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Abstract. The HFEv- signature scheme is a twenty year old multivariate
public key signature scheme. It uses the Minus and the Vinegar modifier
on the original HFE scheme. An instance of the HFEv- signature scheme
called GeMSS is one of the alternative candidates for signature schemes
in the third round of the NIST Post Quantum Crypto (PQC) Standard-
ization Project. In this paper, we propose a new key recovery attack on
the HFEv- signature scheme. We show that the Minus modification does
not enhance the security of cryptosystems of the HFE family, while the
Vinegar modification increases the complexity of our attack only by a
polynomial factor. By doing so, we show that the proposed parameters
of the GeMSS scheme are not as secure as claimed. Our attack shows
that it is very difficult to build a secure and efficient signature scheme
on the basis of HFEv-.
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1 Introduction

Crryptographic techniques such as encryption and digital signatures are an
indispensable part of modern communication systems. However, the currently
used schemes RSA and ECDSA become insecure as soon as large quantum
computers arrive. Due to recent progress in the development of such computers,
there is an urgent need for alternatives to these classical schemes which are
resistant against attacks with quantum computers. These are known as post
quantum cryptosystems [5].

One of the main candidates for such schemes are multivariate public key
cryptosystems [14]. Especially in the area of digital signatures, there exist many
promising multivariate schemes. In fact, the multivariate signature scheme Rainbow
is among the three signature schemes in the third round of the NIST standardization
process of post quantum cryptosystems [7]. Another multivariate signature scheme,
GeMMS, is one of the alternative candidates. GeMMS is a special instance of
the well known HFEv- signature scheme, which was first proposed by Patarin
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et al. in [24]. The principle idea of HFEv- is to combine the Minus and the
Vinegar modifications with the HFE cryptosystem of [23]. Since the resulting
multivariate quadratic system contains more variables than equations, HFEv-
can only be used for digital signatures.

There exist many attack methods on HFEv-, such as the direct attack [8][25],
the distinguishing attack [12], the differential attack [6], and the MinRank attack
[12]. The most studied attack against HFEv- is the MinRank attack, which
was first proposed by Kipnis and Shamir [21]. Later, many variants of this
technique have been proposed to increase its efficiency [3,1]. The complexity
of the MinRank attack on HFEv- with minors modeling [3] is given as

n+d+a+v+1\"
o )
d+a+v+1
where n is the degree of the field extension, d = [log,(D)], D is the degree bound
on the HFE central map polynomial, a is the number of Minus equations, v is
the number of Vinegar variables and 2 < w < 3 is the linear algebra constant.

In this paper, we present an improved key recovery attack on the HFEv-
signature scheme. The complexity of our new attack on HFEv- with minors

modeling is
n+d+ov+1\"
o))

This implies that the Minus modification does not enhance the security of HFE
type cryptosystems, while the Vinegar modification increases the complexity of
our attack only by a polynomial factor. We use our attack to show that the
parameters of GeMSS which were submitted to the NIST Post Quantum Crypto
Standardization Project are not as secure as claimed.

2 The HFEv- Signature Scheme

Let N be the set of positive integers, n,v, D,a € N, ¢ be a prime number, and F,
be a finite field with ¢ elements. Let u(X) € F,[X] be an irreducible polynomial
of degree n. Define the field Fyn = Fy[X]/u(X). It is a degree n extension field
of Fy. Let ¢ : Fyn — Fy be an isomorphism between F,» and Fy defined by

¢(a/0 + alX + -+ an—lxn_l) - (a0a ai,--- 70'1'7,—1)-

Private Key Generation. Randomly generate the central map of HFEv- as

‘F(Xamlf" ,.’Ev): Z ainQZ+qJ+ Z Bi(xlv"' 75Uv)qu+’Y(5U1a"' 7371))7
i,j €N i€N
¢+q¢ <D ¢ <D
where «;; € Fyn, ;i : Fj — Fyn are linear maps and v : Fj — Fgn is a
quadratic map in the Vinegar variables x1, za, - - - , z,. The central map of HFEv-
can be viewed as a polynomial in the quotient ring Fyn[X, 21, -, 2,]/(2z] —
ry,--- 28 —x,). Randomly generate two affine transformations 7 : Fy — Fy—¢

and S : Fp+ — FHY of maximal rank. Then the private key is (7, F,S).
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Public Key Generation. Let ¢ : ]Fg”"’ — Fygn x F} be given as ¢ = ¢t X id,,
where ¢ : Fyn — Fp is the isomorphism defined above and id, is the identity map

over . From the special structure of F, we know that F = ¢oFor): ]Fg*” — Fy
is a quadratic multivariate map. The public key map is

P=TodoFopoS: FItv - FI

Specifically, the public key is a set of multivariate quadratic polynomials

{p(l)(xl’ e 7xn+v)7 U 7p(n_a)('r1a "'a$n+v)}7
where
A n—+uv L
p(k)(l'la te ,$n+v) = Z agj)xiacj + Z bg )xi + c(k)7
1<i<j<n+v i=1

a® b(-k),c(k) eF,(k=1,---,n—a).

17 071

Signature Generation. Let y = (y1,Y2,"** ,Yn—a) € Fy; ™% be a message to be
signed. The process of signature generation is as follows:

1. Compute a preimage ¥ € Fy; of y under the affine transformation 7 : Fy —
[y~ and lift it to the extension field, obtaining Y € Fgn.

2. Choose random values for the Vinegar variables (v1,---,2,) € F; and
substitute them into the central map F to obtain a new map Fy (X) :
Fyn — Fyn.

3. Find a solution to the equation Fy(X) = Y using Berlekamps algorithm.
If the equation has no solution, go to step 2, and randomly choose another
vector (z1,:-+,ay) € Fy until we can find a solution. Let Y be one of the

solutions and set gb(f/) = (Y1, - ,Un). Append the vinegar variables of step
2 to it, obtaining ¥ = (Y1, , ¥n, 1, ,T) € FyHY.
4. Compute z = S~!(y). Then z € F}'*" is the signature of y .

Signature Verification. To verify that z € F**" is indeed a valid signature of
the document y € F"~¢, the recipient computes P(z). If P(z) =y, the recipient
accepts the signature, otherwise he rejects it.

2.1 Previous Attacks on HFE

Historically, the most efficient attacks against signature schemes of the HFE
type are the direct and the MinRank attack. With regard to the direct attack,
it was discovered that the public systems of HFE and its variants can be solved
much more efficiently than random systems. This phenomenon was analyzed in a
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number of papers [10, 11, 15]. The authors of these papers found that the degree
of regularity of a public HFEv- system is bounded from above by

(g=V(dtvta-l) 4 o if ¢ is even and d + a is odd,
(‘771)(5217““) +2 otherwise.

Regarding attacks of the MinRank type, many researchers considered the so
called min-Q-rank of the HFE system, which can be seen as the rank of the
quadratic form P lifted to the extension field Fy». Similar to the degree of
regularity, the min-g-rank of the HFE system is bounded by the HFE parameters.
However, in our attack, we don’t consider the min-g-rank of the HFE system,
but perform a MinRank attack over the base field F,. While it is clear that the
complexity of a direct attack on a system of the HFE type is exponential in d,
a and v [9], our attack shows that this is not the case for MinRank.

3 Preliminaries

For simplification, in the following sections of this paper, we assume that 7 and
S are linear transformations and ¢ is an odd prime. Our attack method can be
easily extended to the case of affine maps 7 and S and even characteristic.

3.1 Equivalent Keys

An important notion in this paper is that of equivalent keys. For a multivariate
public key cryptosystem, the concept of equivalent keys is defined as follows.

Definition 1. Let ((T,F,S),P) be a key pair of a multivariate public key crypto-
system. A tuple (T, F',S’) is called an equivalent private key if and only if
P=ToFoS=T oF oS8
and F' is a valid central map of the cryptosystem, i.e. F' has the same algebraic
structure as F.
We have

Theorem 1 (Theorem 4.13 in [26]). Let P be a public key of the HFEv-
scheme over Fy. Let v be the number of Vinegar variables, a be the number of
Minus equation and n be the degree of the field extension. Then there exist

v—1 n—1
ng* (gt =102 [ -4 ] (")
1=0 i=n—a—1

equivalent private keys for the public key P.

Given an HFEv- public key, our attack finds one of the equivalent private
keys.
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3.2 The MinRank Problem

The search version of the MinRank problem is defined as follows.

Definition 2 (MinRank problem). Given a positive number r and n, matrices
My, My, ..., M, withm rows and n columns over a field F, find a nonzero vector

ng

(1,29, y&n,) € Fye, such that the linear combination M = > x;M; has rank
i=1

at most r.

Remark 1. Without loss of generality, we assume that m > n in Definition 2.

Ny
In fact, if m < n, we use the linear combination M* = 3 x; M} instead of M,
i=1
where t means the transpose of a matrix. Since the rank of M? is the same as
that of M, we only need to find a nonzero vector (z1, 2, ,Zn,) € F"=, such

that M? has rank at most r.

The MinRank problem is an NP-complete problem [4]. The main methods
for solving the MinRank problem are linear algebra search [19], Kipnis-Shamir
modeling [21], minors modeling [18] and support minors modeling [1].

Support minors modeling is more efficient than the other models in practical
cryptanalysis. The main idea of this modeling is that the low rank matrix M can
be written as a product M = AC, where A is an m X r matrix and C isan r xn
matrix. Define m matrices which have the form C; = <B> (i=12--,m),
where r; is the i-th row of M. Since r; is in the space spanned by the rows of C,
the rank of C; (i = 1,2, -+ ,m) is at most 7. This implies that all (r+1) x (r+1)
minors of 6’; (:1=1,2,--- ,m) are 0. We view the r x r minors of the matrix C' as
new variables which are called kernel variables and are denoted as y1,y2, -+, Yn,,

where n, = (). The (r+1) x (r+ 1) minors of C; are therefore given as bilinear
equations in the variables x1,...,2,, and yi,...,ys,. Altogether, we obtain
m(ril) of these bilinear equations. The total number of monomials of degree 2
in these bilinear equations is at most n, (:f) If

n n
m > Ny -1,
(r—i— 1) (r)

holds, we can solve this system of bilinear equations by linearization.

In practical applications, we can assume that C has the form (I, C), where
I, is an r X r identity matrix and Cy is an r X (n — r) matrix. Moreover, instead
of using all r x 7 minors of the matrix C' as variables, we choose a positive integer

n' < n, such that
n' n'
> n, 1 1
o) = () 2

holds. If the MinRank problem has only one solution, the resulting linear system
is sparse, and we can solve it using the Wiedemann algorithm. The complexity
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of solving this linear system is

o ((nw(z/))Q-nm(r—i—l))

field operations. If the MinRank problem has no unique solution and F is a small
finite field, we can guess the values of some variables such that the resulting linear
system has a unique solution, and then solve it using the Wiedemann algorithm.
Otherwise, we solve the bilinear system using a Groébner basis like algorithm
such as F4/F5 [16].

4 Key Recovery for HFEv-

In this section we describe our key recovery attack on the HFEv- signature
scheme. Let ¢,n,v, D, a be the parameters of HFEv-. Denote d = [log,(D)]. In
this paper, we assume that 0 <a <n —2d — 1.

4.1 Matrix Representation of HFEv- Keys

Similar to [3], we can represent the HFEv- signature scheme in matrix form.

Proposition 1. Let

@00 Qo1 QQn-—1 Yoo Yor o You—1
Q10 arp o 011 Y10 Yiro o Yiu-1
0 _ Qpn—1,0 An—1,1 " Ap—1,n—1 Yn—1,0 Tn—1,1 **° Fn—1,0—1
Boo  Boi - Bom—1 o0 o1 - Sow—1
B1o Bin - 51,n71 010 SPREREE 51,1;71
61}—1,0 Bv—l,l e 51}—1,n—1 61}—1,0 61}—1,1 e 51}—1,1}—1

be an (n +v) x (n 4+ v) matriz over the field Fpn and

n—1 n—1 t

F(X7x17"'axv):(X7Xq7"'an 7x17"'7xU)F*O(X7an"'an ,l‘l,"',.ﬁv)
be a polynomial in the quotient ring Fon [ X, x1,- -+ , 2]/ (2] — 1, , 28 — x,,).
Then we have for all0 < k <n

n—1

Fqk(Xaxla"' 7xv) - (Xana"' 7Xq y L1y 7xv)F*k(XvXq"" ann_ y L1y axv)tv

where F*™* € M (i0)x (ntv)(Fqn), the (i,§)-th entry of F** is agik,j_k for all
k
0 <i,5,k < n, the (i,n + j)-th entry of F** is 'yj(.’_k,’i for all 0 < j,k < n,
0<i<w, the (n+1,j)-th entry of F** is ﬂZ?_k for all 0 <i<v,0<j,k<n,
k
and the (n+1i,n + j)-th entry is (5% forall0<i<v,0<j<0v,0<k<n.
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Proof. If k =0, we have obviously Fa (X, 1, coyxy) = F(X, 21, ,x,). Now

we consider the case of 1 < k < n. Since x =x; for all 1 <7 < v, we have
_ _ v—1n— v—1lv—1
Fqk Z:O Z:O q . X4 +k+q7+k Z ZO( + 7]1 ).’EquH— + z:o 205 xlm]
=0 j= 1=0 j= i J
n—1+kn—1+k qk il g v—1n—1+k q v—1v—1
= > X S KX Z > (B 45— kJF’YJ ,“)xlX DI 33%
i=k Jj=k =0 j=k =0 j=0
Then it can be divided as follows
% n—1 [n—1+k qk + n—1+k [n—1+k qk i+ J
F= 3 Z Qg X! 7 )+ ) DORCHITIS
i=k j i=n =k
v— 1n 1 q v—1n—1+4+k v—1v—1
+ > Z(ﬁj k+7] kz)xlX +Z > (6 i,j— kJF% k,‘z)x'LXq +ZZ§ Ll
=0 j=k =0 j=n =0 j=0
That is
% n—1 [n—1 n—1+k k i
F4 :E Za e Xq+q + E a 7qu+q
i=k j ’ j=n
n—1+k n—1 iy n—1+k iy
+ X Z%-k; WXOT 4 Z az—k_] R X0
i=n =k j=n
v—1n—1 v—1n—1+k v—1lv—1
+ 2 Z( ;ﬁvj m)w@X Y Y (6 k+vj ;“)%X +ZZ5 T
i=0 j=k =0 j=n =0 j=0

Thus we have

n—1 [n—1 k—1

k k i, g k i, _j4n
q° _ q q'+q q q +q
I DS ¢ + 2 g pnX
i=k \ j=Fk j=0
n—1 K ) . k=1 & ) )
q qz+n+qj q q’t+n+q3+”
+ E > kX + Z Xtk X
i=0 \ j=k j=0
v—1n—1 v—1k—1 k . v—1lov—1 qk
* Z0 Z( (O k+’Y] ’”)%Xq + ZO Z( b,j— k+n+73 k+n, DX+ <ZO Zo(sij
i=0 j=k =0 j=0 =0 j=

Since X" = X we obtain by reducing the index of coefficients modulo n

X n—1 [n—1
a* a'+q’ q" a'+q’
FT = Z Z az—k] k:X + Z az—k] kX
i=k 7=0

k=1 [n—1 k ) . — P ) )
q q'+q’ q '+’
+ 2| X al X + Z g j- kX
=0 \ j=k j=0
v—1n—1 v—1k—1 v—1lv—1

.
+ZOZ( gk+7j kz)xlX +Z%)Z( ]k+% kz)szq—FZOZO5 T
1=0 j=k =0 j=0 =0 j

Grouping the sums back together, we get

% v—1lv—1

b —1n—
F = E _X:Oagfk,j X(I-‘rq Z Z( 15— k:+’yj kz)‘rZX + Z 26 Lilj
i=0 j=0
z,)F

i=0 j=0
= (X, X4, X1 KX XD X 1)t

n—1

’
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where F** € M (o) x (ntv) (Fgn), the (i, j)-th entry of F*k g O/i]ik,j—k for all
k
0 <14,7j,k < n,the (i, n+7)-th entry of F** is 'y;’_kﬂ. forall0 < j, k <n,0 <i<w,
the (n + i, j)-th entry of F** is 7., for all 0 < i < v,0 < j,k < n, and the
k
(n +1i,n + j)-th entry is 5% foral0<i<v,0<j<0v,0<k<n. O

Proposition 2 (Proposition 2.1 in [3]). Let (01,02, -+ ,0,) € F}. be a vector
basis of Fqn over F, and

0, 07 - - gg"fl
wo| e
O, 09 - 69"

be the matrix whose columns are the Frobenius powers of the basis elements. We
can express the morphism ¢ : Fgn — F as

Vs (V,V VM
Its inverse ¢~ ' : Fy — Fgn is given as
(’U17’U2a"' ,’Un) = Vv7

where V is the first component of the vector (vy,va,- -+ ,v,) M. More generally,

we have
-1

(Ula’UQa"'7vn)'M:(‘/;an"'7an )
In this paper, we choose

1 1 1
n—1

9 g1 ... g4
M:

en.—l (en—l)q (9"-1)(1

where 0 is a generator of Fy». Define

~ M 0
M = ( 0 Iv> € M(n+v)><(n+v)<}Fq”)a (3)

where I, is the v X v identity matrix. According to Proposition 1, we have

— n—1
(?]1,’1)27"' yUny L1, ax’u)'M: (qu7 7Vq sy L1y 7$U)7

where v;,z; €Fg, 1 <i<n,1<j<vand V € Fpn.
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Proposition 3. Let p; € Fylx1, 22, -, Tntyo] be the public key polynomials of
HFFEv- and P; be the matrix representing the quadratic form of p;, 0 < i <n—a.
Let the central map of HFEv- be

n—1 n—1

F:(Xan7"'an 7x15"'a‘rU)F*O(X7an"'7Xq a‘rla"'7xv)t7

where F** € My yv)x (nto)(Fqn). Let S € Mnpp)x (nto)(Fq) and T € Mo,y (n—a)(Fq)
be the matrices representing the linear parts of S and T . Then

(‘]’\2—171Sflfyo(Sfl)t(j\zfl)t7 . ,M71571Pn7a71(Sil)t(Mil)t)
— (F*O,' . 7}71>5<7L—1) M—lT (4)
Proof. Similar to Lemma 2 in [3].

Denote U = M1 € M1 )x(nto) (Fqn) and W = M™IT € Moy (n—a)(Fgn),
then Equation (4) can be rewritten as

(URU!,- - ,UP,_1U") = (F*,- .- \F*™ 1) W. (5)

4.2 Recovering an Equivalent Linear Transformation &

In this subsection, we will present our technique of finding an equivalent map S.

Proposition 4. Let F*0 ... [ F*"~1 and W = [w;;] be the matrices of Equation
(5) and a; be the first row of matriz F** (i = 0,1,--- ,n—1). Let Q be the matriz
ag
given as Q = Wt : . Then the rank of Q) is at most d = [log,(D)].
an—1

Proof. We have

wi1ag + w121 + -+ + Wprap—1 ap
= Wi2d0 + Wa2d; + -+ + Wp2dn—1 —Wt. a
W1,n—ad0 + W2 ,n—adl + -+ Wn,n—aln—1 anp—1
Due to the construction of the matrices F*¢(i = 0,1,--- ,n — 1), we have
a
a0 4
1
= O 3
Aa
anp—1

where A4; is an 1 x (n + v) matrix and A, is a (d — 1) X (n 4+ v) matrix. That is,
this matrix has only d non-zero rows, therefore its rank is at most d. Therefore
the rank of () is at most d. [



10 Chengdong Tao , Albrecht Petzoldt , Jintai Ding

Theorem 2. Let Py, Py, , Py_q—1 and U be the matrices of Equation (5), the
vectoru = (Ug, U1, , Unty—1) be the first row of U and b; = (ug, u1, -+ , Untv—1)Fs,
(i =0,1,---,n—a). Define Z € M(,_a)x(ntv)(Fgn) as the matriz whose row
vectors are the b;. Then the rank of Z is at most d.

Proof. From Equation (5) and Proposition 4, we know that the rank of ZU? is
not more than d. Thus the rank of Z is at most d. O

Proposition 5. Let A = [a;j] be an nxm matriz over Fy, B= M~1A = [b;;] €
MnXm(Fq”>~ Then

bij =b{_y , forallij0<i<n0<j<m.

That is, each row is obtained from the previous one using a Frobenius application.
The whole matriz B can be defined with any of its rows.

Proof. Let (e1,€2,- - ,&pn) be a dual basis of (61,02, - ,6,) of Fgn over Fg, then
we have

61 5‘2 PR En
q q .. ed
= €1 & En
—1 n—1 —1
q" q L q"
51 52 En

n—1

Thus b;; = kZ:O akjszlﬂ for all 4,5,0 <4 <n,0 < j < m. Since aj; = a;; and the
linearity of Frobenius, we have

n—1

n—1 i1 q n—1 1 )
q _ U _ q (-4 Vg _ 4 _ 7
bi_1, = (Z a’fjek+1> = Z akj(5k+1) = Z AkjEhq1 = bij
k=0 k=0 k=0
forall ,5,0 <i<n,0<j<m. O

__ Proposition 5 implies that we only need to find one row of matrix U =
M~1S~1 to recover the first n rows of U. Let ug, u1,- - ,Un4p_1 be the first row
of U. We assume that ug,u1, - ,Upty—1 are unknowns. Since we need to find
only one of the equivalent HFEv- private keys, we can fix ug = 1 [20]. Since the
rank of Z is at most d, we can find the u; (i = 1,...,n+v) by soving a MinRank
Problem. This can be done by using any of the methods presented in Section 3.
Our method to recover S can be summarized as shown in Algorithm 1.

4.3 Recovering Equivalent Maps F and T

Proposition 6. Let (q,n,v,D,a) be the parameters of HFEv-, P; (0 < i <
n—a),M, UW,F*(0 < j < n) be the matrices of Equation (5). We set d =
[logy D). Assume that U is known, then F*° can be recovered by solving a linear
system with n —a — 1 variables, (d+a) - (n+v) additional linear equations in at

most d + v variables, and (”;rl) univariate polynomial equations of degree q®.
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Algorithm 1 Recovering an Equivalent Linear Transformation S

Input: HFEv- parameters (¢, n,v, D, a), matrices (FPo, - - , Pn—a—1) representing the

quadratic forms of the public key polynomials, matrix M (see Equation (3)).
Output: Equivalent linear transformation S.

1. Set b; = (Lu1, -+ yUntv—1)Pi, 0 < i < m — a, where (u1, -+ ,Untv—1) are
unknowns.

2. Construct a matrix Z whose row vectors are b;, 0 < i < n — a. According to
Theorem 2, the rank of Z is at most d.

3. Solve the MinRank Problem with matrix Z using one of the methods described

in Section 3. Denote the solution by wo, w1, , Untv—1-
uo Uy ot Untov—1
q q q
Ug Uy 0 Upgya

1 —1 n—1

4. Set U = [ 42"

n . .
ud ui+v71 , where 7,0 < i <v,0<j<n+wvare
T00 To1 o Tontv—1
Tv—1,0 T01 *°° TO;n+v—1

randomly chosen from the finite field I, such that U is invertible.
5. Compute S = (MU)™*.
6. Return S’

Proof. From Equation (5) we know that W = M~!'T € M,y (n_q)(Fgn). Let
%1% .

W = (W;)’ where W7 € Max(n—a) (]Fqn) and Wy € M(n—a)x(n—a) (Fqn). Since

M is invertible and the entries of T are randomly chosen from F, , the probability

n—a

of W5 being singular is 1 — [] (1 — qi) According to Theorem 1, there are at
i=1
least ¢" equivalent maps T', thus the probability that all matrices W, associated

n—a

to the equivalent maps T are singular is approximately (1 — [] (1 — %))‘1
i=1

Therefore we find an invertible matrix Ws with overwhelming probability. We

multiply both sides of Equation (5) by W, ', obtaining

-1
(UPOUt,"' 7UP7L—a—1Ut) W2—1 —_ (F*O,"' ,F*nil) <M/IIW2 > , (6)
where I, is the (n — a) x (n — a) identity matrix. Let (W, Wy, , Wp—q—1)
be the first column of Wy ' and (lg,l1,- -+ ,la—1,1,0,---,0) be the first column

-1
of (VV}WQ >, then Equation (6) yields

n—a—1 a—1
Y BUPRU =Y LF 4+ Fr

k=0 =0
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We multiply both sides by l~0_1, obtaining

n—a—1 a—1
Z ’lvo—llfukaPkUt — 0 _|_Z’lvo—1’lviF*i _'_’lvo—lF*a'
k=0 i=1

Denoting wy, = flvo_lzﬂk, (k=0,1,--- ,n—a—1),and [; = l~all~i, (i=1,2,--- ,a—1),
lo = 1" yields

n—a—1 a
> wiURU' =Y LF* + F*. (7)
k=0 i=1
. F, 0 F!
Note that 3 LF*'+F* = 0 0 0 | € Muiu)x(ntv)(Fgn), where Fg = [f])]
i=1 P#tOAF/
1 2

is a (d+ a) x (d + a) diagonal band symmetric matrix of width 2d — 1, that is

1 = 0,if [i—j| > d, F E.M(d+a)XU(IF'qn), Flt' € My (d+a)(Fgn) is the transpose
of F| , F5 € Myxy(Fyn) is a symmetric matrix .
Assume that wg, w1, -+ ,wWp_q—1 are unknowns. Due to the equivalence of

HFEv- private keys [26], we can fix wg = 1. Since U is known and the special

structure of the matrix > [; F** + F*0  we obtain from Equation (7) d(n—a—d)
i=1

linear equations in the n —a — 1 variables Wy, Wy, Wy_q_1. Since 0 < a <
n —2d — 1, we have d(n — a — d) > n — a — 1. Therefore by solving these
linear equations, we get a solution (w{,w],w}, - ,wh_,_1) with w{ = 1. Thus

Equation (7) can be rewritten as

n—a—1 a
> wURU'=> LF* + F*. (8)
k=0 i=1

Now we will find Iy, ,l, and F*? from Equation (8). We know that F*0
has the form

Fo 0 Fy

F=1000

F! 0 Fy

)

where Fy = [o;;] € Maxa(Fgn) is a symmetric matrix, Fi = [v;;] € Maxy(Fgn),
F} € Myxa(Fyn) is the transpose of Fy and Fy = [§;j] € Myxy(Fyn) is a
symmetric matrix . According to Proposition 1 we can represent F** (1 < k <
n — 1) by the entries of F*°.

Assume that [y, - ,l,, ;0 <@ < j < d), v;(0 <i<d0<j <o),
90;;(0 < i < j <wv) are unknowns. We can recover F*0 as follows.

— From the first row of matrix equation (8), we can find a linear system in the
variables a; (0 < j < d) and ~;(0 < j < v) of the form

agot+boo =0, ,a0,4-1+00,4-1 = 0,70+00,a =0, -+ ,70,0—1+00,d4v—1 = 0.

Thus we can obtain the first row of F*0 by solving this linear system.
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— Once the first row of F*0 is known, we can obtain from the second row of
matrix equation (8) a linear system in the variables {1 and a1;(1 < j < d)
and 71;(0 < j < v). By solving this linear system we can obtain the second
row of F*0 and ;.

— Similarly, if a < d, we can obtain I, --- ,l,, Fy and F} using the first d rows
of matrix equation (8). If @ > d, we can obtain ly,--- , 14, Fy and F; by using
the first d rows of matrix equation (8) and lg1%(1 < k < a — d) by using the
(d+ k)-th row of matrix equation (8). Thus we obtain Iy, - ,l,, Fo and Fj.

— Once ly, - ,l,4, Fy and F; are known, we get from the last v rows of matrix
equation (8), (v;l) univariate polynomial equations of the form
d
qk
Z Aijkéij + Nijg = 07
k=0

where Ajji,mi5 € Fgn, 0 <4 < § < v. Solving these equations we obtain d;;
and then recover F*0.
— Once F* is known, we can obtain an equivalent central map as

F' (X, x1,...,2,)
= (X7Xq7"' ann717x17"' axv)F*o(X7Xqu"' 7an7 sy L1y 7x’u)t'

O

Proposition 7. Let (q,n,v,D,a) be the parameters of HFEv-, P; (0 < i <
n—a),S,T,M, F*J (0 < j < n) be the matrices of equation (4). Assume that
S,Pi(0 <i<n—a),M,F*(0<j<mn) are known, then T can be recovered by
solving n — a linear systems in n variables.

Proof. Equation (4) can be rewritten as
(Po, ++, Poea) = (SMF*M'S", -+ [ SMF*™ "M"'S") M~'T. (9)

Let (t1k,tak, - ,tnk) be the entries of the k-th (k = 1,2,--- ,n — a) column
of T. Since S,P; (0 < i < n—a),M,F*(0 < j < n) are known, we obtain
n(n+1)

from Equation (9) a linear system with —=— equations in the n variables
(t1k,tok, - ,tng) for all (K = 1,2,--- ,n — a). We can recover T by solving
(n — a) of these linear systems. O

The process of recovering the maps F and 7 of our equivalent HFEv- key is
summarized in Algorithm 2 .
4.4 Complexity of Attack

The most complex step of our attack is step 3 of Algorithm 1. That is the step
of solving the MinRank problem on the matrix Z. Z has rank at most d. We can
solve it by using minors modeling or support minors modeling.
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Algorithm 2 Recovering Equivalent Maps F and T

Input:

HFEv- parameters (q,n,v,D,a), Frobenius matrix M (see (2)), matrices

(Po, -+, Ph_q—1) representing the quadratic forms of the public key polynomials,

recovered linear map S.
Output: Equivalent private maps F' and T'.

1.

Let wo, w1, ,wp—q—1 be unknowns and wy = 1. Get a linear system with
d(n — d — a) equations in the n — a — 1 variables w;, (1 <i<n—a— 1) from
matrix equation (7). as shown in the proof of Proposition 6. By solving this
linear system we obtain a solution wg, wi,- -+ ,wh_,_1 with wj = 1.

. Let l1,--- 1, and the nonzero entries of F*° be unknowns in matrix equation

(8). We get (d + a) - (n 4+ v) bilinear equations from the first d + a rows of
matrix equation (8) and (*}') univariate polynomial equations from the last
v rows of matrix equation (8). By solving these linear systems and univariate
polynomial equations we recover F*° (see Proposition 6). Then we can obtain
an equivalent central map as

n—1 n—1

F’:(X’Xq,...jXq 7ml"..’QUU)F*O(X_)(‘Z’...7Xq 7117‘..’%)#

. Compute F** 1 < k < n according to Proposition 1.
. Let (t1k, tak, - , tnk) be the (unknown) entries of the k-th (k =1,2,--- ,n—r)

column of T. Get n — r linear systems from matrix equation (9) as shown in
Proposition 7. By solving these linear systems we can recover an equivalent
map 7.

. Return F’,T.
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If we use minors modeling the degree of regularity of solving the system using
the F4 algorithm is given as d + 1 (c.f. [?]). Therefore, the complexity of our
attack with minors modeling is

n+v+d+1\“
o(("i) ).

where 2 < w < 3 is the linear algebra constant.
If we use support minors modeling, according to the analysis of section 3,
we obtain an overdefined bilinear quadratic system of n, 4 n, variables and

(7La;+ny)(;m+ny+1) equations, where n, = n-+v and Ny = (7(7';)7 n = [%ﬁf:}l-‘rl)" +

d+ 1, n’ < 2d 4+ 2. This bilinear system has at least n solutions. In fact, if
(w0, U1, +* ,Upsp_1) is a solution of this bilinear system, (ugz_l,u({z—l,uiiifl)
for all 1 < i < n are also solutions of the bilinear system, more detail can be
found in [20]. Therefore, we don’t longer have a unique solution as in the case of
e.g. Rainbow, which makes the use of Wiedemann inefficient. Thus we use the
F4/F5 algorithm to solve it instead of using relinearization method.

By carrying out a series of experiments with Magma, we found that the first
degree fall is 3. Since the total number of monomials in the bilinear system
is ngny + ng + ny + 1, the total number of monomials of degree at most 3

is O(n2n, + nwni) Thus the complexity of our attack to HFEv- using support

minors modeling is O (n2n,, + nyn2)“ or O ((n +0)2(*“?) + (n +v) (ZdJQ)Q)w.

Here, 2 < w < 3 is again the linear algebra constant.

5 Application on GeMSS

GeMSS is an HFEv- type signature scheme which is one of the alternative
candidates in the third round of the NIST Post Quantum Crypto Standardization
Project [7]. The attack complexity on GeMSS using our key recovery attack
method can be estimated as shown in Table 1.

Table 1. The estimated gate count of our attack versus the best previously known
attack

scheme parameters best known|minors modeling|support minors
(¢,n,v,D,a) modeling
GeMSS128 (2,174,12,513,12) 143 139 118
BlueGeMSS128((2,175,14,129,13) 143 119 99
RedGeMSS128 ((2,177,15,17,15) 143 86 72
GeMSS192 (2,265,20,513,22) 207 154 120
BlueGeMSS192((2,265,23,129,22) 207 132 101
RedGeMSS192 ((2,266,25,17,23) 207 95 75
GeMSS256 (2,354,33,513,30) 272 166 121
BlueGeMSS256((2,358,32,129,34) 272 141 103
RedGeMSS256 ((2,358,35,17,34) 272 101 76
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6 Conclusion

In this paper we proposed a new key recovery attack on the HFEv- signature
scheme, The complexity of the attack is exponential in the parameter d =
[log,(D)], but polynomial in n. The Minus modifications does not enhance
the security of the HFEv- scheme, while the Vinegar modification only adds a
polynomial factor. Therefore, in order to meet the NIST security requirements,
a very large D is needed. But the larger the D, the less efficient the signature
generation. Thus, it is difficult to use HFEv- scheme to construct a secure and
efficient signature scheme.

Related Attacks on Rainbow

We received the paper [2] a few days after we discovered this new attack. In
principle, out attack are similar to the the new MinRank in [2].
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A Example of the Attack

To illustrate our new attack method, we present a complete key recovery for a toy
example of the HFEv- scheme over a small field. Let the parameters of our HFEv-
instance be (¢,n,v, D,a) = (7,7,2,14,2). Then we have d = [log,(D)] = 2. We
construct the degree n extension field Fyn = F,[z]/(z7 + 6z + 4). Let 0 be a
primitive root of the irreducible polynomial p(z) = 27 + 6x + 4.

We randomly generate central map F = §176932 x 141 461287 x'8 | 199902 2 4
(6270502, | 9358630,) X 4 (965557 4 925977, ) X7 4 g811326,2 4 914415, o
915105052 The linear transformations S and 7 are given by the matrices

311642016
624533260 14465
613442453 06532
014642231 02022

S=1]200524213 | andT = | 13101
051242143 24253
335026466 34106
520256312 65650
625554361
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We compute the public key as P = T o F o S. The quadratic forms representing
the public key polynomials are given as

120336133 403356632 326452662
260443443 030611044 251064154
003544453 303354554 616005033
345211321 363166235 400555522
Ph=|344102162 | ,PL=]515616364 |,Po=|560512160 |,
634125051 614665331 245524150
144310600 605233005 610511445
345265032 345363021 653265444
333121021 244541516 243200540
264541601 305456052
666121063 030335422
462615046 504246113
516000035 432343261
P3=]1421061604 | P,=]|534412336 |,
115012635 656324002
600066561 041230651
064303620 521630550
136545101 223162103

1 1 1 1 1 1 1
9 97 19 343 (2401 16807 (117649

92 g4 98 (86 4802 (33614 (235298 .
Let M = 93 921 9147 91029 7203 50421 352047 | gand M = (1\61 IO) In the
4 28 196 91372 9604 67228 (4T0596 v
0" 0°° 0 0 0 0 0
05 935 9245 1715 12005 (84035 (588245
96 912 9294 2058 14406 100842 (705894

following we demonstrate our method to recover the private key from P.

A.1 Recovering S

Let the first row of matrix U = M~1S~! be (Uo, U1, yUpyy—1). Fix ug =
1 and let wuy, - ,Upyy—1 be unknowns. Set b; = (L,uy, -, Upiy—1)Pi =
0,1,--- ,n—a—1. Let b; be the i-th row of the matrix Z. Then the rank of Z is
2. This implies that all minors of order 3 are 0. Solving the MinRank Problem for

matrix Z gives us a solution u = (1, 9689 240750 (393451 (682468 (184068 (218176 (85224 0760002).
Then we have

92689 9240750 9393451 9682468 9184068 9218176 985224 9760002
918823 ‘938166 ‘9283531 0659566 0464934 9703690 9596568 9378762
9131761 9267162 9337633 9499252 0783912 9808120 058266 0180708
998785 9223050 9716347 6200596 0546132 9715588 9407862 0441414
9691495 9737808 1973177 6580630 9528756 967864 9384408 0619272
9722755 0223404 9512239 9770242 9407124 9475048 9220230 9217194
0118033 9740286 9291505 9450442 9379242 931168 9718068 9696816

5 1 0 1 3 0 3 2
6 1 5 4 5 5 6 6

-
I
N el e

where the last v rows of U are randomly chosen from IFy, such that U is invertible.
Thus we can recover an equivalent linear transformation S as

011236606
1453160486
501556050
S =U'M1=]231356031
165041041
046422062
218251215
602646156
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Recovering F and T Step 1. Once S is known, let wg,wy, - ,wp_q—1 be
unknowns and wy = 1. We generate a linear system with d(n — d — a) equations
in the n—a—1 variables w;, (1 < i < n—a—1) using the matrix equation (7). By
solving this linear system we obtain a solution (1, 558954 (326166 (142979 (806014)

Step 2. Let Iy, -+ ,l, and the nonzero entries of F*° be variables in matrix
equation (8). By using the first d 4+ a rows of matrix equation (8) we get (d +
a) - (n + v) bilinear equations as follows:

a00+0599798 Oé(]l+6499519 0 0 000 700+0424284
a10+0499519 Oégol1+0611+0381840 aglll+0349085 0 000 ,Ygoll+,\/10+9228693
0 0410114-9349085 aggl2+a'171[1+9622585 aéi)l2+0524551 000 ,Yggl2+,yzol1+0475138
0 0 a%gl2+9524551 aéllfl)12+032832 000 ,Yilgl2+09738
= 0(d+a)x (ntv)-
From the first row, we obtain agy = 0188027 ag; = 087748 40 = 912013 44, =

6253288 Once g, g1 are known, we get from the second row a9 = 08778 o) =
OL0485 g = 9581451 [y = 606062 7, — 9146620 Fyom the third row we can
obtain Iy = 0754380,

Once ly,ls are known, we get from the last v rows of matrix equation (8),

(”;rl) univariate polynomial equations as follows:

9754380638 + 9146620550 + (500 + 981317 — 0’
075438053? + 0146620681 + 601 + 0689914 — 0’
97543805%% + 9146620(5{1 + (;11 4 9162754 =0.

has 49 solutions. We choose one of them as the value of
027191, 501 — 510 — 919044’ 511 — 99718 and

Each of these equations
d;5. Thus we have doo

0188027 987748 00000 912513 9253288
087748 010485 00000 9581451 9606062
5 0 00000 0 0
0= 0 0 00000 O 0
0 0 00000 O 0
0 0 00000 0 0
012513 0.)81451 00000 927191 919044
0253288 0606062 00000 019044 99718

Therefore we get an equivalent central map as F’/ = 910485 x'14 4 (362262 x'8 |
918§027X2 (O80T 4 9527802,y X 4 (932423, 4 95TO345,) XT 4 92719142 4
6293558 11 w0 + 0971822 for F.

Let (t1k,tok, - ,tnk) be entries of the k-th (k = 1,2, ;n — a) column of
T. Get n—a linear systems from matrix equation (9) as shown by Proposition 7.
By solving these linear systems we can recover a equivalent key of T as follows

T/

ONNO— W
TINNOIWWH
HEWONNO
WoOwouoo
QUuIoINON Ot

It is easy to check that P =T oF oS = T'oF' 0oS’. Therefore the adversary can
use the three maps 7/, 7' and S’ to forge signatures for arbitrary messages.

o1 +9665059

'Yglll+711+9396254
YAy 44T, 11 +6205°
,Yilfl)l2+9392135



