
Updateable Inner Product Argument with
Logarithmic Verifier and Applications

Vanesa Daza1,2, Carla Ràfols1,2, and Alexandros Zacharakis1

1 Pompeu Fabra University
{vanesa.daza,carla.rafols,alexandros.zacharakis}@upf.edu

2 Cybercat

Abstract. We propose an improvement for the inner product argument
of Bootle et al. (EUROCRYPT’16). The new argument replaces the un-
structured common reference string (the commitment key) by a struc-
tured one. We give two instantiations of this argument, for two different
distributions of the CRS. In the designated verifier setting, this structure
can be used to reduce verification from linear to logarithmic in the circuit
size. The argument can be compiled to the publicly verifiable setting in
asymmetric bilinear groups. The new common reference string can easily
be updateable. The argument can be directly used to improve verification
of Bulletproofs range proofs (IEEE SP’18). On the other hand, to use the
improved argument to prove circuit satisfiability with logarithmic veri-
fication, we adapt recent techniques from Sonic (ACM CCS’19) to work
with the new common reference string. The resulting argument is secure
under standard assumptions (in the Random Oracle Model), in contrast
with Sonic and recent works that improve its efficiency (Plonk, Marlin,
AuroraLight), which, apart from the Random Oracle Model, need either
the Algebraic Group Model or Knowledge Type assumptions.

Keywords: Zero Knowledge · Inner Product · SNARKS · Range
Proofs · Updateable

1 Introduction

Zero-Knowledge proofs have been an important primitive in the theory of cryp-
tography since their introduction three decades ago. The classical applications
of zero-knowledge proofs are numerous, including for example identification
schemes, electronic voting, verifiable outsourced computation, or CCA secure
public-key encryption. The common denominator of all of these is that zk-proofs
are used to prove simple statements, like “this ciphertext is well-formed” or “I
know a valid signature key”. Although it was known that every NP statement
could be proved in zero-knowledge [23], the cost of such general proofs was
prohibitive and more sophisticated applications of zk-proofs were completely
impractical.

This situation has changed radically in the last few years with the intro-
duction of pairing-based zk-SNARKs [25]. The key element of these arguments

is that they are succinct, in fact, they are constant size, i.e. independent of
the witness size and thus, very fast to verify. This is extremely powerful: in
particular, a prover can show that it has executed correctly some large compu-
tation (expressed as a huge circuit) and a verifier will be convinced after doing
only very few checks (e.g. computing 3 pairings in [26]). Besides their scientific
interest, SNARKs have opened the door to new real-world privacy-preserving
applications. Cryptocurrencies like Zcash [6] or Ethereum [36] are two of the
most popular examples so far.

However, even the most efficient instantiations of pairing-based SNARKs
[26,28] have a few drawbacks. On the efficiency side, the main ones are long
common reference string and costly prover computation. On the security side,
they are based on very strong hardness assumptions, and the setup is assumed
to be trusted.

Recently, there are significant research efforts to propose alternatives which
overcome some of these drawbacks following several dimensions. For instance,
numerous works study how to reduce the trust in the common reference string,
exploring weaker models such as subversion resistant SNARKs ([4,1,17]), up-
dateable common reference strings ([27]) or transparent setup ([5]). Although
SNARKs are unbeatable in some facets, different tradeoffs are compelling de-
pending on the application scenario.

One of the most celebrated alternatives to SNARKs are the arguments of
knowledge for Arithmetic Circuit Satisfiability of Bootle et al. [10] (and Bul-
letproofs, the improvement thereof by Bünz et al. [12]). Their dependence on
weaker assumptions (the DLOG assumption and the Random Oracle if one
wants to remove interaction via Fiat-Shamir), the absence of a trusted setup
and the logarithmic size of the proofs are some of its most attractive features.
Unfortunately, verification time scales linearly, even when batching techniques
are used. The motivation of this paper is to improve the cost of the verifier in
the aforementioned works, while keeping most of its advantages.

1.1 Related Work

In [10], Bootle et al. proposed an interactive zero-knowledge argument at the
heart of which lies a recursive argument for an inner product relation of com-
mitted values. The argument has very interesting properties, most notably it is
transparent. The communication complexity is Oλ(log |C|)3 and the verification
cost is (Oλ(|C|)) which is the main drawback of the scheme, since verifying is
asymptotically as costly as evaluating the circuit. Prover complexity is asymp-
totically optimal (Oλ(|C|)) but it heavily uses expensive public-key operations.
Bünz et al. in [12] improved the concrete efficiency of the aforementioned pro-
tocol by a constant factor.

The Muggle-proofs based [39,40,37,38] proof systems build on the delegation
scheme of Goldwasser, Kalai, and Rothblum [24]. These are very efficient schemes
3 As explained in Section 2, Oλ(·) hides linear factors that depend on the security

parameter λ

2

for low depth computation, whose verification and communication complexity
depend on d logW , where d is the circuit depth, and W its width plus some
communication overhead depending on the specific instantiation. Hyrax [37] is
a DLOG-based transparent instantiation with an additional cost of Oλ(|w|

1
i)

for some i that can be fine-tuned. Recently, Libra [38] utilized and improved
techniques from [14] to achieve an asymptotically optimal prover complexity and
minimize public key operations. All these schemes need either a per-circuit setup
or work for log-space uniform computations. Since they are inherently interactive
they rely on the Fiat-Shamir transform to yield non interactive arguments.

Probabilistically Checkable Proofs (PCP) based constructions [5,7] originate
from the works of Kilian [31] and Micali [33], and are based on Interactive Oracle
Proofs [8] which generalize the classical PCP proofs in the interactive setting.
They are based on symmetric primitives which results in transparent, plausibly
post-quantum secure constructions. The main drawback is that they are still
concretely inefficient, especially as far as prover complexity is concerned. In the
same family, [22,30,2] build on the MPC-in-the-head paradigm [29] and share
similar properties. The most efficient one is Ligero [2] which, while having good
concrete efficiency, has communication complexity Oλ(

√
|C|) which can be bad

for moderately large computations.
The line of work of Linear PCP constructions [21,35,16,26] that originates

from the seminal work of Gennaro et al. [21] and abstracted in [9], are the most
efficient when considering verification time and communication. Their proof size
is constant and the verification cost is Oλ(|x|) where x is the public input. Note
that this is optimal since the verifier has to, at least, read the statement to be
proven. The main drawback is that they need a trusted setup.

To achieve a middle ground between efficiency and trust, Groth et al. [27]
defined the Updateable model. In this model, everyone can non-interactively
update the setup parameters. As long as one update is honest, soundness is
guaranteed. The authors also presented a scheme which is updateable, but it
has a universal common reference string of size quadratic in the maximal size of
all supported circuits (although from the global setup a linear, circuit-specific
string can be derived). Maller et al. presented Sonic [32], which improved this to
a linear CRS by exploiting the reduction of [10]. Several works [20,15,19] have
tried to improve the efficiency of Sonic concretely. However, all of these, including
Sonic, are secure either in the Algebraic Group Model, or under knowledge type
assumptions (apart from the Random Oracle Model). Recently, [13] uses the
techniques of the aforementioned results to construct a SNARK sound in groups
of unknown order. When instantiated in class groups it achieves a transparent
setup and asymptotically improves over STARKS [5] by a logarithmic factor.

1.2 Our Contribution

We construct a public-coin Argument of Knowledge in the Universal Updateable
Model based on the work of Bootle et al. [10]. The verification complexity is
Oλ(|x| + log |C|) and communication complexity is Oλ(log |C|) where |x| is the

3

public input size. The prover is linear in |C| but, as in [10], it needs to perform
a lot of public-key operations. The two constructions are secure, respectively,
under one assumption which reduces to asymmetric DLOG and another one to
asymmetric q-DLOG. They can be made non-interactive with the Fiat-Shamir
heuristic. Updating and verifying updates need timeOλ(|C|), and communication
complexity is Oλ(log |C|) (which can be reduced to Oλ(log log |C|)) and Oλ(1),
respectively.

As far as we know, all recently proposed efficient and fully-succinct update-
able schemes [32,20,15] rely on the Algebraic Group Model [18] or other Knowl-
edge Type assumptions apart from the Random Oracle Model, while in our case
the Random Oracle Model and a standard assumption is enough. However, the
aforementioned schemes have a better communication complexity (Oλ(1)) and,
while asymptotically the verifier has the same complexity (Oλ(log |C|)), in their
case it works mainly on the field while ours works in the group, which is less
efficient. Also, while the prover complexity in [32,20,15] is quasi-linear in |C| and
ours is linear, theirs works mainly in the field. We report some concrete numbers
in Table 1 for the overhead of each scheme (we do not include concrete num-
bers for other schemes in communication and verification since they are constant
while ours are logarithmic in |C|).

Finally, we observe that the major overhead in the general proof system is
the delegation of (public) computation regarding the circuit structure and so,
for fixed languages that may be of interest, we can use the same techniques to
achieve better efficiency. We demonstrate that by applying this in range proofs
improving on [12]. The main overhead compared to it is that we move to bilinear
groups instead of standard ones, but we exponentially reduce the verification
complexity.

1.3 Our Techniques

Distribution Parameterized Vector Commitments. We revisit the use
of vector commitment schemes in zero-knowledge proof systems when working
in groups: instead of using the classical Pedersen commitment key which is uni-
formly sampled, we add some limited structure which simultaneously allows more
efficient representation of the key and efficient updateability. When combined
with the properties of bilinear groups, only a compressed version of it is enough
to allow a verifier to perform verification tasks exponentially faster.

In particular we propose two instantiations:

– The commitment key consisting of group encodings of all monomials of a
secret x, i.e., [1], [x], [x2], . . . , [xn−1].

– The commitment key consisting of group encodings of all multilinear mono-
mials monomials of a secret x1, . . . , xν i.e. [1], [x1], [x2], [x1x2], . . . , [x1x2 · · ·xν].

The structure of both commitment keys allows to non-interactively update
the parameters and thus nullifying the trapdoors x or x1, . . . , xn. We take advan-
tage of this structure in bilinear groups to create compressed versions of these

4

|CRS| P V π Assumptions
Sonic [32] 36n G1 273n E1 Oλ(1) Oλ(1) AGM

Marlin [15] 6m G1 21m E1 Oλ(1) Oλ(1) AGM or KT
Plonk [19] n+ a G1 9(n+ a) E1 Oλ(1) Oλ(1) AGM

This work n′G1(P)
(22 + 10M)n′ E1

12 logn′ E1 12 logn′ G1 A-DLOG or
logn′G2(V) 8 logn′ P 4 logn′ F q-A-DLOG

Table 1. Comparison of the updateable SNARKSs in terms of the most expensive
operations (exponentiations and pairings). n is the number of multiplication gates, a
is the number of addition gates, m is the number of wires in the circuit and M is a
parameter, which determines the processed circuit’s fan-in and fan-out upper bound,
and can be fine-tuned to balance the computations of the prover and verifier. n′ is the
size of the processed circuit which in the worst case is upper bounded by n + 2m

M−1
.

Sonic empirically assumes n′ = 3n for M = 3 in its reported numbers rather than a
worst case analysis. P refers to pairing operations and E1 to G1 exponentiations. We
omit constant factors. Our prover is essentially only performing multi-exponentiations
and we consider we need k G1 exponentiations to do a k-multi-exponentiation, but
we note that they can be implemented with o(k) exponentiations, see e.g. [10]. In
the assumptions columns KT refers to Knowledge Type assumptions, AGM to the
Algebraic Group Model and A-DLOG, q-A-DLOG to variants of DLOG and q-DLOG
in the asymmetric group setting. All schemes are interactive and can be turned to
non-interactive in the Random Oracle model.

keys of size only log n. For various languages, this allows the verifier to verify
statements with the help of the prover without reading the whole commitment
key. This leads to exponentially faster verification of proofs with minimal over-
head for the prover, at the price of moving to bilinear instead of plain DLOG
groups.

Inner Program Argument with Logarithmic Verifier. Using these tech-
niques, we modify the inner product protocol of Bootle et al. [10] for proving
that for given commitments c1 = Com(a), c2 = Com(b) and z ∈ F, it holds that
a⊤b = z. More specifically, we note that the overhead of the verifier in [10] is
computing a new commitment key in each of the log n rounds of the protocol,
where n is the vector dimension. This key depends on the previous key and the
verifiers’ challenges. Instead of doing that, we only give the verifier the com-
pressed key (which is logarithmic in n) and have the prover convince the verifier
that the reduced statement is w.r.t. a new key which is the correct one.

Universally Updateable NIZK AoK. Having this powerful tool allows us to
aggregate linear and quadratic constraints and thus prove general statements.
We follow the techniques of [10] to reduce a statement about a circuit w.r.t. a
public input to an inner product one (which need not be zero knowledge) and we
can then use the improved inner product argument. More concretely, the prover

5

convinces the verifier that [α], [β] are commitments to a,b such that a⊤b = z.
The former vector depends on the witness and the latter on the circuit structure,
is public, and both depend on a random challenge issued by the verifier.

However, computing [β] given universal parameters that work for any circuit
(of bounded size) requires Oλ(|C|) time making verification linear in the compu-
tation size. To overcome this, we delegate this computation to the prover who
gives a succinct proof for the correct computation of [β]. To achieve that, we as-
sume a specific structure for the circuit (basically that the gates have bounded
fan-in and fan-out) and apply techniques similar to [32] adapted to our setting.
These conditions can be imposed by pre-processing the circuit appropriately
without asymptotically increasing the circuit size.

We note that when we have a fixed statement, we can make things much
more efficient. The blueprint of the construction remains the same and we can
appropriately fine-tune the parameter generation to avoid the delegation of com-
putation of [β] thus achieving a concretely more efficient verifier. We show how
this can be applied in Range Proofs, and reduce exponentially the verification
complexity of the similar construction of [12].

2 Preliminaries
2.1 Notations
We write x← S to denote uniformly sampling from S and assigning to x. When
A is an algorithm we denote with y ← A(x) the assignment of the output of
A with input x to y, where we uniformly sample randomness from A if it is
probabilistic. We write A(x; r) to explicitly refer to the randomness of A when
needed. We notate with Oλ(·) asymptotic complexity that hides linear factors
that depend on the security parameter λ.

We denote vectors with boldface letters. If v is a vector, we denote with
normal font its components, that is vi is its i-th component. We denote en ∈
Fn the n-th element of the canonical basis. The symbol ◦ is used for denoting
pairwise product, that is a ◦ b = (a1 · b1, . . . , an · bn).

Groups are written in additive notation and its elements are written implic-
itly: if we fix a generator g ∈ G, we denote with [r] the group element rg. We ex-
tend this notation to vectors of group elements by denoting [r] = ([r1], . . . , [rn]).
In the bilinear group setting, given some fixed generators g1, g2, gT = e(g1, g2),
we use subscripts to specify the group. In this notation, e([r]1, [s]2) = [rs]T .

Let G be a group of order q and r = (r1, . . . , rn) ∈ Zn
q ,a = (a1, . . . , an) ∈ Zn

q .
We denote [a⊤r] =

∑n
i=1 ai[ri], that is, [a⊤r] is a Vector Pedersen commitment

of a w.r.t. to commitment key [r]. Given a vector r = (r1, . . . , rn), for even
n, we denote r 1

2
= (r1, . . . , rn/2) and r 2

2
= (rn/2+1, . . . , rn). We denote xn =

(1, x, . . . , xn−1). Finally, let x1, . . . , xν ∈ Zn
q . We denote as x the vector that

is constructed recursively by setting x ← (1), {x← (x, xix)}i∈[ν]. Basically,
xn contains all the monomials of x up to degree n − 1, and x contains all the
multilinear monomials where a “canonical” ordering has been imposed by its
recursive definition.

6

2.2 (Zero Knowledge) Arguments

Interactive (Zero Knowledge) Arguments of Knowledge. We present the
definitions and the relevant results we need for (Zero Knowledge) Arguments of
Knowledge (ZKAoK). We follow the presentation of [10].

Let L ∈ NP be a language and RL the corresponding relation for L. A
ZKAoK allows a prover to convince a verifier of knowledge of a witness w cer-
tifying membership of a public x in L that is (x,w) ∈ RL. The zero knowledge
property guarantees that the verifier learns nothing about the witness w apart
from the fact that the prover knows such a witness.

Our final goal is a non-interactive argument, but we work in the interac-
tive setting and then use standard techniques for transforming the interactive
arguments to non-interactive.

Denote with ⟨P(x,w),V(x)⟩ the transcript of an execution of P and V with
respective inputs x,w and x. Let viewV⟨P(x,w),V(x)⟩ (viewP⟨P(x,w),V(x)⟩)
be the views of V (P) in a protocol execution (i.e. the input, randomness and
all incoming messages), and finally let outV⟨P(x,w),V(x)⟩ be the final verdict
of the verifier (accept or reject).

Definition 1. The pair ⟨P,V⟩ is a Zero Knowledge Argument of Knowledge if it
is public coin, it has perfect completeness, statistical witness extended emulation
and perfect honest verifier zero Knowledge as defined next.

Definition 2. The pair ⟨P,V⟩ has Perfect Completeness if for all (x,w) ∈ RL
it holds that Pr [outV⟨P(x,w),V(x)⟩ = 1] = 1.

Definition 3. The pair ⟨P,V⟩ has Statistical Witness Extended Emulation if
for all deterministic polynomial P∗, there exists an expected polynomial time
extractor E, such that for all (unbounded) adversaries A∣∣∣∣∣∣∣Pr

[
1← A(tr) (x, s)← A(1λ)∧

tr ← ⟨P∗(x, s),V(x)⟩

]
−

Pr

 (x, s)← A(1λ)∧
1← A(tr) (tr, w)← E⟨P∗(x,s),V(x)⟩(u)∧

if tr is accepting then (x,w) ∈ RL


∣∣∣∣∣∣∣ ≤ negl(λ).

Definition 4. An (n1, . . . , nµ)-tree of accepting transcripts for the pair ⟨P,V⟩
with 2µ+ 1 rounds is a tree where:

– Each node of the tree in level i is labeled with the transcript of the protocol
used up to V’s i-th message.

– Each node in the same level i is labeled with a transcript that uses fresh
(uniformly distributed and independent) randomness for the verifier’s i-th
challenges.

– Level i has ni descendants.

7

– The leafs are labeled with transcripts that are accepted by the verifier.

Definition 5. The pair ⟨P,V⟩ has (n1, . . . , nµ)-generalized special soundness if
there exists a PPT extractor E such that given an (n1, . . . , nµ)-tree of accepting
transcripts for the pair ⟨P,V⟩, the extractor E outputs a valid witness for the
statement.

Definition 6. An interactive proof system ⟨P,V⟩ is public coin if all messages
from V to P are independent and uniformly distributed, and are uniquely defined
by the randomness of the verifier alone.

Definition 7. A public coin interactive proof system ⟨P,V⟩ is perfect Honest
Verifier Zero Knowledge (HVZK) if there exists a PPT simulator S, such that
for all PPT A, it holds that

Pr
[
1← A(tr) (x,w, r)← A(1λ) ∧ tr ← ⟨P∗(x,w),V(x; r)⟩ ∧ (x,w) ∈ RL

]
=

Pr
[
1← A(tr) (x,w, r)← A(1λ) ∧ tr ← S(x, r) ∧ (x,w) ∈ RL

]
.

Theorem 1. Let ⟨P,V⟩ be a 2µ + 1 round, public coin, interactive proof sys-
tem with (n1, . . . , nµ)-generalized special soundness and

∏µ
i=1 ni = O(λc) for a

constant c. Then ⟨P,V⟩ has witness extended emulation.

The proof of the theorem is given in [10].

Updateable Non-Interactive (Zero Knowledge) Arguments of Knowl-
edge. Informally, a non-interactive argument system in the common reference
string model is a ZK argument with two rounds where the first is a setup round
to create parameters that can be reused in many proofs. The most efficient con-
structions for general NP statements (e.g. Groth [26]) need a very expensive
and inefficient trusted setup. To deal with this, Groth et al. [27] introduced the
notion of an Updateable Setup where users can non-interactively update the
parameters in a way that gives us the following guarantee: if an honest update
takes place, then no PPT adversary can break soundness. We follow the model
of Groth et al. [27], who show that for updateability it suffices to prove that an
argument is secure in the following model.

– The adversary creates setup parameters.
– An honest update on these parameters takes place.
– The adversary updates the parameters.
– Circuit specific parameters are derived publicly for a circuit C.
– Knowledge soundness is challenged w.r.t. these parameters.

We emphasize that the circuit-specific setup is done publicly: no secret is
involved in it. Anyone can take the universal parameters, and deterministically
compute the circuit-specific CRS. We present the definition of Updateable Non-
Interactive (Zero Knowledge) Arguments of Knowledge.

8

Definition 8. An Updateable Non-Interactive (Zero Knowledge) Argument of
Knowledge is a tuple of algorithms (USetup, Update, VrfySetup, VrfyUpdate,
CircuitSetup, Prove, Vrfy) where

– σ ← USetup(1λ, n): USetup takes as input the security parameter λ and an
upper bound on the derived circuit size n, and outputs a universal CRS σ.

– (σ′, πσ′) ← Update(σ): Update takes as input a universal CRS σ, and pro-
duces a new universal CRS σ′ along with a proof of correct update πσ′ .

– 0/1 ← VrfySetup(σ, 1λ, n): VrfySetup takes as input a universal CRS σ, the
security parameter λ and n and outputs a bit indicating the correctness of
the structure of the universal CRS.

– 0/1← VrfyUpdate(σ′, σ, πσ′): VrfyUpdate takes as input the new and old CRS
σ′ and σ, and a proof π′

σ, and outputs a bit indicating the correctness of the
update.

– σC ← CircuitSetup(σ, C): is a deterministic algorithm that takes as input the
description of a circuit with size bounded by n, and the universal CRS and
outputs circuit specific parameters σC.

– π ← Prove(σC , x, w): takes as input the CRS σC, the public and private input
x,w, and outputs a proof π.

– 0/1 ← Vrfy(σC , x, π): takes as input the CRS σC, the public input x and a
proof π, and outputs a proof indicating its validity.

which is Perfectly Complete, Knowledge Sound and Statistically Zero Knowledge
as defined next.
Definition 9. An Updateable Non-Interactive Argument of Knowledge is Per-
fectly Complete if for all λ, n

Pr
[
VrfySetup(σ, 1λ, n) = 1 σ ← USetup(1λ, n)

]
= 1,

for all λ, n, σ

Pr

[
VrfySetup(σ′, 1λ, n) = 1 ∧ VrfySetup(σ, 1λ, n) = 1 ∧
VrfyUpdate(σ, σ′, πσ′) = 1 (σ′, πσ′)← Update(σ)

]
= 1

and for all λ, n, σ, C, x, w where C encodes a circuit of size bounded by n and
RC(x,w) = 1

Pr

 VrfySetup(σ, 1λ, n) = 1 ∧
Vrfy(σC , x, π) = 1 σC ← CircuitSetup(σ, C) ∧

π ← Prove(σC , x, w)

 = 1.

Definition 10. An Updateable Non-Interactive Argument of Knowledge is Knowl-
edge Sound if for all stateful PPT adversaries A = (A1,A2,A3), there exists an
extractor EA, such that for all λ, n, C where C is a circuit of size bounded by n

Pr


(σ1, st1)← A1(1

λ, n) ∧
VrfySetup(σ1, 1

λ, n) = 1 ∧ (σ2, πσ2
)← Update(σ1) ∧

VrfyUpdate(σ3, σ2, πσ3) = 1 ∧ (σ3, πσ3 , st2)← A2(st1, σ2, πσ2) ∧
Vrfy(σC , x, π) = 1 ∧ σC ← CircuitSetup(σ3, C) ∧
C(x,w) ̸= 1 (x, π)← A3(st2, σC ; r) ∧

w ← E(σC , x; r)

 ≤ negl(λ).

9

Definition 11. An Updateable Non-Interactive Arguments of Knowledge is Sta-
tistically Zero knowledge in the Random Oracle model if there exists a pair of
PPT algorithms S1,S2, where S2 is stateful, such that for all A, and for all
circuits C of size bounded by n, where C takes as input a public value x and a
private value w then

Pr


b← {0, 1} ∧

σ ← AHb(setup, 1λ, n) ∧
b’ = b VrfySetup(σ, 1λ, n) = 1 ∧

σC ← CircuitSetup(σ, C) ∧
b′ ← AHb,Ob(σC)

 ≤ 1

2
+ negl(λ)

where H is modeled as a Random Oracle and

O0(x,w)←

{
⊥, if RC(x,w) = 0

Prove(σC , x, w), otherwise
, H0(m)← H(m),

O1(x,w)←

{
⊥, if RC(x,w) = 0

S1(σC , x), otherwise
, H1(m)← S2(m).

Note that this definition considers adversarially created parameters, i.e. Sub-
version Resistant ZK [4].

From HVZK Interactive AoK to Non Interactive ZK AoK. It is well-
known that we can use the Fiat-Shamir heuristic to transform any public coin
Perfect HVZK interactive argument to a non-interactive full-fledged Statistical
Zero Knowledge argument in the Random Oracle Model.

2.3 Updateable Commitment Schemes

We define commitment schemes which have an updateability property as well.
We do this to simplify proofs in the following sections. An updateable commit-
ment will be enough to guarantee updateability of all the protocols in this work,
since all the arguments presented hold regardless of parameters unless there is
a breach in the binding property of the commitment scheme.

Definition 12. An Updateable Commitment Scheme is a tuple of algorithms
(Setup,VrfySetup,Update,VrfyUpdate,Com,Open) such that

– ck ← Setup(1λ, n) takes as input the security parameter λ and the vector
dimension n, and outputs a commitment key ck.

– (ck′, πck′) ← Update(ck): Update takes as input a commitment key ck and
produces a new commitment key ck′ and a proof of correct update πck′ .

– 0/1 ← VrfySetup(ck, 1λ, n): VrfySetup takes as input a commitment key ck,
the security parameter λ and the dimension n, and outputs a bit indicating
the correctness of the structure of the key.

10

– 0/1← VrfyUpdate(ck′, ck, πck′): VrfyUpdate takes as input a new key ck′, an
old key ck and a proof πck′ , and outputs a bit indicating update correctness.

– (c, τ) ← Com(ck,m) takes as input the commitment key and a message
m ∈Mn, and outputs a commitment c ∈ C and an opening trapdoor τ ∈ T .

– 0/1← Open(ck, c,m, τ) takes as input the commitment key, the message and
the opening trapdoor and outputs a bit indicating the validity of the opening.

which is Correct, Updateable Computationally Binding and Perfectly Hiding as
defined next.

Definition 13. An Updateable Commitment Scheme is correct if for all λ, n

Pr
[
VrfySetup(ck, 1λ, n) = 1 ck← Setup(1λ, n)

]
= 1,

for all λ, n, ck

Pr

[
VrfySetup(ck′, 1λ, n) = 1 ∧ VrfySetup(ck, 1λ, n) = 1 ∧

VrfyUpdate(ck, ck′, πck′) = 1 (ck′, πck′)← Update(ck)

]
= 1

and for all λ, n, ck,m

Pr

[
Open(ck, c,m, τ) = 1

VrfySetup(ck, 1λ, n) = 1 ∧
(c, τ)← Com(ck,m)

]
= 1.

Definition 14. An Updateable Commitment Scheme has the Updateable Com-
putational Binding property if for all stateful PPT A = (A1,A2,A3), and for
all λ, n

Pr


VrfySetup(ck1, 1λ, n) = 1 ∧

(ck1, st1)← A1(1
λ, n) ∧VrfyUpdate(ck3, ck2, πck3) = 1 ∧

(ck2, πck2
)← Update(ck1) ∧Open(ck3, c,m1, τ1) = 1 ∧

(ck3, πck3
, st2)← A2(st1, ck2, πck2

) ∧Open(ck3, c,m2, τ2) = 1 ∧
(c,m1, τ1,m2, τ2)← A3(st2)m1 ̸= m2

 ≤ negl(λ).

Definition 15. An Updateable Commitment Scheme is perfectly hiding if, for
all λ, n,m, and all ck s.t. VrfySetup(ck, 1λ, n) = 1, and all c1

Pr
[
c = c1 (c, τ)← Com(ck,m)

]
= Pr

[
c = c1 c← C

]
.

3 Assumptions

We present the assumptions used in this work.

Definition 16. (DLOG Assumption) The DLOG Assumption holds w.r.t. a
group generator GroupGen if for all PPT adversaries A

Pr
[
r = r′ pp← GroupGen(1λ) ∧ r ← Zq ∧ r′ ← A(pp, [r])

]
≤ negl(λ).

11

We will also consider natural extensions of the DLOG Assumption. In the n-
DLOG Assumption, the adversary receives n-powers of r, [1], [r], . . . , [rn]. In the
Asymmetric DLOG Assumption in asymmetric bilinear groups, the adversary
receives r in both groups [r]1, [r]2. Similarly, in the asymmetric n-DLOG As-
sumption, the adversary receives the powers of r in both groups. In either case,
its goal is to compute r ∈ Zq.

The inner product argument of Bootle et al. [10] and the argument presented
in this paper are based on the generalization of the DLOG Assumption presented
next but with different vector distributions. The binding property of the vector
commitments used in these arguments trivially reduces to this assumption.

Definition 17. Let n ∈ N. We call Dn a vector distribution if it outputs in PPT
time, with overwhelming probability vectors in Zn

q .

In this paper, Dn will typically be the distribution of the key of some perfectly
hiding commitment scheme. More specifically, we will consider the distributions:

Un : r = (1, x1, . . . , xn−1) , PWn : r =
(
1, x, . . . , xn−1

)
,

ML2ν : r = (1, x1, x2, x1 · x2, . . . , x1 · · ·xν) ,

where x, xi ← Zq. The first distribution is the uniform distribution, the second is
the n-Power distribution and the last one is the multilinear monomial distribu-
tion with n = 2ν . Note that in the notation we introduced before, the power and
multilinear monomial distribution can also be written as PWn : r = xn, x← Zq

and ML2ν : r = x,x← Zν
q .

Definition 18. The Dn-Find-Rep Assumption holds with respect to GroupGen
for all polynomial time adversaries A

Pr

 [a⊤r] = [0] ∧ a ̸= 0
pp← GroupGen(1λ) ∧

r← Dn ∧
a← A(pp, [r])

 ≤ negl(λ).

It is well known that the Un-Find-Rep (resp. PWn-Find-Rep) Assumption re-
duces to the DLOG (resp. q-DLOG) Assumption. For Multilinear Monomial
distribution, we prove a similar result in Thm. 2. This assumption is inspired by
the Naor-Reingold PRF [34].

In asymmetric bilinear groups, we define the Asymmetric Dn-Find-Rep As-
sumption analogously except that the adversary receives r in both source groups
G1,G2. We can prove similar reductions to asymmetric variants of the DLOG
Assumption.

Theorem 2. If there exists an adversary that runs in time t(λ) and breaks the
ML2ν -Find-Rep Assumption with probability ϵ(λ) with respect to a group gener-
ator BilGroupGen(1λ), then there exists an adversary that breaks the Asymmetric
Discrete Logarithm Assumption relative to BilGroupGen(1λ) in time Oλ(2

ν)+t(λ)

with probability ϵ(λ)
ν .

The proof of the theorem is presented in Appendix A.

12

4 Distribution Parameterized Vector Commitment

We can construct Updateable Commitment Schemes under the Dn-Find-Rep
assumptions we described. The Setup and Com are the same for all and they
basically work as in the classical Pedersen Commitment.

We describe for the asymmetric MLn,PWn distributions the algorithms
related to the update (note that for Un, i.e. the Pedersen Vector Commitment,
updateability trivially holds since the Setup is transparent). We present theMLn

case in detail and discuss which modifications are needed for the PWn setting.
For our application it is sufficient to give in G2 only the elements that define
the commitment key, and not the whole key vector, i.e. [x]2 such that r = x.
Looking ahead, in the inner product argument [x]2 will be the compressed key
the verifier has.

The update mechanism is fairly simple. To check a commitment key’s struc-
ture, simply assert the various DDH relations that are implied by the MLn

distribution, and to update, pick a vector from MLn and multiply it pairwise
with the current key. NIZK PoK are used to assert that the previous random-
ness is taken into account in the new key and to ensure that any party updating
knows its contribution to the final commitment key.

– Setup(1λ, n)
• pp← GroupGen(1λ).
• r←MLn.
• Output pp, [r]1, [x]2 ← ([r1]2, [r2]2, . . . , [r2i]2, . . . , [r2ν]2).

– VrfySetup (pp, [x]2, [r]1)
• Verify [r1]1 = [1]1.
• For 1 ≤ i ≤ ν, for 1 ≤ j ≤ 2i−1, check if e([r2i−1+j]1, [1]2) =

e([rj]1, [xi]2).
• If all checks succeed output 1, otherwise output 0.

– Update (pp, [x]2, [r]1)
• y← Zν

q .
• Compute [r′]1 ← y ◦ [r]1, [x′]2 ← y ◦ [x]2.
• For 1 ≤ i ≤ ν, let πi ← NIZKAoK {([xi]2, [x

′
i]2), (yi) : [x

′
i]2 = yi[xi]2}.

• Output (pp, [x′]2, [r
′]1, π1, . . . , πν).

– VrfyUpdate (pp, [x]2, [x′]2, [r
′]1, π1, . . . , πν)

• If π1, . . . , πν are correct, output VrfySetup (pp, [x′]2, [r
′]1).

– Com (pp, [r]1,m)
• Pick ρ← Zq.
• Compute c← [(m, ρ)⊤r].
• Output (c, τ) where τ ← ([r]1, ρ).

– Open (pp, [x]2,m, c, τ)
• Parse τ = ([r]1, ρ).
• Output 1 iff VrfySetup (pp, [x]2, [r]1) and c = [(m, ρ)⊤r].

Theorem 3. The MLn-Find-Rep Commitment scheme is Updateably Compu-
tationally Binding under the MLn-Find-Rep assumption, and the existence of a
NIZK AoK for the relation R = {(([x], [x′]), y) |[x′] = y[x]}.

13

The proof of the theorem is presented in Appendix B.
We can use a transparent scheme such as [12] to prove that an update is

correctly performed, which will yield Oλ(log log n) proof size.
A similar construction works for the PWn distribution. In this case, we simply

need the element x encoded in G2 since this is enough to check that the key is
drawn from the PWn distribution. That is, for each i, it is enough to check that
e([ri]1, [1]2) = e([ri−1]1, [x]2). The Update and VrfyUpdate work in the same way
but now a NIZK AoK is only needed for the element [x]2.

As for concrete efficiency, the cost is dominated by the group exponentia-
tions and the pairing operations for the verifier (the NIZK AoK statements are
logarithmic in n). Setup and Update are dominated by n exponentiations in G1,
VrfySetup and VrfyUpdate by n pairing operations, and Com and Open by one
multi-exponentiation of size n in G1 which, if performed trivially needs n expo-
nentiations. Proof size amounts to log n proofs of the NIZK AoK in the MLn

case and 1 in the PWn case.

4.1 Commitments to Monomial Vectors

We will need to efficiently compute special commitments in the proof systems we
present later. Specifically, given commitment schemes underML2ν and PW2ν we
will need to compute (non-hiding) commitments to tn and t where we know t and
t1, . . . , tν , respectively. Of course, these computations can be performed in time
linear in the vector dimension, but we want to do so in sublinear (logarithmic
in n) time. Since the univariate case reduces to the multilinear one by setting
ti = t2

i−1 , we only consider the most general case of computing t when the
keys are drawn from the ML2ν distribution. We will need this in two different
settings:

1. In the first case, let ck = (ckP , ckV) be a commitment key. A prover, holding
the whole commitment key ckP , computes the commitment to t w.r.t. ck,
and gives it to a verifier, who holds only a compressed version of it, ckV . It
also gives a small proof that the issued commitment is a commitment to t
w.r.t. ck.

2. In the second case, given a commitment to 1n w.r.t. some commitment key
ck = (ckP , ckV) (which can be precomputed once), the verifier derives a com-
mitment to t w.r.t. a new commitment key ck′ = (ck′P , ck′V) in logarithmic
time in n.

For the first case we use the following lemma:

Lemma 1. Let ck = (pp, [x]2, [r]1) be a commitment key where [r]1 = [x]. Then
Comck(t) =

∏ν
i=1(1 + tixi)[1]1.

Proof. We use induction on ν.

– When ν = 1, we have t = (1, t1) and x = (1, x1). We get

Comck(t) = [r1]1 + t1[r2]1 = [1]1 + t1x1[1]1 = (1 + t1x1)[1]1.

14

– For ν > 1, we have [rν]1 = (xν−1[1]1, xνxν−1[1]1) and t = (tν−1, tνtν−1)
and

Comck(t) = [t
⊤
rν]1 = [tν−1

⊤
rν−1]1 + [tνtν−1

⊤
xνrν−1]1 =

= [tν−1
⊤
rν−1]1 + tνxν [tν−1

⊤
rν−1]1 =

= (1 + tνxν)[tν−1
⊤
rν−1]1 =

= (1 + tνxν)

ν−1∏
i=1

(1 + tixi)[1]1,

where the last equality follows from the induction hypothesis.

■
We take advantage of this structure by having the prover sending, for all

i ∈ {1, . . . , ν}, the elements

[τi]1 ←
i∏

j=1

(1 + tjxj)[r]1 = (1 + tixi)[τi−1]1,

where [τ0]1 = [1]1. The verifier can then use the pairing to check

e(ti[τi−1]1, [xi]2) = e([τi − τi−1]1, [1]2).

The prover needs to do log n G1 multi-exponentiations each of size 2i for i ∈{
1, . . . , n

2

}
, which can be implemented with n G1 exponentiations. The veri-

fier needs to perform log n pairing operations and 2 log n G1 exponentiations to
verify.

For the second case, we do the following: suppose the verifier is given Comck1
(1) =

[1⊤r]1. The verifier and the prover can compute a new verification key ck2 as
follows:

(ckV2 , ckP2) = (([r]1, t
−1
1 [x1]2, . . . , t

−1
ν [xν]2), (r ◦ t

−1
)).

Then, we have:

[1⊤r]1 = [(1 ◦ t)⊤(r ◦ t−1
)]1 = [t

⊤
(r ◦ t−1

)]1 = Comck2(t).

The verifier needs log n G2 exponentiations and the prover can implicitly
hold its key without computing it: when it needs to commit to m it can simply
commit to m ◦ t−1 thus saving in expensive group operations.

5 Improved Inner Product Argument
In this section, we will first provide a high-level description of the inner product
argument of [10], which has linear verification cost. Next, in subsection 5.2 we
briefly discuss how to reduce the verification complexity to logarithmic in the
designated verifier setting in the CRS model by changing the distribution of the
commitment keys (still under the DLOG Assumption). In asymmetric bilinear
groups, the construction can be “compiled” to achieve public verifiability, as
discussed in subsection 5.3.

15

5.1 Inner Product Argument
We first briefly present the Inner Product Argument of [10]. The argument is a
Proof of Knowledge of the openings of two (non-hiding) Vector Pedersen Com-
mitments that satisfy an inner product relation. In [10], keys are sampled from
Un. Formally, it is a proof of knowledge for the following language LIP:

(pp,[r], [s] ∈ G2ν , [α], [β] ∈ G, z ∈ Zq) ∈ LIP ⇐⇒
∃a,b ∈ Z2ν

q s.t. [α] = [a⊤r] ∧ [β] = [b⊤s] ∧ a⊤b = z.

The idea of the protocol is to reduce this statement to an equivalent one of
roughly half the size.

To do that, we create new commitment keys which have size half of the
original one by splitting them in half and then combining them to a new key
based on a challenge issued by the verifier. That is, the new commitment key
will be [r′] = c−1[r 1

2
] + c−2[r 2

2
], where c is the verifier’s challenge.

In order to prevent the prover from taking advantage of the split, we first
ask her to give partial commitments [α−1] = [a⊤1

2

r 2
2
], [α1] = [a⊤2

2

r 1
2
].

The new witness will be a′ = ca 1
2
+ c2a 2

2
. Note that both prover and verifier

can compute the commitment to this new value, for every challenge c, from the
partial commitments as follows:

[α′] = [a′
⊤
r′] = [(a 1

2
c+ a 2

2
c2)⊤(c−1r 1

2
+ c−2r 2

2
)]

= [a⊤1
2
r 1

2
] + [a⊤2

2
r 2

2
] + c−1[a⊤1

2
r 2

2
] + c[a⊤2

2
r 1

2
]

= [α] + c−1[α−1] + c[α1].

The same procedure is done for the second commitment [β] = [b⊤s] with the
inverse challenge c−1.

Finally, the prover sends before seeing the challenge c the values z−1 = a⊤2
2

b 1
2

and z1 = a⊤1
2

b 2
2
, and based on these, the new inner product is computed as

z′ = z−1c+z+z1c
−1. The new statement becomes (pp, [r′], [s′], [α′], [β′], z′) ∈ LIP.

Straightforward calculations assert that the new witness is indeed a witness
for the new statement. The prover can now simply send the new witness a′,b′

with cost half of what it would take to send a,b.
To achieve logarithmic complexity, the prover and the verifier recursively

proceed in reducing the statement size until it is constant. The prover finally
sends the witness. Under the generalized forking lemma the protocol remains
sound.

We formally present the protocol next.

IPReduce

– Common input: σ = (pp, [r], [s]), [α], [β], z.
– P input: a,b.
– Statement: (σ, [α], [β], z) ∈ LIP.

16

The prover and verifier proceed as follows:

– P computes

[α−1]← [a⊤
1
2
r 2

2
], [β−1]← [b⊤

1
2
s 2

2
], z−1 ← a⊤

2
2
b 1

2
,

[α1]← [a⊤
2
2
r 1

2
], [β1]← [b⊤

2
2
s 1

2
], z1 ← a⊤

1
2
b 2

2
.

– P sends [α−1], [α1], [β−1], [β1], z−1, z1 and V replies with c← Zq.
– P computes

a′ ← a 1
2
c+ a 2

2
c2, b′ ← b 1

2
c−1 + b 2

2
c−2.

– P and V compute

[r′]← c−1[r 1
2
] + c−2[r 2

2
], [s′]← c[s 1

2
] + c2[s 2

2
],

[α′]← c−1[α−1] + [α] + c1[α1], [β′]← c1[β−1] + [β] + c−1[β1],

z′ ← z−1c
1 + z + z1c

−1,

σ′ ← (pp, [r′], [s′]).
– The reduced statement is (σ′, [α′], [β′], z′) ∈ LIP, with witness a′,b′.

5.2 DV Inner Product Argument with Logarithmic Verifier

In this section we give the intuition on how to modify the above protocol with
a Dn-variant of the commitment scheme to achieve a logarithmic verifier. Full
details are only given for the public verifiable scheme, which is very similar.

The linear overhead in the verifier’s computation is computing the new key r′.
Having a structured commitment key allows to make this computation implicit
for the verifier. If r ← MLn, then r = (r 1

2
, r 2

2
) = (r 1

2
, xνr 1

2
). So, in the first

round, the key for the next round is

[r′] = c−1[r 1
2
] + c−2[r 2

2
] = (c−1 + xνc

−2)[r 1
2
].

The new key is now determined by [x1], . . . , [xν−1] and the new generator (c−1+
xνc

−2)[1]. Further, this transformation respects the structure of the key, which
can again be written as r′ = (r′1

2

, xν−1r
′
1
2

), so the same argument can be applied
again.

In the designated verifier case, we let the verifier know x1, . . . , xν . It does not
compute or read [r′] in each round but just checks in the last round if:

[r′] =

ν∏
i=1

(c−1
i + xν−i+1c

−2
i)[1],

where ci is the challenge at round i, and [r′] is the key in the last round (consisting
of 1 element). The same holds for the second key [s′]. Therefore, verification
requires a logarithmic number of operations.

17

When r← PWn, the verification can also be reduced to logarithmic, as the
structure of the key is very similar, namely, r = (r 1

2
, r 2

2
) = (r 1

2
, x2ν−1

r 1
2
). The

PW2ν can be seen as a special case where xi = x2i−1 .

5.3 Inner Product Argument with Logarithmic Verifier

To allow public verifiability, we work in asymmetric bilinear groups. The verifier
can no longer compute

ν∏
i=1

(c−1
i + xν−i+1c

−2
i)[1],

but it lets the prover compute the intermediate values in each round (which it
can compute without knowledge of xi), and the verifier uses the pairing as a
DDH oracle to verify this claim.

We now present the argument formally for theML2ν distribution (for PWn

the argument is defined similarly and we omit the details). First, we define the
language of well structured commitments. We include the generator since it will
be modified in each round.

(pp,[r]1, [r]1, [x]2) ∈ LML2ν

Com ⇐⇒
[r1]1 = [r]1 ∧ ∀i ∈{1, . . . , ν} ∀j ∈

{
1, . . . , 2i−1

}
[r2i−1+j]1 = xi[rj]1.

The language to be proven and the reduction step are presented next.

(pp,[r]1, [s]1, [x]2, [y]2, [α]1, [β]1, z) ∈ LIP ⇐⇒
∃ [r]1, [s]1 ∈ G2ν ,a,b ∈ Z2ν

q s.t.
(pp, [r]1, [r]1, [x]2) ∈ LML2ν

Com ∧ (pp, [s]1, [s]1, [y]2) ∈ LML2ν

Com ∧
[α]1 = [a⊤r]1 ∧ [β]1 = [b⊤s]1 ∧ a⊤b = z.

PVReduce

– Common input: σ = (pp, [r]1, [s]1, [x]2, [y]2) , [α]1, [β]1, z.
– P input: σP = (pp, [r]1, [s]1),a,b.
– Statement: (σ, [α]1, [β]1, z) ∈ LIP.

The prover and the verifier proceed as follows:

– P computes

[α−1]1 ← [a⊤
1
2
r 2

2
]1, [β−1]1 ← [b⊤

1
2
s 2

2
]1, z−1 ← a⊤

2
2
b 1

2
,

[α1]1 ← [a⊤
2
2
r 1

2
]1, [β1]1 ← [b⊤

2
2
s 1

2
]1, z1 ← a⊤

1
2
b 2

2
.

– P sends [α−1]1, [α1]1, [β−1]1, [β1]1, z−1, z1 and V replies with c← Zq

18

– P computes

a′ ← a 1
2
c+ a 2

2
c2, b′ ← b 1

2
c−1 + b 2

2
c−2,

[r′]1 ← c−1[r 1
2
]1 + c−2[r 2

2
]1, [s′]1 ← c[s 1

2
]1 + c2[s 2

2
]1,

[r′]1 ← [r′1]1, [s′]1 ← [s′1]1,

σ′
P = (pp, [r′]1, [s′]1).

– P sends [r′]1, [s
′]1.

– V checks the following pairing equations and aborts if any fail.

e([r′]1 − c−1[r]1, [1]2) = e(c−2[r]1, [xν]2),

e([s′]1 − c[s]1, [1]2) = e(c2[s]1, [yν]2).

– Both compute

[x′]2 ← ([xi]2)i∈{1,...,ν−1}, [y′]2 ← ([yi]2)i∈{1,...,ν−1},

[α′]1 ← c−1[α−1]1 + [α]1 + c[α1]1, [β′]1 ← c[β−1]1 + [β]1 + c−1[β1]1,

z′ = z−1c+ z + z1c
−1,

σ′ =
(
pp, [r′]1, [s′]1, [x′]2, [y

′]2
)
.

– The reduced statement is (σ′, [α′]1, [β
′]1, z

′) ∈ LIP.

Theorem 4. The protocol presented is a Public Coin, Argument of Knowledge
for the relation LIP with log n round complexity, Oλ(n) prover complexity, and
Oλ(log n) communication and verification complexity under either the MLn-
Find-Rep or the PWn-Find-Rep assumptions. The argument yields a Universally
Updateable Non-Interactive AoK in the Random Oracle model. In the former case
the proof size of an update is Oλ(log n) and in the latter Oλ(1).

Proof.
Completeness: We show that each reduction round leads to a valid reduced state-
ment. It is enough to show that the prover and verifier compute the same key.
Then, we can argue as in the case with uniform keys.

First, note that [r′]1 = c−1[r 1
2
]1 + c−2[r 2

2
]1, which means that we “combine”

all pair of elements that have distance 2ν−1. That is, for all j ≤ 2ν−1,

[r′j]1 = c−1[rj]1 + c−2[r2ν−1+j]1.

Also, note that, by construction of the commitment keys for all i ∈ {1, . . . , ν}
and j ∈

{
1, . . . , 2i−1

}
, it holds that [r2i−1+j]1 = xi[rj]1, which means that

[r′]1 = [r′1]1 = c−1[r1]1 + c−2[r2ν−1+1]1 = c−1[r]1 + c−2xν [r]1 and the verifier
always accepts the pairing test.

It remains to show that (pp, [r′]1, [r′]1, [x′]2) ∈ LCom. It is evident that [r′1]1 =
[r′]1. We show that the various Diffie-Hellman Relations hold for the reduced
statement.

19

Let i ∈ {1, . . . , ν − 1} and j ∈
{
1, . . . , 2i−1

}
. It holds that [r′2i−1+j]1 =

xi[r
′
j]1. Indeed,

[r′2i−1+j]1 = c−1[r2i−1+j]1 + c−2[r2ν−1+2i−1+j]1 = c−1xi[rj]1 + xνxic
−2[rj]1

= xi(c
−1[rj]1 + xνc

−2[rj]1) = xi[r
′
j]1.

Similar calculations show the part related to s′. We can now argue completeness
exactly as in the U2ν case.

Witness extended emulation: For witness extended emulation we need to prove
that, for each round, we can extract the witness, i.e. the commitment key and
the commitment openings w.r.t. it. We show next how to extract the commit-
ment keys. After having these, we can argue as in [10] except that we use the
corresponding Dn-Find-Rep Assumption.

Assume we get two accepting transcripts for different challenges c from the
prover. We show that given a witness for the reduced statement, we can extract
the unique valid commitment keys [r]1, [s]1.

Let [r′b]1 = c−1
b [r 1

2
]1+c−2

b [r 2
2
]1 be the new commitment keys for two different

challenges c0, c1. The matrix with rows (c−1
b , c−2

b) for b ∈ {0, 1} is invertible, so
we can take appropriate linear combination and extract [r 1

2
]1, [r 2

2
]1. We show

that this is the commitment key. First note that since the transcript is accept-
ing, we have that for both reduced keys [r′2i−1+j]1 = xi[r

′
j]1 which means that

[r2i−1+j]1 = xi[rj]1 and [r2ν−1+2i−1+j]1 = xi[r2ν−1+j]1 for all i ≤ ν − 1, j ≤ 2i.
In other words [r 1

2
]1 and [r 2

2
]1 are valid commitment keys w.r.t. the same

[x1]2, . . . , [xν−1]2. By the pairing test, we have that [r′b]1 = c−1
b [r]1+c−2

b xν [r]1 =
c−1
b [r 1

2 ,1
]1 + c−2

b [r 2
2 ,1

]1. This equation holds for both challenges cb, so it should
be the case that [r 1

2 ,1
]1 = [r] and [r 2

2 ,1
]1 = xν [r], thus the extracted key should

be the unique key determined by [x1]1, . . . , [xν]1. We argue for [s]1 in the same
way. After extracting the keys the extractor works exactly as in [10] to extract
a,b.

Complexity: It is evident that the protocol needs ν rounds. In each round the size
of the witness is decreased in half, and we perform a constant number of com-
munication, so we have Oλ(ν) communication complexity. The prover in round i
performsOλ(2

ν+i−1) computations, so the prover complexity isOλ

(∑ν
i=1 2

ν−i+1
)
=

Oλ(2
ν), while the verifier does Oλ(1) operations and therefore its complexity is

Oλ(ν). To be more concrete, the communication complexity is 8 log n elements
in G1 and 2 log n elements in Zq. Prover complexity is dominated by 4 times
log n multi-exponentiations of sizes n

2i in G1 to compute the first 4 messages
in each round and less than 4n G1 exponentiations to compute all the keys. In
total, 8n exponentiations in G1 with a non optimized implementation of multi-
exponentiations.

■

20

6 Updateable Zero Knowledge SNARK for CSAT

We could use the improved inner product argument in a black box way to improve
the verification of the zero knowledge protocol of Bootle et al. [10]. However, the
source of inefficiency of verifier in [10] is twofold: the linear time needed in veri-
fying the inner product argument, and some computation needed for the specific
circuit. The latter is inherent to universal arguments since the verifier needs to,
at least, read the circuit. The way to solve this is to add a circuit setup phase
so the verifier will need to read the circuit only once. For a universal argument,
this circuit setup should involve no secrets, that is, it should be a deterministic
algorithm with input the Universal CRS and the circuit description. In this sec-
tion, we give a sketch of the proof of Bootle et al. and explain where this source
of inefficiency occurs in their construction. Then, we show how to overcome this
using techniques similar to Sonic [32].

Roughly, the proof of [10] works as follows:

– P commits to its witness (a satisfying wire assignment) w.
– V issues a random challenge y.
– P computes a polynomial t(X) = qy(X)⊤(qy(X)◦yn+2sy(X))+2K where

qy(X) is a vector of polynomials that depends on w and y, and sy on the
circuit structure and the challenge y. K is a value that depends on the
public input and y. The polynomial t(X) has zero constant coefficient if and
only if the circuit is satisfiable w.o.p. over the choice of y. It then sends
a commitment to the polynomial t(X) which has constant degree (it can
commit to its coefficients using standard Pedersen Commitments).

– V picks and sends a random challenge x to the prover. V then computes
commitments to qy(x), qy(x) ◦ yn, sy(x) and K. The first two values are
computed given a commitment to w and utilizing the homomorphic proper-
ties of the commitment scheme, and sy is computed by the circuit description.
K is computed efficiently by the public input.

– P decommits to tx = t(x). V checks this claim and the prover and verifier
execute an inner product protocol to assert that t(x)−2K = qy(x)

⊤(qy(x)◦
yn+2sy(x)). This convinces the verifier that the polynomial t(x) has indeed
a zero constant term and that it was computed honestly, thus the verifier is
convinced about the claim.

The Verifier in [10] is linear in the circuit for three reasons:

– The inner product protocol in the last step needs linear time.
– Computing a commitment to qy(x) ◦ yn needs linear time.
– Computing a commitment to sy(x) needs linear time.

The first two problems can be addressed easily: the first by using the improved
inner product protocol, and the second by utilizing the structure of the MLn

or PWn distributions to compute the commitment in logarithmic time. For the
latter, the key homomorphic properties described in subsection 4.1 are utilized
to efficiently obtain a commitment to qy(x) ◦ yn from a commitment to qy(x).

21

The most subtle point is computing a commitment to sy(x). This depends on
the circuit structure and the challenge y. We solve it by applying similar tech-
niques as Sonic [32]. We first preprocess the circuit to impose a specific structure
that allows to “commit” to it efficiently. Then we use an aggregated Grand Prod-
uct protocol which we introduce in the next section to delegate the computation
of sy(x) to the prover. We closely follow Sonic in the handling of this issue, but
we differ from it in the setting: in this work we delegate computation of a vector
commitment while in Sonic the prover decommits to bivariate polynomials of
specific form by utilizing a univariate polynomial commitment scheme.

We present on Appendix C the preprocessing for the general case which only
incurs in a constant overhead and so parameters remain optimal (i.e. linear in
the size of computation).

6.1 Description of the ZK Argument

We assume that the circuit is preprocessed (see Appendix C) and has n − 1
multiplication gates for n = 2ν (the last element will be used as a blinding
factor). The size of the public input and output is n′. The circuit is satisfiable
iff the following constraints hold

a ◦ b− c = 0,{
ai +wa,i

⊤c = 0
}
i∈{n′+1,...,n−1} ,

{
ai +wa,i

⊤c− χi = 0
}
i∈{1,...,n′} ,{

bi +wb,i
⊤c = 0

}
i∈{1,...,n−1} ,

where x = (χ1, . . . , χn′) is the public input and wa,i = 0 for i ∈ {1, . . . , n′}.
These equations are satisfied iff the circuit is satisfiable w.r.t. the input x.

We can aggregate these equations as follows: First, add one extra zero element
an = bn = 0 to a,b, c to make them have 2ν elements (these will be used as a
blinding factor) and two extra zero constraints an+0⊤c−0 = 0, bn+0⊤c−0 = 0
and set

pm(Y) = (a ◦ b− c)⊤Yn = a⊤(b ◦Yn)− c⊤Yn,

pa(Y) =

n∑
i=1

(
ai +wa,i

⊤c
)
Y i−1 −

n′∑
i=1

χiY
i−1 = a⊤Yn + c⊤

n∑
i=1

wa,iY
i−1 −

n′∑
i=1

χiY
i−1,

pb(Y) =

n∑
i=1

(
bi +wb,i

⊤c
)
Y i−1 = b⊤Yn + c⊤

n∑
i=1

wb,iY
i−1.

Now, let
p(Y) = pm(Y) + Y npa(Y) + Y 2npb(Y).

The polynomial p should be identically zero iff the circuit is satisfiable. For a
fixed y, we define wa,wb,K as follows:

wa =

n∑
i=1

wa,iy
i−1, wb =

n∑
i=1

wb,iy
i−1, K = −yn

n′∑
i=1

χiy
i−1. (1)

22

Note that these values only depend on the circuit, the input and the challenge.
We now get

p(y) = a⊤(b ◦ yn) + yna⊤yn + y2nb⊤yn + c⊤(ynwa + y2nwb − yn) +K.

We can now construct polynomials

q(X) = aX + bX−1 + cX2 + dX3,

s(X) = ynynX−1 + y2nynX + (ynwa + y2nwb − yn)X−2,

t(X) = q(X)⊤ (q(X) ◦ yn + 2s(X)) + 2K.

Here d is some blinding factor chosen by the prover. The constant term of t(X)
equals 2p(y). The prover now can commit to the non-zero coefficients of t using
standard Pedersen Commitment and then the verifier issues a new challenge x.
The prover reveals t on this value, and the verifier needs to be convinced that the
decommitted value is equivalent to computing the value on the right side. To do
so, after agreeing on the (commitments of) vectors q(x),q(x) ◦ yn +2s(x), they
execute an inner product protocol to assert that their inner product is t(x)−2K.
If that is the case, the verifier can be confident that the constant term of t(x)
is indeed zero, and thus the assignment satisfying. We sketch how the verifier
computes the two commitments needed for the inner product protocol.

Let ck1 be a commitment key defined in the CRS. The commitment to q(x)
w.r.t. ck1 can be computed by the homomorphic properties of the commitment
scheme and commitments to a, b, c, d w.r.t ck1, which the provers issues in the
first round.

Now, a commitment to q(x) ◦ yn + 2s(x) is needed to run the inner prod-
uct argument. A commitment to q(x) ◦ yn, can be computed by the verifier,
by deriving a new key ck2, such that, the commitment to q(x) w.r.t. ck1 is a
commitment to q(x) ◦ yn w.r.t. ck2, as described in subsection 4.1. It remains
to compute a commitment to s(x) w.r.t. ck2.

Note that s(x) only depends on public values and the verifier can compute
it, but would need linear time to do so. But if the verifier had commitments to
wa,wb, it could compute the commitment to s(x) succinctly. To get such com-
mitments, it delegates their computation to the prover. Assuming a preprocessed
circuit, its description is given by matrices of the form Wa =

∑M
k=1 Wa,k where

Wa,k are matrices with, at most, one non-zero value in each column and row
(respectively for b). It follows by Eq. 1 and the structure of the preprocessed
circuit matrix Wa, that the verifier needs a commitment to

wa =

n∑
i=1

wa,iy
i−1 = yn⊤Wa = yn⊤

M∑
k=1

Wa,k =

M∑
k=1

σk(y
n) ◦wa,k,

for known vectors wa,k and permutations σk.
We sketch this delegation part in the next section, and provide a full descrip-

tion for it in Appendix D. A detailed description for the protocol is presented in
Appendix E.

We state next the theorem which is the main result of our work.

23

Theorem 5. There exists a Public Coin, Honest Verifier Zero Knowledge Argu-
ment of Knowledge for CSAT with O(log |C|) round complexity, Oλ(|C|) prover
complexity, and Oλ(log |C|) communication and verification complexity under
either the ML|C|-Find-Rep or the PW|C|-Find-Rep assumptions. The argument
yields a Universally Updateable NIZK AoK in the random oracle model. In the
former case the proof size of an update is Oλ(log |C|) and in the latter Oλ(1).

We note that, to achieve updateability, we rely on a NIZK AoK for proving
correctness of the updates. One can be flexible in selecting such a NIZK AoK to
fine tune efficiency measures. For example, one could combine the ML|C|-Find-
Rep scheme with [10] as the underline NIZK AoK for updateability to achieve
Oλ(log log |C|) proof size for proving correctness of an update.

7 Proof of Vector Permutation

We use techniques similar to Sonic to handle the computation regarding the
structure of the circuit. We consider only the case of the left-wires for simplicity,
i.e. the commitment to wa. The problem boils down to the following.

Let ck1 = (ckP1 , ckV1) = ([r]1, ([x1]2, . . . , [xν]2)), be a commitment key defined
in the CRS, [ωa,1]1, . . . , [ωa,M]1 be commitments to vectors wa,1, . . . ,wa,M w.r.t.
ck1, σa,1, . . . , σa,M be commtiments to permutations w.r.t. ck1 (i.e. Comck1(va,i)
where va,i = (σa,i(1), . . . , σa,i(n))). These commitments succinctly encode the
circuit structre. Given a value y and a commitment key ck2 = (ckP2 , ckV2) =

(r ◦ y−n, ([x1y
20]2, . . . , [xνy

2ν−1

]2)), compute with the help of the prover a com-
mitment [ωa]1 to the vector wa = wa,1 ◦σa,1(y

n)+ . . .+wa,M ◦σa,M (yn) w.r.t.
ck2, where σa,i(y

n) = (yσa,1(1)−1, . . . , yσa,M (n)−1).
Note that, all the commitments that do not depend on the challenge y, can

be computed once in a (deterministic) preprocessing phase, and can be reused
in multiple proofs. The goal is to allow the verifier to compute the challenge
dependent values in logarighmic time. These values are public and a linear time
verifier could compute these on its own, though sacrifying succinctness.

The main difference with Sonic is in the setting. Sonic works with permu-
tation polynomials, that is, polynomials of the form pi(X,Y) =

∑
ajX

jY σi(j)

and the goal is to decommit to an evaluation in x, y for a polynomial p(X,Y) =∑M
i=1 pi(X,Y), that is, the prover wants to reveal p(x, y).
In both our work and Sonic, the heart of the protocol is a Permutation

Argument which uses a Grand Product Argument [3,11]. We reduce the Grand
Product Argument to an inner product and utilize the inner product argument
of section 5, while Sonic, reduces it to verifying a value of a univariate polynomial
and utilizes a univariate polynomial commitment scheme.

We next sketch the delegation protocol, and in the following subsection we
describe how to reduce the Grand Product to an inner product.

To proceed the prover and the verifier do the following:

– The prover helps the verifier compute a commitment to y−n w.r.t. ck1, as
explained in subsection 4.1.

24

– The prover provides values [υi]1, for 1 ≤ i ≤ M , which it claims are com-
mitments to σa,i(y

n) w.r.t. ck1.
– The prover gives [ωa,i]1 and claims they are commitments to wa,i ◦ σa,i(y

n)
w.r.t. ck1.

– The prover gives [ω′
a,i]1 and claims they are commitments to wa,i ◦σa,i(y

n)◦
y−n w.r.t. ck1. Equivalently, these are commitments to wa,i ◦σa,i(y

n) w.r.t.
ck2.

– The prover and the verifier aggregate and reduce all the above claims to an
inner product, which is verified by the improved inner product.

– The verifier sets [ωa]1 = [ω′
a,1]1 + . . .+ [ω′

a,M]1 as a commitment to wa.

We present a sketch for reducing a Grand Product to an inner product in
the next section. In Appendix D we present how we can aggregate all the above
claims, and give a description of the protocol.

7.1 Proof of Grand Product

Let ck1 = (ckP1 , ckV1) = ([r]1, ([x1]2, . . . , [xν]2)), be a commitment key. Also, let
a1 = (a1, a2, . . . , an) and b1 = (b1, b2, . . . , bn), and [α1]1, [β1]1 be commitments
w.r.t. ck1. The claim is that

∏
ai =

∏
bi.

Let a2 = (1, a1, a1a2, . . . , a1 · · · an−1) be the vector of partial products and
a3 = a2◦a1. We similarly define b2, b3. One can easily verify that a3,n =

∏n
i=1 ai

and b3,n =
∏n

i=1 bi. To convince the verifier, the prover gives commitments [α2]1,
[α3]1, [β2]1, [β3]1 to vectors a2, a3, b2, b3 w.r.t. ck1, convince it that they have
the right form, and prove that a3,n = b3,n.

We express these requirements as a set of quadratic and linear constraints.
We use different variables Y,W for the various groups of equations for presenta-
tional convenience, but we can use just one variable Y and set W = Y k for an
appropriate k.

a3,n = b3,n,

a1 ◦ a2 = a3, b1 ◦ b2 = b3,

a2,1 = 1, b2,1 = 1,

{a2,i = a3,i−1}ni=2, {b2,i = b3,i−1}ni=2.

We show how to reduce these equations to an inner product. We can aggregate
the two Hadamard products by setting

p1(Y) = a1
⊤(a2 ◦Yn)− a3

⊤Yn, p2(Y) = b1
⊤(b2 ◦Yn)− b3

⊤Yn.

We also set

p3(Y) = (a2,1 − 1) +

n∑
i=2

(a2,i − a3,i−1)Y
i−1 = a2

⊤Yn − Y a3
⊤(Yn − Y n−1en)− 1,

p4(Y) = (b2,1 − 1) +

n∑
i=2

(b2,i − b3,i−1)Y
i−1 = b2

⊤Yn − Y b3
⊤(Yn − Y n−1en)− 1,

25

p5(Y) = a3,n − b3,n = en
⊤a3 − en

⊤b3.

and p(Y,W) = p1(Y) +Wp2(Y) +W 2p3(Y) +W 3p4(Y) +W 4p5(Y). The poly-
nomial p is identically zero if and only if the constraints are satisfied. We use
the technique of Bootle et al. to embed it in the constant term of a polynomial
(similarly to the previous section). The resulting polynomials are

q(X) = a1X + a2X
−1 + wb1X

2 + b2X
−2 + a3X

3 + b3X
4,

s(X) = w2ynX + w3ynX2

+
(
−w2y(yn − yn−1en) + w4en − yn

)
X−3

+
(
−w3y(yn − yn−1en)− w4en − wyn

)
X−4,

t(X) = q(X)⊤ (q(X) ◦ yn + 2s(X))− 2w2 − 2w3.

The verifier computes a commitment to q(x)◦yn w.r.t. the new commitment key
-defined by the challenge y- as in the previous section. As for the commitment
of s(x) w.r.t. this new key, however, the verifier can compute it itself: it only
needs commitments to yn, and to yn−1en w.r.t. the new key. For the first, it
is given a commitment to [o]1 = [1n⊤r]1 with the initial key, ck1, and for the
second, the last group element of the initial commitment key [rn]1. The desired
commitments w.r.t the new key are [o]1 and [rn]1. The prover and the verifier
then proceed as in the CSAT case. Both [o]1 and [rn]1 can be precomputed once.
The detailed protocol is given in Appendix D.

Extending for multiple Grand Products. It is straightforward to extend these pro-
tocol to prove simultaneously M grand products. Also we can add kM quadratic
equations of the form c1◦c2 = c3 to include the remaining constraints needed to
compute the commitments needed for the CSAT case. We include the modified
system of equation in Appendix D.

7.2 Proof of Known Permutation

Let [r]1 be a commitment key of size n = 2ν , [α]1 = [a⊤r]1, [β]1 = [b⊤r]1 and
σ ∈ Sn be a permutation of {1, . . . , n}. The prover wants to convince the verifier
that, for all, i bi = aσ(i).

In the same spirit as [32], we use the proof system of [3,11]. The verifier
is given as input commitments to (1, . . . , n) and (σ(1), . . . , σ(n)) denoted as
[ι]1, [ι

π]1 respectively, and a commitment to 1n denoted as [o]. The idea is to
reduce this problem to whether two vectors have equal grand products.

The verifier issues two challenges t, u ∈ Zq and the prover needs to convince
the verifier that

n∏
i=1

(bi + tσi − u) =

n∏
i=1

(ai + ti− u)

Viewing these as polynomials in u, if their respective roots {bi + tσi}i∈{1,...,n}
and {ai + ti}i∈{1,...,n} are different, they will be different in a fixed u with over-
whelming probability (in a sufficiently large field). Also bi + tσi will be the σ

26

permutation of ai + ti only if for all i bi = aσ(i), except with negligible probabil-
ity. Thus, proving the grand product of the commitments [β]1+t[ιπ]1−u[o]1 and
[α]1 + t[ι]1 − u[o]1 (which are efficiently computable for the verifier) are equal is
enough.

8 Range Proofs With Logarithmic Verifier

We present a new, more efficient aggregated range proof to allow a prover to con-
vince a verifier that it knows openings for perfectly hiding commitments which
all are in a range [0, 2m). This has applications in cryptocurrencies such as Mon-
ero to privatize transactions. Our approach resembles that of Bulletproofs [12].
The difference is that, in the inner product protocol of [12], the inner prod-
uct claimed is encoded in the group (i.e. a⊤b[r]) while in our setting the inner
product is given as an element of Zq. We thus slightly modify things to work
in our setting. We exploit two things to achieve logarithmic verification time:
the improved inner product argument, and the ability to compute structured
commitments of the form tn efficiently (either with the help of the prover or by
modifying the commitment key). We present the blueprint of the scheme. Details
for the protocol are presented in Appendix F.

Let [0, 2m) be the desired range and let ν be the smallest number such that
n = 2ν ≥ m. We first transform the statement to a set of linear and quadratic
constraints, and we then construct a suitable inner product statement that holds
if and only if the statement is correct w.o.p. Let [γ]1 = v[1] + ρc[r2]1 ([r2] is
used as a blinding factor for the commitment) be a hiding commitment to v.
Equivalently, we can consider this as a binding commitment to the n-dimensional
vector c = (v, ρc, 0, . . . , 0), that is, [γ]1 = [c⊤r]1 for a given commitment key [r]1.
The prover can compute the binary representation of v padding the end with
zeros. Denote the padded representation a. It is enough for the prover to show
that:

– a⊤2n = c⊤0n (note that we define 0n to have 1 as its first element).
– a has the first m− 1 elements equal to either 0 or 1.
– a has all the other variables equal to zero.
– c has all but the first and second elements zero.

Now let bi = ai−1 for 1 ≤ i < m, bi = 0 for i ≥ m. We express these constraints
and aggregate them as follows:

a ◦ b = 0, {ai − bi − 1 = 0}m−1
i=1 , a⊤2n = c⊤0n,

{ai = 0}ni=m , {bi = 0}ni=m , {ci = 0}ni=3 .

Now let Y1 = (1, . . . , Y m−2, 0, . . . , 0) ∈ Zn
q ,Y2 = (0, . . . , 0, Y m−1, . . . , Y n−1) ∈

Zn
q and Y3 = (0, 0, Y 2, . . . , Y n−1) ∈ Zn

q . We define polynomials

p1(Y) = a⊤(b ◦Yn),

27

p2(Y) =

m−1∑
i=1

(ai − bi − 1)Y i−1 +

n∑
i=m

aiY
i−1 = a⊤Yn − b⊤Y1 − 1n⊤Y1,

p3(Y) =

n∑
i=m

biY
i−1 = b⊤Y2, p4(Y) =

n∑
i=3

ciY
i−1 = c⊤Y3.

The equations hold if and only if

p(Y) = p1(Y) + Y np2(Y) + Y 2np3(Y) + Y 3np4(Y) + Y 4n(a⊤2n − c⊤0n).

is identically zero. Similarly to the CSAT case, we define for fixed y

q(X) = aX + bX−1 + cX2 + dX3,

s(X) =
(
ynyn + y4n2n

)
X−1 +

(
−yny1 + y2ny2

)
X

+
(
y3ny3 − y4n0n

)
X−2,

t(X) = q(x)⊤(q(x) ◦ yn + 2s(X))− yn1n⊤y1.

Now the constant term of t(X) should be zero for all Y,X if the constraints
are satisfied so we proceed exactly as in the proof system of CSAT except that
now it is easier to compute the vector s(x). In particular, the verifier can effi-
ciently compute s(x), if it has commitments to 1n, (1m−1,0), 1n − (1m−1,0)
and (0, 0, 1, . . . , 1, 1). By the key homomorphic properties of the commitment
scheme these are commitments to yn,y1,y2,y3 w.r.t. the new key. The prover
and verifier can efficiently compute a commitment to the vector 2n w.r.t to
the appropriate key as described in the polynomial commitment section. Fi-
nally, note that the inner product 1n⊤Y1 = 1 + y + y2 + . . . + ym−2 can be
efficiently computed by the verifier. Indeed, assuming w.l.o.g. (otherwise apply
recursively) that m−2+1 = 2µ for some µ we have that 1+y+y2+ . . .+y2

µ−1

=

(1+y2
0

)(1+y2
1

) · · · (1+y2
µ−1

), and the verifier can compute this in logarithmic
time. The full protocol is presented in Appendix F. We note that the aggregation
techniques similar to [12] can be applied in the above.

We state the main theorem for the Range Proof protocol.

Theorem 6. There exists a Public Coin, Honest Verifier Zero Knowledge Ar-
gument of Knowledge for the language LRP = {m, [α]1, [1]1,2, [r2]1,2, | ∃v, ρc s.t.
[α]1 = v[1]1 + ρc[r2]1 ∧ v < 2m} with logm + O(1) round complexity, Oλ(m)
prover complexity, and Oλ(logm) communication and verification complexity
under either the MLm-Find-Rep or the PWm-Find-Rep assumptions. The ar-
gument yields a Universally Updateable NIZK AoK in the Random Oracle model.
In the former case the proof size of an update is Oλ(logm) and in the latter
Oλ(1).

Acknowledgements. We would like to thank the anonymous reviewers of PKC
2020 and Helger Lipmaa for useful comments on this work.

The project that gave rise to these results received the support of a fel-
lowship from “la Caixa” Foundation (ID 100010434). The fellowship code is

28

LCF/BQ/DI18/11660053. This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 713673. First author was supported by
Project RTI2018-102112-B-I00 (AEI/FEDER,UE) and this paper is part of a
project that has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 856879.

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol.
10626, pp. 3–33. Springer, Heidelberg (Dec 2017). https://doi.org/10.1007/978-3-
319-70700-6_1

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087–2104. ACM Press (Oct / Nov
2017). https://doi.org/10.1145/3133956.3134104

3. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-
29011-4_17

4. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: Secu-
rity in the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (Dec
2016). https://doi.org/10.1007/978-3-662-53890-6_26

5. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge
with no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part III. LNCS, vol. 11694, pp. 701–732. Springer, Heidelberg (Aug 2019).
https://doi.org/10.1007/978-3-030-26954-8_23

6. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from Bitcoin. Cryptology ePrint
Archive, Report 2014/349 (2014), http://eprint.iacr.org/2014/349

7. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Heidelberg
(May 2019). https://doi.org/10.1007/978-3-030-17653-2_4

8. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 31–60. Springer,
Heidelberg (Oct / Nov 2016). https://doi.org/10.1007/978-3-662-53644-5_2

9. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct
non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (Mar 2013).
https://doi.org/10.1007/978-3-642-36594-2_18

10. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (May 2016). https://doi.org/10.1007/978-3-662-49896-5_12

11. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,

29

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-030-26954-8_23
http://eprint.iacr.org/2014/349
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-662-49896-5_12

T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 336–365.
Springer, Heidelberg (Dec 2017). https://doi.org/10.1007/978-3-319-70700-6_12

12. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. pp. 315–334. IEEE Computer Society Press (May 2018).
https://doi.org/10.1109/SP.2018.00020

13. Bünz, B., Fisch, B., Szepieniec, A.: Transparent snarks from dark compilers.
Cryptology ePrint Archive, Report 2019/1229 (2019), https://eprint.iacr.org/
2019/1229

14. Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck and its ap-
plications. Cryptology ePrint Archive, Report 2017/305 (2017), http://eprint.
iacr.org/2017/305

15. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Pre-
processing zksnarks with universal and updatable srs. Cryptology ePrint Archive,
Report 2019/1047 (2019), https://eprint.iacr.org/2019/1047

16. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (Dec
2014). https://doi.org/10.1007/978-3-662-45611-8_28

17. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347. Springer, Heidelberg (Mar
2018). https://doi.org/10.1007/978-3-319-76578-5_11

18. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-
96881-0_2

19. Gabizon, A.: Auroralight: Improved prover efficiency and srs size in a sonic-like
system. Cryptology ePrint Archive, Report 2019/601 (2019), https://eprint.
iacr.org/2019/601

20. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-
bases for oecumencial noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953 (2019), https://eprint.iacr.org/2019/953

21. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (May 2013).
https://doi.org/10.1007/978-3-642-38348-9_37

22. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 1069–1083.
USENIX Association (Aug 2016)

23. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In: Odlyzko, A.M.
(ed.) CRYPTO’86. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (Aug 1987).
https://doi.org/10.1007/3-540-47721-7_11

24. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC. pp. 113–
122. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374396

25. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(Dec 2010). https://doi.org/10.1007/978-3-642-17373-8_19

30

https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/2019/1229
https://eprint.iacr.org/2019/1229
http://eprint.iacr.org/2017/305
http://eprint.iacr.org/2017/305
https://eprint.iacr.org/2019/1047
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/601
https://eprint.iacr.org/2019/601
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1007/978-3-642-17373-8_19

26. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (May 2016). https://doi.org/10.1007/978-3-662-49896-5_11

27. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728.
Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-96878-0_24

28. Groth, J., Maller, M.: Snarky signatures: Minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part II. LNCS, vol. 10402, pp. 581–612. Springer, Heidelberg (Aug 2017).
https://doi.org/10.1007/978-3-319-63715-0_20

29. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC. pp.
21–30. ACM Press (Jun 2007). https://doi.org/10.1145/1250790.1250794

30. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge
with applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes,
M., Wang, X. (eds.) ACM CCS 2018. pp. 525–537. ACM Press (Oct 2018).
https://doi.org/10.1145/3243734.3243805

31. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In: 24th ACM STOC. pp. 723–732. ACM Press (May 1992).
https://doi.org/10.1145/129712.129782

32. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2111–2128.
ACM Press (Nov 2019). https://doi.org/10.1145/3319535.3339817

33. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS. pp. 436–453. IEEE
Computer Society Press (Nov 1994). https://doi.org/10.1109/SFCS.1994.365746

34. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS. pp. 458–467. IEEE Computer Society Press (Oct 1997).
https://doi.org/10.1109/SFCS.1997.646134

35. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE Computer Society Press (May 2013). https://doi.org/10.1109/SP.2013.47

36. Reitwiessner, C.: zksnarks in a nutshell (2016), https://blog.ethereum.org/
2016/12/05/zksnarks-in-a-nutshell/

37. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Secu-
rity and Privacy. pp. 926–943. IEEE Computer Society Press (May 2018).
https://doi.org/10.1109/SP.2018.00060

38. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 733–764. Springer, Hei-
delberg (Aug 2019). https://doi.org/10.1007/978-3-030-26954-8_24

39. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: Ver-
ifying arbitrary SQL queries over dynamic outsourced databases. In: 2017 IEEE
Symposium on Security and Privacy. pp. 863–880. IEEE Computer Society Press
(May 2017). https://doi.org/10.1109/SP.2017.43

40. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-
knowledge version of vSQL. Cryptology ePrint Archive, Report 2017/1146 (2017),
https://eprint.iacr.org/2017/1146

31

https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SFCS.1997.646134
https://doi.org/10.1109/SP.2013.47
https://blog.ethereum.org/2016/12/05/zksnarks-in-a-nutshell/
https://blog.ethereum.org/2016/12/05/zksnarks-in-a-nutshell/
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1109/SP.2017.43
https://eprint.iacr.org/2017/1146

A Proof of Theorem 2

Proof. First, note that any multilinear polynomial p ∈ F[X1, . . . , Xν] can be
written as px1

(x2, . . . , xν) + x1px1
(x2, . . . , xν) where px1

, px1
∈ F[X2, . . . , Xν]

are the polynomials p(0, x2, . . . , xν) and p(1, x2, . . . , xν)−p(0, x2, . . . , xν) respec-
tively. Equivalently, these correspond to the sum of all monomials that contain
x1 and those that do not.

We now present the reduction. Let A be an adversary that breaks the Asym-
metric ML2ν -Find-Rep Assumption. We will construct an adversary A′ that
breaks the Asymmetric DLOG Assumption. A′ takes as input (pp, [x]1, [x]2) and
acts as follows.

– It computes [r]1,2 = [x]1,2 w.r.t. x1, . . . , xν , defined by sampling i← {1, . . . , ν},
x1, . . . , xi−1, xi+1, . . . , xν ← Zq and setting [xi]1,2 = [x]1,2.

– It runs A(pp, [x]2, [r]1) to get a non-zero polynomial p which vanishes on
x1, . . . , xν , that is p(x1, . . . , xν) = 0. If A fails, it aborts.

– It implicitly constructs a binary tree of height ν + 1, where each node rep-
resents a polynomial as follows:
• The root of the tree is p(x1, . . . , xν).
• Let p(xj , xj+1, . . . , xν) be the label of a node. Compute

p(xj , xj+1, . . . , xν) = pxj (xj+1, . . . , xν) + xjpxj (xj+1, . . . , xν)

and label the left and right descendants pxj
(xj+1, . . . , xν), pxj

(xj+1, . . . , xν)
respectively.

• Stop when nodes are labeled with constant polynomials.
– If for level i there exists a node labeled pi with descendants pi,1, pi,2 such

that pi(xi, . . . , xν) = 0 and for its two descendant nodes it holds that

pi,1(xi+1, . . . , xν) ̸= 0, pi,2(xi+1, . . . , xν) ̸= 0,

then output xi = −pi,1(xi+1, . . . , xν)pi,2(xi+1, . . . , xν)
−1 otherwise abort.

The input to A is identically distributed to anML2ν -Find-Rep instance. It is
easy to see that if in the level i there exists a node as described, then we solve the
discrete logarithm. We argue that there must exist one such level if A succeeds.
Indeed, in such a case for the root of the tree, it holds p(x1, . . . , xn) = 0. If no
level i had this property then all nodes in the tree are labeled with polynomials
that vanish on x1, . . . , xν . This should hold as well for the last layer which
is labeled by only constant polynomials which contradicts the success of the
adversary since it outputs a zero solution.

The complexity of A′ is Oλ(2
ν) to prepare the input for A, the complexity

of running A, and the complexity needed to construct the tree. The latter is
Oλ(2

ν) since the tree is implicit in the polynomial, A′ just needs to read it once.
Thus, the total time of the reduction is Oλ(2

ν) + t(λ). If A succeeds, we have
probability 1

ν to choose a good layer which is bound to exist.
■

32

B Proof of Theorem 3

Proof. We work as follows: given an adversary A in the scenario that breaks the
binding property, we construct an adversary A′ that breaks theMLn-Find-Rep
assumption. A′ acts as follows:

– A′ creates parameters for the NIZK AoK.
– On input pp, [x]1,2 it invokes A, gets parameters [s]1, [y]2 and uses VrfySetup

to verify them.
– It uses the zero knowledge simulator S to compute proofs

{πi ← NIZKAoK {([yi]2, [xi]2), (y
′
i) : [xi]2 = y′i[yi]2}}i∈{1,...,ν}

and gives [x]1, [x]2, π1, . . . , πν to A.
– A responds with [t]1, [z]2, π

′
1, . . . , π

′
ν such that

{π′
i ← NIZKAoK {([xi]2, [zi]2), (x

′
i) : [zi]2 = x′

i[xi]2}}i∈{1,...,ν}

and with a commitment [α]1 and two openings a1 ̸= a2 such that [α]1 =
[a1

⊤t] = [a2
⊤t].

– A′ runs the knowledge extractor to get x′
1, . . . , x

′
ν .

– It outputs [α]1,a1 ◦ x′,a2 ◦ x′.

First note that the NIZKAoK simulator implies that the view of A is identical
(assuming the NIZK AoK to have perfect zero knowledge) to that in a real
experiment. Assuming the adversary is successful we have that for a1 ̸= a2,

a1
⊤t = a2

⊤t⇔ a1
⊤(x′ ◦ x) = a2

⊤(x′ ◦ x)⇔ (a1 ◦ x′)⊤x = (a2 ◦ x′)⊤x,

which concludes the proof.
■

C Circuit Preprocessing

Let C be a circuit with n multiplication gates, n′ − 1 public inputs and one
output.

For each multiplication gate i label ai, bi, ci the left, right and output wire
respectively and let a,b, c be the corresponding vectors. We can see the addi-
tion gates as linear constraints in the input wires of multiplication gates. Let
χ = (χ1, . . . , χn′−1) be the public input. We can consider the input gates as
multiplication gates of the form aibi = ci where ai = ci = χi, bi = 1 and assume
that no linear constrains contain ai, bi but rather contain only ci. We also let
the output gate be a multiplication gate of the form an′ · bn′ = cn′ and require
an′ = bn′ = 1. To simplify notation in what follows we assume χn′ = 1. We
treat all affine constraints as linear constraints w.l.o.g. (it is enough to include
an input wire which equals to one, that is χn′ enough).

33

It is easy to verify that the circuit is satisfiable by x if and only if there exists
an assignment for a,b, c, such that, the following equations hold:

a ◦ b− c = 0,{
ai +wa,i

⊤c = 0
}
i∈{n′+1,...,n−1} , {ai − χi = 0}i∈{1,...,n′} ,{

bi +wb,i
⊤c = 0

}
i∈{1,...,n−1} .

Let Wa be the matrix with rows wa,i and Wb be the matrix with rows wb,i.
We identify the size of the circuit as the size of these matrices i.e. the number of
non-zero elements in them. We want to parametrize the circuit with a parameter
M such that these matrices have at most M non-zero elements in each row and
column. These constraints mean respectively that:

– Each linear combination gate has fan-in at most M

– Each multiplication gate has left and right fan-out at most M (left fan out
is the maximum number of wires connecting the output of the multiplica-
tion gate with linear combination gates, that is, the left input to another
multiplication gate).

We can impose these constraints by applying the following procedure:
First impose all the fan out constraints recursively as follows. Assume that

the output of ci contributes to ai,1, . . . , ai,j for j > M . Then we can add two
more multiplicative constraints cn+1 = an+1bn+1, cn+2 = an+2bn+2 such that
the altered ci contributes to only an+1, an+2, cn+1 contributes to ai,1, . . . , ai,M
and cn+2 contributes to ai,M+1, . . . , ai,j along with the constraints

an+1 = ci, bn+1 = 1,

an+2 = ci, bn+2 = 1.

Note that the new linear gates satisfy the fan-in constraints.
For the fan-in constraints, let ai be the constraints of the form ai = w1ci,1 +

. . .+ wkci,j for j > M . We rewrite this as

ai = cn+1 + cn+2,

an+1 = w1ci,1 + . . .+ wMci,M , bn+1 = 1,

an+2 = wM+1ci,M+1 + . . .+ wjci,j , bn+2 = 1

and add the multiplicative constraints cn+1 = an+1 · 1 and cn+2 = an+2 · 1. We
demonstrate that after the transformation the circuit size is asymptotically the
same for M = O(1) (in practice the value of M can be fine tuned to parametrize
how much work we offload from the prover to the verifier).

Theorem 7. Applying the above transformations for M = O(1) results in a
circuit with asymptotically the same size.

34

Proof. Assume that the left and right fan out of the i-th output wire is (w.l.o.g.)
Mli,Mri respectively. The size of the circuit is

∑n
i=1(Mli +Mri). To apply the

fan-out transformation to each li we will increase the circuit size by 2Mli− 2M ,
and respectively for ri. The new circuit size is

∑n
i=1(Mli+Mri+2Mli+2Mri−

4M). The new constraints satisfy the fan in constraints. Now, working in the
same way for the rows of the matrix, assume that the fan in for the original gates
are 2l′i and 2r′i. Note that |C| =

∑n
i=1(Mli + Mri) =

∑n
i=1(Ml′i + Mr′i). The

processed circuit has size
∑n

i=1(Mli+Mri+2Mli+2Mri−4M) =
∑n

i=1(Ml′i+
Mr′i + 2Mli + 2Mri − 4M). Applying the second transformation we get a new
circuit of size

∑n
i=1(Ml′i +Mr′i + 2Mli + 2Mri + 2Ml′i + 2Mr′i − 8M), so the

derived circuit size is less than 5 |C|.
■

We note that we can apply a more efficient transformation (essentially adding
one new constraint instead of two in each iteration) that increases the multiplica-
tive size of the circuit by 2m

M−1 , where m is the number of wires of the circuit.

Theorem 8. Let W ∈ {0, 1}n×n, such that, at most M ≤ n elements in each
row and each column are non-zero. Then, W = W1 + . . . +WM , such that, for
all i ∈ [M], each Wi is a matrix with at most one non zero element in each row
and column.

Proof. We show the stronger result that the statement holds for matrices with
exactly M non zero elements in each row and column.

Let G be a bipartite graph with vertices A = {1, . . . , n} , B = {1, . . . , n}
such that (i, j) is an edge iff wij ̸= 0. A perfect matching in G corresponds to
a permutation matrix. Indeed, the induced matrix has n non zero elements and
for all i (j resp.) there exists exactly one j (i) such that wij = 1. The statement
holds if we can find M perfect matchings. By construction, G is M -regular and
it is well known that such bipartite graphs have a perfect matching. Removing
the matching gives an M − 1 regular graph and the result follows by induction.

■

By the above, after preprocessing a circuit we can write Wa = wa,1
⊤Pa,1 +

. . . +wa,M
⊤Pa,M and Wb = wb,1

⊤Pb,1 + . . . +wb,M
⊤Pb,M where Pa,i,Pb,i

are permutation matrices. The vectors wa,i, wb,i along with the appropriate
permutations σa,i, σb,i fully define the circuit.

D Grand Product Protocol Description

In this appendix, we present the full grand product protocol. We ommit the
aggregated version, which only changes the way we aggregate and construct the
polynomials.

35

Prove

– Common input: (pp, [x]2, [o]1 = [1nr]1, [rn]1) , [α1]1, [β1]1.
– P input: (pp, [r]1) ,a1,b1.
– Statement: [α1]1 = [a1

⊤r] ∧ [β1]1 = [b1
⊤r] ∧

∏
a1,i =

∏
b1,i.

1. – P computes

a2 = (1, a1, a1a2, . . . , a1 · · · an−1), b2 = (1, b1, b1b2, . . . , b1 · · · bn−1),

a3 = a1 ◦ a2, b3 = b1 ◦ b2,

and respecitve commitments to them, [α1]1, [β1]1, [α2]1, [β2]1.
– P sends [α2]1, [α3]1, [β2]1[β3]1 to V.

2. – V sends y and the prover and verifier sets w = yn.
– V computes the new key ck′

V ← (y−20 [x1]2, . . . , y
−2ν−1

[xν]2).
– P computes the new key ck′

P ← [r ◦ y−n]1 and

q(X) = a1X + a2X
−1 + wb1X

2 + b2X
−2 + a3X

3 + b3X
4,

s(X) = w2ynX + w3ynX2

+
(
−w2y(yn − yn−1en) + w4en − yn)X−3

+
(
−w3y(yn − yn−1en)− w4en − wyn)X−4,

t(X) = q(X)⊤ (q(X) ◦ yn + 2s(X))− 2w2 − 2w3.

Let {ti}i∈{−6,8}\{0} be the non-zero coefficients for t.
– Prover computes {[τi]← ti[1]}i∈{−6,8}\{0}.

3. – Prover sends {[τi]}i∈{−6,8}\{0}.
4. – V samples x← Zq and sends it to the prover.

– P computes q(x) and q(x) ◦ y + 2s(x). It also computes tx ← t(x).
5. – P sends tx.

– V asserts that
tx[1] =

∑
i∈{−6,8}\{0}

xi[τi].

– Let s(x) = ayn + bynen. V computes a, b and

[ρ]1 ← x[α1]1 + x−1[α2]1 + wx2[β1]1 + wx−2[β2]1 + x3[α3]1 + x4[β3]1,

[ρ′]1 ← [ρ]1 + 2 (a[o]1 + b[rn]1) .

6. P and V execute an inner product protocol

IP((ckV , [ρ]1, ck′
V , [ρ

′]1, tx + 2w2 + 2w3), (ckP ,q(x), ck′
P ,q(x) ◦ y + 2s(x))).

Theorem 9. The presented protocol is Public Coin, Perfectly Complete and has
Witness Extended Emulation under the MLn-Find-Rep or the PWn-Find-Rep
asumption. The round complexity is log n + O(1), the complexity of the prover
is Oλ(n) and the verifier and communication complexity are Oλ(log n). The
argument yields a Universally Updateable AoK in the Random Oracle model. In
the former case the proof size of an update is Oλ(log n) and in the latter Oλ(1).

36

Proof. Perfect Completeness follows by inspection.
For witness extended emulation, note that for all y, w we can extract t(x) by

14 accepting transcripts, unless we encounter a breach for the standard Pedersen
commitment.

Also, we can extract openings q,p for [ρ]1, [σ]1 such that q⊤p = t(x) from the
inner product extractor, unless we encounter a breach in the binding property
of the commitment. By taking appropriate linear combinations of the equations
for [ρ]1 and [σ]1 for the different challenges, we extract openings a1, a2, a3,
b1, b2, b3 for [α1]1, [α2]1, [α3]1, [β1]1, [β2]1, [β3]1 and so, we can extract the
polynomials q(X), s(X). For the fixed values y, z and for all the challenges x,
we have that t(x) = q(x)⊤ (q(x) ◦ yn + 2s(x))− 2w2 − 2w3 and since this holds
for 14 challenges, this holds as a polynomial identity and the constant term of
q(x)⊤ (q(x) ◦ yn + 2s(x))− 2w2 − 2w3 is zero.

If we repeat for 4n+1 different challenges y and get accepting transcripts, by
viewing the constant term of t(X) as a polynomial in Y , we conclude that it has
4n+1 roots. This means that it is identically zero for the extracted commitments,
and the constraints hold.

For the prover complexity we note that computing all the commitments is
linear in n and the same holds for computing q(X), s(X). Viewing t as an inner
product of n polynomials of constant degree, this takes Oλ(n) time as well.
The final complexity follows from the complexity of the inner product protocol.
The verifier has to compute the new verification key and perform some constant
computation for computing the commitments, and checking the opening of t.
Thus, the complexity is dominated by Oλ(log n). Finally, apart from the inner
product the communication is constant.

■

Extending for multiple grand products and extra multiplicative constraints. We
can extend the previous protocol to multiple grand products and extra multi-
plicative constraints, by appropriately adapting the set of equations to be proven.
Let a1

(j),b1
(j) be the commitments, which are claimed to have the same inner

product for j ∈ {1, . . . ,M}. Let also c
(j)
i,1 ◦ c

(j)
i,2 = c

(j)
i,3 be the additional multi-

plicative constraints. We can aggregate these as

p1(Y, Z) =

M∑
j=1

Zi−1
(
a1

(j)⊤(a2
(j) ◦Yn)− a3

(j)⊤Yn
)
,

p2(Y, Z) =

M∑
j=1

Zi−1
(
b1

(j)⊤(b2
(j) ◦Yn)− b3

(j)⊤Yn
)
,

p2+i(Y, Z) =

M∑
j=1

Zi−1
(
ci,1

(j)⊤(ci,2
(j) ◦Yn)− ci,3

(j)⊤Yn
)

for i ∈ [k],

p3+k(Y, Z) =

M∑
j=1

Zi−1
(
a2

(j)⊤Yn − Y a3
(j)⊤(Yn − Y n−1en)− 1

)
,

37

p4+k(Y, Z) =

M∑
j=1

Zi−1
(
b2

(j)⊤Yn − Y b3
(j)⊤(Yn − Y n−1en)− 1

)
,

p5+k(Y, Z) =

M∑
j=1

Zi−1
(
en

⊤a3
(j) − en

⊤b3
(j)
)

and they hold if and only if the polynomial p(W,Y,Z) =
∑5+k

i=1 W i−1pi(Y, Z) is
identically zero.

We now construct the corresponding polynomials to embed these in the con-
stant term of a polynomial t(X).

q(X) =

M∑
j=1

X−3(j−1)

(
a2

(j)X−1 + b2
(j)X−2 +

k∑
i=1

ci,2
(j)X−i−2

)

+

M∑
j=1

X3(j−1)zi−1

(
a1

(j)X + wb1
(j)X2 +

k∑
i=1

wi+1ci,1
(j)Xi+2

)

+X3M+k
M∑
j=1

X3(j−1)

(
a3

(j)X + b3
(j)X2 +

k∑
i=1

ci,3
(j)Xi+2

)
,

s(X) =

M∑
j=1

X3(j−1)zi−1(wk+2ynX + wk+3ynX2)

−X−3M
M∑
j=1

X−3(j−1)zi−1yn
k∑

i=1

wi+1X−i−2

+X−3M−k
M∑
j=1

X−3(j−1)zi−1
(
−wk+2y(yn − yn−1en) + wk+4en − yn

)
X−1

+X−3M−k
M∑
j=1

X−3(j−1)zi−1
(
−wk+3y(yn − yn−1en)− wk+4en − wyn

)
X−2,

t(X) = q(X)⊤ (q(X) ◦ yn + 2s(X))− 2

M∑
j=1

zi−1(wk+2 + wk+3).

We can now proceed to a protocol exactly as described in the previous case,
with the new polynomials.

Theorem 10. The resulting protocol is Public Coin, Perfectly Complete and has
Witness Extended Emulation under the MLn-Find-Rep or the PWn-Find-Rep
asumption. The round complexity is log n+O(1), prover complexity is Oλ(n(M+
k) log(M + k)), and verifier and communication complexity are Oλ((M + k) +
log n). The argument yields a Universally Updateable Non-Interactive AoK in
the Random Oracle model. In the former case the proof size of an update is
Oλ(log |C|) and in the latter Oλ(1).

38

Proof. Completeness and witness extended emulation are exactly as in the pre-
vious case. For efficiency note that apart from the inner product protocol, the
overhead for the aggregated result is for the prover to compute an inner product
of polynomial vectors of degree Oλ(k+M) and for the verifier and communica-
tion to verify the opening of a commitment to a polynomial of degree (k +M)
using Pedersen Commitment.

■
We note that we use this protocol in the CSAT case for constant M,k.

E CSAT Protocol Description
In this section, we describe the updateable protocol. We omit the USetup, Update,
VrfySetup and VrfyUpdate, that are essentially the corresponding algorithms for
a commitment key setup. The only addition is that, we also include an element
[u] in a standard (i.e. non bilinear) group to support perfectly hiding Pedersen
commitments, to commit to coefficients of polynomial. This part is public coin
and does not need an update. The CircuitSetup algorithm takes as input the
public parameters and a circuit of appropriate size, and outputs circuit depen-
dent parameters. We stress out that there is no secret involved here, the circuit
parameters can be deterministically computed by the universal CRS and the cir-
cuit description. Finally, the Prove protocol is an interactive protocol to prove
satisfiability of a circuit. The protocol Prove is described w.r.t. a public coin
verifier. The final SNARK construction replaces this public coin verifier with a
Random Oracle, using the Fiat-Shamir heuristic.

We refer to the prover and verifier commitment keys as ckP , ckV respectively.
Our setting is the bilinear group one but we also use standard non bilinear groups
where the DLOG holds. We refer to these elements with no subscript i.e. [a] in
contrast with the bilinear groups where we always specify with subscript the
underlying group.

We assume a preprocessed circuit for a parameter M : 2M vectors wa,j , wb,j ,
and corresponding permutations σa,j , σb,j , that represent the circuit. We give
the circuit setup algorithm.

CircuitSetup
(

pp, [u], [x]2, [r]1,M, {wa,j ,wb,j , σa,j , σb,j}j∈[M]

)
– Compute commitments to the polynomials

[ωa,j]1 = [wa,j
⊤r]1, [ωb,j]1 = [wb,j

⊤r]1,

[σa,j]1 = [(σa,j(1), . . . , σa,j(n))
⊤r]1, [σb,j]1 = [(σb,j(1), . . . , σb,j(n))

⊤r]1.

– Compute [o]1 ← [1⊤r]1 and [ι]1 = [(1, . . . , n)⊤r]1.
– Output

σC,V ←
(

pp, [u], [x]2, [rn]1, [o]1, [ι]1, {[ωa,j]1, [ωb,j]1, [σa,j]1, [σb,j]1}j∈[M]

)
,

σC,P ←
(

pp, [u], [r]1, {wa,j ,wb,j , σa,j , σb,j}j∈[M]

)
.

39

Prove

– Public input: χ1, . . . , χν .
– V input:

(
pp, [u], [rn]1, [x]2, [o]1, [ι]1, {[ωa,j]1, [ωb,j]1, [σa,j]1, [σb,j]1}j∈[M]

)
.

– P input:
(

pp, [u], [r]1, {wa,j ,wb,j , σa,j , σb,j}j∈[M]

)
,a,b, c.

– Statement: a,b, c is a satisfying assignment w.r.t. χ1, . . . , χn′ .

1. – P and V set respectively ckV
1 ← (pp, [x]2) and ckP

1 ← (pp, [r]1).
– P picks d← Zn−1

q , ρa, ρb, ρc, ρd ← Zq and computes

[α]1 ← Comck1(a; ρa), [β]1 ← Comck1(b; ρb),

[γ]1 ← Comck1(c; ρc), [δ]1 ← Comck1(d; ρd),

and sends [α]1, [β]1, [γ]1, [δ]1 to V.
2. – V sends y ← Zq and computes ckV

2 ←
(

pp, [x1]2y
−20 , . . . , [xν]2y

−2ν−1
)

.

– P and V compute K ← −yn ∑n′

i=1 χiy
i−1.

– P computes ckP
2 ←

(
pp, r ◦ y−n

)
and

q(X) = aX + bX−1 + cX2 + dX3,

s(X) = ynynX−1 + y2nynX + (ynwa + y2nwb − yn)X−2,

t(X) = q(X)⊤ (q(X) ◦ yn + 2s(X)) + 2K.

It samples ρti ← Zq for i ∈ {−3, . . . , 6} \ {0} and sends [τi] = ti[1] +
ρti [u].

3. P and V execute the aggregated permutation protocol to agree on

[ωa]1 ← Comck2(wa), [ωb]1 ← Comck2(wb).

– P first gives Comck1(y
n) as described in the polynomial evaluation

section.
– P and V execute for all 2M vectors the permutation protocol. This

would result in computing Comck1(σi(y
n)◦wa,i), Comck1(σi(y

n)◦wb,i).
– They add extra constraints to compute the final commitments. It is

enough to note that

Comck2(σi(y
n) ◦wa,i) = Comck1(σi(y

n) ◦wa,i ◦ y−n),

Comck2(σi(y
n) ◦wb,i) = Comck1(σi(y

n) ◦wa,i ◦ y−n).

4. – V chooses x← Zq and sends it to the prover.
5. – P computes q(x) and q(x) ◦ y + 2s(x). It also computes

tx ← t(x), ρtx ←
6∑

i=−3,i ̸=0

ρtix
i,

ρx = xρa + x−1ρb + x2ρc + x3ρd.

It sends to V the values tx, ρtx , ρx.

40

6. – V computes

[ρ]1 ← x[α]1 + x−1[β]1 + x2[γ]1 + x3[δ]1 − ρx[rn]1,

[τx]←
6∑

i=−3,i ̸=0

xi[τi].

and rejects if [τx] ̸= tx[1] + ρtx [u]. It also sets

[σ]1 ← yn[o]1x
−1 + y2n[o]1x+ (yn[ωa]1 + y2n[ωb]1 − [o]1)x

−2,

[ρ′]1 ← [ρ]1 + 2[σ]1.

– P and V execute

IP((ckV
1 , [ρ]1, ckV

2 , [ρ
′]1, tx − 2K), (ckP

1 ,q(x), ckP
2 ,q(x) ◦ y + 2s(x))).

and V rejects if P fails.

Lemma 2. The interactive argument has perfect completeness.

Proof. Since the prover knows a satisfying assignment, by the aggregation tech-
nique, we have that the constant term of t(x) is zero. We have that

[ρ]1 = x[α]1 + x−1[β]1 + x2[γ]1 + x3[δ]1 − ρx[rn]1

= x[α]1 + x−1[β]1 + x2[γ]1 + x3[δ]1 − (xρa + x−1ρb + x2ρc + x3ρd)[rn]1

=

n−1∑
i=1

(xai + x−1bi + x2ci + x3di)[ri]1 + (xρa + x−1ρb + x2ρc + x3ρd)[rn]1

− (xρa + x−1ρb + x2ρc + x3ρd)[rn]1

=

n−1∑
i=1

(xai + x−1bi + x2ci + x3di)[ri]1

= Comck1
(q(x)) = Comck2

(q(x) ◦ yn).

Also, by the completeness of the partial polynomial evaluation protocol, we
have that [ωa]1 = Comck2(wa) and [ωb]1 = Comck2(wb), and by noting that
[o] = Comck1

(1n) = Comck2
(yn), we have that

[σ]1 = yn[o]1x
−1 + y2n[o]1x+ (yn[ωa]1 + y2n[ωb]1 − [o]1)x

−2

= ynComck2
(yn)x−1 + y2nComck2

(yn)x

+ (ynComck2(wa) + y2nComck2(wb)− Comck2(y
n))x−2

= Comck2(s(x)),

and

[ρ′]1 = [ρ]1+2[σ]1 = Comck2
(q(x)◦yn)+2Comck2

(s(x)) = Comck2
(q(x)◦yn+2s(x)).

41

Also, since t(x) has zero constant term, it should hold that

t(x) =

6∑
i=−3,i̸=0

tix
i

, and so we have

[τx] =

6∑
i=−3,i̸=0

xi[τi] =

6∑
i=−3,i̸=0

xi(ti[1] + ρti [u]) = tx[1] + ρtx [u]

. Completeness follows by the completeness of the inner product argument.
■

Lemma 3. The interactive argument is Honest Verifier Zero Knowledge.

Proof. We describe a simulator, that, given an input to the statement and the
randomness of the verifier, computes a transcript which is perfectly indistin-
guishable from a transcript of a real execution. The randomness of a verifier is
y, x, and the randomness needed for the inner product protocols. The simulator
S acts as follows:

– Samples [α]1, [β]1, [γ]1 ← G1.
– Samples ρx ← Zq.
– Samples q← Zn and computes [ρ]1 ← [q⊤r]1.
– Computes s(x), K given y, x, the description of the circuit and χ1, . . . , χn′ .
– Computes tx = q⊤(q ◦ y + 2s(x)) + 2K.
– Samples random values t−3, t−2, t−1, t1, . . . , t6 conditioned on the equation

6∑
i=−3,i̸=0

tix
−i = tx.

– Samples, for i ∈ {−3,−2,−1, 1, . . . , 6}, random values ρti , and sets [τi] =
ti[1] + ρti [u].

– Computes

[δ]1 = ([ρ]1 − x[α]1 − x−1[β]1 − x2[γ]1 + ρx[rn]1)x
−3.

– Runs an execution of the protocol using these values, computes honestly all
other values and outputs the transcript.

We analyze the distribution of the transcript. In both executions, the ele-
ments [α]1, [β]1, [γ]1, [δ]1, [ρ]1, ρx are uniformly distributed conditioned on

[ρ]1 = x[α]1 + x−1[β]1 + x2[γ]1 + x3[δ]1 − ρx[rn]1.

In both proofs, the values [τi] are uniform and the value tx is determined uniquely
as q⊤(q ◦ y + 2s(x)) + 2K. All other computations are performed in the same
way.

■

42

Lemma 4. The interactive argument has witness extended emulation.

Proof. For all y, we can extract t(x) by 9 accepting transcripts, unless we en-
counter a breach for the standard Pedersen commitment.

Also, we can extract openings q,q′ for [ρ]1, [σ]1, such that, q⊤q′ = t(x)−2K
from the inner product extractor, unless we encounter a breach of the binding
property of the commitment scheme. By taking appropriate linear combinations
of the equations for [ρ]1 for the different challenges, we extract openings a, b,
c, d, for [α]1, [β]1, [γ]1, [δ]1, and by the extractor of the aggregated grand
product protocol, we can extract openings that correspond to the polynomial
s(x) The commitments are consistent with the polynomials q(X), s(X), unless
we encounter a breach in the binding property of the commitment. For a fixed y,
and for all the challenges x, we have that, t(x) = q(x)⊤ (q(x) ◦ yn + 2s(x))−2K,
and since this holds for 9 challenges, this holds as a polynomial identity and the
constant term of q(x)⊤ (q(x) ◦ yn + 2s(x))− 2K is zero.

If we repeat for 3n different challenges y and get accepting transcripts, by
viewing the constant term of t(X) as a polynomial in Y , we conclude that it has
3n+ 1 roots, which means it is identically zero for the extracted commitments,
and the constraints hold.

■

Proof of Theoerm 6

Proof. Completeness, Witness Extended Emulation and HVZK follow from the
previous lemmas. Universal Updateability follows from the fact that the Com-
mitment keys are updateable under the corresponding assumptions and the fact
that, the CircuitSetup algorithm is deterministic. For complexity measures, note
that, it is dominated by the inner product protocol and the aggregated grand
protocol since the polynomial t is of constant degree. Since M,k are constant,
the result follows. Finally, the protocol and all the subprotocol it utilizes, are
public coin and, thus, can be compiled to a NIZK in the Random Oracle model
with the Fiat-Shamir heuristic.

F Range Proof Protocol Description

We describe the protocol for a fixed range [0, 2m). We omit parameters generation
and update which are the same as in the CSAT case. The verifier is given as in-
put the commitment keys, and the elements [o]1, [o1]1, [o2]1, [o3]1, [r1]1 which are
commitments to 1n, (1m−1,0), 1n− (1m−1,0) and (0, 0, 1, . . . , 1, 1) respectively.
Note that when computing a new commitment key [r]1 ◦ y−n these correspond
to commtiments to yn, (ym−1,0), yn − (ym−1,0) and (0, 0, y2, . . . , yn−2, yn−1)
respectively. It is also given the element [rn]1 to handle the blinding factors. We
describe the protocol.

43

Prove

– common input: (pp, [u], [x]2, [o]1, [o1]1, [o2]1, [o3]1, [r1]1, [rn]1, [γ]1).
– P input: (pp, [u], [x]2, [r]1, v, ρv).
– statement: [γ]1 = v[r1] + ρv[r2] ∧ 0 ≤ v < 2m.

1. – P picks d← Zn−1
q , ρa, ρb, ρd ← Zq and computes

[α]1 ← Comck(a; ρa), [β]1 ← Comck(a−1n; ρb), [δ]1 ← Comck(d; ρd).

and sends [α]1, [β]1, [δ]1 to V.
2. – V sends y ← Zq.

– P and V compute the new key

(ckV
1 , ckP

1)←
(
[x]2 ◦ (y20 , . . . , y2ν−1

), [r]1 ◦ yn
)
.

– P computes the polynomials

q(X) = aX + bX−1 + cX2 + dX3,

s(X) =
(
ynyn + y4n2n)X−1 +

(
−yny1 + y2ny2

)
X

+
(
y3ny3 − y4n0n)X−2,

t(X) = q(x)⊤(q(x) ◦ yn + 2s(X))− yn1n⊤
y1.

It samples ρti ← Zq for i ∈ {−3,−2,−1, 1, 2, . . . , 6} and computes

[τi] = ti[1] + ρti [u].

3. P and verifier compute [ϕ]1 ← Comck1(2
n) as described in section 4.1.

4. V samples x← Zq. Let

s(x) = ayn + by1 + cy2 + dy3 + e0n + f2n.

It computes

[ρ]1 ← x[α]1 + x−1[β]1 + x2[γ]1 + x3[δ]1 − ρx[rn]1,

[ρ′]1 ← [ρ]1 + a[o]1 + b[o1]1 + c[o2]1 + d[o3]1 + e[r1] + f [ϕ]1.

It sends x to P.
5. – P computes q(x) and q(x) ◦ y + 2s(x). It also computes

tx ← t(x), ρtx ←
6∑

i=−3,i ̸=0

ρtix
i,

ρx = xρa + x−1ρb + x2ρv.

It sends to V the values tx, ρtx , ρx
6. – V computes

[τx]←
6∑

i=−3,i ̸=0

xi[τi],

and rejects if
[τx] ̸= tx[1] + ρtx [u].

– P and V run

IP((ckV , [ρ]1, ckV
1 , [ρ

′]1, tx+yn1n⊤
y1), (ckP ,q(x), ckP

1 ,q(x)◦y+2s(x))).

44

The proof of security of the protocol is similar to the proofs for the other proto-
cols.

45

	Updateable Inner Product Argument with Logarithmic Verifier and Applications

