
SodsMPC: FSM based Anonymous and Private
Quantum-safe Smart Contracts

Shlomi Dolev
Ben-Gurion University of the Negev, Beer-Sheva, Israel

dolev@cs.bgu.ac.il

Ziyu Wang
Beihang University, Beijing, China

Ben-Gurion University of the Negev, Beer-Sheva, Israel
wangziyu@buaa.edu.cn

Abstract—SodsMPC is a quantum-safe smart contract sys-
tem. SodsMPC permissioned servers (verification nodes) execute
contracts by secure multi-party computation (MPC) protocols.
MPC ensures the contract execution correctness while trivially
keeping the data privacy. Moreover, SodsMPC accomplishes the
contract business logic privacy while protecting the contract user
anonymous identity simultaneously. We express the logic of a
contract by a finite state machine (FSM). A state transition
of the FSM is represented by a blind polynomial with secret-
shared coefficients. When using MPC to compute this blind
polynomial, the contract business logic privacy is obtained. These
coefficients which control the logic are binary secret shares.
We also propose a base conversion method among binary and
integer secret shares by MPC. Our contract anonymity comes
from the “mixing-then-contract” paradigm. The online phase of
the SodsMPC mixing is a multiplication between a preprocessed
permutation matrix and an input vector in the form of secret
sharing, which accomplishes a fully randomized shuffle of the
inputs and keeps the secret share form for the following contract
execution. All SodsMPC components, including a verifiable secret
sharing scheme, are quantum-safe, asynchronous, coping with
t < n/3 compromised servers, and robust (tolerates Byzantine
servers) in both preprocessing and online phases.

Index Terms—Multi-party Computation, Private Smart Con-
tract, Finite State Machine, Anonymous Mixing, Quantum-safety

I. INTRODUCTION

Anonymity, Business Logic Privacy, and Data Privacy
Smart Contract. Supporting smart contracts has become one
of the most attractive properties of blockchain besides decen-
tralization. In Ethereum [1], each contract could be executed
by a miner according to the contract code. After calculating the
final state, the miner packages several contract results, i.e., the
updated blockchain state, as a block, and propagate this block.
Other miners recognize this block after verifying whether the
block creator follows the contract code. The deterministic
contract executing result ensures a consistent blockchain state
updating. However, the public verifiable contract execution
reveals the user anonymity and privacy in a contract including:
(1) who joins a contract? (2) what is the business logic of a
contract? (3) what intermediate data is in a contract?

The user anonymity problem is not limited to smart contract.
Blockchain publishes all transaction history, which reveals the
payer and payee identity for all transactions including the users
who interact with a contract. Mixing technology is one of the
solutions to break the linkage connections between blockchain
pseudonyms and protects the payer and the payee’s identities.

Several permissionless blockchain private contract sys-
tems [2]–[4] cope with the contract privacy problem relying
on zero-knowledge proof (ZKP). In these systems, contract
users off-chainly execute the contract (with or without privacy
protection). Later, the execution result proof is included in
the blockchain, which may not reveal the contract executions.
However, most deployed ZKP schemes are not quantum-safe
in private contract systems [2]–[4].
The MPC advantages for tackling contract privacy
problems in a permissioned blockchain. A permissioned
blockchain consensus relies on the Byzantine fault-tolerance
algorithm executed by n servers. In this architecture, we can
further require these servers to execute contract-oriented MPC
programs so that the contract execution correctness and data
privacy are naturally obtained. Compared with some trusted
execution environment (TEE) based private smart contract
systems [5], MPC protocols can be deployed over standard
computers without extra requirements for special hardware.
Most deployed Ethereum contracts are financial-oriented [6]
and do not have very complicated logic. Besides, the current
preprocessing MPC protocols show that executing millions of
multiplication gates can be finished in a reasonable time [7].

Most efficient MPC protocols are “secure-with-abort”
against malicious adversaries. If the contract execution cor-
rectness and data privacy are based on the MPC correctness
and privacy, aborting and re-running may bring more financial
disagreements and leak client inputs. In some sense, robustness
is the combination of fairness (there is no case in which
malicious servers know the MPC result while other honest
servers do not) and guaranteed output delivery (an MPC
must output the desired result regardless of the Byzantine
behavior) [8]. A non-robust preprocessing may require non-
constant rounds to reset when there are malicious servers [9]. 1

SodsMPC is fully robust in both preprocessing and online
MPC phases, and does not offload the computational burden
to the contract users, as done in some client-enhanced MPC
protocols like Blinder [12].

Secure and private distributing computation in cloud com-
puting is a key application area of MPC. Dolev et al. [13]–
[16] have accomplished abundant computation functionali-
ties based on the shared secrets in cloud servers. However,

1The player-elimination based protocols [10], [11] for a non-robust prepro-
cessing have O(n) round complexity.

these computation models (universal Turing machine [13],
automata [14], one instruction computer set [16]) are not
designed to efficiently fit MPC-based contracts, which requires
intensive condition checks.

A finite state machine (FSM) suits the contract application
better, since a transition in a state machine must be under a
specific condition and a contract requires intensive condition
checks. Also, an FSM can be blindly computed by an MPC
protocol [17]. Besides, the FSM pattern is recommended by
the most popular contract coding language, Solidity [18].
Mavridou and Laszka [19] create an FSM contract language
to decrease the number of Solidity implemented flaws in
Ethereum. A contract is first designed as an FSM, which can
be automatically compiled to a Solidity contract.
Quantum-safety Requirement. MPC-based contracts also re-
flect a security advantage in the upcoming quantum era. Most
MPC protocols are perfect or statistic information-theoretical
(I.T.), which can be proved to resist an adversary who has
unbound computation power including a quantum adversary. In
practice, some symmetric cryptography schemes (like AES or
SHA) are computational, but still are believed to be quantum-
safe if the security parameter is well-tuned, which enhances
some I.T. schemes in the efficiency aspect.

A. Our Contribution

A quantum-safe permissioned blockchain contract system
protecting the contract logic privacy. In SodsMPC, the
expressions of two contracts can be padded (with secret shared
zero coefficients) into two polynomials with the same length.
The key coefficients (logic control flags) are binary secret-
shared so that servers execute the same computation steps
without knowing which parts of the computation will be
regarded as the result. SodsMPC specially utilizes finite state
machines to encode a contract to state transitions for efficiency
concerns, which saves a lot of multiplication overhead.

We instantiate some FSM building blocks including a binary
comparator and a binary adder. Besides, we also propose
a protocol to blindly and more efficiently convert integer
secret shares to binary shares by FSM-based comparators
and adders. The arithmetic comparator implementation reflects
reasonable running latency evaluated in AWS cloud, which can
be regarded as a key component of most contract logic.
Simultaneously keeping the contract user identity anony-
mous. When enforcing the “mixing-then-contract” paradigm,
the secret-shared inputs of a contract are first mixed in
SodsMPC and then the mixing results are regarded as contract
inputs for user anonymity. Our robust online phase is only
one matrix-vector multiplication consuming a secret shared
random permutation matrix and several Beaver tuples, which
executes in only one round, keeps the secret share form
outputs, and achieves a full randomized shuffle. The robustly
preprocessing jobs cover the validity check and randomness
extraction for permutation matrices and square tuples. We also
implement the MPC mixing in AWS to reflect its practical
performance, which is better than the previous MPC mixing
work, HoneybadgerMPC [8], in the same cloud settings.

An efficient quantum-safe asynchronous verifiable secret
sharing (qsAVSS). SodsMPC has an efficient qsAVSS scheme
embodying a Merkle tree enhanced hash commitment for
verifying a bivariate sharing polynomial. Our qsAVSS scheme
consumes less communication overhead than the computa-
tional secure (quantum-unsafe) CKL+02 AVSS scheme [20]
utilizing Pedersen commitments [21], and than the perfect
I.T. secure CHP13 AVSS scheme [9] relying on broadcast
channels.

B. Related Work

We compare SodsMPC with previous private contract sys-
tems in Tab. I. In these permissionless blockchain contract
systems, Enigma [22] utilizes blockchain to store Pedersen
commitments [21] for verifying the off-chain MPC-based con-
tract correctness. Hawk [2] compiles an off-chain computation
into a ZKP-protected circuit, so that the on-chain activities
verify the proof utilizing the circuit without knowing the
inputs, which protects the data privacy. Arbitrum [23] puts
the hashes of off-chain computation steps in the blockchain
without proofs, and uses penalty to punish dishonest users.
Ekiden [5] efficiently executes contracts in TEE to protect the
contract data privacy. While the TEE result verification also
requires the contract logic. Zether [3] supports confidential
transactions since its on-chain interval ZKPs can prove the
transaction input and output amounts are equal in publicly
known contracts. The anonymous identity is also kept in
Zether when introducing an anonymous set in each transaction.
ZEXE [4] follows the Zcash [24] design and the on-chain
ZKPs ensure any off-chain computations (logic and data
privacy, and user identity) are not exposed in blockchain.

Moreover, the ZKP, signature, and encryption schemes
(e.g., Pedersen commitments [21] and zkSNARKs [25]) used
in these schemes are not quantum-safe. SodsMPC contract
system has a different working flow. SodsMPC contract users
only act as clients, and contracts are executed by permissioned
blockchain servers via quantum-safe MPC protocols to ensure
correctness and protect business logic and data privacy without
relying on quantum-unsafe ZKPs.

TABLE I: The anonymous and private smart contract system
comparison (Q.S.: quantum-safety. I.A.: identity anonymity.
L.P.: business logic privacy. D.P. data privacy).

Scheme Q.S. I.A. L.P. D.P.
Enigma [22] No No No Yes

Hawk [2] No No No Yes
Arbitrum [23] N.A. 2 No Yes No

Ekiden [5] No No No Yes
Zether [3] No Yes No Yes
ZEXE [3] No Yes Yes Yes
SodsMPC Yes Yes Yes Yes

Besides, SodsMPC also includes a constant round MPC-
based mixing protocol for the input anonymity before running
the contract, which achieves robust preprocessing and online
phases for n = 3t + 1 servers and against t adversaries
in asynchronous settings. The output of a SodsMPC mixing

would be a full randomized shuffle of the inputs in secret
sharing. Every possible result of the N ! input permutations,
has the same probability of appearing in the output.

Compared with PowerMix [8], we break the online O(N3)
computation overhead bottleneck for servers. Each server in
PowerMix [8] locally calculates all the N -power shares for
all N client inputs. PowerMix outputs the plaintext of the
input secrets in a lexicographic order, which is a deterministic
mixing. SwitchNet [8] swaps every pair of N inputs for
O(log2N) layers of a butterfly network, which has 2Nlog

2N

output combinations, smaller than N !, i.e., a partly randomized
shuffle. Blinder [12] outputs a client-defined shuffle in a
synchronous network by a fully robust and n = 4t+ 1 MPC.
The mixing comparison is shown in Tab. II.

TABLE II: MPC mixing protocols (syn.& asyn.: synchronous
and asynchronous. SwitchNet and PowerMix are introduced
by HoneybadgerMPC [8]. rand.: randomized.)

Scheme Resi- Synch- Robust- Shuffle Outputlience rony ness

Blinder [12] n = syn. full client secret
4t+ 1 defined sharing

SwitchNet [8] n = asyn. online partly secret
3t+ 1 rand. sharing

PowerMix [8] n = asyn. online deter- plain-
3t+ 1 ministic text

SodsMPC n = asyn. full fully secret
3t+ 1 rand. sharing

The rest of the paper is organized as follows. Section II in-
troduces the settings and building blocks. Section III overviews
SodsMPC, and Section IV explains how a blind-coefficient
polynomial protects the contract logic privacy enhanced by
FSMs. Section V details the online and preprocessing phases
of the MPC-based mixing to protect the anonymity. Section VI
proposes a quantum-safe asynchronous verifiable secret shar-
ing scheme. Section VII and Section VIII demonstrates the
SodsMPC efficiency and concludes this paper, respectively.
In Appendix A, we detail an auction contract to see how
SodsMPC protects the privacy and anonymity. We also in-
troduce a complicated FSM use case for blind computation, a
tournament sorting algorithm in Appendix B.

II. PRELIMINARY

System settings: entities, channel, and network. Our con-
tract system runs in a permissioned blockchain having n
verification nodes, named server. The number of users or
clients a contract can support is unlimited. n servers are
connected with private and authenticated channels, while every
client connects to all n servers, i.e., a classical client-server
MPC architecture [8]. At most t < n

3 servers can be Byzan-
tine who have quantum computation power. The adversaries
can schedule the message orders from honest servers, which
satisfies the definition of an asynchronous environment [26]. A
message sent by an honest server will be eventually delivered

2Arbitrum [23] does not emphasize the used signature scheme for a contract
correctness attestation.

to its destination after a finite (but unknown) delay 3. Hybrid
blockchain also works when the basic Proof-of-work or Proof-
of-stake elects several permissionless verification nodes to
form a consensus committee.
Notation. We denote a set of n servers by S = {S1, · · · , Sn},
and the N users/clients in a contract by C = {C1, · · · , CN}.
The MPC is defined over a finite prime field Fp. p should
be larger than max{N, 2n · 2κ, n + t + 1}. p > N is
due to our permutation matrix verification algorithm, while
p > 2n · 2κ originates from the need to verify a claimed
Beaver tuple [9] and a square tuple (SqrtVer, Algorithm 4).
κ is the statistic secure parameter used to limit the error
probability under 2−κ. Note that the value of κ does not affect
a statistical I.T. secure protocol to resist a quantum adversary.
We select publicly known distinct elements {α1, · · · , αn} and
{β1, · · · , βt, β} from Fp as the server identities and secret
identities, respectively. Thus, p > n + t + 1 ensures that the
assignment is not in conflict. For a secret s, we denote a share
of s by [s], or the specific share [s]i for a server Si.

A. Existing MPC building blocks

Beaver triple tuple and its robust preprocessing: SodsMPC
will handle a multiplication gate for secret shares during the
protocols, utilizing a preprocessing Beaver tuple [27]. For two
secret shares [x] and [y] and a tuple, ([a], [b], [ab] = [c]),
servers reconstruct two masked inputs d = x−a and e = y−b,
and locally derive the multiplication shares of the inputs
[xy] = de+d[b]+e[a]+[c]. Choudhury et al. [9] have achieved
robustly preprocessing Beaver tuples.
Asynchronous consensus for consistent MPC inputs: A
binary Byzantine agreement (BBA) [28] tackles the asyn-
chronous barrier with randomization. The asynchronous com-
mon subset (ACS) [26] is significant in asynchronous MPC,
which agrees on the input values from all n servers and outputs
an agreed subset ACSResult. ACSResult includes at least n−t
servers, each of which is related to a BBA instant having 1-
output. Since an asynchronous permissioned blockchain also
adopts this ACS architecture, SodsMPC is adaptive to the
blockchain projects like Honeybadger [29] and BEAT [30].

III. SODSMPC WORKING FLOW

The SodsMPC working flow (Fig. 1) starts from the contract
deployment process. One of the N contract clients/users is
assigned to be the contract creator, Ccreator. Ccreator shares all
coefficients (including zero coefficients) of a blind polynomial,
by qsAVSS (Algorithm 7) for the t+1 reconstructed threshold.
Ccreator will extra create a special transaction including the
Merkle tree roots of all the coefficient shares. After at least
n − t servers verify this transaction and put this transaction
in the blockchain, the contract is well-deployed. At the same
time, Ccreator also communicates with other N − 1 contract
clients for the actual polynomials and for the shares distributed
by Ccreator, which helps C1, · · · , CN−1 to verify the coefficient

3A quantum-safe private and authenticated channel is feasible utilizing
quantum-safe symmetric cryptography. The first time symmetric key distribu-
tion can be achieved by QKD or the lattice-based asymmetric cryptography.

share roots. Then, C1, · · · , CN−1 decide whether to join
the contract created by Ccreator. Note that we do not make
extra requirements for whether C1, · · · , CN−1 and Ccreator are
honest. We can only guarantee that a contract creator deploys
a consistent contract, while a meaningless contract without the
client participating will be disregarded eventually.

Client: Server: Blockchain:

Deploying
Contracts

qsAVSS for the blind polynomial
coefficients in the contract FSM

Put the Merkle root of the
coefficient shares in the blockchain

Coefficient-share root verification

Deposit
Transaction

Propose the same money deposit
transactions to the contract address

Secret
Input

qsAVSS for the secret inputs

Input
Consensus

Finalize the secret inputs by n BBA in an ACS

Mix the secret inputs: MPCMix, Algorithm 2
The MPC
online phase
for contract
executions

Run the contract FSM-based MPC

Output the anonymous transactions
according to the contract result

Fig. 1: SodsMPC anonymous and private contract workflow.

For a contract execution, N clients first deposit (typically
a fixed amount of) money to the contract address. Next, N
clients offer their secret inputs to the contract MPC program
by secret sharing (qsAVSS, Algorithm 7). Note that there
is an asynchronous consensus for the inputs each server
receives. Next, SodsMPC servers run MPCMix (Algorithm 2)
for mixing the secret inputs before executing the contract logic,
which obeys the “mixing-then-contract” paradigm we propose.
After mixing, at most t malicious servers (and other clients and
blockchain observers) cannot infer the permutation relation
between the contract inputs and the outputs. Note that the
anonymous level depends on how many honest clients join
the contract (i.e., mixing). If at least two of the N clients are
honest, it is sufficient to keep the identity private for the mixing
output. To ensure “mixing-then-contract”, SodsMPC does not
reveal the mixed inputs after mixing, while in contrast, other
MPC-based mixing implementations, in particular, the mixing
operation in HoneybadgerMPC-PowerMix [8] must recon-
struct the mixing outputs. HoneybadgerMPC-SwitchNet [8]
has a limited amount of random permutations by only swap-
ping part of input pairs in a butterfly permutation network.

After mixing, servers would keep the integer secret share
form for the mixed inputs according to the requirement of an
actual contract, or convert the inputs to binary on demand by
integerToBinary (Algorithm 1).

IV. THE PRIVATE CONTRACT BUSINESS LOGIC

In this section, Sect. IV-A details how to express a contract
by a blind-coefficient polynomial to protect the contract busi-
ness logic, and introduces how to use a finite state machine
(FSM) to make the polynomial computation more efficient.
Next, Sect. IV-B instantiates several significant FSM construc-
tions for a contract, including a binary comparator and a binary

adder. Sect. IV-C describes how to blindly convert integer-
binary secret shares to each other. For clarity, we assume that
each secret is correctly shared under the t+ 1 threshold to all
n servers in this section.

A. Blind-coefficient Polynomials and Finite State Machine

A smart contract can be a mutual-execution distributed
protocol run by distrusted entities [31]. Roughly speaking, if
this contract (a computer program) can be expressed by an
arithmetic circuit, we can use an MPC protocol to compute
this contract. Furthermore, an arithmetic polynomial is a
natural representative of an arithmetic circuit [32], so that a
polynomial is expressive enough to reflect a contract having
arithmetic logic. A boolean logic can be converted to an arith-
metic logic when assigning 1/0 for True/False, respectively.

If the coefficients of the polynomial are also secret-shared,
the contract business logic is also kept. Servers execute the
computation steps without knowing which parts of the com-
putation will be regarded as the result, so that they cannot
know the contract business logic. For two contracts having
different business logic, it is possible that these two contract
polynomials have different computation overheads (different
numbers of addition and multiplication gates). Hence, we can
pad the polynomial of the simpler contract as long as the
polynomial of the more complex contract, by adding some
dummy computations (e.g., adding zero or multiplying one,
in secret shares). So that servers still cannot distinguish the
business logic of two contracts because computing these two
polynomials spends the same overhead.

However, directly computing a contract polynomial may not
be efficient. For instance, a three-input millionaire problem
(find the maximum input index in the field GF (11)) can be
encoded to a very long polynomial f(x, y, z), which has 909
monomials from 0 to x10y10z10 (the coefficients of some terms
are zero). Directly solving this polynomial (with all secret-
shared coefficients) requires 30 rounds and around 20,000
multiplication gates [33] 4, which is not efficient.

For the logic of a contract, we can first use a finite state
machine (FSM) to model the contract logic, and then represent
this FSM by an arithmetic polynomial with binary condition
control flags. Roughly speaking, SWITCH-CASE pseudocode
can show the state transitions in an FSM, so that different
conditions will lead the state to transit to different CASE
branches. An IF-THEN-ELSE logic is the simplest SWITCH-
CASE architecture with only two branches (THEN and ELSE),
i.e., a two-state FSM. We can use one binary flag to control
an IF-THEN-ELSE logic, i.e., to control the state transition in
the two-state FSM. When assigning more bits to the control
flags, the computation can support more complex logic as a
SWITCH-CASE architecture (a more complex FSM).

Fig. 2 exhibits how to convert an IF-THEN-ELSE logic into
an arithmetic polynomial, in which we assign 1/0 for boolean

4The free item does not need a multiplication. The one-degree item requires
one multiplication for the secret shared coefficient and the secret shared
variable x. So on and so forth, the x10y10z10 item requires 30 multiplication
rounds. In total, they require 19,965 multiplication gates [33].

IF {a == 1} THEN:

x := x + b

ELSE:
x := x

Pseudocode

x := a × (x + b) + (1 - a) × x

An arithmetic polynomial

[x] := [a]*([x] + [b]) + (1 - [a])*[x]

A blind-coefficient polynomial
* means a secret-share multiplication

Fig. 2: Different expression methods for a contract logic.

TRUE/FALSE, respectively. So that a boolean predicate can be
converted to a binary control flag a. The arithmetic polynomial
computes two branches of this logic (THEN and ELSE), but
only one branch is indeed enabled depending on the a value.
Next, when all internal variables in Fig. 2 are secretly shared
(include the control flag a) and we compute the polynomial
by an MPC protocol, we keep the logic privacy to the MPC
execution entities, i.e., n servers. Still, these servers actually
execute both THEN and ELSE branches, but they do not know
which branch the contract designer specifies in the result. Note
that the multiplication for two secret shares (denoted by *)
require an extra degree reduction, which can be avoided by a
Beaver tuple (see Sect. II-A).

Expressing the logic of a contract by an FSM is not only
due to an efficiency concern. Using an FSM to design a smart
contract also assists a contract programmer to express the
correct design logic with fewer bugs [19], so that the FSM
pattern is officially recommended to contract developers by
the Ethereum community in the Solidity (the most popular
contract programming language) tutorial documents [18].

B. Instantiating FSMs for contract logic

In this subsection, we use concrete examples to show
how to execute FSM state transitions when servers holding
the secret shares of binary states and input symbols. We
first illustrate an FSM-based three-case comparator (equal to,
smaller than, greater than), binComp3 in Fig. 3, for two binary
1-bit inputs in secret shares, which can be simplified to a two-
case comparator (not greater than, greater than), binComp2.
We also offer an FSM-based binary adder with a carried bit
binAdder in Fig. 4, in which there is an extra output symbol
for each transition. Note that when servers blindly compute
the FSMs, servers will obtain the shares of updated states and
output symbols. At most t < n

3 malicious servers do not know
the state transitions and the value of output symbols.
FSM comparator: equal to, smaller than, and greater than.
Suppose Alice has Inputa and Bob has Inputb. Their inputs
can be regarded as a 2-bits Input, as the shares of 00, 01, 10
or 11. The transition result (comparison result) is also in the
binary format. We assign two binary bits for updated states,
by encoding Pequal = 00, Psmall = 01, and Pgreat = 10.
The default initial state is Pequal. Although we define this
comparator from two 1-bit inputs, this comparator also works
for longer binary inputs when the comparison starts from the
Most Significant Bit (MSB). If there is an unequal bit, the state

will transit to Psmall or Pgreat and keep staying in this state.
Note that servers who execute an FSM-based comparator do
not know the state transition for each bit.

Equal

Great

Small

state\input Q=00 Q=01 Q=10 Q=11
Pequal=00 equal small great equal
Psmall=01 small small small small
Pgreat=10 great great great great

Fig. 3: binComp3 (3 cases): the equal to, smaller than, and
greater than comparator for two 1-bit binary shared inputs.

We denote the i-th bit of a current state by Pi, the i-th bit
of an input symbol by Qi, for i ∈ [1, 2], respectively. After
the encoding, the new state representative, denoted by Pi, is:

P1 = P1 + (1− P1) · (1− P2) · [Q1 · (1−Q2)]
= P1 + [1− P1 − P2 + P1 · P2] · [Q1 −Q1 ·Q2],
P2 = P2 + (1− P1) · (1− P2) · [(1−Q1) ·Q2]

= P2 + [1− P1 − P2 + P1 · P2] · [Q2 −Q1 ·Q2].

In the 1st round, servers compute P1 · P2 and Q1 · Q2.
In the 2nd round, [1 − P1 − P2 + P1 · P2] · [Q2 − Q1 · Q2]
and [1 − P1 − P2 + P1 · P2] · [Q1 − Q1 · Q2] are computed.
Hence, a transition of binComp3 consumes 2 rounds and 4
multiplications.

Recall the three-input millionaire problem example defined
in the field GF (11). We can use four binary bits to represent
a value in GF (11). Thus, using binComp3 twice for four bits
only spends 16 rounds and 32 multiplications, which saves a
lot of multiplication invocations compared with the overhead
to solving a directly encoded blind polynomial.
FSM comparator: not greater than, and greater than. A
three-case FSM comparator can be simplified to two-case, e.g.,
PnGreat = 1 for not greater than and Pgreat = 0 for greater
than. We use 1 to substract the first bit of the final state of
binComp3 as binComp2, i.e., PbinComp2 = 1− PbinComp3(1).

When Inputa ≤ Inputb, PbinComp3(1) = 0 and PbinComp2 =

PnGreat = 1. When Inputa > Inputb, PbinComp3(1) = 1 and
PbinComp2 = PGreat = 0. Therefore, binComp2 also spends 2
rounds and 4 multiplications.
FSM computation: a binary adder with carry bits. The
states of binAdder can be encoded as whether the current
addition requires a previous bit, i.e., PnCarry = 0 for no carry
bit and Pcarry = 1 for a carry bit. When binAdder has two
binary inputs from the Least Significant Bit (LSB), the state
transits to an updated case according to if an addition renders
a carry bit. The output symbol represents the additive result
of two input bits without a carry bit. The FSM transition table
is depicted in Fig. 4. The update state and output symbol are

P = (1− P) · [Q1 ·Q2] + P · [1− (1−Q1) · (1−Q2)]
= Q1 ·Q2 − 2P ·Q1 ·Q2 + P · (Q1 +Q2)

Q = (1− P) · [(1−Q1) ·Q2 +Q1 · (1−Q2)]
+P · [(1−Q1) · (1−Q2) +Q1 ·Q2]

= P +Q1 +Q2− 2Q1 ·Q2 + 4P ·Q1 ·Q2− 2P · (Q1 +Q2).

In the 1st round, servers compute Q1 ·Q2 and P ·(Q1+Q2).
In the 2nd round, P ·Q1 ·Q2 would be calculated. In total, one
transition of binAdder costs 2 rounds and 3 multiplications.

nCarry

carry

state\input Q=00 Q=01 Q=10 Q=11
PnCarry=0 nCarry,0 nCarry,1 nCarry,1 carry,0
Pcarry=1 nCarry,1 carry,0 carry,0 carry,1

Fig. 4: binAdder: an adder with a carry bit

Here we only instantiate individual subroutine FSM for
comparison and adder. When parallelizing the execution of
many subroutine FSMs, we can speed up the blind execution
for achieving abundant functionalities, such as a tournament
sorting example we describe in Appendix B.

C. Secret Sharing Base Conversion: Binary and Integer

In this subsection, an integer secret x in the prime finite
field Fp is denoted by the binary representation xl−1, · · · , x0
(from MSB to LSB) when l = dlog2pe. The notation for all
the binary secret shares is [x]B = ([xl−1], · · · , [x0]).
Binary to Integer. The base conversion from binary secret
shares to integer shares can be done locally and blindly without
an interaction. The secret shares of integer x from the shares
of binary bits [xl−1], · · · , [x0] are [x] =

∑l−1
i=0 2i · [xi].

Integer to Binary. Since there is not a mod 2 operation in
a prime finite field, blindly converting an integer secret share
to a binary share cannot be accomplished locally. We propose
an integer-binary conversion protocol in Algorithm 1, which is
enlightened by [34]. Compared with [34], our integerToBinary
is more efficient in communication complexity (counting by
the number of multiplication invocations) for the FSM usage.

In the online phase of Algorithm 1, servers first locally and
blindly convert the binary shares [rl−1], · · · , [r0] to the integer
shares [r]. Next, the servers publicly reconstruct the masking
secret R = x−r and convert to binary Rl−1, · · · , R0. If x ≥ r,
we can easily obtain the shares of each bit [xi] utilizing the
binary adder for Ri and [ri] for i ∈ [0, l−1]. If −p ≤ x−r < 0
or x − r < −p, the reconstruct R actually equals x − r + p
or x − r + 2p in the field Fp, respectively. Therefore, the
conversion protocol tries to blindly remove the 0 × p, 1 × p
or 2× p addition. Note that when we compare an input in the
secret sharing form with another input in the plaintext form,
the shares of the plaintext input are the dummy shares (i.e.,
every share equals the secret).

We take an integer x = 1 as an example in GF(13)
(p = 13, l = 4) to describe the secret share conversion from
integer to binary, utilizing preprocessed binary secret shares,
r = 15 (binary 1111). In the first step of Algorithm 1, servers
reconstruct R = x − r = −14 = 12 in GF(13) and publicly
convert R = 12 to the binary representations 1100. After
adding R with [r]B by a binary adder with carry bits, servers
withhold [R′]B as the shares of 1 1011. Then, [R′]B is blindly
compared with p and 2p leading to the result shares [res1] = [1]
and [res2] = [1], respectively. Servers construct fl−1, · · · , f0
as binary 0011 corresponding to the integer 2l−p = 3, and set

Input: The shares of an integer, [x].
Preprocessing: The shares of l bits, [rl−1], · · · , [r0].
Online procedure:
1. Reconstruct [R] = [x]−

∑l−1
i=0 2i · [ri], publicly convert

R to binary Rl−1, · · · , R0. Let [R′]B as ([R′l], [R
′
l−1],

· · · , [R′0])← binAdder(Ri, [ri]), for i ∈ [0, l − 1].
2. Let [p]B = ([pl], · · · , [p0]) as the dummy shares of the

prime p binary representations. The imaginary MSB pl
of p must be zero. Similarly, let [p′]B as the dummy
shares of the binary representations of 2p.

3. [res1]← binComp2([p]B , [R
′]B), [res2]← binComp2

([p′]B , [R
′]B). If p ≤ R′, res1 = 1; otherwise res1 = 0.

If 2p ≤ R′, res2 = 1; otherwise res2 = 0. Let binary
fl−1, · · · , f0 stand for the integer 2l − p, then set
[gi] = fi · [res1] and [g′i] = fi · [res2] for i ∈ [0, l − 1].

4. ([R′′l+1], · · · , [R′′0])← binAdder([gi], [R
′
i]) for i ∈ [0, l],

gl = 0. ([R′′′l+2], · · · , [R′′′0])← binAdder([g′i], [R
′′
i]) for

i ∈ [0, l + 1], g′l = g′l+1 = 0.
Output: The lower l bits of R′′′i shares, i.e.,
[R′′′l−1], · · · , [R′′′0].

Algorithm 1: integerToBinary: blindly converting the
secret shares of an integer to the shares of the binary bits.

TABLE III: The integer-binary secret share conversion over-
head. (Prep.: preprocessing. Multi.: one invocation of a secret
share multiplication protocol. Err. prob.: error probability.)

Scheme DFK+-06 [34] integerToBinary
(Algorithm 1)

Prep. Bits 2 rounds, 2l Multi. (Err. prob.: 1/p) [34].

Check Bits 19 rounds, 22l Multi. No need
(Err. prob.: 1− p/2l)

Comparison 19 rounds, 22l Multi. 2l rounds, 4l Multi.
(run two times)

Adder
37 rounds, 2l rounds,

55l log2 l Multi. 3l Multi.
(run two times) (run three times)

Total 114 rounds, 2 + 10l rounds,
46l + 110l log2 l Multi. 19l Multi.

[gi] = fi[res1] for i ∈ [0, 3]. Adding [R′]B with [g]B renders
[R′′]B , which is the shares of 01 1110. [R′′]B is added with
[g′]B leading to [R′′′i] as the shares of 010 0001. Finally, the
output results are the 4 lower bits of [R′′′i] as [0], [0], [0], [1]
corresponding to the integer x = 1.

We summary the overhead of integerToBinary (Algo-
rithm 1) in Tab. III, which is compared with the previous
work [34] about the round complexity and the communica-
tion complexity (counting by the number of multiplication
invocations). By the FSM-based comparator and adder, we
achieve much less overhead for the number of multiplication
invocations while keeping the round complexity linear to the
binary length of a field l = dlog2 pe. Although we follow the
method in [34] to preprocess secret shares of binary bits, we
extra remove the r < p requirement.

V. MPC MIXING FOR THE USER ANONYMITY

A. The SodsMPC Online Phase

Our MPC for transaction mixing in the online phase is
very simple as it requires only one matrix-vector multiplica-
tion (Algorithm 2). Assume there would be N inputs to be
mixed (in the secret share form), denoted as a vector ~I =
{input1, · · · , inputN}. A preprocessed permutation matrix M
is also in the form of secret shares. The mixing outputs the
shares of the input random permutation, π(~I) = ~I ·M.

Input: The secret shares of N inputs
~I = {input1, · · · , inputN} are denoted by
{[input1]k, · · · , [inputN]k} for server Sk (k ∈ [1, n]).

preprocessed secret shares: N2 Beaver tuples
[ai,j], [bi,j], [ci,j] (i, j ∈ [1, N]). One secret shared
random permutation matrix M = {mi,j}, (i, j ∈ [1, N]).

Online: // (For each server Sk ∈ S, k ∈ [1, n])
1. Reconstruct 2N2 maskings, di,j = mi,j − ai,j ,
ei,j = inputi − bi,j (i, j ∈ [1, N]).

2. Locally construct the intermediate secret shares,
[tempi,j]k = di,jei,j + di,j [bi,j]k + ei,j [ai,j]k + [ci,j]k.

3. Output the permutation, [outputi]k =
∑N
j=1[tempj,i]k,

[π(~I)]k = {[output1]k, · · · , [outputN]k}.
Algorithm 2: MPCMix: the online phase for MPC mixing
(n: the server number. N : the input number for mixing. π:
the random permutation.)

B. Ingredients of the SodsMPC Preprocessing

The preprocessing components of SodsMPC include ran-
dom integer numbers, random binary bits, Beaver tuples,
square tuples, and permutation matrices. All these secrets
are shared by the novel quantum-safe asynchronous verifiable
secret sharing scheme (qsAVSS, Algorithm 7) for ensuring the
t + 1 reconstruct threshold. The randomness extraction for a
random integer number is a very simple accumulation of t+1
random numbers from t + 1 distinct dealers. However, the
verification and randomness generation for other components
are more complicated. Beaver tuples can be robustly handled
by the protocol in [9]. The shares of random bits can be coped
with by another protocol in [34].

In the sequel, we detail the more challenging tasks and
techniques, for the verification (verifying whether the gener-
ated value from a dealer is valid) and randomness extraction
(extracting randomness from t+ 1 or 2t+ 1 dealers to avoid
at most t malicious dealers to know the random value) for
square tuples and permutation matrices. All our preprocessed
ingredients are robust. In an asynchronous network, the whole
preprocessing should perform after the servers agree on which
secret sharing protocols (and their verifications) are finalized.
Utilizing ACS [26], at least n − t = 2t + 1 server related
BBAs would output one, and these servers are included in
the ACS result set ACSResult, in which the contributions of
every server are finalized from the view of all honest severs.
Hence, the contributions from the servers in ACSResult will

Asynchronous Common Subset (ACS)

Randomness Extraction

S1 · · · · · · Sn

· · · · · ·

Square Tuple SS

Square Tuple Ver.

Per. Matrix SS

Per. Matrix Ver.

Binary Byzantine

Square Tuple SS

Square Tuple Ver.

Per. Matrix SS

Per. Matrix Ver.

Binary Byzantine
Agreement (BBA1) Agreement (BBAn)

Extraction Extraction
Square Tuple Per. Matrix

Fig. 5: The SodsMPC robust preprocessing phase MPCPrep,
Algorithm 3. (Si: Servers. SS: Secret sharing. Per.: Permuta-
tion. Ver.: Verification.)

Secret sharing: Si shares secrets by qsAVSS
(Algorithm 7).

Tuple and matrix verification: All servers check if:
(1) The square tuples generated by Si are square tuples

by SqrtVer (Algorithm 4). (2) The matrix generated by
Si is a permutation matrix by MatVer (Algorithm 6).

Asynchronous common subset: Si inputs its opinion
about SqrtVerj and MatVerj to BBAj related to Sj , 1
for valid and 0 for invalid. The ACS protocol will
outputs at least 2t+ 1 BBA 1-results in a common
subset ACSResult.

Randomness extraction: // (Every server will extract
randomness from the contributions of t+ 1 or 2t+ 1
distinct dealers in ACSResult.)

1. A square tuple from every 2t+ 1 valid square tuple by
SqrtExt (Algorithm 5).

2. A matrix from every t+ 1 valid permutation matrices
by M = Πi=t+1

i=1 Mi, consuming t rounds and tN2

Beaver tuples.
Algorithm 3: MPCPrep: the robust preprocessing phase
(n: the server number. N : the input number for mixing. t:
the number of the maximum malicious servers)

be recognized for further randomness extractions. The overall
preprocessing phase is described in MPCPrep (Algorithm 3)
and depicted in Fig. 5.
Square Tuple Verification and Randomness Extraction.
Similar to a Beaver tuple, the shares of a square tuple
(r, r2) helps a square calculation of secret shares [x], by
[x2] = [r2] + (x − r)([x] + [r]). For preprocessing a square
tuple, we propose the square tuple verification and randomness
extraction protocols enlightened by the ones for a Beaver
tuple [9]. However, the overhead for verifying a square tuple
is smaller than the one of a Beaver tuple.

The general idea is to construct two new t and 2t degree
polynomials, X(·) and Y (·) using input 2t+1 claimed square
tuples. Then, the servers utilize a random evaluating value α,

to test whether X(α) ·X(α)
?
= Y (α). Fig. 6 depicts how input

2t+1 claimed square tuples can be converted to 2t+1 values,
which decides the testing polynomials X(·) and Y (·).

Input
values

Values
on X(·)
Values
on Y (·)

r1,

r21,

r2,

r22,

· · ·
· · ·

rt+1,

r2t+1,

rt+2,

r2t+2,

· · ·
· · ·

r2t+1

r22t+1

r′1,

r′21 ,

r′2,

r′22 ,

· · ·

· · ·

r′t+1,

r′2t+1,

r′t+2,

r′2t+2,

· · ·

· · ·

r′2t+1

r′22t+1

directly assign r′j = rj ,

r′2j = r2j for j ∈ [1, t + 1]

interpolate to X(·)

evaluate t new values

generate r′2j from r′j
utilizing existing square

tuples (rj, r
2
j) for

j ∈ [t + 2, 2t + 1]

Fig. 6: The square tuple conversion used in the verification
and randomness extraction protocols (SqrtVer, Algorithm 4
and SqrtExt, Algorithm 5). Better read in colors.

After a dealer VSS distributes the t + 1 reconstruction
threshold shares of 2t + 1 claimed square tuples (rj , r

2
j) for

j ∈ [1, 2t+ 1], the servers use the first t+ 1 input r values to
interpolate a t-degree polynomial X(·), then evaluate another t
new points in X(·), i.e., X(β1), · · · , X(βt). Hence, the output
2t + 1 values of r′ are constituted by the first t + 1 input r
values and the new evaluated t points. All 2t+1 output r′ pass
the polynomial X(·). Next, the remained last t inputs (r, r2)
will be regarded as square tuples to create the last t output r′2

values for the square of the new evaluated t output r′ values.
The t generated r′2 values in this step combined with the first
t + 1 input r2 values construct a 2t-degree polynomial Y (·).
The tuple conversion is detailed in the verification protocol
SqrtVer, Algorithm 4 and Fig. 6.

Input: 2t+ 1 claimed square tuples rj , r2j , and every
server Si has shares of these tuples, [rj]i, [r

2
j]i for

j ∈ [1, 2t+ 1]. Public known values βk for k ∈ [1, t].
The square tuple conversion:
(The first t+ 1 outputs): Si set the first t+ 1 output
square tuples [r′j]i, [r

′2
j]i for j ∈ [1, t+ 1] as the same as

the first t+ 1 input tuples. Then, Si interpolates [r′j]i
(j ∈ [1, t+ 1]) and gets an t-degree polynomials X(·).

(The last t outputs): Si evaluates βk in X(·), [r′j]i =
[X(βk)]i for k ∈ [1, t], j ∈ [t+ 2, 2t+ 1]. Then, Si sets
the remained t outputs for [r′2j]i by calculating the
square share of r′j utilizing (rj , r

2
j) for j ∈ [t+ 2,

2t+ 1] as existed square tuples. After that, all 2t+ 1 r′2j
could define a 2t-degree polynomial Y (·).

The square tuple verification: All servers reconstruct a
common random value α, reconstruct X(α), Y (α), and
check whether X(α) ·X(α)

?
= Y (α).

Algorithm 4: SqrtVer: verifying square tuples.

Algorithm 4 is a statistic information-theoretical secure
verification method whose correctness is based on the random
α choice from the finite field Fp. It is trivially true that (r′j , r

′2
j)

is a square tuple if and only if (rj , r
2
j) is a square tuple for

j ∈ [1, t+ 1]. For j ∈ [t+ 2, 2t+ 1], r′2j is calculated from r′j .

Hence, (r′j , r
′2
j) is satisfied if and only if (rj , r

2
j) is a square

tuple for j ∈ [t+2, 2t+1]. For a random point α and the testing
equation X(α) ·X(α)

?
= Y (α), if the equation is satisfied but

the claimed square tuples are not satisfied, α must be a root
of the testing polynomials, i.e., X(α) = 0 and Y (α) = 0.
Therefore, when the random α is uniformly selected from Fp,
the error possibility is at most 2t

|Fp| since Y (·) is at most 2t-
degree and has at most 2t roots. From 2t

|Fp|<
2n
|Fp|<2−κ, we

have |Fp| = p > 2n · 2κ.
Extracting a new random square tuple (SqrtExt, Algo-

rithm 5) also requires converting the 2t + 1 tuples as we
verify 2t + 1 claimed square tuples (Fig. 6). Compared with
the collection of 2t+ 1 claimed square tuples from one dealer
in Algorithm 4, Algorithm 5 collects 2t+1 valid square tuples
from 2t + 1 distinct servers. These 2t + 1 servers are inside
the ACS common subset ACSResult. Instead of evaluating a
random point like α in Algorithm 4, SqrtExt will output a
square tuple from a specific point β in the new t and 2t degree
polynomial r = X(β) and r2 = Y (β) in Algorithm 5.

Input: 2t+ 1 square tuples rj , r2j for j ∈ [1, 2t+ 1].
Each creator Sj is included in one round ACSResult,
and each tuple passes the check SqrtVer (Algorithm 4).
There are public known values βk for k ∈ [1, t] and β.

Converting the tuples and constructing two output
polynomials: Servers creates t-degree polynomials X(·)
and 2t-degree polynomial Y (·) utilizing the 2t+ 1
inputs as the similar way of SqrtVer (Algorithm 4).

Extracting a new random square tuple: Si outputs the
share of the new square tuple as
[r]i = [X(β)]i, [r

2]i = [Y (β)]i.
Algorithm 5: SqrtExt: extracting random square tuples.

Permutation Matrix Verification and Randomness Extrac-
tion. In MPCPrep (Algorithm 3), each Si checks that a matrix
generated by Sj is a valid permutation matrix by MatVer
(Algorithm 6). The basic idea is from the permutation matrix
definition. Our verification algorithm works when all values
come from the finite field Fp. The p value should be larger
than the number of inputs N to be mixed (p > N).

(1) Every row or every column of a permutation matrix
has and only has one 1 element, and the remained N2 − N
elements should be 0. Hence, we first reconstruct the sums of
each row and each column to make sure the sum of each row
or column is 1.

(2) Moreover, each matrix item should be a 1 or 0 secret.
Otherwise, the fact that the row sum or the column sum is 1
cannot ensure the remained N2−N elements in a matrix are
0. So that in the second step, we extra blindly test whether
the shares of each matrix item [x] satisfying [x2] − [x] = [0]
utilizing a preprocessed square tuple. If the reconstruction is
0, then x must be 0 or 1.

For extracting a random permutation matrix, the direct way
is to multiply t + 1 valid permutation matrices generated by
t+ 1 distinct dealers, i.e., M = Πi=t+1

i=1 Mi.

Input: The secret shares of a claimed permutation
matrix, M = {[mi,j]} (i, j ∈ [1, N]), in the finite field
Fp (p > N). N2 square tuples [ri,j], [r

2
i,j] (i, j ∈ [1, N]).

Row and column sum verification: // (For Sk ∈ S)
The sum of the i-th row and column shares are denoted
by rowSumi =

∑N
j=1[mi,j] and colSumi =

∑N
j=1[mj,i],

respectively. Sk reconstructs all rowSum1, · · · ,
rowSumN and colSum1, · · · , colSumN to check if all
these values equal 1.

Finite field element verification: // (For Sk ∈ S)
1. Reconstructing N2 masking secrets, r?i,j = mi,j − ri,j
for i, j ∈ [1, N], and locally constructing the secret
shares for all elements in M by [m2

i,j −mi,j] =
[m2

i,j]− [mi,j] = r2i,j + r?i,j · ([mi,j] + [ri,j])− [mi,j].
2. Reconstructing all m2

i,j −mi,j elements for
i, j ∈ [1, N]. If every result is zero, then M is valid.

Algorithm 6: MatVer: verifying a permutation matrix.

VI. QUANTUM-SAFE ASYNCHRONOUS VERIFIABLE
SECRET SHARING (QSAVSS)

We propose a quantum-safe AVSS (qsAVSS) scheme based
on a quantum-safe hash-based commitment. Instead of encod-
ing polynomial coefficients, we require a dealer to commit the
interactive checking points in a bivariate polynomial. For our
qsAVSS scheme, we define security as follows.
• Correctness: If the dealer is honest then the honest parties

reconstruct the same secret.
• Strong commitment: If an honest party delivers a share

related to a secret s, even if a dealer is dishonest, all honest
parties would eventually deliver the shares of s at the end
of a sharing phase 5.

A Hash-based Merkle Tree Commitment. A dealer evaluates
the n(n+1)

2 points ([α1, · · · , αn] for x and y) in a t-degree
symmetric bivariate polynomial F (x, y). The dealer removes
the overlap points due to the polynomial symmetry property,
i.e., F (x, y) = F (y, x). All these points construct a hash
up-triangle matrix as depicted in Fig. 7. We further deploy
a Merkle tree to compress the commitment by arranging these
n(n+1)

2 points in the leaves, so that every leaf could be verified
by a Merkle proof sizing O(log2

n(n+1)
2) = O(log n) branch

nodes. The Merkle tree root is denoted by Root.
qsAVSS Protocol. The basic verification idea of the qsAVSS
protocol in the sharing stage deploys a hash-based commit-
ment (in a Merkle tree format) to bind all necessary points in
the bivariate polynomial, instead of a Pedersen commitment
for quantum-safety. The sharing phase for the commitment
is similar to the Bracha asynchronous reliable broadcast
(RBC) [36], in which even a malicious broadcaster cannot
make part of servers deliver a message while the remained
servers deliver another message or nothing. The Merkle tree
usage is enlightened by the RBC in Honeybadger BFT [29].

5In a (weak) commitment VSS scheme, if a dealer is dishonest and a sharing
is finished, honest parties may reconstruct a default value [35].

F (α1, α1)

for S1 · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

F (αi,αi)

· · ·

F (α1, αi)

for Si

F (αn,αn)

· · ·

F (αi,αn)

· · ·

F (α1, αn)

for Sn

Fig. 7: Points to be put in a Merkle tree hash commitment (a
half of matrix, the up-triangle part). Better read in colors.

In the first sharing step, a dealer Sdealer encodes a secret
s in a t-degree symmetric bivariate polynomial F (x, y), i.e.,
F (0, 0) = s. Sdealer commits all n(n+1)

2 points in a hash up-
triangle matrix, and converts the matrix to a Merkle tree. Sdealer

sends every univariate polynomial fi(x)
def.
= F (x, αi) =

F (αi, x) to server Si with a set of Merkle tree proofs, Branchi.
In echo and ready, servers verify if receiving the same

bivariate polynomial by echoing and ready-broadcasting the
Merkle root. Unlike the hash-based AVSS protocol in [35], we
rely on the interactive points even when servers agree on the
same Merkle root of the committed points, which is necessary
for “slow but honest” servers to deliver the shares when a
dealer is dishonest. Also, at least t+ 1 honest servers ensure
that the interactive points are identical, which guarantees that
the threshold is at most t+ 1.

If Sdealer wants to succeed in running a qsAVSS instance,
Sdealer has to send correct messages to at least t + 1 honest
servers. If Sdealer is dishonest, at most t adversaries may
assist Sdealer to convince t+ 1 “fast and honest” servers. The
remained at most t “slow but honest” servers may receive
incorrect messages or nothing from at most t adversaries
(including Sdealer). According to the ready broadcast rule
(receiving t + 1 but not broadcast yet), t “slow but honest”
servers still deliver the same Root as “fast and honest” servers.
“slow but honest” servers can use Root to locate the correct
t + 1 echo messages, and interpolate them to obtain the
shares. The qsAVSS algorithm sharing phase is detailed in
Algorithm 7.

The reconstruction phase of qsAVSS follows the standard
robust reconstruction way enhanced by error correction code
like Berlekamp-Welch [9]. We describe the robust reconstruc-
tion phase of qsAVSS in Algorithm 8.

Theorem 1: Algorithm 7 (and Algorithm 8) satisfies the
correctness properties of a qsAVSS scheme.

Proof: Considering three cases: (1) Si and Sj deliver
shares directly. (2) Si and Sj deliver shares directly and
indirectly, respectively. (3) Si and Sj deliver shares indirectly.
Correctness: Assume towards contradiction that an honest
server Si delivers a share [s]i for secret s while another honest
server Sj delivers a share [s′]j for another secret s′. (1) If
Si directly delivers [s]i, Si receives at least 2t + 1 ready
messages for Root, which originate from at least t+ 1 honest
servers who receive 2t+1 echo messages. At least t+1 echo
messages are from honest servers. If another honest Sj delivers

Public Input: Identity elements αi for Si, i ∈ [1, n].
Sharing: // (For a dealer Sdealer)
Sdealer generates a random t-degree symmetric bivariate

polynomial F (x, y), for which the secret is s = F (0, 0).
A univariate polynomial fi(x)

def.
= F (x, αi) = F (αi, x)

could be derived for Si. The n(n+1)
2 points, F (αi, αj)

(i, j ∈ [1, n], i ≤ j), construct a hash commitment
matrix, which is further converted to a Merkle tree
having a root, Root. The Merkle branch proof for the
hash of F (αi, αj) is denoted by branchi,j . Branchi is a
set of n Merkle branch proofs for Si, including
branch1,i, · · · , branchi,i, · · · , branchi,n for the hashes
of n points F (α1, αi), · · · , F (αi, αi), · · · , F (αi, αn).
Sdealer sends 〈sharing, fi(x),Branchi〉 to Si, ∀Si ∈ S.
Echo: // (For each server Si ∈ S)
Upon receiving a sharing message, Si checks if
Branchi helps fi(αj) get the same Root, for j ∈ [1, n].
If so, Si echoes 〈echo,Root, fi(αj), branchi,j〉 to
∀Sj ∈ S.

Upon receiving an echo message from Sj , Si checks if
the received frev,j(αi) satisfies frev,j(αi) = fi(αj). If
so, Si counts this echo message including frev,j(αi)
and branchj,i.

Upon receiving n− t counted echo messages having the
same Root, Si broadcasts 〈ready,Root〉.

Ready: // (For each server Si ∈ S)
Upon receiving t+ 1 〈ready,Root〉 messages, Si
broadcasts 〈ready,Root〉 if Si does not broadcast a
ready message.

Upon receiving n-t 〈ready,Root〉 messages, Si delivers
Root.

// (directly delivery)
If Si received a correct fi(x) in sharing corresponding

to the delivered Root, Si delivers [s]i = fi(0).
// (indirectly delivery)
If Si does not receive a correct polynomial in sharing,
Si uses the delivered Root and the Merkle branches in
received echo messages to locate t+ 1 correct points,
fj1(αi), · · · , fjt+1

(αi), which can be interpolated to
[s]i = f0(αi) = fi(0).

Algorithm 7: The quantum-safe asynchronous verifiable
secret sharing scheme (qsAVSS), the sharing stage.

[s′]j , at least t + 1 honest participants send echo for Root′.
This is a contradiction that one honest participant sends two
different echo messages or the hash is not collision-resilient.
(2 & 3) Similarly, if Si and Sj deliver shares corresponding
to two Merkle roots, it is also a contraction.
Strong commitment: Assume that honest Si delivers a share
[s]i for secret s. We prove that every honest server delivers a
share for s eventually. (1 & 2) If Si directly delivers [s]i, Si
receives at least 2t+ 1 ready messages for Root originating
from at least t+ 1 honest servers. These t+ 1 honest servers
can help every honest participant deliver Root. If Sj receives

Send: Si broadcasts 〈reconstruct, [s]i〉.
Receive:
Upon receiving 2t+ 1 shares (including the share of Si),
Si reconstruct a polynomial from t+ 1 shares, and
checks if the remained t shares satisfy the reconstructed
polynomial. If so, Si returns s. Otherwise, Si keeps
waiting for more shares.

Upon receiving more shares, Si tries to reconstruct the
secret using Berlekamp-Welch to correct errors. Si
returns the secret after a successful reconstruction. In
the most pessimistic case, Si waits for all the
n = 3t+ 1 shares and returns the secret s.

Algorithm 8: The quantum-safe asynchronous verifiable
secret sharing scheme (qsAVSS), the reconstruction stage.

a correct sharing message satisfying Root, Sj directly
delivers [s]j . Otherwise, Sj utilizes Root and Merkle branch
proofs to locate t + 1 correct echo messages and indirectly
delivers [s]j by interpolation. (3) If Si indirectly delivers [s]i,
Si locates at least t + 1 correct echo messages utilizing the
delivered Root from at least 2t + 1 ready messages. Since
the distribution of Root has totality, Sj can also deliver Root,
locate correct points and indirectly deliver [s]j .

Since at least t + 1 honest servers have verified the inter-
active points in the sharing phase, the t + 1 reconstruction
threshold of the secret s is ensured. When reconstructing, an
error correction code method can correct at most t errors to
guarantee the recovered secret s, since at least 2t + 1 honest
servers will broadcast their shares.
Efficiency analysis. We summary the communication over-
head of the qsAVSS sharing stage. Polynomial coefficients
and points belong to the field Fp. We use another field FH to
denote a quantum-safe hash function like SHA-256. The first
step requires a dealer to send a univariate polynomial (t+1 co-
efficients for fi(x)) and Branchi to Si. The size of a proof set
Branch is O(|FH |n log2

n(n+t)
2) = O(|FH |n log n). The over-

head for the sharing step is O(|Fp|n2) +O(|FH |n2 log n).
Then, the echo and ready stages consume O(|Fp|n2) +
O(|FH |n2 log n) +O(|FH |n2) complexity for n servers. The
total overhead is dominated by O(|FH |n2 log n) when |FH | is
much larger than |Fp|.

We compare our qsAVSS (Algorithm 7) with other AVSS
schemes in Tab. IV. In the echo step of the non-quantum-safe
scheme CKL+02 [20], every server broadcasts the coefficient
matrix encoded in Pedersen commitments. That matrix has
t+1 rows and t+1 columns. Each element belongs to a discrete
logarithm (DL) secure field FDL. Hence, the overall overhead
is O(|FDL|n2(t+ 1)2) = O(|FDL|n4). The perfect I.T. AVSS
scheme CHP13 [9] can share t+1 secrets in a polynomial, so
that the amortized overhead for one secret is O(|Fp|n). But
CHP13 broadcasts O(n2) field elements via broadcast chan-
nels in the last step. One broadcast channel invocation requires
O(n2) overhead in a point-to-point network leading to the total
O(|Fp|n4) overhead. hbAVSS [37] deploys an “encrypt-and-

TABLE IV: Communication complexity for AVSS schemes.

Scheme Security Resilience Comm. Comp.

CKL+02 [20] Quantum n =
O(|FDL|n4)unsafe 3t+ 1

CHP13 [9] Perfect n =
O(|Fp|n) +O(|Fp|n4)I.T. 4t+ 1

hbAVSS [37] Quantum n = O(|FDL|n)+
unsafe 3t+ 1 O(|FH |n logn)

Algorithm 7 Quantum n =
O(|FH |n2 logn)(This work) safe 3t+ 1

disperse” paradigm to amortize t+1 shares in one time disper-
sal. The dispersal overhead is O(|FDL|n2)+O(|FH |n2 log n),
in which the O(|FDL|n2) item comes from t + 1 constant-
size commitments in a DL secure field. So that the one-secret
amortized overhead is O(|FDL|n)+O(|FH |n log n). However,
hbAVSS is still not quantum-safe.

VII. IMPLEMENTATION

In addition to the fact that SodsMPC has many theoretic
innovations that may be of independent interest in the field of
secure multi-party computation, our implementation indicates
its usefulness in practice. We implemented some SodsMPC
core components for demonstrating the performance. We de-
ploy n = 4 servers in the AWS t2.medium type. The servers
are arranged in São Paulo, Virginia, Tokyo, and Mumbai,
which keeps the same settings as HoneybadgerMPC [8].
Due to the overlapping requirement for some asynchronous
protocols, like BBA and ACS, our SodsMPC demo runs in the
SodsBC platform, which is an asynchronous and quantum-safe
blockchain consensus [38].

We run the FSM-based comparator binComp3 (see
Sect. IV-B) for two input vectors InputA and InputB . Each
vector entry ai in InputA (or bi in InputB , resp.) has 8
binary bits. Every bit is secretly shared in the finite field
GF(251). Thus, the comparison will cost 8 rounds. We execute
a parallel test by changing the number of vector entries from
256 to 131,072. In other words, we run parallel 256 (to
131,072) eight-round comparators. The resulting latency for
these comparisons is exhibited in Tab. V. Our results show
that the basic FSM component, a bitwise comparator can be
computed by MPC in a reasonable time.

TABLE V: The latency of FSM-based comparators binComp3
in a four-node-WAN AWS t2.medium network.

Comparator amount 256 8,192 32,768 65,536 131,072
Latency (second) 1.62 8.57 33.32 62.16 108.60

Besides, we also run our MPC mixing (online) to com-
pare the previous HoneybadgerMPC mixing (online) proto-
cols [8]. We mix 32-Byte secret shares in the prime fi-
nite field as same as the ones of HoneybadgerMPC [8] 6.
As depicted in Fig. 8, SodsMPC performs better than
both HoneybadgerMPC-PowerMix and HoneybadgerMPC-
SwitchNet when the number of input shares ranges from

6The prime in hexadecimal is 0x73EDA753299D7D483339D80809A1D80
553BDA402FFFE5BFEFFFFFFFF00000001.

N=64 to 512. Especially for N=1,024, SodsMPC still keeps
in a regularly increased latency, while PowerMix spends an
intensive time due to its O(N3) computation. Note that the
output of PowerMix is a deterministic lexicographic order
in the plaintext form. Compared with the partly randomized
shuffle protocol SwitchNet, the fully randomized shuffle of
SodsMPC finishes in a shorter time when N=64 to 512.

Fig. 8: SodsMPC mixing compared with the two mixing
protocols in HoneybadgerMPC [8]. Better read in colors.

VIII. CONCLUSION

We have presented SodsMPC, an efficient smart contract
system protecting business logic privacy, data privacy, and user
anonymity simultaneously. The contract logic in SodsMPC is
defined by a blind-coefficient polynomial which can be effi-
ciently computed by finite state machine based computations.
The SodsMPC anonymity originates from the fully shuffled
mixing protocol, which mixes the contract inputs before ex-
ecutions utilizing a preprocessed random permutation matrix.
We also detail a quantum-safe asynchronous verifiable secret
sharing scheme. All SodsMPC components are asynchronous,
robust, and quantum-safe. Our implementation for FSM-based
comparator and mixing demonstrates the SodsMPC efficiency.

REFERENCES

[1] V. Buterin, “Ethereum whitepaper,” 2013,
https://github.com/ethereum/wiki/wiki/White-Paper.

[2] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in S&P 2016, pp. 839–858.

[3] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, “Zether: Towards
privacy in a smart contract world,” in FC 2020, pp. 423–443.

[4] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu, “ZEXE:
enabling decentralized private computation,” in S&P 2020, pp. 947–964.

[5] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. M. Johnson,
A. Juels, A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,” in EuroS&P
2019, pp. 185–200.

[6] M. Jansen, F. Hdhili, R. Gouiaa, and Z. Qasem, “Do smart contract
languages need to be turing complete?” in Blockchain 2019, pp. 19–26.

[7] K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lindell,
and A. Nof, “Fast large-scale honest-majority MPC for malicious
adversaries,” in CRYPTO 2018, pp. 34–64.

[8] D. Lu, T. Yurek, S. Kulshreshtha, R. Govind, A. Kate, and A. K. Miller,
“Honeybadgermpc and asynchromix: Practical asynchronous MPC and
its application to anonymous communication,” in CCS 2019, pp. 887–
903.

[9] A. Choudhury, M. Hirt, and A. Patra, “Asynchronous multiparty compu-
tation with linear communication complexity,” in DISC 2013, pp. 388–
402.

[10] Z. Beerliová-Trubı́niová and M. Hirt, “Perfectly-secure MPC with linear
communication complexity,” in TCC 2008, pp. 213–230.

[11] I. Damgård and J. B. Nielsen, “Scalable and unconditionally secure
multiparty computation,” in CRYPTO 2007, pp. 572–590.

[12] I. Abraham, B. Pinkas, and A. Yanai, “Blinder: MPC based scalable and
robust anonymous committed broadcast,” IACR ePrint 2020.248.

[13] S. Dolev, J. A. Garay, N. Gilboa, V. Kolesnikov, and M. V. Kumara-
mangalam, “Perennial secure multi-party computation of universal turing
machine,” Theor. Comput. Sci., vol. 769, pp. 43–62, 2019.

[14] S. Dolev, N. Gilboa, and X. Li, “Accumulating automata and cascaded
equations automata for communicationless information theoretically
secure multi-party computation,” Theor. Comput. Sci., vol. 795, pp. 81–
99, 2019.

[15] H. Avni, S. Dolev, N. Gilboa, and X. Li, “SSSDB: database with private
information search,” in ALGOCLOUD 2015, 2015, pp. 49–61.

[16] S. Dolev and Y. Li, “Secret shared random access machine,” in ALGO-
CLOUD 2015, 2015, pp. 19–34.

[17] S. Dolev, K. Eldefrawy, J. A. Garay, M. V. Kumaramangalam, R. Os-
trovsky, and M. Yung, “Brief announcement: Secure self-stabilizing
computation,” in PODC 2017, pp. 415–417.

[18] Ethereum community, “Common patterns,” 2018,
https://solidity.readthedocs.io/en/v0.4.24/common-patterns.html.

[19] A. Mavridou and A. Laszka, “Designing secure ethereum smart con-
tracts: A finite state machine based approach,” in FC 2018, pp. 523–540.

[20] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asynchronous
verifiable secret sharing and proactive cryptosystems,” in CCS 2002, pp.
88–97.

[21] T. P. Pedersen, “Non-interactive and information-theoretic secure verifi-
able secret sharing,” in CRYPTO 1991, pp. 129–140.

[22] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized com-
putation platform with guaranteed privacy,” Arxiv 1506.03471, 2015.

[23] H. A. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Fel-
ten, “Arbitrum: Scalable, private smart contracts,” in USENIX Security
2018, pp. 1353–1370.

[24] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in S&P 2014, pp. 459–474.

[25] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth, “Succinct
non-interactive arguments via linear interactive proofs,” in TCC 2013,
pp. 315–333.

[26] M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous secure computa-
tions with optimal resilience (extended abstract),” in PODC 1994, pp.
183–192.

[27] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in CRYPTO 1991, pp. 420–432.

[28] A. Mostéfaoui, M. Hamouma, and M. Raynal, “Signature-free asyn-
chronous byzantine consensus with t 2<n/3 and o(n2) messages,” in
PODC 2014, pp. 2–9.

[29] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of BFT protocols,” in CCS 2016, pp. 31–42.

[30] S. Duan, M. K. Reiter, and H. Zhang, “BEAT: asynchronous BFT made
practical,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, 2018, pp. 2028–
2041.

[31] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[32] J. von zur Gathen and G. Seroussi, “Boolean circuits versus arithmetic
circuits,” Inf. Comput., vol. 91, no. 1, pp. 142–154, 1991.

[33] D. Bitan and S. Dolev, “Optimal-round preprocessing-mpc via polyno-
mial representation and distributed random matrix (extended abstract),”
IACR ePrint 2019.1024.

[34] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft, “Uncon-
ditionally secure constant-rounds multi-party computation for equality,
comparison, bits and exponentiation,” in TCC 2006, pp. 285–304.

[35] M. Backes, A. Kate, and A. Patra, “Computational verifiable secret
sharing revisited,” in ASIACRYPT 2011, pp. 590–609.

[36] G. Bracha, “Asynchronous byzantine agreement protocols,” Inf. Com-
put., vol. 75, no. 2, pp. 130–143, 1987.

[37] A. Kate, A. K. Miller, and T. Yurek, “Brief note: Asynchronous verifiable
secret sharing with optimal resilience and linear amortized overhead,”
Arxiv 1902.06095, 2019.

[38] S. Dolev and Z. Wang, “SodsBC: Stream of distributed secrets for
quantum-safe blockchain,” IACR ePrint 2020.205.

[39] A. Hülsing, “WOTS+ - shorter signatures for hash-based signature
schemes,” IACR Cryptology ePrint Archive, vol. 2017, p. 965, 2017.

APPENDIX A
AN ANONYMOUS AND PRIVATE CONTRACT AUCTION

EXAMPLE

We use an N = 3 blind auction as an example to explain
SodsMPC, Algorithm 9. Alice, Bob, and Carol would like to
run a blind auction to buy from a seller.
Business logic privacy: They do not want others (except
Alice, Bob, and Carol) to know what logic they use, i.e., find
the greatest input among the three inputs.
Data privacy: They do not want others (include each other)
to know the bid value except for the actual paying price.
Anonymity: They want to keep the anonymity of the winner.

The contract is deployed by one of the clients, e.g., Alice.
After negotiating with Bob and Carol, Alice deploys all poly-
nomial coefficients by t+ 1-threshold qsAVSS secret sharing.
At least n − t servers will reveal the Merkle tree root of all
the polynomial coefficient shares. Next, Alice communicates
with Bob and Carol, to convince them that the contract is well-
deployed. After everybody satisfies the deployment, all three
clients deposit transactions.

We follow the Bitcoin transaction construction but replace
the quantum-sensitive ECDSA scheme by a quantum-safe and
hash-based signature scheme like WOTS+ [39]. A client signs
the transaction content (value and payee) under the input
public key rendering a signature sig. The money will be paid
to the payee’s public key address, add. Fig. 9 depicts the three
deposit transactions.

Then, three clients offer their bids and the refund addresses
in the secret-shared form. After receiving the input, n servers
run the “mixing-then-contract” MPC for the three secret-
shared bids. Our mixing program breaks the linkage of the
MPC input/output order, which avoids the malicious servers
to learn the exact identity of a refund account address. The
mixed N bids in a new order, are the actual inputs to the
FSM-based contract MPC program.

For this three-bid auction (Algorithm 9), the contract invo-
cates two FSM-based comparators. The first comparator com-
pares the first two bids (after mixing) and outputs the larger
input, while the second comparator compares the previous
larger input with the third (after mixing) input and outputs
the larger one, which is the largest bid (the auction winner).
Note that the mixed integer bids have to be converted to binary
for comparison, and the program would convert them back to
integer after two FSM-based comparators. Finally, the servers
output the auction result (the result transaction in Fig. 9) in
which Alice pays $60 to the seller and withdraws $40, and Bob
and Carol both withdraw $100. Note that the output payment
is not a standard Bitcoin transaction with a payer signature.
However, this MPC output cannot be modified (forged) by
malicious servers, because of the MPC correctness.

From the final output, only Alice knows that she wins.
Bob or Carol does not know who the winner is (only know
the winner is not himself/herself). The other bids keep secret
against other blockchain observers and the (at most) t < n

3
malicious servers who execute the contract MPC program.

sigA
sigB
sigC

addcontract
addcontract
addcontract

$100

$100

$100

The deposit transactions
in the former block

· · · · · ·

addcontract addseller

addC

addA

addB

$60

$100

$40

$100

The result transaction
in the latter block

A
B
C

C
A
B

inputA = {bidA = $60, addA},
inputB = {bidB = $40, addB},
inputC = {bidC = $50, addC}.

Fig. 9: The deposit/result transactions and the secret inputs.

(// Omit the contract deployment.)
Deposit: Every client Cj (Alice, Bob, and Carol) sends a
transaction having the $100 deposit money to the
contract address addcontract.

Secret input: Every client Cj secret-shares inputj by
qsAVSS (Algorithm 7). inputj = {bidj , addj} includes
a secret bid bidj and a refund address addj .

Input consensus: Every server Si reliable broadcasts its
input view Inputi having several inputs. Utilizing n
BBAs to finalize n RBCs, the ACS outputs the common
subset of the input views, leading to the agreed
Input = {inputA, inputB , inputC}.

MPC online:
1. Servers mix the secret bits {inputA, inputB , inputC}
by MPCMix (Algorithm 2) and obtain the shares of the
random permutation π(inputA, inputB , inputC). Assume
π(inputA, inputB , inputC) = {inputC , inputA, inputB}.

2. Servers run the MPC for the contract FSM by
inputting {inputC , inputA, inputB}.

(1) Compare bidC and bidA in the first binComp2, and
output the larger one bid1.

(2) Compare bid1 and bidB in the second binComp2, and
output the larger one bid2.

3. Servers reconstruct bid2=$60 and add2 = addA, and
the refund addresses in the mixed order
{addC , addA, addB}, and then put a transaction on the
blockchain, which outputs bid2 to addseller, outputs
$100-bid2=$40 to the related address add2 = addA, and
outputs $100 to addC and addB .
Algorithm 9: SodsMPC Blind Auction Example

Everybody (except for the client himself/herself) cannot link
the refund addresses (addC , addA, addB) with the input signa-
tures (sigA, sigB , sigC), which keeps the winner anonymous.
The business logic (i.e., the auction) also keeps secret to all but
the three clients. The only known fact is that a $60 payment
from an unknown payer is paid to the seller.

APPENDIX B
PARALLEL FSM EXECUTION: TOURNAMENT SORTING

In this section, we demonstrate the usefulness of the parallel
FSM execution, where several FSM state transitions can be
done concurrently on different (sub)set of inputs. This tech-
nique allows us to share batches of inputs and outputs in their
secret share form, and the shared outputs can serve as inputs
to the next parallel FSM to process.

A concrete example is a blind sorting of N distinct inputs
spending O(N logN) time units and O(N2) blind compar-
isons. One time unit is the time overhead for a l-bit compari-
son. l is the length of the prime finite field Fp, l = dlog2 pe.

The sorting is based on the tournament structure, in which
pairs (the first two, the third and fourth, and so on) of the
original inputs are blindly compared. The greater value among
each pair can be blindly chosen by a 2-condition comparison
FSM (similar to binComp2 in Sect. IV-B, but in different
encoding), by blindly multiplying the inputs with the resulting
state, one input by (blind) zero and the other by blind one.
Thus, the first parallel FSM step output is (approximately, as
N can be odd) the half inputs, i.e., the half that won over
their pairs. In turn, these outputs are partitioned into new pairs.
Next, the procedure repeats to find the N/4 winners among
the pairs of winners. This iterative process repeats itself for
logN times to blindly get the first largest value.

The first largest value is then stored in the first place of
an output array, which will be blindly compared with each
entry of the original N inputs. Whenever it is an equality, the
original input is blindly set to zero, as a preparation for finding
the second largest. After that, a new (blind) tournament with
logN time units is executed resulting in the second largest
value, which is assigned to the second place of the output
array. Again the second largest value will be compared with
every input and sets the appearance of it to be zero, as a
preparation for the third parallel tournament execution. Finally,
the output array is filled with new values one by one until it
reaches the N -th value. Thus, the sorting costs O(N logN)
time units in total.

In each time unit, the program consumes O(N) blind
comparisons. We spend N

2 parallel comparisons in the be-
ginning layer of one tournament, and the second layer costs
N
4 parallel comparisons, and so on. In addition, there are N

blind comparisons for zeroing the found (current) greatest in
the input array, as a preparation for finding the next greatest.
Thus, the total number of comparisons is N

2 +N
4 +· · ·+2+N =

O(N) parallel comparisons in one tournament. Hence, N
tournaments consume O(N2) parallel comparisons in total.

