
Functional Encryption for Quadratic Functions from k-Lin, Revisited

Hoeteck Wee

NTT Research

Abstract. We present simple and improved constructions of public-key functional encryption (FE) schemes for

quadratic functions. Our main results are:

– an FE scheme for quadratic functions with constant-size keys as well as shorter ciphertexts than all prior

schemes based on static assumptions;

– a public-key partially-hiding FE that supports NC1 computation on public attributes and quadratic computa-

tion on the private message, with ciphertext size independent of the length of the public attribute.

Both constructions achieve selective, simulation-based security against unbounded collusions, and rely on the (bi-

lateral) k-linear assumption in prime-order bilinear groups. At the core of these constructions is a new reduction

from FE for quadratic functions to FE for linear functions.

1 Introduction

In this work, we study functional encryption for quadratic functions. That is, we would like to encrypt a message z to

produce a ciphertext ct, and generate secret keys sk f for quadratic functions f , so that decrypting ct with sk f returns

f (z) while leaking no additional information about z. In addition, we want (i) short ciphertexts that grow linearly

with the length of z, as well as (ii) simulation-based security against collusions, so that an adversary holding ct and

secret keys for different functions f1, f2, . . . learns nothing about z beyond the outputs of these functions. Functional

encryption for quadratic functions have a number of applications, including traitor-tracing schemes whose ciphertext

size is sublinear in the total number of users [8,6,11,5,16]; obfuscation from simple assumptions [4,18,19,13,20]; as well

as privacy-preserving machine learning for neural networks with quadratic activation functions [22].

1.1 Our Results

We present new pairing-based public-key functional encryption (FE) schemes for quadratic functions, improving

upon the recent constructions in [21,5,19,12]. Our main results are:

– A FE scheme for quadratic functions with constant-size keys, whose ciphertext size is shorter than those of all

prior public-key schemes based on static assumptions [5,12]; moreover, when instantiated over the BLS12-381

curve where |G2| = 2|G1|, our ciphertext size basically matches that of the most efficient scheme in the generic

group model [22] (see Fig 1).

– A partially-hiding FE that supports NC1 computation on public attributes x and quadratic computation on the

private message z; moreover, the ciphertext size grows linearly with z and independent of x. The previous con-

structions in [13,4,18,19] have ciphertext sizes that grow linearly with both z and x.

Both constructions achieve selective1, simulation-based security against unbounded collusions, and rely on the bilat-

eral k-linear assumption in prime-order bilinear groups.

At the core of these constructions is a new reduction from public-key FE for quadratic functions to that for linear

functions. The reduction relies on the (bilateral) k-Lin assumption, and blows up the input size by a factor k. Note

that the trivial reduction blows up the input size by |z|. Our reduction is simpler and more direct than the previous

reductions due to Lin [21] and Gay [12]: (i) we do not require function-hiding FE for linear functions, and (ii) our

reduction works directly in the public-key setting. Thanks to (i), we can also decrease the secret key size from linear to

constant.

1 We actually achieve semi-adaptive security [9], a slight strengthening of selective security.

Scheme |ct| |sk| Assumption Security

BCFG17 [5] (6n1 +1)|G1|+ (6n2 +1)|G2| |G1|+ |G2| SXDH, 3-PDDH SEL-IND

RDGBP19 [22] (2n1 +1)|G1|+2n2|G2| |G2| GGM AD-IND

G20 [12] (4n1 +2n2 +2)|G1|+n2|G2| (3n1 +2n2 +2)|G2| SXDH, bi-2-Lin SA-SIM

GQ20 [14] (2n1 +5)|G1|+ (2n2 +5)|G2| 5|G1|+5|G2| SXDH, bi-2-Lin SA-SIM

this work ((k +1)n1 +kn2 +k +1)|G1|+n2|G2| (k +1)|G2| bi-k-Lin, k > 1 SA-SIM

(2n1 +2n2 +2)|G1|+n2|G2| 2|G2| SXDH, bi-2-Lin SA-SIM

Fig. 1. Comparison with prior public-key functional encryption schemes for quadratic functions f : Zn1
p ×Zn2

p → Zp , as well as a

concurrent work [14]. Note that |sk| ignores the contribution from the function f , which is “public”. Here, SXDH=1-Lin, and bi-k-

Lin (bilateral k-Lin) is a strengthening of k-Lin. 3-PDDH asserts that [abc]2 is pseudorandom given [a]1, [b]2, [c]1, [c]2. In bilinear

groups where |G|2 = 2|G1|, we achieve |ct| = (2n1 +4n2 +2)|G1| under SXDH, bi 2-Lin, almost matching |ct| = (2n1 +4n2 +1)|G1| in

RDGBP19.

1.2 Technical Overview

We proceed to provide an overview of our constructions. We rely on an asymmetric bilinear group (G1,G2,GT ,e) of

prime order p where e : G1 ×G2 → GT . We use [·]1, [·]2, [·]T to denote component-wise exponentiations in respective

groups G1,G2,GT [10]. We use bold-face lower case to denote row vectors. The k-Lin assumption in Gb asserts that

([A]b , [sA]b) ≈c ([A]b , [u]b), s ←Zk
p ,A ←Zk×`

p ,u ←Z`p ,`> k

The bilateral k-Lin assumption is a strengthening of k-Lin, and asserts that

([A]1, [sA]1, [A]2, [sA]2) ≈c ([A]1, [u]1, [A]2, [u]2)

Note that bilateral 1-Lin is false, for the same reason DDH is false in symmetric bilinear groups.

FE for quadratic functions. Consider the class of quadratic functions over Zn
p ×Zn

p given by

(z1,z2) 7→ (z1 ⊗z2)f>

where f ∈Zn2

p is the coefficient vector. We will first mask z1,z2 in the ciphertext using:

[s1A1 +z1]1, [s2A2 +z2]2

where the matrices

[A1]1, [A2]2,A1,A2 ←Zk×n
p

are specified in the master public key. Next, observe that

((s1A1 +z1)⊗ (s2A2 +z2)) · f> = (z1 ⊗z2)f>+cross terms (1)

Following [12,21], we will express the cross terms as a linear function evaluated on inputs of length O(kn); the key

difference in this work is that the linear function can be derived from the master public key and f.

More precisely, we write

(s1A1 +z1︸ ︷︷ ︸
y1

)⊗ (s2A2 +z2︸ ︷︷ ︸
y2

) = (z1 ⊗z2) + s1A1 ⊗z2 + y1 ⊗s2A2

= (z1 ⊗z2) + (s1 ⊗z2) · (A1 ⊗ In) + (y1 ⊗s2) · (In ⊗A2)

= (z1 ⊗z2) + (s1 ⊗z2‖y1 ⊗s2)
(A1⊗In

In⊗A2

)
2

where the second equality uses the mixed-product property of the tensor product, which tells us that (M1 ⊗M2)(M3 ⊗
M4) = (M1M3)⊗ (M2M4), and ‖ denotes row vector concatenation. Multiplying both sides on the right by f> and rear-

ranging the terms yields:

(z1 ⊗z2)f> = (y1 ⊗y2)f>− (s1 ⊗z2‖y1 ⊗s2)Mf> (2)

where M := (A1⊗In
In⊗A2

)
. As we mentioned earlier, the boxed term (= cross terms in (1))

(s1 ⊗z2‖y1 ⊗s2) ·Mf> (3)

corresponds to a linear computation where

– the input (s1 ⊗z2‖y1 ⊗s2) has length O(kn);
– the linear function Mf> can be computed given f and the matrices A1,A2 in the public key.

The latter property pertaining to Mf> is what allows us to significantly simplify the previous reductions in [21,12], since

there is nothing “secret” about the linear function Mf>. In the prior works, the linear function leaks information about

the master secret key beyond what can be computed from the master public key.

In particular, we can use a public-key FE for linear functions (linear FE for short) [3,23,1] to compute (3). That is,

we encrypt [s1⊗z2‖y1⊗s2]1, and generate a secret key for [Mf>]2. The linear FE schemes in [3,23] extend readily to this

setting where both the input and function are specified “in the exponent”; moreover, these schemes achieve selective,

simulation-based security under the k-Lin assumption, with constant-size secret keys. The linear FE ciphertext would

lie inG1, whereas both M and the secret key would lie inG2. Note that in order to compute [M]2, we would also publish

[A1]2 in the public key. We present a self-contained description of our quadratic FE in Section A.

Security overview. Security, intuitively, is fairly straight-forward:

– First, observe that [y1]1, [y2] leaks no information about z1,z2, thanks to the k-Lin assumption;
– Next, we can simulate the ciphertext and secret key for the linear FE given (s1⊗z2‖y1⊗s2)Mf>, which we can rewrite

as (z1⊗z2)f>−(y1⊗y2)f>. We can in turn compute the latter given just y1,y2 and the output of the ideal functionality

and therefore the linear FE ciphertext-key pair leaks no additional information about z1,z2.

In the reduction, we would need to compute [y1 ⊗ y2]2 in order to simulate the secret key for the linear FE. This is

something we can compute given either y1, [y2]2 or [y1]2,y2. The latter along with publishing [A1]2 in the public key is

why we require the bilateral k-Lin assumption. For the most efficient concrete instantiation, we will use the bilateral

2-Lin assumption together with SXDH (i.e., 1-Lin), where we sample A1 ← Z2×n
p ,A2 ← Z1×n

p . We leave the question of

basing quadratic FE solely on the standard k-Lin assumption as an open problem.

Extension to partially hiding FE. Our approach extends readily to partially hiding FE (PHFE) for the class

(

public︷︸︸︷
x ,

private︷ ︸︸ ︷
(z1,z2)) 7→ (z1 ⊗z2) f (x)>

where f captures NC1 –more generally, any arithmetic branching program– computation on the public attribute x

and outputs a vector inZn2

p . Note that FE for quadratic functions corresponds to the special case where f is a constant

function (independent of x). The idea behind the extension to PHFE is to replace f> in (2) with f (x) (the decryptor can

compute f (x) since x is public), which yields:

(z1 ⊗z2) f (x)> = (y1 ⊗y2) f (x)>− (s1 ⊗z2‖y1 ⊗s2)M f (x)>

To compute the new boxed term, we will rely on the partially-hiding linear FE scheme in [2] for the class

(

public︷︸︸︷
x ,

private︷︸︸︷
z) 7→ z f (x)>

We can augment the construction to take into account the matrix M; some care is needed as the decryption algorithm

only gets [M]2 and not M. In the ensuing scheme as with [2], the ciphertext size grows linearly with the message and

independent of x, which we then inherit in our partially-hiding quadratic FE.

3

2 Preliminaries

Notations. We denote by s ← S the fact that s is picked uniformly at random from a finite set S. We use ≈s to denote

two distributions being statistically indistinguishable, and ≈c to denote two distributions being computationally in-

distinguishable. We use lower case boldface to denote row vectors and upper case boldcase to denote matrices. We

use ei to denote the i ’th elementary row vector (with 1 at the i ’th position and 0 elsewhere, and the total length of the

vector specified by the context). For any positive integer N , we use [N] to denote {1,2, . . . , N }.

The tensor product (Kronecker product) for matrices A = (ai , j) ∈Z`×m , B ∈Zn×p is defined as

A⊗B =


a1,1B, . . . , a1,m B

. . . , . . . , . . .

a`,1B, . . . , a`,m B

 ∈Z`n×mp .

The mixed-product property for tensor product says that

(A⊗B)(C⊗D) = (AC)⊗ (BD)

Arithmetic Branching Programs. A branching program is defined by a directed acyclic graph (V ,E), two special ver-

tices v0, v1 ∈ V and a labeling function φ. An arithmetic branching program (ABP), where p is a prime, computes a

function f : Zn
p → Zp . Here, φ assigns to each edge in E an affine function in some input variable or a constant, and

f (x) is the sum over all v0-v1 paths of the product of all the values along the path. We refer to |V |+ |E | as the size of f .

The definition extends in a coordinate-wise manner to functions f :Zn
p →Zn′

p . Henceforth, we use FABP,n,n′ to denote

the class of ABP f :Zn
p →Zn′

p .

We note that there is a linear-time algorithm that converts any boolean formula, boolean branching program or

arithmetic formula to an arithmetic branching program with a constant blow-up in the representation size. Thus,

ABPs can be viewed as a stronger computational model than all of the above. Recall also that branching programs and

boolean formulas correspond to the complexity classes LOGSPACE and NC1 respectively.

2.1 Prime-order Bilinear Groups

A generatorG takes as input a security parameter 1λ and outputs a descriptionG := (p,G1,G2,GT ,e), where p is a prime

of Θ(λ) bits, G1, G2 and GT are cyclic groups of order p, and e :G1 ×G2 →GT is a non-degenerate bilinear map. We re-

quire that the group operations in G1, G2, GT and the bilinear map e are computable in deterministic polynomial time

in λ. Let g1 ∈G1, g2 ∈G2 and gT = e(g1, g2) ∈GT be the respective generators. We employ the implicit representation of

group elements: for a matrix M over Zp , we define [M]1 := g M
1 , [M]2 := g M

2 , [M]T := g M
T , where exponentiation is carried

out component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T . We recall the matrix Diffie-Hellman (MDDH)

assumption on G1 [10]:

Assumption 1 (MDDHd
k,k ′ Assumption) Let k,`,d ∈ N. We say that the MDDHd

k,` assumption holds if for all PPT ad-

versaries A, the following advantage function is negligible in λ.

Adv
MDDHd

k,`

A
(λ) := ∣∣Pr[A(G, [M]1, [MS]1) = 1]−Pr[A(G, [M]1, [U]1) = 1]

∣∣
where G := (p,G1,G2,GT ,e) ←G(1λ), M ←Z`×k

p , S ←Zk×d
p and U ←Z`×d

p .

The MDDH assumption on G2 can be defined in an analogous way. Escala et al. [10] showed that

k-Lin ⇒ MDDH1
k,k+1 ⇒ MDDHd

k,` ∀ k,d ≥ 1,`> k

with a tight security reduction. (In the setting where `≤ k, the MDDHd
k,` assumption holds unconditionally.)

The bilateral MDDH assumption is defined analogously with the advantage function:∣∣Pr[A(G, [M]1, [MS]1 , [M]2, [MS]1) = 2]−Pr[A(G, [M]1, [U]1 , [M]2, [U]2) = 1]
∣∣

4

2.2 Partially-Hiding Functional Encryption (PHFE)

We recall the notion of partially-hiding functional encryption [15,23,4,7] for the function class

(x,z) ∈Zn
p ×Zn′

p 7→ h(z) f (x)>

where h : Zn′
p → Zn′′

p is fixed and f ∈ FABP,n,n′′ is specified by the secret key. We will be primarily interested in the

settings h(z) = z and h(z1,z2) = z1 ⊗z2, which generalize FE for linear functions and quadratic functions respectively.

Syntax. A partially-hiding functional encryption scheme (PHFE) consists of four algorithms:

Setup(1λ,1n ,1n′
,h) : The setup algorithm gets as input the security parameter 1λ and function parameters 1n ,1n′

and

h :Zn′
p →Zn′′

p . It outputs the master public key mpk and the master secret key msk.

Enc(mpk,x,z) : The encryption algorithm gets as input mpk and message x,z ∈Zn
p ×Zn′

p . It outputs a ciphertext ct(x,z)

with x being public.

KeyGen(msk, f) : The key generation algorithm gets as input msk and a function f ∈FABP,n,n′′ . It outputs a secret key

sk f with f being public.

Dec((sk f , f), (ct(x,z),x) : The decryption algorithm gets as input sk f and ct(x,z) along with f and x. It outputs a value in

Zp .

Correctness. For all (x,z) ∈Zn
p ×Zn′

p and f ∈FABP,n,n′′ , we require

Pr

Dec((ct(x,z),x, (sk f , f)) = h(z) f (x)> :

(mpk,msk) ← Setup(1λ,1n ,1n′
,h)

sk f ←KeyGen(msk, f)

ct(x,z) ←Enc(mpk,x,z)

= 1.

Remark 1 (Relaxation of correctness.). Our scheme only achieves a relaxation of correctness where the decryption al-

gorithm takes an additional bound 1B (and runs in time polynomial in B) and outputs h(z) f (x)> if the value is bounded

by B . This limitation is also present in prior works on (IP)FE from DDH and bilinear groups [1,3,21,5], due to the re-

liance on brute-force discrete log to recover the answer “from the exponent”. We stress that the relaxation only refers

to functionality and does not affect security.

Security definition. We consider semi-adaptive [9] (strengthening of selective), simulation-based security, which stip-

ulates that there exists a randomized simulator (Setup∗,Enc∗, KeyGen∗) such that for every efficient stateful adversary

A, 
(mpk,msk) ← Setup(1λ,1n ,1n′

,h);

(x∗,z∗) ←A(mpk);

ct∗ ←Enc(mpk, (x∗,z∗);

output AKeyGen(msk,·)(mpk,ct∗)

≈c


(mpk,msk∗) ← Setup∗(1λ,1n ,1n′

,h);

(x∗,z∗) ←A(mpk);

ct∗ ←Enc∗(msk∗,x∗);

output AKeyGen∗(msk∗,x∗,·,·)(mpk,ct∗)


such that whenever A makes a query f to KeyGen, the simulator KeyGen∗ gets f along with h(z∗) f (x∗)>. We use

AdvFE
A (λ) to denote the advantage in distinguishing the real and ideal games.

3 Main Construction

In this section, we present our PHFE scheme for the class

(

public︷︸︸︷
x ,

private︷ ︸︸ ︷
(z1,z2)) ∈Zn

p ×Zn′
1+n′

2
p 7→ (z1 ⊗z2) f (x)>, f ∈FABP,n,n′

1n′
2

5

The scheme is SA-SIM-secure under the bilateral k-Lin assumption and the k ′-Lin assumption in G1,G2 (for the most

efficient concrete instantiation, we set k = 2,k ′ = 1). In our scheme, decryption actually computes [(z1 ⊗ z2) f (x)>]T ,

whereas the simulator only needs to get [(z1 ⊗z2) f (x)>]2. Note that FE for quadratic functions is a special case of our

PHFE (where f has the quadratic function hard-wired into it). We present a self-contained description of our quadratic

FE in Section A.

As a building block, we rely on a SA-SIM-secure PHFE scheme (Setup0,Enc0,KeyGen0,Dec0) for the class

(

public︷︸︸︷
x ,

private︷︸︸︷
z) ∈Zn

p ×Zk ′n′
1+kn′

2
p 7→ [zM f (x)>]T , f ∈FABP,n,n′

1n′
2

parameterized by a matrix [M]2 ∈ G(k ′n′
1+kn′

2)×n′
1n′

2
1 , where encryption gets [z]1 and the simulator gets [zM f (x)>]2. We

instantiate the building block in Section 4.

3.1 Our Scheme

– Setup(p,1n ,1n′
1 ,1n′

2): Run G= (G1,G2,GT ,e) ←G(p). Sample

A1 ←Z
k×n′

1
p ,A2 ←Z

k ′×n′
2

p , (mpk0,msk0) ← Setup0(p,1n ,1k ′n′
1+kn′

2 , [M]2)

where

M :=
(

A1 ⊗ In′
2

In′
1
⊗A2

)
∈Z(k ′n′

1+kn′
2)×n′

1n′
2

p

and output

mpk= (
G, [A1]1, [A1]2, [A2]2, mpk0

)
and msk=msk0

Observe that given mpk, we can compute [M]2.
– Enc(mpk,x, (z1,z2)): Sample

s1 ←Zk
p ,s0,s2 ←Zk ′

p , ct0 ←Enc0
(
mpk0,x, [s1 ⊗z2‖(s1A1 +z1︸ ︷︷ ︸

y1

)⊗s2]1
)

and output

ct= (
[s1A1 +z1︸ ︷︷ ︸

y1

]1, [s2A2 +z2︸ ︷︷ ︸
y2

]2, ct0
)

– KeyGen(msk, f): Output

sk f ←KeyGen0(msk0, f)

– Dec(sk f , f ,ct,x): Output

[(y1 ⊗y2) · f (x)>]T ·
(
Dec0(sk f , (f , [M]2),ct0,x)

)−1

Correctness. First, observe that we have

(s1A1 +z1︸ ︷︷ ︸
y1

)⊗ (s2A2 +z2︸ ︷︷ ︸
y2

) = (z1 ⊗z2) + s1A1 ⊗z2 + y1 ⊗s2A2

= (z1 ⊗z2) + (s1 ⊗z2) · (A1 ⊗ In′
2
) + (y1 ⊗s2) · (In′

1
⊗A2)

= (z1 ⊗z2) + (s1 ⊗z2‖y1 ⊗s2)M

(4)

where the second equality uses the mixed-product property of the tensor product. Multiplying both sides of (4) by

f (x)> and rearranging the terms yields:

(z1 ⊗z2) f (x)> = (y1 ⊗y2) f (x)>− (s1 ⊗z2‖y1 ⊗s2)M f (x)> (5)

Next, correctness of the underlying scheme tells us that

Dec0(sk f , (f , [M]2),ct0,x) = (s1 ⊗z2‖y1 ⊗s2)M f (x)>

Correctness then follows readily.

6

3.2 Simulator

We start by describing the simulator.

– Setup∗(p,1n ,1n′
1 ,1n′

2): Run G= (G1,G2,GT ,e) ←G(p). Sample

A1 ←Z
k×n′

1
p ,A2 ←Z

k ′×n′
2

p , (mpk∗0 ,msk∗0) ← Setup∗0 (p,1n ,1k ′n1+kn2)

and output

mpk∗ = (
G, [A1]1, [A1]2, [A2]2, mpk∗0

)
and msk∗ =msk∗0

– Enc∗(msk∗0 ,x∗): Sample

y1 ←Z
n′

1
p , y2 ←Z

n′
2

p , ct∗0 ←Enc∗0 (msk∗0 ,x∗)

and output

ct∗ = (
[y1]1, [y2]1, ct∗0

)
– KeyGen∗(msk∗,x∗, f , [µ]2): Output

sk f ←KeyGen∗0 (msk∗0 ,x∗, f , [(y1 ⊗y2) f (x∗)]T · [µ]−1
2)

3.3 Proof of Security

We proceed via a series of games and we use Advi to denote the advantage of A in Game i . Let x∗, (z∗1 ,z∗2) denote the

semi-adaptive challenge.

Game 0. Real game.

Game 1. Replace (Setup0,Enc0,KeyGen0) in Game0 with (Setup∗0 ,Enc∗0 ,KeyGen∗0) where

ct∗ = ([y1]1, [y2]2,Enc0(msk∗,x∗)), y1 = s1A1 +z∗1 ,y2 = s2A2 +z∗2
sk f ← KeyGen∗0 (msk∗0 ,x∗, f , [(s1 ⊗z∗2‖y1 ⊗s2)M f (x∗)>]2)

We have Game1 ≈c Game0, by security of the underlying PHFE scheme. The reduction samples

A1 ←Z
k×n′

1
p ,A2 ←Z

k ′×n′
2

p ,s1 ←Zk
p ,s0,s2 ←Zk ′

p ,

and upon receiving x∗, (z∗1 ,z∗2) from A, sends

x∗,s1 ⊗z∗2‖(s1A1 +z∗1)⊗s2

as the semi-adaptive challenge.

Game 2. Replace sk f in Game 1 with

sk f ←KeyGen∗0 (msk∗0 ,x∗, f , [(y1 ⊗y2) f (x∗)>]2 · [(z∗1 ⊗z∗2) f (x∗)>]−1
2)

Here, we have Game2 ≡Game1, thanks to (5), which tells us that

[(y1 ⊗y2) f (x∗)>]2 · [(z∗1 ⊗z∗2) f (x∗)>]−1
2 = [(s1 ⊗z∗2‖y1 ⊗s2)M f (x∗)>]2

7

Game 3. We replace [s1A1 +z∗1]1 in ct∗ in Game2 with [y1]1 where y1 ←Z
n′

1
q . Then, we have Game3 ≈c Game2 via the

bi-lateral k-Lin assumption. The assumption tells us that for all z∗1 ,

([A1]1, [A1]2, [s>A1 +z∗1]1, [s>A1 +z∗1]2) ≈c ([A1]1, [A1]2, [y1]1, [y1]2)

where s ←Zk
p ,y1 ←Z

n′
1

p . Note that this holds even if z∗1 is adaptively chosen after seeing [A1]1, [A1]2. The reduction then

samples

A2 ←Z
k ′×n′

2
p , s2 ←Zk ′

p , (mpk∗0 ,msk∗0) ← Setup∗0 (p,1n ,1k ′n1+kn2)

sets y2 := s2A2 +z∗2 , and uses the fact that in Games 2 and 3,

– it can compute mpk∗,ct∗ given [A1]1, [A1]2, [y1]1 respectively;

– it can sample sk f by using [y1]2,y2 to compute [y1 ⊗y2]2.

Game 4. We replace [s2A2 +z∗2]1 in ct∗ in Game3 with [y2]1 where y2 ←Z
n′

2
q . Then, we have Game4 ≈c Game3 via

the k ′-Lin assumption in G2. Here, we use the fact that we can sample sk f in Games 3 and 4 using y1, [y2]2 to compute

[y1 ⊗y2]2.

Finally, note that Game4 is exactly the output of the simulator.

4 Partially-Hiding FE for Linear Functions

In this section, we present our PHFE scheme for the class

(

public︷︸︸︷
x ,

private︷︸︸︷
z) 7→ [zM f (x)>]T

parameterized by a matrix [M]2, where encryption gets [z]1, and the simulator gets [zM f (x)>]2. In fact, we present

a scheme for a more general setting where the matrix [M]2 is specified by the function corresponding to the secret

key (that is, we allow a different [M]2 for each secret key, rather than the same matrix for all keys). The scheme is a

somewhat straight-forward modification of that in [2]; some care is needed as the decryption algorithm only gets [M]2

and not M. This scheme achieves simulation-based semi-adaptive security under k-Lin. Most of the text in this section

is copied verbatim from [2], with minor adaptations to account for M.

4.1 Partial Garbling Scheme

The partial garbling scheme [2,17,23] for z f (x)> with f ∈FABP,n,n′ is a randomized algorithm that on input f outputs

an affine function in x,z of the form:

p f ,x,z =
(

z− t‖t(L1(x>⊗ Im)+L0)
)

where L0 ∈ Zt×mn
p ,L1 ∈ Zt×m

p depends only on f ; t ← Zt
p is the random coin and t consists of the last n′ entries in t,

such that given (p f ,x,z, f ,x), we can recover z f (x)>, while learning nothing else about z.

Lemma 1 (partial garbling [2,17,23]). There exists four efficient algorithms (lgen,pgb, rec,pgb∗) with the following

properties:

– (syntax) on input f ∈FABP,n,n′ , lgen(f) outputs L0 ∈Zt×mn
p ,L1 ∈Zt×m

p , and

pgb(f ,x,z;t) = (
z− t ‖t(L1(x>⊗ Im)+L0)

)
pgb∗(f ,x,µ;t) = (−t ‖t(L1(x>⊗ Im)+L0)+µ ·e1

)
where t ∈Zt

p and t consists of the last n′ entries in t and m, t are linear in the size of f .

8

– (reconstruction) rec(f ,x) outputs d f ,x ∈Zn′+m
p such that for all f ,x,z,t,

p f ,x,zd>
f ,x = z f (x)>

where p f ,x,z = pgb(f ,x,z;t).

– (privacy) for all f ,x,z,

pgb(f ,x,z;t) ≈s pgb
∗(f ,x,z f (x)>;t)

where the randomness is over t ←Zt
p .

4.2 Construction

Our scheme Π is similar to Πone in [2], with the modifications marked using boxed terms. We rely on partial garbling

to compute pgb(f ,x, zM ;t) instead of pgb(f ,x,z;t) “in the exponent” over GT ; applying the reconstruction algorithm

(which requires knowing f ,x but not M) then returns [zM f (x)>]T .

– Setup(1λ,1n ,1n′
): Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A ←Zk×(k+1)
p and W ←Z(k+1)×n′

p , U ←Z(k+1)×kn
p , V ←Z(k+1)×k

p

and output

mpk= (
G, [A]1, [AW]1, [AU]1, [AV]1

)
and msk= (

W, U, V
)
.

– Enc(mpk, (x,z)): Sample s ←Zk
p and output

ctx,z =
(

[sA]1, [z+sAW]1, [sAU(x>⊗ Ik)+sAV]1
)

and x.

Note that it is sufficient for Enc to get [z]1.

– KeyGen(msk, (f , [M]2)): Run (L1,L0) ← lgen(f) where L1 ∈ Zt×mn
p ,L0 ∈ Zt×m

p (cf. Section 4.1). Sample T ← Z
(k+1)×t
p

and R ←Zk×m
p and output

sk f ,M = (
[T+ WM]2, [TL1 +U(In ⊗R)]2, [TL0 +VR]2, [R]2

)
and (f , [M]2).

where T refers to the matrix composed of the right most n′ columns of T.

– Dec((sk f ,M, (f , [M]2)), (ctx,z,x)): On input key:

sk f ,M = (
[K1]2, [K2]2, [K3]2, [R]2

)
and (f , [M]2)

and ciphertext:

ctx,z =
(

[c0]1, [c1]1, [c2]1
)

and x

the decryption works as follows:

1. compute

[p1]T = e([c1]1, [M]2) ·e([c0]1, [−K1]2) (6)

2. compute

[p2]T = e([c0]1, [K2(x>⊗ Im)+K3]2) ·e([−c2]1, [R]2) (7)

3. run d f ,x ← rec(f ,x) (cf. Section 4.1), compute

[D]T = [(p1‖p2)d>
f ,x]T (8)

9

Correctness. For ctx,z and sk f ,M, we have

p1 = zM−sAT (9)

p2 = sATL1(x>⊗ Im)+sATL0 (10)

(p1‖p2)d>
f ,x = zM f (x) (11)

Here (11) follows from the fact that

(p1‖p2) = pgb(f ,x,zM; (sAT)) and d f ,x = rec(f ,x)

and reconstruction of the partial garbling in (6); the remaining two equalities follow from:

(9) zM−sAT = (z+sAW) ·M−sA · (T+WM)

(10) sATL1(x>⊗ Im)+sATL0 = sA · ((TL1 +U(In ⊗R))(x>⊗ Im)+ (TL0 +VR)
)− (

sAU(x>⊗ Ik)+sAV
) ·R

in which we use the equality (In ⊗R)(x>⊗ Im) = (x>⊗ Ik)R. This readily proves the correctness.

Simulator. We describe the simulator. We defer the analysis to Section B.

– Setup∗(1λ,1n ,1n′
): Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A ←Z
(k+1)×k
p and W ←Z

(k+1)×n′
p , U ←Z

(k+1)×kn
p , V ←Z

(k+1)×k
p

c ←Zk+1
p w̃ ←Zn′

p , ṽ ←Zk
p

and output

mpk= (
G, [A>]1, [A>W]1, [A>U]1, [A>V]1

)
and msk∗ = (

W, U, V, w̃, ṽ, c,C⊥,A,a⊥)
where (A|c)>(C⊥|a⊥) = Ik+1. Here we assume that (A|c) has full rank, which happens with probability 1−1/p.

– Enc∗(msk∗,x∗): Output

ct∗ = (
[c>]1, [w̃]1, [ṽ]1

)
and x∗.

– KeyGen∗(msk∗,x∗, (f , [M]2), [µ]2): Run

(L1,L0) ← lgen(f) and ([p∗
1]2, [p∗

2]2) ← pgb∗(f ,x∗, [µ]2).

Sample T ←Z
(k+1)×t
p , û ←Znm

p and R ←Zk×m
p and output

sk∗f =
(

C⊥ · sk∗f [1]+a⊥ · sk∗f [2], [R]2
)

and f (12)

where

sk∗f [1] = (
[A>T+A>WM]2, [A>TL1 +A>U(In ⊗R)]2, [A>TL0 +A>VR]2

)
sk∗f [2] = (

[−(p∗
1)>+ w̃M]2, [û>]2, [(p∗

2)>− û>(x∗⊗ Im)+ ṽR]2
)

Here T refers to the matrix composed of the right most n′ columns of T. That is,

sk∗f =


[C⊥(A>T+A>WM) +a⊥(−(p∗

1)>+ w̃M)]2,

[C⊥(A>TL1 +A>U(In ⊗R)) +a⊥(û>)]2 , [R]2

[C⊥(A>TL0 +A>VR) +a⊥(
(p ∗

2)>− û>(x∗⊗ Im)+ ṽR
)
]2


10

References

1. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes for inner products. In J. Katz,

editor, PKC 2015, volume 9020 of LNCS, pages 733–751. Springer, Heidelberg, Mar. / Apr. 2015.

2. M. Abdalla, J. Gong, and H. Wee. Functional encryption for attribute-weighted sums from k-lin. In CRYPTO, 2020.

3. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from standard assumptions. In

M. Robshaw and J. Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 333–362. Springer, Heidelberg, Aug. 2016.

4. P. Ananth, A. Jain, H. Lin, C. Matt, and A. Sahai. Indistinguishability obfuscation without multilinear maps: New paradigms

via low degree weak pseudorandomness and security amplification. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019,

Part III, volume 11694 of LNCS, pages 284–332. Springer, Heidelberg, Aug. 2019.

5. C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional encryption for quadratic functions with applications to

predicate encryption. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 67–98. Springer,

Heidelberg, Aug. 2017.

6. D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with short ciphertexts and private keys. In S. Vaudenay,

editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 573–592. Springer, Heidelberg, May / June 2006.

7. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In Y. Ishai, editor, TCC 2011, volume 6597

of LNCS, pages 253–273. Springer, Heidelberg, Mar. 2011.

8. D. Boneh and B. Waters. A fully collusion resistant broadcast, trace, and revoke system. In A. Juels, R. N. Wright, and S. De

Capitani di Vimercati, editors, ACM CCS 2006, pages 211–220. ACM Press, Oct. / Nov. 2006.

9. J. Chen and H. Wee. Semi-adaptive attribute-based encryption and improved delegation for Boolean formula. In M. Abdalla

and R. D. Prisco, editors, SCN 14, volume 8642 of LNCS, pages 277–297. Springer, Heidelberg, Sept. 2014.

10. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework for Diffie-Hellman assumptions. In R. Canetti and

J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, Aug. 2013.

11. S. Garg, A. Kumarasubramanian, A. Sahai, and B. Waters. Building efficient fully collusion-resilient traitor tracing and revo-

cation schemes. In E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, editors, ACM CCS 2010, pages 121–130. ACM Press, Oct.

2010.

12. R. Gay. A new paradigm for public-key functional encryption for degree-2 polynomials. In A. Kiayias, M. Kohlweiss, P. Wallden,

and V. Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 95–120. Springer, Heidelberg, May 2020.

13. R. Gay, A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from simple-to-state hard problems: New assumptions,

new techniques, and simplification. Cryptology ePrint Archive, Report 2020/764, 2020.

14. J. Gong and H. Qian. Simple and efficient fe for quadratic functions. Cryptology ePrint Archive, Report 2020/1026, 2020.

15. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Predicate encryption for circuits from LWE. In R. Gennaro and M. J. B. Robshaw,

editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer, Heidelberg, Aug. 2015.

16. R. Goyal, V. Koppula, and B. Waters. New approaches to traitor tracing with embedded identities. In D. Hofheinz and A. Rosen,

editors, TCC 2019, Part II, volume 11892 of LNCS, pages 149–179. Springer, Heidelberg, Dec. 2019.

17. Y. Ishai and H. Wee. Partial garbling schemes and their applications. In J. Esparza, P. Fraigniaud, T. Husfeldt, and E. Koutsoupias,

editors, ICALP 2014, Part I, volume 8572 of LNCS, pages 650–662. Springer, Heidelberg, July 2014.

18. A. Jain, H. Lin, C. Matt, and A. Sahai. How to leverage hardness of constant-degree expanding polynomials overa R to build iO.

In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 251–281. Springer, Heidelberg, May

2019.

19. A. Jain, H. Lin, and A. Sahai. Simplifying constructions and assumptions for io. IACR Cryptology ePrint Archive, 2019:1252, 2019.

20. A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from well-founded assumptions. Cryptology ePrint Archive,

Report 2020/1003, 2020.

21. H. Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In J. Katz and H. Shacham, editors,

CRYPTO 2017, Part I, volume 10401 of LNCS, pages 599–629. Springer, Heidelberg, Aug. 2017.

22. T. Ryffel, D. Pointcheval, F. Bach, E. Dufour-Sans, and R. Gay. Partially encrypted deep learning using functional encryption.

In Advances in Neural Information Processing Systems 32: NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages

4519–4530, 2019.

23. H. Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part I,

volume 10677 of LNCS, pages 206–233. Springer, Heidelberg, Nov. 2017.

11

A Concrete Scheme for Quadratic Functions

We present a self-contained description of our functional encryption scheme for quadratic functions specified by

f ∈Zn1×n2
p where

z1,z2 7→ (z1 ⊗z2)f>

The scheme is SA-SIM-secure under the bilateral k-Lin assumption and the k ′-Lin assumption in G1,G2. For the most

efficient concrete instantiation (cf. Fig 1), we set k = 2,k ′ = 1.

– Setup(p,1n1 ,1n2): Run G= (G1,G2,GT ,e) ←G(p). Sample

A1 ←Z
k×n1
p ,A2 ←Z

k ′×n2
p ,A0 ←Zk ′×(k ′+1)

p ,W ←Z
(k ′+1)×(k ′n1+kn2)
p ,

and output

mpk= (
G, [A0]1, [A0W]1, [A1]1, [A1]2, [A2]2

)
and msk= W

– Enc(mpk, (z1,z2)): Sample s1 ←Zk
p ,s0,s2 ←Zk ′

p and output

ct= (
[s1A1 +z1︸ ︷︷ ︸

y1

]1, [s2A2 +z2︸ ︷︷ ︸
y2

]2, [s0A0︸︷︷︸
c0

]1, [s0A0W+ (s1 ⊗z2 | y1 ⊗s2)︸ ︷︷ ︸
y0

]1
) ∈Gn1

1 ×Gn2
2 ×Gk ′+1

1 ×Gk ′n1+kn2
1

– KeyGen(msk, f): Output

skf =
[

W ·
(

(A1 ⊗ In2)f>

(In1 ⊗A2)f>

)]
2
∈G(k ′+1)×1

2

– Dec(skf, f,ct): Parse skf = [k>]2 and output the discrete log of

[(y1 ⊗y2) · f>]T ·e([c0]1, [k>]2) ·e

(
[y0]1,

[(
(A1 ⊗ In2)f>

(In1 ⊗A2)f>

)]
2

)−1

B Security Proof for Section 4

We complete the security proof for the schemeΠ in Section 4.2.

Theorem 1. For all A, there exist B1 and B2 with Time(B1),Time(B2) ≈Time(A) such that

AdvΠA(λ) ≤Adv
MDDH1

k,k+1

B1
(λ)+Adv

MDDHn
k,mQ

B2
(λ)+1/p

where n is length of public input x∗ in the challenge, m is the parameter depending on size of function f and Q is the

number of key queries.

Note that this yields a tight security reduction to the k-Lin assumption.

Game sequence. We use (x∗,z∗) to denote the semi-adaptive challenge and for notational simplicity, assume that all

key queries f j share the same parameters t and m. We prove Theorem 1 via a series of games.

Game0: Real game.

Game1: Identical to Game0 except that ct∗ for (x∗,z∗) is given by

ct∗ = (
[c>]1, [(z∗)>+ c> W]1, [c> U((x∗)>⊗ Ik)+ c> V]1

)
where c ←Zk+1

p . We claim that Game0 ≈c Game1. This follows from MDDH1
k,k+1 assumption:

[A>]1, [s>A>]1 ≈c [A>]1, [c>]1 .

In the reduction, we sample W,U,V honestly and use them to simulate mpk and KeyGen(msk, ·) along with [A>]1;

the challenge ciphertext ct∗ is generated using the challenge term given above.

12

Game2: Identical to Game1 except that the j -th query f j to KeyGen(msk, ·) is answered with

sk f j =
(

C⊥ · sk f j [1]+a⊥ · sk f j [2], [R j]2
)

with

sk f j [1] = (
[A>T j +A>WM j]2, [A>T j L1, j +A>U(In ⊗R j)]2, [A>T j L0, j +A>ṼR j]2

)
sk f j [2] = (

[c>T j +c>WM j]2, [c>T j L1, j +c>U(In ⊗R j)]2, [c>T j L0, j +c>VR j]2
)

where (L1, j ,L0, j) ← lgen(f j), T j ← Z
(k+1)×t
p , R j ← Zk×m

p , c is the randomness in ct∗ and C⊥ is defined such that

(A|c)>(C⊥|a⊥) = Ik+1 (cf. Setup∗ in Section 4.2). By basic linear algebra, we have Game1 =Game2.

Game3: Identical to Game2 except that we replace Setup,Enc with Setup∗,Enc∗ where ct∗ is given by

ct∗ = (
[c>]1, [w̃>]1, [ṽ>]1

)
and replace KeyGen(msk, ·) with KeyGen∗3 (msk∗, ·), which works as KeyGen(msk, ·) in Game2 except that, for the

j -th query f j , we compute

sk f j [2] = (
[t̃>j − (z∗)>M j + w̃>M j]2 , [t̃>j L1, j + ũ> (In ⊗R j)]2, [t̃>j L0, j −ũ>(In ⊗R j)((x∗)>⊗ Im)+ ṽ>R j]2

)
where w̃, ṽ are given in msk∗ (output by Setup∗) and ũ ←Zkn

p ,t j ←Zt
p ,R j ←Zk×m

p . We claim thatGame2 ≈s Game3.

This follows from the following statement: for any full-rank (A|c), we have

(A>U,c>U, A>W,c>W, A>V,c>V, A>T j ,c>T j)

≡ (A>U, ũ> , A>W, w̃>− (z∗)> , A>V, ṽ>− ũ>(x∗⊗ Ik) , A>T j , t̃>j)

Game4: Identical to Game3 except that we replace KeyGen∗3 with KeyGen∗4 which works as KeyGen∗3 except that, for

the j -th query f j , we compute

sk f j [2] = (
[t̃>j − (z∗)>M j + w̃>M j]2, [t̃>j L1, j + û>

j]2, [t̃>j L0, j − û>
j ((x∗)>⊗ Im)+ ṽ>R j]2

)
where û j ← Znm

p and R j ← Zk×m
p . We claim that Game3 ≈c Game4. This follows from MDDHn

k,mQ assumption

which tells us that {
[ũ>(In ⊗R j)]2, [R j]2

}
j∈[Q] ≈c

{
[û>

j]2 , [R j]2
}

j∈[Q]

where Q is the number of key queries.

Game5: Identical to Game4 except that we replace KeyGen∗4 with KeyGen∗; this is the ideal game. We claim that

Game4 ≈s Game5. This follows from the privacy of partial garbling scheme in Section 4.1.

We use AdvxxA (λ) to denote the advantage of adversary A in Gamexx. We prove the following lemmas showing the

indistinguishability of adjacent games listed above.

Lemma 2 (Game0 ≈c Game1). For all A, there exists B1 with Time(B1) ≈Time(A) such that

|Adv1
A(λ)−Adv0

A(λ)| ≤Adv
MDDH1

k,k+1

B1
(λ).

Lemma 3 (Game2 ≈c Game3). For all A, we have Adv3
A(λ) ≈Adv2

A(λ).

The proof is the same as before, except we replace cW , z∗− w̃ in sk f j [2] with cWM j , z∗M j − w̃M j

13

Proof (of Lemma 3). Recall that the difference between the two games lies in ct∗ and sk f j [2]: instead of computing

ct∗ = (
[c>]1, [(z∗)>+c>W]1 , [c>U((x∗)>⊗ Ik)+c>V]1

)
sk f j [2] = (

[c>T j +c>WM j]2 , [c>T j L1, j + c>U (In ⊗R j)]2, [c>T j L0, j + c>VR j]2
)

in Game2, we compute

ct∗ = (
[c>]1, [w̃>]1, [ṽ>]1

)
sk f j [2] = (

[t̃>j − (z∗)>M j + w̃>M j]2 , [t̃>j L1, j + ũ> (In ⊗R j)]2, [t̃>j L0, j −ũ>(In ⊗R j)((x∗)>⊗ Im)+ ṽ>R j]2
)

in Game3.

This follows readily from the following statement: for all x∗,z∗,

(A>U, c>U , A>W, c>W , A>V, c>V , A>T j , c>T j)

≡ (A>U, ũ> , A>W, w̃>− (z∗)> , A>V, ṽ>− ũ>(x∗⊗ Ik) , A>T j , t̃>j)

where U,W,V,w̃, ṽ are sampled as in Setup∗ and ũ ←Zkn
p ,T j ←Z

(k+1)×t
p ,t j ←Zt

p . We clarify that in the semi-adaptive

security game, (x∗,z∗) are chosen after seeing A>U,A>W,A>V. Since the two distributions are identically distributed,

the distinguishing advantage remains 0 even for adaptive choices of x∗,z∗ via a random guessing argument.

Finally, note that A>U,A>W,A>V,A>T j are used to simulate mpk, sk f j [1], whereas the boxed/gray terms are used to

simulate sk f j [2]. This readily proves the lemma. ut

Lemma 4 (Game3 ≈c Game4). For all A, there exists B2 with Time(B2) ≈Time(A) such that

|Adv4
A(λ)−Adv3

A(λ)| ≤Adv
MDDHn

k,mQ

B2
(λ)

where n is length of public input x in the challenge, m is the maximum size of function f and Q is the number of key

queries.

Lemma 5 (Game4 ≈s Game5). For all A, we have Adv5
A(λ) ≈Adv4

A(λ).

The proof is the same as before except we replace z∗ in sk f j [2],pgb,pgb∗ with z∗M j and w̃ in sk f j [2] with w̃M j .

Proof. Recall that the difference between the two games lies in sk f j [2]: instead of computing

sk f j [2] = (
[t̃>j − (z∗)>M j + w̃M j]2, [t̃>j L1, j + û>

j]2, [t̃>j L0, j − û>(x∗⊗ Im) + ṽ>R]2
)

in KeyGen∗4 (i.e., Game4), we compute

sk f j [2] = (
[t̃>j + w̃M j]2, [û>

j]2, [t̃>j (L1, j (x∗⊗ Im)+L0, j)+e1 ·z∗M j f j (x∗)>− û>
j (x∗⊗ Im) + ṽ>R]2

)
in KeyGen∗ (i.e., Game5). By change of variable û>

j 7→ û>
j − t̃>j L1, j for all j ∈ [Q] in Game4, we can rewrite in the form:

sk f j [2] = (
[−p>

j ,1 + w̃M j]2, [û>
j]2, [p>

j ,2 − û>
j (x∗⊗ Im)+ ṽ>R]2

)
where

(p j ,1‖p j ,2) ←
 pgb(f j ,x∗,z∗M j ; t̃ j) in Game4

pgb∗(f j ,x∗,z∗M j f j (x∗)>; t̃ j) in Game5

Then the lemma immediately follows from the privacy of underlying partial garbling scheme which means pgb(f j ,x∗,z∗M j) ≈s

pgb∗(f j ,x∗,z∗M j f j (x∗)>). ut

14

	Functional Encryption for Quadratic Functions from k-Lin, Revisited

