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Abstract. We present a two-message oblivious transfer protocol achiev-
ing statistical sender privacy and computational receiver privacy based
on the RLWE assumption for cyclotomic number fields. This work im-
proves upon prior lattice-based statistically sender-private oblivious trans-
fer protocols by reducing the total communication between parties by a
factor O(n log q) for transfer of length O(n) messages.

Prior work of Brakerski and Döttling uses transference theorems to show
that either a lattice or its dual must have short vectors, the existence of
which guarantees lossy encryption for encodings with respect to that lat-
tice, and therefore statistical sender privacy. In the case of ideal lattices
from embeddings of cyclotomic integers, the existence of one short vec-
tor implies the existence of many, and therefore encryption with respect
to either a lattice or its dual is guaranteed to “lose” more information
about the message than can be ensured in the case of general lattices.
This additional structure of ideals of cyclotomic integers allows for effi-
ciency improvements beyond those that are typical when moving from
the generic to ideal lattice setting, resulting in smaller message sizes for
sender and receiver, as well as a protocol that is simpler to describe and
analyze.

1 Introduction

Oblivious transfer (OT) is a cryptographic primitive first introduced by Rabin
[Rab05]. An OT protocol is carried out between two parties: a sender and a
receiver. For our purposes, the sender possesses exactly two messages (binary
strings), and the receiver possesses a bit corresponding to the sender’s message
that it wishes to receive. The protocol should satisfy security properties for
both sender and receiver as well as a correctness property: the receiver should
obtain the message corresponding to its bit with high probability while learning
essentially nothing about the other message, and the sender should be unable to
guess the receiver’s bit with noticeable advantage.
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There are a variety of models for the parties involved in an OT protocol,
as well as notions of security. In the semi-honest setting, the parties may be
assumed to follow the protocol exactly, whereas in the malicious setting we
require security even when either or both parties may deviate from the protocol.
Using zero-knowledge proofs [GMW87], it is in fact possible to transform a
semi-honest OT protocol into one secure against malicious parties, but given the
overhead of this transformation, we will be interested in constructing malicious
OT directly.

One of the strongest definitions of security we might hope to satisfy with our
OT protocol is universally composable (UC) security. This definition requires
that for any amount of deviation from the protocol, the outputs of both parties
can still be efficiently simulated, even in an environment in which a variety
of protocols are concurrently executed. This notion can already be achieved
from standard lattice assumptions [PVW08], but requires a trusted third party
to generate a common reference string during setup that may only be used a
bounded number of times before this trusted setup must again be invoked. More
recently, it has been shown how to compile an OT protocol satisfying a much
weaker notion of security into one satisfying UC security [DGH+20]. This weaker
notion requires computational privacy for the receiver against a cheating sender,
and only requires that a cheating receiver should not be able to output both of
the sender’s messages in their entirety. This compiler could potentially be used
to give a UC-secure oblivious transfer protocol from lattice assumptions with a
common reference string usable for an unbounded number of executions, but the
compiled protocols are fairly complex and inefficient. In any case, it is known
that a common reference string (and therefore a trusted third party) is required
for any UC-secure OT protocol [CF01], and so other notions of security must be
adopted in settings where no trusted party can be assumed.

Another notion, statistically sender-private OT (SSP OT), was introduced in
[NP01][AIR01] and requires simulation security only against a cheating receiver,
adopting a relaxed notion of computational security against a cheating sender.
No setup is required to achieve this notion of security, and many constructions
have been given from number theoretic assumptions [Kal05] [HK12] [BGI+17].
In recent years, SSP OT constructions based on conjectured quantum-secure
cryptographic assumptions have also begun to appear in the literature [BD18],
[DGI+19], and [BGI+17] used with the results of [GH19] or [BDGM19].

Oblivious transfer has myriad uses in cryptography, and perhaps most no-
tably is complete for secure multiparty computation (MPC) [Kil88][IPS09]. Since
the security guarantees of the cryptographic constructions built from oblivious
transfer depend very much on the properties of the underlying OT protocol,
it is important to consider which cryptographic tasks motivate the study of
SSP OT specifically. Badrinarayanan et al. [BGI+17] used SSP OT to construct
witness-indistinguishable arguments for NP, for which statistical sender privacy
is required in the proof of zero knowledge. Jain et al. [JKKR17] showed that
two-round SSP OT is sufficient to construct two-round delayed-input interactive
arguments for NP that guarantee witness-indistinguishability, witness-hiding,
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and distributional weak zero-knowledge against delayed-input verifiers, though
a computational notion of sender privacy also suffices for their constructions.
Badrinarayanan et al. [BGJ+18] subsequently showed that such arguments can
be used to compile a three-round semi-malicious MPC protocol into a four-round
malicious MPC protocol. SSP OT has been used in constructions of three-round
concurrent MPC [BGJ+17], two-message non-malleable commitments [KS17],
and two-message witness-indistinguishable proof systems [KKS18]. It also has
applications in fully-homomorphic encryption (FHE), as shown by Ostrovsky,
Paskin-Cherniavsky, and Paskin-Cherniavsky [OPP14], in their construction of
statistically circuit private FHE from SSP OT and any FHE scheme.

1.1 Related work

To compare prior work on statistically sender private two-round oblivious trans-
fer, we will first need to introduce some convenient vocabulary for referring to
the communication complexity of these protocols. We will be interested in the
communication rate of existing protocols – the fractional bits of information
transferred from sender to receiver per bit of communication in the protocol.
Somewhat more quantitatively, the overall rate of a protocol that transfers a
π bit message to the receiver, requires ν bits of receiver communication and τ
bits of sender communication is π

ν+τ . It is sometimes useful to distinguish be-
tween the contribution of the receiver’s communication to the overall rate and
the sender’s. We refer to the former (π/ν) as the upload rate, and the latter
(π/τ) as the download rate. Our protocol has (upload, download and overall)
rate O(1/ log(λ)).

The first statistically sender private two-round oblivious transfer protocol
based on lattice assumptions was given by [BD18], and we take this work as a
starting point for our OT protocol. Brakerski and Döttling [BD18] gave a very
nice generalization of an existing regularity lemma for lattices, and showed how
to use this lemma along with duality properties of lattices to achieve statistically
sender private OT with download rate 1/ log(λ) (similar to our protocol) but
much worse upload (and overall) rate 1/(λ · polylog(λ)).

There has since been significant progress in low-communication oblivious
transfer from the Learning with Errors (LWE) assumption. Döttling et al. [DGI+19]
give a constant-rate SSP OT scheme via their construction of trapdoor hash func-
tions. They use these functions to build download rate-(1−O(1/λ)) semi-honest
OT, but with upload rate still inversely proportional to λ. They then observe
that, for very long (polynomial in λ) messages, the upload rate (and there-
fore their overall rate) can be brought up to 1 − O(1/λ) by amortization. The
sender’s poly(λ)-length strings may be divided up into blocks, and each block
can be transferred using the receiver’s first message. To achieve statistical sender
privacy, they leverage a result from [BGI+17], which gives a generic transforma-
tion from semi-honest OT with rate above 1/2 to statistically sender private OT
with constant rate. Though this improves on our protocol’s O(1/ log λ) overall
rate, we observe that similar amortization may be applied to our protocol to
achieve a constant upload rate by reuse of the receiver’s first message, provided
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that the sender’s messages are strings of length at least Õ(n) (see Section 2.1,
Lemma 1). However, many of the previously described applications of SSP OT do
not call for polynomially large sender messages, and so the amortization method
of [DGI+19] is not applicable.

Furthermore, for applications requiring long sender messages in which statis-
tical sender privacy can be relaxed to computational privacy, a different approach
to amortization can be applied to both protocols. The receiver’s first message is
unchanged, but the sender will use the receiver’s message to instead send one of
two keys for a constant-rate symmetric encryption scheme, e.g., using a pseudo-
random generator or a stream cipher. The sender may encrypt each of its two
poly(λ)-length messages under their respective keys, and send these ciphertexts
as well. The receiver can then recover the key corresponding to its choice bit, and
use this key to decrypt the longer message. The other key will be statistically
hidden, by the SSP property of the OT protocol, however the sender’s security
will be reduced to that of the symmetric encryption scheme.

Badrinarayanan et al. [BGI+17] also give a construction of constant rate
SSP OT from any linear homomorphic encryption system with rate greater than
1/2. Such a homomorphic encryption system was later given by Gentry and
Halevi [GH19], building off the GSW [GSW13] cryptosystem. Applied to the
construction of [BGI+17], their compressible FHE scheme allows compression of
both the sender’s and receiver’s communication, but to achieve constant rate, the
receiver must need super-linearly (in the security parameter) many O(λ)-length
messages from the receiver. Concurrent work by Brakerski et al. [BDGM19] also
gives a rate-1 FHE scheme based on a batched version [PVW08][BGH13] of the
Regev [Reg05] encryption scheme. [BDGM19] also achieves high rate FHE via
compression of multiple ciphertexts into a single ciphertext, and so will similarly
require settings in which the sender’s messages are of length polynomial in the
security parameter to realize the benefit of compression.

1.2 Our Contribution

We give a simple, module lattice-based oblivious transfer protocol which im-
proves over the overall rate of similar protocols ([BD18]) beyond the typical
savings achieved when restricting to module lattices, saving a factor O(λ log λ).
We compare our protocol to other lattice-based SSP OT protocols in two nat-
ural settings: a single execution of the protocol and λ parallel executions. We
show that for applications requiring at most O(λ) messages of length O(λ), we
achieve the best known overall rate for SSP OT, giving significant improvements
in both asymptotic and concrete parameters. Our protocol is also comparatively
simple and efficient, requiring only a constant number of polynomial multiplica-
tions (see Section 4 for a more thorough comparison of the communication and
computational complexity of this work with those of other SPP OT protocols).
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1.3 Techniques

A lossy encryption scheme [KN08][PVW08] is a public-key encryption scheme
that admits the generation of “lossy” public keys – public keys under which
encryption statistically hides the encrypted message. The works of Peikert et al.
[PVW08] and Hemenway et al. [HLOV11] show that, in fact, lossy encryption is
equivalent to statistically sender private 2-round oblivious transfer.

Brakerski and Döttling [BD18] demonstrate one method for achieving such
lossy encryption for lattice-based schemes, by showing that a single basis for a
lattice can serve as both a lossy and lossless public key. In their OT protocol,
the receiver sends a matrix A, defining a q-ary lattice Λq(A). The sender then
encodes a string with respect to Λq(A), and a second string with respect to
the dual lattice Λ∗q(A). They show that for any valid A, for a definition of
validity that is efficiently verifiable, encoding with respect to at least one of
Λq(A) or Λ∗q(A) will statistically hide a constant fraction of the encoded string.
The partially hidden string, given its encoding, will have sufficient min-entropy
for the application of a randomness extractor, yielding a uniformly random one-
time pad that can mask one of the sender’s messages.

To provide some intuition as to why encoding with respect to both primal
and dual lattices guarantees one of the two encodings will be somewhat lossy, we
now describe their encoding method informally and at a high level. Encoding a
string m with respect to a lattice Λ consists of injectively mapping m to a lattice
point x ∈ Λ, and perturbing this lattice point by discrete Gaussian error e to
produce a new point t = x + e. Because e is drawn from a discrete Gaussian, a
maximum likelihood decoding of t will identify the vector x′ ∈ Λ that minimizes
‖e‖2 = ‖t− x′‖2, and given a short basis for Λ∗, this can be done efficiently.

To see why such an encoding could be lossy for some lattices, consider the
result of maximum likelihood decoding when ‖e‖2 is much larger than the mini-
mum distance λ1 of the lattice, λ1(Λ) = minv∈Λ ‖v‖2. In this case, there will be
several candidate lattice points x′ that correspond to similarly probable values
for e. This means that the most probable x′ is not overwhelmingly likely to be
correct – there is some entropy in at least one dimension of x, given t.

That one of Λ and Λ∗ must contain enough short vectors to guarantee suffi-
cient min-entropy for extraction follows in principle from a transference theorem
of Banaszczyk [Ban93]. This theorem implies that for a lattice Λ of rank n, there
must be at least n linearly independent vectors in Λ∪Λ∗ of euclidean length no
more than

√
n. So if Λ has no vectors of length less than

√
n, Λ∗ must have a

basis B for which maxv∈B ‖v‖2 ≤
√
n. In this case, for a large enough Gaussian,

encoding with respect to Λ∗ will be highly lossy. Less conditional min-entropy
can be guaranteed in the more balanced case, however, when there may be a few
short vectors in both Λ and Λ∗. Statistical privacy for the sender is therefore
limited by this intermediate case.

We show that applying these same principles restricted to ideal lattices for
ideals of cyclotomic integers guarantees more lossiness in the worst case for the
sender. The structure of these ideal lattices ensures that Λ must either have
many short vectors or none at all, limiting the extent to which Λ and Λ∗ can be
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Sender(m0,m1)

µ0, µ1
$← Send(m0,m1, σ)

σ�
µ0, µ1-

Receiver(β)

σ,St
$← Rec(1)(β)

m← Rec(2)(β,St, µ0, µ1)

Fig. 1: Two-message oblivious transfer protocol.

adversarially balanced by a cheating receiver. We exploit this structure to give
a simpler statistically sender private OT protocol with smaller message sizes,
yielding improvements in efficiency beyond those that are expected when moving
from a generic lattice to ideal lattice scheme. The receiver’s message, which dom-
inates the communication complexity of [BD18], is reduced from O(n2 log2 n) to
O(n log n) bits (see Figure 5), giving a O(log n) factor improvement on top of the
O(n) improvements typical of ideal lattice schemes. This is asymptotically mod-
est, but as shown in Figure 6, yields significantly improved concrete parameters
for lattice-based statistically sender secure oblivious transfer, even compared to
other subsequent works.

2 Preliminaries

2.1 Oblivious Transfer

A two-message oblivious transfer protocol, OT, comprises three algorithms:

OT = (Rec(1),Send,Rec(2))

which are executed by two parties: a sender and a receiver. The protocol proceeds
in stages as shown in Figure 1. (All algorithms additionally take a security
parameter 1λ as input, but we suppress this for notational convenience.) At the
outset, the sender is given inputs m0,m1 ∈ {0, 1}n for some fixed n = poly(λ),

and the receiver is given input bit β ∈ {0, 1}. The receiver runs Rec(1) on its

input β ∈ {0, 1}. Rec(1) then outputs a message σ to the sender, and some

state information St to be passed to Rec(2). On receiving σ, the sender runs
Send(m0,m1, σ), which outputs a message pair (µ0, µ1) to be transmitted to

the receiver. In the final step, the receiver runs Rec(2)(β,St, µ) which returns a
message in {0, 1}n ∪ {⊥}.

We will be exclusively interested in two-message oblivious transfer protocols
satisfying the following security and correctness properties.

Definition 1 (Correctness). An OT = (Rec(1),Send,Rec(2)) protocol is cor-
rect if for any pair of messages m0,m1 and bit b ∈ {0, 1},

Pr[Rec(2)(Send(m0,m1,Rec
(1)(b))) = mb] ≥ 1− ε

for some negligible function ε(n) = n−ω(1).
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Definition 2 (Statistical sender privacy). An OT = (Rec(1),Send,Rec(2))
protocol is statistically sender private if there exists a potentially computationally
unbounded extractor Ext such that for any receiver message σ, Ext(σ) outputs a
bit b ∈ {0, 1} such that for any pair of messages (m0,m1) the two distributions

{Send(σ,m0,m1)} ≈∆ {Send(σ,mb,mb)}

are statistically close.

Computational sender privacy is defined similarly, replacing statistical close-
ness ≈∆ with computational indistinguishability. The main difference between
sender privacy and full simulation security is that sender privacy does not require
the bit b to be efficiencly computable from σ. So, sender privacy can be described
as a form of security with respect to a computationally unbounded simulator.
For this reason, statistical security is perhaps a more natural requirement for
the sender, and we do not consider computational sender privacy, except when
discussing length extension techniques below.

Definition 3 (Computational receiver privacy). An OT = (Rec(1),Send,Rec(2))

protocol is computationally receiver private if the distributions Rec(1)(0) and

Rec(1)(1) are computationally indistinguishable, i.e., for any (potentially cheat-
ing, probabilistic polynomial time) sender S∗

|Pr[S∗(σ) = 1 | σ ← Rec(1)(1)]− Pr[S∗(σ) = 1 | σ ← Rec(1)(0)]| < ε

for some negligible function ε(n) = n−ω(1).

Notice also that the sender security with efficient simulator (i.e., the ability
to efficiently extract the bit b from the receiver message σ) is clearly at odds
with receiver security. In fact, two round protocols cannot achieve full simulation
security, and goind beboynd sender privacy requires adding more communication
rounds to the protocol.

As discussed in the introduction, it is possible to generically boost the upload
rate of a statistically sender private oblivious transfer protocol from 1/poly(λ) to

a constant. Let n(λ) ∈ poly(λ), and let OT = (Rec(1),Send,Rec(2)) be a statisti-
cally sender private oblivious transfer protocol with sender messages m0,m1 ∈
{0, 1}n. Let `(n) ∈ poly(n). The protocol OT` = (Rec

(1)
` ,Send`,Rec

(2)
` ), described

in Figure 2, transfers length `(n) strings by reusing the output of Rec(1) to exe-

cute `/n parallel repetitions of the Send and Rec(2) subroutines.

Lemma 1 (Parallel OT execution). Let OT = (Rec(1),Send,Rec(2)) be a sta-
tistically sender private oblivious transfer protocol with sender messages m0,m1 ∈
{0, 1}n, upload rate υ, and download rate δ. Then for `(n) ∈ poly(n), the pro-

tocol OT` = (Rec
(1)
` ,Send`,Rec

(2)
` ) of Figure 2 is a statistically sender private

oblivious transfer protocol with sender messages m0,m1 ∈ {0, 1}`(n), upload rate
υ`/n, and download rate δ.
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Algorithm 1 Rec
(1)
` Input: β ∈ {0, 1}

σ,St← Rec(1)(β)
return σ

Algorithm 2 Send` Input: m0,m1 ∈ {0, 1}`, σ

m
(1)
0 ‖m

(2)
0 ‖ . . . ‖m

(`/n)
0 ← m0 Divide m0 into blocks of length n

m
(1)
1 ‖m

(2)
1 ‖ . . . ‖m

(`/n)
1 ← m0 Divide m1 into blocks of length n

for i ∈ {1, . . . , `/k} do
µ
(i)
0 , µ

(i)
1 ← Send(σ,m

(i)
0 ,m

(i)
1 )

return {µ(i)
0 , µ

(i)
1 }

`/n
i=1

Algorithm 3 Rec
(2)
` Input: β, St, (µ0, µ1)

for i ∈ {1, . . . , `/n} do
m(i) ← Rec(2)(β,St, µ

(i)
0 , µ

(i)
1 )

return m(1)‖m(2)‖ . . . ‖m(`/n) Concatenate the m(i)s

Fig. 2: Amortization of upload rate for an OT protocol for transfer of a single,
poly(λ)-length message.

Proof. The output of Send` is by definition the same length as that of Send, while
the sender’s messages are of length `(n), and so the upload rate is υ`/n. Both
the output of Send` and the length of the sender’s messages have increased by a
factor `/n compared to Send, and so the upload rate remains the same. Statistical
sender privacy is preserved for a setting of `(n) ∈ poly(n), by a hybrid argument

on the distributions of (µ
(1)
0 , µ

(2)
0 , . . . , µ

(`/n)
0 ) and (µ

(1)
1 , µ

(2)
1 , . . . , µ

(`/n)
1 ).

It is also possible to generically boost a statistically sender private OT
protocol to one with constant overall rate, by trading statistical sender pri-
vacy for computational. Given a statistically sender private OT protocol OT =
(Rec(1),Send,Rec(2)) and a pseudorandom generator G with sufficiently large

stretch, the protocol OTG = (Rec
(1)
G ,SendG,Rec

(2)
G ) shown in Figure 3 will have

constant overall rate.

Lemma 2 (OT Length extension). Let OT = (Rec(1),Send,Rec(2)) be a sta-
tistically sender private oblivious transfer protocol with sender messages m0,m1 ∈
{0, 1}n, upload rate υ, and download rate δ. Let `(n) ∈ poly(n) and G be a pseudo-

random generator with stretch `(n). Then protocol OTG = (Rec
(1)
G ,SendG,Rec

(2)
G )

of Figure 3 is an oblivious transfer protocol with computational privacy for both

8



Algorithm 4 Rec
(1)
G Input: β ∈ {0, 1}

σ,St← Rec(1)(β)
return σ

Algorithm 5 SendG Input: m0,m1 ∈ {0, 1}`, σ
s0‖s1 ← {0, 1}2`
µ0, µ1 ← Send(s0, s1, σ)
mask0 ← G(s0)
mask1 ← G(s1)
return (µ0, µ1,m0 ⊕ mask0,m1 ⊕ mask1)

Algorithm 6 Rec
(2)
G Input: β, St, (µ0, µ1,m0 ⊕ mask0,m1 ⊕

mask1)

s← Rec(2)(µ0, µ1)
mask← G(s)
return mask⊕ µβ

Fig. 3: Length extension of an OT protocol for transfer of a single, poly(λ)-length
message

sender and receiver, sender messages m0,m1 ∈ {0, 1}`(n), upload rate υ`/n, and
download rate at least (1− n/δ`).

Proof. The upload rate can be shown to be υ`/n as in Lemma 1. The output of
SendG has increased over that of Send by an additive factor of `, and therefore
the download rate is `

`+n/δ ≥ 1−n/δ`. The seed s1−β is statistically hidden from

the receiver, and so m1−β is computationally hidden, with security reducing to
the security of the pseudorandom generator G that was used as its mask.

2.2 Entropy and Extractors

For random variables X,Y , the conditional min-entropy of X conditioned on Y
is

H∞(X | Y ) := − log max
x,y

Pr[X = x | Y = y].

[ILL89] show that a weak conditional min-entropy source X, along with a uni-
formly random seed s, can be used to generate an output distribution ε-close to
the uniform distribution, even given the seed s and the possibly correlated value
Y .
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Definition 4 ((k,m, ε)-strong extractor). A function E : {0, 1}l × X →
{0, 1}m is a (k,m, ε)-strong extractor (with seed length l) if for all random
variables X over X and Y over Y such that H∞(X | Y ) ≥ k, and for S uniform
on {0, 1}l, the statistical distance

∆((E(S,X), S, Y ), (Um, S, Y )) ≤ ε,

where Um is the uniform distribution over {0, 1}m.

There are many constructions of such (k,m, ε)-strong extractors, all with
varying seed lengths, codomain sizes, and runtimes. To ensure that our protocol’s
runtime is not asymptotically dominated by the application of the randomness
extractor, we make use of a particular extractor from modified Toeplitz matrices,
given by [Hay11]. This choice is more carefully justified in Section 3.5.

Theorem 1 ([Hay11]). For any n, k ≤ n, and ε > 0, the following family
of modified Toeplitz matrices over Fq is a (k,m, ε)-strong extractor, for m =
k − 2 log(1/ε), seed length l = log q(n− 1), and input space X = Fnq , running in
time O(n log n).

The seed s selects a matrix M from the (implicitly defined) family as follows.
Sample n − 1 elements xi ∈ Fq using s. Define the matrix X ∈ Fm×n−mq by
Xi,j = xn−m−j+i. Let Im be the m-dimensional identity matrix. Then the matrix
M is

M = [X | I].

2.3 Lattices and Gaussian Measures

We write [x,y] to indicate horizontal concatenation of vectors (or matrices) x
and y, and (x,y) to indicate vertical concatenation.

We define a lattice as a discrete additive subgroup of the space Rn. A full-
rank lattice of dimension n is generated as all Z-linear combinations of a set of
n linearly independent basis vectors in Rn. When a basis B = [b1, . . . ,bn] is
specified, we write the lattice generated by B as

Λ(B) = {Btz : z ∈ Zn}

The ith successive minimum of a lattice Λ, for 1 ≤ i ≤ n, is defined as

λi(Λ) = min{λ ∈ R≥0 : rank(λB ∩ Λ) = i}

where λB denotes the ball of radius λ centered on the origin. The dual lattice
of Λ is the set of vectors in Rn with integer inner product with all vectors of Λ,
and is denoted Λ∗.

Λ∗ := {x ∈ Rn | ∀y ∈ Λ : 〈x,y〉 ∈ Z}

The Gaussian function ρs : Rn → (0, 1] is ρs(x) = exp(−π(‖x‖/s)2). We de-
note the Gaussian sum on a set X ⊂ Rn as ρs(X) =

∑
x∈X ρs(x). The smooth-

ing parameter of a lattice, denoted by ηε(Λ), is the smallest s ∈ R such that
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ρ1/s(Λ
∗) ≤ 1 + ε. We write DΛ,s to indicate the discrete Gaussian distribution

of parameter s over the points of lattice Λ, so that DΛ,s(x) = ρs(x)/ρs(Λ).
We call a random variable X or its distribution subgaussian over R of pa-

rameter s if its tails are dominated by a Gaussian of parameter s, so that

Pr{|X| ≥ t} ≤ 2e−πt
2/s2 for all t ≥ 0.

A subgaussian variable X with parameter s > 0 satisfies

E[e2πtX ] ≤ eπs
2t2 , for all t ∈ R.

The distribution DΛ,s is subgaussian with parameter s for any lattice Λ and
s > 0, s ∈ R. A random vector x of dimension n is subgaussian of parameter
s if for all unit vectors u ∈ Rn, its one-dimensional marginals 〈u,x〉 are also
subgaussian of parameter s. This extends to random matrices, where Xm×n is
subgaussian of parameter s if for all unit vectors u ∈ Rm,v ∈ Rn, utXv is
subgaussian of parameter s. It follows immediately from these definitions that
the concatenation of independent subgaussian vectors, all with parameter s,
interpreted as either a vector or matrix, is also subgaussian with parameter s.

We will need the following tail bound on the length of a vector sampled from
DΛ,s.

Lemma 3 ([Ban93]). For any n-dimensional lattice Λ and s > 0, a point
sampled from DΛ,s has Euclidean norm at most s

√
n, except with probability at

most 2−2n.

We will also need the following bounds on the smoothing parameter of any lattice
Λ.

Lemma 4 ([MR04]). For any n-dimensional lattice Λ, the smoothing param-
eter η2−2n(Λ) ≤

√
n/λ1(Λ∗).

Lemma 5 ([MR04]). For any n-dimension lattice Λ, and ε > 0,

ηε(Λ) ≤
√

ln(2n(1 + 2/ε))

π
.

It follows from the above that for ε = 2−n, ηε(Z) ≤
√
n.

The Poisson summation formula allows us to relate the Gaussian measure
over a lattice to that over its dual.

Lemma 6 (Poisson summation formula). For any lattice Λ ⊂ Rn and any

complex-valued function f : Rn → C, f(Λ) = 1
det(Λ) f̂(Λ∗).

For f = ρs, it immediately follows from the above and the observation that
ρ̂s = snρ1/s, that ρs(Λ) = sn

det(Λ)ρ1/s(Λ
∗).

The following lemma of [BD18] gives a lower bound on the Gaussian measure
over a lattice in terms of its successive minima.

Lemma 7. For any n-dimensional lattice Λ, k ∈ Z, k ≤ n,

ρs(Λ) ≥ (s/λk(Λ))k.

11



Cyclotomic Integers and Module Lattices Our protocol makes use of the
structure of ideal lattices over cyclotomic integers. Let ζ2n be a primitive 2nth
root of unity, for n a power of 2. We denote by Φ2n(X) the 2nth cyclotomic
polynomial

Φ2n(X) =
∏
i∈Z∗2n

(X − ωi2n) = Xn + 1,

which is the minimal polynomial of ζ2n, i.e. the lowest degree monic polynomial
with coefficients in Q having ζ2n as a root.

Our protocol operates on elements of the ring R = Z[X]/(Φ2n(X)), and we
write Rq to indicate the quotient ring R/qR. We embed elements of R into Zn
via the coefficient embedding, denoted σ, which takes an element a ∈ R to its
coefficient vector. This embedding induces a geometry on R, so that for any
norm ‖ · ‖ defined on Zn, and any a ∈ R, we take ‖a‖ = ‖σ(a)‖. An ideal I ⊂ R
embeds under σ as a lattice in Zn. Such a lattice Λ = σ(I) is called an ideal
lattice.

We may also use σ to embed k-dimensional vectors over R into Znk by
applying σ element-wise, so that for y ∈ Rk, σ(y) = (σ(y1), . . . , σ(yl)). Let
A ∈ Rl×kq be generators of an R module M ⊂ Rk. Then we may define the
module lattice Λ = σ(M), suppressing the embedding notation, as

Λ(A) = {y ∈ Rk : y = Atx, x ∈ Rl}

We will also want to define two q-ary lattices in terms of A ∈ Rl×kq :

Λq(A) = {y ∈ Rk : y = Atx mod qR, x ∈ Rl}

and Λ⊥q (A) = {x ∈ Rk : Ax = 0 mod qR}.

Note that
Λ⊥q (A)∗ = Rkq + { 1qA

ts : s ∈ Rkq} = 1
qΛ(A).

We will rely heavily on the following lemma on the successive minima of
module lattices over a ring of cyclotomic integers. This is a well-established
result (see, for instance, [FP11]), but we re-prove it here for completeness.

Lemma 8. Let Λ be a module lattice over R. Then λ1(Λ) = λ2(Λ) = · · · =
λn(Λ).

Proof. Let y ∈ Rk, σ(y) ∈ Λ, such that ‖y‖2 = λ1(Λ). Then taking y(i) = Xiy
for all 0 ≤ i < n, the multiplicative structure of R gives ‖y(i)‖2 = ‖Xiy‖2 =
‖y‖2 = λ1. Suppose the y(i) are not linearly independent. Then there exist
α0, . . . , αn−1 ∈ Z such that

α0y + α1Xy + · · ·+ αn−1X
n−1y = (α0 + α1X + · · ·+ αn−1X

n−1)y = 0 ∈ Rk.

However, R is a Dedekind domain, and so this cannot be the case. Therefore the
y(i) and y are linearly independent and all of length λ1.

The following is a corollary of Lemmata 8 and 7, taking k = n in Lemma 7.

12



Corollary 1. For any m-dimensional module lattice Λ over R,

ρs(Λ) ≥ (s/λ1(Λ))n.

The following lemma follows from techniques of [BD18] and [CDLP14].

Lemma 9. Let Λ′ ⊆ Λ ⊆ Zn be lattices, and let S be a symmetric set such that
∀u ∈ Λ, u can be written uniquely as a sum u = x + s, where x ∈ Λ′ and s ∈ S.
Let t ∈ Zn and let σ ∈ R. Then

ρσ(Λ′ + t)

ρσ(Λ+ t)
≤ 1

ρσ(S)
.

Proof.

ρσ(Λ+ t) =
∑
x∈Λ′

∑
s∈S

ρσ(x + t + s)

=
∑
x∈Λ′

∑
s∈S

1

2
(ρσ(x + t + s) + ρσ(x + t− s))

=
∑
x∈Λ′

∑
s∈S

1

2
(e−π‖x+t+s‖2/σ2

+ e−π‖x+t−s‖2/σ2

)

=
∑
x∈Λ′

∑
s∈S

e−π‖x+t‖2/σ2

e−π‖s‖
2/σ2

(e−2π〈x+t,s〉/σ2

+ e2π〈x+t,s〉/σ2

)

≥
∑
x∈Λ′

ρσ(x + t)
∑
s∈S

ρσ(s)

= ρσ(Λ′ + t)ρσ(S).

All proofs of correctness and security for our protocol hold for general cy-
clotomic rings of integers, beyond just power of 2 cyclotomics, by considering
the canonical embedding of ring elements rather than the coefficient embedding
described above. For the sake of simplicity, however, we restrict the descrip-
tion and analysis of the protocol to rings of integers for power of 2 cyclotomics
only. In this case, one embedding gives a scaled isometry of the other, so either
resulting lattice will have the structural properties we will require for lossy en-
cryption. Other cyclotomic rings will give lattices that are distorted under the
two choices of embedding, and so if other concerns force the use of this protocol
in an alternative cyclotomic ring, the canonical embedding can be used instead.

2.4 Ring-LWE

The computational receiver privacy of our oblivious transfer protocol will rely
on the RingLWE assumption for cyclotomic integers. Informally, it assumes that
any probabilistic polynomial time adversary should have only negligible advan-
tage distinguishing the RingLWE distribution described below from the uniform
distribution over matrices with equivalent parameters.
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Definition 5 (RingLWE). Let R be the mth cyclotomic ring of dimension n =
ϕ(m). Let q ∈ Z>0 and χ be a sub-Gaussian distribution over R with parameter
αq. The RingLWEq,α problem is to distinguish between independent samples of

the form (a, sa + e) for s← χ fixed across samples, a← Rkq , and e← χk, and
the same number of samples of the form (r0, r1), where each sample is chosen
uniformly at random from Rkq ×Rkq .

Theorem 2 ([PRS17]). Let K = Q(ζ2n) for n a power of 2, and let R be
the ring of integers of K. Let α = α(n) ∈ (0, 1), and let q = q(n) ≥ 2
be an integer such that αq ≥ 2

√
n. There is a polynomial-time quantum re-

duction from K-SIVPγ to (average-case, decision) RingLWEq,α for any γ ≤
max{ω(

√
n log n/α),

√
2n}.

3 Oblivious Transfer Protocol

We now present our OT protocol. In the following, let R denote the ring of
integers of the 2n-th cyclotomic number field for some n a power of 2. Take q =
poly(n) to be prime, q ≡ 1 mod 2n. Let s, σ0, σ1 be Gaussian parameters and E
be a ( 3n

2 , n, ε)-strong extractor for ε = 2−n/4, with seed length l = 2n log q − 1,
which is guaranteed to exist by Theorem 1. Lastly, take the sender’s messages
m0,m1 ∈ {0, 1}n, with m0 encoded as an element of R2 and α ∈ Z a parameter
to be specified.

The protocol is described in Figure 4 and works as follows. The sender, on
input two messages m0,m1, waits for the transmission of a matrix A ∈ R2×3

q

from the receiver. Upon receiving A, it uses this matrix to encrypt the two
messages (in two different ways), and sends the resulting ciphertexts to the
sender. The receiver, depending on the bit b, chooses the matrix A in such a
way that it can decrypt either the first or the second message. It sends the matrix
A to the sender, and when the sender returns the two ciphertexts, it uses A to
decrypt the ciphertext of its choice.

Informally (and made formal in Section 3.3), the sender’s privacy is pre-
served because one of the two sender encodings is statistically hidden. Identifying
x+Λ⊥q [A, I] with [A, I]x mod q for any x ∈ R5

q gives a bijective correspondence.

So if the lattice Λ⊥q [A, I] has many vectors that are short compared to the pa-
rameter of the Gaussian from which x0 is sampled, then following the intuition
from Section 1.3, computing [A, I]x0 is a lossy encoding of x0. If it has enough
short vectors, it will in fact lose (almost) all information about x0, so that
the result is uniformly distributed over R2

q, hiding m0. On the other hand, if

Λq[A, I] = Λ⊥q ([I,−At]) has many short vectors, then the same argument says
that [I,−At](x1,x2) is a lossy encoding of x1 and x2. For our settings of param-
eters, not all information about these vectors is lost, however, and so we use a
randomness extractor applied to x2 to get a random mask, hiding m1.
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Algorithm 7 Rec(1)

Input: b ∈ {0, 1}
if b = 0 then

a
$←R3

q

z
$← DR,s

e
$← D3

R,s
b = z · a + e
A← [a,b]t

return (A, z)
else

ā
$←R2

q

r
$← D2

R,s

R
$← D2×2

R,s
A← [ā | q−1

α
I + ārt + R]

return (A, r)

Algorithm 8 Send
Input: A ∈ R2×3

q , m0,m1 ∈ R2

x0
$← D5

R,σ0

µ0 ← 2[A, I]x0 +

[
0
m0

]
mod q

x1
$← D3

R,σ1

x2
$← D2

R,σ1
c← α · (x1 −Atx2) mod q
r ← {0, 1}l
µ1 ← (c, r,E(r,x2 mod q)⊕m1)
return (µ0, µ1)

Algorithm 9 Rec(2) Input: b ∈ {0, 1}, St, (µ0, µ1)

if b = 0 then
z ← St
m← ([−z, 1]µ0 mod q) mod 2

else
(c, r, τ)← µ1

r← St
y← −(([r,−I] · c) mod q) mod α
m← E(r,y)⊕ τ

return m

Fig. 4: Oblivious Transfer Protocol. In Rec(1), the receiver generates a matrix
along with auxiliary information that allows decoding of one of the sender’s two
messages. In Send, the sender encodes its first message to be decodable with high
probability if A← Rec(1)(0), and the second message so as to be decodable with

high probability if A← Rec(1)(1). In the last stage, Rec(2), the receiver decodes
whichever of the sender’s messages corresponds to its bit.

3.1 Correctness

In this section, we show that the OT protocol above satisfies our definition of
correctness. The proof follows a standard argument for correctness of RingLWE
cryptosystems, using concentration bounds to show that with high probability,
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the noise introduced by encryption does not exceed the threshold required for
decoding.

Lemma 10. If s = 2
√
n, σ0 ≤ q/8ω(

√
(4ns2 + 1) log n) and σ1 ≤ α/2ω(

√
log n)

for α a power of 2 so that α | q − 1 and α ≤
√
q − 1/s, the protocol is correct.

Proof. Since the entries of e and z are chosen with gaussian distribution of
parameter s, with all but negligible probability, β0 = ‖[et,−z]‖2 < s

√
4n. Simi-

larly, the rows of [r,Rt] have norm bounded by β1 < s
√

3n except with negligible
probability, and we assume that both inequalities hold in the following.

We first consider the case that b = 0. In this case Rec(0, (µ0, µ1)) computes

[−z, 1]µ0 = 2[et,−z, 1]x0 +m0 (mod q)

which equals m0 modulo 2, as long as ‖[et,−z, 1]x0‖∞ < (q − 1)/4. Since the
entries of x0 are subgaussian of parameter σ0, the entries of [et,−z, 1]x0 have
subgaussian distribution of parameter

σ0

√
β2
0 + 1 < σ0

√
4ns2 + 1.

So with all but negligible probability,

‖[et,−z, 1]x0‖∞ < σ0ω(
√

(4ns2 + 1) log n) ≤ (q − 1)/4.

We now consider the case that b = 1. The receiver will successfully recover
m1 = τ⊕E(r,x2) if y = x2. By definition, before reduction modulo α, the vector
y (mod q) equals

−(([r,−I] · c) = −α([r,−I]x1 − [r,−I]Atx2)

= −α([r,−I]x1)− [(q − 1)I + αRt]x2

= (((1− q)x2 − α([r,−I]x1 + Rtx2))

= (x2 − α([r,−I,Rt](x1,x2))) (mod q).

So, y = ((x2 − αv) mod q) mod α for some vector

v = [r,−I,Rt](x1,x2).

We will show that, with high probability, ‖v‖∞ < (q−1)/(2α) and ‖x2‖∞ ≤ α/2.
It follows that, since v is an integer vector, we also have ‖v‖∞ ≤ (q−1)/(2α)−1,
and

‖x2 − αv‖∞ ≤ ‖x2‖∞ + α‖v‖∞ ≤
α

2
+
q − 1

2
− α < q

2
.

So, the computation of y recovers v over the integers, and y = v mod α =
x2 mod α = x2.

Both x1 and x2 are drawn from a discrete Gaussian of parameter σ1 and so,
by an argument analogous to that of the previous case, the entries of v have
subgaussian distribution of parameter

σ1

√
β2
1 + 1 < σ1

√
3ns2 + 1.
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Then with all but negligible probability we can bound the `∞ norm of the result
by

‖v‖∞ < σ1
√

3ns2 + 1 · ω(
√

log n)

≤ α
√

3ns2 + 1

2

≤ q − 1

2α
.

We can also bound the coefficients of x2 by σ1 · ω(
√

log n) ≤ α/2 so the output
is correct except with negligible probability.

3.2 Computational Receiver Privacy

Here we show that the receiver enjoys computational privacy. This follows im-
mediately from the pseudorandomness of RingLWE.

Lemma 11. Let q = poly(n) be prime, q ≡ 1 mod 2n. Take s > 2
√
n. Then,

the distributions Rec1(0) and Rec1(1) are computationally indistinguishable un-
der standard RingLWE assumptions.

Proof. We show that the distribution of matrix A computed by both Rec1(0) and
Rec1(1) is pseudorandom. For Rec1(0), At = [a, za + e] is just the RingLWE dis-
tribution with gaussian parameter s ≥ 2

√
n. For Rec1(1), [ā, ārt + R] is also the

RingLWE distribution with secret r and noise R. So, it is indistinguishable from
the uniform distribution under standard RingLWE assumptions. Adding [0, q−1α I]
maps the uniform distribution to itself. So, it preserves indistinguishability.

3.3 Statistical Sender Privacy

Finally, we show statistical privacy for the sender. Recall that statistical pri-
vacy requires that for all inputs A, one of the sender’s two messages must be
statistically hidden. As previously described, we wish to consider two cases: one
in which Λ⊥q ([A, I]) has many short vectors, and one in which Λq([A, I]) does,
formalized in such a way that these cases are exhaustive and give the neces-
sary guarantees on lossiness. To that end, we actually analyze the following two
cases: one in which the smoothing parameter of Λ⊥q ([A, I]) is small compared to

σ0 (Λ⊥q ([A, I]) has many short vectors), and the other in which the smoothing
parameter is large (Λq([A, I]) has short vectors). In the first case, the sender’s
first message m0 must be statistically hidden, and in the second, m1 must be.

Theorem 3. Assume σ0σ1 ≥ 8q
√

5nω(
√

log n) and σ1 ≤ q/
√
n. Then there

exists an unbounded extractor Ext taking as input an element of R2×3 and out-
putting a bit b, such that for all A ∈ R2×3, letting b ← Ext(A), it holds for all
m0,m1 ∈ R2,

Send(A,m0,m1) ≈∆ Send(A,mb,mb).
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Proof. We consider two propositions, at least one of which must be true of
Λ(A), and show that in each case, one of m0 or m1 must be statistically hidden.
It follows that we can change either m0 to m1 or m1 to m0, without affecting
the distribution by a noticeable amount.

First consider the case σ0 > ηε(Λ
⊥
q ([A, I])) · ω(

√
log n). If this is the case,

[A, I]x0 is statistically close to uniform. Since q is odd, multiplying by 2 and
adding (0,m0) is a bijection, and preserves the uniform distribution. So, µ0 is
independent of m0. Clearly, µ1 is also independent of m0.

Next we consider the case ηε(Λ
⊥
q ([A, I])) ≥ σ0/2ω(

√
log n). We show that x2

(mod q) must have high min-entropy H∞(x2 | c) ≥ 3n/2 even when conditioned
on c. So, the output of the seeded extractor E is (statistically close to) a uniformly
random n-bit mask, and m1 is statistically hidden. Notice that the conditional
distribution of (x1,x2) given c is precisely DC,σ1

where

C = (c/α,0) + Λ⊥q ([I,−At]) = (c/α,0) + Λq([A, I]).

Since ηε(Λ
⊥
q ([A, I])) ≥ σ0/2ω(

√
log n) by assumption, and Λ∗q([A, I])) = 1

qΛ
⊥
q ([A, I]),

we have

λ1(Λq([A, I])) ≤ q
√

5n

ηε(Λ⊥q ([A, I]))
≤ 2q

√
5n · ω(

√
log n)

σ0
.

Therefore from Corollary 1 we have that

ρσ1
(Λq([A, I])) ≥

(
σ1
λ1

)n
≥
(

σ0σ1

2q
√

5n · ω(
√

log n)

)n
≥ 4n.

For any c and x∗, let X = {(x1,x2) ∈ C | x2 = x∗ (mod q)}, and notice that
X is a coset t + qR5 for some t ∈ C. Let S be the set of coset representatives
of Λq([A, I])/qR5 obtained by a “centered” reduction (so that all representative
have coefficients in the range (−q/2, q/2), recalling that q is odd). Note that S
is a symmetric set and that any point u ∈ Λq([A, I]) can be uniquely written as
the sum u = x + s, where x ∈ qR5 and s ∈ S. We may then use Lemma 9 to
conclude that

Pr{(x2 = x∗) mod q | (x1,x2)← DC,σ1}

=
ρσ1

(X)

ρσ1
(C)

≤ 1

ρσ1
(S)

.

A vector u sampled from a discrete gaussian over Λq([A, I]) of parameter σ1
must have ‖u‖∞ < q/2 with probability at least 1− 2−5n, so we have that

ρσ1(S) ≥ (1− 2−5n) · ρσ1(Λq([A, I])) ≥ (1− 2−5n) · 4n > 22n−1.

Therefore 1
ρσ1 (S)

≤ 2−2n+1, and so H∞(x2 mod q | c) ≥ 3n/2.

Finally, we must argue that there exists an unbounded extractor Ext that,
on input A, correctly identifies which of the cases above holds with its out-
put b. We first observe that approximating the value of the smoothing param-
eter ηε(Λ

⊥
q ([A, I])) to within a factor (1 + o(1)) can be done in deterministic
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2O(n)polylog(1/ε) time and 2O(n) space, as shown by Chung et al. [CDLP14].
Then the extractor that on input A, runs the algorithm of [CDLP14], outputs
0 if ηε(Λ

⊥
q ([A, I])) < σ0/2ω(

√
log n), and 1 otherwise, will satisfy our definition

of statistical sender privacy.

3.4 Parameters

It remains to fix values for parameters that satisfy the competing demands of
security and correctness. These require that

σ0 ≤ q/8ω(
√

(4ns2 + 1) log n),

σ1 ≤ α/2ω(
√

log n),

α ≤
√
q − 1/s,

and

σ0σ1 ≥ 8q
√

5n · ω(
√

log n)

Letting γ(n) ∈ ω(
√

log n), a possible setting of parameters is q ∈ Θ(n4γ6(n)),
s = 2

√
n, α ∈ Θ(n1.5γ3(n)), σ0 ∈ Θ(n3γ5(n)) and σ1 ∈ Θ(n1.5γ2(n)).

3.5 Choice of Extractor

A reader already familiar with existing regularity lemmas for lattices may won-
der about the use of a generic randomness extractor for producing a uniformly
random string from x2. In the given protocol, x2 ∈ R2 is sampled from a dis-
crete Gaussian with parameter σ1, but the generic extractor cannot exploit this
additional information about its input. If we instead sampled a matrix Ā uni-
formly at random from Rk×lq , and took A = [Ik, Ā], then with overwhelming
probability the distribution induced by Ax is statistically close to uniform over
Rkq , for x sampled from DRk+l,σ with σ > 2nqk/(l+k)+2/n(l+k), by a theorem
of Lyubashevsky, et al. [LPR13]. This approach is arguably more natural, as it
consists solely of ring operations and makes use of the distribution from which
x2 is drawn.

However x2 comprises two elements of R, which forces l = k = 1. Correctness
and receiver security for the protocol require that σ1 <

√
q/
√
nω(
√

log n), and so
σ1 is not large enough to guarantee negligible distance from uniformity over Rq.
We may instead consider taking k = 1, l = 4, sampling A = [1, Ā] ∈ R5, and us-
ing A(x1,x2) as the mask for plaintext message m1, however the Toeplitz matrix
construction applied directly to x2 proves to be comparably efficient, without
imposing additional constraints on parameter choices. The Toeplitz matrix sam-
pled by the extractor is an element of Fn×2nq , and because this Toeplitz matrix
multiplication can be performed at least as efficiently as polynomial multiplica-
tion of two degree 2n polynomials, there is no clear reason to prefer the more
“natural” approach to the use of a more generic extractor.
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4 Comparison to Related Protocols

In this section, we provide comparisons of our protocol to existing lattice-based
SSP OT protocols. Specifically, we present the asymptotic and concrete param-
eters required by [BD18], [DGI+19], [GH19], and this work, as well as commu-
nication and computational complexity for all protocols. We remark that, when
transferring sufficiently long messages, in the computational setting, both the
computational and communication costs of any OT protocol can be reduced to
linear in the message length using standard techniques. Namely, one can use the
OT protocol on two random (fixed length) strings x0,x1 ∈ {0, 1}n, and then use
these random strings to encrypt the actual messages using a pseudorandom gen-
erator or stream cipher. So, for a meaningful comparison, we fix the length of the
messages to be transfered to the security parameter n. So, we give comparisons
in two representative settings which naturally arise in applications of SSP OT:
a single execution of the protocol, and O(n) parallel executions, all with sender
messages of length n.

We note that the first setting is particularly unfavorable for SSP OT con-
structions that make use of compressible FHE. These protocols look more at-
tractive in applications that require poly(n) simultaneous transfers. When many
parallel OTs are required by an application, the receiver can compress fully-
homomorphic encryptions of multiple bits and send the resulting compressed
ciphertext along with a public key to the sender. The sender can then decom-
press the ciphertexts, homomorphically select the message corresponding to each
of the encrypted bits, compress the resulting encryptions of its messages, and
send a single compressed ciphertext to the receiver. But in the setting of a single
execution of an OT protocol with O(n)-length sender messages, these construc-
tions cannot take full advantage of the compressibility of the FHE scheme. In
these cases, it should be possible for the sender to use a (not necessarily ho-
momorphic) encryption scheme with more compact ciphertexts, by using key
switching techniques. But even this will not improve the upload rate, however,
which is the dominant contribution to the overall rate for these protocols.

The second comparison of these protocols is in a context closer to that of
their applications [BGJ+18] [JKKR17] [BGI+17]. In these applications, linearly
many parallel OT executions are required, and so the FHE-based OT schemes
can actually make use of their compressibility. The O(n2) bits to be transferred in
this case still fall short of allowing the amortization necessary for these protocols
to achieve constant overall rate.

When executing multiple OT instances, our protocol allows a small saving,
reducing the receiver communication complexity from 6 to 5 ring elements, but
still achieving inverse logarithmic rate 1/O(log n). So, if the number of parallel
executions is very large (e.g., transferring Ω(n3) bits), constant rate OT prot-
cols would achieve better communication complexity than ours, by a logarithmic
factor. However, this comes at a very high computational cost, as the amorti-
zation/compression only helps in reducing the communication complexity – the
time and space (memory) complexity of those amortized protocols would be
higher than ours by a much larger polynomial factor.
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In summary, in a typical application setting, our protocol achieves much
better communication and computational complexity than previous work. Com-
munication is improved by at least a O(n log n) factor in the single execution
setting, resulting in several orders of magnitude improvement in practice. Even
when n parallel executions are considered, we sill achieve at least O(log n) im-
provement in communication, and, in many cases, much more than that. When
it comes to running time, our protocol outperforms previous work by a large
marging both in theory and in practice. We remark that considering n parallel
OT executions only helps to reduce the communication complexity of previ-
ous protocols, and their running time still scales linearly (or worse, due to the
overhead of compression/decompression) with the number of executions.

In our comparison, we focus on the communication complexity, as this pa-
rameter can be estimated in a way that is largely independent of the compu-
tational/implementation model, and a precise comparison can be carried out
without the need to implement previous protocols, none of which have been
implemented because clearly not practical. But it should be clear from our pseu-
docode, that our protocol would also be much faster than previous work, both
asymptotically (by polynomial, typically quadratic O(n2) factors) and in prac-
tice (by several orders of magnitude.) See the next two sections for details.

4.1 Single Execution

The following table (Figure 5) compares asymptotic parameters, communication,
and computational complexity for a single execution of the OT protocol. Much of
the complexity of related protocols comes from the matrix multiplications that
are required by key generation (in the case of [BD18] [DGI+19] [BDGM19]) or by
compression (in the case of [GH19]). So, we express the asymptotic complexity
in terms of the matrix multiplication exponent ω ≤ 3. However, asymptotically
faster matrix multiplication algorithms are likely to be only of theoretical inter-
est, and for practical purposes, one should consider the value ω = 3.

Our algorithm achieves quasi-constant O(1/ log n) communication rate al-
ready in the single execution setting, improving other protocols by a superlinear
O(n log n) factor. Some previous protocol [DGI+19,BDGM19] achieve similar
sender communication, but much higher communication from the receiver, which
dominates the total communication cost.

The improvement in running time is even bigger. Our protocol essentially
requires just a constant number of ring operations, which can be implemented
(both in theory and in practice) in quasi-linear time O(n log n). The previous
protocol achieving the best asymptotic complexity is that of [BD18], which has
running time O(nω) > O(n2.3). This is already a substantial Ω(n1.3) theoretical
improvement, But in practice, for ω = 3, the improvement is almost quadratic
O(n2), and with a protocol that is also arguably simpler and easier to implement.
The other protocols are slower than ours by a quadratic factor O(n2) or worse.
For typical values of the security parameter n (in the hundreds) this is easily
estimated to be a running time improvement by several orders of magnitude.
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Scheme Modulus q
Receiver

Comm. (bits)
Sender

Comm. (bits)
Overall
Rate

Operations

[BD18] Θ(n3 log2.5 n · γ(n)) Θ(n2 log2 n) Θ(n log2 n) Θ(1/n log2 n) Θ(nω)

[DGI+19] Θ(n2.5) Θ(n2 log2 n) Θ(n logn) Θ(1/n log2 n) Θ(n3 logn)

[GH19] Ω(n17.5 log10 n) Θ(n2 log2 n) Θ(n2 logn) Θ(1/n log2 n) Ω(n1+ω)

[BDGM19] Θ(n2.5 log2 n) Θ(n2 log2 n) Θ(n logn) Θ(1/n log2 n) Ω(n3 log2 n)

This work Θ(n4γ6(n)) Θ(n logn) Θ(n logn) Θ(1/ logn) Θ(n logn)

Fig. 5: Comparison of Oblivious Transfer asymptotic parameters in the
single execution setting. Compared to prior work, our protocol reduces re-
ceiver communication by at least a factor O(n log n), while matching the best
prior sender communication. Our protocol also improves computational effi-
ciency, requiring at least a factor n fewer operations than prior work. The symbol
ω above indicates the matrix multiplication constant, and γ may be taken to be
any function in ω(

√
log n). (The best parameters within each column are in bold

face.)

To make the comparison more tangible, we propose a concrete setting of
parameters achieving ∼ 120 bits of security for the receiver, and compare to the
statistically sender private OT protocols of [BD18], [DGI+19], [BDGM19], and
[GH19] with similar concrete security. (Security for the sender holds in a strong
statistical sense, and can be easily estimated without making any computational
assumption.) Following standard practice, the parameters of Table 6 were chosen
based on the security estimates of the LWE security estimator [APS15].

Note that both [DGI+19] and [BDGM19] have impressively low sender com-
munication, due to rounding techniques that enable the receiver to correctly re-
cover its chosen message given only some auxiliary information from the sender
along with a single bit per bit of message. The concrete overall rate of these (and
other prior) protocols is dominated by the receiver’s communication though, and
so the savings in download rate achievable by [DGI+19] and [BDGM19] are lost
when total communication is considered. On the other hand, our protocol’s re-
ceiver communication is both asymptotically and concretely balanced with the
sender’s communication, giving an overall rate several orders of magnitude higher
than prior work.
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Scheme dim. n log q
Receiver

Comm. (KB)
Sender

Comm. (KB)
Msg. Length
|mb| (KB)

Overall
Rate

[BD18] 900 40 3.24× 105 190 .113 1.5× 10−7

[DGI+19] 512 23 14000 2 .064 4.6× 10−6

[GH19] 6800 255 3.8× 108 1.5× 106 .85 2.2× 10−9

[BDGM19] 640 29 20000 2 .08 4× 10−6

This work 2048 64 100 115 .256 1.2× 10−3

Fig. 6: Concrete parameters achieving 120 bits of receiver security. Com-
pared to prior work, our protocol achieves the best overall rate by several orders
of magnitude for a single execution of the protocol.

4.2 O(n) Parallel Executions

Here we compare the parameters and efficiency of lattice-based SSP OT protocols
for applications requiring O(n) parallel executions of the protocol. In this setting,
the compressibility of [GH19] can be utilized to obtain the same receiver and
sender communication achieved in the single execution setting (Θ(n2 log2 n)),
as the receiver can now pack encryptions of all n of its choice bits into a single
ciphertext, and all n2 of the sender’s bits may be similarly packed.

The compressibility of [BDGM19] is also now reflected in the sender commu-
nication. Their FHE scheme gives packed ciphertext lengths that are asymptot-
ically max{n log q, `}, where ` is the total bit-length of the plaintext messages,
and so the length of the plaintext messages dominates the sender communica-
tion in the parallel execution setting. However, the receiver is still required to
send a large compression key comprising n log q encryptions with ciphertext size
n2 log q, and so the overall rate of the OT protocol based on [BDGM19] will be
dominated by this key.

Because we are considering n parallel but independent executions of an OT
protocol, rather than a single execution with large (poly(n)) sender messages,
the amortization required to achieve constant overall rate for the trapdoor hash
function-based protocol of [DGI+19] is not possible. Similarly, our protocol and
that of [BD18] require poly(n)-length sender messages to achieve an improved
amortized upload rate. For these protocols, the parameters and complexities
given below (Figure 7) are simply those for running the base protocol n times
in parallel.
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Scheme Modulus q
Receiver

Comm. (bits)
Sender

Comm. (bits)
Overall
Rate

Operations

[BD18] Θ(n3 log2.5 n · γ(n)) Θ(n3 log2 n) Θ(n2 log2 n) Θ(1/n log2 n) Θ(n1+ω)

[DGI+19] Θ(n2.5) Θ(n3 log2 n) Θ(n2 logn) Θ(1/n logn) Θ(n5)

[GH19] Ω(n27.5 log15 n) Θ(n2 log2 n) Θ(n2 logn) Θ(1/ log2 n) Ω(n2+ω)

[BDGM19] Θ(n4.5 log2 n) Θ(n3 log2 n) Θ(n2) Θ(1/n log2 n) Ω(n5 log2 n)

This work Θ(n4γ6(n)) Θ(n2 logn) Θ(n2 logn) Θ(1/ logn) Θ(n2 logn)

Fig. 7: Comparison of asymptotic parameters. Compared to prior work,
our protocol improves in overall rate by at least a log n factor, and reduces the
computational complexity by at least a factor n for n parallel executions of the
SSP OT protocol. The symbol ω above indicates the matrix multiplication con-
stant, and γ may be taken to be any function in ω(

√
log n). (The best parameters

in each column are in bold face.)

The last table (Figure 8) shows the concrete parameters for n parallel execu-
tions of each OT protocol. Again we observe that the comparatively high upload
rate of our protocol leads to a much better overall rate for applications requiring
n parallel OTs.

Scheme dim. n log q (bits)
Receiver

Comm. (KB)
Sender

Comm. (KB)
Msg. Length
|mb| (KB)

Overall
Rate

[BD18] 900 40 2.92× 108 190 102 1.5× 10−7

[DGI+19] 512 23 7.17× 106 1024 33 4.6× 10−6

[GH19] 11000 1240 2.3× 1010 1.8× 107 15125 6.6× 10−7

[BDGM19] 1300 54 8.0× 108 220 211 2.6× 10−7

This work 2048 64 204800 235520 525 .0012

Fig. 8: Concrete parameters achieving 120 bits of receiver security. Com-
pared to prior work, our protocol achieves the best overall rate by several orders
of magnitude for n parallel repetitions of the protocol.
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