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Abstract

We introduce and study a simple kind of proof system called line-point zero knowledge
(LPZK). In an LPZK proof, the prover encodes the witness as an affine line v(t) := at + b in
a vector space Fn, and the verifier queries the line at a single random point t = α. LPZK is
motivated by recent practical protocols for vector oblivious linear evaluation (VOLE), which can
be used to compile LPZK proof systems into lightweight designated-verifier NIZK protocols.

We construct LPZK systems for proving satisfiability of arithmetic circuits with attractive
efficiency features. These give rise to designated-verifier NIZK protocols that require only 2-5
times the computation of evaluating the circuit in the clear (following an input-independent
preprocessing phase), and where the prover communicates roughly 2 field elements per multi-
plication gate, or roughly 1 element in the random oracle model with a modestly higher com-
putation cost. On the theoretical side, our LPZK systems give rise to the first linear interactive
proofs (Bitansky et al., TCC 2013) that are zero knowledge against a malicious verifier.

We then apply LPZK towards simplifying and improving recent constructions of reusable
non-interactive secure computation (NISC) from VOLE (Chase et al., Crypto 2019). As an
application, we give concretely efficient and reusable NISC protocols over VOLE for bounded
inner product, where the sender’s input vector should have a bounded L2-norm.

1 Introduction

Zero-knowledge proofs, introduced by Goldwasser, Micali, and Rackoff [29] in the 1980s, are com-
monly viewed as a gem of theoretical computer science. For many years, they were indeed confined
to the theory domain. However, in the past few years we have seen explosive growth in research
on concretely efficient zero-knowledge proof systems. This research is motivated by a variety of
real-world applications. See [50] for relevant pointers.

Designated-verifier NIZK. There are many different kinds of zero-knowledge proof systems.
Here we mainly consider the setting of designated-verifier, non-interactive zero knowledge (dv-
NIZK), where the proof consists of a single message from the prover to the verifier, but verification
requires a secret verification key that is known only to the verifier and is determined during a
(reusable) setup phase. Moreover, we consider by default computationally sound proofs, also known
as arguments. Designated-verifier NIZK has a rich history starting from [39]; see [43, 40, 19]
and references therein for recent works in the area. We will typically consider a more restrictive
setting, sometimes referred to as preprocessing NIZK, where also the prover needs to hold secret
information. In this variant of dv-NIZK the prover and the verifier engage in a (typically inexpensive
and reusable) interaction during an offline preprocessing phase, before the inputs are known. In
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the end of the interaction the prover and the verifier obtain correlated secret randomness that is
consumed by an online protocol in which the prover can prove multiple statements to the verifier.
While this preprocessing model will be our default model for NIZK, our results are relevant to both
kinds of dv-NIZK.

Efficiency of proof systems. We are primarily motivated by the goal of improving the effi-
ciency of zero-knowledge proofs. There are several metrics for measuring efficiency of proof systems.
Much of the research in this area focuses on improving succinctness, which refers both to the proof
length and to the verifier’s running time. This is highly relevant to the case of publicly verifiable
proofs that are generated once and verified many times. However, in the case of a proof that is
verified once by a designated verifier, other complexity metrics, such as prover’s running time and
space, can become the main performance bottlenecks. Indeed, state-of-the-art succinct proof sys-
tems, such as zk-SNARKs based on pairings [30] or IOPs [7], typically incur high concrete prover
computation costs when scaled to large verification tasks. Moreover, they require a big amount of
space, and are not compatible with a “streaming” mode of operation in which the proof is generated
on the fly together with the computation being verified. On the other hand, non-succinct or semi-
succinct proof systems based on the “MPC-in-the-head” [35, 27, 18, 37], garbled circuits [24, 31],
or interactive proofs [28, 46, 49], scale better to big verification tasks.

Minimizing prover complexity. Our goal is to push the advantages of non-succinct zero-
knowledge proof systems to their limits, focusing mainly on optimizing the prover’s computation.
This can be motivated by settings in which the prover and the verifier are connected via a fast
local network. An extreme case is that of physically connected devices, for which the distinction
between computation and communication is blurred. Alternatively, one can think of scenarios in
which the proofs can be generated and stored offline on the prover side and only verified at a later
point, or possibly not at all. Another motivating scenario is one where the statement is short and
simple, but is kept secret from the verifier. In this setting, which comes up in applications such
as “commit-and-prove” and NISC on small inputs (which will be discussed later), the concrete
overhead of “asymptotically succinct” systems is too high. Finally, if the witness is secret-shared
between multiple provers and the proof needs to be generated in a distributed way, the prover’s
computation is likely to become a bottleneck. All of the above reasons motivate a systematic study
of minimizing the prover’s complexity in zero-knowledge proofs.

Achieving constant computational overhead. We consider the goal of zero-knowledge proofs
with constant computational overhead, namely where the total computational cost (and in particular
the prover’s computation) is only a constant times bigger than the cost of performing the verification
in the clear. In the case of proving the satisfiability of a Boolean circuit, this question is still open,
and the best computational overhead is polylogarithmic in a statistical security parameter [20].
However, when considering arithmetic circuits over a big finite field F and settling for O(1/|F|)
soundness error, this goal becomes much easier. The first such proof system was given by Bootle et
al. [11], who also achieved “semi-succinctness.” However, the underlying multiplicative constants
are very big, and this system is not considered practical. A more practical approach uses variants
of the GKR interactive proofs protocol [46, 49, 48]. Here the concrete computational overhead is
smaller, but still quite big: roughly 20x overhead in the best-case scenario of “layered” arithmetic
circuits. On top of that, this overhead is only relevant when the verification circuit is much bigger
than the witness size. In some of the applications we consider (such as the NISC application
discussed below), this will not be the case.
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A third approach, which is most relevant to our work, relies on oblivious linear evaluation
(OLE) [42, 36] and its vector variant (VOLE) [2]. An OLE is an arithmetic variant of oblivious
transfer, allowing the receiver, on input α, to learn a linear combination aα+b of two ring elements
held by the sender. VOLE is a natural vector analogue of OLE: the receiver learns aα + b for a
pair of vectors a,b held by the sender. The idea of using random precomputed instances of OLE
and VOLE towards zero-knowledge proofs with constant computational overhead was suggested
in [12, 19]. This is motivated by recent techniques for securely realizing pseudorandom instances of
(V)OLE with sublinear communication and good concrete overall cost [12, 13, 44, 16, 15]. However,
these protocols for zero knowledge from (V)OLE still suffered from a high concrete overhead. For
instance, the protocol from [19] requires 44 instances of OLE for each multiplication gate. Recent
and concurrent works by Weng et al. [45] and Baum et al. [6] improved this state of affairs. We
will discuss these works in Section 1.5 below.

1.1 Our contribution

Motivated by the goal of minimizing prover complexity in zero-knowledge proofs, we introduce and
study a simple kind of proof systems called line-point zero knowledge. We then apply this proof
system towards obtaining simple, concretely efficient, and reusable protocols for non-interactive
secure computation. We elaborate on these results below.

Line-point zero knowledge. A recent work of Boyle et al. [12], with improvements in [13, 44],
has shown how to securely generate a long, pseudorandom instance of a vector oblivious linear
evaluation (VOLE) correlation with low communication complexity (sublinear in the vector length)
and good concrete efficiency. Here we show how to use this for implementing simple and efficient
dv-NIZK protocols for circuit satisfiability, improving over similar protocols from [12, 19]. In
particular, previous protocols involve multiple VOLE instances and have a large (constant) overhead
in communication and computation compared to the circuit size.

The goal of reducing NIZK to a single instance of VOLE motivates the key new tool we introduce:
a simple kind of information-theoretic proof system that we call line point zero knowledge (LPZK).
In an LPZK proof, the prover P generates from the witness w (a satisfying assignment) an affine line
v(t) := at+b in an n-dimensional vector space Fn. The verifier queries a single point v(α) = aα+b
on this line, and determines whether to accept or reject. We call this proof system LPZK over F of
length (or dimension) n. We define the LPZK model formally along with more refined cost metrics
in Section 2.1.

Information-theoretic LPZK construction. We start by showing the existence of an LPZK
for arithmetic circuit satisfiability (an NP-complete problem), where the dimension n and compu-
tational costs scale linearly with the circuit size.

Theorem 1.1 (LPZK for arithmetic circuit satisfiability). For any NP-relation R(x, y) and finite
field F, there exists an LPZK system for R over F with soundness error O(1/|F|). Concretely, in
the case of proving the satisfiability of an arithmetic circuit C over F, we have an LPZK over F
with dimension n = O(|C|), soundness error ε = O(1/|F|), and where the prover and verifier can
be implemented by arithmetic circuits of size O(|C|).

As an information-theoretic proof system, LPZK can be viewed as a simple instance of a (1-
round) zero-knowledge linear interactive proof (LIP) [9], in which the verifier sends a single field
element to the prover. Theorem 1.1 implies the first such system that is zero knowledge even
against a malicious verifier.
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From LPZK to NIZK over random VOLE. It is easy to convert an LPZK into an NIZK
protocol in the rVOLE-hybrid model, namely with a trusted setup in which the prover P receives
a random pair of vectors a′, b′ ∈ Fn, while the verifier V receives a random field element α ∈ F
and the vector a′α+ b′. This uses a standard reduction from VOLE to rVOLE; see Section 2.2 for
details. We refer to the length of the vectors a′,b′ as the rVOLE length.

The rVOLE setup, whose efficient implementation will be discussed later, allows the prover to
compress the LPZK proof by eliminating entries that can be picked at random independently of
the input. Using this and other optimizations, we obtain an information-theoretic NIZK protocol
in the rVOLE-hybrid model with the following concrete efficiency features.

Theorem 1.2 (NIZK over a single random VOLE). Fix an integer t ≥ 1. There exists an (un-
conditional, perfect zero-knowledge) NIZK protocol in the rVOLE-hybrid model that proves the
satisfiability of an arithmetic circuit C over a field F, where C has k inputs, k′ outputs and m
multiplication gates, with the following security and efficiency features:

• Soundness error: ε = 2t/|F|;

• Communication: k + k′ + (2 + 1
t )m field elements from P to V ;

• rVOLE length: n = k + 2m field elements;

• Computation: Assuming the cost of field additions is negligible compared to multiplications,
the computation of the prover is less than 4 times the cost of evaluation in the clear, and the
computation of the verifier is less than 5 times the cost of evaluation in the clear.

We give a more precise analysis of the computation cost in terms of the cost of additions and
multiplications in § 4.4. In Appendix A, we combine this analysis with a consideration of circuit
structure and computer architecture to show that, for reasonable choices of parameters, both the
prover and verifier computation are between 2 and 5 times the cost of evaluation in the clear,
depending on the number of operations of each kind.

VOLE instantiations. The random VOLE required by Theorem 1.2 can be instantiated in a va-
riety of ways. For instance, one could use a 2-message protocol in the CRS model based on Paillier’s
encryption scheme, which yields statistical dv-NIZK arguments for NP from the DCRA assump-
tion [19]. Other efficient VOLE implementations under different assumptions appear in [2, 22, 5].
In terms of asymptotic efficiency, random VOLE can be implemented with constant multiplicative
computational overhead under plausible variants of the learning parity with noise (LPN) assump-
tion over big fields [2, 12]. From a concrete efficiency viewpoint, the most appealing current VOLE
implementations rely on pseudorandom correlation generators (PCGs) [12, 13, 44]. A PCG for
VOLE enables a “silent” generation of a long random VOLE correlation by locally expanding a
pair of short, correlated seeds. This local expansion can be done in near-linear or even linear time,
and may be carried out in an offline phase before the statement is known. The secure generation
of the correlated seeds can also be done by a concretely efficient, low-communication protocol.
Optimized pseudorandom function analogs of PCG that enable random access to the outputs of
a virtually unbounded VOLE correlation were recently considered in [15]. The above approaches
generally lead to a preprocessing NIZK, where both the verifier and the prover are fixed in advance.
However, using 2-round protocols for VOLE with security against malicious receivers [19, 13], LPZK
can be compiled into dv-NIZK protocols in which the same (short) verifier message can be used by
different provers.
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1.2 Improving proof size in the random oracle model

Inspired by the concurrent1 work of Weng et al. [45], we can improve the communication cost of our
proofs in the random oracle model by a factor of 2 (asymptotically) at the cost of a modest increase
of prover and verifier computation, in the form of calls to a cryptographic hash function. Note that
other attractive features of LPZK such as space- and streaming-friendliness are maintained. See
§ 1.5 below for a detailed comparison between the results of [45] and our work.

Theorem 1.3 (NIZK over random VOLE in the ROM). Fix an integer r ≥ 1. There exists an
(unconditional) NIZK protocol in the RO-rVOLE-hybrid model that proves the satisfiability of an
arithmetic circuit C over a field F, where C has k inputs and m multiplication gates and ` is the
number of oracle calls a malicious prover P ∗ makes, with the following features:

• Soundness error: ε = 2
|F| + `

|F|r ;

• Communication: k + k′ +m+ 2r field elements from P to V ;

• rVOLE length: n = k +m+ r field elements;

• Computation: Computation of O(r|C|) field operations and 1 cryptographic hash call (from Fm
to Fmr) for both the prover and the verifier.

1.3 Reusable NISC from LPZK via certified VOLE

A non-interactive secure computation (NISC) protocol [34] is a two-party protocol that securely
computes a function f(x, y) using two messages: a message by a receiver, encrypting its input x,
followed by a message by a sender, that depends on its input y. The output f(x, y) is only revealed
to the receiver. A major challenge is making such protocols secure even when either party can
be malicious. Another challenge is to make such protocols reusable, in the sense that the same
encrypted input x can be used to perform computations with many sender inputs yi without vio-
lating security. This should hold even when a malicious sender can learn partial information about
the honest receiver’s output, such as whether the receiver “aborts” after detecting an inconsistent
sender behavior. Existing NISC (or even NIZK) protocols based on parallel calls to oblivious trans-
fer (OT) and symmetric cryptography [39, 34, 1, 41] are not fully reusable, and this is in some sense
inherent [19].

Chase et al. [19] recently showed how to realize reusable NISC by using parallel instances of
VOLE instead of OT. This can be seen as a natural extension of the LPZK model, where the receiver
randomly encodes its NISC input x into multiple points αi and the sender randomly encodes is
input y into corresponding lines vi(t). Here reusability refers to fixing the VOLE inputs (points)
αi generated by an honest receiver on input x and reusing them in multiple interactions with a
malicious sender.

On top of the reusability feature, another advantage of the VOLE-based protocol, which is
inherited from earlier protocols with security against semi-honest senders [32, 3], is that it “natively”
supports simple arithmetic computations over the VOLE field. This is contrasted with NISC
protocols over OT [34, 1, 41], which apply to Boolean circuits and are expensive to adapt to
arithmetic computations.

We provide an alternative construction of reusable NISC over VOLE that uses LPZK to protect
against malicious senders. Our approach significantly simplifies the protocol from [19] and results
in much better concrete constants.

1Most of the present work was done concurrently and independently of [45]. We explicitly point out the improve-
ments that are based on ideas from [45].
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NISC for bounded inner product. To illustrate the concrete efficiency potential of our NISC
technique, we optimize it for a simple application scenario. Consider an “inner product” function-
ality that measures the level of similarity (or correlation) between receiver feature vector x and
a sender feature vector y, where the same x can be reused with multiple sender inputs yi. Here
we view both x and y as integer vectors that are embedded in a sufficiently large finite field. An
obvious problem is that the ideal functionality allows a malicious sender to scale its real input
by an arbitrary multiplicative factor, thereby increasing the perceived similarity. To prevent this
attack, we modify the functionality to bound the L2 norm of the sender’s input. In this way, the
sender’s strategy is effectively restricted to choosing the direction of a unit vector, where the bound
on the norm determines the level of precision. For this bounded inner product functionality, we
obtain a concretely efficient protocol that offers reusable malicious security. Even when considering
malicious security alone, without reusability, previous techniques for NISC are much less efficient
for such simple arithmetic functionalities. To give just one data point, for vectors of length 1000
over F, with |F| ≈ 264 and sender L2 norm bounded by 1024, our protocol requires 1002 instances
of VOLE with a total of 21,023 entries and communication of 36,047 field elements (roughly 282
kB) after the offline generation of VOLE instances. Given recent methods for “silent” generation
of multiple VOLE instances [13, 44, 16, 15], the amortized cost of setting up the required VOLE
instances is small.

1.4 Overview of techniques

From LPZK to NIZK via random VOLE. An LPZK proof system can be directly realized by a
single instance of VOLE, where the prover’s line v(t) := at+b ∈ Fn determines the VOLE sender’s
input (a,b) and the verifier’s point α is used as the VOLE receiver’s input. A further observation is
that this single VOLE instance can be easily reduced to a random VOLE functionality that assigns
to the prover a uniformly random pair of vectors (a′,b′) each in Fn and to the verifier a uniformly
random value α ∈ F and v′ = a′α + b′. Indeed, the prover can send (a − a′) and (b − b′) to
the verifier, who computes v(α) = v′ + (a − a′)α + (b − b′). This requires communication of 2n
field elements on top of the pre-processing step required to set up the random VOLE instance.
Combined with efficient protocols for generating long instances of random VOLE, this gives rise
to dv-NIZK protocol in which the offline phase consists of secure generation of random VOLE and
the online phase uses the random VOLE as a “one-time pad” for realizing LPZK.

Constructing information-theoretic LPZK proofs. Our information-theoretic LPZK con-
struction follows the general template of similar kinds of proof systems: the verification circuit is
evaluated in two different ways that depend on secret randomness picked by the verifier, and the
verifier accepts if the two evaluations are consistent. Zero knowledge is obtained by masking the
values revealed to the verifier using randomness picked by the prover. This high level approach
was used in previous information-theoretic zero-knowledge proof systems (such as succinct zero-
knowledge linear PCPs [4, 33, 26, 9]), actively secure computation protocols (such as the SPDZ
line of protocols [8, 21]), and circuits resilient to additive attacks [25]. Our LPZK systems most
closely resemble the “homomorphic MAC” approach used for actively secure computation in the
preprocessing model [8, 21], but differ in the low-level details.

More concretely, we construct LPZK for proving the satisfiability of an arithmetic circuit C by
encoding intermediate wire values in the vector a and masking these values with randomness in b.
This is an information-theoretic encryption: If the verifier holds v1(α) := a1α+ b1 and α, where a1
is sampled from some distribution and b1 is chosen uniformly at random from F, the distribution
of v1(α) holds no information about a1.
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We can “add” two encrypted wires v1(t) = a1t + b1 and v2(t) = a2t + b2 non-interactively
for free; the prover adds to obtain (a1 + a2)t + (b1 + b2), and the verifier adds v1(α) + v2(α) =
(a1 + a2)α+ (b1 + b2).

To multiply v1 and v2, the prover seeks to construct the encrypted wire a1a2t + b, for some
value b. When the prover multiplies v1(t) · v2(t) they obtain a quadratic in t. By adding and
subtracting a masking term b3t, they can write v1(t)v2(t) = tv3(t) + v4(t), with v3(t) = a1a2t +
(b1a2 + b2a1 − b3) and v4(t) = b3t + b1b2, so that v3(t) is the desired encryption of a1a2 and
satisfies v3(t) = (v1(t)v2(t)− v4(t))/t. The verifier learns vi(α), for 1 ≤ i ≤ 4 from the LPZK, and
accepts if

v3(α) =
v1(α)v2(α)− v4(α)

α
,

and rejects otherwise. Finally, to open the value of an encrypted wire v(t) = at+ b, the prover
sends b to the verifier who computes a = (v(α)− b)/α.

LPZK-NIZK optimizations. There are two optimizations in the compiler from LPZK to NIZK
over random VOLE. These take advantage of special features of the LPZK to further reduce com-
munication costs. When the LPZK only requires an entry of a or b to be chosen uniformly at
random over F, independently of previous entries, we can leave the corresponding element of a′

or b′ in the random VOLE unchanged, reducing communication costs by one. And, when the
LPZK requires an entry of a to be equal to zero, we can instead send the corresponding entry of b
in the clear, shortening our random VOLE length by one and reducing communication costs by
one.

In the technical sections (cf. Theroem 4.1, a refinement of Theorem 1.1) we use length pa-
rameters (n, n′, n′′) to give a more refined complexity measure for LPZK that takes the above
optimizations into account. Here n denotes the total LPZK dimension (where a,b ∈ Fn), n′ de-
notes the number of entries in a and b for which the first and second optimization above do not
apply, and by n′′ denotes the number of entries where the second optimization does apply.

We perform additional optimizations for the general NIZK construction by batching together
tests for multiple gates at once to reduce communication costs. We batch in blocks of t gates, giving
an amortized cost of 2+ 1

t field elements of communication per multiplication gate and increasing the
soundness error by a factor of t. In the random oracle setting, we batch together all multiplication
gates into a single block, giving an amortized cost of 1 field elements per multiplication gate plus an
additional 2r field elements total, where r is some fixed parameter. This approach is theoretically
vulnerable to a malicious prover who makes repeated calls to the random oracle until they find a
collision. However, when we choose parameters r and |F| appropriately, we can bound soundness
error reasonably, as we show in Section 5.

Certified VOLE. As a building block for NISC, we build a certified variant of VOLE. This
primitive is useful for invoking several parallel instances of VOLE while assuring the receiver that
a given circuit C is satisfied when its inputs are a certain subset of the entries of the VOLEs.

We construct fully general certified VOLE from a weaker construction, distributional VOLE
with equality constraints. This construction allows us to move all inputs to C to a single VOLE
instance. The sender and receiver then prove that C is satisfied using LPZK NIZK.

This weaker variant, which we call eVOLE, is distributional, because it requires the VOLE
inputs from the receiver to be chosen independently and uniformly at random. In general certified
VOLE, which we call cVOLE, we use two additional evaluation points α, β, and perform an affine
shift to the receiver’s inputs, replacing (α1, . . . , αn) with (α+ α1, . . . , α+ αn, α, β).
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This forces all receiver inputs to be uniformly random, and every input besides β is independent
of β. We move all inputs to C to the VOLE instance with receiver input β, and use the VOLE
instance with input α to reverse the affine shift of the receiver’s inputs.

From certified VOLE to NISC. Following [19], our NISC protocol is obtained from certified
VOLE in a conceptually straightforward way: we start with existing protocols for arithmetic branch-
ing programs [32, 3] that achieve security against a malicious receiver and semi-honest sender. We
then protect the receiver against a malicious sender by using certified VOLE to enforce honest
behavior. This yields a statistically secure reusable NISC protocol for “simple” arithmetic func-
tions represented by polynomial-size arithmetic branching programs. We can bootstrap this to
get reusable NISC over VOLE for general Boolean circuits using the approach of [19]; however,
this comes at the cost of making a non-black-box use of a pseudorandom generator and losing the
concrete efficiency features of the arithmetic variant of the protocol.

1.5 Comparison with concurrent and subsequent work

In concurrent work, Weng, Yang, Katz and Wang [45] and Baum, Malozemoff, Rosen and Scholl [6]
design and implement two concretely efficient VOLE-based ZK protocols, which they call Wolverine
and Mac’n’Cheese, respectively. Both protocols have an online phase that can be made non-
interactive in the random oracle model. These protocols share some high-level features with each
other and with our LPZK-based protocol, but there are some important differences in scope and
design, and each work offers unique optimizations and extensions.

A subsequent work by Yang, Sarkar, Weng and Wang [47] gives a protocol Quicksilver which is
an extension of our LPZK. We describe their contribution in more detail below.

The following comparison refers to the online phase of the protocols, once a random VOLE
correlation has already been generated. In the random oracle model, our LPZK protocol requires
at least 2 times less communication and computation per multiplication gate than either Wolverine
or Mac’n’Cheese, while offering the possibility of eliminating entirely the “cryptographic” overhead
of the online phase. Our information theoretic LPZK NIZK requires similar communication to the
best variant of Wolverine described in [45], with at least 2-3 times less multiplications, and no calls
to a cryptographic hash function. We give additional details below.

Baum et al. [6] provide an additional optimization that allows stacking disjunctive statements,
similar to the “stacked garbling” improvement over ordinary garbled circuits [31]. The efficiency
gains from this optimization depend on the structure of the circuit, of course, and so the only
comparison we make to Mac’n’Cheese is for general arithmetic circuits on a per-gate basis.

Weng et al. [45] use subfield VOLE and other optimizations to improve the cost of soundness
amplification when working over small (even binary) fields. In an earlier version of this paper, we
wrote:

Similar techniques could be applied to our approach, but we chose here to focus on
the simpler case of arithmetic circuits over large fields. (Alternatively, one can repeat a
proof over a smaller field to amplify soundness, though this will typically eliminate the
concrete efficiency benefits of our protocol.)

This challenge was quickly taken up by Yang et al. in [47]. Their Quicksilver protocol applied the
methods of [45] to our LPZK approach, giving an efficient protocol with negligible soundness error
over small fields. In addition, they constructed an optimized variant of LPZK for circuits whose
gates compute low-degree polynomials.
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We note that in the context of proofs, mixing Boolean and arithmetic operations is easier than
in a typical secure computation setting, since the prover can provide a bit-decomposition of an
arithmetic value which can be easily verified by an arithmetic circuit.

We draw attention to one low-level detail in the distribution of information between the prover
and verifier that distinguishes our approach. In LPZK, the prover holds a line v(t) = at+b and the
verifier queries a single point v(α) on that line. In both [45] and [6], the prover instead holds a, the
verifier holds b and α, and the prover learns v(α). Our construction better exploits the algebraic
structure of VOLE, allowing local computation by the verifier to reduce the communication cost of
verifying a multiplication gate.

We also note our work is the only to consider reusable NISC over VOLE, in addtion to NIZK.
For NIZK, both in the random oracle model and in the information theoretic setting, we com-

pare our work to Wolverine and Mac’n’Cheese in communication cost and prover and verifier
communication complexity.

Communication: Our LPZK protocol requires 1 + o(1) field elements per multiplication gate
in the random oracle model, and 2 + 1/t + o(1) elements per multiplication gate for information
theroetic NIZK, for some parameter t ∈ Z that affects soundness error. For large fields, we can
choose t = log |F|, so the 1/t term is in practice small.

Mac’n’Cheese [6] requires 3+o(1) elements of communication per multiplication gate. Wolverine
[45] requires 2 + o(1) elements of communication per multiplication gate, while a variant discussed
in [45] that is more computationally efficient requires 4 + o(1) elements per multiplication gate. In
all cases, the o(1) term is controlled by the growth of circuit size relative to the input size.

Our information theoretic NIZK protocol has comparable communication to the Wolverine
protocol in the random oracle setting, and our random oracle NIZK protocol has 2 times less
communication.

Prover computation: Our information theoretic LPZK-based NIZK over random VOLE re-
quires prover computation of 3 multiplications per multiplication gate.

Our NIZK protocol in the random oracle model requires (2r+3) multiplications per multiplica-
tion gate, and a single call to a cryptographic hash function H : Fm → Fmr, where m is the number
of multiplication gates. The parameter r ∈ N affects soundness error, but for large fields we can
set r = 1. The cryptographic hash function H can be evaluated in a streaming fashion to reduce
memory costs.

The most computationally efficient variant in Wolverine [45] requires (4r + 6) multiplications
per multiplication gate, 2 cryptographic hash function calls H1 : F → Fr per multiplication gate,
and one more cryptographic hash function call H2 : Fm → Fr for the entire protocol, with m as
above. Mac’n’Cheese [6] requires 13 multiplications per multiplication gate and 3 cryptographic
hash function calls H3 : Fk+1 → F per multiplication gate, where k is the number of messages sent
so far in the protocol.

Verifier computation: Our information theoretic LPZK NIZK protocol requires verifier com-
putation of 4 multiplications per multiplication gate.

In the random oracle model, our LPZK protocol requires (r + 3) multiplications per multipli-
cation gate, and a single cryptographic hash call. As above, for large enough field size, we can
set r = 1 and the cryptographic hash function H : F2m → Fmr can be evaluated in a streaming
fashion to reduce memory costs.
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The most computationally efficient variant in Wolverine [45] requires 7r multiplications per
multiplication gate, 2 cryptographic hash function calls per multiplication gate, and one more
cryptographic hash function call for the entire protocol, with the hash functions H1, H2 as above.
Mac’n’Cheese [6] requires 10 multiplications per multiplication gate and 3 cryptographic hash
function calls per multiplication gate, with the hash function H3 as above.

2 LPZK and random VOLE

In this section we give a formal definition of our new notion of LPZK proof system and show
how to compile such a proof system into a designated-verifier NIZK when given a random VOLE
correlation.

2.1 Defining LPZK

While an LPZK proof system can be defined for any NP-relation, we focus here on the case of
arithmetic circuit satisfiability that we use for describing our constructions. Our definition can be
seen as a simple restriction of the more general notion of (1-round) zero-knowledge linear interactive
proof [9] that restricts the verifier to sending a single field element.

Here and in the following, we work in an arithmetic model in which probabilistic polynomial
time (PPT) algorithms can sample a uniformly random element from a finite field F and perform
field operations at a unit cost. All of the protocols we describe make a black-box use of the
underlying field F.

Definition 2.1 (LPZK). A line-point zero-knowledge (LPZK) proof system for arithmetic circuit
satisfiability is a pair of algorithms (Prove,Verify) with the following syntax:

• Prove(F, C, w) is a PPT algorithm that given an arithmetic verification circuit C : Fk → Fk′

and a witness w ∈ Fk, outputs a pair of vectors a,b ∈ Fn that specify an affine line v(t) :=
at+ b. We assume that the dimension n is determined by C.

• Verify(F, C, α,vα) is a polynomial-time algorithm that, given an evaluation vα of the line v(t)
at some point α ∈ F, outputs acc or rej.

The algorithms (Prove,Verify) should satisfy the following:

• Completeness. For any arithmetic circuit C : Fk → Fk′ and witness w ∈ Fk such that

C(w) = 0, and for any fixed α ∈ F, we have Pr[v(t)
R←− Prove(F, C, w) : Verify(F, C, α,v(α)) =

acc] = 1.

• Reusable ε-soundness. For every arithmetic circuit C : Fk → Fk′ such that C(w) 6= 0 for
all w ∈ Fk, and every (adversarially chosen) line v∗(t) = a∗t + b∗, where the length n of v∗

depends on C as above, we have Pr[α
R←− F : Verify(F, C, α,v∗(α)) = acc] ≤ ε. Moreover, for

every F, C,v∗(t) the probability of Verify accepting (over the choice of α) is either 1 or ≤ ε.
Unless otherwise specified, we assume ε ≤ O(1/|F|).

• Perfect zero knowledge. There exists a PPT simulator Sim such that, for any arithmetic
circuit C : Fk → Fk′ , any witness w ∈ Fk such that C(w) = 0, and any α ∈ F, the output
of Sim(F, C, α) is distributed identically to v(α), where v(t) is the affine line produced by
Prove(F, C, w).
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The reusable soundness requirement guarantees that even by observing the verifier’s decision bit
on a maliciously chosen circuit C, and line v∗(t) = a∗t + b∗, the prover learns essentially nothing
about the verifier’s secret point α, which allows the same α to be reused without substantially
compromising soundness.

Proof of Knowledge. For simplicity, we focus here on (reusable) soundness and ignore the
additional proof of knowledge property. However, the LPZK systems we construct all satisfy this
stronger notion of soundness (see [9] a definition of proofs of knowledge in the context of linear
proof systems). More formally, there is an efficient extractor that can extract a valid witness from
any (maliciously generated) line that makes the verifier accept with > ε probability.

Computational LPZK. The above definition considers our main information-theoretic flavor of
LPZK, with statistical soundness and perfect zero knowledge. Computational variants of LPZK
can be defined analogously. In particular, we will later consider computationally sound LPZK in
the random oracle model, which bounds the number of oracle queries made by a malicious prover.

Complexity measures for LPZK: (n, n′, n′′)-LPZK. As noted in § 1.4, in addition to the
dimension/length parameter n, we use two other parameters n′ and n′′ as complexity measures
for LPZK. These will help us obtain a more efficient compiler from LPZK to NIZK that takes
advantage of verifier outputs that are either known by the prover (namely, are independent of α)
or entries of a,b that can be picked at random independently of w. Concretely, the parameter n′′

is the number of entries of a that are always equal to zero; we assume without loss of generality
that these are the last n′′ entries. The parameter n′ measures the total number of entries of the
first n − n′′ entries of a and b that functionally depend on w. To take advantage of the random
VOLE setup, we assume the remaining 2n−2n′′−n′ entries are picked uniformly and independently
at random, and then these n′ entries are determined by w and the random entries. We will assume
that the parameters (n, n′, n′′) as well as the identity of the entries of each type are determined by
the public information C.

2.2 Compiling LPZK to NIZK over random VOLE

We now describe and analyze a simple compiler that takes an LPZK proof system as defined above
and converts it into a (designated verifier) NIZK protocol that relies on a random VOLE correlation,
where the prover gets a random pair of vectors a′,b′ ∈ Fn specifying an affine line a′t+b′ in Fn and
the verifier gets the value of the line at a random point α ∈ F, namely v′ = a′α+ b′. Similarly to
previous VOLE-based compilers from [12, 19], we rely on the simple known reduction from VOLE
to random VOLE. Our compiler takes advantage of the extra parameters n′ and n′′ of the LPZK,
which help reduce the cost of the NIZK below the 2n field elements communicated by the natural
generic compiler.

Lemma 2.1 (From LPZK to NIZK). Given (n, n′, n′′)-LPZK over F with soundness error ε, there
is an NIZK protocol that uses a single instance of random VOLE of length n − n′′ and requires
communication of n′ + n′′ field elements from the prover to the verifier.

Proof. Let a,b ∈ Fn be the vectors for the prover’s line at + b. The prover and verifier are given
a random VOLE of length n, so that the prover holds (a′,b′), and the verifier holds v′ = a′α+ b′

for a random α ∈ F.
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We recall a simple self-reduction property of VOLE (see e.g. [12]) that allows us to replace a
random pair (a′,b′) with the pair (a,b) as follows. The prover sends vectors a′ − a and b′ − b to
the verifier, who then computes

v = v′ + α(a′ − a) + (b′ − b)

Finally, the prover sends the final n′′ values of b to the verifier in the clear, and the verifier
appends these values to v.

For any entry of a,b that should be chosen randomly for LPZK, the prover sets the corre-
sponding entry of a′ − a or b′ − b to zero, and so no communication is required for those entries.
The entire reduction requires a random VOLE of length n with communication of n′ + n′′ field
elements, as desired. The security completeness, soundness, and zero knowledge properties of the
above NIZK protocol are inherited directly from the corresponding properties of the LPZK.

UC security. While we only consider here a standard standalone security definition for NIZK
proofs [29, 10], all of our LPZK-based NIZK protocols are in fact UC-secure NIZK protocols (e.g., in
the sense of [17]) in the rVOLE-hybrid model. This is the typical situation for information-theoretic
protocols.

Using a corruptible random VOLE functionality. When using a pseudorandom correlation
generator (PCG) for generating the random VOLE correlation with sublinear communication com-
plexity [12, 14, 44], what is actually realized is a so-called “corruptible” random VOLE functionality
that allows the malicious party to choose its output, and then samples the honest party’s output
conditioned on this choice. The transformation of Lemma 2.1 remains secure even when using this
corruptible VOLE functionality. Indeed, it was already observed in [12] that the reduction of VOLE
to random VOLE remains secure even when using corruptible random VOLE, and the LPZK to
NIZK transformation builds on this reduction.

3 Single gate example

To clarify the exposition, we begin with an example where the prover wishes to convince the verifier
that they hold a triple of values x, y, z satisfying xy = z. More precisely, the prover and verifier
realize a commit-and-prove functionality for the triple (x, y, z) and the relation R(x, y, z) := xy−z.
We prove that our single gate example satisfies this stronger flavor of ZK, which is meaningful
even for finite functions. Note that our LPZK construction is adapted from this single gate ex-
ample, rather than directly built up from it, so this proof and the proof in Section 4 can be read
independently.

A commit-and-prove protocol for the above relation R has the same syntax as LPZK, and should
satisfy the following loosely stated properties (see, e.g., [38] for a formal definition).

• Completeness. If the prover runs honestly on (x, y, z) such that z = xy, then the verifier
always accepts.

• Binding. There is a deterministic extractor that given a line picked by a (potentially mali-
cious) prover outputs effective inputs (x∗, y∗, z∗) such that the following holds. Any attempt
of the prover to “explain” a different input triple (x′, y′, z′) (by revealing its randomness)
would lead to an inconsistent verifier view, except with the binding error probability (over
the choice of α).
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• Soundness. For any malicious prover, if the extracted values (x∗, y∗, z∗) satisfy z∗ 6= x∗y∗,
then the verifier rejects except for the soundness error probability (over the choice of α).

• Zero knowledge. For any choice of α, the verifier’s evaluation on an honestly generated line
can be simulated without knowing x, y, z.

Random evaluation of the line picked by a prover (even a malicious one) effectively commits
the prover to unique values of x, y, z, in the sense that except for the binding error probability it
cannot reveal randomness that consistently explains different (x′, y′, z′)), and moreover the verifier
rejects unless z = xy (except with soundness error probability).

3.1 Protocol

We construct our commit-and-prove protocol for the relation R(x, y, z) := xy−z as a (5, 4, 1)-LPZK
over F with binding and soundness error ≤ 2/|F|.

The (honest) prover chooses some triple (x, y, z) and constructs a line at+ b by setting

a = (a1, a2, a3, a4, a5) := (x, y, z, xb2 + yb1 − b3, 0)

with b1, b2, b3, b4 chosen uniformly at random and b5 := b1b2 − b4. We write

v(t) := at+ b,

for the line held by the prover, and v = aα + b for the point received by the verifier, for a
random α ∈ F. We likewise write the prover’s view of the entries as

v(t) = (v1(t), v2(t), v3(t), v4(t), v5(t)),

and write vi for vi(α). The verifier now checks whether

v1v2 − αv3 − v4 − v5 = 0.

We remark that it would be possible to present the same protocol as a (4, 5, 0)-LPZK by dropping
the v5 term and setting b4 := b1b2. This variant has the same communication and computation
complexity, but we give the (5, 4, 1)-LPZK construction here because it is more similar to the
construction in Section 4.3.

3.2 Proof

To prove that this is a commit-and-prove protocol for the relation R(x, y, z) = xy − z we give a
deterministic extractor that takes the line (a∗,b∗) generated by a malicious prover, and extracts
effective inputs W ∗ := (x∗, y∗, z∗), and must prove the extractor and protocol satisfy completeness,
binding, soundness, and zero knowledge. The extractor is simple: it reads off W ∗ as the first three
entries of a∗.

Completeness. If the prover is honest, we have

v1v2 − αv3 − v4 − v5 = (xy − z)α2 + (xb2 + yb1 − b3 − (xb2 + yb1 − b3))α
+ b1b2 − b4 − b5

= 0

identically, as long as xy − z = 0.
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Binding. For any W ′ 6= W ∗, the verifier’s values a∗α+b∗ are consistent with W ′ only if a∗iα+b∗i =
a′iα + b′i, for i ∈ {1, 2, 3}. For any choice (a′,b′) 6= (a∗,b∗) where these equality conditions hold,
there exists an index i with a∗i 6= a′i and b∗i 6= b′i, and the prover can compute a corresponding guess
α∗ = (b∗i − b′i)/(a∗i − a′i). Since α is chosen uniformly at random, independent of the prover, the
probability that α = α∗ is at most 1/|F|.

Soundness. If the extracted input W ∗ does not satisfy R, then the expression

v1(t)v2(t)− tv3(t)− v4(t)− v5(t) = (x∗y∗ − z∗)t2

+
(
x∗b∗2 + y∗b∗1 − b∗3 − a∗4

)
t

+ b∗1b
∗
2 − b∗4 − b∗5

is a non-trivial polynomial in t of degree 2. This polynomial is only satisfied if α is one of the at
most 2 roots, which gives a soundness error of at most 2/|F|.

Zero knowledge. V can simulate their view by generating v1, v2, v3 and v5 uniformly at random,
and computing v4 = v1v2−αv3−v5. We know that v1, v2, v3 and v5 are uniformly random because
of the uniform randomness of b1, b2, b3 and b4, respectively. �

3.3 Complexity

Communication. The communication cost of implementing (5, 4, 1)-LPZK over random VOLE
is 5 field elements, as explained in Section 2.

Prover computation. 3 multiplications, 2 additions, and 7 subtractions (counting the compu-
tation of xy = z, and computing xb2 + yb1 as (x+ b1)(y + b2)− z − b1b2).

Verifier computation. 2 multiplications, 2 subtractions, and one equality test.

Remark 3.1 (Extension to general arithmetic circuits). We can convert this protocol to an LPZK
for arithmetic circuits by placing all intermediate wire values into a and running the commit-and-
prove protocol for each multiplication gate. The binding property ensures that the wire values
match the values x, y, z for which the prover demonstrates xy = z. For all multiplication gates
whose inputs are intermediate values, the verifier no longer needs to learn the values v1, v2 masking
the inputs x, y from VOLE, but can instead compute them as a linear combination of previous
multiplication gate outputs. This therefore gives a communication cost of 3 field elements per
multiplication gate. We improve on this by batching together verification messages into blocks of
size t, as we show in the next section.

4 Information-Theoretic LPZK for Arithmetic Circuits

In this section we prove Theorem 1.1 by describing an information-theoretic LPZK for proving the
satisfiability of arithmetic circuits.
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4.1 Setup

An arithmetic circuit C over a field F with k input wires, k′ output wires, m multiplication gates,
and arbitrarily many addition gates can be converted into an ordered triple (a, QC , RC), where a =
(a0, a1, . . . , ak+k′+4m) represent wire values. The input wires correspond to indices 0, 1, . . . , k, the
intermediate wires correspond to indices k + 1, . . . , k + 4m, and the output wires correspond to
indices k + 4m + 1, . . . , k + k′ + 4m. QC is a collection of m degree 2 polynomials, with the ith
polynomial defined as

qi(a) := ak+4i−1 − ak+4i−3ak+4i−2,

and RC is a set of linear relations defining certain ai’s in terms of previous elements. Formally, we
write r · a for the standard dot product, and write RC as 2m+ k′ vectors ri corresponding to the
relations

r2i−j · a = ak+4i−2−j ,

for j ∈ {0, 1}, and 1 ≤ i ≤ m, where the only nonzero entries of r2i−j occur at indices ≤ k+ 4i− 4,
and

r2m+i · a = 0,

for 1 ≤ i ≤ k′.
The wires ak+4i are not needed for the insecure evaluation of the circuit, but we introduce them

now to keep indices consistent. We require that each of rj have zero at each of their entries in
positions k + 4i, for 1 ≤ j ≤ 2m + k′ and 1 ≤ i ≤ m, i.e. the relations in RC cannot depend on
the unused ak+4i wires. We set a0 = 1 so that the relations RC can include addition by constant
terms.

We construct a NIZK in this setting. Using a (k + 2m, k + 2m, mt + k′)-LPZK with soundness
error 2t/|F|, a prover P will convince a verifier V that they hold a witness w = (w1, . . . , wk) of
circuit inputs to C such that the k′ entries ak+4m+i = 0, for 1 ≤ i ≤ k′. The circuit C and
associated data k, k′, m and Q are public.

4.2 The LPZK construction

To begin, the prover constructs a pair of vectors (a,b) ∈ Fk+(4+
1
t )m+2, with a0 = 1 and b0 = 0.

The next k elements of a are set equal to the witness w, and the corresponding elements of b
are chosen uniformly at random. Using the relations in RC , for the ith multiplication gate, and
for j ∈ {0, 1}, the prover defines

ak+4i−2−j := r2i−j · a

bk+4i−2−j := r2i−j · b

ak+4i−1 := ak+4i−3ak+4i−2

ak+4i := ak+4i−3bk+4i−2 + ak+4i−2bk+4i−3 − bk+4i−1,

with bk+4i−j chosen uniformly at random, for j ∈ {0, 1}. Then, for 1 ≤ i ≤ k′, P sets ak+4m+i = 0
and

bk+4m+i := r2m+i · b.

Next, P constructs a vector c of length m and defines

ci := bk+4i−3bk+4i−2 − bk+4i,
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if this value is not equal to zero, and ci = 1 otherwise, for 1 ≤ i ≤ m. Finally, for i = 1, . . . ,m/t,
P sets ak+k′+4m+i = 0 and defines

bk+k′+4m+i :=
t·i+t−1∏
j=t·i

cj .

After constructing (a,b), the prover constructs a shortened pair of vectors (â, b̂) of length
k+ k′+ (2 + 1

t )m+ 1 by deleting the zeroth entry and the entries k+ 4i− 2− j, for 1 ≤ i ≤ m and

j ∈ {0, 1}, and performs LPZK with the verifier so that the verifier learns v̂ = αâ + b̂.
The verifier then computes from v̂ a vector v of length k+ k′ + (4 + 1

t )m+ 2 by re-indexing to
match the indexing of a and b, setting v0 = 1, and computing

vk+4i−2−j := r2i−j · v,

for 1 ≤ i ≤ m and j ∈ {0, 1}.
Then for 1 ≤ i ≤ k′, the verifier checks that r2m+i · v = vk+4m+i. Finally, the verifier defines,

for 1 ≤ i ≤ m, the values

xi := vk+4i−3vk+4i−2 − αvk+4i−1 − vk+4i,

when this is nonzero, and xi := 1 otherwise, and checks that

t·i+t−1∏
j=t·i

xj = vk+k′+4m+i.

4.3 Proof

We now state and prove a more refined version of Theorem 1.1.

Theorem 4.1 (LPZK for arithmetic circuit satisfiability). For any NP-relation R(x, y) and finite
field F, there exists an LPZK system for R over F with soundness error O(1/|F|). Concretely, in
the case of proving the satisfiability of an arithmetic circuit C over F, we get LPZK over F with
the following size parameters (n, n′, n′′) and soundness error ε for every integer t ≥ 1. If C has
k inputs, k′ outputs, and m multiplication gates, we have n = k + k′ + (2 + 1

t )m, n′ = k + 2m,
n′′ = m

t + k′, ε = 2t/|F|. Moreover, assuming that the cost of additions in the field are negligible
compared to the cost of multiplications, the computation of the prover is less than 4 times the cost of
evaluation in the clear, and the computation of the verifier is less than 5 times the cost of evaluation
in the clear.

Completeness: If P has a valid witness w for C and follows the protocol, then, for the output
gates, for 1 ≤ i ≤ k′, we have

r2m+i · v = αr2m+i · a + r2m+i · b = bk+4m+i = vk+4m+i.

For the multiplication gates, for 1 ≤ i ≤ m, as in Section 3, we have

(vk+4i−3)(vk+4i−2) = (αa4i−3 + b4i−3)(αa4i−2 + b4i−2)

= α2a4i−3a4i−2 + α(a4i−3b4i−2 + a4i−2b4i−3) + b4i−3b4i−2

= αvk+4i−1 + vk+4i + ci,
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when b4i−3b4i−2 6= 0, and (vk+4i−3)(vk+4i−2) = αvk+4i−1 + vk+4i otherwise. Thus ci = xi for all i,
and we have

t·i+t−1∏
j=t·i

xj =

t·i+t−1∏
j=t·i

cj = vk+k′+4m+i,

as desired.

Perfect Zero Knowledge: The simulator generates α and v1, . . . , vk uniformly at random
from F. Since vi = αai + bi for 1 ≤ i ≤ k under an honest run of the protocol, and b1, . . . , bk
are generated uniformly at random and independently, the vi’s are also uniformly random and
independent under an honest run of the protocol. Therefore the distribution produced by the
simulator matches the distribution produced by an honest run for v1, . . . , vk.

Next, the simulator generates vk+4i−j uniformly at random, for 1 ≤ i ≤ m and j ∈ {0, 1},
which again matches exactly the distribution under an honest run of the protocol, by the uniform
randomness of the bk+4i−j ’s. Then, working from left to right, the simulator computes

vk+4i−2−j := r2i−j · v,

for j ∈ {0, 1} and
xi := vk+4i−3vk+4i−2 − αvk+4i−1 − vk+4i.

The simulator then generates
vk+4m+i := r2m+i · v

for 1 ≤ i ≤ k′ and

vk+k′+4m+i :=
t·i+t−1∏
j=t·i

xj

for 1 ≤ i ≤ m/t and outputs accept.

Soundness: We show the stronger proof-of-knowledge property. For a line (â∗, b̂∗) generated by
a (potentially malicious) prover, we give an efficient extractor E(â∗, b̂∗) that extracts the witness
w∗. In fact, we have w∗ := (a∗1, . . . , a

∗
k), i.e. the extractor reads off the first k elements of â∗. As

in Section 3, we write v̂(t) and v(t) for the lines the prover holds on which the verifier queries the
points v̂ and v.

Suppose V accepts αâ∗ + b̂∗ and C(w∗) 6= 0. Then either ak+4i−1 6= ak+4i−3ak+4i−2, for some
i ≤ m, or a∗ · r2m+i 6= 0, for some i ≤ k′.

In the first case, the corresponding expression

xi(t) = vk+4i−3(t)vk+4i−2(t)− αvk+4i−1(t)− vk+4i(t)

reduces to a nontrivial polynomial of degree 2 over α, and so for some i the expression

vk+k′+4m+i(t)−
t·i+t−1∏
j=t·i

xj(t)

is a nontrivial polynomial over t of degree at least 2 and at most 2t. This gives a soundness error
of at most 2t/|F|.

In the second case, we have

ak+4m+it+ bk+4m+i = vk+4m+i(t) = v∗(t) · r2m+i = a∗ · r2m+it+ b∗ · r2m+i,
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which simplifies to a linear polynomial over t, which corresponds to a soundness error of at most
1/|F|.

Remark 4.1 (Commit-and-prove construction). This protocol can be modified slightly to give a
commit-and-prove proof system. We can give a deterministic extractor that extracts an effective
inputs from the line (a∗,b∗) generated by a malicious prover by reading off the entries corresponding
to the witness. The argument is similar to the proof of the binding property given in section 5, and
we omit the details.

4.4 Complexity

We give complexity bounds for the online stage of the protocol, for a circuit C with k inputs and m
multiplication gates.

Let T (C) denote the time to evaluate the addition and scalar multiplication gates of a circuit C
in the clear, T (∗) the cost of a multiplication and T (+) the cost of an addition, so that the total
cost of evaluation in the clear is T (C) +mT (∗).

Communication complexity: For the k + 2m one-side-fixed VOLE, we require the communi-
cation of k + 2m field elements. Our checks of multiplication gates require an additional m/t field
elements, and the final output wire checks require k′ more elements, for a total of k+k′+ (2 + 1

t )m
field elements.

Prover computation: Applying § 3.3 and accounting for the additional cost of updating the
ak+4i−2, ak+4i−3, bk+4i−2, bk+4i−3 terms, the prover’s work is 2T (C)+(4− 1

t )m T (∗)+(k+6m) T (+),
which assuming the cost of additions is negligible, is less than 4 times the cost of evaluation in the
clear.

Verifier computation: Similarly, the verifier’s work is T (C) +
(
(5− 1

t )m+ k
)
T (∗) + 2m T (+),

which assuming the cost of additions is negligible, is less than 5 times the cost of evaluation in the
clear. Included in this cost is a 2m+k T (∗) term from the conversion from random to fixed VOLE.

Remark 4.2. Assuming that the random VOLE instances are already precomputed, or alterna-
tively that such compressed instances can be “unpacked” in a streaming fashion, our NIZK protocol
does not require the vectors a,b,v to be computed or stored in their entirety. Instead, the en-
tries corresponding to each gate can be computed on the fly. This makes our protocol friendly to
streaming and space considerations.

In particular, computations like ak+4i−2−j = r2i−j · a should be treated as shorthand for hard-
coded evaluation of addition and scalar multiplication gates, and should certainly not be imple-
mented by actually storing r2i−j in memory and performing a dot product.

In fact, besides the memory costs of the VOLE, which can be made sublinear in the circuit
size2 (see [12, 13, 44, 45, 15] for possible trade-offs and optimizations), the only values that the
verifier needs to store beyond what would be required for execution of the program in the clear is a
single field element holding the product of the xj terms in the current batch. The prover’s memory
cost is double the verifier’s, since P has to store the values from both a and b that are currently
“in-scope” along with the product of the cj terms in the current batch.

2To this end one can either use the “primal” PCG for VOLE from [12, 44], which has at most quadratic stretch, or
store multiple seeds of a higher-stretch PCG where each seed is expanded when processing a different (sublinear-size)
segment of the circuit. Alternatively, one could use a pseudorandom correlation function [15].
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5 LPZK in the Random Oracle Model

In the section we prove Theorem 1.3, which gives an improved NIZK over random VOLE in the
random oracle model (ROM). This follows by applying the compiler of Lemma 2.1 to the LPZK in
following theorem.

Theorem 5.1 (LPZK in the ROM). For any positive integer r, there exists an LPZK in the ROM
for arithmetic circuit satisfiability, with the following size parameters (n, n′, n′′) and soundness
error. If C has k inputs, k′ outputs, and m multiplication gates, we have n = k + k′ + m + 2r,
n′ = k, n′′ = k′+m+2r. For any malicious prover making ` calls to a random oracle H : Fm → Fmr,
the soundness error is ε = 2

|F| +
`
|F|r . Moreover, the computation of both the prover and the verifier

consists of O(r|C|) field operations and a single call to H.

At a high level, the LPZK construction begins by setting a equal to the wire values in the circuit
evaluation, and choosing b at random, as in § 4.2. To convince the verifier that all multiplication
gates have been evaluated correctly, the prover must show that a sequence of quadratic polynomials
whose coefficients are determined by a and b each have leading term zero, i.e. that this sequence
of quadratics is actually a sequence of linear polynomials. The protocol uses LPZK to reveal to the
verifier a vector s of the evaluations of those quadratics at α and then the prover must show they
have vectors y, z such that s = yα + z. In other words, the prover must show that y, z as VOLE
inputs give s as a VOLE output.

To do this, prover and verifier choose a random r × m matrix M := H(w) by evaluating a
random oracle H on the prover messages w sent during the protocol. Then after adding random
masks from the LPZK to y, z, s, the verifier cheks that Ms = Myα+Mz.

5.1 The LPZK construction

Similar to § 4.2, the prover begins by constructing a line v(t) := at + b with v ∈ Fk+k′+5m+3r+1,
and then reduces to a shorter v̂ that is used as VOLE input. For 0 ≤ i ≤ k + k′ + 4m, the prover
defines ai and bi identically to their definitions in § 4.2, except each entry ak+4j is chosen uniformly
at random from F, for 1 ≤ j ≤ m, and each entry bk+4j is chosen so that bk+4j = bk+4j−1. The
partial redundancy between the k + 4j − 1th and k + 4jth entry is to preserve the indexing of
§ 4.2 while enabling the reconstruction of vk+4i−1 from vk+4i and the value of ak+4j − ak+4j−1, as
described below.

The next r entries of a and b are chosen uniformly at random from F. The remaining m+ 2r
entries of a are all set equal to zero, and the remaining m+ 2r entries of b will be given explicitly
later. These m + 2r entries, in other words, can be sent from the prover to the verifier directly
without require any VOLE overhead.

For 1 ≤ i ≤ m, the prover computes

yi := bk+4i−1 − ak+4i−3bk+4i−2 − ak+4i−2bk+4i−3

and
zi := −bk+4i−3bk+4i−2,

and defines y = (yi) and z = (zi), where i ranges from 1 to m. For r the positive integer fixed in
the statement of the theorem, let H : Fm → Fmr be a random oracle, and treat the output of H
as a matrix in Mr×m(F). The prover then defines w := (wi) := (ak+4i−1 − ak+4i), where i ranges
from 1 to m. The prover then sets

y := (ak+k′+4m+1, . . . , ak+k′+4m+r)
T +H(w)yT
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and
z := (bk+k′+4m+1, . . . , bk+k′+4m+r)

T +H(w)zT .

For 1 ≤ i ≤ m, the prover sets

bk+k′+4m+r+i := ak+4i−1 − ak+4i,

then the prover sets
b[k + k′ + 5m+ r + 1 : k + k′ + 5m+ 2r] = y,

and
b[k + k′ + 5m+ 2r + 1 : k + k′ + 5m+ 3r] = z,

writing b[i, j] for the projection onto coordinates i through j inclusive.
Next, the prover computes from the pair (a,b) a line in a lower-dimensional space v̂(t) := ât+

b̂ ∈ Fk+k′+2m+3r. For 1 ≤ i ≤ k, we take âi = ai and b̂i = bi. For 1 ≤ i ≤ m we take âk+i = ak+4i

and b̂k+i = bk+4i. For 1 ≤ i ≤ r, we take âk+m+i = ak+k′+4m+i and b̂k+m+i = bk+k′+4m+i. The
remaining k′+m+ 2r values of a we set equal to zero. For 1 ≤ i ≤ k′, we set b̂k+m+r+i = r2m+i ·b.
For 1 ≤ i ≤ m, we set b̂k+k′+m+r+i = wi = ak+4i−1 − ak+4i. Finally, for 1 ≤ i ≤ 2r, we
set b̂k+k′+2m+r+i = bk+k′+5m+r+i.

Now, having constructed v̂(t), the prover and verifier run LPZK so that the verifier learns v̂(α),
and, similar to § 4.2, expands v̂(α) to a vector v = aα+ b. The verifier reconstructs vk+4i−1 as

vk+4i−1 = vk+4i + αvk+k′+m+r+i,

and the other missing values as in § 4.2.
The verifier now computes, for 1 ≤ i ≤ m,

si := vk+4i−1α− vk+4i−3vk+4i−2,

the vector s = (si), and the value

s := (vk+k′+4m+1, . . . , vk+k′+4m+r)
T +H(w)sT ,

yα := (v[k + k′ + 5m+ r + 1 : k + k′ + 5m+ 2r])

zα := (v[k + k′ + 5m+ 2r + 1 : k + k′ + 5m+ 3r])

and returns rej unless yα+ z = s. Then for 1 ≤ i ≤ k′, the verifier checks that r2m+i · v = vk+4m+i

and returns rej if any test fails, and acc otherwise.

Remark 5.1. As with information-theoretic LPZK, we can convert the algorithm above to a
streaming algorithm requiring O(r) local memory beyond what would be required in a plaintext
evaluation of the circuit.

The conversion is similar to the information-theoretic case, although we now have to also eval-
uate the random oracle H in a streaming fashion. We choose a pair of random oracles H1, H2,
where H1 : Fm → F can be evaluated in a streaming fashion, and H2 : F × {1, . . . ,m} → Fr, and
set the ith column of H(w) equal to H2(H1(w), i).

An honest prover computes H1(w) before performing the rest of the protocol, and sends this
along with the rest of the proof. Then the prover can compute H(w)yT and H(w)zT in a streaming
fashion while executing the LPZK protocol, and the verifier can likewise computeH(w)sT and verify
the value of H1(w) sent by the prover based on the messages wi sent during the protocol.
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5.2 Proof

Completeness: Each of the tests r2m+1 · v = vk+4m+i are the same as in the previous section,
and completeness follows by the same argument. If the prover is honest, the expression yαα+ zα is
equal to yα+ z. Comparing yα+ z to s, we have vk+k′+4m+r+i = ak+4i−1 − ak+4i by construction
and yiα+ zi = si by the same argument used in the previous section. We have

(vk+k′+4m+1, . . . , vk+k′+4m+r) = (ak+k′+4m+1, . . . , ak+k′+4m+r)α

+(bk+k′+4m+1, . . . , bk+k′+4m+r),

since the underlying elements are terms from the random VOLE, so yα+ z = s, as desired.

Zero Knowledge: The simulator chooses the values of vi uniformly at random from F, for 1 ≤
i ≤ k, and likewise chooses vk+4i uniformly at random for 1 ≤ i ≤ m, and chooses vk+k′+4m+i

uniformly at random, for 1 ≤ i ≤ r + m. These values are all distributed uniformly at random
and independently under an honest run of the protocol; the vi’s are distributed uniformly by the
randomness of the bi’s, for 1 ≤ i ≤ k, the vk+4i’s by the randomness of bk+4i, for 1 ≤ i ≤ m, the
vk+k′+4m+i’s by the randomness of ak+4i, for 1 ≤ i ≤ m, and the vk+k′+5m+r+i’s by the randomness
of bk+k′+5m+r+i, for 1 ≤ i ≤ r. The simulator then computes vk+4i−3, vk+4i−2, vk+4i−1, and si,
for 1 ≤ i ≤ m, and s and yα, all as the verifier computes them during the actual protocol, and then
computes zα = s− αy. Finally, the simulator sets

v[k + k′ + 5m+ 2r + 1 : k + k′ + 5m+ 3r] = zα,

and vk+4m+i = r2m+1 · v for 1 ≤ i ≤ k′ and outputs acc.

Soundness: Define the vector

u(t) := (vk+4i−1(t)t− vk+4i−2(t)vk+4i−3(t)) ,

where i ranges from 1 to m. We write

s(t) := yt+ z +H(w) · (u(t))T

for the system of r quadratic equations in t the prover implicitly constructs in the course of the
protocol and the verifier evaluates at the point α. We write u := (ak+4i−1 − ak+4i−2ak+4i−3) for
the quadratic term of u(t), and note that, since ak+4i is random, and each of ak+4i−2 and ak+4i−3
are determined by wire values to the left, u is determined by w along with randomness outside of
a cheating prover’s control.

If the prover cheats on a multiplication gate, there is some i for which

(vk+4i−1(t)t− vk+4i−2(t)vk+4i−3(t))− (yit− zi)

is a nontrivial quadratic in t. Then either s(t) is also a nontrivial quadratic in t, which gives a
soundness error of at most 2/|F| (i.e. if exactly one of the r quadratics is nontrivial), or else

0 = H(w) · (u)T ,

i.e. uT lies in the kernel of H(w). By the randomness of the oracle, the kernel is a random subspace
of Fm of codimension r, and the probability that u lies in this subspace is 1/|F|r, since u is entirely
determined from w. Over ` evaluations of H by a malicious prover, this gives a soundness error
of `/|F|r, as desired.
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5.3 Complexity

The computation of complexity is similar to the previous section.
The prover P needs to send y and z to the verifier, giving a communication cost of 2r elements

for the verification of the multiplication gates, in addition to the k + k′ + m communication for
wire values. This gives a total of k + k′ +m+ 2r field elements of communication.

The prover performs 3 multiplications per multiplication gate, while the verifier performs 2
multiplications. The prover must multiply H(w) by the vectors yT , zT , while the verifier does
the same multiplication by sT . This matrix multiplication requires mr multiplications, giving an
amortized cost of 2r multiplications per multiplication gate for the prover and r multiplications
per multiplication gate for the verifier. Finally, the verifier must perform an additional k +m+ r
multiplications to convert from random to fixed VOLE. This gives a total cost of 3 + 2r multipli-
cations per multiplication gate for the prover, 3 + r for the verifier, and the single evaluation of H
for both parties.

6 Non-Interactive Secure Computation

In this section we apply LPZK towards simplifying and improving the efficiency of the reusable
protocol for non-interactive secure computation (NISC) from [19]. Our construction relies on a
variant of VOLE called certified VOLE, described in more detail in § 6.2.

6.1 NISC definition

We start by giving a simplified definition of reusable NISC over VOLE, which strengthens the
definition from [19]. The definition can be seen as a natural extension of the definition of LPZK to
the case of secure computation, where both the sender and the receiver have secret inputs. Instead
of the prover encoding its witness as a line and the verifier picking a random point, here the sender
encodes its input as multiple lines and the receiver encodes its input as multiple points, one for
each line. (The lines are the sender’s VOLE inputs and the points are the receiver’s VOLE inputs.)

At a high level, reusable security is ensured by preventing a malicious sender from making the
receiver’s output depend on its input beyond the dependence allowed by the ideal functionality.
This is contrasted with OT-based NISC protocols, where the sender can learn a receiver’s OT input
by starting from an honest strategy and replacing one of the sender OT inputs by a random one.

We formulate the NISC definition for arithmetic functions f defined over an arbitrary field F,
where the security error vanishes with the field size. For simplicity we consider a single function f
and information-theoretic security. The definition can be naturally generalized to take a function
description as input and allow computational security.

Definition 6.1 (Reusable arithmetic NISC). A reusable non-interactive secure computation (NISC)
protocol over VOLE for an arithmetic function f : Fn×Fm → F` is a triple of algorithms (R1,S,R2)
with the following syntax:

• R1(F,x) is a PPT algorithm that, given an input x ∈ Fn, outputs points (α1, . . . , αn′) ∈ Fn′

and auxiliary information aux.

• S(F,y) is a PPT algorithm that, given y ∈ Fm, outputs n′ pairs of vectors ai,bi ∈ Fs, each
specifying an affine line vi(t) := ait+ bi.

• R2(F, aux, (v1, . . . ,vn′)) is a polynomial-time algorithm that, given auxiliary information aux
and evaluations vi, outputs either z ∈ F` or rej.
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The algorithms (R1, S,R2) should satisfy the following security requirements:

• Completeness. When both parties follow the protocol, running the above algorithms in
sequence, with vi = vi(αi), results in the output z = f(x,y).

• Reusable ε-security against malicious sender. There exists a polynomial-time ex-
tractor algorithm Ext such that for any field F and lines v∗i (t) := a∗i t + b∗i , the output of
Ext(F, (a∗1,b∗1), . . . , (a∗n′ ,b∗n′)) is y∗ ∈ Fm ∪ {⊥} such that the following holds: for every hon-
est receiver’s input x ∈ Fn, the receiver’s output when interacting with malicious sender
strategy v∗i (t) is equal to f(x,y∗) except with ≤ ε probability over the receiver’s random-
ness. Here we assume that the output on ⊥ is rej. Unless otherwise specified, we assume
ε ≤ O(1/|F|). We will also use a random-input variant of the above definition, where the
probability is over both the receiver’s randomness and a uniformly random choice of x ∈ Fn.

• Perfect security against malicious receiver. There exist a polynomial-time extractor al-
gorithm Ext and PPT simulator algorithm Sim such that, for any field F and malicious receiver
points α∗1, . . . , α

∗
n′ ∈ F, the extractor outputs an effective input x∗ = Ext(F, (α∗1, . . . , α∗n′)),

where x∗ ∈ Fn, such that the following holds. For every honest sender’s input y ∈ Fm, the out-

put distribution of Sim(F, f(x∗,y))} is identical to {(v1(α
∗
1), . . . ,vn′(α∗n′)) : (v1(t), . . . ,vn′(t))

R←−
S(F,y)}.

We note that instead of allowing the receiver to output rej, we could instead make the receiver
use a default value for the sender input and compute the output of f . However, making the receiver
reject whenever it detects cheating makes protocol descriptions more natural.

The definition above does not permit the sender to transmit additional values to the receiver
in the clear. In order to simplify the definition and the proofs, we note that we can realize plain-
text transmission from sender to receiver as a reusable NISC protocol over VOLE. The func-
tion f(x,y) := y prints the sender input, the algorithm R1(F,x) outputs random points α1, α2,
and the sender algorithm S(F,y) outputs ai := 0 and bi = y for i = 1, 2. Finally, R2(F, (v1,v2))
rejects if v1 6= v2, and outputs v1 otherwise. The security conditions are straightforward to verify.

In the proofs below, when we refer to “sending values in the clear”, we formally mean the
protocol above. In actual applications, of course, we will continue to send the plaintexts directly.
We use direct transmission, rather than this more involved NISC protocol, in our analysis of
computation and communication complexity.

Throughout this section, whenever we desire to refer to the jth entry of a vector ai,bi,vi, etc,
we write the entry as aji , b

j
i , v

j
i , etc.

6.2 Certified VOLE

The main building block for NISC is a certified variant of VOLE, allowing the sender and the
receiver to invoke multiple parallel instances of VOLE while assuring the receiver that the sender’s
VOLE inputs satisfy some global consistency relation.

6.2.1 Definitions and results

In its general form, certified VOLE with a general arithmetic relation, the VOLE consistency re-
quirement is specified by a general arithmetic circuit. We write cVOLE for this form of certified
VOLE.

We begin with a more specialized form, distributional certified VOLE with equality constraints,
which we write as eVOLE. In this variant of certified VOLE, the arithmetic circuit on the family
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of VOLEs is restricted to a single equality constraint between two coefficients from a vectors. In
eVOLE, we require additionally that R’s inputs are uniformly distributed over F and independent.
It is straightforward to extend this result to an arbitrary set of equality constraints on terms from a
and b vectors, and we explain the details below.

Certified VOLE of these flavors can be realized by extending a family of random VOLEs with
a NIZK proof that the random VOLEs satisfy the desired constraints. We give more precise
definitions of these forms of certified VOLE as ideal functionalities in Figures 1 and 2. We state
this result as the following two lemmas.

Lemma 6.1. A receiver R and a sender S can realize the functionality F (F)
eV OLE with parame-

ters (`1, `2, i, j) in the rVOLE hybrid model with 2 instances of random VOLE of total length `1 +
`2 + 2 and communication of 3 field elements from sender to receiver, in addition to any commu-
nication cost for transforming random VOLEs to the VOLEs with inputs (â1, b̂1, â2, b̂2).

Lemma 6.2. Fix an integer t ≥ 1. A receiver R and a sender S can realize the functional-

ity F (F)
cV OLE, in the rVOLE hybrid model with k + 2 instances of random VOLE. For a circuit C

with qa inputs from the âi’s, qb inputs from the b̂i’s, q′ outputs, and m multiplication gates, these
VOLE instances have total length

2m+ 6qa + 7qb +
k∑
i=1

`i,

and the protocol requires communication of

(2 + 1
t )m+ q′ + 8qa + 9qb + 2

k∑
i=1

`i

field elements from sender to receiver.

24



Figure 1: Distributional certified VOLE with equality constraints

Functionality F (F)
eV OLE : Distributional certified VOLE with equality constraint

Parametrized by a finite field F, length parameters (`1, `2), and integers i, j with
1 ≤ i ≤ `1 and 1 ≤ j ≤ `2.

• R sends x := (α, β) to F (F)
eV OLE

// Receiver security is only required for random inputs

• S sends y := (â1, b̂1, â2, b̂2) to F (F)
eV OLE , where âk, b̂k ∈ F`i

• F (F)
cV OLE verifies that âi1 = âj2.

• If the input does not pass verification, the ideal functionality sends ⊥ to R.

Otherwise, F (F)
cV OLE computes v̂1 := â1α + b̂1 and v̂2 := â2β + b̂2 and sends

f(x,y) := (v1,v2) to R.

Figure 2: Certified VOLE with a general arithmetic relation

Functionality F (F)
cV OLE :

Parametrized by a finite field F, a sequence of k positive integers `1, . . . , `k, and an
arithmetic circuit C on q ≤ 2

∑k
i=1 `i inputs.

Setup phase

• R sends to F (F)
cV OLE its input x := (α1, . . . , αk) ∈ Fk.

Send phases

• S sends y := (â1, . . . , âk, b̂1, . . . , b̂k) to F (F)
cV OLE , where âi, b̂i ∈ F`i

• F (F)
cV OLE verifies that (â1, . . . , âk, b̂1, . . . , b̂k) is a satisfying assignment for C.

• If the input does not pass verification, the ideal functionality sends ⊥ to R.

Otherwise, F (F)
cV OLE computes v̂i := âiαi+b̂i and sends f(x,y) := (v̂1, . . . , v̂k)

to R.
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6.2.2 The protocols

eVOLE. eVOLE is a special case of reusable arithmetic NISC where the receiver has no inputs,
and R1(F) outputs uniformly random and independent points (α, β), and stores their values as
the auxiliary information aux := (α, β). The sender’s input y := (â1, b̂1, â2, b̂2) is two existing
VOLE inputs, and the algorithm S(F,y) outputs vectors (a1,b1,a2,b2) whose first `, `, `′, and `′

coordinates are equal to (â1, b̂1, â2, b̂2), respectively. The remaining values are defined as a`+1
1 := b̂j2,

a`
′+1
2 := b̂i1, with b`+1

1 and b`
′+1
2 chosen uniformly at random. In addition, the sender sends the

value b`+1
1 − b`′+1

2 in the clear.
The VOLE protocol evaluates the sender’s output on α and β, respectively, so that in an honest

run of the protocol, the receiver learns v1 := a1α + b1 and v2 := a2β + b2. In the algorithm
R2(F, aux, (v1,v2)), the receiver tests whether

βvi1 − αv
j
2 + v`+1

1 − v`′+1
2 = b`+1

1 − b`′+1
2 .

The receiver rejects if the test fails, and otherwise outputs the vectors v̂1, v̂2 obtained by deleting
the last element from v1,v2.

This protocol can be modified to prove constraints of the form âi1 = b̂j2 or b̂i1 = b̂j2 for the same
communication cost and one or two additional multiplications, respectively, by the receiver. Indeed,
by multiplying v1 by α−1 or v2 by β−1, the receiver can locally obtain the VOLE outputs w1 :=
α−1b1 + a1 and w2 := β−1b2 + a2, and the same construction above applies to the pair v1,w2 or
the pair w1,w2.

Additionally, since the eVOLE protocol transforms VOLE inputs âi, b̂i for the sender into
extended VOLE inputs ai,bi and delivers extended VOLE outputs vi to the receiver, this protocol
can be implemented repeatedly on the same two instances of VOLE, proving c equality constraints
with VOLEs of length `+ c, `′ + c.

cVOLE. We write the receiver’s inputs as x := (α1, . . . , αk). The receiver’s algorithm R1(F,x)
generates their VOLE inputs by choosing random independent values α, β, and then outputs (α+
α1, . . . , α+ αk, α, β).

As in eVOLE, the sender defines aji := âji everywhere this is defined. We give the definition of bji
later. Then, for each input to C from the âi’s, say âj1i , the sender chooses one entry of ak+1 and one

entry of ak+2, say aj2k+1 and aj3k+2 respectively, and uses eVOLE to prove âj1i = aj3k+2 and aj2k+1 = aj3k+2.
Since each of the pairs (α+αi, β) and (α, β) are uniformly random and independent, the conditions
for eVOLE are satisfied.

Similarly, for an input b̂j1i to C, the sender chooses entries bj2k+1, a
j3
k+2 and aj4k+2 and proves bj1i =

aj3k+2 and bj2k+1 = aj4k+2. We now define bj1i := b̂j1i + bj2k+1. Upon subtracting vj2k+1 := aj2k+1α + bj2k+1

from vj1i := aj1i (α+ αi) + bj1i , the receiver holds

v̂j1i := vj1i − v
j2
k+1 = aj1i αi + (bj1i − b

j2
k+1) = âj1i αi + b̂j1i .

After deleting unneeded entries of the v̂i’s receiver ends with the VOLE outputs v̂i := âiαi + b̂i,
as desired. In addition, the elements aj1i , b

j2
i , b

j2
k+1 have all been transferred to entries of ak+2, so

the receiver and sender extend the (k + 2)nd instance of VOLE vk+2 with a NIZK proof that C is
satisfied by âi, b̂i.
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6.2.3 Proof of Lemma 6.1

Completeness: Writing the value the sender transmits in the clear as c in the protocol, we have

vi1β − v
j
2α+ v`+1

1 − v`′+1
2 − c = (âi1 − â

j
2)αβ + (a`+1

1 − b̂j2)α+

(a`
′+1
2 − b̂i1)β +

(
(b`+1

1 − b`′+1
2 )− c

)
.

If the sender is honest, each of the four terms on the right-hand side vanish, and the receiver
accepts the message, as desired.

Perfect security against a malicious receiver: The receiver has no input, so the input ex-
tractor does nothing. A malicious receiver’s output f(x∗,y) is the pair of truncations v̂1, v̂2 of the
VOLE outputs v1,v2. The simulator Sim(F, f(x∗,y)) obtains v∗1,v

∗
2 from v̂1, v̂2 by appending a

value chosen uniformly at random from F to each vector.
By construction, v∗i = vi on every entry except the last. For the last entry, we note that,

because b̂`+1
1 and b̂`

′+1
2 are chosen independently and uniformly at random, the last entries of vi

and v∗i each follow the uniform distribution, so the output distributions are identical, as desired.

Reusable ε-security against a malicious sender: The sender’s input is two sets of VOLE
inputs ((â1, b̂1), (â2, b̂2)), which are then extended by one entry each in the algorithm S(F,y).
The extractor Ext(F, (a∗1,b∗1), (a∗2,b∗2)) sets y∗ = ⊥ if any of the conditions ai1 = aj2, a

`+1
1 = bj2,

a`
′+1
2 = bi1, c = b`+1

1 − b`′+1
2 are false, and otherwise computes y∗ by truncation. We write tr for

the truncation-by-one operator.
By completeness, whenever y∗ 6= ⊥ we have f(x,y∗) = tr(v∗) which is equal to the receiver’s

output under an honest run of the protocol. Therefore the probability the receiver’s output is not
equal to f(x,y∗) is precisely the probability that y∗ = ⊥ and the receiver does not output rej.

This occurs precisely when the expression

(ai1 − a
j
2)αβ + (a`+1

1 − bj2)α+ (a`
′+1
2 − bi1)β + b`+1

1 − b`′+1
2 − c = 0,

but at least one of the four coefficients in this bivariate polynomial expression are nonzero. For
all but at most one choice of α, either fixing α determines β or the statement is identically false.
Since β is independent of α, the probability that the true value of β matches the value determined
by α is 1/|F|. Together, this gives a soundness error bounded above by 2/|F|.

Complexity: The total VOLE length is `+ `′ + 2, by construction.
In addition to the cost of setting up the fixed VOLE on the first `, `′ entries of v1,v2, respec-

tively, the sender must communicate 3 field elements, 2 to set a`+1
1 and a`

′+1
2 , and the additional

value b`+1
1 − b`′+1

2 that is sent in the clear.

6.2.4 Proof of Lemma 6.2

Correctness and security against malicious sender are immediate from the correctness and security
of the underlying protocols. For security against a malicious receiver, the extractor Ext obtains the
values α1, . . . , αk by subtracting α∗1−α∗k+1, . . . , α

∗
k−α∗k+1. The simulator for the receiver generates

the entire vectors vk+1,vk+2 uniformly at random, which matches the distribution under an honest
run of the protocol by the randomness of the values bjk+1, b

j
k+2. Vector elements vj1i are computed

from the formula
vj1i = v̂j1i + vj2k+1,
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using the indexing from the previous subsection and writing v̂j1i for entries of receiver output, i.e.
of f(x∗,y), as above. All remaining entries of all vectors are chosen uniformly at random. Perfect
security follows by the security of NIZK and eVOLE. We only need to check that eVOLE is only
applied to pairs of VOLEs where the receiver VOLE inputs are uniformly random and independent.
This is true for the pairs (α+ αi, β) and the pair (α, β), as desired.

Complexity: For each input to the circuit C, whether from the ai’s or bi’s, we require two
instances of eVOLE. For an entry of the âi’s that is an input to C, we require an additional two
entries of VOLE from ak+1 and ak+2. For an entry of the b̂i’s that is an input to C, we require
three additional entries. For a total of q := qa + qb inputs, this requires

6qa + 7qb +
k∑
i=1

`i

entries of VOLE and

8qa + 9qb + 2
k∑
i=1

`i

field elements of communication.
The LPZK-NIZK proof of C is carried out on the k + 2nd instance of VOLE, and the inputs

to C have already been included in the cost, so this requires an additional 2m entries of VOLE,
and an additional k′+ (2 + 1

t )m field elements of communication. Combining these terms gives the
VOLE length and communication costs as desired.

6.3 Reusable NISC over VOLE

In this section we build on certified VOLE to compile NISC protocols with security against semi-
honest senders into reusable NISC protocols in the fully malicious setting. We follow the same
high level approach of [19], but present the compiler at a higher level of generality and with a more
refined efficiency analysis.

Consider a two-party sender-receiver functionality f(x,y) where the receiver R holds x =
(x1, . . . , xn) ∈ Fn and the sender S hold inputs y = (y1, . . . , yn) ∈ Fm. The function f is arithmetic,
in the sense that its outputs are defined by a sequence of ` arithmetic branching programs P1, . . . , P`
over F, where program Pi has si nodes. (Note that such an arithmetic program Pi can simulate
any arithmetic formula with si additions and multiplication gates.)

The goal is to securely evaluate f using only parallel instances of VOLE. (The ideal VOLE
instances can be implemented using the same kind of cryptographic compilers we used in the
context of LPZK.) We also require the NISC protocol to be reusable in the sense that if the
receiver’s input is fixed but the sender’s input changes, the same VOLE inputs of the receiver can
be securely reused, even if the sender can obtain partial information about the receiver’s outputs in
the different invocations. This feature is impossible to achieve in the information-theoretic setting
when we use OT instead of VOLE [19].

To get a reusable NISC for f , we take the following two-step approach:

1. Using a so-called “Decomposable Affine Randomized Encoding” (DARE) for branching pro-
grams [32, 3] (an arithmetic variant of information-theoretic garbling), we get a NISC protocol
for f with n instances of VOLE, each of length Sj =

∑
i∈D(j)

(
si
2

)
, where D(j) is the set of
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output entries that depend on xj .
3 This protocol is secure against a malicious receiver R and

a semi-honest sender R.

2. To obtain reusable security against a malicious S (while maintaining security against malicious
R) we replace the parallel VOLE in the previous protocol by certified VOLE, where the
circuit C specifying the consistency relation takes the sender’s input y and randomness in
the previous protocol as a witness, and checks that the sender’s VOLE inputs are obtained
by applying the honest sender’s algorithm to the witness. Using naive matrix multiplication,

this requires a circuit C of size S =
∑n

j=1 Sj +
∑`

i=1 s
3
i . Applying our protocol for F (F)

cV OLE

with the arithmetic relation specified by C, we ensure that whenever a malicious sender does
not provide a witness that “explains” its VOLE inputs by an honest sender strategy, the
receiver outputs ⊥ except with O(1/F) probability. In particular, a (reusable) simulator for a

malicious sender interacting with the F (F)
cV OLE functionality either outputs the input y found

in the witness, if the consistency check specified by C passes, or ⊥ if C fails.

Combining the above two steps, we derive the feasibility result from [19] in a simpler way.

Theorem 6.3 (Reusable arithmetic NISC over VOLE). Suppose f : Fn × Fm → F` is a sender-
receiver functionality whose i-th output can be computed by an arithmetic branching programs over
F of size si that depends on di inputs. Then f admits a reusable NISC protocol over VOLE with
the following efficiency and security features:

• The protocol uses n+ 2 parallel VOLE instances.

• The total length of the VOLE instances is 15
∑`

i=1 di
(
si
2

)
+ 2

∑`
i=1 s

3
i .

• The simulation error (per invocation) is ε = O(1/|F|).

Chase et al. [19] show how to bootstrap Theorem 6.3 to get reusable NISC over VOLE for general
Boolean circuits, by making (a non-black-box) use of any pseudorandom generator, or equivalently
a one-way function.

6.4 NISC Example: Bounded Inner Product

In this section we showcase the usefulness of reusable arithmetic NISC by presenting an optimized
construction for a natural functionality: an inner product between the receiver’s input vector and
the sender’s input vector, where the sender’s vector is restricted to have a bounded L2 norm.
This functionality is useful for measuring similarity between two normalized feature vectors. The
bound on the sender’s input is essential for preventing a malicious sender from inflating the level
of similarity by scaling its input.

6.4.1 Functionality

Let R hold inputs x = (x1, . . . , xn) and S hold inputs y = (y1, . . . , yn) such that yi ∈ {0, 1, . . . ,K}
and

n∑
i=1

y2i ≤ L2,

3In a bit more detail, for a branching program P (x1, . . . , xn) of size s, the output can be encoded by the n matrices
Yj = L ·Aj(xj) ·R+Zj , where L,R,Zj , and Aj(xj) are (s−1)× (s−1) matrices, Aj is an affine (degree-1) function of
xj , the Zj are random subject to the constraint

∑
Zj = 0, and L,R are random invertible matrices of a special form.

The matrix Yj contains
(
s
2

)
non-constant entries. See [32] for details. The Sj entries of VOLE j are the concatenation

of the (non-constant entries of) matrices Yj associated with outputs that depend on xj .
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for some other constant L, so that the `2 norm satisfies

‖y‖2 ≤ L.

R desires to compute the dot product x ·y (as a measure of the similarity of R and S’s inputs). To
simplify the protocol, we restrict to the case where K and L are powers of 2. When R and S do
not wish to impose any bound on individual entries beyond what is implied by the `2 norm, they
set K = L.

In the above description we assume the inputs to be vectors over non-negative integers. This
functionality can be naturally embedded by considering vectors over a finite field F of prime order
p, provided that p is bigger than the square-norm bound L2 and an upper bound on the output
size.

6.4.2 Protocol

S begins with a sequence of n inputs (yi), and selects associated random masks zi.
First S engages in pre-processing of their data by computing the bit decomposition (cij) of each

element yi and the bit decomposition (csj) of the sum of squares σy :=
∑
y2i . We use lgK bits

for the bit decompositions (cij) and 2 lgL bits for bit decomposition (csj), which ensures that y
satisfies the desired bounds if the bit decompositions are correct.

We give a slightly modified construction of cVOLE, optimized for this setting. R and S generate
n + 2 instances of random VOLE. As in cVOLE, R chooses inputs (x1 + α, . . . , xn + α, α, β),
with α, β ∈ F random and independent. The input of S to the ith instance of VOLE is yi,
for 1 ≤ i ≤ n. Then S uses the entire vector y as inputs to the (n + 1)st and (n + 2)nd instance
of VOLE. S also takes as inputs to the (n + 2)nd instance all constant terms from the first n
VOLEs, the sum of the constant terms from the (n + 1)st instance, the squares y2i , and the bit
decompositions (cij) and (csj). After this initial set up, R learns the following:

• v1i := yi(xi + α) + zi, for 1 ≤ i ≤ n, where zi is a random element determined in the initial
random VOLE set up, and thus requires no additional communication.

• vin+1 := yiα+ wi, for 1 ≤ i ≤ n− 1, with wi from the random VOLE.

• vnn+1 := ynα+ wn, where wn is chosen such that
∑n

i=1 zi =
∑n

i=1wi.

• vin+2 := yiβ + ui, for 1 ≤ i ≤ n, with ui from the random VOLE.

• vn+in+2 := ziβ + un+i, for 1 ≤ i ≤ n, with ui from the random VOLE.

• v2n+1
n+2 := (

∑n
i=1wi)β + u2n+1, with u2n+1 from the random VOLE.

Additionally, an+2 holds all of the bit decompositions and associated data mentioned above. To
complete the verification step of the protocol, R and S execute eVOLE to ensure that all inputs that
occur in multiple VOLE instances are, in fact, equal, and then S uses LPZK-NIZK on the (n+2)nd
instance of VOLE to convince R of the validity of S’s input.

The NIZK proof checks that all values y2i sent by S are actually equal to the squares of the
values yi, and confirms that cij and csi are in {0, 1} by evaluating the quadratic t2−t on each entry.
The proof then checks that the bit-decompositions are correct by computing and revealing yi −∑

j cij2
j and

∑
y2i −

∑
j csj2

j , all of which are equal to zero when both parties behave honestly.
Finally, R computes the output value as

x · y =
n∑
i=1

(
v1i − vin+1

)
.
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6.4.3 Proof

We have
n∑
i=1

(
v1i − vin+1

)
=

n∑
i=1

yi(xi + α)− yiα+ zi − wi = x · y,

since
∑
zi =

∑
wi, which shows correctness.

Security against a malicious sender is an immediate consequence of the security of eVOLE and
LPZK-NIZK, as in the proof of security of cVOLE.

The argument for security against a malicious receiver follows closely the argument for cVOLE.
The simulator Sim can generate each of the elements vji uniformly at random, due to the randomness
of the zi’s, wi’s, and ui’s, except for vnn+1, which the simulator computes via

vnn+1 =

(
n−1∑
i=1

vin+1 − v1i

)
− v1n − x · y.

6.4.4 Complexity

The protocol requires the 4n + 1 entries of VOLE listed, which in turn require communication of
4n+ 2 field elements to convert from random VOLE to fixed VOLE (one per entry, except we need
two field elements for vnn+1.)

The protocol contains additionally 3 field elements of communication and 2 entries of VOLE for

each of the 3n+ 1 equality constraints implemented under F (F)
eV OLE , and a LPZK-NIZK verification

of a circuit with 2n+ n lgK + 2 lg(L) inputs and n+ n lgK + 2 lg(L) multiplication gates.
Combining the results throughout this paper, this gives us a total of

(4n+ 1) + 2(3n+ 1) + n+ n lgK + 2 lg(L) = 11n+ n lgK + 2 lgL+ 3

entries of VOLE and communication of

(4n+ 2) + 3(3n+ 1) + (2 + 1
t )(n+ n lgK + 2 lg(L))

=
(

15 + 2 lgK + 1+lgK
t

)
n+

(
4 + 2

t

)
lgL+ 5

field elements. Taking K = L = 1024, n = 1000, and t = 11 gives total VOLE length 21, 023 and
total communication 36, 047 field elements, as stated in the introduction.

6.4.5 Variations

We note that we can allow the bounds K and L to hold values other than powers of two by
evaluating a boolean comparison circuit on the bit decomposition of the yi’s and the sum y, at the
cost of an additional O(n lgK) multiplication gates in the LPZK-proof.

Additionally, while the current protocol requires all sender inputs to be positive, we can modify it
to allow negative entries by choosing a field F with |F| > 2L2 and using the entries |F|−L2, . . . , |F|−1
to represent negative integers. Instead of proving the validity of the bit decomposition (cij) under
LPZK-NIZK, S sends the signed bit decomposition, by sending the bit decomposition of |yi| along
with an additional sign bit. Then, under LPZK-NIZK, S proves that yi is equal to the sum of the
bit decomposition terms times the sign bit.

Finally, we remark that the main way we deviate here from our cVOLE construction is through
summing the wi terms on the (n + 1)st instance of VOLE and then passing that sum to the (n +
2)nd instance, instead of sending each of the wi terms to the (n + 2)nd instance of VOLE. This
optimization reduces the entries of VOLE needed by (n− 1) and communication by 4(n− 1).
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A Concrete computational overhead

In actual implementations, computation cost is affected by the choice of field size, the computer
architecture, and the circuit structure. When considering typical circuits over large finite fields,
the ratio between the NIZK online computation cost (given a precomputed random VOLE cor-
relation) and computing the circuit in the clear is typically between 2 and 5 for both the prover
and verifier. We describe some possible parameter choices below. We remark, however, that when
computation costs are this low, we expect that the overall cost will be typically dominated by online
communication and offline computation rather than online computation.

The cost of evaluating a multiplication over F, for generic field characteristic, will be dominated
by the cost of the modular reduction, which will be far greater than the cost of an addition,
and so it is reasonable in this case to treat the cost of additions as negligible.The ratio of NIZK
computation cost to plain circuit evaluation now depends on the number of multiplication gates
where one multiplicand is a public value. If 70% of the multiplication gates in C satisfy this
condition, then, using the more detailed accounting of prover and verifier computation given in
§ 4.4, we obtain T (C) = 7

3mT (∗) and cost of evaluation in the clear is 10
3 mT (∗). This then gives

prover work of 26
3 mT (∗) and verifier work of 22

3 mT (∗), for a prover multiplier of 2.6 and a verifier
multiplier of 2.2.

For carefully chosen primes, such as Mersenne primes, modular multiplication can be imple-
mented much more efficiently. Suppose, in this setting, that the cost of a multiplication in the
architecture’s instruction set is 6 times the cost of an addition, and suppose the circuit has an
equal number of addition, multiplication-by-secret-value, and multiplication-by-public-value gates.
Then, using the more detailed accounting of prover and verifier computation given in § 4.4, we
obtain T (∗) = 6T (+), T (C) = 7mT (+), and cost of evaluation in the clear is 13mT (+). This then
gives prover work of 44mT (+) and verifier work of 39mT (+), for a prover multiplier of 3.4 and a
verifier multiplier of 3.0.
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Note that when we compare the computation cost of evaluating a circuit in the clear to the
prover or verifier computation cost, we restrict our attention to the case where all parties evaluate
an arithmetic circuit over a finite field F. In some cases, the circuit could be evaluated more
quickly in the clear by treating it as a circuit over Z, and therefore avoiding the cost of finite field
arithmetic. We leave an empirical cost analysis for realistic use-cases to future implementations.
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