ⊆ [n] of size s uniformly at random. Set t = f((ai)i∈S). Output x = (a1, . . . , an, t), w = S.

2. Dno(1n) → x: For each i ∈ [n], sample ai ∈ R uniformly at random. Sample a target t ∈ R
uniformly at random. Output x = (a1, . . . , an, t).

We also consider a variant of the (s, R)-Subset-f problem, where the instance does not include the
size of the subset, i.e., given an instance x = (a1, . . . , an, t) ∈ Rn+1, the R-Subset-f problem is the
problem of deciding if there exists a subset S ⊆ [n] of any size such that f((ai)i∈S) = t.

Note that Subset-f is within NP for any function f describable by a polynomial-size circuit.
For appropriate parameter regimes, the hardness of Subset-f problems depends on the function f .
In Theorem 6.9, we show that for rings (of appropriate size) with Hadamard product, Subset-f for
all elementary symmetric polynomials f is NP-complete.
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NP-hardness of subset-ϕℓ. Recall that Hadamard product (also known as entry-wise product)
takes two vectors of the same dimension and produces another vector of matching dimension where
the ith element of the resulting vector is a product of the ith elements of the two input vectors.

Definition 6.7 (Hadamard product). Let F be a field and let a⃗ = (a1 . . . , an), b⃗ = (b1 . . . , bn) ∈ Fn

be vectors of length n. The Hadamard product of a⃗ and b⃗ is the vector a⃗⊙ b⃗ = (a1b1, . . . , anbn) ∈ Fn.

We now define elementary symmetric polynomials.

Definition 6.8 (elementary symmetric polynomials). Let n ∈ N and ℓ ∈ [n]. The elementary
symmetric polynomial ϕℓ(x1, . . . , xn) is defined as:

ϕℓ(x1, . . . , xn) =
∑

1≤j1<...<jℓ≤n

xj1 · . . . · xjℓ
.

In the following theorem, we show that for certain rings R that admit Hadamard product, and
any elementary symmetric polynomial ϕℓ, the (s, R)-Subset-ϕℓ problem is NP-complete. In partic-
ular, we show this for suitably sized rings of the form R = Fn, where for ℓ = 2, the characteristic
of the field must be at least 63 and for ℓ > 2, the characteristic of the field must be at least ℓ + 2.

Theorem 6.9. There exists s(n) ∈ Θ(n) such that, for any field F with char(F) ≥ max(ℓ + 2, 63),
any ring R = Fn of size |R| = 2Θ(n) with Hadamard product, and any elementary symmetric
polynomial ϕℓ, the (s, R)-Subset-ϕℓ problem is NP-complete.

We next present a high-level overview of the proof; the full proof can be found in Appendix D.1.
We start with a recap of the proof for NP-completeness of subset sum by Karp [65].

NP-completeness of subset sum. The proof for NP-completeness of ZM -Subset-Sum [65]24

shows a polynomial-time reduction from 3-SAT. At a high level, the reduction proceeds as follows:
Given a 3-SAT instance with N variables {xi}i∈[N ] and m clauses {Cj}j∈[m], define a ZM -Subset-
Sum instance with the following 2(N + m) numbers, each with N + m digits, for M ≥ 10N+m:

1. For each input i ∈ [N ], define two numbers vi and v′
i. The ith least significant digit of both

these numbers is set to 1. If xi ∈ Cj , then the (N + j)th least significant digit of vi is set to
1, else if ¬xi ∈ Cj , then the (N + j)th least significant digit of v′

i is set to 1. The remaining
digits in both these numbers are set to 0.

2. For each clause j ∈ [m], define two numbers c1
j and c2

j . The (N + j)th least significant digit
of both these numbers is set to 1 and all the remaining digits are set to 0.

3. The target number t is also an (N + m)-digit number in which the first N digits are set to 1,
while the remaining digits are set to 3.

Intuitively, given a satisfying assignment for the 3-SAT instance, the corresponding witness for
the ZM -Subset-sum instance includes the following: For each i ∈ [N ], it includes vi if xi = 1, and
v′

i if xi = 0. For each j ∈ [m], it includes any one of c1
j or c2

j if there are two literals with value 1
in the jth clause, and both c1

j or c2
j if there is only one literal with a value of 1 in the jth clause.

24Recall that this is a variation of the (s,ZM )-Subset-sum problem, where the instance does not include the size
of the subset, as defined in Definition 6.6.
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j , . . . , cℓ−1
j

t

0 0 0 0 1
i
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p
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q

0 0 if xi ∈ Cp
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0 0 0 0 1
i
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j
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Figure 9: Reducing an instance of 3-SAT with N variables {xi}i∈[N ] and m clauses {Cj}j∈[m] to an
instance of R-Subset-ϕℓ for ℓ ≥ 3 with n = ℓ + 2N + (ℓ− 1)m elements in R, where R = F1+N+m.
Here, 0 (resp., 1) values inside the vectors refer to the 0 (resp., 1) element of F.

Proof sketch of Theorem 6.9. We extend this reduction to show that R-Subset-ϕℓ for ℓ > 1 is also
NP-complete, where R is a ring of appropriate size with Hadamard product. Each of the ai (for
i ∈ [n]) elements and the target value t in an instance of R-Subset-ϕℓ is an element in R and
thereby a vector of elements in F. Unlike simple addition, since ϕℓ is a sum of products, if (any) kth

entry in the target value is a non-zero element in F, the solution to a yes instance of R-Subset-ϕℓ

must consist of at least ℓ elements with non-zero kth entries. Therefore, depending on ℓ, we need to
define additional elements in the reduction. We give an overview of our reduction from any 3-SAT
instance to R-Subset-ϕℓ for ℓ ≥ 3; the special case of ℓ = 2 requires a slight modification that is
addressed in Appendix D.1. In a similar way to Subset-Sum, this reduction can also be adjusted
to show that there exists s ∈ Θ(n), for which (s, R)-Subset-ϕℓ problem is also NP-complete, which
is sketched in Appendix D.1.

Given a 3-SAT instance with N variables {xi}i∈[N ] and m clauses {Cj}j∈[m], define a R-Subset-
ϕℓ instance with ℓ + 2N + (ℓ− 1)m elements, where R = F1+N+m. As shown in Figure 9, each of
these elements is a vector of 1 + N + m elements in the field F and are defined as follows:

• An element α0 ∈ R, whose first entry is 1. All the remaining entries in α0 correspond to 0.

• For each k ∈ [ℓ− 1], define αk ∈ R, whose first N + 1 entries correspond to 1, and the remaining
entries correspond to 0.

• For each i ∈ [N ], define two elements vi ∈ R and v′
i ∈ R. The (1 + i)th entry of both these

numbers is set to 1. If xi ∈ Cj , then the (1 + N + j)th entry of vi is set to 1, else if ¬xi ∈ Cj ,
then the (1 + N + j)th entry of v′

i is set to 1. All the remaining entries correspond to 0.

• For each j ∈ [m] and k ∈ [ℓ−1], define element ck
j ∈ R. The (1+N +j)th entry in ck

j corresponds
to 1 and the remaining entries correspond to 0.

• The target element t is also a vector of 1 + N + m elements in F, with all its entries set to 1.
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Now, given a satisfying assignment for the 3-SAT instance, the corresponding witness for the
R-Subset-ϕℓ instance includes the following: It includes α0 and each αk for k ∈ [ℓ − 1]. For each
i ∈ [N ], it includes vi if xi = 1, and v′

i if xi = 0. For each j ∈ [m], it includes any ℓ − 3 of the
elements cj if all three literals in the jth clause have value 1, else if any two literals have value 1
then it includes any ℓ− 2 of the elements cj and if only one of the literals has value 1 then all the
ℓ− 1 elements cj are included in the witness. This guarantees that the value 1 appears precisely ℓ
times in the column of each satisfied clause, so that ϕℓ will evaluate to the target value 1 in these
positions.

Similarly for soundness, a valid witness S for the R-Subset-ϕℓ instance must include a0, . . . , aℓ−1
in order to get ℓ times the value 1 in the first column. Apart from a1, . . . , aℓ−1, the only other
elements that have the value 1 in the next N columns are vi and v′

i. For each i ∈ [N ], if both vi

and v′
i are included in the set S, a total of ℓ + 1 elements in S will have value 1 in the (i + 1)th

column. The (i + 1)th entry in the result obtained by applying ϕℓ over such a set is ℓ + 1. Since
the characteristic of the field F is at least ℓ + 2, we know that ℓ + 1 ̸= 1. Therefore, S can either
contain vi (implying xi = 1) or v′

i (implying ¬xi = 1) for each i ∈ [N ], but not both. For each of
the last m columns, S can contain some or all of the elements cj (for each j ∈ [m]). But since this
set of cj elements can only contribute at most ℓ− 1 times the value 1 in the (1 + N + j)th column,
we need at least one of the v or v′ elements to contribute a 1 value to that column, in order to
get a non-zero (1 + N + j)th entry in the result of ϕℓ. This guarantees at least one variable with
a value of 1 in each clause. We give a full proof of completeness and soundness for this reduction
Appendix D.1.

SNARG-compliant multi-signatures and subset-ϕℓ. We now identify the properties of the
LOSSW multi-signature scheme used in Lemma 6.5 to provide the connection with average-case
SNARGs. Roughly, these properties are:

• Verification keys are sampled independently and uniformly from the key-space of the multi-
signature scheme. This property is important for arguing soundness in Lemma 6.5.

• The verification algorithm with keys {vki}i∈S , is equivalent to the verification algorithm with
a single aggregate key vkagg = ∏

i∈S vki. In other words, there exists a key-aggregation function
fagg (e.g., fagg = ∏ in the LOSSW multi-signature scheme), such that the verification algorithm
can be decomposed into first applying fagg over the set of keys to obtain an aggregate key vkagg
and then running some residual function MS.Verifyagg-key to perform the remaining verification
with respect to vkagg.

• Given a valid multi-signature σms on a message m, there exists a unique and well-defined aggre-
gate key vk for which the residual function MS.Verifyagg-key (as defined in the previous bullet)
outputs 1. Moreover, this aggregate key is easy to compute. For example, for LOSSW, this
property is crucially used for arguing soundness in Lemma 6.5.

• And finally, there exist degenerate keys skdeg and vkdeg (e.g., skdeg = 0 ∈ G and vkdeg = 1 ∈ GT

in the LOSSW multi-signature scheme) that allow forging a multi-signature on any message.
This property is used in the completeness argument in Lemma 6.5.

We call multi-signature schemes that satisfy these properties as SNARG-compliant multi-signature
schemes. We formally define this notion in Definition D.1 in Appendix D.2. Finally, by using
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the properties of a SNARG-compliant multi-signature scheme, we are able to prove a generalized
version of Lemma 6.5. Namely, we show in Lemma D.2 that an SRDS scheme based on a SNARG-
compliant multi-signature scheme with key-aggregation function fagg = ϕℓ, implies SNARGs for
average-case Subset-ϕℓ.
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A Preliminaries (Cont’d)
In this section, we provide additional definitions: for SNARKs, proof-carrying data and multi-
signatures.

A.1 SNARKs

We follow the notation from [9]. The universal relation RU [5] is the set of instance-witness pairs
(y, w) = ((M, x, t), w), where |y|, |w| ≤ t and M is a random-access machine, such that M accepts
(x, w) after running at most t steps. The universal language LU is the language corresponding to
RU .

A non-interactive argument system forRU is a triple of algorithms (SNARK.Gen, SNARK.Prover,
SNARK.Verify) with the following syntax:

• SNARK.Gen(1κ, B)→ (σ, τ): on input the security parameter κ and a time bound B ∈ N, the
generation algorithm outputs a common reference string (σ, τ) consisting of a prover reference
string σ and a verification state τ .

• SNARK.Prover(σ, y, w)→ π: given a prover reference string σ, an instance y = (M, x, t) with
t ≤ B, and a witness w such that (y, w) ∈ R, the algorithm produces a proof π.

• SNARK.Verify(τ, y, π) → b: given a verification state τ , an instance y, and a proof π, the
verifier algorithm outputs a bit b.

Definition A.1 (SNARK). A non-interactive argument system (SNARK.Gen, SNARK.Prover,
SNARK.Verify) for RU is a SNARK if the following conditions are satisfied:

1. Completeness: For every large enough security parameter κ ∈ N, every time bound B ∈ N,
and every instance-witness pair (y, w) = ((M, x, t), w) ∈ RU with t ≤ B,

Pr
[

SNARK.Verify(τ, y, π) = 1
π ← SNARK.Prover(σ, y, w)
(σ, τ)← SNARK.Gen(1κ, B)

]
= 1.
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2. Proof of Knowledge: For every polynomial-size prover P ∗, there exists a polynomial-size
extractor EP ∗ such that for every security parameter κ ∈ N, every auxiliary input aux ∈
{0, 1}poly(κ), and every time bound B ∈ N,

Pr

 (y, w) /∈ RU

SNARK.Verify(τ, y, π) = 1

w ← EP ∗(aux, σ)
(y, π)← P ∗(aux, σ)
(σ, τ)← SNARK.Gen(1κ, B)

 ≤ negl(κ).

3. Efficiency: There exists a universal polynomial p(·) such that, for every large enough security
parameter κ ∈ N, every time bound B ∈ N, and every instance y = (M, x, t) with t ≤ B,

• The generator algorithm SNARK.Gen(1κ, B) runs in time p(k + B) for a fully succinct
SNARK (and in time p(k + log B) for a preprocessing SNARK).

• The prover algorithm SNARK.Prover(σ, y, w) runs in time p(κ+ |M |+ t+log B) for a fully
succinct SNARK (and in time p(k + |M |+ |x|+ B) for a preprocessing SNARK).

• The verifier algorithm SNARK.Verify(τ, y, π) runs in time p(κ + |M |+ |x|+ log B).
• An honestly generated proof has size p(κ + log B).

A.2 Proof-Carrying Data

A proof-carrying data system (PCD system) is a cryptographic primitive introduced by Chiesa
and Tromer [32]. Informally speaking, given a predicate C, consider a distributed system where
nodes perform computations; each computation takes as input messages and generates a new output
message. The security goal is to ensure that each output message is compliant with the predicate C.
Proof-carrying data ensures this goal by attaching short and easy-to-verify proofs of C-compliance
to each message.

Concretely, a generator PCD.Gen first sets up a reference string and a verification state. Anyone
can then use the prover algorithm PCD.Prover, which is given as input the reference string, prior
messages zin with proofs πin, and an output message zout, to generate a proof πout attesting that
zout is C-compliant. Anyone can use the verification algorithm PCD.Verify, which is given as input
the verification state, a message z, and a proof π, to verify that z is C-compliant.

Crucially, the running time of proof generation and proof verification are “history independent”:
the first only depends on the time to execute C on input a node’s messages, while the second only
on the message length.

We now formally define the notions associated with a PCD system as defined in [9]. We refer
the reader to [9, 8] for a detailed discussion.

Definition A.2. A (distributed computation) transcript is a triplet trans = (G, linp, data), where
G = (V, E) is a directed acyclic graph, linp : V → {0, 1}∗ are local inputs (node labels), and
data : E → {0, 1}∗ are edge labels (messages sent on the edge). The output of trans, denoted
out(trans), is equal to data(ũ, ṽ) where (ũ, ṽ) is the lexicographically first edge such that ṽ is a sink.

Syntactically a proof-carrying transcript is a transcript where messages are augmented by proof
strings, i.e., a function proof : E → {0, 1}∗ provides for each edge (u, v) an additional label prove
(u, v), to be interpreted as a proof string for the message data(u, v)
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Definition A.3. A proof-carrying (distributed computation) transcript PCT is a pair (trans, proof)
where trans is a transcript and proof : E → {0, 1}∗ is an edge label.

Next, we define what it means for a distributed computation to be compliant, which as defined
in [9] is the notion of “correctness with respect to a given local property.” Compliance is captured
via an efficiently computable compliance predicate C, which must be locally satisfied at each vertex;
here, “locally” means with respect to a node’s local input, incoming data, and outgoing data. For
convenience, for any vertex v, we let child(v) and parent(v) be the vector of v’s children and parents
respectively, listed in lexicographic order.
Definition A.4. Given a polynomial-time predicate C, we say that a distributed computation tran-
script trans = (G, linp, data) is C-compliant (denoted by C(trans) = 1) if for every v ∈ V and
w ∈ child(v) it holds that

C(data(v, w); linp(v), inputs(v)) = 1,

where inputs(v) := data(u1, v), . . . , data(uc, v) and (u1, . . . , uc) := parent(v). Furthermore, we say
that a message z from node v to w is C-compliant if C(data(v, w); linp(v), inputs(v)) = 1 and there
is a transcript trans such that v is the sink and C(trans) = 1.
Definition A.5. Given a distributed computation transcript trans = (G, linp, data) and any edge
(v, w) ∈ E, we denote by ttrans,C(v, w) the time required to evaluate C(data(v, w); linp(v), inputs(v)).
We say that trans is B-bounded if ttrans,C(v, w) ≤ B for every edge (v, w).
Definition A.6. The depth of a transcript trans, denoted d(trans), is the largest number of nodes
on a source-to-sink path in trans minus 2 (to exclude the source and the sink). The depth of a
compliance predicate C, denoted d(C), is defined to be the maximum depth of any transcript trans
compliant with C. If d(C) := ∞ (i.e., paths in C-compliant transcripts can be arbitrarily long) we
say that C has unbounded depth.

We note that for our application in Section 4, we can assume that for every v ∈ V , the label
input is linp(v) = ⊥.

We now give a formal definition of a PCD system.
Definition A.7. A proof-carrying data (PCD) system for a class of compliance predicates C is a
triple of algorithms (PCD.Gen, PCD.Prover, PCD.Verify) that work as follows:
• PCD.Gen(1κ, C) → (σpcd, τpcd): on input the security parameter κ and compliance predicate

C ∈ C, the (probabilistic) generator PCD.Gen outputs a reference string σpcd and a corresponding
verification state τpcd.

• PCD.Prover(τpcd, zin, πin, linp, zout) → πout: given a reference string τpcd, inputs zin with cor-
responding proofs πin, a local input linp, and an output zout, the (honest) prover algorithm
PCD.Prover produces a proof πout attesting to consistency of zout with a C-compliant transcript.

• PCD.Verify(τpcd, zout, πout) → b: given the verification state τpcd, an output zout, and a proof
string πout, the verifier algorithm PCD.Verify accepts if it is convinced that zout is consistent with
some C-compliant transcript.
After the generator PCD.Gen is run to obtain σpcd and τpcd, the prover PCD.Prover is used

(along with σpcd) at each node of a distributed computation transcript to dynamically com-
pile it into a proof-carrying transcript by generating and adding a proof to each edge. Each
of these proofs can be checked using the verifier PCD.Verify (along with τpcd). A PCD system
(PCD.Gen, PCD.Prover, PCD.Verify) must satisfy the following properties:
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Completeness: An honest prover can convince a verifier that the output of any compliant tran-
script is indeed compliant. Namely, for every security parameter κ, compliance predicate C, and
distributed-computation generator G (described below),

Pr


PCD.Verify(τpcd, z, π) ̸= 1
C(trans) = 1
trans is B-bounded

(z, π, trans)← ProofGen(C, σpcd, G, PCD.Prover)
(σpcd, τpcd)← PCD.Gen(1κ, C)

 ≤ negl(κ).

Above, ProofGen is an interactive protocol between a distributed-computation generator DCGen
and the PCD prover PCD.Prover, in which both are given the compliance predicate C and the
reference string σpcd. Essentially, at every time step, DCGen chooses to do one of the following
actions: (1) add a new unlabeled vertex to the computation transcript so far (this corresponds to
adding a new computing node to the computation), (2) label an unlabeled vertex (this corresponds
to a choice of local data by a computing node), or (3) add a new labeled edge (this corresponds
to a new message from one node to another). In case DCGen chooses the third action, the PCD
prover PCD.Prover produces a proof for the C-compliance of the new message, and adds this new
proof as an additional label to the new edge. When DCGen halts, the interactive protocol outputs
the distributed computation transcript trans, as well as trans’s output and corresponding proof.
Intuitively, the completeness property requires that if trans is compliant with C, then the proof
attached to the output (which is the result of dynamically invoking PCD.Prover for each message
in trans, as trans was being constructed by DCGen) is accepted by the verifier.

Proof of knowledge (and soundness): Loosely speaking, if the verifier accepts a proof for a
message, the prover “knows” a compliant transcript trans with output z. For every polynomial-
size prover P ∗ there exists a polynomial-size extractor EP ∗ such that for every polynomial-size
compliance predicate C ∈ C and every auxiliary input aux ∈ {0, 1}poly(κ),

Pr

 out(trans) ̸= z ∨ C(trans) ̸= 1
PCD.Verify(τpcd, z, π) = 1

trans← EP ∗(σpcd, aux)
(z, π)← P ∗(σpcd, aux)
(σpcd, τpcd)← PCD.Gen(1κ, C)

 ≤ negl(κ).

Succinctness: There exists a universal polynomial p(·) such that for every compliance predicate
C ∈ C, every time bound B ∈ N, and every B-bounded distributed computation transcript trans,

• The computation time of PCD.Prover(σpcd, zin, πin, linp, zout) is p(κ + |C|+ B).

• The verification algorithm PCD.Verify(τpcd, z, π) runs in time p(κ + |C|+ |z|+ log B)

• An honestly generated proof has size p(κ + log B).

Theorem A.8 ([9]). Let the size of a compliance predicate C, denoted by s(C), be the largest
number of nodes in any transcript compliant with C. Assuming the existence of SNARKs with linear
extraction (i.e., |EP∗ | ≤ c|P∗| for some constant c), there exist PCD systems for logarithmic-depth
and polynomial-size compliance predicates.
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A.3 Merkle Hash Proof System

A Merkle hash proof system [80] corresponding to a hash function H : {0, 1}κ×{0, 1}λ → {0, 1}λ/2 is
defined by a tuple of algorithms (Merkle.Setup, Merkle.Hash, Merkle.Proof, Merkle.Verify) as follows:

• Merkle.Setup(1κ): On input the security parameter, the setup algorithm samples and outputs
a random seed← {0, 1}κ for the hash function.

• Merkle.Hash(seed, x1, . . . , xn): On input the seed and a vector x1, . . . , xn, the Merkle hash
algorithm computes a hash using a Merkle tree as follows:

– For each i ∈ [n], compute y0
i = H(seed, xi).

– For each ℓ ∈ [log(n)] and i ∈ [n/2ℓ],25 compute yℓ
i = H(seed, yℓ−1

2i−1||y
ℓ−1
2i ).

Output y = y
log(n)
1 .

• Merkle.Proof(seed, x1, . . . , xn, xi): On input the seed, a vector x1, . . . , xn, and an element xi,
the Merkle proof algorithm computes and outputs a proof p as follows:

– For each k ∈ [n], compute y0
k = H(seed, xk).

– For each ℓ ∈ [log(n)] and k ∈ [n/2ℓ] compute yℓ
k = H(seed, yℓ−1

2k−1||y
ℓ−1
2k ).

– Initialize the proof p = {(i, sibling(y0
i ))} and for each level ℓ ∈ [log(n)], set p = p ∪

{(⌈i/2ℓ⌉, sibling(yℓ
⌈i/2ℓ⌉))}.

• Merkle.Verify(seed, xi, y, p): On input the seed, an input element xi, Merkle hash y, and a
Merkle proof p, the Merkle verification algorithm parses p = ((i0, x0), . . . , (ilog(n), xlog(n)))
and proceed as follows:

– If i0 is an even number, compute y1 = H(seed, H(seed, xi)||x0), else compute y1 =
H(seed, x0||H(seed, xi)).

– For each ℓ ∈ [log(n)], if iℓ is an even number, compute yℓ = H(seed, H(seed, yℓ−1)||xℓ),
else compute yℓ = H(seed, xℓ||H(seed, yℓ−1)).

If ylog(n) = y, output 1; else, output 0.

The Merkle Hash Proof System has the following properties.

Theorem A.9 (Merkle hash proof system). Assuming existence of a length-halving, seeded, col-
lision resistant hash function H : {0, 1}κ × {0, 1}λ → {0, 1}λ/2, the Merkle hash proof system
(Merkle.Setup, Merkle.Hash, Merkle.Proof, Merkle.Verify) satisfies the following properties:

• Completeness: For any input string x1, . . . , xn ∈ {0, 1}nλ and i ∈ [n], it holds that:

Pr


seed← Merkle.Setup(1κ)

Merkle.Verify(seed, xi, y, p) = 1 y = Merkle.Hash(seed, x1, . . . , xn)
p = Merkle.Proof(seed, x1, . . . , xn, xi)

 = 1.

25For simplicity, we assume that n is a power of 2. The general case follows by including additional elements 0λ,
such that the length of the resulting input string becomes a power of 2.
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• Soundness: No PPT adversary A, can win the following game with more than negligible
probability (in κ):

1. The challenger samples seed← Merkle.Setup(1κ) and sends to A.
2. A responds with (i, {xj}j∈[n]\{i}).
3. The challenger samples xi ← {0, 1}λ, computes Merkle.Hash(seed, x1, . . . , xn) = y and

sends (xi, y) to A.
4. A responds with a pair (x′, p), and wins if Merkle.Verify(seed, x′, y, p) = 1 and x′ ̸= xi

for every i ∈ [n].

A.4 Multi-signatures

In a multi-signature scheme, a single short object—the multi-signature—can take the place of n
signatures by n signers, all on the same message.26 The first formal treatment of multi-signatures
was given by Micali, Ohta, and Reyzin [83]. We consider a variant of this model due to Boldyreva
[12] that is also used by Lu et al. [77]. In this model, the adversary is given a single challenge
verification key vk, and a signing oracle for that key. His goal is to output a forged multi-signature
σ∗ on a message m∗ under keys vk1, . . . , vkℓ, where at least one of these keys is a challenge verification
key (without loss of generality, vk1). For the forgery to be nontrivial, the adversary must not have
queried the signing oracle at m∗. The adversary is allowed to choose the remaining keys, but must
prove knowledge of the private keys corresponding to them.

Definition A.10. A multi-signature scheme is a tuple of algorithms

• MS.Setup(1κ)→ pp: On input the security parameter, the setup algorithm outputs public param-
eters pp.

• MS.KeyGen(pp) → (vk, sk): On input the public parameters pp, the key-generation algorithm
outputs a pair of verification/signing keys (vk, sk).

• MS.Sign(pp, sk, m)→ σ: On input pp, a signing key sk, and a message m, the signing algorithm
outputs a signature σ.

• MS.Verify(pp, vk, σ, m) → b: On input pp, a verification key vk, a signature σ, and a message
m, the verification algorithm outputs a bit b ∈ {0, 1}.

• MS.Combine(pp, {vki, σi}ℓi=1, m) → σ: On input pp, a collection of signatures (or multi-
signatures), and a message m, the combine algorithm outputs a combined multi-signature σ,
with respect to the union of verification keys.

• MS.MVerify(pp, {vk1, . . . , vkn}, S, m, σ) → b: On input pp, the set of all verification keys, a
subset § ⊆ [n], a message m, and a multi-signature σ, the multi-signature verification algorithm
outputs a bit b ∈ {0, 1}.

We require the following properties from a multi-signature scheme.

26Note that multi-signatures are a special case of aggregate signatures [14], which in contrast allow combining
signatures from n different parties on n different messages.
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Correctness: The correctness requirement of digital signatures must hold for (MS.Setup,
MS.KeyGen, MS.Sign, MS.Verify). In addition, for any message m, any collection of honestly gen-
erated signatures {σi ← MS.Sign(pp, ski, m)}i∈S on m (for some S ⊆ [n]), the combined multi-
signature formed by σ̄ ← MS.Combine(pp, {vki, σi}i∈S , m) will properly verify with overwhelming
probability, i.e., Pr [1← MS.MVerify(pp, {vk1, . . . , vkn}, S, m, σ̄)] ≥ 1− negl(k).

Unforgeability: For any PPT adversary A, the probability that the challenger outputs 1 when
interacting with A in the following game is negligible in the security parameter κ:

1. Setup. A selects a proper subset I ⊆ [n] (corresponding to corrupted parties). The challenger
samples a pair of verification/signing keys (vki, ski)← MS.KeyGen(pp) for every i ∈ [n]\I, and
gives A all verification keys {vki}i∈[n]\I . Next, A chooses keys {ski, vki}i∈I for the corrupted
parties and sends them to the challenger.

2. Signing queries. A can make polynomially many adaptive signature queries of the form
(m, vki). For each query, the challenger responds with a signature σ ← MS.Sign(pp, ski, m)
on the message m with respect to the signing key ski corresponding to vki.

3. Output. A outputs a triple (σ̄∗, m∗, {vki}i∈S). The challenger outputs 1 if at least one of
the provided verification keys vki corresponds to a challenge (honest party) key, the message
m∗ was not queried to the signature oracle with this verification key vki, and the provided
forgery σ∗ is a valid multi-signature, i.e., 1← MS.MVerify(pp, {vk1, . . . , vkn}, S, m∗, σ∗).

A.5 The Multi-Signatures Scheme of Lu et al. [77]

In this section we describe the LOSSW multi-signature scheme that is used in Section 6. We will let
G and GT are multiplicative groups of prime order p, and denote g a generator of G. In addition,
let e : G×G→ GT be an efficiently computable non-degenerate bilinear map. The multi-signature
scheme of Lu et al. [77] is based on the Bilinear Computational Diffie-Hellman (BCDH) assumption.
The message space is {0, 1}k for some fixed k. The following is taken verbatim from [77]:

• MS.Setup(1κ): Sample random elements u′, u1, . . . , uk ∈ G and output the public parameters
ppms, consisting of descriptions of G,GT , p, e, u′, u1, . . . , uk and the generator g of G.

• MS.KeyGen(ppms): Sample a random signing key sk ∈ Zp and set the corresponding verification
key vk as e(g, g)sk.

• MS.Sign(ppms, sk, m): Parse the message m as (m1, . . . , mk) ∈ {0, 1}k, sample r ← Zp, and
compute σ = (sig1, sig2) as follows:

sig1 = gsk ·
(

u′ ·
k∏

i=1
umi

i

)r

and sig2 = gr.

• MS.Verify(ppms, vk, m, σms) : Parse the message m as (m1, . . . , mk) ∈ {0, 1}k and σms =
(sig1, sig2), and outputs 1 if and only if

e(sig1, g) · e
(

sig2, u′ ·
k∏

i=1
umi

i

)−1
= vk.
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• MS.Combine(ppms, {vki, σi}i∈S , m): Parse each σi as (sig(i)
1 , sig(i)

2 ) and compute the combined
multi-signature σms = (sig1, sig2) as follows:

sig1 =
∏
i∈S

sig(i)
1 and sig2 =

∏
i∈S

sig(i)
2 .

• MS.MVerify(ppms, {vk1, . . . , vkn}, S, m, σms): Output 1 if and only if

e (sig1, g) · e
(

sig2, u′ ·
k∏

i=1
umi

i

)−1
=

∏
i∈S

vki.

B Balanced Communication-Efficient BA (Cont’d)
In this section, we provide supplementary material for Section 4.

B.1 Balanced Byzantine Agreement from SRDS (Cont’d)

In this section, we give the proof of Lemma 4.5 and discuss applications of our Byzantine agreement
protocol.

Proof. Let A be a PPT adversary for πba. We construct a simulator S as follows. The simulator
S starts by simulating the setup for the protocol, while allowing adaptive corruptions by A (in
a similar way to the robustness and unforgeability games). First, S runs the setup algorithm as
pp← Setup(1κ, 1n·z), and for every i ∈ [n] and j ∈ [z] computes (vki,j , ski,j)← KeyGen(pp). Next,
S sends (1κ, 1n·z, pp, {vki,j}i∈[n],j∈[z]) to A. As long as |I| ≤ β ·n and A requests to corrupt a party
Pi, the simulator sends {ski,j}j∈[z] to A and receives back {vk′

i,j}j∈[z]; in the bare-PKI mode, S
updates each vki,j = vk′

i,j . Let {vki,j}i∈[n],j∈[z] be the PKI keys at the end of this process.
The simulator S proceeds to simulate the protocol execution towards A. Initially, S receives

from fba the input bits of all honest parties {xi}i/∈I . To simulate fae-comm in Step 1, the simulator
receives from A the communication-tree T defining the set of isolated parties D. The simulator
simulates sending the output to every corrupted party. Let C denote the supreme committee (the
parties assigned to the root).

To simulate fba for the supreme committee in Step 2a, S sends to A the input bit xi for every
i ∈ C \I and receives inputs {xi}i∈I∩C . If 2/3 of the honest committee members’ bits are the same,
denote this value by y; otherwise, let A determine y. Output the value y to every corrupted party
in C. To simulate fct in Step 2b, sample a random s ∈ {0, 1}κ and send s to A for every Pi for
i ∈ I ∩ C.

To simulate the call to fae-comm in Step 3, receive inputs from A on behalf of corrupted supreme-
committee members, and send (y, s) to A for every i ∈ I. In addition, receive (yi, si) for every
i ∈ D from A.

Next, for every honest party Pi for i /∈ I do the following:

• For i /∈ D, compute σi,j ← Sign(pp, idmap(i, j), ski,j , (y, s)) for each j ∈ [z].

• For i ∈ D, compute σi,j ← Sign(pp, idmap(i, j), ski,j , (yi, si)) for each j ∈ [z].
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To simulate Step 4, for every i ∈ [n] \ I, let Li = {vi1 , . . . , viz} ⊆ V be the subset of leaves
assigned to Pi. For each j ∈ [z], send σi,j to all corrupted parties assigned to the leaf node vij on
behalf of Pi. In addition, for every Pi assigned to a leaf node v, receive a signature σj,k from every
corrupt Pj for which v = vjk

∈ Lj .
To simulate Step 5, for each level ℓ = 1, . . . , ℓ∗ of the tree and each node v on level ℓ:

1. For each i ∈ party(v) \ I, prepare the set of signatures received in Step 5a as follows:

• For ℓ = 1: let Sℓ,i,1
sig be the set of following signatures. For every honest Pj with v =

vjk
∈ Lj , the signature σj,k simulated in the previous step. For every corrupt Pj with

v = vjk
∈ Lj , the signature σi

j,k received from the adversary (note that the adversary
might send different signatures to different parties).

• For ℓ > 1: let Sℓ,i,1
sig be the set of following signatures. For each child node u ∈ child(v)

and each j ∈ party(u) \ I, the signature σu (that was simulated for level ℓ− 1). For each
j ∈ party(u) ∩ I, the signature σi

u received from the adversary A (note that the adversary
might send different signatures to different parties).

2. Next, simulate |party(v)| broadcast protocols in Step 5b, where for every i ∈ party(v), party
Pi broadcasts Sℓ,i,1

sig . Let Sℓ,i,2
sig be the union of the sets of the broadcasted signatures.

3. To simulate Step 5c, for each party assigned to the node, i.e., for each i ∈ party(v)\I, compute
Sℓ,i,3

sig ← Aggregate1(pp, {vk1,1, . . . , vkn,z}, (y, s), Sℓ,i,2
sig ). If ℓ = 1, for each sig in Si,ℓ,3

sig check if
min(sig) = max(sig) and if min(sig) ∈ range(v), whereas if ℓ > 1 check if ∃v′ ∈ child(v) such
that the range [min(sig), max(sig)] falls within the range range(v′). If this check fails for any
sig, it updates Si,ℓ,3

sig = Si,ℓ,3
sig \ {sig}. To simulate faggr-sig, for every i ∈ party(v) ∩ I, receive

from A a message ((ỹi, s̃i), S̃ℓ,i,3
sig ). If |party(v) \ {I ∪ D}| ≥ 2|party(v)|/3 (i.e., the node is

good), compute
σv ← Aggregate2

(
pp, (y, s), Sℓ,i,3

sig

)
.

Else (i.e., the node is bad), get σv from A. Finally, send σv to A as the output of faggr-sig.

4. If ℓ < ℓ∗, send for every σv from each honest party in party(v) to every corrupt party in
party(u), where u = parent(v). In addition, receive from A a signature σ′

v from every corrupt
party in party(v) to every honest party in party(u).

To simulate the call to fae-comm in Step 6, receive inputs from A on behalf of corrupted supreme-
committee members, and send (y, s, σroot) to A for every i ∈ I. In addition, receive (y′

j , s′
j , σ′

j) for
j ∈ D from A. Finally, to simulate Step 7, for every i /∈ I ∪ D evaluate Ci = Fs(i) and simulate
party Pi sending (y, s, σroot) to every party Pj for j ∈ I ∩ Ci. For every i ∈ D evaluate Ci = Fs′

j
(i)

and simulate party Pi sending (y′
j , s′

j , σ′
j) to every party Pj for j ∈ I ∩ Ci.

To conclude the simulation, the simulator sends the value y to the ideal functionality fba as the
“tie-breaker” value and outputs whatever A outputs.

Note that S simulates a random honest execution towards the adversary, with only the syntactic
difference that S simulates the ideal functionalities computing fae-comm, fba, fct and faggr-sig (rather
than using trusted parties). Thus, the view of the adversary is perfectly distributed in the real and
ideal worlds. What remains to prove is that conditioned on the view of the adversary, the output
of the honest parties is correct and identical in the real and ideal worlds. In other words, we need
to show that this Byzantine agreement protocol satisfies both agreement and validity.
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Claim B.1 (Agreement). For any adversarial strategy of A, all honest parties output the same
value, except for negligible probability.

We show that our protocol satisfies agreement in three main steps; (1) We start by showing
that with an overwhelming probability, every isolated party receives a message from at least one
non-isolated honest party in the last round. (2) Next, we show that the aggregate signature σroot
obtained by the end of Step 5 is a valid SRDS on (y, s), where y and s are the outputs of fba and
fct in Step 2b, respectively. We prove this by showing a reduction to the robustness property of
the SRDS scheme. Thereby showing that every honest party receives a valid SRDS on the same
message (y, s). (3) Finally we prove that every honest party only receives one valid SRDS (which
is on (y, s)). We prove this by showing that an adversary cannot forge a valid SRDS on any other
message by relying on the unforgeability of the SRDS scheme. Thus, each honest party outputs
the same value y. Now we proceed to the formal proof.

Proof of Claim B.1. Let Fs be a truly random function. Then the set Ci defined by Fs(i) is chosen
randomly for each i ∈ [n]. Therefore, in expectation, each party Pj appears in polylog(n) sets.
From Chernoff bound, except with some negligible probability (in n), each party receives messages
from polylog(n) ± δ for δ = O(1) other parties. Similarly, except with negligible probability, each
party receives messages from at least one non-isolated honest party. Therefore, each isolated party
Pi for i ∈ D in the initial phase of the protocol, receives a message from at least one non-isolated
honest party Pj ∈ [n]\{I ∪D}. If this is true for a truly random function, the same must also hold
for a pseudorandom Fs with overwhelming probability (in κ) over a random seed s. Recall that
the message sent by Pj to Pi is (y, s, σroot) (where y is the output of fba in Step 2a). It remains to
show the following:

1. Except with some negligible probability, σroot is a valid SRDS on (y, s).

2. Except with some negligible probability, no adversary can compute a valid SRDS on any
message other than (y, s).

1. Receiving valid signatures on (y, s). Let us assume for the sake of contradiction that σroot
is not a valid SRDS on (y, s). We now construct an adversary B that can break robustness of
the SRDS scheme. The adversary B interacts with the challenger of the SRDS scheme and the
adversary A and proceeds as follows:

• B maps each corrupt virtual party to a party in the SRDS robustness game, i.e., elements in
the set [n · z]. In other words, the challenger of the SRDS scheme runs the setup algorithm as
pp ← Setup(1κ, 1n·z), and for every i ∈ [n] and j ∈ [z] computes (vki,j , ski,j) ← KeyGen(1κ).
Next, it sends (1κ, 1n·z, pp, {vki,j}i∈[n],j∈[z]) to B, which it forwards to A. For each i ∈ I that
A requests to corrupt, B chooses to corrupt the corresponding parties {(i, j)}j∈[z] in the SRDS
robustness game and receives {ski,j}j∈[z] from the challenger, which it forwards to A. Next, B
receives verification keys {vk′

i,j}i∈I,j∈[z] of the corrupted parties from A.

• For the bare-PKI mode, B updates vki,j = vk′
i,j for each i ∈ I and j ∈ [z].

• B then simulates step 1, as described in the simulator to receive the (n, I)-almost-everywhere-
communication tree with repeated parties T from A. It transforms this tree into an (n ·
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z, {(i, j)}i∈I,j∈[z])-almost-everywhere-communication tree by augmenting it with level 0 compris-
ing of n · z nodes (representing the n · z virtual parties in the SRDS game), and adding an edge
between each of these nodes and the leaf node that it (i.e., the party that they represent) is
assigned to. It forwards this transformed tree to the challenger of the SRDS game.

• B then proceeds to simulate steps 2a, 2b, and 3 as described in the simulator and learns (y, s)
and (yi, si) for each i ∈ D. B sets m = (y, s), m(i,j) = (yi, si) for each i ∈ D, j ∈ [z] and for
each (i, j) ∈ N \{(i, j)}i∈D,j∈[z], where N is the set of all honest parties in the SRDS game that
are assigned to leaf nodes that do not have a good path in the transformed tree (described in
the previous step), it sets m(i,j) = (y, s). It sends these messages to the challenger of the SRDS
game.

• B receives signatures {σi,j}i∈[n]\I,j∈[z] of the honest parties from the challenger and forwards
them to the adversary A.

• For each level ℓ = 1, . . . , ℓ∗ of the communication tree and each node v on level ℓ, it simulates
Step 5 as described in the simulator, except in Step 5c, if the node is good, it sets σv to the
partially aggregated signature sent by the challenger and if the node is bad, it forwards the
partially aggregated signature σv received from A to the challenger of the SRDS game.

Note that if for some adversarial strategy A, the signature σroot is not a valid SRDS on (y, s),
then by construction, B wins the robustness game of the SRDS scheme. From robustness of the
SRDS scheme, we know that this only happens with at most negligible probability, therefore our
assumption is incorrect and with overwhelming probability, σroot is a valid SRDS on (y, s).

2. Not receiving valid signatures on other values. We now show that if the adversary A
can forge an SRDS on any other message, then we can use this adversary to construct another
adversary B that can break unforgeability of the SRDS scheme. The adversary B proceeds as
follows:

• B maps each corrupt virtual party to a party in the SRDS game, i.e., elements in the set
[n · z]. In other words, the challenger of the SRDS scheme runs the setup algorithm as pp ←
Setup(1κ, 1n·z), and for every i ∈ [n] and j ∈ [z] computes (vki,j , ski,j) ← KeyGen(1κ). Next, it
sends (1κ, 1n·z, pp, {vki,j}i∈[n],j∈[z]) to B, which it forwards to A. For each i ∈ I that A requests
to corrupt, B chooses to corrupt the corresponding parties {(i, j)}j∈[z] in the SRDS game and
receives {ski,j}j∈[z] from the challenger, which it forwards to A. Next, B receives verification keys
{vk′

i,j}i∈I,j∈[z] of the corrupted parties from A. In the bare-PKI mode, B updates vki,j = vk′
i,j

for each i ∈ I, j ∈ [z].

• B then proceeds to simulate Steps 1, 2a, 2b, and 3 as described in the simulator. B chooses
m = (y, s) and S = D and sends it to the challenger. For each i ∈ D and j ∈ [z], it sets
mi,j = (yi, si) as received from the adversary.

• B receives signatures {σi,j}i∈[n]\I,j∈[z] of the honest parties from the challenger and forwards
them to the adversary A.

• B then simulates Steps 4, 5, 6, 7, and 8 as described in the simulator.
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• Finally if A manages to send a valid SRDS on a message other than (y, s) to any of the honest
parties, B forwards that to the challenger.

Clearly, B wins the forgery game only if A succeeds in forging a valid SRDS on a message other than
(y, s). Since our SRDS scheme is unforgeable, this only happens with negligible probability.

Claim B.2 (Validity). For any adversarial strategy of A, if there exists a value x such that xi = x
for each honest party Pi ∈ [n] \ I, then the output of all honest parties is y = x.

Proof. From Claim B.1, we know that with overwhelming probability, the final output y of all
honest parties is the same as the output of fba in Step 2a. All that remains to prove now is that if
there exists a value x, such that xi = x for each honest party Pi ∈ [n] \ I, then the output of fba in
Step 2a is x. Recall that fba in Step 2a is computed over the inputs of all parties in the supreme
committee C. From Definition 4.4, we know that at least 2/3 fraction of the parties in C are honest.
Therefore, if there exists a value x such that x is the input of all honest parties, then the input of
all honest parties in C is also x. Now, irrespective of the inputs of the remaining malicious parties
in C, from the validity of fba, we are guaranteed that the output of fba is y = x.

This concludes the proof of Lemma 4.5.

C Constructions of SRDS (Cont’d)
In this section we present the proofs on the SRDS constructions from Section 5.

C.1 SRDS from One-Way Functions (Cont’d)

We now present the proof of Theorem 5.1.
Theorem 5.1. Let β < 1/3 be a constant. Assuming the existence of one-way functions, there
exists a βn-secure SRDS scheme in the trusted PKI model.

Proof of Theorem 5.1. In Lemma C.1, we prove succinctness, in Lemma C.2, we prove robustness,
and in Lemma C.5, we prove unforgeability.

Lemma C.1. The construction in Figure 7 is succinct.

Proof. We start by proving the size of the signatures is succinct. Let C = {i | ski ̸= ⊥} and let X
be a random variable representing |C|. By construction, E[X] = ℓ and ℓ = ω(log(n)). Therefore,
by Chernoff bound for µ = ℓ and δ = 1/2,27 it holds that

Pr [|X − ℓ| ≥ ℓ/2] ≤ 2e−ℓ/12 = negl(n).

We therefore conclude that ℓ/2 ≤ |C| ≤ 3ℓ/2 with overwhelming probability (in n). By definition
of digital signatures, every signature in the support of DS.Sign is polynomial in κ. Therefore,
every σ in the support of Sign (of the SRDS scheme) is also polynomial in κ. By construction,
unless an adversary is able to successfully break the obliviousness of the signature scheme (which
only happens with negligible probability in κ), an aggregate signature only consists of |C| “base”
signatures from the parties in C. Further, in the negligible event where the aggregate signature

27The exact Chernoff bound used is Pr [|X − µ| ≥ δµ] ≤ 2e−µδ2/3 for 0 < δ < 1, where µ = E[X].
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consists of more than |C| base signatures, the output is ⊥. Therefore, the length of an aggregated
signature is bounded by α(n, κ) ∈ poly(log n, κ).

Proving decomposability is immediate. Since the aggregation algorithm is deterministic, it can
be entirely captured by the first algorithm Aggregate1, which outputs a set of polylog(n) signatures
(since there are at most |C| signatures, with all but negligible probability). The second algorithm
Aggregate2 simply outputs the same set of signatures.

Lemma C.2. The construction in Figure 7 is βn-robust.

Proof. Let A be a PPT adversary. We will show that A can win the game Exptrobust
tr-pki,Π,A(κ, n, βn)

(with the trusted PKI mode) with at most negligible probability. The game begins when the
challenger computes pp ← Setup(1κ, 1n) and (vki, ski) ← KeyGen(pp) for every i ∈ [n]. Denote
C = {i | ski ̸= ⊥}. Next, the adversary adaptively selects the set of corrupted parties; denote by I
the set of corrupted parties.

In the robustness challenge phase, the adversary A chooses an (n, I, robust)-almost-everywhere
communication tree T = (V, E) (see Definition 3.3). It also chooses a message m ∈M and {mi}i∈N ,
where N is the set of honest parties that are assigned to leaf nodes that do not have a good path
to the root.

Recall that there are n/ log5 n leaf nodes in this tree out of which all but 3/ log n fraction have
a good path to the root. In other words, the signatures of the parties assigned to “good” leaf nodes
are guaranteed to be part of the final aggregate signature. Total number of parties assigned to the
good leaf nodes are log5 n

(
1− 3

log n

)
n

log5 n
= n log n−3

log n . Let us use S to denote this set of parties.
We proceed to show that with overwhelming probability (in n), there are more than ℓ′/3 honest
parties in S, that have a valid signing key, where ℓ′ = ℓ/2.

Claim C.3. Pr [|C ∩ (S \ I)| ≤ ℓ′/3] ≤ negl(n).

Proof. We know that |S| = n log n−3
log n > 2n/3. In order to maximize its chance of winning the

robustness game, an adversary who is allowed to arbitrarily choose the set S, will without loss of
generality include all the corrupted parties in S. Denote by HS = S \ I the set of honest parties in
S. Since |I| = (1/3− ϵ) · n (where ϵ = 1/3− β), it holds that

|HS | >
2
3 · n−

(1
3 − ϵ

)
· n =

(1
3 + ϵ

)
· n.

Thus, there are more than (1/3 + ϵ) · n honest parties in the set S. Given the information with
the adversary and the fact that the set of parties with valid signing keys are chosen at random, he
will get the same success probability for any arbitrary choice of C. Let X be a random variable
representing the number of honest parties in S who have a valid signing key, i.e., |C ∩ HS |. If
Pr [|C ∩ HS | ≤ ℓ′/3] ≤ negl(n) holds for |C| = ℓ′, it will also hold for any |C| > ℓ′. By Lemma C.1,
we know that |C| ≥ ℓ′ with an overwhelming probability. Therefore, we can assume that |C| = ℓ′;
in this case it holds that

E[|C ∩ HS |] = ℓ′

n
·
(1

3 + ϵ

)
· n =

(1
3 + ϵ

)
· ℓ′.
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By Chernoff bound for µ = ℓ′ (1/3 + ϵ) and δ = 3ϵ/(1 + 3ϵ),28 it holds that

Pr [X ≤ (1− δ)µ] = Pr
[
X ≤

(
1− 3ϵ

1 + 3ϵ

)
· ℓ′ ·

(1
3 + ϵ

)]
= Pr

[
X ≤

( 1
1 + 3ϵ

)
· ℓ′ ·

(1 + 3ϵ

3

)]
= Pr

[
X ≤ ℓ′/3

]
≤ e

− 9ϵ2
2(1+3ϵ)2 ℓ′(1/3+ϵ)

= e
− 3ϵ2

2(1+3ϵ) ℓ′
.

Since ϵ > 0 is constant, we conclude that

Pr
[
X ≤ ℓ′/3

]
≤ e−ω(log n) = negl(n).

Hence, for any arbitrary strategy deployed by the adversary, the probability that less than ℓ′/3
honest parties with a valid signing key are chosen in the set S is negligible.

The robustness phase proceeds with the challenger signing the message m on behalf of all the
honest parties {σi}i∈[n]\(I∪N ) and signing the respective messages mi on behalf of parties in N
and handing their signatures to A who responds with signatures for corrupted parties {σi}i∈{I}
(potentially also for parties whose signing key is ⊥). As described in Figure 2, using these “base”
signatures {σi}i∈[n], the challenger then interacts with the adversary according to T = (V, E) to
compute the aggregate signature σ.

Claim C.4. Pr [Verify(pp, {vk1, . . . , vkn}, m, σ) = 0] ≤ negl(κ, n).

Proof. An accepting signature on a message m consists of at least ℓ′/3 valid signatures of the
form σi = (i, m, sigi), satisfying DS.Verify(vki, m, sigi) = 1. As proved earlier in Lemma C.1, since
ℓ ∈ ω(log n) it holds with overwhelming probability that ℓ/2 ≤ |C| ≤ 3ℓ/2; therefore, by the
obliviousness of the signature scheme that the aggregate signature can consist of at most |C| base
signatures.

The aggregate algorithm then checks if the “base” signatures contain a valid signature on m.
We rely on the correctness of the underlying digital signature scheme to ensure that only valid
signatures from the adversary (i.e., by committee members) get aggregated with an overwhelming
probability (in κ).

Additionally, in the case where the adversary does not provide sufficiently many valid signatures,
from Claim C.3 we know that the number of honest parties in S with a valid signing key is more
than ℓ′/3 with an overwhelming probability (in n). Therefore, the signatures of these honest parties
are sufficient for generating an accepting signature.

This concludes the proof of Lemma C.2.

Lemma C.5. The construction in Figure 7 is βn-unforgeable.

28The exact Chernoff bounds used is Pr [X ≤ (1 − δ)µ] ≤ e− δ2
2 µ for 0 < δ < 1, where µ = E[X].
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Proof. Let A be a PPT adversary. We will show that A can win the game Exptforge
tr-pki,Π,A(κ, n, βn)

with at most negligible probability. The game begins when the challenger computes pp ←
Setup(1κ, 1n) and (vki, ski) ← KeyGen(pp) for every i ∈ [n]. Next, the adversary adaptively se-
lects the set of corrupted parties; denote by I the set of corrupted parties.

In the forgery challenge phase, the adversary A chooses a subset S ⊆ [n]\I such that |S ∪I| <
(1/3 − ϵ′)n for some constant 0 < ϵ′ < ϵ, where ϵ = 1/3 − β, and messages m and {mi}i∈S from
M. We now prove that with an overwhelming probability (in n), the fraction of parties who have
a valid signing key in S ∪ I is less than a third.

Claim C.6. The number of parties with a valid signing key in a set S ∪I is less than ℓ′/3 with an
overwhelming probability in n, i.e.,

Pr
[
|C ∩ (S ∪ I)| ≥ ℓ′/3

]
≤ negl(n).

Proof. The parties with a valid signing key are chosen at random, and the information about
whether a party has a valid signing key is not revealed to the adversary A, unless it chooses to
corrupt that party or it sees a signature from that party. The adversary chooses the honest set S
only based on the knowledge of corrupted parties and their signing keys. Given this information
with the adversary and the fact that the parties with valid signing keys are chosen at random, he
will get the same success probability for any arbitrary choice of S.

Let X be a random variable representing the number of parties in C ∩ (S ∪ I). If for |C| = 3ℓ/2
it holds that Pr [|C ∩ (S ∪ I)| ≤ ℓ′/3] ≤ negl(n), it will also hold for any |C| < 3ℓ/2. By Lemma C.1,
we know that |C| < 3ℓ/2 with an overwhelming probability. Therefore, we an assume that |C| =
3ℓ/2 = 3ℓ′; in this case it holds that E[X] = 3(1/3− ϵ′′)ℓ′ for some ϵ′′ > ϵ′. By Chernoff bound for
µ = 3ℓ′ (1/3− ϵ′′) and δ = 9ϵ′′−2

3−9ϵ′′ (note that δ > 0 since 0 < ϵ′′ < 1/3),29 it holds that

Pr [X ≥ (1 + δ)µ] = Pr
[
X ≥

(
1 + 9ϵ′′ − 2

3− 9ϵ′′

)
· ℓ′ ·

(1
3 − ϵ′′

)
· 3

]
= Pr

[
X ≥

( 1
3− 9ϵ′′

)
· ℓ′ ·

(3− 9ϵ′′

3

)]
= Pr

[
X ≥ ℓ′/3

]
≤ e− δ2

2+δ
µ

= e
− (9ϵ′′−2)2/(3−9ϵ′′)2

(4−9ϵ′′)/(3−9ϵ′′) 3ℓ′(1/3−ϵ′′)

= e
− (9ϵ′′−2)2

3(4−9ϵ′′) ℓ′
.

Since 0 < ϵ′′ < 1/3 is a constant, it holds that 4− 9ϵ′′ > 0, hence we conclude that

Pr
[
X ≥ ℓ′/3

]
≤ e−ω(log n) = negl(n).

Hence, the probability that for any arbitrary strategy deployed by the adversary, the probability
that more than ℓ′/3 of the parties with a valid signing key are in S ∪ I is negligible.

29The exact Chernoff bound used is Pr [X ≥ (1 + δ)µ] ≤ e
− δ2

(2+δ) µ where µ = E[X]
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The forgery challenge phase proceeds when for each i ∈ S, the challenger signs the message
mi on behalf of honest Pi, and signs the message m on behalf of all the remaining honest parties
i ̸∈ S ∪ I. Next, the challenger hands these signatures {σi}i∈[n]\I to A who responds with an
aggregate signature σ′ ∈ X and a message m′ ∈M.

Claim C.7. Pr[(Verify(pp, {vk1, . . . , vkn}, m′, σ′) = 1) ∧ (m′ ̸= m)] ≤ negl(κ, n).

Proof. An accepting signature on any message m′ ̸= m consists of at least ℓ′/3 valid signatures of
the form σi = (i, m′, sigi), satisfying DS.Verify(vki, m′, sigi) = 1.

By Claim C.6, the number of parties with a valid signing key in S ∪ I is less than ℓ′/3 with an
overwhelming probability (in n). Essentially, the adversary receives valid signatures on a message
other than m only from less than ℓ′/3 parties (in C ∩ (S ∪ I)). Hence, the only way A can produce
more than ℓ′/3 valid signatures on any message other than m is by forging a valid signature for
a corrupt party whose signing key is ⊥ or by forging a signature for an honest party. Since the
verification keys of the parties whose signing keys are ⊥ correspond to oblivious keys, we rely on
the obliviousness of these keys (see Definition 5.2) to ensure that this only happens with negligible
probability (in κ). Similarly we can rely on the unforgeability of a digital signature scheme to
ensure that an adversary will be able to forge a valid signature for an honest party with a valid
signing key only with a negligible probability (in κ). Hence, except with negligible probability
negl(κ, n), the adversary is unable to forge an accepting SRDS signature.

This concludes the proof of Lemma C.5

This concludes the proof of Theorem 5.1.

C.2 SRDS from SNARKs (Cont’d)

We present the proof of Theorem 5.4.

Theorem 5.4. Let t < n/3. Assuming the existence of CRH, digital signatures, and SNARKs
with linear extraction, there exists a t-secure SRDS scheme in the CRS model with a bare PKI.

Proof of Theorem 5.4. In Lemma C.8 we will show that the construction in Figure 8 is succinct, in
Lemma C.9, we will show robustness and in Lemma C.10, we will show unforgeability.

Lemma C.8. The construction in Figure 8 is succinct.

Proof. We start by proving the size of the signatures is succinct. Each SRDS signature consists
of a “truncated transcript” z′ of size (|m| + |c| + |max| + |min| + |γ|) along with a proof π. For
“base” SRDS signatures, γ corresponds to a digital signature, and in all other cases γ = ⊥. By
definition, the size of each digital signature is poly(κ). Hence, the total size of each truncated
transcript z′ is poly(κ) + log n + log n + log n + log n = poly(κ) + O(log(n)). Since π = ⊥ for base
signatures, the total size of each base SRDS signature (truncated transcript + digital signature) is
poly(κ) + O(log(n)), and is thus succinct.

In each aggregate SRDS signature, this proof corresponds to the output of PCD.Prover. In
our construction, the size of PCD transcript z is |z′| + |Hvk| + |k| + |p| = poly(κ) + O(log(n)).
The Merkle verification algorithm runs in time poly(κ) + polylog(n); therefore, by construction,
the size of the compliance predicate is poly(κ) + polylog(n) and the bound B on its running time
is |Ssig| · (κ + polylog(n)), where |Ssig| ≤ q ≤ n. Therefore, by the succinctness property of PCD
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systems (see Appendix A.2), the size of each proof is poly(k + log B) = poly(κ) · polylog(n). Hence,
the total size of each aggregate signature is poly(κ) · polylog(n).

The time required to verify validity of each “base” signature in this construction is poly(log n, κ)
(here polylog(n) appears because of the binary representation of indices). The time required to verify
a PCD proof in our construction is poly(κ+ |C|+ |z|+log B) = poly(κ+log n) (Definition A.7). Fi-
nally, the time required to generate an aggregate signature is equal to the time required to compute
zout and the time to run PCD.Prover. The time required to generate zout includes the time required
to compute Merkle hash on all the verification keys, which is poly(κ, n), and the time required to
verify in the incoming transcripts and proofs, which is q · poly(κ + log n). Therefore, the running
time of Aggregate1 is q · poly(κ, n). The time required to run Aggregate2 includes the time required
for computing zout given the above information, which is |Ssig| · O(log n) and the time required to
run PCD.Prover, which is O(log n) + poly(κ + |C| + log B) = poly(κ + log n) (see Definition A.7).
Therefore, the total time required to run Aggregate2 is |Ssig| · poly(κ + log n) = poly(log n, k) (since
∥Ssig∥ is bounded by α(n, κ) ∈ poly(log n, κ) as enforced by the check in Aggregate1).

Lemma C.9. The construction in Figure 8 is t-robust.

Proof. Let A be a PPT adversary. We will show that A can win the game Exptrobust
b-pki,Π,A(κ, n, t)

with at most negligible probability. The game begins when the challenger computes pp =
(1κ, σpcd, τpcd, seed) ← Setup(1κ) and (vki, ski) ← KeyGen(pp) for every i ∈ [n]. Next, the ad-
versary adaptively selects the set of corrupted parties I and determines their verification keys.

In the robustness challenge phase, the adversary A chooses an (n, I, robust)-almost-everywhere
communication tree T = (V, E) (See Definition 3.3). It also chooses a message m ∈M and {mi}i∈N ,
where N is the set of honest parties that are assigned to leaf nodes that do not have a good path to
the root. Recall that there are n/ log5 n leaf nodes in this tree out of which all but 3/ log n fraction
have a good path to the root. In other words, the signatures of the parties assigned to “good” leaf
nodes are guaranteed to be part of the final aggregate signature. Total number of parties assigned
to the good leaf nodes are log5 n

(
1− 3

log n

)
n

log5 n
= n log n−3

log n . Let us use S to denote this set of
parties. Then |S| = n log n−3

log n > 2n/3. Since |I| < n/3, it holds that the number of honest parties
HS in the set S is at least |HS | ≥ 2n/3− |I| > n/3.

Next, the adversary gets signatures {σi}i∈[n]\I of all the honest parties on the respective mes-
sages (i.e., on message mi for i ∈ N and on message m for i ∈ [n] \ (I ∪ N )) and it computes
signatures of corrupted parties {σi}i∈I . As described in Figure 2, the challenger then interacts with
the adversary according to T = (V, E), to compute the aggregate signature σ.

Recall that the aggregation algorithm first checks the validity of incoming transcripts and proofs
and only aggregates transcripts with a convincing proof. Starting from the “base” signatures, if
the adversary does not provide valid signatures on m on behalf of the corrupted parties, they will
not pass the validity check at level ℓ = 2 (this follows from the correctness of the digital signature
scheme). The aggregation algorithm on the remaining “verified” base signatures mimics the inter-
active protocol ProofGen (as described in the completeness definition of PCD in Appendix A.2). The
tree T chosen by the adversary acts as the distributed-computation generator G (see Definition A.7).
For each “good” node in T , the reconstruction algorithm aggregates the signatures (i.e., computes
a C-compliance transcript and PCD proof) from its incoming edges and labels the outgoing edges
from the node with this partially aggregated signature. For every “bad” node in T , the adversary
can provide an arbitrary signature of its choice. From soundness of PCDs, it follows that the
adversary cannot give a faulty proof/partially aggregate signature that verifies. The aggregation
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algorithm halts at the root node and outputs the corresponding truncated transcript and proof
(i.e., the aggregated signature (z′

out, πout)). From this construction, we now have that the output
transcript is compliant with C, and even if the adversary does not provide valid partially aggregate
signatures for bad nodes, since there were at least n/3 honest signatures from the honest parties
that also had a good path to the root node, from the correctness of the digital signature scheme
and completeness of the Merkle hash proof system, it follows that cout ≥ n/3. Robustness now
follows from the completeness and succinctness of the PCD system.

Lemma C.10. The construction in Figure 8 is t-unforgeable.

Proof. Let A be a PPT adversary. We will show that A can win the game Exptforge
b-pki,Π,A(κ, n, t)

with at most negligible probability. The game begins when the challenger computes pp =
(1κ, σpcd, τpcd, seed)← Setup(1κ) and (vki, ski)← KeyGen(pp) for every i ∈ [n]. Next, the adversary
adaptively selects the set of corrupted parties and determines their verification keys; denote by I
the set of corrupted parties.

In the forgery challenge phase, the adversary A chooses a subset S ⊆ [n]\I, such that |S∪I| <
n/3, and messages m and {mi}i∈S from M. Subsequently, for each i ∈ S, the challenger signs the
message mi on behalf of honest Pi, and signs the message m on behalf of all the remaining honest
parties i ̸∈ S ∪ I. Next, the challenger hands these signatures {σi}i∈[n]\I to A who responds with
an aggregate signature σ′ ∈ X and a message m′ ∈M.

Let us assume for the sake of contradiction that the adversary manages to generate an aggregate
signature σ′ = (z′, π), such that Verify(pp, {vk1, . . . , vkn}, m′, σ′) = 1 and m′ ̸= m. From the proof
of knowledge property of the PCD system, we know that given a verifying proof from a polynomial-
size prover, there exists a polynomial-size extractor EPCD.Prover that can extract the witness. Recall
that given a vector of input transcripts zin and an output transcript zout, the compliance predicate
in our construction checks if the maximas and minimas of the input and output transcripts are
ordered properly, the value of counter c in the output transcript is equal to the sum of the counter
values in the input transcripts and that the same Merkle hash of keys is used in all transcripts.
Additionally, if any of the input transcripts correspond to base signatures, the compliance predicate
also checks that the signature is valid with respect to the verification key specified in that transcript
and also verifies the Merkle proof corresponding to this key and the Merkle hash. We now design
an adversary B that uses this extractor to either break unforgeability of the digital signature
scheme or break soundness of the Merkle hash proof system. The adversary B starts by computing
z = z′||(Hvk,⊥,⊥), where Hvk = Merkle.Hash(seed, (1||vk1), . . . , (n||vkn)), initializing Sval = ∅ and
running the following recursive algorithm Bext(σpcd, z):

1. Compute trans← EPCD.Prover(σpcd, z).

2. If C(trans) = 1, for each valid input “base” transcript in trans of the form (zi,⊥) on m′ with
zi = (m′, 1, i, i, γi, Hvk, ki, pi) and γi ̸= ⊥, set Sval = Sval ∪ {(zi, πi)}. For each partially
aggregated signature on m′ in trans of the form (zi, πi) with zi = (m′, ·, ·, ·, ·, ·, ·, ·), check
whether PCD.Verify(τpcd, zi, πi) = 1 and if so, run Bext(σpcd, zi).

If |Sval| ≥ n/3, the adversary B succeeds in extracting at least n/3 transcripts of the form
(m′, 1, i, i, γi, Hvk, ki, pi), each with a distinct i (as enforced by the checks on the maximas and
minimas) such that the following holds for each of these transcripts:

(a) DS.Verify(vki, m′, γi) = 1.
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(b) Merkle.Verify(seed, (i||ki), Hvk, pi) = 1.

Since Hvk was computed honestly by B, it holds for each extracted “base” transcript that either γi

is a valid signature with respect to ki = vki, or if ki ̸= vki, then the adversary A has managed to
break the soundness of the Merkle proof hash proof system. However, from Theorem A.9, we know
that this only happens with at most negligible probability (in κ). Now, since each i (and thereby
each ki) is distinct in the extracted “base” transcripts, adversary B has managed to extract at least
n/3 valid signatures (γi) on m′. Since the adversary only had access to signatures on m′ from less
than n/3 parties, this would imply that it has successfully forged signatures of some honest parties
in the set [n] \ S. From unforgeability of the digital signature scheme, we know that this can only
happen with at most negligible probability (in κ).

Lemmas C.8 to C.10 rely on PCD systems for logarithmic-depth and polynomial-size compliance
predicates. By Theorem A.8, such PCD systems exist assuming the existence of SNARKs with
linear extraction. This concludes the proof of Theorem 5.4.

D Connection with Succinct Arguments (Cont’d)
In this section, we provide supplementary material for Section 6. In Appendix D.1, we prove
Theorem 6.9, and in Appendix D.2 we formally define SNARG-compliant multi-signature schemes.

D.1 Proof of Theorem 6.9

Theorem 6.9. There exists s(n) ∈ Θ(n) such that, for any field F with char(F) ≥ max(ℓ + 2, 63),
any ring R = Fn of size |R| = 2Θ(n) with Hadamard product, and any elementary symmetric
polynomial ϕℓ, the (s, R)-Subset-ϕℓ problem is NP-complete.

Proof. We divide the proof as follows: (1) First, we show that for any ring R = Fn with Hadamard
product satisfying |R| = 2Θ(n), then for any elementary symmetric polynomial ϕ2, the R-Subset-ϕ2
problem (see Definition 6.6) is NP-complete by showing a reduction to 3-SAT. (2) Second, we show
the same for any ϕℓ, where ℓ ≥ 3. (3) Finally, we show how these reductions can be modified to
prove the existence of s ∈ Θ(n), for which (s, R)-Subset-ϕℓ (see Definition 6.6) is also NP-complete.

For R-Subset-ϕ2: Given a 3-CNF formula Φ over variables x1, . . . , xN with clauses C1, . . . , Cm,
each containing exactly three distinct literals, the reduction algorithm constructs an instance x =
(a1, . . . , a2+2N+3m, t) of the R-Subset-ϕ2 problem such that Φ is satisfiable if and only if there
exists a subset S ⊆ [2 + 2N + 3m], such that ϕ2({ai}i∈S) = t. The reduction algorithm constructs
elements in R = F1+N+m as follows:

1. A special element a1 = α0 ∈ R, whose first entry is 1 and all other entries are 0.

2. A special element a2 = α1 ∈ R whose first n + 1 entries correspond to 1.

3. For each variable xi (for i ∈ [N ]), define two elements a2+2i+1 = vi ∈ R and a2+2i+2 = v′
i ∈ R

such that the (1 + i)th entry of these elements is set to 1.
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4. Define three elements a2+2N+3j+1 = c1
j , a2+2N+3j+2 = c2

j , and a2+2N+3j+3 = c3
j corresponding

to each clause Cj (for j ∈ [m]). The (1+N +j)th entry in c1
j corresponds to 9, the (1+N +j)th

entry in c2
j corresponds to 4 and the (1+N +j)th entry in c3

j corresponds to 2. The remaining
entries in each of these correspond to 0.

5. The target element t is also a vector of 1 + N + m elements in F. The first 1 + N entries in t
are set to 1, while the remaining entries are set to 9.

We now prove completeness and soundness of this reduction:

Completeness. Suppose Φ has a satisfying assignment X. We will construct a subset S ⊆
[2 + 2N + 3m] such that ϕ2({ai}i∈S) = t. For each variable xi, if xi is set to 1 in X, we include
a2+2i+1 = vi in S, else we include a2+2i+2 = v′

i in S. We also include the two special elements
a1 = α0 and a2 = α1 in S. Note that, α0 and α1 are the only elements whose first entry is 1, the
first entry of all other elements is 0. This ensures that we have exactly 2 elements with value 1 in
the first column. Thus, the first entry of t is guaranteed to be 1. Also, apart from α1, for each
1 ≤ i ≤ N , there are only two other elements vi and v′

i whose (1 + i)th entry is set to 1. Including
one of these for each 1 ≤ i ≤ n along with α1 ensures that there are exactly two elements with
value 1 in the (1 + i)th column. Therefore, we are guaranteed to get 1 in each of the first 1 + N
entries of t.

Since X is a satisfying assignment, each clause must contain at least one literal with the value
1. For each clause Cj , if there is exactly one literal with value 1 in the satisfying assignment X,
we include c1

j . Note that S now has exactly one element whose (1 + N + j)th entry is set to 1
and exactly one element with 9 in this column. All other elements in the subset have 0’s in this
position. This ensures that the (1 + N + j)th entry of t adds up to 9. If there are exactly two
literals with value 1, we include c2

j . In this case, there are exactly two elements that have value
1 in the (1 + N + j)th column and exactly one element that has a value of 4 in this position. All
other elements in the subset have 0’s in this position. This ensures that the (1 + N + j)th entry of
t adds up to

(1 · 1) + (1 · 4) + (1 · 4) = 9.

Finally, if there are exactly three literals with value 1, we include c3
j . In this case, there are exactly

three elements that have value 1 in (1 + N + j)th column and exactly one element that has a value
of 2 in this position. All other elements in the subset have 0’s in this position. This ensures that
the (1 + N + j)th entry in t adds up to

(1 · 1) + (1 · 1) + (1 · 1) + (1 · 2) + (1 · 2) + (1 · 2) = 9.

Thus, the last m entries in t all add up to 9.

Soundness. Suppose there exists a subset S ⊆ [2 + 2N + 3m] whose pairwise sum of products is
t. We show that this implies that there must be a satisfying assignment for Φ. Note that α0 and
α1 are the only elements whose first entry is 1, while the first entry of all other elements is set to
0. Since the first entry in t is required to be 1, both α0 and α1 must be included in the set S.

For each 1 ≤ i ≤ N , there are exactly three elements α1, vi and v′
i whose (i + 1)th entry is 1.

Since we have already included α1 in S, if we include both vi and v′
i, then the (i + 1)th entry in

result of ϕ2 applied over S will be (1 · 1) + (1 · 1) = 2. Since the characteristic of the field F is at
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least 63, we know that 2 ̸= 1. Therefore, we are assured that only one of vi or v′
i can be included,

but not both. Therefore, for each 1 ≤ i ≤ n, the set S contains either vi or v′
i. If vi ∈ S, we set

xi = 1; else we set xi = 0.
We want the last m entries in t to all add up to 9 each. We note that for each 1 ≤ j ≤ m, there

must be at least one element of the form vi or v′
i in the subset S that has its (1 + n + j)th entry

set to 1. This is because none of the combinations of c1
j , c2

j , c3
j that have 9, 4, 2 in this position,

respectively, can add up to give 9 when all other elements have 0 in this position:

• If only one of either c1
j or c2

j or c3
j are included in S, then the (1 + n + j)th entry in the result

is trivially 0.

• If any two of c1
j , c2

j and c3
j are included in S, then the (1 + n + j)th entry in the result is

(9 · 4) = 36 or (9 · 2) = 18 or (4 · 2) = 8, depending on which cj values are included. Since the
characteristic of the field F is at least 63, we know that 36, 18, 8 are all different than 9.

• If all three of c1
j , c2

j and c3
j are included in S, then the (1 + n + j)th entry in the result is

(9 · 4) + (9 · 2) + (4 · 2) = 62. As before, since the characteristic of the field F is at least 63,
we know that 62 ̸= 9.

Therefore, there is at least one literal in each clause Cj whose value is 1 and Φ has a satisfying
assignment.

Having proved NP-completeness of R-Subset-ϕ2, we proceed to prove the general case of R-
Subset-ϕℓ for ℓ ≥ 3.
For R-Subset-ϕℓ, where ℓ ≥ 3: The reduction algorithm for reducing a given 3-CNF formula
Φ with N variables x1, . . . , xN and m clauses C1, . . . , Cm, each containing exactly three distinct
literals to an instance of R-Subset-ϕℓ and the proof of soundness for that reduction has already been
discussed in the proof sketch of Theorem 6.9 in Section 6.3. Here we only prove the completeness
for that reduction.

Completeness. Completeness follows similarly to the previous case. For a satisfying assignment
X for Φ, for each i ∈ [N ], either vi or v′

i is included in subset S. Since each monomial is a
combination of ℓ numbers, we include all the special elements α0, α1, . . . , αℓ−1 to get the value 1
in the first column ℓ times. This guarantees that the first N + 1 entries in t are all 1. Since X is
a satisfying assignment, each clause contains at least one literal with the value 1. For each clause
Cj (for j ∈ [m]), if there is exactly one literal with value 1, we include all the ℓ− 1 elements cj . If
there are exactly two literals with value 1, we include ℓ − 2 elements cj . And if there are exactly
three literals with value 1, we include ℓ − 3 elements cj . As before, this ensures that the value 1
appears exactly ℓ times in the last m columns and ϕℓ will evaluate to the target value 1 in these
positions.

For (s, R)-Subset-ϕℓ for some s ∈ Θ(n): Let Φ be a given 3-CNF formula with N variables
x1, . . . , xN and m clauses C1, . . . , Cm. It is easy to see that this instance can be reduced to another
3-CNF instance Φ′ with n′ = max(m, N) variables and n′ = max(m, N) clauses by adding “dummy”
variables and clauses. We can then use the reduction algorithms discussed above to reduce Φ′ to
an instance of R-Subset-ϕℓ with n = ℓ + 2n′ + (ℓ− 1)n′ elements in R. Recall that this reduction
is such that for a satisfying assignment X ′ for Φ′, the corresponding witness S for the R-Subset-ϕℓ

instance contains the following:
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• ℓ elements: It contains elements α0, . . . , αℓ−1.

• n′ elements: For each i ∈ [n′], it either contains vi or v′
i.

• At least (ℓ − 3)n′ elements: Depending on how many literals have value 1, in clause Cj (for
j ∈ [n′]), S contains at least ℓ− 3 elements cj .

As a result, the subset S for the R-Subset-ϕℓ instance contains at least ℓ + n′ + (ℓ − 3)n′ out of
n = ℓ + 2n′ + (ℓ− 1)n′ elements, i.e., s = |S| ∈ Θ(n) for each ℓ ∈ [n]. In other words, there exists
s ∈ Θ(n), for which (s, R)-Subset-ϕℓ is NP-complete.

This concludes the proof of Theorem 6.9.

D.2 SNARG-Compliant Multi-Signatures and Subset-ϕℓ

In this section, we identify the properties of multi-signatures used in Lemma 6.5 to provide the con-
nection with average-case SNARGs. We call multi-signature schemes that satisfy these properties
as SNARG-compliant multi-signature schemes.

Definition D.1 (SNARG-compliant multi-signatures). A multi-signature scheme (MS.KeyGen,
MS.Sign, MS.Verify, MS.Combine, MS.MVerify) is SNARG compliant if it satisfies the following
properties:

1. The algorithm MS.MVerify is deterministic.

2. Verification keys are independently and uniformly sampled from a ring R = Fk (for some k)
with Hadamard Product.

3. There exist polynomial-time algorithms MS.Verifyagg-key and fagg, such that given a multi-
signature σms ∈ Xms on a message m ∈ M, corresponding to a set of keys {vki}i∈S for some
subset S ⊆ [n], the algorithm MS.MVerify(ppms, {vki}i∈[n], S, m, σms) can be decomposed as
follows:

(a) vkagg = fagg({vki}i∈S).
(b) b = MS.Verifyagg-key(ppms, vkagg, m, σms).

4. There exists a PPT algorithm MS.MVerifyInv that on input the public parameters ppms, a
message m and a multi-signature σms, outputs vk ∈ R.
We require that for vkagg = fagg({vki}i∈S) ∈ R and MS.Verifyagg-key(ppms, vkagg, m, σms) = 1,
it holds that MS.MVerifyInv computes the corresponding unique and well-defined key vkagg,
i.e.,

MS.MVerifyInv(ppms, m, σms) = fagg({vki}i∈S).

5. There exist degenerate keys skdeg and vkdeg, and a PPT algorithm MS.Signdeg-key such that
σms ← MS.Signdeg-key(ppms, skdeg, m) satisfies MS.Verifyagg-key(ppms, vkdeg, m, σms) = 1.

We now show that an SRDS scheme based on a SNARG-compliant multi-signature scheme with
key-aggregation function fagg = ϕℓ, implies SNARGs for average-case Subset-ϕℓ. This reduction
can be viewed as a generalization of Lemma 6.5.
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Lemma D.2. Let F be a field, let R = Fk (for some k) be a ring with Hadamard product, let ϕℓ (for
some ℓ ∈ N, ℓ > 1) be an elementary symmetric polynomial over R, let 0 < α < 1 be a constant,
and let s(n) = α · n. Assume that |F| = nω(1) and that n/ log |R| < 1.

If there exists an SRDS scheme based on a SNARG-compliant multi-signature scheme with
key-aggregate function fagg = ϕℓ, then there exist SNARGs for average-case (s, R)-Subset-ϕℓ.

Proof. We give a construction of average-case SNARGs for (s, R)-Subset-ϕℓ using an SRDS scheme
based on an SRDS-compliant multi-signature scheme as per Definitions 6.2 and D.1.

1. S.Setup(1κ, 1n) : Run the setup of the SRDS scheme Setup(1κ, 1n) to output crs = (ppms, pp2).

2. S.Prove(crs, x, w) : Given an average-case yes instance-witness pair (x, w) ← Dyes(1n) of the
form x = (a1, . . . , an, t) and w = S, proceed as follows:

• Let α = ϕℓ−1({ai}i∈S) and let vkdeg be the degenerate aggregate verification key. If α does
not have an inverse in R, output ⊥ and terminate. Else, compute

an+1 = (vkdeg − ϕℓ({ai}i∈S)) · α−1 = (vkdeg − t) · α−1.

Parse crs = (ppms, pp2) and interpret the set {a1, . . . , an, an+1} as a set of n+1 verification
keys {vk1, . . . , vkn+1}. Note that ϕℓ({vki}i∈S′) = vkdeg for S′ = S ∪ {n + 1}.

• Choose an arbitrary m ∈ M and use MS.Signdeg-key (as defined in Definition D.1) to
compute

σms ← MS.Signdeg-key(ppms, skdeg, m).

• Use the algorithm P (that exists from Definition 6.2) to compute

π ← P(crs, vk1, . . . , vkn+1, S′, m, σms).

• Finally, output (m, σms, π).

3. S.Verify(crs, x, π) : Parse crs = (ppms, pp2) and x = (a1, . . . , an, t), and proceed as follows:

• Compute an+1 as in the prover algorithm. Interpret the set {a1, . . . , an, an+1} as a set of
n + 1 verification keys {vk1, . . . , vkn+1}.

• Compute vk = MS.MVerifyInv(ppms, m, σms) and check if vk equals the degenerate veri-
fication key vkdeg (that, by construction, satisfies vkdeg = ϕℓ({vki}i∈S′)). Set b′ = 1 if
vk = vkdeg and b′ = 0 otherwise.

• Run the verification algorithm of the SRDS scheme

b← Verify((ppms, pp2), vk1, . . . , vkn, m, (σms, π)).

• Finally output b ∧ b′.

We now argue succinctness, completeness, and average-case soundness for this construction:
Succinctness. Succinctness follows from the succinctness of the SRDS scheme.
Completeness. Recall that each of the values (a1, . . . , an) in an average case yes instance is
sampled uniformly at random; hence, the output of an elementary symmetric polynomial on a
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randomly chosen subset S of these values is also uniformly distributed. Given any average-case yes
instance-witness pair (x, w) ← Dyes(1n) of the form x = (a1, . . . , an, t) and w = S, the probability
that ϕℓ−1({ai}i∈S) has an inverse in R is 1 − k/|F|.30 Since our proof system only works for such
instances, the rest of this argument assumes that this is the case. Given x = (a1, . . . , an, t) and
w = S, it holds that fagg({ai}i∈S) = ϕℓ−1({ai}i∈S) = t or equivalently, it holds for S′ = S ∪{n + 1}
that

ϕℓ({ai}i∈S′) = ϕℓ({ai}i∈S) + an+1 · ϕℓ−1({ai}i∈S) = vkdeg.

Recall in an SRDS-compliant multi-signature scheme, it holds that

MS.MVerifyInv(ppms, m, σms) = ϕℓ({vki}i∈S′) = vkdeg.

Hence, MS.Verifyagg-key(ppms, vkdeg, m, σms) = 1, i.e., σms is a valid multi-signature on m with respect
to vkdeg. Since the multi-signature satisfies MS.MVerifyInv(ppms, m, σms) = vkdeg, completeness of
SRDS based on an SRDS-compliant multi-signature scheme (see Definition 6.2) implies that the
output of P, given this signature and S′ will be a valid SRDS signature. Completeness now holds
with an overwhelming probability since ϕℓ−1({ai}i∈S) has an inverse in R with an overwhelming
probability of 1− k/|F|.
Average-case soundness. Recall that each of the values (a1, . . . , an, t) in x← Dno(1n) is sampled
uniformly at random. Let α = ϕℓ−1({ai}i∈S) and assume that α−1 exists. Since t is a randomly
sampled value, so is an+1 = (vkdeg−t)·α−1 for any S ⊆ [n]. We interpret the set of n+1 verification
keys as vki = ai for i ∈ [n+1]; thus, the verification keys {vk1, . . . , vkn+1} are uniformly distributed
over R. Since n/ log |R| < 1 and the output of elementary symmetric polynomials is uniformly
distributed, then with overwhelming probability (bounded by 2n+1/|R|), there does not exist a
subset S′ ⊆ [n + 1] of size s + 1, such that ϕℓ({ai}i∈S′) = vkdeg.

Given (m, σms, π), we check if: (1) σms is a valid multi-signature on m with respect to vkdeg
and (2) if (σms, π) is a valid SRDS on m. Recall that in a SNARG-compliant multi-signature
scheme, given a multi-signature σms, a message m, and public parameters ppms, there exists a
unique aggregate verification key vkagg with respect to which σms verifies, i.e.,

MS.MVerifyInv(ppms, m, σms) = vkagg.

Therefore, if check (1) goes through, then vkagg = vkdeg is the only aggregate verification key for
which σms is a valid multi-signature on m. As argued earlier, with a high probability there does
not exist a subset S′ ⊆ [n + 1] such that ϕℓ({vki}i∈S′) = vkdeg. Also, from the soundness of SRDS
based on a multi-signature scheme (Definition 6.2), we know that if there does not exist a subset
S′ ⊆ [n + 1] of size s + 1, such that σms is a valid multi-signature on m with respect to {vki}i∈S′ ,
then the probability of an adversary computing a valid SRDS (σms, π) on a message m is negligible.
Soundness now follows from the soundness of SRDS based on a multi-signature scheme.

30We note that all elements of R = Fk, except for the ones with a 0 in any of its vector coordinates, have an
inverse in R.
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