
Publicly Verifiable Zero Knowledge

from (Collapsing) Blockchains∗

Alessandra Scafuro† Luisa Siniscalchi ‡ Ivan Visconti§

Abstract

Publicly Verifiable Zero-Knowledge proofs are known to exist only from setup assumptions
such as a trusted Common Reference String (CRS) or a Random Oracle. Unfortunately, the
former requires a trusted party while the latter does not exist.

Blockchains are distributed systems that already exist and provide certain security properties
(under some honest majority assumption), hence, a natural recent research direction has been
to use a blockchain as an alternative setup assumption.

In TCC 2017 Goyal and Goyal proposed a construction of a publicly verifiable zero-knowledge
(pvZK) proof system for some proof-of-stake blockchains. The zero-knowledge property of their
construction however relies on some additional and not fully specified assumptions about the
current and future behavior of honest blockchain players.

In this paper we provide several contributions. First, we show that when using a blockchain to
design a provably secure protocol, it is dangerous to rely on demanding additional requirements
on behaviors of the blockchain players. We do so by showing an “attack of the clones” whereby
a malicious verifier can use a smart contract to slyly (not through bribing) clone capabilities of
honest stakeholders and use those to invalidate the zero-knowledge property of the proof system
by Goyal and Goyal.

Second, we propose a new publicly verifiable zero-knowledge proof system that relies on non-
interactive commitments and on an assumption on the min-entropy of some blocks appearing
on the blockchain.

Third, motivated by the fact that blockchains are a recent innovation and their resilience
in the long run is still controversial, we introduce the concept of collapsing blockchain, and we
prove that the zero-knowledge property of our scheme holds even if the blockchain eventually
becomes insecure and all blockchain players eventually become dishonest.

Keywords: publicly verifiable zero knowledge, (collapsing) blockchain.

1 Introduction

Following the success of Bitcoin many other cryptocurrencies based on blockchain technology have
been proposed and, despite a few security issues, they are still expanding their networks with
gigantic market capitalizations. What is so appealing in decentralized blockchains?

∗This paper appeared in Public-Key Cryptography (PKC) 2021 [38].
†North Carolina State University, Raleigh, USA, ascafur@ncsu.edu
‡Concordium Blockchain Research Center, Aarhus University, Aarhus, Denmark, lsiniscalchi@cs.au.dk
§Università di Salerno, Salerno, Italy, visconti@unisa.it

1

Public verifiability. One of the most supported answers is the paradigm shift from trust in
some entity to “public verifiability”. This property allows every one to check that the system works
consistently with the pre-specified rules of the game. This makes users willing to be involved in
transactions recorded in a blockchain therefore investing their real-world money. In many blockchain
applications both anonymity and public verifiability are required, calling for advanced cryptographic
primitives such as publicly verifiable zero-knowledge proofs. For example, when the blockchain is
used to record payments, confidential transactions are indeed implemented using publicly verifiable
zero-knowledge proofs called zk-SNARKs [8, 22].

Publicly verifiable zero-knowledge proofs. Known constructions of publicly verifiable zero-
knowledge (pvZK) proofs are instantiated with non-interactive zero-knowledge proofs (NIZK) and,
as such, require setup assumptions. Indeed, despite a significant effort of the research community,
constructions of NIZK proofs either rely on the existence of a trusted common reference string
(CRS) computed by a trusted entity or are based on heuristic assumptions (e.g., random oracles).
Recent existing work has shown mechanisms to relax the trust assumptions required to generate
the CRS [13] or to mitigate the effect of a malicious CRS [28, 34]. While this line of work is very
promising, it still requires the employment of third entities that help computing the CRS.

Publicly verifiable zero-knowledge proofs from a “Blockchain Assumption”. Since its
introduction in 2008 with Nakamoto’s protocol [35], blockchain protocols have been scrutinized
by many communities, and currently, we have a good understanding of the security properties
they provide and the class of adversaries they withstand. In particular, several works from the
cryptographic community provided a formalization of the Bitcoin security guarantees [21, 36], a
formalization of the ideal functionality it implements [4] as well as game-theoretic analysis [2].
Furthermore, new blockchain designs have been proposed, based on different assumptions on the
collective power of the adversary. Some prominent examples that are also implemented in practice
are Ouroboros [3] and Algorand [24].

Given that blockchains have been formally analyzed and are up and running in practice, a
natural question to ask is whether we can use a blockchain as a setup assumption to replace trusted
setups required for certain cryptographic tasks, particularly, for publicly verifiable zero-knowledge
proof systems that are needed the most in blockchain applications.

This question was first investigated by Goyal and Goyal in [25], where they aimed to construct
NIZK using as setup the existence of a proof-of-stake (PoS) blockchain. The security of the NIZK
proof provided in [25] – that we will denote by GG-NIZK– however is analyzed in a threat model
that does not faithfully match the threat model of PoS blockchains, since it considers only static
adversaries and additionally requires that honest stakeholder never reveal their secret keys. Specif-
ically, the zero-knowledge property of GG-NIZK is proved in the presence of a static adversary
who decides in advance which stakeholder will corrupt in its entire attack. This does not match
the widely accepted threat model for proof-of-stake blockchains where an adversary is allowed to
corrupt stakeholders at any time, and the only restriction is that, at any point, the total amount
of stake held by the adversary is a minority of the total stake of the system. Moreover, in the
GG-NIZK security analysis, the zero-knowledge property holds under the additional assumption
that honest stakeholders will never leak their stakeholder keys, not even when such keys become
irrelevant for the blockchain protocol (for example, because there is zero stake associated to them).

It was observed in [39] that the assumption on stakeholder keys further limits the generality
of GG-NIZK since it cannot be used in conjunction with any proof-of-stake (PoS) blockchain. In
particular [39] observes that one could design a PoS blockchain where stakeholders are required to

2

often refresh their stakeholder keys, by regularly publishing new public keys and voiding old keys
by posting their secret keys on the blockchain. Such blockchain protocol, while being a potentially
valid PoS blockchain protocol, cannot be used to instantiate GG-NIZK.

The full version of [25] has been recently updated [26] adding a section in the appendix where
the authors confirm the security of their construction even in light of the counter-example of [39]
by stressing that they expect honest stakeholders to delete keys when they lose significance.

In light of the observations of [39] and of the counter-argument of [26], a natural question to
ask is whether such additional assumptions/expectations on the behavior of honest stakeholders
required in [25, 26] could be symptomatic of unexpected security flaws that would manifest when
GG-NIZK is executed with a real blockchain environment, even one that complies with all GG-NIZK
assumptions/expectations. In other words, assuming that the additional restrictions on the power
of the adversary and the behavior of honest stakeholders are met, would GG-NIZK be actually
secure when executed in the presence of a PoS blockchain that complies with them?

A negative answer to the above question would signify that constructing a publicly verifiable
zero-knowledge proof that leverages any blockchain assumption is still an open question.

1.1 Our Contribution

In this paper we target the problem of constructing publicly verifiable zero-knowledge proofs lever-
aging a blockchain assumption and provide the following contributions.

1.1.1 A More Realistic Blockchain Threat Model.

We consider a model where the blockchain can potentially be used to post and fulfill arbitrary smart
contracts. Since all existent blockchain protocols either already support or aim to support smart
contracts capabilities (e.g., Ethereum Casper, Cardano) and, since smart contracts are among the
most appealing feature of blockchains, this model is arguably realistic. Within this model, an
adversary can consequently also leverage her ability to publish smart contracts just like any party
who uses the blockchain.

Within this threat model, we show that the zero-knowledge property of GG-NIZK is easily
violated even assuming that all restrictions required by the security analysis of GG-NIZK are satis-
fied, that is, even assuming that the adversary can only perform static corruption and that honest
stakeholders will never reveal their keys. Specifically, we present an adversarial strategy that lever-
ages legitimate smart contracts to collect information that are useful to disturb the security of the
external cryptographic protocols that use the blockchain as a building block. We name this type of
attacks “attack of the clones” to highlight the adversary’s aim to clone the capability of a honest
player to perform computations using her secret key. However, the smart contract posted by the
adversary is completely harmless for a honest stakeholder. Indeed, it does not ask the stakeholder
to do anything that will make her lose her stake, or perform any operation against the consensus
protocol. Yet, it allows the adversary to break the zero knowledge of the GG-NIZK proof. Our
attack leverages a specific dangerous use of stakeholder identifiers in the GG-NIZK. The starting
point is that the NIZK proof of [25] includes encryptions of shares of the witness under the pub-
lic keys inferred by the identifiers of the stakeholders. To break the zero-knowledge property of
the NIZK of [25] our attack is rather simple: after the NIZK proof π is received, the adversarial
verifier posts a smart contract containing ciphertexts (these are the ciphertext contained in π)
and a promised reward (e.g., money, raffle tickets for a vacation in Barbados, etc) in exchange for
decryptions.

Notice that an honest stakeholder participating in this smart contract remains fully honest,

3

does not subtract any resource (unlike in bribing attacks against proof-of-work blockchains) from
the participation to the consensus protocol and does not reveal her secret keys to anyone. She just
plays with smart contracts as contemplated by the blockchain rules and uses her stake for some
harmless entertainment. Indeed, the crux of this attack is that a stakeholder is not aware that
an external cryptographic protocol is basing its zero-knowledge property on the assumption that
stakeholders would not entertain in smart contracts that are harmless for the underlying blockchain
protocol.

One might object that it is plausible that a PoS blockchain would simply forbid the execution
of such “weird” smart contracts. However, it is not clear what a “weird” smart contract is, and
whether the above smart contract could be redesigned in order to look innocent and harmless
(furthermore, the well known DAO attack inflicted to Ethereum suggests that it is unclear whether
we are able to identify and stop an harmful smart contract too much in advance).

Our attack is obviously a simple example and after-the-fact can possibly be mitigated, for
instance by adding specific further restrictions on how the stakeholder should use her secret keys.
However, the point of our attack is not prove that there is no blockchain for which GG-NIZK can
be secure. Instead, we want to highlight the vulnerabilities arising when the long-term security of
a cryptographic protocol relies on the behavior of blockchain players.

The main lesson of our attack is the following: when designing protocols that leverage a
blockchain assumption, one has to consider a threat model where the adversary is allowed to
perform the same actions that are allowed on the blockchain (e.g., run smart contracts1). Note that
this should be true even when analyzing the consensus protocol itself. However, since this is out of
the scope of this paper, we assume that the underlying blockchain consensus protocol is secure in
the presence of smart contracts.

Another lesson to be drawn by our attack is that, when using the blockchain as an underlying
assumption, one should take into account the unstable and evolving nature of blockchains. Unlike
a common reference string, blockchains evolve over time – due to software updates for example,
or governance decisions– stake is transferred among players, new smart contracts are installed etc.
Last but not least one might take into account the possibility that a blockchain that todays is
reliable tomorrow could collapse and could then be completely controlled by an adversary.

The above attack on the ZK of GG-NIZK leaves open the following natural question.

Can we design a pvZK proof leveraging the existence of blockchains, that makes
no particular assumption on the underlying consensus mechanism neither on the way
honest keys must be used (for instance, they can still be used in smart contracts)?

1.1.2 Publicly Verifiable Zero Knowledge from a Generic Blockchain in Our Threat
Model.

As a second contribution we provide a new protocol for pvZK that is secure in the blockchain
threat model discussed above even in the presence of adaptive adversaries. To show this security
guarantee, we will prove that once the proof (computed using our protocol) is published, it will
preserve its security even if the blockchain collapses, that is, even if the adversary corrupts all the
players of the blockchain (and gets all the secrets). We now proceed describing our protocol and
our blockchain assumption.

1We note that this threat model was never considered before. [39] only made observations about additional
limitations that GG-NIZK imposes on their underlying blockchain. Instead, in this work we are showing an attack
that works for any PoS blockchain (even the ones that comply with GG-NIZK pre-requirement) allowing the execution
of such smart contracts.

4

A recent work by Choudhuri et al. [15] shows that using a blockchain as a black-box object
that provides only a global ledger does not allow to overcome some impossibility results in the
plain model and in particular it does not allow to construct NIZK proofs. We notice that their
argument can be extended also to pvZK proofs (see Section 5 for more details). Therefore, in order
to build a publicly verifiable zero-knowledge proof system from a blockchain, it seems that one
needs to provide more power to the simulator besides black-box access to a global ledger. Thus,
following [25] we will assume that the simulator has the power of controlling the honest players.
However, unlike [25] we assume that the adversary can adaptively corrupt players and moreover
we want our pvZK proof to remain zero knowledge even in case of blockchain failure, in the sense
that in the future the adversary might take full control over the blockchain.

To leverage this simulation power while making no assumption on the consensus protocol un-
derlying the blockchain (i.e., we do not assume that the blockchain is based on proof-of-work,
proof-of-stake, etc), we require that the blockchain satisfies a more nuanced notion of chain quality.
Very informally (a formal definition is provided in Assumption 1) we assume the blockchain has
the following mild structure. First, every block contains a distinguished field v. For concreteness,
the reader can assume that this field is the same as the “coinbase” value of any Bitcoin block,
and to ease the discussion, in the text that follows, we will call this field wallet. Our blockchain
assumption, very roughly, is that there exists a parameter d, such that, for any sequence of d blocks,
considering the new wallets2 observed in the sequence, we have that a majority of those wallets
has been generated by honest players using independent randomnesses. Essentially our blockchain
assumption builds on top of the standard chain quality assumption, requiring that the adversary
will be the “winning” node that decides the next block using a fresh wallet less often than honest
players. Similar assumptions have been leveraged in the literature. For example [37, 27] use the
assumption that the majority of mined blocks are honest, to select a committee for secure compu-
tation. The difference between our blockchain assumption and the standard chain quality property
is mainly that we additionally require that many of the honest blocks will additionally have an
high-min entropy field. We discuss more extensively our blockchain assumption Section 1.

We will leverage this blockchain assumption and the simulator’s control of the honest majority
to build a pvZK proof as follows. The high-level idea is to follow the FLS approach [18] and prove
the OR of two statements: either “x in L” or “Previously I have predicted the majority of fresh
wallets appeared in the last d blocks”. In particular our idea reminds the implementation of the
FLS approach proposed by Barak [6] where the trapdoor theorem consists of some unpredictable
information that becomes predictable during the straight-line simulation. The soundness of our
construction will follow from similar arguments and will actually be simpler. The reason is that
we implement the prediction step with perfectly binding commitments and thus, unlike Barak, we
will not have to worry about a prover finding collisions in a collision-resistant hash function.

To implement this approach we need two ingredients: a non-interactive commitment scheme
(that can be constructed from 1-1 one-way functions) and a publicly verifiable witness indistinguish-
able proof system pvWI. We use the pvWI proof system recently constructed in [39] which is the
first pvWI proof system from a blockchain assumption. Our blockchain assumption implies the one
of [39]. The pvWI proof system of [39] leverages the underlying blockchain assumption by providing
an interactive prover and a non-interactive verification function. Concretely, the pvWI proof of [39]
builds on a classic 3-round WI proof system where the first two rounds are played by the prover
and blockchain: the prover posts the first round of the classic WI proof on the blockchain, then
she waits for a few blocks extending the block containing the first message and from those extracts
a challenge that corresponds to the second round of a classic 3-round WI proof. The third round

2Here we refer to wallets identifying the block leader cashing the reward and not to wallets involved in transactions.

5

of the classic WI proof is then sent to the actual verifier, who can use the blockchain to validate
all 3 rounds, non-interactively. If the third round is posted on the blockchain then all verifiers can
validate the proof. We need the following 3 properties from the pvWI proof: (1) delayed-input
completeness, which means that the prover will use the theorem and the witness only for comput-
ing the last message of the protocol, which implies that all other messages of the pvWI proof are
independent from the witness; (2) WI in the presence of blockchain failure, that is, (2.1) the WI
property holds even when the prover is the only honest player and therefore the blockchain could
be completely controlled by the adversary; (2.2) the WI property is preserved even when, after a
pvWI proof is computed, the adversary could corrupt the prover; (3) unconditional soundness3 in
the presence of our blockchain assumption (i.e., Assumption 1). Since such properties were not
explicitly claimed in [39] we show in Appendix A.1 that through minor updates to their protocol
those 3 properties are satisfied. The reason why we need the above 3 special properties will be
explained later when we will highlight the security proof.

With the above ingredients in hands, our pvZK proof system works as follows. First, the
prover, using a non-interactive commitment scheme, commits to u · d strings com1, . . . , comu·d (u
is the blockchain parameters associated to our chain-quality assumption (Assumption 1), more
details about u will be provided later) and posts the commitments on the blockchain. Note that
the prover securely erases the decommitment information of com1, . . . , comu·d. Then, she waits until
the blockchain is extended by a sequence of d blocks B1, . . . , Bd, that include n blocks B1, . . . , Bn
with fresh wallets (that is, with wallets that were not observed before). Let v1, . . . , vn be such
fresh wallets observed on the blockchain. In the final step, the prover computes the pvWI proof,
for the theorem:“x ∈ L or (com1, . . . , comu·d) are commitments of at least n/2 + 1 of the wallets
(v1, . . . , vn)”.

The simulator SpvZK uses the same power of the simulator of [25] controlling the honest players in
the simulated experiment (in particular, the simulator adds the blocks in the blockchain on behalf
of honest players). Therefore SpvZK can predict the majority of the unpredictable new wallets
associated with a sequence of d future blocks, and can use this knowledge as a trapdoor theorem
when computing the messages of the pvWI proof. Notice that the simulator can not tightly predict
the future wallets that will be permanently added to the blockchain since there will be several other
honest blocks to simulate that will circulate in the network, they might even appear in some forks
but eventually will not be part of the blockchain. Since the simulator has no direct power to decide
which branch of a fork will remain in the blockchain, we require way more than just d commitments.
Indeed we consider the parameter u that measures the upper bound on the amount of valid blocks
that honest players propose for each index of the sequence of blocks of the blockchain.

The pvZK that we construct preserves zero knowledge even in case of adaptive corruption during
the protocol execution and in case the blockchain completely collapses and the adversary gets the
state of all players. To achieve this strong form of zero knowledge, we use secure erasure so that
differences in the committed values are not detected. Moreover we rely on the delayed-input pvWI
so that the simulator can run the prover procedure of the pvWI except that a different witness is
used in last message. Therefore before the last message is played, adaptive corruption is not harmful
since the simulator played exactly like a prover of the pvWI. Assuming that the underlying pvWI
is secure in case the blockchain collapses (fact that we prove), the proof remains zero-knowledge
forever.

A crucial aspect of our construction is that the security of the prover is in the hands of the
prover only and does not depend on the behavior of the stakeholders. To achieve adaptive security
we rely on secure erasure. In contrast, even if the prover of GG-NIZK would erase its randomness,

3See the paragraph below about the power of the adversary.

6

the proof would still suffer of our attack.
For the soundness proof, the main observation is that, as long as our blockchain assumption

holds, even an unbounded malicious prover cannot break soundness since it cannot predict enough
future wallets. This together with the perfect binding property of the commitment scheme and the
unconditional soundness of the pvWI guarantees the soundness of our pvZK.

An additional property of our construction is that all messages except the last one can be
computed even before knowing the statement to prove (i.e., it satisfies delayed-input completeness
and adaptive-input zero knowledge and soundness).

Finally, we remark that even though messages of our pvZK proof can be very long, therefore
exceeding some rule of the blockchain, one can anyway resort to techniques (and assumptions)
like IPFS that allow to keep off-chain long message but still accessible by everyone and succinctly
notarized on chain.

On the computational power of the adversary and rationality of players. In a publicly
verifiable proof assuming that an adversarial prover is PPT does not really say much about his
limits with respect to the security of the blockchain. Indeed in case of proof-of-work blockchains
the limitation of the adversary should be compared to the overall computational capabilities of the
network rather than compared to a generic polynomial on input the security parameter. In our
definition of soundness we will therefore consider an unbounded prover. When proving the security
of our construction we will state explicitly our blockchain assumption and implicitly we will assume
that the constraints on the adversary (see Section 3.2) required by the underlying blockchain are
maintained.

We remark that this work following [25, 26, 39] considers either honest or corrupted players,
without exploring the game-theoretic scenario where players are instead rational.

1.2 Related Work

The idea of using a blockchain as a trusted setup has been explored already (e.g., fair multi-party
computation [11], extraction of week randomness [1]). In [10] a randomness beacon is obtained
assuming players to be somehow rational (i.e., they assume that the adversary that will prefer
to be honest cashing mining rewards rather than misbehaving compromising the beacon). In our
work, as well as the one of [25], we consider zero-knowledge proofs with public verifiability sticking
with the traditional setting where security holds against malicious players.

In [15] a blockchain is used as a global setup assumption to obtain concurrent self-composable
secure computation protocol, which is impossible in the standard model. We stress that [15] does
not provide public verifiability (for the interested reader we expand this discussion in Section 5).
Recently in [27, 9] a blockchain is used to maintain a secret via proactive secrete sharing. As
mentioned above[27] requires some chain quality parameters (n2 + 1, n) which means that for any
sequence of n blocks, the majority of them n

2 + 1 are computed by honest parties. In [9] the
adversary controls up to 25% of the stake. However using the technique discussed in [23] one could
lift up this requirement to less than 50%.

In [5] the notion of Crowd verifiable zero-knowledge (CVZK) is introduced4. In CVZK a prover
wants to convince a set of n verifiers of the validity of a certain statement. In more detail, a CVZK
is a 3-round protocol where first the prover speaks, then n verifiers compute a private state and
send as a second-round a string that may contain some entropy, finally, the prover finishes the proof
π. The verification procedure takes as input π the corresponding statement and also the states

4Our results were publicly announced in [40] way before we have noticed CVZK, therefore the two works are
independent.

7

of the n verifiers. Instead we consider a different notion requiring a zero-knowledge proof that is
publicly verifiable (i.e., any verifier with no additional information could check the veracity of the
statement). Moreover, the definition of CVZK does not require any setup at the price of allowing
the simulator to run in super-polynomial time. Our goal is also to diminish the trust in the setups,
however, instead of requiring super-polynomial time simulation, we exploit more realistic setups
like the blockchains.

2 The Attack of the Clones to GG-NIZK [25]

A high-level overview of the NIZK presented in [25] was provided in the Introduction. In this
section we describe an attack of clones with which a malicious verifier, using a smart contract, is
able to break the zero-knowledge property of GG-NIZK without corrupting any player.

Our attack leverages the fact that, if a blockchain is used as setup assumption for a protocol Π,
the security proof of Π must take into account the fact that a player of Π is also a legitimate player
of the blockchain protocol. As such, legitimate blockchain activities – such as smart contracts –
can be performed by her.

Before describing the attack, we provide a formal description of the GG-NIZK.

Notation for GG-NIZK

- Blockchain B: this is the latest version blockchain which might contain unconfirmed blocks.

- Stable Blockchain B
′
: this is defined as Bd`1 , which is the blockchain B pruned of `1 blocks

(that are possibly unconfirmed blocks).

- Parameter `2: number of last blocks taken into consideration in B
′
.

- StakeholdersM: set of public keys associated to the player that have added at least one block
in the last `2 blocks of B

′
. In [25], such public keys are crucially used for both encryption

and signature.

- Chain quality parameters (see Appendix A.2 for the formal definition of chain quality): `3, `4
used in the soundness proof.

- params:= (1`1 , 1`2 , 1`3 , 1`4).

GG-NIZK: The proof. A proof π for theorem x is computed as follows. Let w be the witness
s.t. (x,w) ∈ R.

1. Secret share the witness w using a weighted secret sharing scheme, using as weights the stake
of the public keys appearing in M. Do the same with the zero-string.

Namely, produce the following two sets5:

{sh1,i}i∈M = Share(w, {stakei}i∈M, β · staketotal, s1)

{sh2,i}i∈M = Share(0, {stakei}i∈M, β · staketotal, s2)
5The role of s1, s2 and β is not relevant for our discussion and therefore they can be ignored.

8

2. Encrypt each weighted share using the public key of the corresponding player. Namely for all i
such that PKi ∈M, sample random strings r1,i, r2,i and compute: ctx1,i = Enc(PKi, sh1,i, r1,i)
ctx2,i = Enc(PKi, sh2,i, r2,i).

3. Compute a non-interactive witness indistinguishable proof (NIWI) πniwi for the theorem: (1)
either the first set of ciphertexts are correct encryptions under the public keys inM of shares
of the witness w or (2) (trapdoor witness) the second set of ciphertexts is a collection of
correct encryptions under the public keys in M of shares of a valid fork of length `3 + `4.

Hence, a proof π for theorem x ∈ L consists of the tuple:

π = (B, {ctx1,i, ctx2,i}i∈M, πniwi, params)

Note that the proof π is not published on the blockchain and it is only sent to the verifier.

Security of GG-NIZK: Intuition. Zero knowledge follows from the assumption of honest majority
of stake. Under such assumption, the simulator –controlling all honest players– is able to compute
a valid fork that constitutes a valid trapdoor witness for the NIWI. Even if the trapdoor witness is
encrypted in (ctx2,i)PKi∈M, a malicious verifier cannot detect that the trapdoor witness was used,
since it does not control enough secret keys (associated to the public keys in M) that would allow
for collection of enough shares.

Soundness is proved by witness extraction: the extractor controls a sufficient fraction of honest
secret keys (associated to the public keys inM) and this allows the decryption of enough ciphertexts,
that leads to enough shares to reconstruct the witness.

Clearly by obtaining in the future (e.g., when those keys will correspond to a reduced amount
of stake) the secrets of the involved stakeholders (through adaptive corruptions or by naturally re-
ceiving the keys from honest stakeholders) the adversary would be able to decrypt those ciphertexts
therefore breaking the zero knowledge property and without violating the proof-of-stake assump-
tion. This problem imposes the assumptions/limitations of the GG-NIZK discussed previously.

A Simple Smart Contract that Breaks the ZK Property of GG-NIZK. The zero-
knowledge property of GG-NIZK crucially relies on the assumption that the malicious verifier
– controlling only a minority of stake– does not have enough secret keys for the public keys in M
to be able to decrypt enough ciphertexts and thus reconstruct the witness.

Our main observation is that in order to obtain decryptions of enough ciphertexts, a malicious
verifier, does not necessarily need to own enough of the stake/secret keys of the honest players. In-
stead, the malicious verifier can upload a smart contract – that we called DecryptionForBarbados–
where she promises a reward for a valid decryption of a certain ciphertext ctx under a certain pub-
lic key PK. Notice that to run such smart contract the adversary does not need to corrupt the
stakeholders, or get a stake transfer. So, the attack to works even if no-one is corrupted and even if
no-stake is transferred. Obviously, when considering a blockchain with additional restrictions the
our attack based on the above smart contract might not work, but still, the potential existence of
other attacks should not be overlooked.

In more details, once the malicious verifier obtains π = (B, {ctx1,i, ctx2,i}i∈M, πniwi,params)
from an honest prover she can publish a DecryptionForBarbados for some of (they could also be
rerandomized if useful) the ciphertexts ctx1,i for which she does not possess the secret key. The
malicious verifier using DecryptionForBarbados is able to collect enough shares and reconstruct
the witness that is encrypted in {ctx1,i, ctx2,i}i∈M, thus directly invalidating the ZK property of
[25].

9

In Figure 1 we give a more detailed description of DecryptionForBarbados. In order to keep
the smart contract simple we assume that the decryption procedure of the underlying encryption
scheme gives in output a pair (m, r) where r is the randomness used to encrypt and m is the message
encrypted (see for instance [7]). For the same reason, we also assume that (m, r) are unique (for a
public key PK).

Notation (borrowed from [29]).
- Ledger: the blockchain.
- Ledger[Pti] denotes the amount of money possessed by the secret key of party Pti.

DecryptionForBarbados

1. Init: Upon receiving (init, $reward, ctx,PKi) from a contractor C:
- Assert Ledger[C] > $reward.
- Ledger[C] := Ledger[C]− $reward.
- Set state := init.

2. Claim: On input (claim, v) from a player Pti:
- Parse v = (m, r).
- If ctx = EncPKi(m, r) then set rewards Ledger[Pt] := Ledger[Pt] + $reward.
- Set state := claimed.

Figure 1: Description of DecryptionForBarbados.

Observations on the Smart Contract. We note that a player that uses her secret key to
trigger DecryptionForBarbados in order to win the reward is not violating any assumption of
the underlying PoS protocol or of GG-NIZK. Indeed, he is not exposing his secret key but simply
providing a valid decryption of a certain ciphertext. Thus this is legitimate behavior of a honest
player, she is simply executing an other application that runs on top of the blockchain.

Our smart contract is not a “bribing attack”. Bribing assumes that one is paying somebody
to do something wrong/break the rules. Instead in this context an honest player is still behaving
honestly and he is not breaking any rule of the underlying PoS protocol.

We also note that since the proof π is not published on the blockchain (and is not required
to be), honest players could be not aware that they are helping a malicious verifier to break the
security of π.

3 Definitions

Preliminary. We denote the security parameter by λ and use “||” as concatenation operator
(i.e., if a and b are two strings then by a||b we denote the concatenation of a and b). We use the
abbreviation ppt that stays for probabilistic polynomial time. We use poly(·) to indicate a generic
polynomial function. A polynomial-time relation R (or polynomial relation, in short) is a subset
of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in R can be decided in time polynomial in |x|.
For (x,w) ∈ R, we call x the instance and w a witness for x. For a polynomial-time relation R,
we define the NP-language LR as LR = {x s.t. ∃ w : (x,w) ∈ R}. Analogously, unless otherwise
specified, for an NP-language L we denote by R the corresponding polynomial-time relation (that
is, R is such that L = LR). We will denote by Pst a stateful algorithm P with state st. We will

10

use the notation r ∈R {0, 1}λ to indicate that r is sampled at random from {0, 1}λ. When we want
to specify the randomness r used by an algorithm Al we use the following notation Al(·; r).

The definitions of standard tools can be found in Appendix A.3.

3.1 Blockchain Protocols

In the next two sections we borrow the description of a blockchain protocol of [36, 25], more-
over we explicitly define the procedure executed by an honest player in order to add a block.
A blockchain protocol Γ is parameterized by a validity predicate V that captures the semantics
and rules of the blockchain. Γ consists of 4 polynomial-time algorithms (UpdateState, GetRecords,
Broadcast,GenBlock) with the following syntax.

- UpdateState(1λ, st): It takes as input the security parameter λ, state st and outputs the
updated state st.

- GetRecords(1λ, st): It takes as input the security parameter λ and state st. It outputs the
longest ordered sequence of valid blocks B (or simply blockchain) contained in the state
variable, where each block in the chain itself contains an unordered sequence of records
messages.

- Broadcast(1λ,m): It takes as input the security parameter λ and a message m, and broadcasts
the message over the network to all nodes executing the blockchain protocol. It does not give
any output.

- GenBlock(st,B, x): It takes as input a state st, a blockchain B6, x ∈ {0, 1}∗ and outputs a
candidate block B that contains a string v computed running a function fID that is defined
as follows. The function fID(1λ; r) takes as input the security parameter λ and running with
poly(λ) bits of randomness r outputs a q bit string v, where q = poly(λ). Moreover every
time that fID runs on input a freshly generated randomness it holds that H∞(fID(1λ; ·)) ≥ λ7.
The generated block B could satisfy or not the validity predicate V.

We will denote by Bv a block B that contains the string v computed using fID.

Blockchain notation. With the notation B ≤ B′ we will denote that the blockchain B is
a prefix of the blockchain B′. We denote by Bdn the chain resulting from “pruning” the last n
blocks in B. We will denote by ΓV a blockchain protocol Γ that has validate predicate V. A
blockchain B generated by the execution of ΓV is the blockchain obtained by an honest player after
calling GetRecords during an execution of ΓV. An honest execution of GenBlock is an execution
of GenBlock computed by an honest player. A blockchain protocol Γ can satisfy the property of
chain-consistency, chain-growth and chain-quality defined in previous works [21, 36] (we recall these
properties in Appendix A.2). In the rest of the paper we will denote by η(·) the chain consistency
parameter of ΓV.

Definition 1 (Block Trim Function). Let Bv be a block generated using GenBlock that satisfies
the validate predicate V. We define a block trim function as a deterministic function trim that on
input Bv outputs v.

6In order to simplify the notation we make an abuse of notation and we explicitly add the blockchain as input of
GenBlock even though the blockchain can be computed running GetRecords on input st.

7In the existing blockchains the value v could be an identifier of a wallet and fID is the randomized function that
generates it.

11

Note that for two blocks B, B′ that satisfy V and are generated by an honest execution of
GenBlock it could happen that trim(B) = trim(B′). For instance this is the case when a honest
player Pt runs GenBlock twice and both executions run fID on input the same randomness stored
in the state of Pt.

Definition 2 (Good Execution of GenBlock). Let B be a blockchain generated by an execution of
ΓV. An execution of GenBlock is good w.r.t. a blockchain B if it holds that GenBlock runs on input

B s.t. B ≤ B
dη(λ)

, moreover GenBlock runs fID on input fresh randomness and outputs a block that
satisfies the validity predicate V.

Definition 3 (Pristine Block). Let trim be the block trim function defined in Definition 1. Let
B be a blockchain composed of k blocks generated by an execution of ΓV. The j-th block Bj of
B is pristine if for each Bi of B with 0 < i < j it holds that v 6= vi where v = trim(Bj) and
vi = trim(Bi).

Assumption 1. Let B be a blockchain generated during an execution of ΓV. There exists d =
poly(λ) and u = poly(λ) such that for any sequence of d consecutive blocks Bi+1, . . . , Bi+d added
to B during the execution of ΓV, let n be the number of pristine blocks in Bi+1, . . . , Bi+d, it holds
that:

1. At least bn/2 + 1c of the pristine blocks in the sequence Bi+1, . . . , Bi+d have been generated
by honest players through good executions of GenBlock w.r.t. B;

2. For each j ∈ {1, . . . d}, the probability that honest players obtain through honest executions
of GenBlock w.r.t. B u′ > u different blocks satisfying the validity predicate for the position
i+ j in the blockchain is negligible in λ.

We refer to d as the pristine parameter and to u as the attempts parameter.

Notice that n is a non-constant value that depends on the content of the specific d consecutive
blocks taken into account. For the sake of simplifying the description of our construction we will
assume wlog that n is also a pristine parameter.

Observation 1. On the Applicability of our Assumption. It is well known that blockchains
need an incentive mechanism and this is typically implemented by assigning a reward each time
a block is added to the chain. This process is often implemented as a lottery and some coins are
generated and assigned to the winner of the lottery that is also the player that generated the new
block added to the chain. In order to get the coin assigned, the winner also includes an identifier
of her wallet to the block. Such identifiers usually correspond to public keys of signature schemes
and as such they have a significant amount of min-entropy. Therefore, whenever such identifier
is selected by a honest blockchain player and has never circulated in the network, it represents
an unpredictable string. More concretely one could think in the case of Bitcoin to the coinbase
transaction, since sometimes the rewards is cashed on a new wallet.

Our blockchain assumption assumes that given a sufficiently long sequence of blocks, if we restrict
to identifiers that appear for the first time on the chain, then a majority of them was unpredictable
before the long sequence of blocks started. Obviously an adversary can sometimes be the winner and
therefore can use an identifier that is “fresh” in the eyes of others but that she knew already before
the long sequence of blocks started. Therefore our assumption requires the adversary to have limited
resources so that she places in the chain less blocks than what honest players using fresh identifiers
do.

12

For concreteness, one can consider the current modus operandi of Bitcoin blockchain. To avoid
double spending it is in general recommended to wait for 6 more blocks after the block including the
spending transaction, this is called confirmation time. The choice of 6 blocks for a confirmation
time suggests that it is believed that it would be very unlikely that the adversary could have produced
in the meanwhile 7 blocks that cancel the spending transaction. If for instance we quantify “very
unlikely” with something less than 2−70 then as a consequence the adversary must have probability
of being the winner (therefore deciding the next block) less than 2−10. Following this example, if
an honest block includes a “fresh” wallet with probability at least 2−9 (which is very reasonable),
then our assumption clearly holds for a sufficiently large sequence of blocks (i.e., considering a
sufficiently large d).

We have considered Bitcoin and the 6-block confirmation rule just because it is the most popular
example of blockchain and thus it is a natural target to check the concreteness of our assumption.
Indeed, also coinbase transaction is just an example of a field with min-entropy that could be find
in the blockchain (see also the examples mentioned in [12]). One could consider, for instance,
privacy-preserving blockchains (e.g., [20, 30] for the case of PoS blockchains), observing that the
cryptographic material used to ensure privacy might imply the presence of fields with high min-
entropy in a block.

Our construction is a mere feasibility result aiming at showing that publicly verifiable zero
knowledge is possible with generic8 blockchains.

3.2 Execution of ΓV in an Environment

At a very high level, the execution of the protocol ΓV proceeds in rounds that model time steps.
Each participant in the protocol runs the UpdateState algorithm to keep track of the current (latest)
blockchain state. This corresponds to listening on the broadcast network for messages from other
nodes. The GetRecords algorithm is used to extract an ordered sequence of blocks encoded in the
blockchain state variable. The Broadcast algorithm is used by a player when she wants to post a
new message m on the blockchain. Note that the message m is accepted by the blockchain protocol
only if it satisfies the validity predicate V given the current state, (i.e., the current sequence of
blocks).

Following prior works [21, 31, 36], we define the protocol execution following the activation model
of the Universal Composability framework of [14] (though like [25] we will not prove UC-security
of our results). For any blockchain protocol ΓV(UpdateState, GetRecords, Broadcast,GenBlock), the
protocol execution is directed by the environment Z(1λ). The environment Z activates the players
as either honest or corrupt and is also responsible for providing inputs/records to all players in
each round.

All the corrupt players are controlled by the adversary A that can corrupt players adaptively
during the execution of ΓV.

Specifically A can send a corruption request 〈corr,Pti〉 to player Pti at any point during the
execution of ΓV. The adversary is also responsible for the delivery of all network messages. Honest
players start by executing UpdateState on input 1λ with an empty state st = ε.

- In round r, each honest player Pti potentially receives a message(s) m from Z and potentially
receives incoming network messages (delivered by A). It may then perform any computation,
broadcast a message (using Broadcast algorithm) to all other players (which will be delivered
by the adversary; see below) and update its state sti. It could also attempt to “add” a new

8In the sense of the underlying consensus mechanism.

13

block to its chain: Pti will run the procedure GenBlock, and this execution of GenBlock could
use fresh randomness for the function fID(1λ; ·) if requested by Z.

- A is responsible for delivering all messages sent by players (honest or corrupted) to all other
players. A cannot modify the content of messages broadcast by honest players, but it may
delay or reorder the delivery of a message as long as it eventually delivers all messages within
a certain time limit.

- At any point Z can communicate with adversary A.

Constraints on the adversary. In order to show that a blockchain enjoys some useful proper-
ties (e.g., chain consistency) prior works [36, 21] restrict their analysis to compliant executions of
ΓV where some specific restrictions9 are imposed to Z and A. Those works showed that certain
desirable security properties are respected except with negligible probability in any compliant exe-
cution. Obviously, when in our work we claim results assuming some properties of the blockchain,
we are taking into account compliant executions of the underlying blockchain protocol only. The
same is done by [25].

3.3 Publicly Verifiable ZK Proof System from Blockchains

Here we define delayed-input publicly verifiable zero knowledge w.r.t. blockchain failure over a
blockchain protocol ΓV = (UpdateState,GetRecords, Broadcast,GenBlock). We will make use of the
following notation.

The view of a blockchain player Pt consists of the messages received during an execution of ΓV,
along with its randomness and its inputs. Let ExecΓV

(A,H,Z, 1λ) be the random variable denoting
the joint view of all players in the execution ΓV, with adversary A and set of honest players H in
environment Z, such a joint view fully determines the execution. Let ΓV

view(A,H,Z, 1λ) denote an
execution of ΓV(A,H,Z, 1λ) producing view as joint view.

Definition 4 (Publicly Verifiable Proof System from Blockchain). A pair of stateful ppt algorithms
Π = (P,V) over a blockchain protocol ΓV is a publicly verifiable proof system for the NP-language
L with witness relation R if it satisfies the following properties:

Completeness. ∀ x,w s.t. (x,w) ∈ R, ∀ ppt adversary A any ppt Ptj ∈ H where H is the set
of honest parties, and for any environment Z, assuming that P ∈ H, there exist negligible
functions ν1(·), ν2(·) such that:

Pr

 view← ExecΓV
(A,H,Z, 1λ)

V(x, π,B) = 1 : π ← PstP (x,w)

B = GetRecords(1λ, stj)

 ≥ 1− ν1(|x|)− ν2(λ)

where stP denotes the state of P during the execution ΓV
view(A,H,Z, 1λ). The running time

of P is polynomial in the size of the blockchain B = GetRecords(1λ, stj) where stj is the state
of Ptj at the end of the execution ΓV

view(A,H,Z, 1λ).10

9For instance, they require that any broadcasted message is delivered in a maximum number of time steps.
10Note that the execution of ΓV

view(A,H,Z, 1λ) could continue even after π is provided by P.

14

Soundness. ∀ x /∈ L, ∀ stateful adversary A and ppt honest player Ptj ∈ H where H is the set
of honest players and for any environment Z, there exist negligible functions ν1(·), ν2(·) such
that:

Pr

 view← ExecΓV
(A,H,Z, 1λ)

V(x, π,B) = 1 : π, x← AstA

B = GetRecords(1λ, stj)

 ≤ ν1(|x|) + ν2(λ)

where stA denotes the state of A during the execution ΓV
view(A,H,Z, 1λ). Furthermore stj is

the state of Ptj at the end of the execution ΓV
view(A,H,Z, 1λ).

The proof π might consist of multiple messages, i.e., π = (π1, . . . , πm), in this case, we
will say that Π is an m-messages proof system. Moreover if π is composed of m-messages
π = (π1, . . . , πm), A is allowed to choose x just before computing the last message πm of the
proof π = (π1, . . . , πm).

Definition 5 (Delayed-Input Completeness from Blockchain). An m-messages proof system Π over
a blockchain protocol ΓV is delayed-input, if x,w are not involved before the computation of the
last message πm of the proof π = (π1, . . . , πm).

Definition 6 (Witness Indistinguishability w.r.t. Blockchain Failure). A publicly verifiable proof
system Π = (P,V) over a blockchain protocol ΓV for the NP-language L with witness relation R
is witness indistinguishable (WI) w.r.t. blockchain failure if it satisfies the following property:
∀ x,w0, w1 such that (x,w0) ∈ R and (x,w1) ∈ R, ∀ ppt adversary A and set of ppt honest

players H and any ppt environment Z, where P ∈ H it holds that:{
viewA : viewA ← Exp0A,Π,ΓV(λ)

}
≈
{
viewA : viewA ← Exp1A,Π,ΓV(λ)

}
where ExpbA,Π,ΓV(λ) is defined below, for b ∈ {0, 1}.

ExpbA,Π,ΓV(λ, x, wb):

- P runs on input 1λ.
- An execution of ΓV(A,Z,H, 1λ) starts.

- PstP outputs messages π1, . . . , πm−1, where stP is the state of P
in the execution ΓV(A,Z,H, 1λ).

- Upon receiving (x,w0) ∈ R, (x,w1) ∈ R from A.
- PstP computes πm on input πm−1, x, wb and outputs π = (π1, . . . , πm).

- A can send a collapse request 〈corr, all〉 obtaining:

The state sti from the honest player Pti ∈ H, for i = 1, . . . , |H|;
The state stP from P.

-The execution of ΓV(A,Z,H, 1λ) terminates and A outputs her view viewA and this is the output
of the experiment.

Remark 1. The above definition does not assume that the blockchain satisfies the predicate V, even
when P is the only honest player of ΓV, and thus the blockchain could be completely controlled by
the adversary. In this scenario we will say that Π = (P,V) enjoys WI w.r.t. blockchain failure over
any blockchain protocol.

15

Definition 7 (Zero-Knowledge w.r.t. Blockchain Failure). A publicly verifiable proof system
Π = (P,V) over a blockchain protocol ΓV for the NP-language L with witness relation R is Zero
Knowledge (ZK) w.r.t. blockchain failure if there is a stateful ppt algorithm S such that ∀ x,w s.t.
(x,w) ∈ R, ∀ ppt adversary A and set of ppt honest players H and for any ppt environment Z,
where P ∈ H it holds that:{

viewA : viewA ← Exp0A,Π,ΓV(λ)

}
≈
{
viewA : viewA ← Exp1A,Π,S,ΓV(λ)

}
where Exp0A,Π,ΓV(λ) and Exp1A,Π,S,ΓV(λ) are defined below.

Exp0A,Π,ΓV(λ):

- P runs on input 1λ.
- An execution of ΓV(A,H,Z, 1λ) starts.

1. At any point A can send a corruption request 〈ZKcorr(x,w)〉 (s.t. (x,w) ∈ R) to P
obtaining from P her state stP .

2. PstP outputs messages π1, . . . , πm−1.

3. If A did not compute Step 1 P receives (x,w′) ∈ R from A.

4. PstP outputs π = (π1, . . . , πm).

5. If A sends a collapse request 〈corr, all〉 obtains:

The state sti from honest player Pti ∈ H, for i = 1, . . . , |H|;

The state stP from P, if A did not compute Step 1.

-The execution of ΓV(A,Z,H, 1λ) terminates and A outputs her view viewA and this is
the output of the experiment.

16

Exp1A,Π,S,ΓV(λ):

- S runs on input 1λ.
- An execution of ΓV(A,S,Z, 1λ) starts.

1. At any point A can send a corruption request 〈ZKcorr(x,w)〉 (s.t. (x,w) ∈ R) to S
obtaining from S a state stP .

2. S outputs messages π1, . . . , πm−1.

3. If A did not compute Step 1: S receives (x,w′) ∈ R from A, S ignores w′.

4. S outputs π = (π1, . . . , πm).

5. If A sends a collapse request 〈corr, all〉 obtains from S:

The state sti for each honest player Pti ∈ H, for i = 1, . . . , |H|;

The state stP for the honest prover of Π, if A did not compute Step 1.

-The execution of ΓV(A,Z,H, 1λ) terminates and A outputs her view viewA and this is
the output of the experiment.

4 Publicly Verifiable ZK w.r.t. Blockchain Failure

We construct a delayed-input publicly verifiable zero-knowledge proof system w.r.t. blockchain
failure ΠpvZK = (PpvZK,VpvZK) over any blockchain protocol ΓV = (UpdateState, GetRecords,
Broadcast,GenBlock) satisfying chain-consistency property, chain-growth property and Assump-
tion 1. The parameters of ΠpvZK are reported in Table 4. We assume wlog that in a sequence of d
blocks, n of them are pristine, where n is an even non-negative integer. ΠpvZK for the NP-language
L makes use of the following tools:

- The block trim function trim defined in Definition 1, that on input a block B outputs a q-bits
long string v.

- A non-interactive statistically binding commitment scheme ΠCom = (Com,VrfyOpen).

- A delayed-input publicly verifiable proof system ΠpvWI = (PpvWI,VpvWI) over any blockchain
protocol ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) that satisfies chain-consistency
property, chain-growth property and Assumption 1. Moreover ΠpvWI enjoys WI w.r.t. blockchain
failure over any blockchain protocol. ΠpvWI is for NP-language LpvWI which is associated to
the relation RpvWI =

{
((x, xcom), w) : (x,w) ∈ R ∨ (xcom, w) ∈ Rcom

}
, where R is the re-

lation associated to the NP-language L and Rcom is the relation associated to the following
NP-language:

Lcom =
{
{comj}u·dj=1, {vi}ni=1 : ∃ 1 ≤ j1 < · · · < jn/2+1 ≤ n, {openjk}

n/2+1
k=1

s.t. VrfyOpen(comjk , openjk , vjk) = 1 ∀k = 1, . . . , n/2 + 1
}

Loosely speaking the relation Rcom is satisfied if the message committed in comjk is vjk for at
least n/2 + 1 distinct values of jk. The instance length of LpvWI is ` and the size of the proof
generated by PpvWI is of m messages.

17

Table of Notation

` Size of the theorem for LpvWI.
m Number of messages of ΠpvWI.
q Output-length of the block trim function trim. See Definition 1.
η Chain consistency parameter of ΓV. See Definition 9.
d, n Pristine parameters of ΓV. See Assumption 1.
u Attempts parameter of ΓV. See Assumption 1.

Table 1: Parameters of ΠpvZK.

Our delayed-input publicly verifiable zero-knowledge proof system w.r.t. blockchain failure
ΠpvZK = (PpvZK,VpvZK) is described in Figure 2.

Theorem 1. Let ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) be any blockchain proto-
col that satisfies chain-consistency property, chain-growth property and Assumption 1. Let ΠCom =
(Com,VrfyOpen) be a non-interactive statistically binding commitment scheme. Let ΠpvWI = (PpvWI,VpvWI)
be a delayed-input publicly verifiable proof system over ΓV for NP-language LpvWI. Moreover
ΠpvWI enjoys WI w.r.t. blockchain failure over any blockchain protocol. Assuming secure erasure,
ΠpvZK = (PpvZK,VpvZK) (described in Figure 2) is a delayed-input publicly verifiable zero-knowledge
proof system w.r.t. blockchain failure over ΓV for NP.

We note that a pvWI proof system that satisfies delayed-input completeness can be instantiated
from OWPs using the work of [39]. In Appendix A.1 we prove that ΠpvWI satisfies Definitions 4, 6.
Therefore we have the following corollary.

Corollary 1. Let ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) be a blockchain protocol
that satisfies chain-consistency property, chain-growth property and Assumption 1. Assuming secure
erasure, if one-way permutations exists, then ΠpvZK = (PpvZK,VpvZK) is a delayed-input publicly
verifiable zero-knowledge proof system w.r.t. blockchain failure over ΓV for NP.

The proof of the Theorem 1 and the description of the simulator SpvZK for ΠpvZK can be found
in the next subsections.

Note that the inputs of ΠpvZK (i.e., the statement x and the witness w) are used only in the
last message of the protocol. Therefore the prover can pre-process all the other messages ahead of
time (even without knowing the statement) and complete the last message whenever the statement
becomes available.

4.1 Delayed-Input Completeness (Definition 5)

Let st and stPti be respectively the states of P and of an honest player Pti after Step 6 of ΠpvZK

(that is, after the proof has been computed). Since both P and V are running the protocol honestly,
from the chain-consistency property follows that Bdη ≤ B̃ (with overwhelming probability), where
B = GetRecords(st) and B̃ = GetRecords(stPti). Therefore V performs all the blockchain checks
on B̃ successfully. After that P posts the commitments {comj}u·dj=1 in the blockchain B we are

guaranteed by the chain growth property of ΓV and by Assumption 1 that new d blocks will be
added to B and among them n will be pristine. Therefore P can construct the instance xcom (as
defined in Step 3 of Figure 2) in order to complete her execution running ΠpvWI.

Finally the completeness of ΠpvZK follows from the completeness of ΠpvWI and the correctness
of ΠCom.

18

Publicly Verifiable ZK proof system w.r.t. blockchain failure ΠpvZK = (PpvZK,VpvZK)

Parameters are defined in Table 4.

Prover Procedure: PpvZK. Input: instance x, witness w s.t. (x,w) ∈ R.

— First step.

1. Compute (comj , openj)← Com(0q) and erase openj for j = 1, . . . , d · u.

— Blockchain Interaction.

2. Set st = ε. Post com1, . . . , comu·d on the blockchain by running Broadcast(1λ, com1, . . . , comu·d) and then
monitor the blockchain by running st = UpdateState(1λ, st), B = GetRecords(1λ, st), until com1, . . . , comu·d
followed by d additional blocks B1, . . . , Bd are posted on the blockchain Bdη (i.e., we consider the blockchain
B pruned of the last η blocks). Let B1, . . . , Bn be the n pristine blocks in the sequence B1, . . . , Bd.

— Second step.

3. Compute vj = trim(Bj) for j = 1, . . . , n and set com = {comj}u·dj=1, val = {vj}nj=1, xcom = (com, val),
xpvWI = (x, xcom).

4. Obtain π1
pvWI with randomness r1 executing PpvWI on input 1λ, `

and interacting with the blockchain if it is required by PpvWI.

5. For i = 2, . . . ,m− 1 :

Obtain πipvWI with randomness ri executing PpvWI on input πi−1pvWI and interacting with the blockchain

if it is required by PpvWI.

6. Obtain πmpvWI executing PpvWI on input πm−1pvWI , xpvWI, w and interacting with the blockchain if it is required
by PpvWI.

7. Set πpvWI = (π1
pvWI, . . . , π

m
pvWI) and π = (xpvWI, {comj}u·dj=1, πpvWI) erase any randomness that PpvWI requests

to erase and output π.

Verifier Procedure: VpvZK. Input: x, π = (xpvWI, {comj}u·dj=1, πpvWI), and a blockchain B̃ s.t. Bdη ≤ B̃ works
as follows.

— Check Blockchain. If the messages {comj}u·dj=1 are not posted on the blockchain B̃
dη

then VpvZK outputs

0. Otherwise, let B∗ be the block of the blockchain B̃
dη

where the messages {comj}u·dj=1 are posted. Let

B1, . . . , Bn be the n pristine blocks of the blockchain B̃
dη

after B∗. VpvZK computes v′j = trim(Bj) for

j = 1, . . . , n and parses xpvWI as instance x, commitments {comj}u·dj=1, and strings {vj}nj=1.

— Check Proof. Accept if all the following conditions are satisfied.

- v′j = vj for all j ∈ {1, . . . , n};

- VpvWI(xpvWI, πpvWI, B̃) = 1.

Execution of ΓV by honest player Ptj:

Ptj acts as described in Section 3.2, in particular, upon receiving a request of an execution of GenBlock using
fresh randomness for the function fID(1λ; ·) by Z:

Ptj picks r at random from {0, 1}poly(λ);

Ptj runs GenBlock and uses the randomness r to execute fID.

If A sends a collapse request 〈corr, all〉, A obtains stPti from honest player Pti, for all i = 1, . . . , |H|,
moreover A obtains the state stPpvZK

of PpvZK (if A did not send a corruption request to PpvZK before).

Figure 2: Description of ΠpvZK = (PpvZK,VpvZK).

19

4.2 Soundness (Definition 4)

Claim 1. If Assumption 1 holds for ΓV then ΠpvZK is sound.

Proof. Let P?pvZK be a successful adversary. Recall that P?pvZK is successful if it produces with
non-negligible probability an accepting π of ΠpvZK w.r.t. x /∈ L, where x is adaptively chosen by
P?pvZK before the last message of π.

Let B∗ be the block in the blockchain B where the last commitment of the set of the com-
mitments com1, . . . , comu·d is posted by P?pvZK, and let B1, . . . , Bn be the n pristine blocks (in a
sequence of d blocks) appeared in B after the block B∗.

From Assumption 1 it follows that in a sequence of n pristine blocks B1, . . . , Bn at least n/2+1
are generated by honest players through good executions of GenBlock w.r.t. B. Let B1, . . . , Bn/2+1

be the n/2 + 1 blocks generated by honest players through good executions of GenBlock w.r.t.
B in the sequence of pristine blocks B1, . . . , Bn, and the value vj be s.t. vj = trim(Bj), for
j = 1, . . . , n/2 + 1. When P?pvZK posts com1, . . . , comu·d, it has no information about the values
v1, . . . , vn/2+1, because when P?pvZK posts com1, . . . , comu·d each value vj (for j = 1, . . . , n/2 + 1)

can be guessed with probability 2−λ (since Assumption 1 holds and each vj has at least λ bits of
min-entropy). Moreover, since ΠCom is a perfectly binding commitment scheme, the committed
message is uniquely identified in the commitment phase. Therefore the probability that P?pvZK
correctly commits the values v1, . . . , vn/2+1 is negligible. It follows that the values v1, . . . , vn/2+1

are committed in com1, . . . , comu·d only with negligible probability, therefore xcom /∈ Lcom. Since
by contradiction we are assuming that P?pvZK is successful w.r.t. x /∈ L, it follows that with
non-negligible probability xpvWI = (xcom, x) /∈ LpvWI. This contradicts the soundness property of
ΠpvWI

4.3 Zero Knowledge w.r.t. Blockchain Failure (Definition 7)

Simulator SpvZK. The simulator SpvZK is presented in Figure 3, the red steps denote the steps of
SpvZK that are different from the one of PpvZK.

Zero Knowledge w.r.t. Blockchain Failure. Let A be the adversary as defined in Defini-
tions 7. Intuitively, we want to prove that even if the blockchain collapses, the zero-knowledge
property of ΠpvZK is still preserved.

In order to show that ΠpvZK satisfies zero knowledge w.r.t. blockchain failure we will consider
the following hybrid experiments.

- Hybrid H0. In hybrid experiment H0(λ) the simulator S′pvZK follows the honest prover pro-
cedure of PpvZK.

- Hybrid H1. Experiment H1(λ) is described as H0(λ) except that the simulator S′pvZK emulates

the honest players in the execution of ΓV, more precisely S′pvZK follows Step 3 and Steps 14-17
of Figure 3.

Note that after that the commitments are posted in the blockchain in H0(λ) when an honest
player Ptj ∈ H receives a request from Z of an execution of GenBlock using fresh randomness
for fID(1λ; ·) Ptj runs fID on input freshly generated randomness obtaining a freshly generated
value v. It easy to see that in H1(λ) the value v is generated in the same way as Ptj ∈ H does
in H0(λ) except that v is computed at the start of ΠpvZK. Since (1) the values vj ← fID(1λ; rj)
for j = 1, . . . , d · u are identically distributed in the two hybrid experiments and (2) S′pvZK is

behaving in the same way of the honest players in an execution of ΓV, we have that H1 ≡ H0.

20

Simulator Procedure: SpvZK.

Parameters are defined in Table 4.

— First step.
1. If a corruption request 〈ZKcorr(x,w)〉 is received, then execute the steps of PpvZK on input x,w. Else continue

with the following steps.
2. For j = 1, . . . , u · d :
3. Pick rj at random from {0, 1}poly(λ) compute vj ← fID(1λ; rj) and set R = R||rj .
4. Compute (comj , openj)← Com(vj).
— Blockchain Interaction.
5. Set st = ε. Post com1, . . . , comu·d on the blockchain by running Broadcast(1λ, com1, . . . , comu·d) and then

monitor the blockchain by running st = UpdateState(1λ, st), B = GetRecords(1λ, st), until com1, . . . , comu·d
followed by d additional blocks B1, . . . , Bd are posted on the blockchain Bdη. Let B1, . . . , Bn be the n
pristine blocks in the sequence B1, . . . , Bd.

— Second step.
6. Compute vj = trim(Bj) for j = 1, . . . , n and set com = {comj}u·dj=1, val = {vj}nj=1, xcom = (com, val),

π0
pvWI = (1λ, `).

7. Let Bj1 , . . . , Bjk be the pristine blocks generated by honest players in the sequence B1, . . . , Bd set wcom =
openj1 , . . . , openjk (where k ≥ n/2 + 1 by Assumption 1).

8. Obtain π1
pvWI with randomness r1 executing PpvWI on input 1λ, `

and interacting with the blockchain if it is required by PpvWI.
If a corruption request 〈ZKcorr(x,w)〉 is received: erase the values {openj}u·dj=1 and output stPpvZK

= r1, π1.
9. For i = 2, . . . ,m− 1 :

Obtain ri, πipvWI executing PpvWI on input ri−1, and πi−1pvWI interacting with the blockchain
if it is required by PpvWI.
If a corruption request 〈ZKcorr(x,w)〉 is received. Erase the values {openj}u·dj=1.

Output stPpvZK
= r′||ri and π1, . . . , πi.

10. If a corruption request 〈ZKcorr(x,w)〉 was not received, then:
11. Upon receiving x from A, set xpvWI = (x, xcom)

Obtain πmpvWI executing PpvWI with randomness on input πm−1pvWI , xpvWI, wcom and interacting with the
blockchain if it is required by PpvWI.
Set πpvWI = (π1

pvWI, . . . , π
m
pvWI) and π = (xpvWI, {comj}nj=1, πpvWI).

Obtain stPpvWI
from PpvWI set stPpvZK

= stpvWI and erase {open}u·di=1. Output π.
12. If a corruption request 〈ZKcorr(x,w)〉 is received: output stPpvZK

.

— Execution of ΓV simulating honest player Ptj. Act on behalf of Ptj as described in Section 3.2, in
particular, upon receiving a request of an execution of GenBlock using fresh randomness for the function
fID(1λ; ·):

13. Run B = GetRecords(1λ, stj), let np be number of pristine blocks posted after com1, . . . , comu·d in the

blockchain Bdη. Let K be the number of blocks added in the blockchain Bdη. Let nb be the number of
honest executions of GenBlock already executed for the block BK+1.

14. If 0 ≤ np < n:
15. Parse R as r1, . . . , ru·d.
16. Run an execution of GenBlock on behalf of honest player Ptj and use the

randomness rnp+nb to execute fID.
17. Else:
18. Pick r at random from {0, 1}poly(λ).
19. Run GenBlock on behalf of honest player Ptj and use the

randomness r to execute fID.
20. If A sends a collapse request 〈corr, all〉 compute the following steps:

Disclose state stPti from honest player Pti, for all i = 1, . . . , |H|.
If a corruption request 〈ZKcorr(x,w)〉 did not occur obtain the state stPpvWI

from PpvWI set stPpvZK
= stpvWI

and disclose stPpvZK
.

Figure 3: Simulator SpvZK of ΠpvZK.

21

- Hybrid H2. If a corruption of the form 〈ZKcorr(x,w)〉 occurs when ΠpvZK starts, H2(λ)
corresponds toH1(λ), otherwise we consider a series of hybrid experimentsH0

2 (λ), . . . , Hu·d
2 (λ)

where H0
2 (λ) = H1(λ) and H2(λ) = Hu·d

2 (λ) and they are described as follows.

Hybrid Hk
2 with k ∈ {1, . . . , u ·d}. The hybrid experiment Hk

2 (λ) is describe ad Hk−1
2 (λ)

except that S′pvZK computes the k-th commitment following Steps 2-4 of Figure 3. Indeed,

S′pvZK computes (comj , openj) ← Com(vj) for j = 1, . . . , k (where vj ← fID(1λ; rj)) and
it computes (comj , openj)← Com(0q) for j = k + 1, . . . , u · d.

Assuming secure erasure, from Claim 2 it holds that Hk−1
2 ≈ Hk

2 for all k = 1, . . . , u · d,
therefore since H1 corresponds to H0

2 and H2 corresponds to Hu·d
2 we conclude that

H1(λ) ≈ H2(λ).

- Hybrid H3. If a corruption of the form 〈ZKcorr(x,w)〉 occurs during the computation of the
first m− 1 messages of ΠpvWI, we have that H2(λ) corresponds to H3(λ). Indeed due to the
delayed-input property of ΠpvWI, S

′
pvZK computes the first m− 1 messages of ΠpvWI as PpvZK

does. Note that the decommitment information {openj}u·dj=1 are securely erased by PpvZK,
therefore if S′pvZK receives a corruption request during the computation of the first m − 1
messages of ΠpvWI she is able to exhibit randomness that is identically distributed to the one
that PpvZK would have in her state.

If a corruption of the form 〈ZKcorr(x,w)〉 does not occur during the computation of the first
m− 1 messages of ΠpvWI, then H3 is defined as follow.

The hybrid experiment H3(λ) is described exactly as H2(λ) except for the witness used
to compute the last message πmpvWI generated using ΠpvWI, for which S′pvZK is acting as
SpvZK. In more details, for the computation of the message πmpvWI S

′
pvZK is behaving as

described in Steps 11 of Figure 3. Assuming secure erasure, since ΠpvWI satisfies WI
w.r.t. blockchain failure it follows that H2(λ) ≈ H3(λ) (see Claim 3).

H0(λ) corresponds to the experiment where PpvZK is interacting with A and H3(λ) corresponds
to the experiment where SpvZK is interacting with A. Since H3(λ) ≈ H0(λ) it follows that A
distinguishes the two experiments only with negligible probability.

Claim 2. Assume that Πcom satisfies computationally hiding (Definition 17), secure erasure, and
the blockchain protocol ΓV satisfies Assumption 1, then for every pair of messages m0,m1 ∈ {0, 1}q
it holds that Hk−1

2 (λ) ≈ Hk
2 (λ) for k ∈ {1, . . . , u · d}.

Proof. Suppose by contradiction that the above claim does not hold, this implies that there exists
an adversary A that is able to distinguish between Hk−1

2 (λ) and Hk
2 (λ). Note that A could wait

until the protocol ΠpvZK ends and then can send a collapse request 〈corr, all〉. Using A it is
possible to construct a malicious receiver ACom that breaks the hiding of ΠCom with non-negligible
probability.
Let CH be the challenger of the hiding game of ΠCom. ACom computes the following steps:

1. Compute vk running fID(1λ; r) where r is an uniformly chosen randomness and sends the
messages m0 = 0q and m1 = vk to CH.

2. Upon receiving ˜comk from CH, ACom interacts with A computing all the messages of S′pvZK
following the steps described in Hk

2 (λ) (and in Hk−1
2 (λ)) except for the k-th commitment for

which she uses ˜comk.

22

3. Emulation of the state stPpvZK
of PpvZK after π is compute: acts as S′pvZK in Hk

2 (λ) (and in

Hk−1
2 (λ)) and securely erase the decommitment information {openj}u·dj=1 (except for ˜openk

that was never available to ACom), set the state stPpvZK
as described Hk

2 (λ) (and in Hk−1
2 (λ))

that is as described in Step 12 of Figure 3.

4. execution of ΓV :

4.1. Emulate the honest players acting as the honest player of ΓV (as described in Section
Hk

2 (λ) (and in Hk−1
2 (λ))).

4.2. After π of ΠpvZK is computed if A sends a collapse request 〈corr, all〉, disclose the states
of all the honest players stPt1 , . . . , stPt|H| and stPpvZK

.

5. When A stops, ACom outputs the outcome of A.

ACom emulates the states of all the honest players stPt1 , . . . , stPt|H| in a perfect manner, since ACom

just acts as the honest players in the execution of ΓV. Moreover, stPpvZK
after π is computed in

Step 3 of the above procedure, corresponds to the state of an honest PpvZK in Hk
2 (λ) (and in

Hk−1
2 (λ)). The proof is concluded observing that if CH uses the message m0 to compute ˜comk then

the reduction is distributed as Hk−1
2 and as Hk

2 otherwise.

Claim 3. Assume that ΠpvWI satisfies WI w.r.t. blockchain failure as in Definition 6 over any
blockchain protocol, secure erasure, and the blockchain protocol ΓV satisfies Assumption 1, then for
every xpvWI, w0, w1 s.t. (xpvWI, w0) ∈ RpvWI and (xpvWI, w1) ∈ RpvWI it holds that H2(λ) ≈ H3(λ).

Proof. Suppose by contradiction that the above claim does not hold, this implies that there exists
an adversary A that is able to distinguish between H2(λ) and H3(λ). Note that A could wait until
the protocol ΠpvZK ends and then can send a collapse request 〈corr, all〉. Using A it is possible
to construct a malicious verifier ApvWI that breaks the WI w.r.t. blockchain failure w.r.t. any
blockchain protocol property of ΠpvWI. We remark that ΠpvWI enjoys WI w.r.t. blockchain failure
w.r.t. any blockchain protocol (i.e., even w.r.t. a blockchain protocol where PpvWI is the only
honest player of the blockchain protocol). Let CH be the challenger of the WI w.r.t. blockchain
failure game of ΠpvWI. ApvWI computes the following steps.

1. ApvWI acts as described in H2(λ) and H3(λ) until Step 6 of Figure 3. In particular, ApvWI

computes the instance xcom and the witness wcom as explained, respectively, in Step 6 and in
Steps 7, 14-17 of Figure 3.

2. ApvWI interacts as a proxy between CH and A for the messages π1
pvWI, . . . , π

m−1
pvWI, and inter-

acting with the blockchain as a PpvWI would do upon request of CH.

3. A chooses (x,w) ∈ R before the last message of ΠpvZK and therefore ApvWI (that is acting
as PpvZK) will obtain w s.t. (x,w) ∈ R and sends xpvWI = (x, xcom), w, wcom to CH before the
message πmpvWI. ApvWI completes the proof π of ΠpvZK using πmpvWI and interacting with the
blockchain as a PpvWI would do upon request of CH.

3.1. Emulation of the state stPpvZK
of PpvZK after π is computed:

i. ApvWI sends a collapse request 〈corr, all〉 to CH obtaining stPpvWI
from the chal-

lenger CH.

ii. ApvWI is acting as S′pvZK in H2(λ) (and in H3(λ)) and securely erases the decommit-

ment information {openj}u·dj=1, set stPpvZK
= stPpvWI

.

23

4. execution of ΓV :

4.1. ApvWI emulates the honest players acting as the honest players of ΓV as described in
H3(λ) (and in H2(λ)).

4.2. After π is computed if A sends a collapse request 〈corr, all〉, ApvWI discloses the states
of all the honest players stPt1 , . . . , stPt|H| and stPpvZK

.

5. When A stops, ApvWI outputs the outcome of A.

We note that ApvWI simulates the states of all the honest players stPt1 , . . . , stPt|H| in a perfect

way, this is because in the execution of ΓV, ApvWI is behaving in the same way of the honest players
of an execution of ΓV (as described in H3(λ) (and in H2(λ))). The proof is concluded observing
that if CH uses the witness w to compute πmpvWI then the reduction is distributed as H2, and as H3

otherwise.

5 On Public Verifiability in [15]

A recent work [15] models the blockchain as a global ledger functionality Gledger available to all the
participants of a cryptographic protocol. [15] constructs concurrent self-composable secure compu-
tation protocol for general functionalities in such global ledger model. The protocols constructed
in [15] are not publicly verifiable, and therefore do not satisfy the main feature that we study and
achieve in this work. Indeed the authors of [15] already notice in their work that non-interactive
zero knowledge for NP is impossible in their model. We remark that actually the impossibility
extends also to publicly verifiable zero knowledge for languages that are not in BPP and we give
now an high-level intuition.First of all, note that in the model of [15], since the blockchain is mod-
eled as a global ledger, the simulator S of the zero-knowledge property has the same power of the
adversary while accessing Gledger. Suppose now by contradiction that it is possible to construct
a publicly verifiable zero-knowledge argument Π = (P,V) for the NP-language L in the Gledger
model. This means that there exists a simulator S that having access to Gledger on input any
instance x ∈ L outputs an accepting proof π w.r.t. x that is (computationally) indistinguishable
from a proof generated by a honest prover P. Let us now consider a malicious polynomial-time
prover P∗ that in the Gledger-model wants to prove a false statement x∗ to an honest verifier V.
We will show that P∗ proves a false theorem with non-negligible probability, P∗ works as follows.
P∗ internally runs S on input x∗. Moreover, each interaction that S wants to do with Gledger is
emulated by P∗ and this is possible since S and P∗ are accessing Gledger in the same way. At the
end of the execution, S outputs π∗ w.r.t. x∗. P∗ forwards π∗ to V. Note that we are guaranteed by
the zero-knowledge property that π∗ is accepting and the view of an honest verifier that receives π∗

from P∗ is (computationally) indistinguishable from the view that V has when she receives a proof
from an honest prover. Finally we note that public verifiability guarantees that π∗ can be accepted
by any verifier non-interactively, The only caveat in the above reasoning can concern the fact that
S might refuse to produce an accepting proof when x 6∈ L. However this immediately shows that
the language L is in BPP.

Acknowledgments

Research supported in part by NSF grants #1012798,#1764025, and in part by the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 780477

24

(project PRIViLEDGE).

References

[1] Aggarwal, D., Obremski, M., Ribeiro, J.L., Siniscalchi, L., Visconti, I.: How to extract useful
randomness from unreliable sources. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology
- EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 12105, pp. 343–372. Springer (2020)

[2] Badertscher, C., Garay, J.A., Maurer, U., Tschudi, D., Zikas, V.: But why does it work?
A rational protocol design treatment of bitcoin. In: Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II. pp. 34–65 (2018)

[3] Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis: Compos-
able proof-of-stake blockchains with dynamic availability. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018. pp. 913–930 (2018)

[4] Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger: A com-
posable treatment. In: Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I.
pp. 324–356 (2017)

[5] Baldimtsi, F., Kiayias, A., Zacharias, T., Zhang, B.: Crowd verifiable zero-knowledge and
end-to-end verifiable multiparty computation. In: Moriai, S., Wang, H. (eds.) Advances in
Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 12493, pp. 717–748. Springer
(2020)

[6] Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual Symposium
on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada,
USA. pp. 106–115. IEEE Computer Society (2001)

[7] Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Santis, A.D. (ed.) Advances in
Cryptology - EUROCRYPT ’94, Workshop on the Theory and Application of Cryptographic
Techniques, Perugia, Italy, May 9-12, 1994, Proceedings. Lecture Notes in Computer Science,
vol. 950, pp. 92–111. Springer (1994)

[8] Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasi-linear size zero knowledge from
linear-algebraic pcps. In: Theory of Cryptography - 13th International Conference, TCC 2016-
A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II. pp. 33–64 (2016)

[9] Benhamouda, F., Gentry, C., Gorbunov, S., Halevi, S., Krawczyk, H., Lin, C., Rabin, T.,
Reyzin, L.: Can a public blockchain keep a secret? In: Pass, R., Pietrzak, K. (eds.) Theory
of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November
16-19, 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12550, pp. 260–290.
Springer (2020)

25

[10] Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. CoRR abs/1605.04559 (2016)

[11] Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. IACR Cryptology
ePrint Archive 2014, 129 (2014)

[12] Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source. Cryptology
ePrint Archive, Report 2015/1015 (2015), https://eprint.iacr.org/2015/1015

[13] Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the public pa-
rameters of the pinocchio zk-snark. In: Financial Cryptography Workshops. Lecture Notes in
Computer Science, vol. 10958, pp. 64–77. Springer (2018)

[14] Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October
2001, Las Vegas, Nevada, USA. pp. 136–145. IEEE Computer Society (2001)

[15] Choudhuri, A.R., Goyal, V., Jain, A.: Founding secure computation on blockchains. In: Ishai,
Y., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2019 - 38th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part II. Lecture Notes in Computer Science, vol.
11477, pp. 351–380. Springer (2019)

[16] Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Delayed-input non-malleable zero
knowledge and multi-party coin tossing in four rounds. In: Kalai, Y., Reyzin, L. (eds.) Theory
of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA, November
12-15, 2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10677, pp. 711–742.
Springer (2017)

[17] Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Online/offline OR com-
position of sigma protocols. In: Fischlin, M., Coron, J. (eds.) Advances in Cryptology - EU-
ROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II. Lecture
Notes in Computer Science, vol. 9666, pp. 63–92. Springer (2016)

[18] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on
a single random string (extended abstract). In: 31st Annual Symposium on Foundations of
Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I. pp. 308–317.
IEEE Computer Society (1990)

[19] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: Ortiz, H.
(ed.) Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17,
1990, Baltimore, Maryland, USA. pp. 416–426. ACM (1990)

[20] Ganesh, C., Orlandi, C., Tschudi, D.: Proof-of-stake protocols for privacy-aware blockchains.
In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Darm-
stadt, Germany, May 19-23, 2019, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 11476, pp. 690–719. Springer (2019)

[21] Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and ap-
plications. In: Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part II. pp. 281–310 (2015)

26

https://eprint.iacr.org/2015/1015

[22] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct nizks
without pcps. In: Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings. pp. 626–645 (2013)

[23] Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-index pir with ap-
plications to large-scale secure mpc. Cryptology ePrint Archive, Report 2020/1248 (2020),
https://eprint.iacr.org/2020/1248

[24] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling byzantine
agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems
Principles, Shanghai, China, October 28-31, 2017. pp. 51–68 (2017)

[25] Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using blockchains. In:
Theory of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA,
November 12-15, 2017, Proceedings, Part I. pp. 529–561 (2017)

[26] Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using blockchains. Cryp-
tology ePrint Archive, Report 2017/935 (2017), https://eprint.iacr.org/2017/935

[27] Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing and retrieving secrets
on a blockchain. IACR Cryptol. ePrint Arch. 2020, 504 (2020)

[28] Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal
common reference strings with applications to zk-snarks. In: CRYPTO (3). Lecture Notes in
Computer Science, vol. 10993, pp. 698–728. Springer (2018)

[29] Juels, A., Kosba, A.E., Shi, E.: The ring of gyges: Investigating the future of criminal smart
contracts. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, Vienna, Austria, October 24-28, 2016. pp. 283–295 (2016)

[30] Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros crypsinous: Privacy-preserving
proof-of-stake. In: 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco,
CA, USA, May 19-23, 2019. pp. 157–174. IEEE (2019)

[31] Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols. IACR Cryp-
tology ePrint Archive 2015, 1019 (2015), http://eprint.iacr.org/2015/1019

[32] Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs. In:
Menezes, A., Vanstone, S.A. (eds.) Advances in Cryptology - CRYPTO ’90, 10th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1990,
Proceedings. Lecture Notes in Computer Science, vol. 537, pp. 353–365. Springer (1990)

[33] Lindell, Y.: Foundations of cryptography 89-856. http://u.cs.biu.ac.il/~lindell/

89-856/complete-89-856.pdf (2010)

[34] Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks from
linear-size universal and updatable structured reference strings. In: Cavallaro, L., Kinder, J.,
Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, November 11-15, 2019. pp. 2111–2128.
ACM (2019)

[35] Nakamoto, S.: Bitcoin: A peer-to-peer electionic cash system. unpublished, 2008. (2008)

27

https://eprint.iacr.org/2020/1248
https://eprint.iacr.org/2017/935
http://eprint.iacr.org/2015/1019
http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf
http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf

[36] Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks.
In: Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part II. pp. 643–673 (2017)

[37] Pass, R., Shi, E.: The sleepy model of consensus. In: Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryptology and In-
formation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II. pp. 380–409
(2017)

[38] Scafuro, A., Siniscalchi, L., Visconti, I.: Publicly verifiable zero knowledge from (collapsing)
blockchains, to appear in PKC 2021

[39] Scafuro, A., Siniscalchi, L., Visconti, I.: Publicly verifiable proofs from blockchains. In: Lin,
D., Sako, K. (eds.) Public-Key Cryptography - PKC 2019 - 22nd IACR International Confer-
ence on Practice and Theory of Public-Key Cryptography, Beijing, China, April 14-17, 2019,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 11442, pp. 374–401. Springer
(2019)

[40] Scafuro, A., Siniscalchi, L., Visconti, I.: Publicly verifiable zero knowledge from (collapsing)
blockchains. PENCIL - Workshop on Privacy ENhancing Cryptography In Ledgers (2019),
https://priviledge-project.eu/pencil

28

https://priviledge-project.eu/pencil

A Appendix

A.1 Publicly Verifiable WI of [39]

In [39] the authors show a delayed-input publicly verifiable witness indistinguishable proof system
ΠpvWI = (PpvWI,VpvWI) over any blockchain protocol ΓV = (UpdateState,GetRecords, Broadcast,
GetHash) satisfying chain-consistency property, chain-growth property and Assumption 1. In this
section we will show that ΠpvWI satisfies WI w.r.t. blockchain failure in the secure erasure model over
any blockchain protocol (i.e., even when the blockchain protocol does not satisfy chain-consistency
property, chain-growth property and Assumption 1, and PpvWI is the only honest player of the
blockchain). The blockchain protocol ΓV has chain consistency parameter η(λ), pristine parameters
d, n (for simplicity, we assume that n is an even integer).

The construction presented in [39] makes use of the following tools. 1) A 3-round delayed-input
public-coin adaptive-input WI adaptive-input special-sound ΠΣ = (PΣ,VΣ) for the relation RpvWI.
2) An efficient procedure Extract (defined in [39]) that takes as input d blocks, an auxiliary input
aux and outputs τ strings s1, . . . , sτ such that at least one string si is distributed statistically close
to the uniform distribution over {0, 1}λ.

ΠpvWI is described in Figure 4.

Theorem 2. Let ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) be a blockchain protocol that
satisfies chain-consistency property, chain-growth property and Assumption 1. Let ΠΣ = (PΣ,VΣ)
be a 3-round delayed-input public-coin adaptive-input WI adaptive-input special-sound RpvWI. As-
suming secure erasure ΠpvWI = (PpvWI,VpvWI) is a delayed-input publicly verifiable proof system
over ΓV for NP. Moreover, assuming secure erasure, ΠpvWI enjoys WI w.r.t. blockchain failure
over any blockchain protocol.

Proof. The proofs of completeness follows from the proof of Theorem 2 in [39].

WI w.r.t. blockchain failure satisfying Definition 6. In order to show that ΠpvWI enjoys WI
w.r.t. blockchain failure satisfying Definition 6 we will consider the following 2 hybrid experiments.

Let H0(λ) be defined as the execution of ΠpvWI, where PpvWI uses the witness w0. Let H1(λ)
be defined as the execution of ΠpvWI, where PpvWI uses the witness w1. Let A be the adversary
as defined in Definition 6. The output of each experiment is the pair (π, viewA), where π is the
transcript of ΠpvWI computed in the experiment and viewA is the view of A in the experiment.

Claim 4. Let ΠΣ = (PΣ,VΣ) be a 3-round delayed-witness public-coin adaptive-input WI adaptive-
input special-sound RpvWI. Assuming secure erasure then for every xpvWI, w0, w1 s.t. (xpvWI, w0) ∈
RpvWI and (xpvWI, w1) ∈ RpvWI it holds that H0(λ) ≈ H1(λ).

Proof. Suppose by contradiction that the above claim does not hold, this implies that there exists
an adversary A that is able to distinguish w.r.t. between H0(λ) and H1(λ). Note that A has the
additional power to wait until the protocol ΠpvWI ends and then sends a collapse request 〈corr, all〉.

Let CH be the challenger of adaptive-input WI game of ΠΣ. AΣ will interact as a proxy between
CH and A for the messages {Σ1

i ,Σ
3
i }τi=1 and she will compute all other messages following PpvWI of

H0 (of H1).
In more details, AΣ acts as follows.

1. AΣ receives {Σ̃1
i }τi=1 from CH and sets Σ1

i = Σ̃1
i for i = {1, . . . , τ}.

2. AΣ computes the other steps of ΠpvWI, until Step 3, she acts as PpvWI of H0 (of H1). In
particular in Step 3 AΣ computes {Σ2

i }τi=1 as PpvWI of H0 (of H1) does.

29

Delayed-Input Publicly Verifiable WI w.r.t. blockchain failure proof system
ΠpvWI = (PpvWI,VpvWI)

Parameters : τ is a parameters of Extract, η is the chain consistency parameter of ΓV, d, n are
pristine parameters of ΓV.

Prover Procedure: PpvWI. Input: instance x, witness w s.t. (x,w) ∈ RpvWI.
— First message.
1. Compute Σ1

i ← PΣ(1λ, x), for i = 1, . . . , τ .

— Blockchain Interaction.
2. Set st = ε. Post Σ1

1|| . . . ||Σ1
τ on the blockchain by running Broadcast(1λ,Σ1

1|| . . . ||Σ1
τ) and

then monitor the blockchain by running st = UpdateState(1λ, st), B = GetRecords(1λ, st),
until Σ1

1|| . . . ||Σ1
τ followed by d additional blocks B1, . . . , Bd are posted on the blockchain

Bdη.
— Second message.
3. Let Bp1 , . . . , Bpτ be the pristine blocks in the sequence B1, . . . , Bd. Extract challenges by

executing Extract(Bp1 , . . . , Bpn , aux) and obtain r1, . . . , rτ . Set Σ2
i = ri for i = 1, . . . , τ .

4. Compute Σ3
i ← PΣ(Σ2

i , xΣ, w), for i = 1, . . . , τ .
— Blockchain Interaction.
5. Post Σ3

1|| . . . ||Σ3
τ on the blockchain by running Broadcast(1λ,Σ3

1|| . . . ||Σ3
τ).

6. Set π = (x, {Σ1
i ,Σ

2
i ,Σ

3
i }τi=1) and output π erasing all the randomness needed to compute π

setting stPpvWI
as empty.

Verifier Procedure: VpvWI. Input: x, π = (x, {Σ1
i ,Σ

2
i ,Σ

3
i }τi=1), and a blockchain B̃ s.t.

Bdη ≤ B̃ works as follows.

— Check Blockchain. If the messages {Σ1
i }τi=1 are not posted on the blockchain B̃

dη

then VpvWI outputs 0. Otherwise, let B∗ be the block of the blockchain B̃
dη

where
the messages {Σ1

i }τi=1 are posted. Let B1, . . . , Bd be d consecutive blocks of the

blockchain B̃
dη

after B∗ ,and let Bp1 , . . . , Bpn be the pristine blocks. VpvWI computes
{Σ2

i }τi=1 = Extract(Bp1 , . . . , Bpn , aux).

— Check Proof. Accept if all the following conditions are satisfied.
- The messages {Σ3

i }τi=1 are posted at least d blocks after B∗;
- VΣ(x,Σ1

i ,Σ
2
i ,Σ

3
i) = 1 for i = 1, . . . , τ .

Execution of ΓV by honest player Ptj:
Ptj acts as described in Section 3.2.
If A sends a collapse request 〈corr, all〉, A obtains stPti from honest player Pti, for all
i = 1, . . . , |H|, moreover A obtains the state stPpvWI

of PpvWI.

Figure 4: Description of ΠpvWI = (PpvWI,VpvWI).

30

3. AΣ sends {Σ2
i }τi=1 to CH along with x,w0, w1 obtained from A.

4. AΣ receives {Σ̃3
i }τi=1 from CH and sets Σ3

i = Σ̃3
i for i = {1, . . . , τ}, AΣ completes the compu-

tations of π precisely as PpvWI does in both H0 and H1.

5. Emulate state stPpvWI
of PpvWI: AΣ acting as PpvWI erases all the randomness needed to

compute π as soon as the proof is computed, setting stPpvWI
as an empty state.

6. If A sends a corruption request 〈corr, all〉 AΣ discloses stPpvWI
. AΣ emulates the state of

PpvWI in a perfect way, since at that point (after the computation of π) the state of honest
player PpvWI is empty since she already erased the randomness of π.

At the end of the execution AΣ outputs what A outputs.

The proof is concluded observing that if CH uses the witness w0 to compute {Σ̃3
i }τi=1 then the

output of this execution is distributed as H0. Instead if CH uses the witness w1 to compute {Σ̃3
i }τi=1

then the output of this execution is distributed as H1.

Soundness, Definition 4. We note that ΠpvWI satisfies the Definition 4, it follows a sketched
proof.

Let P? be a successful adversary. Recall that P? is successful if it produces with non-negligible
probability an accepting π of ΠpvWI w.r.t. x /∈ LpvWI, where x is adaptively chosen by P? before
the last message of π.

We will now argue that the probability with which P? completes the execution of ΠΣ w.r.t. xpvWI

s.t. xpvWI /∈ LΣ is negligible in λ. First, note that at least one of the outputs of Extract(Bpn , . . . , Bpn , aux)
is distribute statistically close to a distribution over {0, 1}λ. In particular, let Σ∗2i be this output,
from the adaptive-input special soundness of ΠΣ it follows that P? computes Σ3

i s.t. VΣ(xpvWI,Σ
1
i ,Σ

∗2
i ,Σ

3
i) =

1 with probability less or equal to 2−λ.
Summing up, since xpvWI is s.t. xpvWI /∈ LΣ with non-negligible probability and P∗ has only

negligible probability to compute τ accepting transcripts of ΠΣ w.r.t a false instance xpvWI, we can
conclude that P∗ is successful only with negligible probability.

Note that it is possible to instantiate ΠΣ = (PΣ,VΣ) using [32] that is adaptive-input special-
sound in the variant of [16].

Corollary 2. Let ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) be a blockchain protocol
that satisfies chain-consistency property, chain-growth property and Assumption 1. Assuming secure
erasure ΠpvWI = (PpvWI,VpvWI) is a delayed-input publicly verifiable proof system over ΓV for NP.
Moreover, assuming secure erasure, ΠpvWI enjoys WI w.r.t. blockchain failure over any blockchain
protocol.

A.2 Properties of the Blockchain Protocol ΓV

All properties defined below were originally defined in previous works [21, 36, 25].

Chain quality predicate. Let Quality be the predicate such that Quality
η
A (view, µ(·)) = 1 iff

for all rounds r ≥ η and all players Pi in view such that Pi is honest at round r with blockchain
B, we have that out of η last blocks in B at least a fraction µ(·) of blocks is mined by an
honest player.

31

Definition 8. (Chain Quality) A blockchain protocol ΓV satisfies (µ(·), η0(·))-chain quality
with adversary A, honest players H, and environment Z, if there exists a negligible function
ν(·) such that for every λ ∈ N and η > η0(λ) the following holds:

Pr
[
Quality

η
A(view, µ(λ)) = 1

∣∣view← ExecΓV
(A,H,Z, 1λ)

]
≥ 1− ν(λ).

Chain consistency predicate. Let Consistent be the predicate such that Consistentη(view) = 1
iff for all rounds r ≤ r̃ and all players Pi, Pj (potentially the same) in view such that Pi is
honest at round r with blockchain B and Pj is honest at round r̃ with blockchain B̃, we have
that Bdη ≤ B̃.

Definition 9. (Chain Consistency) A blockchain protocol ΓV satisfies η1(·)-consistency with
adversary A, honest players H, and environment Z, if there exists a negligible function ν(·)
such that for every λ ∈ N, η > η1(λ) the following holds:

Pr
[
Consistentη(view) = 1

∣∣view← ExecΓV
(A,H,Z, 1λ)

]
≥ 1− ν(λ).

Chain growth predicate. Let Growth be the predicate such that Growthη(view) = 1 iff for all
rounds r ≤ r̃, with r̃ at least s ∈ N round ahead of r, and all players Pi, Pj (potentially the
same) in view such that Pi is honest at round r with blockchain B and Pj is honest at round
r̃ with blockchain B̃, we have that |B| − |B̃| ≥ η · s, where |B| denotes the number of blocks
in B.

Definition 10. (Chain growth) A blockchain protocol ΓV satisfies η2(·)-growth with adversary
A, honest players H, and environment Z, if there exists a negligible function ν(·) such that
for every λ ∈ N, η > η2(λ) the following holds:

Pr
[
Growthη(view) = 1

∣∣view← ExecΓV
(A,H,Z, 1λ)

]
≥ 1− ν(λ).

A.3 Standard Tools

Definition 11 (Min-Entropy). Let X be a random variable with finite support X . The min-entropy
H∞(X) of X is defined by

H∞(X) = min
x∈X

log2(1/Pr[X = x]).

For X ∈ {0, 1}p, we call X a (p, k)-source, where k is the min-entropy of k (i.e., λ = H∞(X)).
We will say that a string s given in output by a randomized algorithm has min-entropy k meaning

that: 1) no specific string can be given in output with probability ≥ 2−k; 2) the probability of any
adversary of guessing s is ≤ 2−k.

Definition 12 (Computational indistinguishability). Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be
ensembles, where Xλ’s and Yλ’s are probability distribution over {0, 1}l, for same l = poly(λ). We
say that X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable, denoted X ≈ Y ,
if for every ppt distinguisher D there exists a negligible function ν such that for sufficiently large
λ ∈ N, ∣∣∣Pr

[
t← Xλ : D(1λ, t) = 1

]
− Pr

[
t← Yλ : D(1λ, t) = 1

] ∣∣∣ < ν(λ).

32

We note that in the usual case where |Xλ| = Ω(λ) and λ can be derived from a sample of Xλ,
it is possible to omit the auxiliary input 1λ. In this paper we also use the definition of Statistical
Indistinguishability. This definition is the same as Definition 12 with the only difference that the
distinguisher D is unbounded. In this case use X ≡s Y to denote that two ensembles are statistically
indistinguishable.

Definition 13 (One-way permutation (OWP)). A bijective function f : {0, 1}∗ → {0, 1}∗ is called
one way if the following two conditions hold:

• there exists a deterministic polynomial-time algorithm that on input y in the domain of f
outputs f(y);

• for every ppt algorithm A there exists a negligible function ν, such that for every auxiliary
input z ∈ {0, 1}poly(λ):

Pr
[
y←{0, 1}∗ : A(f(y), z) ∈ f−1(f(y))

]
< ν(λ).

Let 〈P(w),V∗〉(x) denote the execution of Π between P and V of Π where P and V run on
common input x and P run on private input w.

Definition 14 (Proof/argument system). A pair of ppt interactive algorithms Π = (P,V) consti-
tute a proof system (resp., an argument system) for an NP-language L, if the following conditions
hold:

Completeness: For every x ∈ L and w such that (x,w) ∈ RL, it holds that:

Pr [〈P(w),V〉(x) = 1] = 1.

Soundness: For every interactive (resp., ppt interactive) algorithm P?, there exists a neg-
ligible function ν such that for every x /∈ L and every z:

Pr [〈P?(z),V〉(x) = 1] < ν(|x|).

A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-input completeness
if P needs x and w only to compute the last round and V needs x only to compute the output. Before
that, P and V run having as input only the size of x. The notion of delayed-input completeness
was defined in [17]. For a protocol that enjoys delayed-input completeness we consider also the
notion of adaptive-input arguments/proof system. That is, the soundness holds against a stronger
adversary P∗ that can choose the statement to be proved in the last round of the interaction with
V.

An interactive protocol Π = (P,V) is public coin if, at every round, V simply tosses a predeter-
mined number of coins (i.e., a random challenge) and sends the outcome to the prover. Moreover
we say that the transcript τ of an execution b = 〈P(z),V〉(x) is accepting if b = 1.

A 3-round protocol Π = (P,V) for a relation R is an interactive protocol played between a
prover P and a verifier V on common input x and private input w of P s.t. (x,w) ∈ R. Π = (P,V)
works as follow.
P on input a security parameter λ, x and w computes and sends Σ1 to V. V sends a random

challenge Σ2 to P. Upon receiving Σ2 P on input Σ2 computes and sends Σ3 to V. At the end of
the protocol V decides to accept or reject based on the data that he has seen (i.e., x,Σ1,Σ2,Σ3).

We usually denote the message Σ2 sent by V as a challenge, and as challenge length the number
of bit of Σ2.

33

Definition 15. A delayed-input 3-round system Π = (P,V) for relation R enjoys adaptive-input
special soundness if there exists a polynomial time algorithm Ext such that, for any pair of accepting
transcripts Σ1,Σ2

1,Σ
3
1 for input x1 and Σ1,Σ2

2,Σ
3
2 for input x2 with Σ2

1 6= Σ2
2, outputs witnesses w1

and w2 such that (x1, w1) ∈ R and (x2, w2) ∈ R.

Definition 16 (Witness Indistinguishable (WI)). An argument/proof system Π = (P,V), is Wit-
ness Indistinguishable (WI) for a relation R if, for every malicious ppt verifier V∗, there exists a
negligible function ν such that for all x,w,w′ such that (x,w) ∈ R and (x,w′) ∈ R it holds that:∣∣∣Pr 〈P(w),V∗〉(x) = 1− Pr 〈P(w′),V∗〉(x) = 1

∣∣∣ < ν(|x|).

Obviously one can generalize the above definitions of WI to their natural adaptive-input vari-
ants, where the adversarial verifier can select the statement and the witnesses adaptively, before
the prover plays the last round. We note that [19] prove that WI is preserved under self-concurrent
composition (i.e., when multiple instance of Π are played concurrently).

A.4 Commitment Schemes

Definition 17 (Commitment Scheme). Given a security parameter 1λ, a commitment scheme
Πcom = (Com,VrfyOpen) is a two-phase protocol between two ppt algorithms, a sender Com and a
receiver VrfyOpen. In the commitment phase Com on input a message m outputs a commitment
com, and the private output open. In the decommitment phase, VrfyOpen on input a decommitment
information (m, open) such that VrfyOpen accepts m as the decommitment of com.

Formally, we say that Πcom = (Com,VrfyOpen) is a statistically binding commitment scheme if
the following properties hold:

Correctness:

• Commitment phase. Let com be the commitment of the message m given as output of Com
that runs on input a message m. Let open be the private output of Com in this phase.

• Decommitment phase11. VrfyOpen on input m and open accepts m as decommitment of com.

Computational Hiding([33]): for any adversary (resp. ppt adversary) A and a randomly
chosen bit b ∈ {0, 1}, consider the following hiding experiment ExpbA,Πcom(λ):

• Upon input 1λ, the adversary A outputs a pair of messages m0,m1 that are of the same length.

• Com on input the message mb outputs a commitment of mb.

• A outputs a bit b′ and this is the output of the experiment.

For any adversary (resp. ppt adversary) A, there exist a negligible function ν, s.t.:∣∣∣Pr[Exp0
A,Πcom

(λ) = 1]− Pr[Exp1
A,Πcom

(λ) = 1] < ν(λ).

Statistical Binding: for every commitment com generated during the commitment phase by a
possibly malicious unbounded sender Com? there exists a negligible function ν such that Com?, with
probability at most ν(λ), outputs two decommitments (m0, open0) and (m1, open1), with m0 6= m1,
such that VrfyOpen accepts both decommitments.

11In this paper we consider a non-interactive decommitment phase only.

34

	Introduction
	Our Contribution
	A More Realistic Blockchain Threat Model.
	Publicly Verifiable Zero Knowledge from a Generic Blockchain in Our Threat Model.

	Related Work

	The Attack of the Clones to GG-NIZK GG17
	Definitions
	Blockchain Protocols
	Execution of V in an Environment
	Publicly Verifiable ZK Proof System from Blockchains

	Publicly Verifiable ZK w.r.t. Blockchain Failure
	Delayed-Input Completeness (Definition 5)
	Soundness (Definition 4)
	Zero Knowledge w.r.t. Blockchain Failure (Definition 7)

	On Public Verifiability in GolEC
	Appendix
	Publicly Verifiable WI of SSV19
	Properties of the Blockchain Protocol V
	 Standard Tools
	Commitment Schemes

