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Abstract. We present simple and improved constructions of public-key functional encryption (FE) schemes for

quadratic functions. Our main results are:

– an FE scheme for quadratic functions with constant-size keys as well as shorter ciphertexts than all prior

schemes based on static assumptions;

– a public-key partially-hiding FE that supports NC1 computation on public attributes and quadratic computa-

tion on the private message, with ciphertext size independent of the length of the public attribute.

Both constructions achieve selective, simulation-based security against unbounded collusions, and rely on the (bi-

lateral) k-linear assumption in prime-order bilinear groups. At the core of these constructions is a new reduction

from FE for quadratic functions to FE for linear functions.

1 Introduction

In this work, we study functional encryption for quadratic functions. That is, we would like to encrypt a message z to

produce a ciphertext ct, and generate secret keys sk f for quadratic functions f , so that decrypting ct with sk f returns

f (z) while leaking no additional information about z. In addition, we want (i) short ciphertexts that grow linearly

with the length of z, as well as (ii) simulation-based security against collusions, so that an adversary holding ct and

secret keys for different functions f1, f2, . . . learns nothing about z beyond the outputs of these functions. Functional

encryption for quadratic functions have a number of applications, including traitor-tracing schemes whose ciphertext

size is sublinear in the total number of users [8,6,11,5,16]; obfuscation from simple assumptions [4,18,19,13,20]; as well

as privacy-preserving machine learning for neural networks with quadratic activation functions [22].

1.1 Our Results

We present new pairing-based public-key functional encryption (FE) schemes for quadratic functions, improving

upon the recent constructions in [21,5,19,12]. Our main results are:

– A FE scheme for quadratic functions with constant-size keys, whose ciphertext size is shorter than those of all

prior public-key schemes based on static assumptions [5,12]; moreover, when instantiated over the BLS12-381

curve where |G2| = 2|G1|, our ciphertext size basically matches that of the most efficient scheme in the generic

group model [22] (see Fig 1).

– A partially-hiding FE that supports NC1 computation on public attributes x and quadratic computation on the

private message z; moreover, the ciphertext size grows linearly with z and independent of x. The previous con-

structions in [13,4,18,19] have ciphertext sizes that grow linearly with both z and x.

Both constructions achieve selective1, simulation-based security against unbounded collusions, and rely on the bilat-

eral k-linear assumption in prime-order bilinear groups.

At the core of these constructions is a new reduction from public-key FE for quadratic functions to that for linear

functions. The reduction relies on the (bilateral) k-Lin assumption, and blows up the input size by a factor k. Note

that the trivial reduction blows up the input size by |z|. Our reduction is simpler and more direct than the previous

reductions due to Lin [21] and Gay [12]: (i) we do not require function-hiding FE for linear functions, and (ii) our

reduction works directly in the public-key setting. Thanks to (i), we can also decrease the secret key size from linear to

constant.

1 We actually achieve semi-adaptive security [9], a slight strengthening of selective security.



Scheme |ct| |sk| Assumption Security

BCFG17 [5] (6n1 +1)|G1|+ (6n2 +1)|G2| |G1|+ |G2| SXDH, 3-PDDH SEL-IND

RDGBP19 [22] (2n1 +1)|G1|+2n2|G2| |G2| GGM AD-IND

G20 [12] (4n1 +2n2 +2)|G1|+n2|G2| (3n1 +2n2 +2)|G2| SXDH, bi-2-Lin SA-SIM

GQ20 [14] (2n1 +5)|G1|+ (2n2 +5)|G2| 5|G1|+5|G2| SXDH, bi-2-Lin SA-SIM

this work ((k +1)n1 +kn2 +k +1)|G1|+n2|G2| (k +1)|G2| bi-k-Lin, k > 1 SA-SIM

(2n1 +2n2 +2)|G1|+n2|G2| 2|G2| SXDH, bi-2-Lin SA-SIM

Fig. 1. Comparison with prior public-key functional encryption schemes for quadratic functions f : Zn1
p ×Zn2

p → Zp , as well as a

concurrent work [14]. Note that |sk| ignores the contribution from the function f , which is “public”. Here, SXDH=1-Lin, and bi-k-

Lin (bilateral k-Lin) is a strengthening of k-Lin. 3-PDDH asserts that [abc]2 is pseudorandom given [a]1, [b]2, [c]1, [c]2. In bilinear

groups where |G|2 = 2|G1|, we achieve |ct| = (2n1 +4n2 +2)|G1| under SXDH, bi 2-Lin, almost matching |ct| = (2n1 +4n2 +1)|G1| in

RDGBP19.

1.2 Technical Overview

We proceed to provide an overview of our constructions. We rely on an asymmetric bilinear group (G1,G2,GT ,e) of

prime order p where e : G1 ×G2 → GT . We use [·]1, [·]2, [·]T to denote component-wise exponentiations in respective

groups G1,G2,GT [10]. We use bold-face lower case to denote row vectors. The k-Lin assumption in Gb asserts that

([A]b , [sA]b) ≈c ([A]b , [u]b), s ←Zk
p ,A ←Zk×`

p ,u ←Z`p ,`> k

The bilateral k-Lin assumption is a strengthening of k-Lin, and asserts that

([A]1, [sA]1, [A]2, [sA]2) ≈c ([A]1, [u]1, [A]2, [u]2)

Note that bilateral 1-Lin is false, for the same reason DDH is false in symmetric bilinear groups.

FE for quadratic functions. Consider the class of quadratic functions over Zn
p ×Zn

p given by

(z1,z2) 7→ (z1 ⊗z2)f>

where f ∈Zn2

p is the coefficient vector. We will first mask z1,z2 in the ciphertext using:

[s1A1 +z1]1, [s2A2 +z2]2

where the matrices

[A1]1, [A2]2,A1,A2 ←Zk×n
p

are specified in the master public key. Next, observe that

((s1A1 +z1)⊗ (s2A2 +z2)) · f> = (z1 ⊗z2)f>+cross terms (1)

Following [12,21], we will express the cross terms as a linear function evaluated on inputs of length O(kn); the key

difference in this work is that the linear function can be derived from the master public key and f.

More precisely, we write

(s1A1 +z1︸ ︷︷ ︸
y1

)⊗ (s2A2 +z2︸ ︷︷ ︸
y2

) = (z1 ⊗z2) + s1A1 ⊗z2 + y1 ⊗s2A2

= (z1 ⊗z2) + (s1 ⊗z2) · (A1 ⊗ In) + (y1 ⊗s2) · (In ⊗A2)

= (z1 ⊗z2) + (s1 ⊗z2‖y1 ⊗s2)
(A1⊗In

In⊗A2

)
2



where the second equality uses the mixed-product property of the tensor product, which tells us that (M1 ⊗M2)(M3 ⊗
M4) = (M1M3)⊗ (M2M4), and ‖ denotes row vector concatenation. Multiplying both sides on the right by f> and rear-

ranging the terms yields:

(z1 ⊗z2)f> = (y1 ⊗y2)f>− (s1 ⊗z2‖y1 ⊗s2)Mf> (2)

where M := (A1⊗In
In⊗A2

)
. As we mentioned earlier, the boxed term (= cross terms in (1))

(s1 ⊗z2‖y1 ⊗s2) ·Mf> (3)

corresponds to a linear computation where

– the input (s1 ⊗z2‖y1 ⊗s2) has length O(kn);
– the linear function Mf> can be computed given f and the matrices A1,A2 in the public key.

The latter property pertaining to Mf> is what allows us to significantly simplify the previous reductions in [21,12], since

there is nothing “secret” about the linear function Mf>. In the prior works, the linear function leaks information about

the master secret key beyond what can be computed from the master public key.

In particular, we can use a public-key FE for linear functions (linear FE for short) [3,23,1] to compute (3). That is,

we encrypt [s1⊗z2‖y1⊗s2]1, and generate a secret key for [Mf>]2. The linear FE schemes in [3,23] extend readily to this

setting where both the input and function are specified “in the exponent”; moreover, these schemes achieve selective,

simulation-based security under the k-Lin assumption, with constant-size secret keys. The linear FE ciphertext would

lie inG1, whereas both M and the secret key would lie inG2. Note that in order to compute [M]2, we would also publish

[A1]2 in the public key. We present a self-contained description of our quadratic FE in Section A.

Security overview. Security, intuitively, is fairly straight-forward:

– First, observe that [y1]1, [y2] leaks no information about z1,z2, thanks to the k-Lin assumption;
– Next, we can simulate the ciphertext and secret key for the linear FE given (s1⊗z2‖y1⊗s2)Mf>, which we can rewrite

as (z1⊗z2)f>−(y1⊗y2)f>. We can in turn compute the latter given just y1,y2 and the output of the ideal functionality

and therefore the linear FE ciphertext-key pair leaks no additional information about z1,z2.

In the reduction, we would need to compute [y1 ⊗ y2]2 in order to simulate the secret key for the linear FE. This is

something we can compute given either y1, [y2]2 or [y1]2,y2. The latter along with publishing [A1]2 in the public key is

why we require the bilateral k-Lin assumption. For the most efficient concrete instantiation, we will use the bilateral

2-Lin assumption together with SXDH (i.e., 1-Lin), where we sample A1 ← Z2×n
p ,A2 ← Z1×n

p . We leave the question of

basing quadratic FE solely on the standard k-Lin assumption as an open problem.

Extension to partially hiding FE. Our approach extends readily to partially hiding FE (PHFE) for the class

(

public︷︸︸︷
x ,

private︷ ︸︸ ︷
(z1,z2)) 7→ (z1 ⊗z2) f (x)>

where f captures NC1 –more generally, any arithmetic branching program– computation on the public attribute x

and outputs a vector inZn2

p . Note that FE for quadratic functions corresponds to the special case where f is a constant

function (independent of x). The idea behind the extension to PHFE is to replace f> in (2) with f (x) (the decryptor can

compute f (x) since x is public), which yields:

(z1 ⊗z2) f (x)> = (y1 ⊗y2) f (x)>− (s1 ⊗z2‖y1 ⊗s2)M f (x)>

To compute the new boxed term, we will rely on the partially-hiding linear FE scheme in [2] for the class

(

public︷︸︸︷
x ,

private︷︸︸︷
z ) 7→ z f (x)>

We can augment the construction to take into account the matrix M; some care is needed as the decryption algorithm

only gets [M]2 and not M. In the ensuing scheme as with [2], the ciphertext size grows linearly with the message and

independent of x, which we then inherit in our partially-hiding quadratic FE.
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2 Preliminaries

Notations. We denote by s ← S the fact that s is picked uniformly at random from a finite set S. We use ≈s to denote

two distributions being statistically indistinguishable, and ≈c to denote two distributions being computationally in-

distinguishable. We use lower case boldface to denote row vectors and upper case boldcase to denote matrices. We

use ei to denote the i ’th elementary row vector (with 1 at the i ’th position and 0 elsewhere, and the total length of the

vector specified by the context). For any positive integer N , we use [N ] to denote {1,2, . . . , N }.

The tensor product (Kronecker product) for matrices A = (ai , j ) ∈Z`×m , B ∈Zn×p is defined as

A⊗B =


a1,1B, . . . , a1,m B

. . . , . . . , . . .

a`,1B, . . . , a`,m B

 ∈Z`n×mp .

The mixed-product property for tensor product says that

(A⊗B)(C⊗D) = (AC)⊗ (BD)

Arithmetic Branching Programs. A branching program is defined by a directed acyclic graph (V ,E), two special ver-

tices v0, v1 ∈ V and a labeling function φ. An arithmetic branching program (ABP), where p is a prime, computes a

function f : Zn
p → Zp . Here, φ assigns to each edge in E an affine function in some input variable or a constant, and

f (x) is the sum over all v0-v1 paths of the product of all the values along the path. We refer to |V |+ |E | as the size of f .

The definition extends in a coordinate-wise manner to functions f :Zn
p →Zn′

p . Henceforth, we use FABP,n,n′ to denote

the class of ABP f :Zn
p →Zn′

p .

We note that there is a linear-time algorithm that converts any boolean formula, boolean branching program or

arithmetic formula to an arithmetic branching program with a constant blow-up in the representation size. Thus,

ABPs can be viewed as a stronger computational model than all of the above. Recall also that branching programs and

boolean formulas correspond to the complexity classes LOGSPACE and NC1 respectively.

2.1 Prime-order Bilinear Groups

A generatorG takes as input a security parameter 1λ and outputs a descriptionG := (p,G1,G2,GT ,e), where p is a prime

of Θ(λ) bits, G1, G2 and GT are cyclic groups of order p, and e :G1 ×G2 →GT is a non-degenerate bilinear map. We re-

quire that the group operations in G1, G2, GT and the bilinear map e are computable in deterministic polynomial time

in λ. Let g1 ∈G1, g2 ∈G2 and gT = e(g1, g2) ∈GT be the respective generators. We employ the implicit representation of

group elements: for a matrix M over Zp , we define [M]1 := g M
1 , [M]2 := g M

2 , [M]T := g M
T , where exponentiation is carried

out component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T . We recall the matrix Diffie-Hellman (MDDH)

assumption on G1 [10]:

Assumption 1 (MDDHd
k,k ′ Assumption) Let k,`,d ∈ N. We say that the MDDHd

k,` assumption holds if for all PPT ad-

versaries A, the following advantage function is negligible in λ.

Adv
MDDHd

k,`

A
(λ) := ∣∣Pr[A(G, [M]1, [MS]1 ) = 1]−Pr[A(G, [M]1, [U]1 ) = 1]

∣∣
where G := (p,G1,G2,GT ,e) ←G(1λ), M ←Z`×k

p , S ←Zk×d
p and U ←Z`×d

p .

The MDDH assumption on G2 can be defined in an analogous way. Escala et al. [10] showed that

k-Lin ⇒ MDDH1
k,k+1 ⇒ MDDHd

k,` ∀ k,d ≥ 1,`> k

with a tight security reduction. (In the setting where `≤ k, the MDDHd
k,` assumption holds unconditionally.)

The bilateral MDDH assumption is defined analogously with the advantage function:∣∣Pr[A(G, [M]1, [MS]1 , [M]2, [MS]1 ) = 2]−Pr[A(G, [M]1, [U]1 , [M]2, [U]2 ) = 1]
∣∣
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2.2 Partially-Hiding Functional Encryption (PHFE)

We recall the notion of partially-hiding functional encryption [15,23,4,7] for the function class

(x,z) ∈Zn
p ×Zn′

p 7→ h(z) f (x)>

where h : Zn′
p → Zn′′

p is fixed and f ∈ FABP,n,n′′ is specified by the secret key. We will be primarily interested in the

settings h(z) = z and h(z1,z2) = z1 ⊗z2, which generalize FE for linear functions and quadratic functions respectively.

Syntax. A partially-hiding functional encryption scheme (PHFE) consists of four algorithms:

Setup(1λ,1n ,1n′
,h) : The setup algorithm gets as input the security parameter 1λ and function parameters 1n ,1n′

and

h :Zn′
p →Zn′′

p . It outputs the master public key mpk and the master secret key msk.

Enc(mpk,x,z) : The encryption algorithm gets as input mpk and message x,z ∈Zn
p ×Zn′

p . It outputs a ciphertext ct(x,z)

with x being public.

KeyGen(msk, f ) : The key generation algorithm gets as input msk and a function f ∈FABP,n,n′′ . It outputs a secret key

sk f with f being public.

Dec((sk f , f ), (ct(x,z),x) : The decryption algorithm gets as input sk f and ct(x,z) along with f and x. It outputs a value in

Zp .

Correctness. For all (x,z) ∈Zn
p ×Zn′

p and f ∈FABP,n,n′′ , we require

Pr

Dec((ct(x,z),x, (sk f , f )) = h(z) f (x)> :

(mpk,msk) ← Setup(1λ,1n ,1n′
,h)

sk f ←KeyGen(msk, f )

ct(x,z) ←Enc(mpk,x,z)

= 1.

Remark 1 (Relaxation of correctness.). Our scheme only achieves a relaxation of correctness where the decryption al-

gorithm takes an additional bound 1B (and runs in time polynomial in B) and outputs h(z) f (x)> if the value is bounded

by B . This limitation is also present in prior works on (IP)FE from DDH and bilinear groups [1,3,21,5], due to the re-

liance on brute-force discrete log to recover the answer “from the exponent”. We stress that the relaxation only refers

to functionality and does not affect security.

Security definition. We consider semi-adaptive [9] (strengthening of selective), simulation-based security, which stip-

ulates that there exists a randomized simulator (Setup∗,Enc∗, KeyGen∗) such that for every efficient stateful adversary

A, 
(mpk,msk) ← Setup(1λ,1n ,1n′

,h);

(x∗,z∗) ←A(mpk);

ct∗ ←Enc(mpk, (x∗,z∗);

output AKeyGen(msk,·)(mpk,ct∗)

≈c


(mpk,msk∗) ← Setup∗(1λ,1n ,1n′

,h);

(x∗,z∗) ←A(mpk);

ct∗ ←Enc∗(msk∗,x∗);

output AKeyGen∗(msk∗,x∗,·,·)(mpk,ct∗)


such that whenever A makes a query f to KeyGen, the simulator KeyGen∗ gets f along with h(z∗) f (x∗)>. We use

AdvFE
A (λ) to denote the advantage in distinguishing the real and ideal games.

3 Main Construction

In this section, we present our PHFE scheme for the class

(

public︷︸︸︷
x ,

private︷ ︸︸ ︷
(z1,z2)) ∈Zn

p ×Zn′
1+n′

2
p 7→ (z1 ⊗z2) f (x)>, f ∈FABP,n,n′

1n′
2
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The scheme is SA-SIM-secure under the bilateral k-Lin assumption and the k ′-Lin assumption in G1,G2 (for the most

efficient concrete instantiation, we set k = 2,k ′ = 1). In our scheme, decryption actually computes [(z1 ⊗ z2) f (x)>]T ,

whereas the simulator only needs to get [(z1 ⊗z2) f (x)>]2. Note that FE for quadratic functions is a special case of our

PHFE (where f has the quadratic function hard-wired into it). We present a self-contained description of our quadratic

FE in Section A.

As a building block, we rely on a SA-SIM-secure PHFE scheme (Setup0,Enc0,KeyGen0,Dec0) for the class

(

public︷︸︸︷
x ,

private︷︸︸︷
z ) ∈Zn

p ×Zk ′n′
1+kn′

2
p 7→ [zM f (x)>]T , f ∈FABP,n,n′

1n′
2

parameterized by a matrix [M]2 ∈ G(k ′n′
1+kn′

2)×n′
1n′

2
1 , where encryption gets [z]1 and the simulator gets [zM f (x)>]2. We

instantiate the building block in Section 4.

3.1 Our Scheme

– Setup(p,1n ,1n′
1 ,1n′

2 ): Run G= (G1,G2,GT ,e) ←G(p). Sample

A1 ←Z
k×n′

1
p ,A2 ←Z

k ′×n′
2

p , (mpk0,msk0) ← Setup0(p,1n ,1k ′n′
1+kn′

2 , [M]2)

where

M :=
(

A1 ⊗ In′
2

In′
1
⊗A2

)
∈Z(k ′n′

1+kn′
2)×n′

1n′
2

p

and output

mpk= (
G, [A1]1, [A1]2, [A2]2, mpk0

)
and msk=msk0

Observe that given mpk, we can compute [M]2.
– Enc(mpk,x, (z1,z2)): Sample

s1 ←Zk
p ,s0,s2 ←Zk ′

p , ct0 ←Enc0
(
mpk0,x, [s1 ⊗z2‖(s1A1 +z1︸ ︷︷ ︸

y1

)⊗s2]1
)

and output

ct= (
[s1A1 +z1︸ ︷︷ ︸

y1

]1, [s2A2 +z2︸ ︷︷ ︸
y2

]2, ct0
)

– KeyGen(msk, f ): Output

sk f ←KeyGen0(msk0, f )

– Dec(sk f , f ,ct,x): Output

[(y1 ⊗y2) · f (x)>]T ·
(
Dec0(sk f , ( f , [M]2),ct0,x)

)−1

Correctness. First, observe that we have

(s1A1 +z1︸ ︷︷ ︸
y1

)⊗ (s2A2 +z2︸ ︷︷ ︸
y2

) = (z1 ⊗z2) + s1A1 ⊗z2 + y1 ⊗s2A2

= (z1 ⊗z2) + (s1 ⊗z2) · (A1 ⊗ In′
2
) + (y1 ⊗s2) · (In′

1
⊗A2)

= (z1 ⊗z2) + (s1 ⊗z2‖y1 ⊗s2)M

(4)

where the second equality uses the mixed-product property of the tensor product. Multiplying both sides of (4) by

f (x)> and rearranging the terms yields:

(z1 ⊗z2) f (x)> = (y1 ⊗y2) f (x)>− (s1 ⊗z2‖y1 ⊗s2)M f (x)> (5)

Next, correctness of the underlying scheme tells us that

Dec0(sk f , ( f , [M]2),ct0,x) = (s1 ⊗z2‖y1 ⊗s2)M f (x)>

Correctness then follows readily.
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3.2 Simulator

We start by describing the simulator.

– Setup∗(p,1n ,1n′
1 ,1n′

2 ): Run G= (G1,G2,GT ,e) ←G(p). Sample

A1 ←Z
k×n′

1
p ,A2 ←Z

k ′×n′
2

p , (mpk∗0 ,msk∗0 ) ← Setup∗0 (p,1n ,1k ′n1+kn2 )

and output

mpk∗ = (
G, [A1]1, [A1]2, [A2]2, mpk∗0

)
and msk∗ =msk∗0

– Enc∗(msk∗0 ,x∗): Sample

y1 ←Z
n′

1
p , y2 ←Z

n′
2

p , ct∗0 ←Enc∗0 (msk∗0 ,x∗)

and output

ct∗ = (
[y1]1, [y2]1, ct∗0

)
– KeyGen∗(msk∗,x∗, f , [µ]2): Output

sk f ←KeyGen∗0 (msk∗0 ,x∗, f , [(y1 ⊗y2) f (x∗)]T · [µ]−1
2 )

3.3 Proof of Security

We proceed via a series of games and we use Advi to denote the advantage of A in Game i . Let x∗, (z∗1 ,z∗2 ) denote the

semi-adaptive challenge.

Game 0. Real game.

Game 1. Replace (Setup0,Enc0,KeyGen0) in Game0 with (Setup∗0 ,Enc∗0 ,KeyGen∗0 ) where

ct∗ = ([y1]1, [y2]2,Enc0(msk∗,x∗)), y1 = s1A1 +z∗1 ,y2 = s2A2 +z∗2
sk f ← KeyGen∗0 (msk∗0 ,x∗, f , [(s1 ⊗z∗2‖y1 ⊗s2)M f (x∗)>]2 )

We have Game1 ≈c Game0, by security of the underlying PHFE scheme. The reduction samples

A1 ←Z
k×n′

1
p ,A2 ←Z

k ′×n′
2

p ,s1 ←Zk
p ,s0,s2 ←Zk ′

p ,

and upon receiving x∗, (z∗1 ,z∗2 ) from A, sends

x∗,s1 ⊗z∗2‖(s1A1 +z∗1 )⊗s2

as the semi-adaptive challenge.

Game 2. Replace sk f in Game 1 with

sk f ←KeyGen∗0 (msk∗0 ,x∗, f , [(y1 ⊗y2) f (x∗)>]2 · [(z∗1 ⊗z∗2 ) f (x∗)>]−1
2 )

Here, we have Game2 ≡Game1, thanks to (5), which tells us that

[(y1 ⊗y2) f (x∗)>]2 · [(z∗1 ⊗z∗2 ) f (x∗)>]−1
2 = [(s1 ⊗z∗2‖y1 ⊗s2)M f (x∗)>]2

7



Game 3. We replace [s1A1 +z∗1 ]1 in ct∗ in Game2 with [y1]1 where y1 ←Z
n′

1
q . Then, we have Game3 ≈c Game2 via the

bi-lateral k-Lin assumption. The assumption tells us that for all z∗1 ,

([A1]1, [A1]2, [s>A1 +z∗1 ]1, [s>A1 +z∗1 ]2) ≈c ([A1]1, [A1]2, [y1]1, [y1]2)

where s ←Zk
p ,y1 ←Z

n′
1

p . Note that this holds even if z∗1 is adaptively chosen after seeing [A1]1, [A1]2. The reduction then

samples

A2 ←Z
k ′×n′

2
p , s2 ←Zk ′

p , (mpk∗0 ,msk∗0 ) ← Setup∗0 (p,1n ,1k ′n1+kn2 )

sets y2 := s2A2 +z∗2 , and uses the fact that in Games 2 and 3,

– it can compute mpk∗,ct∗ given [A1]1, [A1]2, [y1]1 respectively;

– it can sample sk f by using [y1]2,y2 to compute [y1 ⊗y2]2.

Game 4. We replace [s2A2 +z∗2 ]1 in ct∗ in Game3 with [y2]1 where y2 ←Z
n′

2
q . Then, we have Game4 ≈c Game3 via

the k ′-Lin assumption in G2. Here, we use the fact that we can sample sk f in Games 3 and 4 using y1, [y2]2 to compute

[y1 ⊗y2]2.

Finally, note that Game4 is exactly the output of the simulator.

4 Partially-Hiding FE for Linear Functions

In this section, we present our PHFE scheme for the class

(

public︷︸︸︷
x ,

private︷︸︸︷
z ) 7→ [zM f (x)>]T

parameterized by a matrix [M]2, where encryption gets [z]1, and the simulator gets [zM f (x)>]2. In fact, we present

a scheme for a more general setting where the matrix [M]2 is specified by the function corresponding to the secret

key (that is, we allow a different [M]2 for each secret key, rather than the same matrix for all keys). The scheme is a

somewhat straight-forward modification of that in [2]; some care is needed as the decryption algorithm only gets [M]2

and not M. This scheme achieves simulation-based semi-adaptive security under k-Lin. Most of the text in this section

is copied verbatim from [2], with minor adaptations to account for M.

4.1 Partial Garbling Scheme

The partial garbling scheme [2,17,23] for z f (x)> with f ∈FABP,n,n′ is a randomized algorithm that on input f outputs

an affine function in x,z of the form:

p f ,x,z =
(

z− t‖t(L1(x>⊗ Im)+L0)
)

where L0 ∈ Zt×mn
p ,L1 ∈ Zt×m

p depends only on f ; t ← Zt
p is the random coin and t consists of the last n′ entries in t,

such that given (p f ,x,z, f ,x), we can recover z f (x)>, while learning nothing else about z.

Lemma 1 (partial garbling [2,17,23]). There exists four efficient algorithms (lgen,pgb, rec,pgb∗) with the following

properties:

– (syntax) on input f ∈FABP,n,n′ , lgen( f ) outputs L0 ∈Zt×mn
p ,L1 ∈Zt×m

p , and

pgb( f ,x,z;t) = (
z− t ‖t(L1(x>⊗ Im)+L0)

)
pgb∗( f ,x,µ;t) = ( −t ‖t(L1(x>⊗ Im)+L0)+µ ·e1

)
where t ∈Zt

p and t consists of the last n′ entries in t and m, t are linear in the size of f .
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– (reconstruction) rec( f ,x) outputs d f ,x ∈Zn′+m
p such that for all f ,x,z,t,

p f ,x,zd>
f ,x = z f (x)>

where p f ,x,z = pgb( f ,x,z;t).

– (privacy) for all f ,x,z,

pgb( f ,x,z;t) ≈s pgb
∗( f ,x,z f (x)>;t)

where the randomness is over t ←Zt
p .

4.2 Construction

Our scheme Π is similar to Πone in [2], with the modifications marked using boxed terms. We rely on partial garbling

to compute pgb( f ,x, zM ;t) instead of pgb( f ,x,z;t) “in the exponent” over GT ; applying the reconstruction algorithm

(which requires knowing f ,x but not M) then returns [ zM f (x)>]T .

– Setup(1λ,1n ,1n′
): Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A ←Zk×(k+1)
p and W ←Z(k+1)×n′

p , U ←Z(k+1)×kn
p , V ←Z(k+1)×k

p

and output

mpk= (
G, [A]1, [AW]1, [AU]1, [AV]1

)
and msk= (

W, U, V
)
.

– Enc(mpk, (x,z)): Sample s ←Zk
p and output

ctx,z =
(

[sA]1, [z+sAW]1, [sAU(x>⊗ Ik )+sAV]1
)

and x.

Note that it is sufficient for Enc to get [z]1.

– KeyGen(msk, ( f , [M]2)): Run (L1,L0) ← lgen( f ) where L1 ∈ Zt×mn
p ,L0 ∈ Zt×m

p (cf. Section 4.1). Sample T ← Z
(k+1)×t
p

and R ←Zk×m
p and output

sk f ,M = (
[T+ WM ]2, [TL1 +U(In ⊗R)]2, [TL0 +VR]2, [R]2

)
and ( f , [M]2).

where T refers to the matrix composed of the right most n′ columns of T.

– Dec((sk f ,M, ( f , [M]2)), (ctx,z,x)): On input key:

sk f ,M = (
[K1]2, [K2]2, [K3]2, [R]2

)
and ( f , [M]2)

and ciphertext:

ctx,z =
(

[c0]1, [c1]1, [c2]1
)

and x

the decryption works as follows:

1. compute

[p1]T = e([c1]1, [M]2 ) ·e([c0]1, [−K1]2) (6)

2. compute

[p2]T = e([c0]1, [K2(x>⊗ Im)+K3]2) ·e([−c2]1, [R]2) (7)

3. run d f ,x ← rec( f ,x) (cf. Section 4.1), compute

[D]T = [(p1‖p2)d>
f ,x]T (8)
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Correctness. For ctx,z and sk f ,M, we have

p1 = zM−sAT (9)

p2 = sATL1(x>⊗ Im)+sATL0 (10)

(p1‖p2)d>
f ,x = zM f (x) (11)

Here (11) follows from the fact that

(p1‖p2) = pgb( f ,x,zM; (sAT)) and d f ,x = rec( f ,x)

and reconstruction of the partial garbling in (6); the remaining two equalities follow from:

(9) zM−sAT = (z+sAW) ·M−sA · (T+WM)

(10) sATL1(x>⊗ Im)+sATL0 = sA · ((TL1 +U(In ⊗R))(x>⊗ Im)+ (TL0 +VR)
)− (

sAU(x>⊗ Ik )+sAV
) ·R

in which we use the equality (In ⊗R)(x>⊗ Im) = (x>⊗ Ik )R. This readily proves the correctness.

Simulator. We describe the simulator. We defer the analysis to Section B.

– Setup∗(1λ,1n ,1n′
): Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A ←Z
(k+1)×k
p and W ←Z

(k+1)×n′
p , U ←Z

(k+1)×kn
p , V ←Z

(k+1)×k
p

c ←Zk+1
p w̃ ←Zn′

p , ṽ ←Zk
p

and output

mpk= (
G, [A>]1, [A>W]1, [A>U]1, [A>V]1

)
and msk∗ = (

W, U, V, w̃, ṽ, c,C⊥,A,a⊥ )
where (A|c)>(C⊥|a⊥) = Ik+1. Here we assume that (A|c) has full rank, which happens with probability 1−1/p.

– Enc∗(msk∗,x∗): Output

ct∗ = (
[c>]1, [w̃]1, [ṽ]1

)
and x∗.

– KeyGen∗(msk∗,x∗, ( f , [M]2), [µ]2): Run

(L1,L0) ← lgen( f ) and ([p∗
1 ]2, [p∗

2 ]2) ← pgb∗( f ,x∗, [µ]2).

Sample T ←Z
(k+1)×t
p , û ←Znm

p and R ←Zk×m
p and output

sk∗f =
(

C⊥ · sk∗f [1]+a⊥ · sk∗f [2], [R]2
)

and f (12)

where

sk∗f [1] = (
[A>T+A>WM]2, [A>TL1 +A>U(In ⊗R)]2, [A>TL0 +A>VR]2

)
sk∗f [2] = (

[−(p∗
1 )>+ w̃M]2, [û>]2, [(p∗

2 )>− û>(x∗⊗ Im)+ ṽR]2
)

Here T refers to the matrix composed of the right most n′ columns of T. That is,

sk∗f =


[C⊥(A>T+A>WM) +a⊥(−(p∗

1 )>+ w̃M)]2,

[C⊥(A>TL1 +A>U(In ⊗R)) +a⊥(û>)]2 , [R]2

[C⊥(A>TL0 +A>VR) +a⊥(
(p ∗

2 )>− û>(x∗⊗ Im)+ ṽR
)
]2


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A Concrete Scheme for Quadratic Functions

We present a self-contained description of our functional encryption scheme for quadratic functions specified by

f ∈Zn1×n2
p where

z1,z2 7→ (z1 ⊗z2)f>

The scheme is SA-SIM-secure under the bilateral k-Lin assumption and the k ′-Lin assumption in G1,G2. For the most

efficient concrete instantiation (cf. Fig 1), we set k = 2,k ′ = 1.

– Setup(p,1n1 ,1n2 ): Run G= (G1,G2,GT ,e) ←G(p). Sample

A1 ←Z
k×n1
p ,A2 ←Z

k ′×n2
p ,A0 ←Zk ′×(k ′+1)

p ,W ←Z
(k ′+1)×(k ′n1+kn2)
p ,

and output

mpk= (
G, [A0]1, [A0W]1, [A1]1, [A1]2, [A2]2

)
and msk= W

– Enc(mpk, (z1,z2)): Sample s1 ←Zk
p ,s0,s2 ←Zk ′

p and output

ct= (
[s1A1 +z1︸ ︷︷ ︸

y1

]1, [s2A2 +z2︸ ︷︷ ︸
y2

]2, [s0A0︸︷︷︸
c0

]1, [s0A0W+ (s1 ⊗z2 | y1 ⊗s2)︸ ︷︷ ︸
y0

]1
) ∈Gn1

1 ×Gn2
2 ×Gk ′+1

1 ×Gk ′n1+kn2
1

– KeyGen(msk, f): Output

skf =
[

W ·
(

(A1 ⊗ In2 )f>

(In1 ⊗A2)f>

)]
2
∈G(k ′+1)×1

2

– Dec(skf, f,ct): Parse skf = [k>]2 and output the discrete log of

[(y1 ⊗y2) · f>]T ·e([c0]1, [k>]2) ·e

(
[y0]1,

[(
(A1 ⊗ In2 )f>

(In1 ⊗A2)f>

)]
2

)−1

B Security Proof for Section 4

We complete the security proof for the schemeΠ in Section 4.2.

Theorem 1. For all A, there exist B1 and B2 with Time(B1),Time(B2) ≈Time(A) such that

AdvΠA(λ) ≤Adv
MDDH1

k,k+1

B1
(λ)+Adv

MDDHn
k,mQ

B2
(λ)+1/p

where n is length of public input x∗ in the challenge, m is the parameter depending on size of function f and Q is the

number of key queries.

Note that this yields a tight security reduction to the k-Lin assumption.

Game sequence. We use (x∗,z∗) to denote the semi-adaptive challenge and for notational simplicity, assume that all

key queries f j share the same parameters t and m. We prove Theorem 1 via a series of games.

Game0: Real game.

Game1: Identical to Game0 except that ct∗ for (x∗,z∗) is given by

ct∗ = (
[ c> ]1, [(z∗)>+ c> W]1, [ c> U((x∗)>⊗ Ik )+ c> V]1

)
where c ←Zk+1

p . We claim that Game0 ≈c Game1. This follows from MDDH1
k,k+1 assumption:

[A>]1, [s>A>]1 ≈c [A>]1, [c>]1 .

In the reduction, we sample W,U,V honestly and use them to simulate mpk and KeyGen(msk, ·) along with [A>]1;

the challenge ciphertext ct∗ is generated using the challenge term given above.
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Game2: Identical to Game1 except that the j -th query f j to KeyGen(msk, ·) is answered with

sk f j =
(

C⊥ · sk f j [1]+a⊥ · sk f j [2], [R j ]2
)

with

sk f j [1] = (
[A>T j +A>WM j ]2, [A>T j L1, j +A>U(In ⊗R j )]2, [A>T j L0, j +A>ṼR j ]2

)
sk f j [2] = (

[c>T j +c>WM j ]2, [c>T j L1, j +c>U(In ⊗R j )]2, [c>T j L0, j +c>VR j ]2
)

where (L1, j ,L0, j ) ← lgen( f j ), T j ← Z
(k+1)×t
p , R j ← Zk×m

p , c is the randomness in ct∗ and C⊥ is defined such that

(A|c)>(C⊥|a⊥) = Ik+1 (cf. Setup∗ in Section 4.2). By basic linear algebra, we have Game1 =Game2.

Game3: Identical to Game2 except that we replace Setup,Enc with Setup∗,Enc∗ where ct∗ is given by

ct∗ = (
[c>]1, [w̃>]1, [ṽ>]1

)
and replace KeyGen(msk, ·) with KeyGen∗3 (msk∗, ·), which works as KeyGen(msk, ·) in Game2 except that, for the

j -th query f j , we compute

sk f j [2] = (
[t̃>j − (z∗)>M j + w̃>M j ]2 , [ t̃>j L1, j + ũ> (In ⊗R j )]2, [ t̃>j L0, j −ũ>(In ⊗R j )((x∗)>⊗ Im)+ ṽ>R j ]2

)
where w̃, ṽ are given in msk∗ (output by Setup∗) and ũ ←Zkn

p ,t j ←Zt
p ,R j ←Zk×m

p . We claim thatGame2 ≈s Game3.

This follows from the following statement: for any full-rank (A|c), we have

(A>U,c>U, A>W,c>W, A>V,c>V, A>T j ,c>T j )

≡ (A>U, ũ> , A>W, w̃>− (z∗)> , A>V, ṽ>− ũ>(x∗⊗ Ik ) , A>T j , t̃>j )

Game4: Identical to Game3 except that we replace KeyGen∗3 with KeyGen∗4 which works as KeyGen∗3 except that, for

the j -th query f j , we compute

sk f j [2] = (
[t̃>j − (z∗)>M j + w̃>M j ]2, [t̃>j L1, j + û>

j ]2, [t̃>j L0, j − û>
j ((x∗)>⊗ Im)+ ṽ>R j ]2

)
where û j ← Znm

p and R j ← Zk×m
p . We claim that Game3 ≈c Game4. This follows from MDDHn

k,mQ assumption

which tells us that {
[ũ>(In ⊗R j )]2, [R j ]2

}
j∈[Q] ≈c

{
[û>

j ]2 , [R j ]2
}

j∈[Q]

where Q is the number of key queries.

Game5: Identical to Game4 except that we replace KeyGen∗4 with KeyGen∗; this is the ideal game. We claim that

Game4 ≈s Game5. This follows from the privacy of partial garbling scheme in Section 4.1.

We use AdvxxA (λ) to denote the advantage of adversary A in Gamexx. We prove the following lemmas showing the

indistinguishability of adjacent games listed above.

Lemma 2 (Game0 ≈c Game1). For all A, there exists B1 with Time(B1) ≈Time(A) such that

|Adv1
A(λ)−Adv0

A(λ)| ≤Adv
MDDH1

k,k+1

B1
(λ).

Lemma 3 (Game2 ≈c Game3). For all A, we have Adv3
A(λ) ≈Adv2

A(λ).

The proof is the same as before, except we replace cW , z∗− w̃ in sk f j [2] with cWM j , z∗M j − w̃M j
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Proof (of Lemma 3). Recall that the difference between the two games lies in ct∗ and sk f j [2]: instead of computing

ct∗ = (
[c>]1, [(z∗)>+c>W]1 , [c>U((x∗)>⊗ Ik )+c>V]1

)
sk f j [2] = (

[c>T j +c>WM j ]2 , [ c>T j L1, j + c>U (In ⊗R j )]2, [ c>T j L0, j + c>VR j ]2
)

in Game2, we compute

ct∗ = (
[c>]1, [w̃>]1, [ṽ>]1

)
sk f j [2] = (

[t̃>j − (z∗)>M j + w̃>M j ]2 , [ t̃>j L1, j + ũ> (In ⊗R j )]2, [ t̃>j L0, j −ũ>(In ⊗R j )((x∗)>⊗ Im)+ ṽ>R j ]2
)

in Game3.

This follows readily from the following statement: for all x∗,z∗,

(A>U, c>U , A>W, c>W , A>V, c>V , A>T j , c>T j )

≡ (A>U, ũ> , A>W, w̃>− (z∗)> , A>V, ṽ>− ũ>(x∗⊗ Ik ) , A>T j , t̃>j )

where U,W,V,w̃, ṽ are sampled as in Setup∗ and ũ ←Zkn
p ,T j ←Z

(k+1)×t
p ,t j ←Zt

p . We clarify that in the semi-adaptive

security game, (x∗,z∗) are chosen after seeing A>U,A>W,A>V. Since the two distributions are identically distributed,

the distinguishing advantage remains 0 even for adaptive choices of x∗,z∗ via a random guessing argument.

Finally, note that A>U,A>W,A>V,A>T j are used to simulate mpk, sk f j [1], whereas the boxed/gray terms are used to

simulate sk f j [2]. This readily proves the lemma. ut

Lemma 4 (Game3 ≈c Game4). For all A, there exists B2 with Time(B2) ≈Time(A) such that

|Adv4
A(λ)−Adv3

A(λ)| ≤Adv
MDDHn

k,mQ

B2
(λ)

where n is length of public input x in the challenge, m is the maximum size of function f and Q is the number of key

queries.

Lemma 5 (Game4 ≈s Game5). For all A, we have Adv5
A(λ) ≈Adv4

A(λ).

The proof is the same as before except we replace z∗ in sk f j [2],pgb,pgb∗ with z∗M j and w̃ in sk f j [2] with w̃M j .

Proof. Recall that the difference between the two games lies in sk f j [2]: instead of computing

sk f j [2] = (
[ t̃>j − (z∗)>M j + w̃M j ]2, [ t̃>j L1, j + û>

j ]2, [ t̃>j L0, j − û>(x∗⊗ Im) + ṽ>R]2
)

in KeyGen∗4 (i.e., Game4), we compute

sk f j [2] = (
[ t̃>j + w̃M j ]2, [ û>

j ]2, [ t̃>j (L1, j (x∗⊗ Im)+L0, j )+e1 ·z∗M j f j (x∗)>− û>
j (x∗⊗ Im) + ṽ>R]2

)
in KeyGen∗ (i.e., Game5). By change of variable û>

j 7→ û>
j − t̃>j L1, j for all j ∈ [Q] in Game4, we can rewrite in the form:

sk f j [2] = (
[−p>

j ,1 + w̃M j ]2, [û>
j ]2, [p>

j ,2 − û>
j (x∗⊗ Im)+ ṽ>R]2

)
where

(p j ,1‖p j ,2) ←
 pgb( f j ,x∗,z∗M j ; t̃ j ) in Game4

pgb∗( f j ,x∗,z∗M j f j (x∗)>; t̃ j ) in Game5

Then the lemma immediately follows from the privacy of underlying partial garbling scheme which means pgb( f j ,x∗,z∗M j ) ≈s

pgb∗( f j ,x∗,z∗M j f j (x∗)>). ut
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