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Abstract. Cloud auditing with ownership transfer is a provable data
possession scheme meeting verifiability and transferability simultane-
ously. In particular, not only cloud data can be transferred to other
cloud clients, but also tags for integrity verification can be transferred to
new data owners. More concretely, it requires that tags belonging to the
old owner can be transformed into that of the new owner by replacing the
secret key for tag generation while verifiability still remains. We found
that existing solutions are less efficient due to the huge communication
overhead linear with the number of tags. In this paper, we propose a
secure auditing protocol with efficient ownership transfer for cloud data.
Specifically, we sharply reduce the communication overhead produced
by ownership transfer to be independent of the number of tags, making
it with a constant size. Meanwhile, the computational cost during this
process on both transfer parties is constant as well.
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1 Introduction

As cloud computing has developed rapidly, outsourcing data to cloud servers
for remote storage has become an attractive trend [4,11,16]. However, when
cloud clients store their data in the cloud, the integrity of cloud data would
be threatened due to accidental corruptions or purposive attacks caused by a
semi-trusted cloud server. Hence, cloud auditing was proposed as a significant
security technology for integrity verification, and has been widely researched
[12,17,18,20]. Concretely, a certain cloud client with secret and public key pair
(sk1, pk1) generates tags σi = T (mi, sk1) based on sk1 for data blocks mi, and
uploads {(mi, σi)} to the cloud for remote storage. Once audited with chal,
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the cloud responds with a constant-size proof of possession P generated from
(mi, σi, chal), rather than sending back the challenged cloud data for checking
directly. The validity of P is checked via pk1 and thereby the integrity of cloud
data [5,6,17].

Ownership transfer requires that the owner of cloud data is changeable among
cloud clients, instead of always being the original uploader. The ownership is
usually indicated by signatures. When ownership transfer occurs, signatures of
the old owner should be transformed to that of the new one with the old secret
key contained in signatures replaced. Consequently, the new owner obtains the
ownership and accesses these data without the approval from the old owner.

Cloud auditing with ownership transfer is a provable data possession scheme
meeting verifiability and transferability simultaneously. In particular, not only
data can be transferred to other cloud clients, but also tags for integrity verifica-
tion can be transferred to new data owners. Specifically, when the ownership of
some data is transferred to a new owner with key pair (sk2, pk2), verifiable tags
σi should be σi = T (mi, sk2) instead of σi = T (mi, sk1). Thus, the transferred
data belong to the new owner and are verifiable via pk2.

A trivial solution to achieve cloud auditing with ownership transfer follows
the “download-upload” mechanism. Specifically, the new owner downloads the
cloud data approved and uploads new generated verifiable tags. It is obvious that
such a way is not an advisable one for the huge computational overhead of tag
generation and the communication cost even up to twice the size of transferred
data. In order to relieve the computational burden, Wang et al. [25] considered
to outsource computations of transfer for the first time, and proposed the con-
cept of “Provable Data Possession with Outsourced Data Transfer” (DT-PDP).
However, the communication overhead in their transfer protocol is still linear
with the number of tags. To the best of our knowledge, there is no better way
to further reduce the communication cost produced during ownership transfer.

1.1 Our Contribution

Inspired by the communication overhead, in this work, we are devoted to
designing a secure cloud auditing protocol with efficient ownership transfer. Our
contributions are summarized as follows.

– We focus on the efficiency of ownership transfer, reducing communications
produced by transfer to be with a constant size and independent of the num-
ber of tags. Meanwhile, the majority of computational cost during ownership
transfer is delegated to the computing server, leaving computations on both
transfer parties constant as well.

– We analyze the security of the proposed protocol, demonstrating that it is
provably secure under the k-CEIDH assumption in the random oracle model.
The protocol achieves properties of correctness, soundness, unforgeability
and detectability. In addition, when ownership transfer occurs, the protocol
is secure against collusion attacks, making the data untransferred protected.



1.2 Related Work

Extensive researches have been conducted on the integrity verification for
cloud storage. Such researches focus on various aspects, including but not limited
to dynamic operations, privacy preservation, key-exposure resistance, etc.

In 2007, Ateniese et al. [1] proposed the first “Provable Data Possession”
(PDP) scheme, making trusted third parties enabled to execute public verifica-
tions. The scheme employs random sampling and homomorphic authenticators
to achieve the public auditing property. Almost at the same time, Juels and
Kaliski [10] put forward the concept of “Proofs of Retrievability” (PoRs), which
is slightly different from PDP but with the similar purpose of checking the re-
motely stored data. These data are encoded by error correcting codes to enable
retrievability and with several sentinels inserted for data possession verification.
Since such sentinels should be responded a few each time when audited, the num-
ber of challenge executions is extremely limited. In 2008, Shacham and Waters
[19] first combined coding technology and PDP together. In this design, the data
to be outsourced are divided twice as sectors for the first time, where sectors are
equivalent to blocks in previous schemes and several sectors share one data tag,
decreasing the size of the processed data storing in the cloud.

Subsequently, more researches were conducted on cloud auditing. In 2008,
Ateniese et al. [2] first considered data auditing supporting dynamic operations
and proposed a PDP scheme with partial dynamics, failing to support data in-
sertion. To solve this problem, Erway et al. [7] designed the first PDP scheme
with fully dynamic storage, while it suffers from high computational and com-
munication overheads. Later, Wang et al. [28] employed the Merkle Hash Tree to
establish another dynamic PDP scheme, which is much simpler. This topic is also
researched in [9,22]. Besides, Wang et al. [24] focused on the study of privacy
preservation in cloud auditing, combining homomorphic linear authenticators
and random masking technology together. Later, Worku et al. [30] noted that
the scheme in [24] leaks the identity privacy of data owners, and utilized ring
signature to improve privacy preservation. What’s more, key-exposure resistance
is also considered in cloud auditing. Yu et al. [33] first considered the security
problem caused by secret key exposure and employed the Merkle Hash Tree to
give a solution, of which the efficiency is unsatisfying. Then, they released heavy
computations in [32] and enhanced key-exposure resilience in [34].

Other aspects have also been studied these years. Auditing schemes for shared
cloud data are researched in [8,21,31]. Data sharing with user revocation is
achieved in [23] through using proxy re-signature to renew tags generated by
the revoked user and in [15] via Shamir’s Secret Sharing. To simplify certificate
management, identity-based auditing schemes are proposed [14,26,36]. Besides,
integrity auditing supporting data deduplication [13,27,35] has also been studied.

In 2019, it is Wang et al. [25] that considered the integrity checking for the re-
mote purchased data with computations of ownership transfer outsourced for the
first time, and proposed the concept of DT-PDP. In such a scheme, the compu-
tational and communication costs are reduced. Unfortunately, communications
are still huge for its linearity with the number of tags. Besides, this scheme only



achieves partial and one-time ownership transfer. In contrast, we explore how
to achieve secure cloud auditing enabling thorough ownership transfer with high
efficiency.

1.3 Organization

The rest of this paper is organized as follows. Section 2 introduces some
preliminaries. Section 3 describes the system model and definition, as well as the
security model. Section 4 presents details of the proposed secure cloud auditing
protocol with efficient ownership transfer. Section 5 demonstrates the correctness
and security of our design. Section 6 shows the performance analysis. Finally,
conclusions are drawn in Section 7.

2 Preliminaries

To facilitate understandings, we present preliminaries including bilinear pair-
ings, intractable problems in cyclic groups, and homomorphic authenticators.

2.1 Bilinear Pairings

Let G and GT be cyclic groups of prime order p, and g is a generator of G.
The pairing e : G × G → GT is a bilinear one iff the following conditions are
satisfied:

– Bilinear: e
(
ua, vb

)
= e (u, v)

ab
holds for ∀a, b ∈ Zp and ∀u, v ∈ G;

– Non-degenerate: e (g, g) 6= 1GT ;
– Computable: e (u, v) is efficiently computable for ∀u, v ∈ G.

The following are two intractable problems in G.

Definition 1 (Computational Diffie-Hellman problem). The Computa-
tional Diffie-Hellman (CDH) problem in G is described as follows: given a tuple
(g, gx, gy) for any x, y ∈R Zp as input, output gxy. Define that the CDH assump-
tion holds in G if for any PPT adversary A,

Pr
[
A
(
1λ, g, gx, gy

)
= gxy

]
≤ negl(λ)

holds for arbitrary security parameter λ, where negl(·) is a negligible function.

Definition 2 (k-Computational Exponent Inverse Diffie-Hellman prob-
lem). The k-Computational Exponent Inverse Diffie-Hellman problem (k-CEIDH
problem) in G is defined as follows: given a (2k+2)-tuple

(
e1, e2, · · · , ek, g, gb,

g
1

a+e1 , g
1

a+e2 , · · · , g
1

a+ek

)
as input, where k is a non-negative integer, g is a gen-

erator of G and b, e1, · · · , ek ∈R Zp, output
(
ei, g

b
a+ei

)
for any ei ∈ {e1, · · · , ek}.

We define that the k-CEIDH assumption holds in G if for all PPT adversaries
and arbitrary security parameter λ, there exists a negligible function negl(·) s.t.

Pr
[
A
(

1λ, e1, e2, · · · , ek, g, gb, g
1

a+e1 , g
1

a+e2 , · · · , g
1

a+ek

)
= g

b
a+ei

]
≤ negl(λ).



When k = 1, the k-CEIDH problem
(
e1, g, g

b, g
1

a+e1

)
can be regarded as

a CDH instance, which is computationally infeasible for A to give the solution

g
b

a+e1 . When k > 1, the additional elements
(
e2, · · · , ek, g

1
a+e2 , · · · , g

1
a+ek

)
seem

to give no assistance to A in solving the above problem. Thus, we can assume
that the k-CEIDH problem is as difficult as the CDH problem.

2.2 Homomorphic Authenticators

The homomorphic authenticator is a homomorphic verifiable signature, al-
lowing public verifiers to check the integrity of remote storage without specific
data blocks, which is a significant building block employed in public cloud au-
diting mechanisms [3,13,19,20,22].

Given a bilinear pairing e : G×G→ GT and a data file F = (m1,m2, · · · ,mi,
· · · ,mn), where mi ∈ Zp. Let the signer with key pair (sk = a, pk = ga) gener-
ate signatures σi = (umi)

a
on data blocks mi for i ∈ [1, n], where a ∈R Zp, g is

a generator of G and u ∈R G. The signature is a homomorphic authenticator iff
the following properties are met:

– Blockless verifiability: the validity of σi is able to be batch authenticated
via

∑
i∈I miri ∈ Zp instead of blocks {mi}i∈I , where I is an integer set and

miri ∈ Zp. Essentially, the verification equation could be written as

e
(∏

i∈I
σi
ri , g

)
?
= e

(
u
∑
i∈I miri , pk

)
.

– Non-malleability: given σi for mi and σj for mj , the signature on m =
ami + bmj can not be derived directly from the combination of σi and σj ,
where ami, bmj ∈ Zp.

3 System Models and Definitions

3.1 The System Model

Similar to but slightly different from the system model in [25], our model
additionally involves a third party auditor since we achieve public verification.
Specifically, such a model involves four entities: the cloud server (CS ), the old
data owner (PO), the new owner (NO) and the third party auditor (TPA).

– The cloud server CS is an entity with seemingly inexhaustible resources. It
is responsible for data storage and computing delegations from cloud clients.

– The old data owner PO is the transferred party, being individuals or some
organizations. It uploads data files to the cloud for remote storage to release
local management burden.

– The new data owner NO is a cloud client being the target of data owner-
ship transfer, i.e., the transferring party. Once ownership is transferred, NO
inherits the jurisdiction on these data from PO.



– The third party auditor TPA is a trustworthy entity with professional knowl-
edge of integrity verification. It is able to provide convincing results for au-
diting delegations from cloud clients.

We describe the system architecture in brief here. On the one hand, PO out-
sources its data to the CS and has on-demand access to these data. The integrity
of such data is checked by the TPA with delegations from PO. Once receiving au-
diting challenges from the TPA, the CS generates corresponding proofs of intact
storage. With such proofs, the TPA figures out and sends auditing results to PO.
On the other hand, when PO decides to transfer the ownership of some data to
NO, it generates and sends auxiliaries to NO. After processing these auxiliaries,
NO completes the transfer with the computing service of the CS. Consequently,
NO inherits the rights from PO and becomes the data owner currently.

3.2 Cloud Auditing with Ownership Transfer

Inspired by the DT-PDP scheme defined in [25], the formal definition for
cloud auditing with ownership transfer is given as follows:

Definition 3. The cloud auditing protocol with ownership transfer consists of
five algorithms defined below.

– SysGen
(
1λ
)
→ param: This algorithm is a probabilistic one run by the sys-

tem. With the security parameter λ as input, it outputs the system parameter
param.

– KeyGen (param)→ (SK,PK): This algorithm is a probabilistic one run by
cloud clients. Input param, the client generates secret and public key pair
(SK,PK), where SK is kept secret for tag generation and PK is distributed
public.

– TagGen (F, n,mi, SK, param) → (σi, t): This algorithm is a deterministic
one run by the data owner with SK. Input the file abstract F , number of
blocks n, data blocks mi, and param, it outputs the file tag t and homomor-
phic verifiable tags σi corresponding to mi.

– Audit (Q, t,mi, σi, PK, param) → {0, 1}: This algorithm is a probabilistic
one run by the CS and the TPA in two steps: i) Input a challenge set Q from
the TPA and file tag t along with data block and tag pairs {(mi, σi)}i∈Q, the
CS sends the proof P to the TPA; ii) With P , the data owner’s PK and
param as inputs, the TPA verifies the validity of P and outputs “ 1” if
succeed and “ 0” otherwise.

– TagTrans (F, SKa, PKa, SKb, PKb, σi, param) → (σ′i, t
′): This algorithm is

a deterministic one run by the CS, PO and NO in three steps: i) Input the
file abstract F , PO’s SKa, it sends auxiliaries Aux to NO; ii) With Aux,
PO’s PKa and NO’s SKb as inputs, NO sends Aux′ to the CS; iii) With
Aux′, NO’s PKb, PO’s tags σi and param as inputs, it outputs the renewed
file tag t′ and block tags σ′i for NO.

The correctness of the protocol is defined as follows:



Definition 4 (Correctness). The cloud auditing with ownership transfer is
correct iff the following conditions are satisfied:

– If PO and the CS execute honestly, then for any challenged data blocks mi,
there is always Audit (Q, t,mi, σi, PKa, param)→ 1.

– If PO, NO and the CS are honest, then σ′i for NO generated by TagTrans
(F, SKa, PKa, SKb, PKb, σi, param)→ (σ′i, t

′) matches exactly with mi up-
loaded by PO. Furthermore, for any auditing task from NO, the output of
Audit (Q, t′,mi, σ

′
i, PKb, param)→ {0, 1} is always “ 1”.

3.3 The Security Model

A secure cloud auditing protocol with efficient ownership transfer should sat-
isfy properties of soundness, unforgeability, secure transferability and detectabil-
ity, which are defined as follows.

Definition 5 (Soundness). The cloud auditing with ownership transfer is
sound if it is infeasible for the CS to provide a valid proof to pass the integrity
verification, when the challenged data mi is corrupted to be m′i 6= mi, i.e., for
any security parameter λ and negligible function negl(·), there is

Pr
[
AOsign(SK,·) (PK, param)→ (σ′i, t

′) ∧m′i 6= mi ∧ (m′i, σ
′
i) /∈ {(m,σ)}

∧Audit ({i}, t′,m′i, σ′i, PK, param)→ 1 :

(SK,PK)← KeyGen (param) , param← SysGen
(
1λ
)]
≤ negl(λ),

where Osign(·, ·) is the oracle for signature queries, and {(m,σ)} is the set of
pairs that A had queried, the same below.

Definition 6 (Unforgeability). The cloud auditing with ownership transfer
is unforgeable if the ownership of any block ms is infeasible to be forged for all
adversaries, i.e., for any security parameter λ and negligible function negl(·),

Pr
[
AOsign(SK,·) (PK, param)→ (σs, t

′) ∧ (ms, σs) /∈ {(m,σ)}

∧Audit ({s}, t′,ms, σs, PK, param)→ 1 :

(SK,PK)← KeyGen (param) , param← SysGen
(
1λ
)]
≤ negl(λ).

Definition 7 (Secure transferability). The cloud auditing protocol is with
secure ownership transfer iff the following conditions are satisfied:

– If PO is honest, it is resistant to the collusion attack launched by NO and
the CS. In another word, such colluding adversaries can not produce any
valid tags on PO’s behalf. Suppose that the key pair of PO is (SKa, PKa).
We define that for all PPT adversaries and arbitrary security parameter λ,

Pr
[
AOsign(SKa,·),Oaux(·) (PKa, SKb, PKb, param)→ (σs, t

′)

∧(ms, σs) /∈ {(m,σ)} ∧ Audit ({s}, t′,ms, σs, PKa, param)→ 1 :

(SK,PK)← KeyGen (param) , param← SysGen
(
1λ
)]
≤ negl(λ),



where negl(·) is a negligible function and Oaux(·) is for auxiliary queries in
ownership transfer.

– If NO is honest, it is protected from a colluding CS and PO. That is, even
though with the combined ability of the CS and PO, tags belonging to NO
cannot be produced. Suppose that the key pair of NO is (SKb, PKb). We
define that for any PPT adversary and security parameter λ,

Pr
[
AOsign(SKb,·),Oaux(·) (PKb, SKa, PKa, param)→ (σs, t

′)

∧(ms, σs) /∈ {(m,σ)} ∧ Audit ({s}, t′,ms, σs, PKb, param)→ 1 :

(SK,PK)← KeyGen (param) , param← SysGen
(
1λ
)]
≤ negl(λ).

Definition 8 (Detectability). The cloud auditing protocol with ownership
transfer is (ρ, δ)-detectable, where 0 ≤ ρ, δ ≤ 1, if the probability that integrity
corruptions of the transferred cloud data can be detected is no less than δ when
there are a fraction ρ of corrupted data blocks.

4 The Proposed Auditing Protocol

We begin by the overview of the proposed secure auditing protocol with
efficient ownership transfer. Then we present it in more details.

4.1 Overview

To achieve cloud auditing with ownership transfer, we argue that it is imprac-
tical for the large costs produced, if the new owner downloads cloud data and
uploads new generated tags for these data. On the other hand, if we delegate
ownership transfer to a third party to reduce computations and improve effi-
ciency, secrets of transfer parties may suffer from collusion attacks launched by
the other transfer party and the third party employed. In such a delegation, the
communication cost is still a primary concern. To simultaneously improve the
security and efficiency, we construct a novel tag structure. With such a structure,
ownership transfer is securely outsourced to relieve computations on transfer par-
ties. Apart from that, auditing of the transferred data is consequently executed
using the public key of the new owner. Last and most important, the communi-
cation cost produced by ownership transfer is constant and independent of the
number of tags.

4.2 The Cloud Auditing with Efficient Ownership Transfer

The encoded file with abstract F to be uploaded by PO for remote storage
is divided into n blocks, appearing as {m1,m2, · · · ,mn}, where mi ∈ Zp for
i ∈ [1, n]. Similar to [22,24,29], S = 〈Kgen,Sig,Vrf〉 is a signature scheme and
S.Sig (·)ssk is a signature under the secret signing key ssk, where (ssk, spk) ←
S.Kgen

(
1λ
)
.

The procedure of the protocol execution is as follows:



– SysGen
(
1λ
)
→ param. On input the security parameter λ, the system exe-

cutes as follows:
1. Select two cyclic multiplicative groups G and GT with prime order p and

a bilinear pairing e : G×G→ GT .
2. Pick two independent generators g, u ∈R G.
3. Choose two cryptographic hash functions H1 : {0, 1}∗ → G and H2 :
{0, 1}∗ → Zp.

4. Return the system parameter param = {G,GT , p, g, u, e,H1, H2,S}.
– KeyGen (param)→ (SK,PK). On input the system parameter param, PO

and NO generate key pairs as follows:

1. PO selects ska = α ∈R Zp and computes pka = gα.
2. NO selects skb = β ∈R Zp and computes pkb = gβ .
3. PO runs S.Kgen to generate a signing key pair (sska, spka).
4. NO runs S.Kgen to generate a signing key pair (sskb, spkb).
5. PO obtains key pair: (SKa, PKa) = ((ska, sska) , (pka, spka)),

NO obtains key pair: (SKb, PKb) = ((skb, sskb) , (pkb, spkb)).

– TagGen (F, n,mi, SK, param)→ (σi, t). On input file abstract F , data blocks
mi and their amount n, and param, PO with SKa executes as follows:
1. Compute r = H2 (α||F ), h = gr, and h1 = hα.
2. Calculate tags for {mi}i∈[1,n] as

σi = H1 (F ||i)r · (umi)
1

α+H2(F ||h) .

3. Compute t = (F ||n||h||h1) ||S.Sig(F ||n||h||h1)sska as the file tag.

4. Upload
{
{(mi, σi)}i∈[1,n], t

}
to the cloud for remote storage and delete

the local copy.
– Audit (Q, t,mi, σi, PK, param)→ {0, 1}. On input the file tag t, a c-element

challenge set Q = {(i, γi ∈R Zp)} chosen by the TPA, data blocks mi along
with tags σi, PKa of PO, and param, the TPA interacts with the CS as
follows:
1. The CS calculates the data proof and tag proof as

PM =
∑

(i,γi)∈Q
miγi , Pσ =

∏
(i,γi)∈Q

σγii .

2. The CS sends the proof P = (PM,Pσ, t) to the TPA as the response.
3. The TPA obtains F, h, h1 if S.Vrf(F ||n||h||h1)spka = 1, and then checks

the validity of P via the verification equation

e
(
Pσ, pkag

H2(F ||h)
)

?
= e

 ∏
(i,γi)∈Q

H1 (F ||i)γi , h1hH2(F ||h)

·e (uPM , g) .
4. The TPA outputs “1” iff the equation holds, indicating that these data

are correctly and completely stored. Otherwise, at least one of these
challenged data blocks must have been corrupted in the cloud.



– TagTrans (F, SKa, PKa, SKb, PKb, σi, param) → (σ′i, t
′). On input the file

abstract F , data tags σi generated by PO, and param, PO with key pair
(SKa, PKa) and NO with (SKb, PKb) interact with the CS as follows:
1. NO computes r′ = H2 (β||F ), h′ = gr

′
, and h′1 = h′β .

2. PO selects x ∈R Zp, computes auxiliaries

r = H2 (α||F ) , aux = − 1

α+H2 (F ||h)
− x, v = ux,

and sends Aux = (r||aux||v) ||S.Sig(r||aux||v)sska to NO.
3. NO parses Aux and recovers r, aux, v if S.Vrf(r||aux||v)spka = 1; Other-

wise, drops it and aborts.
4. NO picks x′ ∈R Zp, computes auxiliaries for tag recomputation:

R = r′ − r, aux′ =
1

β +H2 (F ||h′)
− x′ + aux, V = vv′ = vux

′
,

and sends Aux′ = (R||aux′||V ) ||S.Sig(R||aux′||V )sskb along with the
new file tag t′ = (F ||n||h′||h′1) ||S.Sig(F ||n||h′||h′1)sskb to the CS.

5. The CS parses Aux′ and obtains R, aux′, V iff S.Vrf(R||aux′||V )spkb = 1,
and stores t′ iff S.Vrf(F ||n||h′||h′1)spkb = 1.

6. The CS computes the new tags belonging to NO as

σ′i = σi ·H1 (F ||i)R · (umi)aux
′
· V mi = H1 (F ||i)r

′
· (umi)

1
β+H2(F ||h′) .

This completes the description of the cloud auditing with efficient ownership
transfer, where data tags before and after transfer are with the same structure.
Such a fact enables ownership to be transferred to another cloud client by fol-
lowing algorithm TagTrans (F, SKa, PKa, SKb, PKb, σi, param)→ (σ′i, t

′). Note
that Aux′ for regenerating tags under the same file is with constant size and in-
dependent of the number of tags.

Remark 1. In step 1 of algorithm TagGen (F, n,mi, SK, param)→ (σi, t), the
parameter r can be generated in another way. Specifically, the hash function
H2 is replaced by functions H3 : {0, 1}∗ → G and H4 : G → Zp. PO
computes s = H3(F )

α
and generates r = H4(s). In such a construction, the

validity of r can be verified by e(s, g)
?
= e(H3(F ), pka), indicating that the

randomness is for the file with abstract F and generated by PO. Accordingly,
in algorithm TagTrans (F, SKa, PKa, SKb, PKb, σi, param) → (σ′i, t

′), r′

should be adjusted as well, which is written as r′ = H4(s′) and verified by

e(s′, g)
?
= e(H3(F ), pkb), where s′ = H3(F )

β
.

5 Correctness and Security Analysis

We give proofs of the following several theorems to demonstrate achievements
of correctness, soundness, unforgeability, secure transferability and detectability
defined.



Theorem 1. The proposed protocol is correct. Concretely, if PO uploads its data
honestly and the CS preserves them well, then the proof responded by the CS is
valid with overwhelming probability.

Proof. We demonstrate the correctness of the proposed protocol by proving the
equality of the verification equation, since the equation only holds for valid
proofs. The correctness of the equation is derived as follows:

e
(
Pσ, pka · gH2(F ||h)

)
= e

(∏
(i,γi)∈Q

σγii , g
α · gH2(F ||h)

)
= e

(∏
(i,γi)∈Q

H1 (F ||i)rγi ·
∏

(i,γi)∈Q
(umi)

1
α+H2(F ||h)γi , gαgH2(F ||h)

)
= e

(∏
(i,γi)∈Q

H1 (F ||i)γi , h1 · hH2(F ||h)
)
· e
(
u
∑

(i,γi)∈Q
miγi , g

)
= e

(∏
(i,γi)∈Q

H1 (F ||i)γi , h1 · hH2(F ||h)
)
· e
(
uPM , g

)
.

If PO and NO calculate and output auxiliaries honestly and the CS stores
data honestly as well as renews tags correctly, then the proof for the challenged
data belonging to the new owner NO is valid. Similarly, the correctness is deriv-
able from the equality of verification equation, of which the process is omitted
here, since structures of verification equations are identical for the same tag
structure before and after ownership transfer.

Theorem 2. The proposed protocol is sound. Concretely, if the k-CEIDH as-
sumption holds, no adversary can cause the TPA to accept proofs generated from
some corrupted data with non-negligible probability in the random oracle model.

Proof. Suppose that there exists a PPT adversary A who can break the sound-
ness of the protocol. We construct a simulator B to break the k-CEIDH assump-
tion and collision resistance of hash functions by interacting with A. Given as in-

put a k-CEIDH problem instance
(
e1, e2, · · · , ek, g, gb, g

1
α+e1 , g

1
α+e2 , · · · , g

1
α+ek

)
,

B controls random oracles and runs A.
Let the file with abstract Fl and blocks {ml1,ml2, · · · ,mln} along with tags

{σl1, σl2, · · · , σln} be challenged. The query set causing the challenger to abort
is Q = {(i, γi)} with |Q| = c, and the proof from A is P ∗l = (PM∗l , Pσ

∗
l , t
∗
l ).

Let the acceptable proof from the honest prover be

Pl = (PMl =
∑

(i,γi)∈Q
mliγi, Pσl =

∏
(i,γi)∈Q

σγili , tl),

where hl = grl = gH2(α||Fl) and h1l = hαl in tl.
According to Theorem 1, it is required that the expected proof perfectly

satisfies the verification equation, i.e.,

e
(
Pσl, pkag

H2(Fl||hl)
)

=e

(∏
(i,γi)∈Q

H1 (Fl||i)γi , h1lhH2(Fl||hl)
l

)
e
(
uPMl , g

)
.



Since A broke the soundness of the protocol, it is obvious that Pl 6= P ∗l and
that

e
(
Pσ∗l , pkag

H2(Fl||h∗l )
)

= e

(∏
(i,γi)∈Q

H1(Fl||i)γi , h∗1lh∗l
H2(Fl||h∗l )

)
e
(
uPM

∗
l , g
)
.

First, we demonstrate that h∗l = hl and h∗1l = h1l if hash functions are
collision-free. Since hl = grl = gH2(α||Fl) and h1l = hαl = grlα = (gα)

rl = pka
rl ,

where g, pka are public parameters, h∗l = hl and h∗1l = h1l indicate the equality
of exponents r∗l and rl, implying a collision of H2 occurring with negligible
probability 1/p.

Second, we show that (PM∗l , Pσ
∗
l ) = (PMl, Pσl) if the assumption of k-

CEIDH problem holds. The following are the details:

– Setup. Let H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Zp be random oracles
controlled by the simulator. B sets u = gb, where b ∈R Zp.

– H-query. This phase is for hash queries of H1 and H2. Times of queries to
H2 (Fl||hl) is q21, to H1 (Fl||i) is q1 and to H2 (α||Fl) is q22. Such query and
response pairs are recorded in empty tables TH21

, TH1
and TH22

generated by
B. For queries of the ith block in file with abstract Fl, if they are searchable
in tables, B returns these recorded values; otherwise, it executes as follows:

• For query (Fl, hl), B chooses el ∈R Zp, sets H2 (Fl||hl) = el, records
(l, Fl||hl, el, H2 (Fl||hl) ,A) in TH21

, and responds the hash query with
H2 (Fl||hl).
• For query (Fl, i), B chooses xli ∈R Zp, setsH1 (Fl||i) = gxli/umli , records

(l, i, Fl||i, xli, H1 (Fl||i) ,A) in TH1
, and responds the hash query with

H1 (Fl||i).
• For query (α, Fl), B chooses r′l ∈R Zp, sets rl = H2 (α||Fl) = r′l + 1

α+el
,

records (l, α||Fl, r′l, H2 (α||Fl) ,A) in TH22
, and responds the hash query

with H2 (α||Fl).
– S-query. This phase is for signature queries, which is conducted for qs times.

Let the ith block of file with abstract Fl be queried, we have

H1(Fl||i) =
gxli

umli
, H2(Fl||hl) = el, rl = r′l +

1

α+ el
.

Then, B computes σli by

σli =

(
gxli

umli

)r′l+ 1
α+el

u
mli
α+el =

gxlir
′
lg
xli

1
α+el

umlir
′
lu
mli

1
α+el

u
mli
α+el =

gxlir
′
lg

1
α+el

xli

umlir
′
l

.

σli is the response to signature query on mli.
– Forgery. Eventually, A forges a proof containing the corrupted i∗th block

with m∗li∗ 6= mli∗ . The verification equation is rearranged as

e
(
Pσl, g

α+el
) ?

= e

(∏
(i,γi)∈Q

H1 (Fl||i)γi , hα+ell

)
· e
(
uPMl , g

)
.



Divide the verification equation for (Pσ∗l , PM
∗
l ) by that for (Pσl, PMl), i.e.,

e
(

(Pσ∗l /Pσl)
α+el , g

)
=e
(
uPM

∗
l /uPMl , g

)
.

Let ∆PMl = PM∗l − PMl = γi∗ (m∗li∗ −mli∗), the division yields the solu-
tion to the k-CEIDH problem:

u
1

α+el = (Pσ∗l /Pσl)
1

∆PMl .

This completes the simulation and solution. The correctness is shown below.
The simulation is indistinguishable from the real attack because random-

nesses including b in setup, el, xli, xli∗ , r
′
l in hash responses and i∗ in signature

generation are randomly chosen and independent in the view of A. Different
randomnesses in signature and hash queries ensure the success of simulation.
For the same file, such randomnesses vary in H1(Fl||i) merely with probability
of 1 − q1

p , making the probability of successful simulation and useful attack be(
1− q1

p

)qs
. Suppose A (t, qs, q1, q21, q22, ε)-breaks the protocol. With A’s abil-

ity, B solves the k-CEIDH problem with probability of
(

1− q1
p

)qs
· ε ≈ ε. The

time cost of simulation is TS = O (q1 + q21 + q22 + qs). Therefore, B solves the
k-CEIDH problem with (t+ TS , ε).

Theorem 3. The proposed protocol is unforgeable. Concretely, if the k-CEIDH
assumption holds, it is computationally infeasible for all adversaries to forge
provably valid tags for any data with non-negligible probability in the random
oracle model.

Proof. Suppose there is an adversary A who can break the unforgeability of the
proposed protocol. We construct a simulator B to break the k-CEIDH assump-

tion by interacting with A. With the input of
(
e1, e2, · · · , ek, g, gb, g

1
α+e1 , g

1
α+e2 ,

· · · , g
1

α+ek

)
, the k-CEIDH adversary B simulates the security game for A below.

– Setup. Hash functions H1 and H2 are random oracles controlled by the sim-
ulator. B sets u = gb, where b ∈R Zp.

– H-query. Hash queries are made in this phase, which are the same with that
described in the proof of Theorem 2.

– S-query. Signature queries are made in this phase by A for qs times. For a
query on the ith block of file with abstract Fl, we have H1(Fl||i) = gxli/umli ,
H2(Fl||hl) = el, and rl = r′l + 1

α+el
. B computes σli for mli by

σli =

(
gxli

umli

)r′l+ 1
α+el

u
mli
α+el =

gxlir
′
lg

1
α+el

xli

umlir
′
l

.

– Forgery. In this phase, A aims to return a forged tag σli∗ of the i∗th block
mli∗ that has never been queried in file with abstract Fl. The corresponding



hash responses from B are H1 (Fl||i∗) = gxli∗/umli∗ , H2 (Fl||hl) = el, and
H2 (α||Fl) = rl. Then there is

σli∗ = H1 (Fl||i∗)rl (umli∗ )
1

α+el =

(
gxli∗

umli∗

)rl
(umli∗ )

1
α+el =

grlxli∗

urlmli∗
u
mli∗

1
α+el .

Now we have found the solution to the k-CEIDH problem:

u
1

α+el = (σli∗u
rlmli∗/grlxli∗ )

1
mli∗ .

This completes the simulation and solution. The correctness is shown below.
The simulation is indistinguishable from the real attack because random-

nesses including b in setup, el, xli, xli∗ , r
′
l in hash responses and i∗ in signature

generation are randomly chosen. For the same file, such randomnesses vary in
H1(Fl||i) merely with probability of 1 − q1

p , making the probability of success-

ful simulation and useful attack be
(

1− q1
p

)qs
. Suppose A (t, qs, q1, q21, q22, ε)-

breaks the protocol. With A’s ability, B solves the k-CEIDH problem with prob-

ability of
(

1− q1
p

)qs
·ε ≈ ε. The time cost of simulation is TS = O (q1 + q21 + q22

+qs). Therefore, B solves the k-CEIDH problem with (t+ TS , ε).

Theorem 4. The proposed protocol is with secure ownership transfer. Con-
cretely, if the k-CEIDH assumption holds, it is computationally infeasible for
any colluding adversary to forge provably valid tags on behalf of others with non-
negligible probability in the random oracle model.

Proof. First, we demonstrate that PO is secure against collusion attack launched
by the CS and NO. Assume that there is a PPT adversary A who can break
the transfer security of PO. Then, we construct a simulator B to break the k-
CEIDH assumption by interacting with A. Given as input a problem instance(
e1, e2, · · · , ek, g, gb, g

1
α+e1 , g

1
α+e2 , · · · , g

1
α+ek

)
, B controls random oracles, runs

A and works as follows.

– Setup. Since the CS and NO collude, B must be able to provide A with the
secret key β of NO. Set u = gb, where b ∈R Zp.

– H-query. Hash queries concerning data file belonging to PO are made as the
same as that in Theorem 2. For queries of the ith block in file with abstract
Fl, B sets H2(Fl||hl) = el, H1(Fl||i) = gxli/umli and rl = H2(α||Fl) =
r′l + 1

α+el
, where el, xli, r

′
l ∈R Zp.

– S-query. Signature queries for tags belonging to PO are as the same as that
in the proof of Theorem 2.

– Aux-query. Queries for auxiliaries to regenerate tags are made in this phase
for qa times. rl = r′l + 1

α+el
for PO is from H-query, and auxl = − 1

α+el
− xl

and vl = uxl , where xl is chosen by B. NO computes rNl = H2(β||Fl),
hNl = gr

N
l , hN1l = hNβl , and picks xNl ∈R Zp, then there are:

R = rNl − rl, auxNl =
1

β + eNl
− xNl + auxl, Vl = vlu

xNl .



– Forgery. Eventually, A forges a valid tag for a block ml∗i in file with abstract
Fl∗ of PO that has not been queried. With hash responses H1 (Fl∗ ||i) =
gxl∗i/uml∗i and H2 (Fl∗ ||hl∗) = el∗ , along with rl∗ from Aux-query, there is

σl∗i = H1 (Fl∗ ||i)rl∗ (uml∗i)
1

α+el∗ =
grl∗ xl∗i

url∗ml∗i
u
ml∗i

1
α+el∗ .

Hence, we figure out the solution to the k-CEIDH problem:

u
1

α+el∗ = (σl∗iu
rl∗ml∗i/grl∗ xl∗i)

1
ml∗i .

This completes the simulation and solution. The correctness is shown below.
The simulation is indistinguishable from the real attack because random-

nesses including b in setup, el, el∗ ,xli, xl∗i, r
′
l in hash responses, xl, rl∗ in aux

queries and l∗ in signature generation are randomly chosen. For different files,
such randomnesses vary in H1 (Fl||i) with 1 − q1

p , H2 (Fl||hl) with 1 − q21
p and

H2 (α||Fl) with 1− q22
p , making the probability of successful simulation and use-

ful attack be
(

(1− q1
p )(1− q21

p )(1− q22
p )
)qs

. Suppose A (t, qs, q1, q21, q22, qa, ε)-

breaks the protocol. With A’s ability, B solves the k-CEIDH problem with prob-

ability of
(

(1− q1
p )(1− q21

p )(1− q22
p )
)qs

ε ≈ ε. The time cost of simulation is

TS = O (q1 + q21 + q22 + qs + qa). Therefore, B solves the k-CEIDH problem
with (t+ TS , ε).

Second, we show that NO is secure against collusion attack launched by
the CS and PO. We assume that there is a PPT adversary A who can break
the transfer security of NO. Then, we construct a simulator B to break the
k-CEIDH assumption by interacting with A. On input a k-CEIDH problem in-

stance
(
e1, e2, · · · , ek, g, gb, g

1
β+e1 , g

1
β+e2 , · · · , g

1
β+ek

)
, B controls random oracles,

runs A and works as follows.

– Setup. Since the CS and PO collude, B must be able to provide A with the
secret key α of PO. Set u = gb, where b ∈R Zp.

– H-query. Hash queries are made similar to the above, only with the difference
in that for query (β, Fl), B chooses r′l ∈R Zp, sets rl = H2(β||Fl) = r′l+

1
β+el

,

and records (l, β||Fl, r′l, H2(β||Fl),A) in TH22 .
– S-query. Signature queries for tags of NO are similar to that in the proof of

Theorem 2, with the difference that the query is for tag belonging to NO.
Hence, the tag response for mli is:

σli =

(
gxli

umli

)r′l+ 1
β+el

u
mli
β+el =

gxlir
′
lg

1
β+el

xli

umlir
′
l

.

– Aux-query. Queries for auxiliaries to regenerate tags are made in this phase.

From NO, there is Aux′ =
(
rl = r′l + 1

β+el
, auxl = − 1

β+el
− xl, vl = uxl

)
,

where rl is from H-query and xl is chosen by B. PO computes rPl = H2 (α||Fl),
hPl = gr

P
l , hP1l = hPαl , and picks xPl ∈R Zp, then there are:

R = rPl − rl, auxPl =
1

α+ eNl
− xPl + auxl, Vl = vlu

xPl .



– Forgery. Eventually, A returns a valid tag for a block ml∗i in file with ab-
stract Fl∗ belonging to NO that has not been queried. With H1 (Fl∗ ||i) =
gxl∗i/uml∗i , H2 (Fl∗ ||hl∗) = el∗ , and rl∗ , B computes

σl∗i = H1 (Fl∗ ||i)rl∗ (uml∗i)
1

β+el∗ =
grl∗ xl∗i

url∗ml∗i
u
ml∗i

1
β+el∗ .

Then, the solution to k-CEIDH problem is:

u
1

β+el∗ = (σl∗iu
rl∗ml∗i/grl∗ xl∗i)

1
ml∗i .

This completes the simulation and solution. The correctness is analyzed sim-
ilar to that in the first part, which is omitted here. Consequently, B solves the
k-CEIDH problem with (t+ TS , ε).

Theorem 5. The proposed protocol is (fc, 1− (1− fc)c)-detectable, where fc is
the ratio of corrupted data blocks and c is the number of challenged blocks.

Proof. Given a fraction fc of corrupted data after ownership transfer, the prob-
ability of corruption detectability is no less than 1− (1− fc)c.

It is obvious that a block is regarded to be intact iff it is chosen from the
fraction 1− fc of the whole. (1− fc)c is the probability that all the challenged c
blocks are considered to be well-preserved, when the protocol is not detectable.
Since the protocol is detectable, at least one of them should be in the fc part,
ruling out the case with the probability of (1− fc)c. Hence, the probability that
our protocol is detectable is at least 1− (1− fc)c.

Remark 2. Recall that the secure transferability we proved in Theorem 4
focuses on the security of untransferred data files against collusion attacks
launched by the CS and PO/NO when ownership transfer occurs. In an-
other word, tags with respect to the untransferred file with abstract Fl∗

cannot be forged, even with the knowledge of transfer auxiliaries corre-
sponding to the transferred file with abstract Fl. However, there still exists
a stronger security model, in which the knowledge of transfer auxiliaries
threatens the soundness in auditing of the transferred data.

Looking at the description of the detailed protocol in Section 4, the cloud
file with abstract F originally uploaded by PO are with verifiable data tags

σi = H1(F ||i)r · (umi)
1

α+H2(F ||h) for i ∈ [1, n].

In order to transfer the ownership of these data to NO, first, PO picks
x ∈R Zp and sends auxiliaries to NO as

A1 =


r

aux = − 1
α+H2(F ||h) − x

v = ux
,



Then, in order to complete ownership transfer via the computing service
provided by CS, NO picks x′ ∈R Zp and sends auxiliaries to CS as

A2 =


R = r′ − r
aux′ = 1

β+H2(F ||h′) − x
′ + aux

V = vux
′

.

Finally, tags belonging to NO after ownership transfer is generated as

σ′i = H1(F ||i)r′ · (umi)
1

β+H2(F ||h′) .
Without loss of generality, the stronger security model consists of two

cases, i.e. the CS colludes with PO and NO respectively, which is shown as
follows:

– The colluding PO and CS can forge the data tag of the i-th block in file
with abstract F withmi replaced bym∗ for NO. The colluding adversary
APC has the knowledge of (A1, A2, σ

′
i), and it can easily obtain

A3 =


r′ = R− r

1
β+H2(F ||h′) − x

′ = aux′ − aux
ux
′

= V
v

.

Then there are two ways to forge:
1. Using r′ to launch the attack: APC computes

σ′i
H1(F ||i)r′

= (umi)
1

β+H2(F ||h′)

and outputs the forgery of the i-th tag belonging to NO in file with
abstract F using the intact block mi and the target block m∗ as

σ′∗i = H1(F ||i)r
′
·
(

(umi)
1

β+H2(F ||h′)
)m∗
mi

= H1(F ||i)r
′
·(um

∗
)

1
β+H2(F ||h′) ,

which is obviously just a mischief. For the fact that mi is well-
preserved, a rational adversary would never launch such an attack.

2. Using A3 to launch the attack: APC computes

u
1

β+H2(F ||h′)−x
′

· ux
′

= u
1

β+H2(F ||h′) ,

and outputs the forgery of the i-th tag belonging to NO in file with
abstract F using the target block m∗ as

σ′∗i = H1 (F ||i)r
′
·
(
u

1
β+H2(F ||h′)

)m∗
= H1(F ||i)r

′
· (um

∗
)

1
β+H2(F ||h′) ,

in which case mi is corrupted. Such a collusion attack is possible,
because in practice, CS might fail to protect the integrity of NO ’s
challenged data. If these data were transferred from PO, the moti-
vated PO can preserve its auxiliaries, (x, F ) pair is enough for the
generation of A1.



– The colluding NO and CS can forge the data tag of the i-th block in
file with abstract F with mi replaced by m∗ for PO. The colluding
adversary ANC has the knowledge of (A1, A2, σi), and there are two
ways to forge as well:
1. Using r to launch the attack: ANC computes

σi
H1(F ||i)r

= (umi)
1

α+H2(F ||h)

and outputs the forgery of the i-th tag belonging to PO in file with
abstract F using the intact block mi and the target block m∗ as

σ∗i = H1(F ||i)r ·
(

(umi)
1

α+H2(F ||h)
)m∗
mi

= H1(F ||i)r · (um
∗
)

1
α+H2(F ||h) ,

in which NO loses more than it gains, because it trades the security
of the data it currently possesses for a mischief. In addition, since the
ownership of these data is transferred from PO to NO, the forged
tags are unnecessary for PO.

2. Using A1 to launch the attack: ANC computes

u−aux

ux
= u

1
α+H2(F ||h) ,

and outputs the forgery of the i-th tag belonging to PO in file with
abstract F using the target block m∗ as

σ∗i = H1 (F ||i)r ·
(
u

1
α+H2(F ||h)

)m∗
= H1(F ||i)r · (um

∗
)

1
α+H2(F ||h) ,

in which scenario mi is corrupted. However, such an attack is im-
practical in real word for the same reasons mentioned above.

In summary, only the second attack launched by APC threatens the
soundness of auditing. There exists a trivial defense employing a Merkle
Hash Tree (MHT) against such an attack. Specifically, whenever a data file is
uploaded to the cloud for storage or transferred to a new owner, a MHT will
be constructed. The leaves of the tree are hashes of (σi, i) pairs for i ∈ [1, n],
and the root is the commitment to all tags in the file. This root is preserved
by the auditor and the whole tree is stored in the cloud. As a consequence, in
algorithm Audit (Q, t,mi, σi, PK, param)→ {0, 1}, the proof corresponding
to the challenge set Q responded by CS is {PM, (σi, Ωi)i∈Q}, where PM
is the aggregation of data blocks, and Ωi is the Merkle proof of (σi, i). In
this way, the protocol is resistant to the collision attack mentioned above.

6 Performance Analysis

We show the efficiency of our design through numerical analysis and exper-
imental results compared with the state of the art. Following that, we discuss
the performance of ownership transfer among multiple cloud clients.



Table 1: Property and communication cost comparisons

Protocols Protocol [25] Our protocol

Outsourced computation of ownership transfer Yes Yes

Public verifiability No Yes

Thorough transferability No Yes

Unlimited times of ownership transfer No Yes

Data auditing
challenges 2|q|+ log2n c(log2n + |p|)
responses 4|q| 4|p|

Ownership
transfer

the transferred side n|q| 3|p|
the transferring side |q| 3|p|

the computing server side (n + 1)|q| 0

Table 2: Computational overhead comparison

Protocols Protocol [25] Our protocol

Tag generation (2n + 2)E + 2nM (2n + 3)E + nM + I

Proof generation cE + (4c− 1)M cE + (2c− 1)M

Proof verification 4P + (c + 1)E + 4cM 3P + (c + 3)E + (c + 1)M

Aux generation on transferred side nE + nM + nI E + I

Aux′ generation on transferring side E + I E + M + I

Tag recomputation on server side E + 2nM 4nE + 3nM

6.1 Efficiency Analysis

Simulation experiments are conducted on the Ubuntu 12.04.5 (1GB memory)
VMware 10.0 in a laptop running Windows 10 with Intel(R) Core(TM) i5-8250U
@ 1.6GHZ and 8GB RAM. The codes are written using C programming language
with GMP Library (GMP-6.1.2) and PBC Library (pbc-0.5.14), of which the
data results are used to draw figures in MATLAB 2019.

The property and communication cost comparisons are presented in Table 1,
where n is the number of data blocks. Let the number of sectors in [25] set to be
1, and q equals to p appearing in our protocol, which is the prime order of G.
According to Table 1, both protocols enable computation of transfer outsourced,
while we provide thorough transferability rather than only the partial one be-
cause the secret key of the old owner no longer remains in tags for new owners. In
addition, we achieve public verifiability of data and unlimited times of ownership
transfer among cloud clients. As for the communication overhead, though [25]
costs less in data auditing, it trades for more computations in proof generation
in turn. In ownership transfer, the communication cost in our protocol is with a
smaller and constant size.

The computational overhead analysis is shown in Table 2, where c is the
number of challenged blocks. For the sake of simplicity, we denote modular ex-
ponentiation as E, point multiplication as M , bilinear pairing as P and inverse
as I. We ignore hash functions in comparison, for the fact that its cost is neg-
ligible when compared with that of the pre-mentioned operations. According to
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Fig. 1: Time cost of data outsourcing and auditing

0 1000 2000 3000 4000 5000

number of data blocks

0

10

20

30

40

50

60

70

ti
m

e 
fo

r 
tr

an
sf

er
 o

n
 t

h
e 

tr
an

sf
er

re
d

 s
id

e 
(s

)

Our protocol

Protocol [25]

(a) Aux generation
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(b) Aux′ generation
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(c) recomputation on server
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(d) computations could not be outsourced
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(e) the total cost for transfer

Fig. 2: Time cost of data ownership transfer

Table 2, the computational cost of [25] in data auditing concerning the first three
entries is larger than ours. The experimental results are shown in Fig. 1, where n
ranges from 500 to 5000 in Fig. 1(a), and n is set to be 1000 in Fig. 1(b)(c). Costs
in ownership transfer are described in Fig. 2 with n from 500 to 5000. According
to Fig. 2, though computation on the transferring side is more expensive in our
protocol, the cost in [25] that could not be outsourced to the computing server
is significantly higher than that of a constant size in ours. Besides, the total cost
of ownership transfer is lower in our design. Note that, the more computational
overhead concerning the last entry in our protocol seems like nothing, since the
server is equipped with professional computing power.



6.2 Ownership Transfer Discussion

Recall that in the core part of Section 4, we have introduced the ownership
transfer of cloud data from PO to NO. Due to the well-designed novel data tags
in our protocol, the regenerated tag for NO is with the same structure with
that for PO, except that the secret key embedded in now belongs to NO rather
than PO. With such a tag structure, the transferred data looks just like the
data originally possessed by NO and can be transferred continuously to other
cloud clients. More generally speaking, our protocol supports ownership transfer
of any piece of data among multiple clients for numerous times.

7 Conclusion

We propose a secure auditing protocol with efficient ownership transfer for
cloud data, satisfying verifiability and transferability simultaneously. Compared
with the state of the art, the communication cost produced by ownership transfer
is constant rather than dependent of the number of tags, and the computational
overhead during transfer on both transfer parties is constant as well. In addition,
the protocol satisfies properties of correctness, soundness, unforgeability and
detectability, which also protects the untransferred data from collusion attacks
when ownership transfer occurs.
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