Smart Contract Derivatives

Kostis Karantias®, Aggelos Kiayias!3, and Dionysis Zindros!»?

' IOHK
2 University of Athens
3 University of Edinburgh

Abstract. The abilities of smart contracts today are confined to read-
ing from their own state. It is useful for a smart contract to be able to
react to events and read the state of other smart contracts. In this paper,
we devise a mechanism by which a derivative smart contract can read
data, observe the state evolution, and react to events that take place in
one or more underlying smart contracts of its choice. Our mechanism
works even if the underlying smart contract is not designed to operate
with the derivative smart contract. Like in traditional finance, deriva-
tives derive their value (and more generally state) through potentially
complex dependencies. We show how derivative smart contracts can be
deployed in practice on the Ethereum blockchain without any forks or
additional assumptions. We leverage any NIPoPoWs mechanism (such as
FlyClient or superblocks) to obtain succinct proofs for arbitrary events,
making proving them inexpensive for users. The latter construction is
of particular interest, as it forms the first introspective SPV client: an
SPV client for Ethereum in Ethereum. Last, we describe applications of
smart contract derivatives which were not possible prior to our work, in
particular the ability to create decentralized insurance smart contracts
which insure an underlying on-chain security such as an ICO, as well as
futures and options.

1 Introduction

Smart contracts [4,16] on blockchain [11] platforms have limited capabili-
ties even when developed in Turing Complete languages such as Solidity.
They are executed in their own isolated environment, with full access to
their own state, but limited access to what is happening in the rest of
the blockchain system. This inherently limits them to performing isolated
tasks, unless they interoperate with smart contracts designed explicitly
to work together with them.

In this work, we put forth a mechanism which allows so-called deriva-
tive smart contracts to read the (potentially private) state of other, so-
called underlying, smart contracts, inspect any events they have fired and
when, and more generally react arbitrarily to any changes in the execution

of other contracts. Notably, unlike any previous mechanism, the underly-
ing contract may not be designed (or willing) to work with the derivative
contract and hence our mechanism allows it to remain agnostic to the
interaction. Like financial derivatives, smart contract derivatives can de-
rive their value from the performance of, potentially multiple, underlying
contracts. The dependence between the contracts can be arbitrary.

We develop our solution in the form of a Solidity contract which can
be used as an oracle to create a derivative contract. We give three options
for the instantiation of the oracle contract. The first is based on a special
Solidity feature and is the cheapest to implement and use. The second
is based on the BTCRelay [5] design and requires helpful users to sub-
mit every block to this oracle contract. Finally the third draws from the
design in [8] and harnesses the power of Non-Interactive Proofs of Proof-
of-Work (NIPoPoWs) [7] for efficiency. The oracle smart contract may be
of independent interest, as it functions as an Ethereum SPV client run-
ning within Ethereum itself and is the first such introspective SPV client
of its kind.

Previous work. Granting smart contracts access to data external to their
blockchain environment has been studied in the context of oracles in
which additional trust assumptions are made by the introduction of a
trusted third party or committee [17] or in the form of an oracle [18].
The generic transfer of information between blockchains without the in-
troduction of additional assumptions has been studied in the context of
sidechains [8,5,12,9].

Contributions. Our contributions are summarized as follows:

1. We posit the problem of smart contract derivatives and put forth a
construction solving it without additional assumptions.

2. We propose three instantiations of our oracle; the first relying on
features of Solidity, the second inspired from the BTCRelay design
and the third utilizing NIPoPoWs.

3. We introduce the first introspective SPV client, a client for a block-
chain system running within that same blockchain system.

4. We discuss how our scheme can be used to instantiate some standard
financial derivatives: insurance, futures and options.

2 Introspective SPV

Notation. We use = — a to denote the Merkle Tree [10] inclusion proof

for tree root a and element z. We use z — alk] to denote the Merkle-

Patricia Trie proof for the assignment of key k£ to « in the MPT rooted
at a. The verification result of a concrete proof 7 is denoted (- = -) €
{true, false}.

For our construction, we define an oracle smart contract that can an-
swer queries regarding other smart contracts. Notably, the oracle contract
is decentralized, i.e., it does not make additional trust assumptions and so
does not require a trusted third party or committee. The oracle contract
can answer the following queries about arbitrary underlying contracts:

1. Retrieve the value of a private state variable of the underlying contract
at any point in the past.

2. Recall whether a particular event was fired by the underlying contract
at any point and retrieve the values of the event parameters.

3. Report on any past calls made to the underlying contract’s methods,
whether these were done by other contracts or by normal accounts,
including the values given to the parameters and money paid during
the call.

Solidity already has some provisions for smart contract interoper-
ability. For example, a token contract usually follows the ERC-20 inter-
face [15], which allows any other contract to inspect its state and perform
actions on it.

Even the most helpful smart contracts currently deployed however
would come with limitations. Specifically, reading incoming and outgoing
transactions and events emitted is currently impossible. While we could
manage to partially work around those limitations with a smart contract
framework for helpful contracts that records all relevant transactions and
events and makes them easily accessible, it is important to remember that
smart contracts are immutable and cannot be changed once deployed.
Thus, this solution would not work for existing smart contracts that we
may be interested in.

Additionally, this solution comes with extra storage requirements.
Storage on Ethereum costs disproportionately more that any other oper-
ation, and this cost would have to be paid by the unlucky downstream
users of the smart contract. Naturally this presents the need for a solu-
tion that does not incur such costs on the downstream users, which we
are going to present shortly.

Private variable lookup. Assume a legacy smart contract has a variable
of interest that happens to be private. This means that with regular
Solidity methods this variable cannot be accessed. We show how this
can be worked around with the help of an untrusted third party who

provides some proof. Provided one knows an actual block hash b on the
best chain, one only has to check two MPT proofs to ensure what the

value of the private variable px is, namely px AN storageRoot[loc(pz)]

and (_, ,storageRoot,) 4 b.stateRoot[addr| where loc(px) refers to
the persistent storage location of the variable px and addr refers to the
smart contract address.

Detecting transactions. Recall that Ethereum stores an MPT root of

all transactions in its header. Thus the MPT proof tx 2, b.transactions-
Root[H (tz)] suffices as proof that tx € b. These proofs are already used
in practice to prevent front-running [1].

The above operations can be performed as long as our smart contract
can verify that a block header b is part of the current chain. We propose
several mechanisms of doing so.

BLOCKHASH opcode. Ethereum offers the BLOCKHASH opcode that allows a
smart contract to obtain previous block hashes. This functionality makes
ensuring that a provided block b is in the best chain trivial: the contract
extracts b.height, invokes BLOCKHASH for that height number and compares
H(b) with the result of the BLOCKHASH invocation. If those match, the
block is valid. Unfortunately this functionality is limited to the past 256
blocks [16]. There is a proposal to remove this artifical limit which is
expected to be implemented in a future hard fork of Ethereum [3]. For
Ethereum, this is the ideal solution to the block verification problem,
resulting in the least possible costs for proving events.

BTCRelay-style SPV. BTCRelay [5] rose to prominence in 2016 as a
way to provide Bitcoin SPV client capabilities to any Ethereum smart
contract. Every block is submitted to the contract by helpful but un-
trusted participants and a header-chain is formed and confirmed. A con-
venient mapping is kept so that it can be decided if any block is in the
current best header-chain. BTCRelay also offers incentives for submitters
of blocks, where the submitters get rewarded whenever the blocks they
have posted are used to prove some event. This scheme can be used for
block verification of the Ethereum chain on Ethereum — an “ETCRelay.”

NIPoPoWs. NIPoPoWs [7,2] are succinct strings that prove statements
about some chain. Their succinctness makes them perfect candidates to
use as proofs for block inclusion on an Ethereum smart contract. Details
on their use for this scenario are presented in [8]. Note that this use comes
with a host of incentives via collateralization that should be implemented
for use in our Introspective SPV client.

Implementation. We summarize all these functionalities in the com-
plete Introspective SPV contract shown in Algorithm 1. This is, to our
knowledge, the first contract that is an SPV client for its host chain.

Algorithm 1 Introspective SPV contract for Ethereum, on Ethereum.

1: contract introspective-spv

2: function submit-block(b, 7)

3: if —verify(b, v) then

4: return |

5: end if

6: valid-blocks U= {b}

7 end function

8: > verify-* functions return false if b ¢ valid-blocks

9: function verify-tx(tz, b,)

10: return tx - b.transactionsRoot[H (tz)]

11: end function

12: function verify-storage(val, loc, addr, b,)

13: return 3o: val ~0 ollodf AN(_,_,o0,) LILIN b.stateRoot[addr]
14: end function

15: function verify-event(evt, addr, b,)

16: return evt.src = addr A i, v evt € r A(_,_, 71,) = b.receiptsRoot[i]
17: end function

18: end contract

We remark that using any storage is not necessary and it is only used
for illustrative purposes. All functions can be made to operate based on
only arguments they receive, without compromising their security.

3 Concrete Instances

We now move to some notable applications that can be accomplished by
contracts which build on the Introspective SPV functionality.
Insurance. A quite useful application of a smart contract derivative is
the ability to provide insurance for an underlying smart contract. This is
a contract between an insurer and a policyholder account. The contract
works as follows. Initially, the insurer creates the insurance contract,
depositing a large amount of money to it to be used as liabilities in case
of claims. Subsequently, after checking that the deposited amount secured
against liabilities is sufficient, the future policyholder account deposits the
premium as a payment to the insurance contract, which signs them up for
the insurance. The premium can also be paid in installments if desired.
Once the premium has been paid, the policy is activated for the particular
policyholder.

The derivative smart contract insures against a covered loss event
which pertains to an underlying smart contract. Unlike traditional insur-
ance contracts, assessing whether a claim is valid or not is not left up
to the insurer or courts of law, but is determined by the smart contract
in a predetermined and decentralized manner. As such, there can be no
disputes on whether a coverage claim is valid.

One such example constitutes insuring an underlying /CO smart con-
tract [13] against a specified loss condition. The condition describes what
the policyholder considers to be a failed outcome of the ICO. For in-
stance, the policyholder can specify that the ICO’s success requires that
there are at least 5 whale investors, defined as investors each of which has
deposited more than $1,000,000 in a single transaction over the course of
the ICO’s fundraising period.

Insurance claims in this example are made as follows. If the insured
determines that there has been a loss event (i.e., there have been fewer
than 5 whale investors), then at the end of the ICO’s fundraising period,
they submit a claim. This claim does not include any proof. The open-
ing of a claim initiates a contestation period during which the insurer
can submit a counter-claim illustrating that the claim was fraudulent.
This counter-claim does include a proof, which consists of 5 transactions
made to the ICO smart contract each of which pertains to a different in-
vestor and is valued more than $1,000,000. This counter-claim proof can
be checked for validity by using the means described previously. If there
are no counter-claims within the contestation period, then the claimant is
compensated. In case the policyholder acts adversarially, making a fraud-
ulent claim, the insurer can always present this counter-claim and avoid
paying compensation. In case the insurer acts adversarially, electing not
to pay compensation when required to do so, the policyholder will make
a claim against which the adversarial insurer will not be able to provide
a counter-claim.

It is noteworthy that the contract should be resistant to attacks where
a malicious policyholder continuously makes false claims that the honest
insurer has to defend against causing them monetary loss. To prevent
such attacks, the smart contract may request some collateral from the
policyholder when claiming, that is taken from them if they are making a
false claim and returned to them when they are making a truthful claim.
Such incentive mechanisms have been the subject of extensive study in
previous work [14].

Options. Traditionally an option is a contract between a holder and a
writer. It allows the holder to either buy (call option) or sell (put option)

an underlying asset to the writer at a specified strike price and until a
specified expiry date [6]. If the holder elects to exercise the option, the
writer is obligated to complete the trade. An option can be traded on
the open market like any other asset. Buying an option ensues that the
existing holder forfeits their contractual rights and transfers them to the
buyer, making them effectively the new holder.

Centralized exchanges have a plethora of ways of enforcing the legal
obligations of writers. Specifically, if a writer does not fulfill the valid
request of a holder, their account may be frozen, their funds may be seized
and further action may be taken against them through the traditional
legal system.

To implement options in a decentralized manner we assume the ex-
istence of a clearing house, which can be implemented as its own smart
contract, that will insure the holder against the event that the writer does
not fulfill her contractual obligations. A responsible options buyer only
buys an option that comes with a guaranteed insurance similar to the one
outlined in the previous section. If the writer fails to fulfill her contractual
obligations, a claim with the clearing house is started. A successful claim
would be of the form: “On some block that occurred after the start of the
option contract and before its expiry, I (the holder) requested to exercise
my option. By the block of expiry, no event was fired indicating that my
writer acted to fulfill my request for the requested price and amount.” Af-
ter the contestation period, the holder is refunded by the clearing house
smart contract.

Futures. Similar to an option, a future is a contract between two parties.
The defining difference from an option is that the holder is obligated to
perform a specified action (either buy or sell) on the underlying asset at
the strike price and on the specified expiry date [6]. For simplification the
expiry date can be described as a block height inside the smart contract.
It is easy to see how this system can also be implemented with the help
of a clearing house, similarly to an option. Plainly, in case of fraud, the
policyholder could claim that “Between the start of the agreement and
the expiry, no Solidity event was fired indicating that the writer bought
or sold from me the agreed amount at the agreed price.” In case of a
fraudulent policyholder, all the clearing house has to do is provide proof
that this event was fired in some block in the period of interest.

On the availability of insurers. Exchanges implicitly offer insurance
for their users by keeping track of how much money they store with them
and making sure they are not over-exposed to risk. Banks implicitly of-
fer insurance for their customers based on their credit-worthiness. The

same out-of-band criteria can apply for any institution wishing to insure
on-chain. An insurer can create an off-chain agreement with the party
who can cause a loss and claim, or rely on some on-chain collateral, po-
tentially denominated in multiple tokens/currencies, to be automatically
compensated in case of misbehavior.

References

1.

oo

11.

12.

13.

14.

15.

16.

17.

18.

Lorenz Breidenbach, Phil Daian, Florian Tramer, and Ari Juels. Enter the hydra:
Towards principled bug bounties and exploit-resistant smart contracts. In 27th
USENIX Security Symposium (USENIX Security 18), pages 1335-1352, 2018.
Benedikt Biinz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. Flyclient: Super-
light clients for cryptocurrencies. IJACR Cryptology ePrint Archive, 2019:226, 2019.
Vitalik Buterin. EIP 210: Blockhash refactoring. Available at: https://
eips.ethereum.org/EIPS/eip-210.

Vitalik Buterin et al. A next-generation smart contract and decentralized appli-
cation platform. white paper, 2014.

Joseph Chow. BTC Relay. Available at: https://github.com/ethereum/btcrelay.
John Hull. Options, Futures and Other Derivatives. Pearson, 2017.

Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-Interactive Proofs of
Proof-of-Work. In International Conference on Financial Cryptography and Data
Security. Springer, 2020.

Aggelos Kiayias and Dionysis Zindros. Proof-of-Work Sidechains. In International
Conference on Financial Cryptography and Data Security Workshop on Trusted
Smart Contracts. Springer, 2019.

Sergio Damian Lerner. Drivechains, sidechains and hybrid 2-way peg designs, 2016.

. Ralph C Merkle. A digital signature based on a conventional encryption function.

In Conference on the theory and application of cryptographic techniques, pages
369-378. Springer, 1987.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Available at:
https://bitcoin.org/bitcoin.pdf, 2008.

Paul Sztorc. Drivechain - the simple two way peg, November 2015. http://
www.truthcoin.info/blog/drivechain/.

Jason Teutsch, Vitalik Buterin, and Christopher Brown. Interactive coin of-
ferings. Awailable at: https://people.cs.uchicago.edu/ ~teutsch/papers/
ico.pdf, 2017.

Jason Teutsch and Christian Reitwiefiner. Truebit: a scalable verification solution
for blockchains, 2018.

Fabian Vogelsteller and Vitalik Buterin. ERC-20 token standard. Available at:
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md, 2015.

Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, 151:1-32, 2014.

Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town
crier: An authenticated data feed for smart contracts. In Proceedings of the 2016
aCM sIGSAC conference on computer and communications security, pages 270—
282, 2016.

Fan Zhang, Sai Krishna Deepak Maram, Harjasleen Malvai, Steven Goldfeder,
and Ari Juels. DECO: Liberating Web Data Using Decentralized Oracles for TLS.
arXiv preprint arXiv:1909.00938, 2019.

https://eips.ethereum.org/EIPS/eip-210
https://eips.ethereum.org/EIPS/eip-210
https://github.com/ethereum/btcrelay
https://bitcoin.org/bitcoin.pdf
http://www.truthcoin.info/blog/drivechain/
http://www.truthcoin.info/blog/drivechain/
https://people.cs.uchicago.edu/~teutsch/papers/ico.pdf
https://people.cs.uchicago.edu/~teutsch/papers/ico.pdf
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

	Smart Contract Derivatives
	Introduction
	Introspective SPV
	Concrete Instances

