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Abstract

While unconditionally-secure quantum bit commitment (allowing both quantum computa-
tion and communication) is impossible, researchers turn to study the complexity-based one,
a.k.a. computational quantum bit commitment. A (computational) canonical (non-interactive)
quantum bit commitment scheme refers to a kind of scheme such that the commitment consists
of just a single (quantum) message from the sender to the receiver that later can be opened
by uncomputing the commit stage. In this work, we study general properties of computational
quantum bit commitments through the lens of canonical quantum bit commitments. Among
other results, we in particular obtain the following two:

1. Any computational quantum bit commitment scheme can be converted into the canonical
(non-interactive) form (with its sum-binding property preserved).

2. Two flavors of canonical quantum bit commitments are equivalent; that is, canonical
computationally-hiding statistically-binding quantum bit commitment exists if and only if
the canonical statistically-hiding computationally-binding one exists. Combining this re-
sult with the first one, it immediately implies (unconditionally) that computational quan-
tum bit commitment is symmetric.

Canonical quantum bit commitments can be based on quantum-secure one-way functions or
pseudorandom quantum states. But in our opinion, the formulation of canonical quantum bit
commitment is so clean and simple that itself can be viewed as a plausible complexity assumption
as well. We propose to explore canonical quantum bit commitment from perspectives of both
quantum cryptography and quantum complexity theory in the future.

*This is the full version of the extended abstract with the same title that is accepted by Asiacrypt 2022.
"Email: tjunyan@jnu.edu.cn
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1 Introduction

In the classical world, bit commitment is an important cryptographic primitive. A bit commitment
scheme defines a two-stage interactive protocol between a sender and a receiver, providing two secu-
rity guarantees, hiding and binding. Informally, the hiding property states that the committed bit is
hidden from the receiver during the commit stage and afterwards until it is opened, while the bind-
ing property states that the sender can only open the commitment as at most one bit value (0 or 1,
exclusively) in the reveal stage later. Unfortunately, unconditionally (or information-theoretically)-
secure bit commitment is impossible. As a compromise, we turn to consider complexity-based bit
commitment, a.k.a. computational bit commitment. The one-way function assumption is a basic
computational hardness assumption without any mathematical structure; it is the minimum as-
sumption in complexity-based cryptography [IL89]. From a one-way function we can construct two
flavors of bit commitments: computationally-hiding (statistically-binding) bit commitment [Nao91]
and (statistically-hiding) computationally-binding bit commitment [NOVY98, HNO*09]. However,
a major disadvantage of these constructions is that they are interactive: at least two or even poly-
nomial numbers of messages are needed to exchange in the commit stage, and which seems inherent
[MP12, HHRS07].

As quantum technology develops, existing cryptosystems are facing possible quantum attacks in
the near future. Regarding bit commitment, we thus have to study bit commitment secure against
quantum attacks, a.k.a. quantum bit commitment. A general quantum bit commitment scheme
itself could be a hybrid of classical and quantum computation and communication. When the
construction is purely classical, we often call it “(classical) bit commitment scheme secure against
quantum attacks” or “post-quantum bit commitment scheme”!.

The concept of quantum bit commitment was proposed almost three decades ago, aiming
to make use of quantum mechanics to realize bit commitments [BB84, BC90]. Unfortunately,
unconditionally-secure quantum bit commitment is impossible either [May97, LC98]. Based on com-
plexity assumptions such as quantum-secure one-way permutations or functions, we can also con-
struct two flavors of quantum bit commitments [AC02, YWLQ15, DMS00, KO09, KO11, CLS01].
An interesting observation about these constructions is that almost all of them (except for the
one in [CLSO01]) are non-interactive (in both the commit and the reveal stages). This is a great
advantage over the classical bit commitment. And this motivates us to ask the following question:

Is quantum bit commitment inherently non-interactive? Or, can any quantum bit com-
mitment scheme be “compressed” into a non-interactive one that is still useful in appli-
cations?

This possible non-interactivity of quantum bit commitment is intriguing: if it is true, then replacing
post-quantum bit commitments with quantum bit commitments in applications can potentially
reduce the round complexity of the whole construction.

While the idea of using quantum bit commitments in applications sounds wonderful, unfortu-
nately, it is well-known that the general binding property of quantum bit commitment, i.e. sum-
binding, is much weaker than the classical-style binding? [DMS00, CDMS04, YWLQ15, Unr16b],
or unique-binding hereafter. This is because a quantum cheating sender may commit to a bit 0
and 1 in an arbitrary superposition, resulting in the committed value no longer unique. Thus, it is

'Even in case, it is still legal to call it “quantum bit commitment scheme”. This is because classical computation
and communication can be simulated by quantum computation and communication, respectively, in a standard way.

2That is, any quantum cheating sender cannot generate a commitment that can be opened as both 0 and 1
successfully with non-negligible probability.



questionable a priori whether quantum bit commitments could be useful in cryptographic applica-
tions, let alone the notorious difficulty (or general impossibility) of quantum rewinding [vdG97] in
security analysis.

Canonical quantum bit commitment. Motivated by the study of complete problems for
quantum zero-knowledge [Wat02, Kob03, Yanl2] and more general quantum interactive proofs
[RW05, CKR11], the so-called canonical (non-interactive) quantum bit commitment?® was proposed
[YWLQ15, FUYZ20).

Roughly speaking, by a canonical quantum bit commitment scheme, the commitment consists
of just a single (quantum) message from the sender to the receiver, which can be opened later by
uncompute the commit stage. Its definition is sketched at the beginning of “Our contributions”
shortly and given in Definition 5 formally. A canonical quantum bit commitment scheme satisfies
the so-called honest-binding property, which guarantees that any cheating sender in the reveal stage
cannot open an honest commitment to the bit 0 as 1, and vice versa. This honest-binding property
appears even weaker than sum-binding. Both flavors of canonical quantum bit commitments can be
constructed from quantum-secure one-way functions [YWLQ15, KO09, KO11], or pseudorandom
quantum states by a more recent result [MY21] and this work.

Though its binding property appears extremely weak, interestingly, it turns out that canonical
quantum bit commitment is sufficient to construct quantum zero-knowledge [YWLQ15, FUYZ20,
Yan21] and quantum oblivious transfer* [FUYZ20]. However, the corresponding security (that will
be based on quantum bit honest-binding) there are more tricky to establish than the corresponding
security based on unique-binding.

Other quantum commitments and binding properties. There are also other (classical or
quantum) constructions of commitments that satisfy some stronger binding properties (but which
may not hold for general quantum bit commitments) than sum-binding, including collapse-binding
commitments [Unrl16b, Unrl6a], and extractable commitments [GLSV21, BCKM21]; they are likely
to be more versatile than general quantum bit commitments in applications. However, both of them
need interactions in the standard model, losing the possible advantage of the non-interactivity of
quantum bit commitments.

Restricting to quantum statistically-binding commitments, statistical unique-binding can be
achieved based on quantum one-way permutations [AC02], or even functions by a recent result
[BB21]. More recently, Ananth, Qian and Yuen [AQY21] also propose an extractor-based quan-
tum statistical-binding property, hereafter AQY-binding, and show that it can be satisfied by a
construction of quantum bit commitment based on pseudorandom quantum states. Though these
binding properties seem much stronger than the honest-binding property guaranteed by canon-
ical statistically-binding quantum bit commitment (whose instantiations can be found either in
[YWLQ15], Appendix D of this work, or [MY21]), commitments satisfying these binding properties
turn out to be no more useful (at least in theory, as far as we can tell) than canonical statistically-
binding quantum bit commitments in applications [FUYZ20]. More discussion on this point is
referred to Subsection 1.2 (where we will discuss the extractor-based AQY-binding property in
greater detail.)

Yet in some other work certain strong quantum binding properties are proposed for applications
[DFS04, CDMS04], but no instantiations of the corresponding commitments based on well-founded

3In the prior work (e.g. [YWLQ15, FUYZ20, Yan21]) and an earlier draft of this paper (back in 2020), it is called
“generic” form. However, this name is misleading as pointed out by Ananth, Qian, and Yuen [AQY22], who also
suggest the current name “canonical” to us. And we accept.

“In [FUYZ20], a quantum oblivious transfer with a security that is weaker than the full simulation-security
[GLSV21, BCKM21] but still very useful in many scenarios was achieved.



complexity assumptions are known even today.

This work. In this work, we show that the canonical quantum bit commitment captures the
computational hardness underlying general computational quantum bit commitments, by provid-
ing a compiler that can transform any computational quantum bit commitment scheme into the
canonical (non-interactive) form. This not only answer the motivating question aforementioned
affirmatively, but also allows us to study general properties of quantum bit commitments through
the lens of canonical quantum bit commitments.

We further propose to study canonical quantum bit commitment in the future not only as a
cryptographic primitive in the MiniQCrypt world (named after [GLSV21]), but also as a basic
(quantum) complexity-theoretic object whose existence is an interesting open problem in its own
right. Our proposal is based on our current knowledge about canonical quantum bit commitment
summarized as follows: (Refer to Subsection 1.3 for more detail.)

1. Tts formulation is clean and simple (Definition 5), inducing two basic quantum complexity-
theoretic open questions: one is on the existence of quantum state ensembles that are com-
putationally indistinguishable but far apart in trace distance (Open question 2 in Subsection
1.3), while the other on the existence of unitaries that cannot be efficiently realized (Open
question 1 in Subsection 1.3).

2. It is robust (Theorem 7), implying that the two basic open questions mentioned in the 1st
item above are essentially the same question.

3. It captures the computational hardness underlying general computational quantum bit com-
mitments (Theorem 4).

4. Tt is useful in quantum cryptography [YWLQ15, FUYZ20, Yan21, AQY21, BCKM21].

5. Conversely, it is also implied by some basic quantum cryptographic primitives such as quan-
tum zero-knowledge [YWLQ15] and quantum oblivious transfer [CLS01].

6. It is implied by quantum complexity assumptions such as quantum-secure one-way func-
tions and pseudorandom quantum states in the MiniQCrypt world [YWLQ15, KO09, KO11,
CLSO01, MY21]. But the converse is unknown.

Before introducing our contribution of this work in greater detail, we stress that in this paper
when we talk about statistical or computational binding without explicitly mentioning other prop-
erties of binding, we mean the most general sum-binding property (or equivalently, honest-binding
w.r.t. canonical quantum bit commitments, as will become clear shortly). In spite of this, we
have already known that canonical quantum bit commitments can satisfy some stronger binding
properties than sum-binding that are interesting and useful in applications [FUYZ20, Yan21] (and
Appendix B of this paper). We expect further exploration on the binding properties of canonical
quantum bit commitments in the future.

1.1 Our contribution

We first sketch what a canonical quantum bit commitment scheme looks like; its formal definition is
given in Definition 5. Informally speaking, a canonical (non-interactive) quantum bit commitment
scheme can be represented by an ensemble of unitary polynomial-time generated quantum circuit
pair {(Qo(n), Q1(n))},,, where n is the security parameter. For the moment, let us drop the security
parameter n to simplify the notation. Both quantum circuits ()9 and ()1 perform on a quantum



register pair (C,R), which are composed of qubits. To commit a bit b € {0,1}, the sender (of
bit commitment) first initializes the register pair (C, R) in all |0)’s state and then performs the
quantum circuit @ on them, sending the commitment register C to the receiver. In the reveal
stage, the sender sends the bit b together with the decommitment register R to the receiver, who
will first perform the inverse of the quantum circuit @ (since it is unitary) on the register pair
(C, R), and then measure each qubit of (C, R) in the computational basis. The receiver will accept
(i.e. the opening is successful) if and only if the measurement outcome of each qubit is 0. We say
that the scheme (Qo, Q1) is hiding if the reduced quantum state of Qg |0) in the register C and
that of @1 |0) are indistinguishable, and that the scheme is binding if there does not exist a unitary
performing on the register R that transforms the quantum state Qg |0) into @1 |0).

We obtain four main results on properties of canonical and more general quantum bit commit-
ments as follows:

1. Honest-binding is equivalent to sum-binding (w.r.t. the canonical form)

Among various binding properties proposed for quantum (including post-quantum) commit-
ments [AC02, DMS00, CDMS04, DFS04, Unr16b, YWLQ15, Yan21], honest-binding [YWLQ15] is
the weakest. Informally, it states that any cheating sender (in the reveal stage) cannot open an
honest commitment to 0 (resp. 1) as 1 (resp. 0). Its formal definition w.r.t. a canonical quantum
bit commitment scheme is given in Definition 5. A priori, honest-binding seems to be too weak
to be useful: anyway, it is unrealistic to restrict a cheating sender’s behavior to be honest in the
commit stage!

Sum-binding is a general binding property of quantum bit commitment [DMS00]. Roughly, let po
and p; denote the probability that a cheating sender (in the reveal stage) can open the commitment
(generated in the commit stage in which the sender is also cheating) as 0 and 1, respectively. Then
sum-binding requires that py + p1 < 1 + negl(n), where negl(-) is some negligible function of
the security parameter. The formal definition of sum-binding w.r.t. a canonical quantum bit
commitment scheme is given in Definition 7.

While it is trivial that sum-binding implies honest-binding, in this work we show that the
converse is also true w.r.t. canonical quantum bit commitments® (Theorem 2). This in turn
establishes an equivalence between its semi-honest security (against an honest-but-curious attacker,
i.e. honest-hiding and honest-binding; refer to Definition 5) and the full security (against an
arbitrary attacker) (Theorem 3). This equivalence not only explains at a high level why previous
applications of canonical quantum bit commitments only make use of its honest-binding property
[YWLQ15, FUYZ20, Yan2l], but also enables us to simplify the security analysis of canonical
quantum bit commitments schemes®. As an application, we can significantly simplify the DMS
construction of computationally-binding quantum bit commitment based on quantum-secure one-
way permutations’ (Lemma 8) [DMS00].

2. Quantum bit commitment is inherently non-interactive

We answer the motivating question raised before affirmatively, i.e. quantum bit commitment
is inherently non-interacitve, by proving a round-collapse theorem (Theorem 4). This theorem can
also be viewed as an extension of converting an arbitrary non-interactive quantum bit commitment
scheme into the canonical form [YWLQ15, FUYZ20]. Its basic idea follows the non-interactive case,

5We do not claim that this holds for a general quantum bit commitment; the two simple schemes presented in
Appendix C also serve as two counterexamples in this regard.

5Then it suffices to show its semi-honest security.

"Strictly speaking, we simplify the security analysis of the DMS scheme after it is firstly converted into the
canonical form (which is straightforward).



with the only non-trivial thing lying in identifying a sufficient yet as weak as possible condition
under which the same idea works for such an extension. A priori, one may expect that for the
compression of rounds, the original scheme itself should be firstly secure (against quantum attacks),
with some additional structure requirements (if needed). Surprisingly, it turns out the condition
for the round compression could be extremely weak: even the original quantum bit commitment
scheme need not be fully secure; instead, it is sufficient that its purification is semi-honest secure!
In greater detail, we construct a general compiler that can convert any (interactive) quantum
bit commitment scheme whose purification is semi-honest secure into a quantum bit commitment
scheme of the canonical form. This resulting scheme (of the canonical form), which will be referred
to as the “compressed scheme”, has perfect completeness and satisfies the same flavor of hiding and
binding properties as the original scheme. This theorem is interesting by noting that we do not
have a classical counterpart of it yet, which seems even unlikely [MP12, HHRS07]. An immediate
consequence of the round-collapse theorem is that any known quantum bit commitment scheme (of
either flavor and based on any complexity assumption) can be converted into the canonical form
(Theorem 5).

If we want to apply the round-collapse theorem in applications, (seeing from its statement) the
relationship between the semi-honest security of the original scheme and its purification becomes
important. We thus initiate a study towards this relationship (in Section 7, 9, and 10). On one
hand, we identify many situations in which the semi-honest security of the original scheme eztends
to its purification. On the other hand, we find two counterexamples for which such an extension
is impossible (Appendix C). A bridge that connects these two notions of security is the security
against a special kind of attack which we will refer to as the “purification attack”, i.e. attacking
by purifying all the party’s (honest) operations prescribed by the protocol. A typical purification
attack is not to perform the expected measurements. It turns out that an (interactive) quantum
bit commitment scheme is secure against the purification attack if and only if its purification is
semi-honest secure (Proposition 16). But in comparison, the security against the purification attack
is more convenient to work with in security analysis than the semi-honest security of the purified
scheme. We believe that this security against the purification attack as well as techniques developed
to establish it (refer to “Technical overview” for a discussion) are of independent interest.

As an interesting application, we apply the round-collapse theorem to compress the classical
NOVY scheme [NOVY98], obtaining yet another construction (besides ones given in [DMS00,
KO09, KO11]) of non-interactive computationally-binding quantum bit commitment based on
quantum-secure one-way permutations (Theorem 6). This is interesting because we even do not
know whether the original NOVY scheme itself is secure against quantum attacks (when the under-
lying quantum one-way permutation used is quantum secure). We also highlight that our quantum
security analysis here is (interestingly) much simpler than the classical analysis of the NOVY scheme
in [NOVY98]. This simplification mainly comes from that it suffices to show that the NOVY scheme
is secure against the purification attack (for the purpose of round compression).

3. Quantum bit commitment is symmetric, or two flavors of quantum bit commitments
are equivalent

Almost two decades ago, Crépeau, Légaré and Salvail [CLS01] gave a way that virtually can
transform any quantum bit commitment scheme that is computationally hiding and statistically
unique-binding into another one of the opposite flavor, i.e. computationally binding and statistically
hiding. In this work, we generalize this result significantly by proving a symmetry® in the sense as
stated in the following (unconditional) theorem:

8This symmetry is in the same sense as that of oblivious transfer [WW06].



Theorem 1 Computationally-hiding statistically-binding quantum bit commitments exist if and
only if statistically-hiding computationally-binding quantum bit commitments exist.

The high-level idea of proving the theorem above is as follows. By the virtue of the round-collapse
theorem, it suffices to prove that the theorem holds w.r.t. canonical quantum bit commitments
(Theorem 7). In greater detail, given a canonical quantum bit commitment scheme, we first feed it
to a somewhat simplified CLS construction [CLS01] to convert its flavor, and then feed the resulting
scheme to the general compiler guaranteed by the round-collapse theorem to obtain the final scheme
(which will be in the canonical form automatically).

Our security analysis are significantly simpler than the related ones given in [CLS01, CDMS04].
Basically, the simplification comes from two aspects:

1. By the virtue of our round-collapse theorem (Theorem 4), the original CLS scheme (with a
canonical quantum bit commitment scheme plugged in) can be simplified in the first place to
just satisfy the security against the purification attack before the compression.

2. Proving the security against the purification attack turns out to be much easier than the full
security.

Towards proving Theorem 7, we develop several techniques to establish the security against the
purification attack. Most of these techniques are adapted from those used in [FUYZ20, Yan21].
Among others, we in particular show a computational collapse caused by canonical quantum
computationally-binding commitments (Theorem 8), which might be of independent interest. More
discussion on our techniques is referred to “Technical overview”.

We finally remark that as a by-product of the symmetry, we automatically get a new way
of constructing canonical statistically-hiding computationally-binding quantum bit commitment
based on quantum-secure one-way functions or pseudorandom quantum states: This is achieved
by first plugging in the somewhat simplified CLS construction a canonical computationally-hiding
statistically-binding quantum bit commitment scheme that is either based on quantum-secure one-
way functions (e.g. [YWLQ15] or Appendix D of this work) or pseudorandom quantum states (e.g.
[MY21]), and then compressing the resulting scheme. We note that the construction of statistically-
hiding computationally-binding quantum bit commitment based on pseudorandom quantum states
was previously unknown.

4. Quantum statistical string sum-binding (w.r.t. the canonical form)

A natural way to commit a string is to commit it in a bitwise fashion using a quantum bit
commitment scheme. So it is interesting to explore what binding property can be obtained if a
quantum bit commitment scheme is composed in parallel. Since a canonical quantum bit commit-
ment scheme satisfies the sum-binding property, ideally, we may hope to prove such a dream version
of the quantum string sum-binding property as ZsG{O,l}m ps < 1+ negl(n), where ps denotes the
success probability that the cheating sender can open a (claimed) string commitment as the m-bit
string s, and negl(-) denotes some negligible function of the security parameter n. However, this
string sum-binding property seems too strong to be true generally when m = poly(n), in which
case the sender can attack by committing to a superposition of exponentially many m-bit strings
[CDMSO04]. Then bounding the error induced by such a superposition by a negligible quantity
becomes technically hard or even impossible”.

9To the best of our knowledge, however, no impossibility result is known yet. In [CDMS04], authors only vaguely
argue that this seems impossible for quantum computationally-binding commitments.



In spite of the above, we manage to show that composing a canonical statistically-binding
quantum bit commitment scheme in parallel indeed gives rise to a quantum string commitment
scheme satisfying a dream version of the quantum statistical string sum-binding property (Theorem
9). Since our proof relies heavily on that the error (incurred by the statistical binding error)
decreases exponentially in the Hamming distance between the committed string and the string to
reveal, it does not extend to the case quantum computational binding.

1.2 Related (more recent) work

More recently!'’, Bitansky and Brakerski [BB21] construct a non-interactive statistically-binding
quantum bit commitment scheme based on quantum-secure one-way functions. Their scheme de-
viates from the canonical one given in [YWLQ15], managing to achieve unique-binding and the
classical reveal stage, but at the cost of more complex construction and analysis.

Morimae and Yamakawa [MY21] construct a statistically-binding quantum bit commitment
scheme based on pseudorandom quantum states [JLS18], a quantum complexity assumption ar-
guably weaker than quantum-secure one-way functions [Kre21]. Interestingly, we find their con-
struction is just in the canonical form. So by results of this work, their security analysis of quantum
statistical binding can be simplified to just show the quantum statistical honest-binding (rather
than sum-binding) property. Moreover, combining results in this work (Theorem 7), it follows that
both flavors of canonical quantum bit commitments can be constructed based on pseudorandom
quantum states.

Ananth, Qian and Yuen [AQY21] also construct a statistically-binding quantum bit commitment
scheme based on pseudorandom quantum states, which has two messages in the commit stage and
a single classical message in the reveal stage. Clearly, this scheme is not in the canonical form. But
they show that it satisfies a strong (statistical) binding property such that an (inefficient) extractor
is associated with scheme, which can be used to extract (and thus collapse) the committed value
from the commitment at the end of the commit stage. We find!! that this idea of introducing
an extractor to quantum statistically-binding commitments is very similar in spirit to the analysis
framework introduced in [FUYZ20] but only for canonical perfectly/statistically-binding quantum
bit commitments. More discussion on the comparison between them is referred to Appendix B,
where by tweaking techniques used in [FUYZ20], we in particular prove that canonical statistically-
binding quantum bit commitments automatically satisfy the AQY-binding property.

While the extractor-based AQY-binding definition is more readily usable by cryptographers,
there seems no obvious way to extend it to the case of quantum computational binding (when the
commitment is statistically hiding). This is because then the quantum commitments to different
values are negligibly close (in trace distance); we cannot hope that a similar extractor exists. In
contrast, the formalization of canonical quantum bit commitment schemes provide a uniform way
to capture both flavors of quantum bit commitments.

Moreover, Ananth, Qian and Yuen [AQY21] propose studying pseudorandom quantum states,
instead of quantum-secure one-way functions, as a basic quantum complexity assumption for quan-
tum (rather than post-quantum) cryptography. In this regard, we feel that it would be equally
interesting to study the existence of canonical quantum bit commitment schemes as a basic quan-
tum complexity assumption for quantum cryptography. More discussion on this point is referred
to the next subsection.

10 After the upload of the first preprint of this work to Cryptology ePrint Archive [Yan20] in 2020.
" This is also observed in [MY21, Appendix B].
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1.3 Quantum bit commitments: seeing from both quantum cryptography and
quantum complexity perspectives

Based on previous results and results in this paper, now let us give an overview of quantum bit
commitments from quantum cryptography and quantum complexity perspectives, respectively.

Seeing from the quantum cryptography perspective, on one hand quantum bit commitment can
be constructed from quantum-secure one-way functions/permutations [AC02, YWLQ15, DMS00,
K009, KO11, CLS01, BB21], or pseudorandom quantum states [JLS18 MY21, AQY21]. It is
interesting to explore whether quantum bit commitments imply pseudorandom quantum states
(of any sort) conversely!?. On the other hand, quantum bit commitments are useful, and may
help reduce the round complexity of cryptographic constructions [YWLQ15, FUYZ20, Yan21].
In particular, there exists a certain equivalence between quantum bit commitment and quantum
zero-knowledge [YWLQ15], and an equivalence between quantum bit commitment and quantum
oblivious transfer [Yao95, CLS01, FUYZ20, BCKM21, AQY21]. Thus, quantum bit commitment is
likely to be an important primitive in the MiniQCrypt world [GLSV21]. It is interesting to explore
more cryptographic applications of quantum bit commitments in the future.

Seeing from the quantum complexity perspective, whether computational quantum bit commit-
ments exist is an interesting open problem. As mentioned, canonical quantum bit commitment
was motivated by the study of complete problems for quantum zero-knowledge [Wat02, Yan12] and
more general quantum interactive proofs [RW05, CKR11].

The question of the existence of canonical statistically-hiding computationally-binding quantum
bit commitment schemes is closely related to the quantum complezity of unitaries [Aar16]. In greater
detail, suppose that (Qo, Q1) is a canonical statistically-hiding computationally-binding quantum
bit commitment scheme. Then its statistical hiding property implies that quantum states Qg \O>CR
and Q1 [0)°" only differ up to a unitary U performing on the decommitment register R. This is
because restricting to the commitment register C, the corresponding two reduced quantum states
are negligibly close in trace distance, and then Uhlmann’s theorem can be applied to guarantee
the existence of such a unitary U. However, the computational binding property implies that
this unitary U is not efficiently realizable! We can summarize this computational negation of
Uhlmann’s theorem as the following complexity-theoretic open question, where by “efficiently-
generated quantum state” we mean that there exists a quantum polynomial-time algorithm which
takes as the input 1" (where n is the security parameter) and a bunch of ancillas initialized in the
state |0)’s, outputs this quantum state:

Open question 1. Do there exist two ensembles of efficiently-generated (pure) quan-
tum state { ltho(n))F }n and { |4y (n))OF }n such that: (1) their reduced states in the
register C is negligibly close in trace distance; and (2) there does not exist a poly-size
quantum circuit family such that each circuit in this family does not touch the register
C, but possibly takes some quantum advice (i.e. quantum state that may depend on
the index n), and sends the quantum state from |1)y(n)) to |¢1(n)) for sufficiently large
n? Let us call the object mentioned in this open question just “Uhlmann”.

The question of the existence of canonical computationally-hiding statistically-binding quantum

bit commitment is actually the following open question in disguise!:

12We do not expect that quantum bit commitments can imply quantum-secure one-way functions, simply because
a canonical quantum bit commitment scheme concerns quantum states rather than any sort of functions.

13In preparing the camera-ready version of the corresponding extended abstract of this paper that is accepted
by Asiacrypt 2022, we notice that there is a follow-up work [BCQ22]. After reading an earlier draft of our paper
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Open question 2. Do there exist two ensembles of efficiently-generated (mixed) quan-
tum state {po(n)}n and {p1(n)}, such that they are far apart in trace distance (e.g.
negligibly close to 1) but quantum computationally indistinguishable? Let us call the
object mentioned in this open question “EFI” following [BCQ22].

Seeing from this, we can motivate the study of canonical computationally-hiding statistically-
binding quantum bit commitment by comparing it with a pair of efficiently constructible probability
distributions that are computationally indistinguishable but statistically far apart in the classical
setting: we may view the former as the quantum counterpart of the latter. Goldreich shows
that the existence of the latter implies one-way functions [GolO1, an exercise in Chapter 3] and
pseudorandom generators [Gol90]. In a try to translate this result to the quantum setting, it brings
us back to the open question of whether quantum bit commitments imply pseudorandom quantum
states (which are the quantum analog of pseudorandom generators) [JLS18, MY21, AQY21].

A priori (i.e. without knowing their connections to canonical quantum bit commitments), it
appears that Open question 1 and Open question 2 above are talking about objects quite different in
nature: the former is about quantum complexity of unitaries, while the latter seems closely related
to pseudorandomness. Interestingly and surprisingly, as an immediate corollary of Theorem 7, i.e.
two flavors of canonical quantum bit commitments are equivalent, we have:

Corollary 1 Open question 1 and Open question 2 are equivalent, or, Uhlmann exists if and only
if EFI exists.

We additionally remark that the round-collapse theorem and the equivalence between two flavors
of quantum bit commitments established in this paper indicate that the open question regarding the
existence of computational quantum bit commitments is very robust. And it will be more robust if
the answer to the following open question, which concerns quantum hardness amplification, is “yes”:
can the computational binding error of a canonical quantum bit commitment scheme be reduced
by parallel repetition, say from 1/2 or even inverse polynomial, to some negligible quantity? This
question looks very similar to the amplification of the hardness of inverting an arbitrary one-way
function in classical cryptography [Yao82]. More interestingly, if the answer to this question is
indeed “yes”, then combining it with results in [Wat02, YWLQ15, FUYZ20, Yan21] will complete
a proof for an equivalence between quantum bit commitment and quantum zero-knowledge like in
the classical setting [OV08].

Wrapping up, based on all previous discussions, we propose to study the complexity assumption
in the MiniQCrypt world which has three equivalent formulations as below:

1. Quantum bit commitment with one-sided statistical security'®;

2. The object Uhlmann mentioned in Open question 1;

(the version uploaded to Cryptology ePrint Archive in February, 2022), authors of [BCQ22] call the two ensembles
of efficiently-generated (mixed) quantum state in Open question 2 “EFI pair”, and further explore its connections
with some other cryptographic applications that are not discussed in this paper, in particular multiparty secure
computations for classical functionalities and quantum zero-knowledge proofs for languages beyond NP. (Note that
within NP, an equivalence between (instance-dependent) canonical statistically-binding quantum bit commitments
(hence EFI pairs) and quantum zero-knowledge proofs has already been established in [YWLQ15] back in 2015.)

14 Actually, any non-negligible quantity is good because the trace distance can be amplified via parallel repetition
[YWLQ15].

5The restriction “with one-sided security” can even be removed by results of [BCQ22].

12



3. The object EFI mentioned in Open question 2,

where the last two objects can be unified in terms of the first one of the canonical form, corre-
sponding to two flavors of canonical quantum bit commitments, respectively. We believe that all
these formulations are useful; one may be found more convenient to use than the other two in some
particular situations.

1.4 Technical overview

Honest-binding implies sum-binding. The proof is just a simple application of the quantum
rewinding lemma (Lemma 4) once used in [YWLQ15, FUYZ20, Yan2l1], which in a nutshell is
another variant (other than the one used in [Unrl2] that is designed specific for sigma protocols)
of the gentle measurement lemma [Win99].

Round compression. Our compiler for the round compression is inspired by the equivalence
between the semi-honest security and the full security w.r.t. canonical quantum bit commitments
(Theorem 3).

Informally speaking, the compiler itself is extremely simple: in the new (non-interactive) commit
stage, the sender will simulate an honest execution of the commit stage of the original (possibly
interactive) scheme, and then send the original receiver’s system as the commitment to the new
receiver. Later in the reveal stage, the new sender will send the residual system to the new receiver,
who will check the new sender’s whole computation in the commit stage via the quantum reversible
computation. For this construction to be legal, possible irreversible computation of both parties in
the commit stage prescribed by the original scheme should be simulated by corresponding unitary
computation (in a standard way) in the first place. This procedure of simulation is typically referred
to as the “purification” (of a quantum protocol).

At the first glance, the compiler constructed as above seems too simple to be true: how can
the idea of simply letting the new sender delegate all the computation in the commit stage of (the
purification of) the original scheme work? After all, the new sender may deviate arbitrarily, and
there seems no way of restricting its behavior by just exchanging a single message in the (non-
interactive) commit stage! Clearly, this idea of compression does not work for commitments in
classical cryptography.

The reason why our compiler works is by the virtue of Theorem 3: it suffices to show that the
resulting compressed quantum bit commitment scheme (which is just in the canonical form by our
construction) is semi-honest secure. This also provides some intuition why in the formal statement
of our round-collapse theorem (Theorem 4), it requires that the (purification) of the original scheme
(rather than the original scheme itself), or purified scheme hereafter, be semi-honest secure. As
for the proof of the round-collapse theorem, while the honest-hiding property of the compressed
scheme is trivial, its honest-binding property can be roughly argued in the below.

Suppose (for contradiction) that at the beginning of the reveal stage, there is a cheating sender
who can transform the quantum state of the whole system when a bit 0 is committed to the state
when a bit 1 is committed, by just performing some unitary operation U on its own system. This
will gives rise to an attack against the honest-binding property of the purified scheme as follows:
the sender commits to the bit 0 honestly following the purified scheme in the commit stage. In the
reveal stage, it first performs the operation U on its own system, transforming the whole system
to a state that is close to the state when the bit 1 is committed, and then proceeds honestly to
open the commitment as 1. While the intuition underlying this reduction is simple, to turn it
into a formal proof, we need a large amount of (and tedious) work in formalizing an execution of
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(the commit stage of) a general (interactive) quantum bit commitment scheme and its purification
(Section 6), as well as their semi-honest security (Section 7).

Last, we would like to compare our round compression of a general interactive quantum bit
commitment scheme with that of a quantum interactive proof [KWO00] or a zero-knowledge proof
[Kob08]. Ideas in these two settings are very similar: both of them rely heavily on the reversibility of
quantum computation. The key difference lies in that for the latter, since (even) the honest prover
could be computationally unbounded, an (interactive) swap test is introduced for the purpose of
checking the computation. In comparison, in our setting this test is not necessary; this is because
(as typical in cryptography) both the honest sender and the honest receiver of bit commitment are
polynomial-time bounded.

Proving an equivalence between two flavors of canonical quantum bit commitments.
The basic idea to convert the flavor of a canonical quantum bit commitment scheme is to use the CLS
construction [CLS01]. In a nutshell, the original CLS scheme in [CLS01] uses classical statistically
unique-binding bit commitments (e.g. Naor’s scheme [Nao91]) to realize a l-out-of-2 quantum
oblivious transfer (QOT) [CK88], which in turn can be used to construct a computationally-binding
quantum bit commitment scheme. In [FUYZ20], it is shown that commitments used in the CLS
scheme, or QOT subprotocol more precisely, can be replaced with canonical statistically /perfectly-
binding quantum bit commitments. Then combined with the round-collapse theorem (Theorem 4),
this already proves one direction of the equivalence.

For the other direction of the equivalence, however, it is still open whether one can use
computationally-binding quantum bit commitments in the CLS scheme to obtain a statistically-
binding quantum bit commitment scheme. Technically, this is because we do not know whether
using computationally-binding quantum bit commitments can force the receiver of BB84 qubits in
the QOT subprotocol to measure these qubits upon receiving them. (We note that this is not a
big problem when statistically-binding quantum bit commitments are used [CLS01, FUYZ20].) To
overcome this difficulty, in [CDMS04] a tailored quantum string binding property is proposed, by
which they show that quantum commitments satisfying such binding property are sufficient to show
the security of the QOT protocol. Unfortunately, we do not know whether quantum commitments
satisfying such binding property are instantiatable even today. In this work, we overcome this
technical difficulty by proving a computational collapse theorem (Theorem 8), as will be discussed
shortly.

Actually, for our purpose of converting the flavor of canonical quantum bit commitments, it
suffices for us to use a somewhat simplified CLS construction: all intermediate verifications of
quantum commitments within the original CLS scheme can be removed. We can do this is by the
virtue of the round-collapse theorem, namely, we only need a scheme whose purification is semi-
honest secure for the purpose of the round compression. In particular, we only need such a QOT
that satisfies the following security property: after the interaction, the purified receiver of QOT does
not know the other bit that the honest sender is given as input, while the purified sender of QOT
does not know which input bit the honest receiver is aware of. This security is already much weaker
than the security against an arbitrary quantum attack considered in [Yao95, CLS01, FUYZ20],
let alone the recently achieved simulation security [DFLT09, GLSV21, BCKM21]. Hence, one can
imagine that it is much easier to establish.

For the formal security analysis, we will first prove the semi-honest security of this somewhat
simplified CLS scheme, and then manage to extend it to its purification. For such an extension, a
crucial step is to show that quantum commitments will cause an implicit collapse of the quantum
state just like the measurements prescribed by the QOT subprotocol were really performed. To
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this end, we will use techniques introduced in the below.

Arguing the security against the purification attack. Seeing from the statement of our
round-collapse theorem, to apply it, one needs first to show that the purification of the original
(interactive) quantum bit commitment scheme is semi-honest secure, or equivalently, the original
scheme is secure against the purification attack. It turns out that this security is closely related to
the semi-honest security, thus often much easier to establish than the full security. In particular,
we show that in many interesting scenarios, the semi-honest security of the original scheme extends
to its purification. For such an extension, the basic idea is to show that collapses prescribed by the
original scheme are enforced even after the purification. To have a taste of how to do this, note
that messages sent through the classical channel automatically collapse; when a message is uniquely
determined by some other collapsed messages, it can be viewed as having collapsed as well.

A non-trivial case in which collapses are enforced is by quantum commitments, as argued in
[FUYZ20] and within the proof of Theorem 7 in this paper. That is, committing to a superposition
using canonical statistically- or computationally-binding quantum bit commitments (in a bitwise
fashing) can be viewed as an ¢mplicit way of measuring it (but without leaking its value)! In
greater detail, when canonical statistically-binding quantum bit commitments are used, collapses
can be shown using techniques (i.e. perturbation and commitment measurement) developed in
[FUYZ20]. When canonical computationally-binding quantum bit commitments are used, we will
show a “computational collapse” (named after [CDMSO04]) by proving a computational collapse
theorem (Theorem 8) in this work. The technique used towards proving this theorem is inspired
by the proof of the quantum computational string predicate-binding property in [Yan21], which
basically is a way of bounding exponentially many negligible errors in an arbitrary superposition by
a negligible quantity. We remark that currently, this computational collapse theorem is only known
to be suitable to apply when the security against the purification attack is considered; whether it
can be extended to be suitable for the security analysis against an arbitrary quantum attack (like
in [CDMS04]) is left as an interesting open problem.

Last, we stress that the semi-honest security of an arbitrary (interactive) quantum bit commit-
ment scheme does not extend to its purification generally; two counterexamples are presented in
Appendix C.

Organization. In Section 2, we review necessary preliminaries. In Section 3, we formally introduce
the definition of a canonical quantum bit commitment scheme and its honest-hiding and honest-
binding properties In Section 4, we show that w.r.t. a canonical quantum bit commitment scheme,
its honest-binding property is equivalent to the sum-binding property. This equivalence will be
used to simplify the security analysis of the DMS construction of computationally-binding bit com-
mitment in Section 5. In Section 6, we fix a way of formalizing a quantum two-party interaction as
well as a way to purify a quantum protocol. We also formally define a party’s view of an interaction.
Based on these formalizations, we define the semi-honest security of a general interactive quantum
bit commitment scheme and its purification in the subsequent Section 7, where we also introduce
the notion of the security against the purification attack. All formalizations and notions introduced
in Section 6 and 7 will be crucial in the statement and the proof of the round-collapse theorem
in Section 8. In Section 9, as an application of the round-collapse theorem we give yet another
construction of non-interactive computationally-binding quantum bit commitment by compressing
the classical NOVY scheme. In Section 10, we prove an equivalence between two flavors of canon-
ical quantum bit commitments as another application of the round-collapse theorem. In Section
11, we establish a very strong quantum string sum-binding property of the parallel composition of
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canonical statistically-binding quantum bit commitments. Finally in Section 12, we conclude this
work and raise several open problems.

2 Preliminaries

Notation. Denote [n] = {1,2,...,n} for an integer n. Denote by U, the uniform distribu-
tion/random variable ranging over the set {0,1}", i.e. all binary strings of length n. We use « B

to denote the action of choosing an element uniformly random from a given set, e.g. x & U,. Let
negl(n) denote an arbitrary negligible (i.e. asymptotically smaller than any inverse polynomial)
function of the security parameter n. Given two strings s,s’ € {0,1}", let dist(s,s’) denote the
Hamming distance between s and s'.

Quantum formalism. Quantum registers/systems we use in this paper are composed of multiple
qubits. We sometimes explicitly write quantum register(s) as a superscript of an operator or a
quantum state to indicate on which register(s) this operator performs or which register(s) hold this
quantum state, respectively. For example, we may write U4, |z/1>A or pA, highlighting that the
operator U performs on the register A, and the register A is in pure state |¢)) or mixed state p,
respectively. When it is clear from the context, we often drop superscripts to simplify the notation.

We use F(+,-) to denote the fidelity of two quantum states [Wat18]. Given a projector II on a
Hilbert space, we call {II, 1 — IT} the binary measurement induced by II. This binary measurement
is typically induced by a wverification, for which we call it succeeds, accepts, or the outcome is one,
if the measured quantum state collapses to the subspace on which II projects.

For a bit b € {0,1}, let |b), and [b), be the qubits in the state |b) w.r.t. the standard basis
and Hadamard basis, respectively. For the former, we often drop “+” and just write |b).

We work with the standard unitary quantum circuit model. In this model, a quantum algorithm
can be formalized in terms of uniformly generated quantum circuit family, where the “uniformly
generated” means the description of the quantum circuit coping with n-bit inputs can be output by
a single classical polynomial-time algorithm on the input 1™. We assume without loss of generality
that each quantum circuit is composed of quantum gates chosen from some fixed universal, finite,
and unitary quantum gate set [NC00]. Given a quantum circuit @), we also overload the notation
to use Q to denote its corresponding unitary transformation; Q' denotes its inverse.

(In)distinguishability of quantum state ensembles

Definition 2 ((In)distinguishability of quantum state ensembles) Two quantum state en-
sembles {p,},, and {&,}, are quantum statistically (resp. computationally) indistinguishable, if for
any quantum state ensemble {0}, and any unbounded (resp. polynomial-time bounded) quantum
algorithm D which outputs a single classical bit,

[Pr[D(1", po © 0) = 1] = Pr[D(1", &, ® 0,) = 1]| < negi(n)
for sufficiently large n.

Remark. The quantum state ensemble {0, }, in the definition above plays the role of the non-
uniformity given to the distinguisher D. Since a mixed quantum state can always be purified, we
can assume without loss of generality that the state o, is pure.

Useful lemmas
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Lemma 3 (Uhlmann’s theorem) Let X' and ) be two Hilber spaces. Density operators p and o
are in the space X. Unit vector |1) is a purification of p in the space X @ Y, i.e. Try (1) (¥]) = p.
It holds that F(p,0) = max {|(¢)|n)| : unit vector |n) € X @Y s.t. Try(|In) (n]) = o}.

Lemma 4 (A quantum rewinding [FUYZ20]) Let X and ) be two Hilbert spaces. Unit vector
|v) € X ® Y. Orthogonal projectors T'1,..., Ty perform on the space X @ Y, while unitary trans-
formations Uy, ..., Uy perform on the space Y. If 1/k - Zle HFZ'(Ui ® 1%) W)HQ > 1—1n, where
0<n<1, then

|l 21w 2 1Y) U] 0 100 @ 1%) [9) | 21— Ve, (1)

The proof of the lemma above is reproduced in Appendix A for convenience.

3 Canonical (non-interactive) quantum bit commitment

The definition of a canonical (non-interactive) quantum bit commitment scheme is as follows.

Definition 5 A canonical (non-interactive) quantum bit commitment scheme is represented by
an ensemble of polynomial-time uniformly generated quantum circuit pair {(Qo(n),Q1(n))},, as
follows, where we drop the security parameter n to simplify the notation:

o In the commit stage, to commit a bit b € {0, 1}, the sender performs the quantum circuit @y
on the quantum register pair (C, R)¢ initialized in all |0)’s state. Then the sender sends the
commiatment register C to the receiver, whose state at this moment is denoted by py.

o In the subsequent (canonical) reveal stage, the sender announces the bit b, and sends the
decommitment register R to the receiver. The receiver will first perform QZ on the quantum
register pair (C, R) and then measure each qubit of (C, R) in the computational basis, accepting
if measurement outcomes are all 0’s.

The hiding (or concealing) and the binding properties of the scheme are defined as follows:

o (Honest)-hiding. We say that the scheme is statistically (resp. computationally) hiding if
quantum states pg and p; are statistically (resp. computationally) indistinguishable!”.

o ¢ (honest-)binding. First prepare the quantum register pair (C, R) in the state Qg [0)®.

We say that the scheme is computationally (resp. statistically) e-binding if for any state
|1) of an auxiliary register Z, and any polynomial-time (resp. physically) realizable unitary
transformation U performing on registers (R, Z), the reduced state of the quantum register
pair (C, R) after the transformation U is performed is far from the state Q1 |0). Or formally,

| (@ 10y 01 QD)0 ((@Qu o))" 1)) || < . )

16T heir size depend on the security parameter n.

7Strictly speaking, it should be understood as the corresponding two quantum state ensembles indexed by the
security parameter n are indistinguishable.

% Here the notation |0) should be understood as multiple |0)’s, the number of which depends on the security
parameter; we just write a single |0) to simplify the notation. We will follow this rule throughout this paper.
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By the reversibility of quantum computation, this binding property can be equivalently defined
by swapping the roles of Qg and @1, in which case the inequality (2) becomes

| (@010) (01@}) U™ (@1 10) 7% )7 | < e 3)

As typical in cryptography, We say that the scheme is computationally (resp. statistically)
binding (without referring to the parameter €) when the function €(-) is a negligible function
(of the security parameter n).

Remark.

1.

We call the binding property defined above honest-binding, because informally it states that
any cheating sender cannot open the honest commitment to a bit b as 1 — b. That is, in the
definition of honest-binding, a cheating sender is honest in the commit stage but may deviate
arbitrarily in the reveal stage. In this regard, the attack (U, |¢)) of the sender just happens
in the reveal stage. Honest-binding is the weakest binding property that any meaningful
quantum bit commitment scheme should satisfy. This definition will be generalized to the
case of interactive quantum bit commitment schemes later (Section 7).

. The hiding property of a bit commitment scheme is only defined w.r.t. the commit stage.

For the hiding property defined above, since the commit stage is non-interactive (so that
the receiver will send nothing during the commit stage), the hiding against a semi-honest
(i.e. honest-but-curious) receiver and that against an arbitrary receiver are just the same
security property. In this regard, the honest-hiding is also the hiding against an arbitrary
quantum receiver. However, in the sequel when we consider a general (interactive) quantum
bit commitment scheme, these two notions are not necessarily equivalent.

As commented in [YWLQ15], the reveal stage in the definition above is canonical in the sense
that it is similar to the canonical opening of a classical bit commitment: the sender sends all
its random coins used in the commit stage to the receiver, who then checks that these coins
explain (i.e. are consistent with) the conversation generated during the commit stage.

. In [YWLQ15, FUYZ20], it is argued informally that any non-interactive statistically-binding

quantum bit commitment scheme can be converted into a scheme of the canonical form. Ac-
tually, the same argument extends to the setting of non-interactive computationally-binding
quantum bit commitment schemes in a straightforward way. In this work, we will further
extend it, showing that any (interactive) quantum bit commitment scheme can be converted
into this canonical form (Theorem 4).

. In the sequel, to simplify the notation we often drop the security parameter n and just write

(Qo, Q1) to represent a canonical quantum bit commitment scheme.

. We can commit to a binary string s € {0, 1}"" in a bitwise fashion using a canonical quantum

bit commitment scheme (Qo,@1). Then the corresponding quantum circuit is given by
m
Y Roa.. (4)
i=1
where s; is the i-th bit of the string s and each quantum circuit @), performs on one copy of

the quantum register pair (C, R).
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7. Asdiscussed in “Introduction”, this definition of a canonical quantum bit commitment scheme
can also be viewed as a quantum complexity assumption that is weaker than quantum-secure
one-way functions and pseudorandom quantum states [JLS18].

A generalized quantum honest-binding property of canonical quantum bit commitment schemes
which turns out to be useful in security analysis is given below, whose proof is referred to [Yan21].

Lemma 6 (Generalized quantum honest-binding) Inherit all notations in Definition 5. Let
the operatorT' = Uglly, - - - U111y be an arbitrary alternation of efficiently realizable (resp. unbounded)
unitary transformations and projectors, where k > 1 is an integer, and for each i (1 <1i < k) both
the unitary transformation U; and the projector 11; perform on the quantum registers (R, Z). If the
inequality (2) holds, then

@110y 01 @02 (@0 10) R 1)) || < etm),
(@010 (01 @D FLRZ (@1 10) R 1)) | < ().

4 Honest-binding is equivalent to sum-binding

Sum-binding is a general binding property of quantum bit commitment. Its definition w.r.t. a
canonical quantum bit commitment scheme is as follows.

Definition 7 (Sum-binding) At the beginning of the commit stage, the cheating sender prepares
the whole system (C, R, Z) in an arbitrary quantum state [¢)). Then it sends the commitment
register C to the receiver. In the reveal stage, to open the bit commitment as 0 (resp. 1), the
sender performs Uy (resp. Up) on the system (R, Z) and then send the decommitment register R to
the receiver. Let py (resp. p1) be the success probability that the sender opens the bit commitment
as 0 (resp. 1). The sum-binding requires that pg + p1 < 1 + negl(n).

Compared with honest-binding (Definition 5), sum-binding is a security against an arbitrary
quantum sender, who may deviate from the scheme in both the commit and the reveal stages.
Clearly, sum-binding implies honest-binding, by noting that if we fix pg or p; in Definition 7 to be
1, then we end up with honest-binding. Interestingly, it turns out that the opposite direction is
also true, i.e. the seemingly weaker honest-binding also implies sum-binding. Combining them we
have the following theorem.

Theorem 2 Honest-binding is equivalent to sum-binding w.r.t. a canonical quantum bit commit-
ment scheme (of either flavors).

PRrOOF: It is left to prove that honest-binding implies sum-binding. It turns out that an attack
which breaks the sum-binding property can be directly used to break the honest-binding property
without much modification. Detail follows. We remark that the proof below holds for either flavors
of canonical quantum bit commitment schemes.

Let n be the security parameter. According to its definition (Definition 7), an arbitrary attack of
the sum-binding property of a canonical quantum bit commitment scheme (Qg, Q1) can be modeled
by (Uy, Ui, |¢)). Now assume that the attack (Up, Uy, |1)) breaks the sum-binding property; that
is,

(@0 010" v [ + @i toy 01 @) g > 1+
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where p(-) is some polynomial of the security parameter n. We apply the quantum rewinding
lemma (Lemma 4) to the inequality above, with the parameters k,n,U;,Us,I'1 and T'y in the
lemma replaced by 2,1/2 —1/(2p), Uy, U1, Qo |0) (0] Qg and Q1 ]0) (0| QL respectively. We obtain

| @i (@i 1oy 01@D) U4 - (Qo10) 01 @YU ) 21—y 1= 2> - 6)
An intuitive interpretation of this inequality is that the success probability of first opening the bit
commitment as 0 and then as 1 is at least some non-negligible quantity.

We are next to devise an attack of the honest-binding property of the scheme (Qg, Q1) given the
attack (Uy, Ur, [¢)). Specifically, suppose that in the commit stage, the sender (honestly) prepares
the quantum state Qg |0) in the quantum register pair (C, R) and sends the commitment register C
to the receiver. Later at the beginning of the reveal stage, the sender receives the quantum state
|4}, which is stored in quantum registers (C’', R, Z’) that are of the same size as registers (C, R, Z),
respectively. Then the cheating sender S* proceeds as follows to try to open the quantum bit
commitment as 1:

1. Perform the unitary transformation Uy on the quantum registers (R, Z’).

2. Perform the binary measurement induced by the projector Qg |0) (0] Q;r) on the quantum regis-
ter pair (C',R’). (Intuitively, we expect that conditioned on its outcome being 1, the reduced
state of the register Z’ will help the sender S* cheat.)

3. Perform the unitary transformation U; Ug on the registers (R,Z’).

4. Send the decommitment register R to the receiver.

To show that S* breaks the honest-binding property of the scheme (Qq, @Q1), it suffices to prove
a lower bound of the probability of both the following two events happening simultaneously: (1)
the measurement outcome in the step 2 being 1; and (2) the cheating sender S* succeeds. (Note
that S* may also cheat successfully while the measurement outcome of the step 2 is 0; but its
probability can be ignored for a lower bound of S*’s success probability.) This probability is given
by the expression

, , , 1Dl o TP

@hB2 Q1 10) (01 ) “UFZ - () (Qo 10) (01 Q1) UFZ (@0 o) R ) 7).

A key observation is that conditioned on the measurement outcome in the step 2 being 1, both
the quantum register pair (C, R) and (C',R’) will be in the state Qg|0) at the end of the step
2. Thus, from then on, switching to perform unitaries Uy, U; on registers (R, Z") (as opposed to
(R,Z")) and opening the commitment in the register C’ will result in the same success probability.
That is, the expression above is equal to

|2 (@1 10) (01 @)™ UF# (W™ - (Qo10) {01 @) TR (@0 Iy 10y H 2|

Since now the quantum registers (C, R) are untouched, this expression will simplify to
/7! C'R/ /7! 17! C'R/ 1ozt 1o |2
|@H®# (@1 10) 01 @) UFZ (WUHT - (Qol0) (01 Q) U )|

But this final expression can be lowerbounded by applying the inequality (5), if we identify registers
(C, R, Z) in the Lh.s. of the inequality (5) with registers (C',R’,Z’) here, respectively. This will
yield a lower bound 1/4p?, which is non-negligible.
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Commit stage: Let b € {0,1} be the bit to commit.

« The sender chooses z &- {0,1}" and computes y = f(x), where f : {0,1}" — {0,1}" is
a quantum-secure one-way permutation. Then the sender sends |y>9(b)n to the receiver,
where 6(b) denotes the standard basis “+” when b = 0 and the Hadamard basis “x”
when b = 1.

Reveal stage:

e The sender sends the bit b and the string x to the receiver.

o The receiver measures each qubit (in total n) received in the commit stage in the basis
0(b), obtaining y € {0,1}". Then the receiver checks that y = f(z).

Figure 1: The DMS construction of non-interactive computationally-binding quantum bit commit-
ment based on quantum-secure one-way permutation

Hence, S* breaks the honest-binding property of the scheme (Qg, Q1). [ |

Remark. We highlight that the security reduction above is uniform.

Combing the second remark following Definition 5 with Theorem 2, we have the following
theorem as an immediate corollary.

Theorem 3 A canonical quantum bit commitment scheme (Qo, Q1) (of either flavor) is secure if
and only if it is semi-honest secure.

5 Application: a simpler security analysis for the purified DMS
construction of quantum bit commitment

Dumais, Mayers and Salvail [DMS00] gave a construction of non-interactive computationally-
binding quantum bit commitment based on quantum-secure one-way permutations. The hard
part of its security analysis lies in establishing the computational sum-binding property. Here, we
can simplify this analysis but w.r.t. the purified DMS scheme using Theorem 2, which allows us to
just show its (computational) honest-binding property.

For self-containment, we reproduce the DMS scheme following [DMS00] in Figure 1. It can be
firstly purified and then converted into the canonical form as given in Definition 5 such that

1 R c 1 R c
Q0|O>—\/2—nme{%:l}n|$> | f(@)){n s Q1|0>—\/2—n$€{%:1}n|$> | f(2))sn - (6)

The lemma below establishes the quantum computational binding property of the purified DMS
scheme.

Lemma 8 The purified DMS scheme (Qo, Q1) given by the equation (6) is quantum computationally
binding.
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Proor: By Theorem 2, it suffices to show that the purified DMS scheme is computationally
honest-binding.
We first rewrite
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Intuitively, if any cheating sender breaks the (computational) honest-binding property, then
it can sort of transform the quantum state represented by the expression (x) into the expression
represented by the term (k%) in the above. But this already implies some ability to invert the
one-way permutation f(-) on input a uniformly random chosen image y € {0,1}". We convert this
intuition into a formal proof in the below.

For contradiction, suppose that there exists a cheating sender S* who breaks the computational
honest-binding property of the purified DMS scheme; that is, there exists a pair (U, |¢)) (whose
meaning is referred to Definition 5) such that

CR CR Z 1
[ (@ 1oy 01 QDU (@110 @ )| 2 s (7)
where p(-) is some polynomial. We construct an inverter I* for the one-way permutation f(-) as
follows: it operates on the system (R, Y, Z), where the register Y holds the input y € {0,1}", the

register Z holds the auxiliary state |¢), while the register R is initialized in the state |0™). Then
the inverter I* proceeds in the following steps:

1. Transform the whole system (R, Y, Z) into the state 1//2" er{o’l}n(_l)f(x)-y |2)F [)Y [9) 2.
Specifically, this step can be accomplished through the following steps:

(a) Perform H®" on the register R, where H is the Hadamard gate, to obtain the quantum

state 1
= Y @)Y w7
\/2> z€{0,1}m

(b) Perform the unitary quantum circuit that computes the function f(-), i.e. realizing
|x) |0) — |z) |f(x)) for each = € {0,1}", to obtain the quantum state

1
2 |)Y )7 | f(x))

22



(c) For each pair of f(x); and y;, i = 1,...,n, i.e. the i-th bit of f(z) and y, respectively,
perform the two-qubit unitary transformation that realizes |a) [b) — (—1)®|a) |b). This
unitary transformation can be realized by first performing the Hadamard gate on the
second qubit |b), followed by performing the CNOT gate on the two qubits with the first
qubit |a) as the control, and finally performing another Hadamard gate on the second
qubit. After ths step, the state becomes

= X VO ) @),
ze{0,1}™

(d) Uncompute the f(z) for each x € {0,1}" in the superposition above by performing the
inverse of the unitary quantum circuit that computes the function f(-). We thus arrive
at the desired quantum state.

2. Perform the unitary translation U on the register (R, Z).
3. Measure the register R in the standard basis and output the outcome.

It is not hard to see that the inverter I* runs in polynomial time if the unitary transformation
U is polynomial-time realizable. We are left to estimate the success probability of the inverter I*.
From the hypothesis (7),
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where the second “<” above uses the triangle inequality and the third “<” uses the Cauchy-Schwartz
inequality. Squaring both sides of this inequality gives

7 > i)t v (= ¥ <—1>f<m>'y|x>3|¢>Z)H2Zpolz)z.

ye{0,1}n ze{0,1}n

Note that the 1.h.s. of the inequality above is exactly the success probability of the inverter
I* on input a uniformly random chosen image y. This probability is at least 1/p(n)?, which is
non-negligible and thus contradicts the one-wayness of the function f(-).

This finishes the proof of the lemma. |
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6 Formalization

In this section, we first fix a formalization for a general quantum two-party interaction, which
basically follows Mayers [May97]. Based on this formalization, we formally define a party’s view in
an interaction and fix a way to purify a general quantum two-party protocol. Here, by “purify a
quantum protocol” we mean all (classical and quantum) computations prescribed by the protocol
will be simulated by unitary quantum operations, and all classical communications will be simulated
by quantum communications. Formalizations and the definition of a party’s view introduced in this
section will be crucial for rigorous security definitions introduced in the subsequent Section 7 and
the proof of the round-collapse theorem (Theorem 4) in Section 8.

To simplify the notation, we will drop the security parameter in this section.

Materials presented in this section are standard. Experienced readers may skip this section for
the first reading of this paper and come back later when necessary.

6.1 An interaction between two parties

An interaction between two parties may be a hybrid of classical and quantum computations and
communications. For simplicity, we can assume without loss of generality the following for a general
two-party interaction:

e The interaction consists of multiple rounds, the number of which is bounded by some fixed
polynomial of the security parameter;

e Both classical and quantum registers used are two-dimensional, i.e. composed of bits and
qubits, respectively.

o Both parties can carry out classical and quantum computations. In particular, classical com-
putation includes random coin tosses. Quantum computation includes quantum operations
are those:

1. either (which itself might not be unitary but) can be realized by polynomial-size quan-
tum circuits composed of quantum gates from some fixed universal, finite, and unitary
quantum gate set, or

2. the measurement of a qubit in the computational basis.
o Both parties can send classical and quantum messages.

Formally, to model an interaction (A, B) between two parties A and B, we introduce quantum
registers (A, B) and classical register E as follows:

e A: the party A’s quantum workspace.
e B: the party B’s quantum workspace.
o E: the “environment” E = (Eg, E4, Ep) such that

— Eg = (Es,a, Es,B): both registers Eg 4 and Eg p store classical bits transmitted between
the party A and the party B; that is, each party will keep a copy of them.

— E: stores the untransmitted classical bits that are kept on the party A’s side, which in
particular includes A’s inner coin tosses and measurement outcomes.
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— Ep: stores the untransmitted classical bits that are kept on the party B’s side, which in
particular includes B’s inner coin tosses and measurement outcomes.

Now let us describe possible operations of a party P € {A, B}:

The party P’s classical operations will perform on the register Ep.
The party P’s quantum operations will perform on the register P.

If the party P’s classical operations depend on the classical messages stored in the register
Es,p, then it will first copy the corresponding bits to the register Ep.

If the party P’s quantum operations depend on the classical information stored in the register
(Ep, Es,p), then it will first copy the corresponding bits to the register Ep.

If the party P’s quantum operations output classical bits, then move these bits to the register
Ep.

When the party A (resp. B) wants to send a quantum message to the party B (resp. A), it
will send the part of the register A (resp. B) which holds this message to the party B (resp.
A), who will then incorporate this register into its own workspace B (resp. A).

When the party A (resp. B) wants to send a classical message to the party B (resp. A),
it will first move this message from the part of the register E4 (resp. Ep) which holds this
message to the register Eg 4 (resp. Eg p), and then copy it to the register Eg p (resp. Eg a).

By the formalization introduced above, at any moment of the interaction the whole system will
be in a (mixed) state of the form

)47, (8)
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Remark. We have two remarks about the formalization above.

1.

6.2

We actually implicitly assume that each party will record all classical messages (in classical
registers Eg 4 for the party A and Eg p for the party B) it has sent and received. And we can
assume without loss of generality that even honest parties (whose behaviors are prescribed in
a quantum protocol) will do this. This could be crucial for attacking a quantum protocol.

. We note that sizes of quantum registers introduced above are not fixed during the execution

of the protocol; they are subject to change as the quantum computation and communication
go on.

A party’s view of an interaction

For the purpose of defining the semi-honest security of a quantum protocol in the subsequent section
(Section 7), we introduce a party’s view of an interaction, which is natural and accords with our
intuition.
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Definition 9 (A party’s view of an interaction) A party’s view of a two-party interaction is
given by the state of its system at the end of the interaction. Formally, with the formalization fixed
in Section 6.1, the party A’s view is given by the state of the subsystem (Eg 4,E4,A) at the end of
the interaction, which is of the form

S laanl? (1) ()74 () ()P Te g (4hs00) thsapl) (9)
s,a,b

that is obtained from the expression (8) by tracing out the subsystem (Eg p, Ep, B). The expression
for the party B’s view can be written down symmetrically:
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Remark. We have two remarks about the definition above:

1. Seeing from the formalization of a party’s view, we actually implicitly assume without loss
of generality that any (honest or cheating) party will copy all classical messages generated
during the interaction (for a possible later use).

2. Intermediate quantum states of a party’s system during the interaction do not account for
its view; only the state at end matters. There are two reasons to justify this: First, general
intermediate quantum states cannot be cloned for the use after the interaction. Second, thus
defined view fits our applications later.

6.3 The purification of a general quantum protocol

A general quantum protocol could be a hybrid of classical and quantum computations and com-
munications. We can purify it so that the resulting protocol consists of only unitary quantum
computation and communication (but the security might be compromised). In the below, We fix
a way to purify a general quantum protocol based on the formalization of a two-party interaction
(Section 6.1), which is almost standard.

Given a general quantum protocol, its purification prescribes an interaction between two parties
A and B formalized as follows:

o The whole system consists of quantum registers (A, B, E) as described in Section 6.1, except
that now the register E is a quantum (rather than classical) register (by abusing the notation).

o For a party P € {A,B}, we can purify each operation prescribed by the protocol in the
following way, depending on the operation:

1. Measurement in the computational basis: move the qubit that will be measured to the
environment Ep.

2. A uniformly random coin toss: introduce an ancilla qubit in the state |0), and perform
the Hadamard gate on it. Then move it to the register Ep.

3. Transmission of a classical bit x from the party A to the party B, and vice versa:
first move the qubit |z) from the register E4 to Eg 4, and then copy it to the register
Esp w.r.t. the computational basis (i.e. introducing an ancilla in the state |0) in the
environment Egp, and then perform the CNOT gate on the qubit |z) and this ancilla,
with the former as the control). The opposite direction of the transmission is simulated
symmetrically.
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4. Non-unitary quantum operation: it can be simulated by a unitary quantum operations
followed by a measurement in the computational basis. The measurement in turn can
be simulated in the way as described in item 1.

5. Classical operation other than a random coin toss. It can be simulated by a unitary
quantum operation in a standard way [NC00, KSV02].

After the purification, the whole system will be in a state of the form

D aganl5) 754 [8)P8 )P4 [0) P [y 0,0) 1P (11)

s,a,b

at any moment of a running of the purified protocol. Compared with the expression (8), here qubits
in the environment are no longer collapsed.

By the definition of a party’s view of an interaction (Definition 9), the party A’s view of a
running of a purified (quantum) protocol is given by the state of the subsystem (Eg 4, EA,A) at the
end of the interaction, which is of the form

Y alapsan (Is) ()54 (la) (')A Tep(19s,a0) (sarpl) 7. (12)

/
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It is obtained from the expression (11) by tracing out the subsystem (Es g, Eg,B). The expression
for the party B’s view can be written down symmetrically, i.e.:

ST ok @sany (I5) (s)PSE(B) (BN EETr (s .0) (Vs
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7 The semi-honest security and the security against the purifica-
tion attack

Based on formalizations of a general quantum two-party interaction and the definition of a party’s
view during the interaction introduced in the previous section, we formally define the semi-honest
security of an interactive quantum bit commitment scheme and its purification in this section. They
extend from the case of non-interactive quantum bit commitment scheme in a straightforward way,
and will be crucial for both the statement and the proof of the round-collapse theorem later in
Section 8. Further, for our purpose we initiate a study towards the relationship between the semi-
honest security of an interactive quantum bit commitment scheme and its purification. A bridge
that connects these two notions of security is a special kind of security that we will refer to as the
“security against the purification attack”.

The organization of this section is as follows. We formally define the semi-honest security of
an interactive quantum bit commitment scheme and its purification in Section 7.1 and Section 7.2,
respectively. Also in Section 7.2, we introduce the notion of the security against the purification
attack and show its equivalence to the semi-honest security of the purified scheme. Last in Section
7.3, we study the strength of the security against the purification attack.

7.1 The semi-honest security: honest-hiding and honest-binding

We will define the semi-honest security of a general (interactive) quantum bit commitment scheme
against the receiver and the sender, which will be referred to as honest-hiding and honest-binding.
Specifically, we specialize the formalization of a two-party interaction fixed in Section 6.1 to an
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(honest) running of the commit stage of the scheme, where we identify the party A (resp. B) with
the (honest) sender (resp. receiver). Then the sender’s and the receiver’s views of the commit stage
can be defined correspondingly according to Definition 9. Formally, we introduce the following two
definitions.

Definition 10 (Honest-hiding) Consider an honest execution of the commit stage of an interac-
tive quantum bit commitment scheme. We say that the scheme is statistically (resp. computation-
ally) honest-hiding if the (honest) receiver’s view of the commit stage corresponding to committing
0 and that corresponding to committing 1 are statistically (resp. computationally) indistinguish-
able. Or equivalently, consider an honest execution of the commit stage of an interactive quantum
bit commitment scheme in which a uniformly random bit b is committed. We say that the scheme
is statistically (resp. computationally) honest-hiding if after the commit stage, any (possibly cheat-
ing) computationally unbounded (resp. polynomial-time) receiver cannot guess the bit b correctly
with a non-negligible advantage than just a random guess.

Compared with the honest-hiding property which is defined w.r.t. the honest receiver only in
the commit stage, the honest-binding property is defined w.r.t. the honest sender in the commit
stage followed by an arbitrary sender in the reveal stage.

Definition 11 (Honest-binding) Consider the following honest-binding game w.r.t. an inter-
active quantum bit commitment scheme: an arbitrary bit b € {0,1} is committed in an honest
execution of the commit stage of the scheme. Later in the reveal stage, a possibly cheating sender
attempts to open the (quantum) bit commitment as 1 — b. For doing this, this cheating sender will
inherit the (honest) sender’s view of the commit stage and may additionally receive an auxiliary
quantum state at the beginning of the reveal stage. If this cheating sender succeeds, then we say
that it wins the game. We say that the scheme is statistically (resp. computationally) honest-
binding if any computationally unbounded (resp. polynomial-time) cheating sender in the reveal
stage cannot win the game with non-negligible probability.

Remark. We note that our definitions of honest-hiding and honest-binding properties (of a general
interactive quantum bit commitment scheme) as above are consistent with those of a canonical
quantum bit commitment scheme (Definition 5), respectively. However, in the definition of honest-
binding in Definition 5, the inability of opening an honest commitment to 0 as 1 is equivalent to
that of opening an honest commitment to 1 as 0, which we do not claim here. In spite of this, it
turns out for schemes studied in this paper (Section 9 and 10), proofs for these two directions are
symmetric.

7.2 The semi-honest security of purified quantum bit commitment schemes and
the security against the purification attack

Quantum bit commitment schemes have two stages, the commit stage and the reveal stage. For
our purpose, by “purifying an interactive quantum bit commitment scheme” we mean purify only
its commit stage.

Definition 12 (The purification of an interactive quantum bit commitment scheme) Given
an interactive quantum bit commitment scheme, we can purify its commit stage in the way as de-
scribed in Section 6.3. We will call the resulting scheme the “purified scheme”, or the “purification
of the original scheme”. Correspondingly, the sender and the receiver of the purified scheme will be
referred to as the “purified sender” and “purified receiver” (w.r.t. the original scheme), respectively.
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For the purpose of this work, we are especially interested in the relationship between the semi-
honest security of the original quantum bit commitment scheme and its purification. Towards
studying this relationship, we will first introduce a special kind of attack of an interactive quantum
bit commitment scheme which we will refer to as the purification attack. Informally, we can view
the purification of one party in an interaction as a kind of attack of this party, i.e. the purification
attack. Then we establish an equivalence between the security against the purification attack of
the original scheme and the semi-honest security of its purification.

The purification attack against the receiver, or purification-hiding for short, is formally de-
fined as follows. This definition is adapted straightforwardly from that of honest-hiding w.r.t. an
interactive quantum bit commitment scheme (Definition 10).

Definition 13 (Purification-hiding) Given an interactive quantum bit commitment scheme,
consider an interaction between the honest sender and the purified receiver of the commit stage.
We say that this scheme is statistically (resp. computationally) secure against the purification
attack of the receiver, or statistically (resp. computationally) purification-hiding, if the purified
receiver’s view corresponding to committing 0 and that corresponding to committing 1 are statis-
tically (resp. computationally) indistinguishable. Or equivalently, consider an interaction between
the honest sender and the purified receiver of the commit stage in which a uniformly random bit
b is committed. We say that the scheme is statistically (resp. computationally) purification-hiding
if after the commit stage, any (possibly cheating) computationally unbounded (resp. polynomial-
time) receiver cannot guess the bit b correctly with a non-negligible advantage than just a random
guess.

We define the security against the purification attack of the sender of the original scheme, or
purification-binding for short, as follows. The definition is adapted straightforwardly from that of
honest-binding w.r.t. an interactive quantum bit commitment scheme (Definition 11).

Definition 14 (Purification-binding) Given an interactive quantum bit commitment scheme,
we define a purification-binding game w.r.t. this scheme as follows: The purified sender first inter-
acts with the honest receiver in the commit stage when an arbitrary bit b € {0,1} is committed.
Later in the reveal stage, a possibly cheating sender attempts to open the (quantum) bit commit-
ment as 1 — b. For doing this, this cheating sender will inherit the purified sender’s view of the
commit stage and may additionally receive an auxiliary quantum state at the beginning of the reveal
stage. If this cheating sender succeeds, then we say that it wins the game. We say that the scheme
is statistically (resp. computationally) secure against the purification attack of the sender, or sta-
tistically (resp. computationally) purification-binding, if any computationally unbounded (resp.
polynomial-time) sender in the reveal stage cannot win the game with non-negligible probability.

The following simple observation is crucial for establishing the equivalence between the security
against the purification attack of the original scheme and the semi-honest security of the purified
scheme.

Proposition 15 Purifying an honest party’s all operations in a running of a two-party quantum
protocol will not affect the other party’s view.

PrOOF SKETCH: This is simply because the honest party’s behavior can be equivalently viewed as
that of its purification after some collapses caused by projective measurements in the computational
basis. But whether these collapses really occur or not cannot be observed by the other party. Hence,
the other party’s views are identical in either cases. |
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Proposition 16 The security against the purification attack of an interactive quantum bit com-
mitment scheme is equivalent to the semi-honest security of its purification.

PROOF: Given an interactive quantum bit commitment scheme, we consider the following two
interactions:

1. The interaction between the purified sender and the purified receiver of the commit stage, i.e.
an (honest) running of the commit stage of the purified scheme;

2. The interaction between the (honest) sender and the purified receiver of the commit stage.

By Proposition 15, the purified receiver’s views of the two interactions above are identical. Thus,
the purification-hiding property of the original scheme is equivalent to the honest-hiding property
of the purified scheme.

Similarly, it is not hard to see the purification-binding property of the original scheme is equiva-
lent to the honest-binding property of its purification by comparing the following two interactions:

1. The interaction between the purified sender and the purified receiver of the commit stage, i.e.
an (honest) running of the commit stage of the purified scheme;

2. The interaction between the purified sender and the (honest) receiver of the commit stage.

Note that the purified sender’s views of these two interactions are also identical. |

Due to Proposition 16, in the sequel we will use the security against the purification attack of
the original scheme and the semi-honest security of the purified scheme interchangeably. In many
cases of security analysis, the former is often easier to work with than the latter. This is because
we only need to consider the purification of just one (other than two) party with the former.

7.3 The strength of the security against the purification attack

We will show that the security against the purification of a general interactive quantum bit com-
mitment scheme lies between the semi-honest security and the full security (i.e. against an arbitrary
attack).

First, clearly the security against the purification attack of a general interactive quantum bit
commitment scheme is implied by the full security. However, we do not expect the opposite direction
to hold'?, because in the definition of the full security a cheating sender can deviate arbitrarily
rather than just purifying the honest sender’s behavior.

Second, the security against the purification attack implies the semi-honest security, as formally
stated in the following proposition.

Proposition 17 The security against the purification attack of one party of an interactive quantum
bit commitment scheme implies its semi-honest security against the same party.

ProOOF SKETCH: This is simply because the honest party’s view can be viewed as that of its
purification after some collapses caused by projective measurements in the computational basis. B

98pecific to quantum bit commitment schemes of the canonical form, interestingly, we have shown that these two
notions of security are equivalent (Theorem 3).
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But can the opposite direction of the proposition above hold, or put it in another way, can the
honest-hiding and honest-binding properties of any interactive quantum bit commitment scheme
be preserved after the purification?

Before answering the question above, we note that compared with the honest party’s behavior,
after the purification some desired collapses (via measurements) by the honest party may no longer
occur. But this might compromise the semi-honest security of the purified scheme; one is referred
to Appendix C for two such examples.

In spite of the above, the semi-honest security of some interactive quantum bit commitment
schemes does extend to their purifications. In Section 9 and 10, we develop several techniques for
such an extension. In the below, for illustration we identify a simple yet common scenario in which
such an extension is possible.

Specifically, we say that one party of an interactive quantum bit commitment scheme is public-
coin if its only action in the commit stage prescribed by the scheme is just sending a number of
uniformly random bits. Then we have the following proposition.

Proposition 18 If one party of an interactive quantum bit commitment scheme is public-coin and
this scheme is semi-honest secure against this party, then this scheme is also secure against the
purification attack of this party.

PROOF SKETCH: The (honest) receiver of random bits? will measure immediately upon receiving
them, which will collapse the state of the whole system to the one corresponding to the sender of
random bits not purifying its operation of tossing random coins. |

8 A round-collapse theorem

In this section, we will prove a round-collapse theorem stated as below, which can be viewed as
an extension of converting an arbitrary non-interactive quantum bit commitment scheme into the
canonical form [YWLQ15, FUYZ20].

Theorem 4 (Round-collapse) If a quantum bit commitment scheme is secure against the pu-
rification attack (or equivalently, its purification is semi-honest secure; refer to Definition 13 and
14), then it can be compressed into a scheme of the canonical form (Definition 5) such that:

1. It has perfect completeness. That is, if both the sender and the receiver follow the scheme
honestly, then the receiver will not reject or abort in both the commit and the reveal stages.

2. Both the hiding and binding properties of the original scheme are preserved after the com-
pression. That is, if the original scheme is statistically (resp. computationally) hiding (resp.
binding), then the new scheme is also statistically (resp. computationally) hiding (resp. bind-
ing) as well.

At a high level, our compiler achieves the round-collapse by delegating the computation of both
parties in the commit stage prescribed by the purification of the original scheme to the new sender.
Later in the reveal stage, the new receiver will check this computation in the commit stage via the
reversible quantum computation. We will formally prove the round-collapse theorem (Theorem 4)
shortly below, by constructing a compiler for the round-compression. The proof relies heavily on
the formalization introduced in Section 6.

20Not the receiver of the bit commitment.
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As a simple application of the round-collapse theorem, we can compress Naor’s bit commitment
scheme [Nao91] to get a non-interactive one (Appendix D). Nevertheless, this application seems not
a big deal, since there already exists a more straightforward (and somewhat simpler) construction
(also inspired by Naor’s scheme [YWLQ15]). Two non-trivial applications are referred to the
subsequent two sections.

PROOF of Theorem 4: We first give a compiler for the round-compression that is easier to under-
stand. To show its correctness, it suffices to show that the resulting scheme, which will be in the
canonical form, is semi-honest secure: by the virtue of Theorem 3, it follows that the resulting
scheme will be fully secure (against an arbitrary quantum attack) as well. Then we explain how to
simplify our compiler so that the compressed scheme gets simpler, too.

For simplicity, we can assume without loss of generality that in the first place the original
scheme is normalized in such a way that in any running of the commit stage, the number of rounds
of the interaction is fixed by adding dummy rounds, and each exchanged message (whether classical,
quantum, or a hybrid) is of fixed length by padding dummy qubits or bits. As such, the number
of rounds of the interaction and the length of each exchanged message in the commit stage only
depend on the security parameter.

We will call the given quantum bit commitment scheme the original scheme, while its purifica-
tion the purified scheme. Their commit stages (not including the reveal stages) will be formalized in
the way as described in Section 6.1 and Section 6.3, respectively, with the party A identified as the
sender and the party B as the receiver. Our compiler to achieve the round-collapse is described in
Figure 2 (with the security parameter dropped to simplify the notation). We will call this resulting
scheme the compressed scheme. We are next to prove the correctness of our compiler; that is,
the compressed scheme represented by the quantum circuit pair (Qq, Q1), which is already in the
canonical form, has perfect completeness and satisfies the same flavors of the hiding and binding
properties as the original scheme. In the first place, note that by the normalization of the original
scheme, the size of each quantum register of (Egp,Ep,B,Ega,Ea,A) at the end of the commit
stage in an execution of the purified scheme only depends on the security parameter?!.
Completeness. The perfect completeness of the compressed scheme comes from the reversibility
of the quantum computation directly.

Honest-hiding. We show that the honest-hiding property of the purified scheme translates directly
into that of the compressed scheme (Qo, @1). Indeed, consider an honest execution of the commit
stage of the purified scheme. If the purified scheme is statistically (resp. computationally) honest-
hiding, then the state of the register C = (Eg p,Ep,B) at the end of the commit stage (i.e. the
receiver’s view) when a bit 0 is committed, and that when a bit 1 is committed, will be statistically
(resp. computationally) indistinguishable. This concludes that the scheme (Qq, Q1) is statistically
(resp. computationally) hiding.

Honest-binding. We show that the honest-binding property of the purified scheme translates into
the honest-binding property of the compressed scheme (Qg, Q1).

Consider the moment at the beginning of the reveal stage after an honest execution of the
commit stage of the purified scheme when a bit 0 is committed. Then the system (C,R) (=

21But by our formalization, their sizes are subject to change during the commit stage. In spite of this, their total
size is fixed and also only depends on the security parameter. In this sense, it is legal to say that quantum circuits
Qo, @1 perform on quantum registers (Es 5, Ep, B, Eg 4, Ea,A) in our construction of the compiler described in Figure
2.
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Commit stage: The new sender simulates an honest execution of the commit stage of the
purified scheme, and then sends the system that corresponds to the receiver of the purified
scheme as the commitment. Formally, let Q, (b € {0,1}) denote the unitary quantum circuit
that simulates an honest execution of the commit stage of the purified scheme when the bit b
is committed. This quantum circuit performs on quantum registers (Es g, Ep,B,Es a,Ex,A)
that are initialized in all |0)’s state. After the quantum circuit @) is applied, the system of
the new sender will be in the state of the form given by the expression (11). Then the new
sender sends the quantum register C = (Eg g, Ep,B) (which is in the state of the form given
by the expression (13)) to the receiver as the commitment.

Reveal stage: The new sender sends the bit b to reveal, together with all the residual system
in its hands, i.e. the quantum register R = (Eg 4,EA,A), to the receiver. Upon receiving
them, the new receiver will perform QT, i.e. the inverse of @, on the whole system (C, R)
(= (Es,B,EB,B,Eg 4,Ea,A)) to check if it returns to all |0)’s state. If yes, then accept; reject
otherwise.

Figure 2: A general compiler for the round-compression of quantum bit commitment schemes

(Es,B,EB,B,Eg a,Ea,A)) will be in the state Q|0). An arbitrary quantum state |¢), which is
stored in an auxiliary system Z, might also be fed to the cheating sender at this moment.

The honest-binding property (Definition 11) of the purified scheme implies that by just oper-
ating on the subsystem (R, Z) (= (Es.4,Ea,A,Z)), no cheating sender — either computationally
unbounded in case of statistically honest-binding or polynomial-time bounded in case of compu-
tationally honest-binding — can transform the quantum state Qg |0) of the system (C, R) into a
(possibly mixed) state whose projection on the vector @ |0) is non-negligible. This is because for
otherwise, a cheating sender in the reveal stage could have first transformed the state Qg |0) of the
system (C, R) into a state that is non-negligibly close (in trace distance) to ()1 |0) by performing on
the system (R, Z), and then proceed honestly as prescribed by the purified scheme to try to open
the commitment as 1. But this should lead the receiver to accept with non-negligible probability,
contradicting to the honest-binding property of the purified scheme.

Henceforth, the scheme (Qo, Q1) is statistically (resp. computationally) binding if its purifica-
tion is statistically (resp. computationally) honest-binding.

Combining all the above, it follows that the canonical quantum bit commitment scheme (Q, Q1)
has perfect completeness and satisfies the same flavors of the hiding and binding properties as the
original scheme.

Simplification. We note that there is some redundancy in our construction of the compiler given
in Figure 2: the content of the register Eg 4 and Eg g are identical; they both record the classical
messages communicated by the two party. It turns out in the construction of the compiler for the
round-compression, it suffices to keep track of just one copy of classical messages. In greater detail,
in the constructions of quantum circuits Q)¢9 and )1 as described in Figure 2, we can just keep
the register Eg g while dropping the register Eg 4. Alternatively, this can be done at the end of
the construction by uncomputing the register Eg 4 given the register Eg p. Now we rename the
register Eg p as Eg. Then the quantum circuit pair (Qo, Q1) which represent a new compressed
scheme performing on the registers (C,R), where C = (Eg,Ep,B) and R = (E4,A). This simplified
compiler is summarized in Figure 3 for convenience.
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Commit stage: Let @ (b € {0,1}) denote the unitary quantum circuit that first simulates
the honest execution of the commit stage of the purified scheme when a bit b is committed
and then uncomputes the register Eg 4. This quantum circuit can also be equivalently viewed
as just performing on quantum registers (Eg, Ep, B, E4, A) that are initialized in all |0)’s state,
where the register Eg is just the register Eg p after renaming. The new sender will send the
quantum register C = (Eg, Ep, B) to the receiver as the commitment.

Reveal stage: The new sender will send the bit b to reveal, together with all the residual
system in its hands, i.e. the quantum register R = (E4, A), to the receiver. Upon receiving
them, the new receiver will perform QZ, i.e. the inverse of @)y, on the whole system (C,R)
(= (Es,Ep,B,E4,A)), to check if it returns to all |0)’s state. If yes, then accept; reject
otherwise.

Figure 3: A simplified compiler for the round-compression of quantum bit commitment schemes

For the correctness of this simplified compiler, proofs of the perfect completeness and the honest-
hiding property of the compressed scheme follow almost the same line as those when the compiler
described in Figure 2 is used. For the proof of the honest-binding property, we can first recover the
dropped register Eg 4 and then argue in the same way as the analysis when the compiler described
in Figure 2 is used. We omit the detail here. |

Remark. One may wonder why the proof of the round-collapse theorem as above does not go
through if we only require that the original scheme (rather than its purification) be semi-honest
secure. Literally, this is because the system (C, R) is then no longer guaranteed to be in a pure
state at the end of the commit stage; in turn, we cannot make use of the reversibility of quantum
computation.

Hereafter, we will call the quantum bit commitment scheme after the compression (i.e. by
feeding it into the compiler described in Figure 3) as the “compressed scheme”, as stated in the
definition below formally.

Definition 19 (Compressed scheme) Given an arbitrary interactive quantum bit commitment
scheme, its associated compressed scheme is obtained by feeding it into the compiler described in
Figure 3.

Since the purification attack is just a special kind of attack among all possible attacks, the
following theorem is an immediate corollary of Theorem 4.

Theorem 5 Any secure (against an arbitrary quantum attack) interactive quantum bit commitment
scheme, in particular post-quantum secure (classical) bit commitment scheme, can be compressed
into a non-interactive one of the canonical form (Definition 5) with perfect completeness and the
same flavors of the hiding and binding properties.

Remark. We stress again that in this work we consider general quantum binding properties that all
quantum bit commitment schemes can satisfy, for which sum-binding is likely to be the strongest.
A specific quantum bit commitment scheme may satisfy even stronger binding properties (e.g.
[AC02, Unrl6b, Unrl6a, GLSV21, BCKM21, BB21]) than sum-binding. But if we feed it into our
compiler for the round-compression, these stronger binding properties may be lost; the compressed
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scheme is only guaranteed sum-binding (or equivalently honest-binding, since it is of the canonical
form).

9 Application: compress the NOVY scheme

In this section, we apply the round-collapse theorem (Theorem 4) to compress the NOVY scheme
[NOVY98], obtaining yet another construction of non-interactive computationally-binding quantum
bit commitment. The main technical part of this section lies in showing that the NOVY scheme is
secure against the purification attack.

In greater detail, the classical NOVY scheme [NOVY98] gives a construction of computationally-
binding bit commitment based on any one-way permutation. We naturally will ask, is the NOVY
scheme secure against the quantum attack when the underlying one-way permutation is also
quantum-secure? The main difficulty in extending the classical argument for the binding prop-
erty [NOVY98] to the quantum setting lies in the rewinding, which is generally impossible in the
quantum setting [vdG97]. Moreover, Brassard, Crépeau, Mayers, and Salvail [BCMS98] have shown
a superposition attack which breaks the unique-binding property, but it does not break the quan-
tum sum-binding property. That is, the NOVY scheme instantiated with a quantum-secure one-way
permutation is still possibly sum-binding, but unfortunately we do not have a proof of it yet. In the
below, we show that the NOVY scheme instantiated with a quantum-secure one-way permutation
is secure against the purification attack, which in turn can be compressed into a computationally-
binding quantum bit commitment scheme of the canonical form by our round-collapse theorem
(Theorem 4). The (quantum) analysis here is much simpler than the classical one in [NOVY98].

Formally, we prove the following theorem. And for self-containment, we reproduce the NOVY
scheme [NOVY98] in Figure 4.

Theorem 6 The compressed NOVY quantum bit commitment scheme is perfectly-hiding and
computationally-binding if the one-way permutation used within it is quantum-secure. In par-
ticular, this compressed scheme can be represented by the quantum circuit pair ensemble (Qo, Q1)
such that

C

Qn)|0) = —— > [ R (), R (), a) (14)

271 ot

QM) = —o S @ERL L (), T @) 1 —a)C, (15)

271 x,h1,... hn—1

where the x is summing over {0,1}", and h* (for k=1,2,...,n — 1) over 0F=11{0,1}"*.

PROOF: We can purify the NOVY scheme (described in Figure 4) in the way as fixed in Section 6
so that the whole system will be in the quantum state

1 ne n E
e > PR R R (), T (), a)
270

when a bit 0 is committed honestly, and in the quantum state

1 n— n— E
T Z )P4 Rt R TR (), T (), - a)
271 x,h1,... hn—1
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Commit stage: Let b € {0,1} be the bit to commit.

o The sender chooses a string z & {0,1}™ and computes y = f(x), where f : {0,1}" —
{0,1}" is an aribitrary one-way permutation.

e For k=1,2,...,n— 1, the receiver chooses a string h* & 0=11{0,1}"* and sends it
to the sender, who replies with the bit ¢, = h¥y, i.e. the inner product of A* and y if we
view them as vectors over the field Fs.

o Let (yo,y1) € {0,1}"™ be the two solutions in the lexicographical order of the equation
system h*y = ¢, k = 1,...,n — 1. Let the bit a € {0,1} be such that y = y,. The
sender then sends the bit d = a @ b to the receiver.

Reveal stage:

e The sender sends the bit b and the string x to the receiver.

o The receiver first determines the bit a from f(x): 0if f(z) is the lexicographically smaller
solution of the equation system h¥y = ¢, k = 1,...,n — 1, and 1 otherwise. Then the
receiver checks that d = a @ b; accept if yes, reject otherwise.

Figure 4: The NOVY scheme

when a bit 0 is committed honestly. The expressions of Q(n) and Q1(n) are obtained by the general
compiler as described in Figure 3. By the round-collapse theorem (Theorem 4), the correctness of
the scheme (Qo, Q1) follows by combining Lemma 20 and Lemma 21 that will be proved shortly
below. |

To simplify the notation in our security analysis, we will drop the auxiliary quantum state that
the adversary may receive (as specified, explicitly or implicitly, in Definitions 10 and 11). We can
do this because our analysis will be black-box without rewinding; one can easily see that almost
the same arguments go through even if the auxiliary quantum state is taken into account. We will
also follow this rule in the subsequent sections.

Lemma 20 The NOVY scheme with a quantum-secure one-way permutation plugged in is perfectly
honest-hiding and computationally honest-binding.

PROOF: The perfect honest-hiding property follows by exactly the same argument as the one in the
classical setting. At a high level, this is because the distribution of the bit a is uniform; we omit
the detail here. In the below, we will focus on showing the computational honest-binding property
of the scheme, whose proof is also almost a reproduction of the classical one?? (which we believe is
folklore).

Consider the honest-binding game w.r.t. the NOVY scheme in which a bit 0 is committed; the
case when a bit 1 is committed can be proved symmetrically. For contradiction, suppose that a
cheating sender S* of the reveal stage succeeds in opening the commitment as 1 with non-negligible

22We highlight that this is the analysis of the security against a sender who is honest in the commit stage, rather
than the NOVY analysis of the security against an arbitrary sender [NOVY98].
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probability. Given the oracle access to S*, we construct an inverter I* of the quantum-secure
one-way permutation f(-) as follows: on input 3’ € {0,1}",

1. Choose y & {0,1}"" 1o (1 —y.), where the y/, denotes the n-th bit of the 3’ and the operator
“o” denotes the concatenation of two binary strings.

2. Fork=1,2,...,n—1do: h* & o110 {0,1}"* subject to hFy = h¥y'; let ¢, = hFy.
3. If y < 3/, then a < 0; otherwise, a « 1.
4. Output 2z’ + S*(y,ht,....,h" L cr,. . cn1, 1 — a).

We are left to show that this inverter indeed breaks the security of the one-way permutation f(-).
Let H = (H',H? ...,H" '), where the random variable H* = 0*'1 0 U,,_;, and U,,_}, is

uniformly distributed over {0,1}"~*. We introduce an experiment & as: x & {0,1}", y = f(x),

ném. Intuitively, the experiment & is to simulate the commit stage of the honest-binding game
w.r.t. the NOVY scheme. Let ¢ be the unique vector such that hy = hy’ and v’ # y. We claim that
yn =1 —y}. Indeed, let j = max{i |1 <i<mn, y; # y;}; our goal is to show that j = n. Suppose
for contradiction that 5 < n — 1. Then for any A/ € 0"110{0,1}"7/, since the last n — j + 1 bits of
y — 1 are 10" 7, we must have h7(y — ') = 1. But this contradicts with the equation h/y = h7y/.

We introduce another experiment & as: y & {0,1}™ y & {0,1}" Lo (1—y.), h &m subject
to hy = hy'. Intuitively, the experiment & is to simulate an execution of the first two steps of the
inverter I*.

We claim that the distribution of (y,3’,h) in the experiment &; is identical to that in the
experiment &o; that is, for any (y,y’, h),

Prly,y', h] = Prly,y', h. (16)
51 52

Assuming for the moment that this is true, then the success probability of the inverter I* is exactly
that of the cheating sender S*. But since this probability is non-negligible by our hypothesis,
the inverter I* thus breaks the one-wayness of the one-way permutation f(-). We arrive at a
contradiction. Henceforth, the NOVY scheme is computationally honest-binding.
We are left to prove the equation (16). Regarding the experiment &, since both the y and h
are uniformly distributed, and the 7/ is uniquely determined by the y and h, we have
1 1 1 1

Prly,y/,h] = Prly] - Prlh] = =  — s - . 1
glr[y,yJ glr[y] Elr[] on gnign=2 3 (17)

Regarding the experiment &, we have

1
-—— - Pr|h . 1

1
P ''h] =Prly/]-P '1-Pr[h N=_—
Prly.y' b = Drly] - Drly [ y]- Drlh [, y]
To calculate the Prg,[h | y,y], since the h is chosen uniformly random such that hy = hy’ in the
experiment £, we are to calculate it via of the cardinaliy of the set {h | h(y — ') = 0}. Since
Yn — y, = 1, there are exactly half of h* € 0110 {0,1}"*, for each 1 < k < n — 1, such that
h*(y — ') = 0. Tt then follows that there are 272 .2771...2.1 h’s satisfying h(y —y') = 0. As
such,

1 1
P = R
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Combined with equations (17) and (18), the equation (16) holds.
This finishes the proof of the lemma. |

Lemma 21 If the NOVY scheme is quantum semi-honest secure (i.e. honest-hiding and honest-
binding), then it is also secure against the purification attack.

PRrROOF: We first prove that the NOVY scheme is secure against the purification attack of the re-
ceiver; or, the purification of the NOVY scheme is honest-hiding. This follows from the assumption
that the NOVY scheme is honest-hiding together with that the receiver is public-coin, in which
case Proposition 18 can be applied.

We next prove that the NOVY scheme secure against the purification of the sender; or, the
purification of the NOVY scheme is honest-binding. Consider the purification-binding game w.r.t.
the NOVY scheme in which a bit 0 is committed. By the purification attack the cheating sender will
not measure the quantum register in which x and f(x) are stored at the beginning of the commit
stage. Since the classical messages (hy, ..., hn—1;c¢1,...,cn—1;a) exchanged during the commit stage
will uniquely determine the x chosen by the sender, the quantum state is enforced to collapse at
the end of the commit stage to the one as if x and f(z) were really measured (at the beginning
of the commit stage). The case when a bit 1 is committed in the purification-binding game can
be proved symmetrically. Hence, the honest-binding property of the NOVY scheme extends to its
purification. |

10 Application: an equivalence between two flavors of quantum
bit commitments

In this section, we show that quantum bit commitment is symmetric, or two flavors of quantum bit
commitments are equivalent (Theorem 1). This is an immediate corollary of the following theorem
combined with the round-collapse theorem (Theorem 4).

Theorem 7 Canonical computationally-hiding statistically-binding quantum bit commitments exist
if and only if canonical statistically-hiding computationally-binding quantum bit commitments exist.

Towards establishing the equivalence above, our basic idea is first using a construction that
is a simplification of the CLS scheme [CLSO01] to convert the flavor of the given quantum bit
commitment scheme, and then compressing the resulting (interactive) scheme into a canonical one
using the round-collapse theorem (Theorem 4).

In greater detail, our construction for the purpose of converting the flavor of quantum bit
commitments is basically the parallel composition of the atomic (interactive) scheme as described
in Figure 5, which we denote by QBC(n), with the security parameter n (which we often drop to
simplify the notation). Let QBC(n)®" denote the parallel composition of n copies of the scheme
QBC(n). This construction is almost the CLS scheme given in [CLSO01], but with a significant
simplification: all intermediate verifications of the commitments by the sender are removed. In spite
of this, we will still call it CLS scheme in this paper. Intuitively, these intermediate verifications
can be removed because by the virtue of the round-collapse theorem (Theorem 4), we only need
a scheme that is just secure against the purification attack for the purpose of the compression.
That is, we only need to show that the CLS scheme QBC(n)®" is secure against the purification
attack, or the purified CLS scheme is both honest-hiding and honest-binding. This simplification of
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Security parameter: n

Commit stage: Let b € {0,1} be the bit to commit.

e (S1) For i =1,2,...,n, the sender chooses a bit x; & {0,1} and a basis 0; & {+, x},
sending the qubit |z;), to the receiver.

e (R2) For i = 1,2,...,n, the receiver chooses a basis GAZ ﬁ {+, x} and measures each
received qubit |$i>9i in the basis éi, obtaining the outcome #;. Then commit to (él, ;)
in a bitwise fashion using a canonical quantum bit commitment scheme (Qq,Q1). (We
can assume that the bases “4” and “x” are encoded as 0 and 1, respectively.)

e (S3) The sender sends all 0;’s, i = 1,2,...,n, to the receiver.

o (R4) The receiver chooses a random bit ¢ & {0,1}, as well as two random subsets of
indices Iy, I1 C [n] such that |Iy| = |I1] =n/3, Iy NIy = (), and §; = 6; for each i € I..
Then send (lp, I1) to the sender.

» (S5) The sender chooses a bit ag & {0,1} and sets a1 = ag @ b. Then compute gy =
®i610 z; @ ag, 41 = EBieh x; ® a1, and send (ag, a1) to the receiver.

+ (R6) The receiver computes the bit d. = ;.7 &: © ac.
Reveal stage:

o The sender sends the bits b and (ag,a1) to the receiver.

e The receiver verifies that b = ag @ a1 and d. = a..

Figure 5: The atomic scheme QBC, which composed in parallel gives a scheme that is a somewhat
simplification of the original CLS scheme

the construction will induce a significant simplification of the analysis of the original CLS scheme
[CLS01], which is for the full security and quite technically involved.

Remark. Since here our purpose is to show the equivalence between two flavors of quantum bit
commitments, we do not intend to explicitly write out the quantum circuit pair (Qo, Q1) corre-
sponding to the compressed CLS scheme, though which is straightforward following the compiler
described in Figure 3.

We will prove two directions of Theorem 7 in two separate subsections. Specifically, in Sec-
tion 10.1 we show that instantiating the CLS scheme with a canonical computationally-hiding
statistically-binding quantum bit commitment scheme gives rise to a scheme that is statistically
purification-hiding and computationally purification-binding. In Section 10.2 we prove the other
direction of Theorem 7, namely, instantiating the CLS scheme with a canonical statistically-hiding
computationally-binding quantum bit commitment scheme gives rise to a scheme that is computa-
tionally purification-hiding and statistically purification-binding.

39



10.1 The forward direction

Applying the round-collapse theorem (Theorem 4), the forward direction of Theorem 7 follows
immediately from Lemma 22 and Lemma 23 that will be stated and proved in the remainder of
this subsection.

Lemma 22 If the canonical quantum bit commitment scheme (Qo, Q1) is statistically-binding, then
the purification of the CLS scheme QBC(n)®™ is statistically honest-hiding (or, the CLS scheme
QBC(n)®™ is statistically purification-hiding).

PRrOOF: To simplify our security analysis, by the perturbation technique developed in [FUYZ20], we
can assume without loss of generality that the canonical quantum bit commitment scheme (Qq, Q1)
plugged in the atomic scheme QBC (described in Figure 5) is perfectly binding.

We first show that the CLS scheme QBC(n)®" is statistically honest-hiding. Then we show
that this statistical honest-hiding property extends to its purification.

The proof that the CLS scheme QBC(n)®" is statistically honest-hiding follows almost the
same line as the proof of that the oversimplified CLS scheme (r.f. Section C) is statistically honest-
hiding. This is because if we compare the two atomic schems described in Figure 5 and Figure
8, respectively, we find that the only difference lies in that in the former scheme the receiver
additionally sends commitments to (6;,4;)’s to the sender in step (R2)23. But these commitments
clearly cannot help the semi-honest receiver in cheating.

To show that the statistical honest-hiding property of the scheme QBC(n)®" is preserved after
the purification, it suffices to show that all collapses caused by the receiver’s non-unitary operations
are still enforced even after the purification. Indeed, the receiver has two non-unitary operations
prescribed by the atomic scheme QBC:

1. Measure each received qubit |z;), in step (R2).
2. Randomly choose the bit ¢, as well as the subsets Iy, I1, in step (R4).

For the first non-unitary operation, note that the scheme (Qq, Q1) plugged in is perfectly bind-
ing. Then applying the commitment measurement technique technique developed in [FUYZ20], the
commitment to each pair (6;, ;) in step (R2) amounts to measure them (but without revealing
their values to the sender)?*. Thus, even the receiver’s measurements are purified, the state of the
whole system can be equivalently viewed as collapsed to the one corresponding to that each pair
(6;,#;) is really measured.

For the second non-unitary operation, with overwhelming probability, about half of 6;’s are
equal to 6;’s; that is, with probability exponentially close to one, n/2.1 < Hz | 60; = éz}‘ <n/1.9.
Conditioned on this event happening, the receiver’s private coin ¢ can be determined from the
subsets (Ip,I1). In turn, the qubit storing the (private) coin ¢ will collapse at the moment the
subsets ([p, I1) are sent to the sender in step (R4). As such, the state of the whole system still
will collapse to the one associated with the occurrence of (Iy, I1,c) before the purification of the
receiver’s random coin tosses.

Z31f these commitments were removed from the scheme QBC, then its step (S3) could be merged into step (S1),
resulting in the same atomic scheme as described in Figure 8.

24 A hypothetical measurement called “commitment measurement” performed on each quantum bit commitment
can be introduced to collapse the committed value without affecting the security; its detail is referred to [FUYZ20].
Anyway, if one is not satisfied with this informal argument, then one is referred to the proof of the backward
direction of Theorem 7 in Section 10.2. There, a computational collapse (caused by computationally-binding quantum
commitments) is formally established. And arguments for this computational collapse extends to the (information-
theoretic) collapse (caused by perfectly-binding quantum commitments) here straightforwardly.
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Therefore, the statistical honest-hiding property of the CLS scheme QBC(n)®™ extends to its
purification. This finishes the proof of the lemma. |

As opposed to the proof of the statistical purification-hiding property of the CLS scheme
QBC(n)®", there seems no obvious way to show that the collapses caused by the honest sender’s
non-unitary operations, e.g. choosing the z;’s in step (S1) and choosing the ag,a; in step (S5),
still will be enforced after the purification. Thus, the statistical honest-binding property of the
CLS scheme QBC(n)®" (which follows similar to that of the oversimplified CLS scheme discussed
in Section C) does not extend to its purification straightforwardly. In spite of this, we can take
a similar analysis as the one in [CLS01]. But since now we are to argue the security against the
purification rather than an arbitrary attack, the analysis can be greatly simplified.

Lemma 23 If the canonical quantum bit commitment scheme (Qo, Q1) is computationally-hiding,
then the purification of the CLS scheme QBC(n)®™ is computationally honest-binding (or, the CLS
scheme QBC(n)®™ is computationally purification-binding).

ProoOF: For our analysis, we define a sequence of atomic schemes as follows?":

1. U-QBC. Obtained from the scheme QBC by letting the receiver commit to 2n uniformly
random bits, rather than (6;, &;)’s, in step (R2).

2. S-QBC. Obtained from the scheme U-QBC by removing the receiver’s commitments in step
(R2). Now since step (S3) of the sender is independent of step (R2) of the receiver, we can
first switch them, and then merge the former into step (S1), and the latter into step (R2).
For clarity, the resultng scheme S-QBC is depicted in Figure 6.

3. M-QBC. Obtained from the scheme S-QBC by introducing measurements of each qubit |z;),.
in the basis 6; once it is sent in step (S1). These hypothetical measurements are introduced
purely for the purpose of the security analysis.

The roadmap of our analysis is depicted as below:

The scheme QBC(n)®" is computationally purification-binding

I |Reduction 1

The scheme U-QBC(n)®" is statistically purification-binding

I |Reduction 2

The scheme S-QBC(n)®" is statistically purification-binding

I |Reduction 3

The scheme M-QBC(n)®" is statistically purification-binding

To establish the purification-binding property of various schemes above, we consider the corre-
sponding purification-binding games described in Definition 14. For simplification, in the analysis
below we just focus on the case b = 0 (i.e. a bit 0 is committed) of each game without explicit
mention; the case b = 1 can be established symmetrically.

Reduction 1. This is the most technical part of the whole analysis, which is deferred to Appendix
E. Basically, we use the hybrid argument to replace all receiver’s commitments with commitments
to uniformly random bits in step (R2) of the atomic scheme QBC.

25The notations of various schemes we introduced are not exactly the same as those in [Lég00, CLSO1].
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Security parameter: n

Commit stage: Let b € {0,1} be the bit to commit.

e (S1) For i =1,2,...,n, the sender chooses a bit z; & {0,1} and a basis 6; & {+, x}.
Send the basis ¢; and the qubit |z;),. to the receiver.

e (R2) For i = 1,2,...,n, the receiver chooses a basis 6; & {+, x} and measures each
received qubit ‘xi>9¢ in the basis 0;, obtaining the outcome Z;. Then choose a random

bit ¢ & {0,1}, as well as two random subsets of indices o, I1 C [n] such that |[p| =
|I1| =n/3, [y NI} =0, and §; = 6; for each i € I.. Send (Ip, I1) to the sender.

» (S3) The sender chooses a bit ag & {0,1} and sets a; = ag © b. Then compute a9 =
@ielo z; ® ag, 41 = ®i€11 x; ® a1, and send (ag,ay) to the receiver.

¢+ (R4) The receiver computes the bit d. = ;.7 &: © ac.
Reveal stage:

o The sender sends (b, ag, a;) to the receiver.

o The receiver verifies that b = ag @ a1 and d. = a..

Figure 6: The atomic scheme S-QBC

42




Reduction 2. Consider the purification-binding game w.r.t. the scheme U-QBC(n)®", whose
commit stage is just that of n copies of the purification-binding game w.r.t. the atomic scheme
U-QBC running in parallel. Intuitively, the commitments described in step (R2) of the scheme
U-QBC does not contain any information about the (honest) receiver’s random bits ¢’s (also chosen
in step (R2); n bits in total) that can help the sender win the game, hence can be removed.

In more detail, a key observation is that whether for the purification-binding game w.r.t. the
scheme U-QBC(n)®" or the scheme S-QBC(n)®", a cheating sender can win the game if and only if
it can guess the (honest) receiver’s all random bits ¢’s correctly. To see this, note that for the purpose
of cheating successfully, in the reveal stage of each copy of the purification-binding game w.r.t. the
atomic scheme U-QBC or S-QBC, the cheating sender must send corresponding (ag, 1 — a1) when
¢ =0, or (1—ag,a;) when ¢ = 1, to the receiver; this is because the receiver will check the correctness
of a. (but not a;_.). Combining this observation with that the receiver’s commitments to random
bits as described by step (R2) of the scheme U-QBC do not contain any information about the
receiver’s random bits ¢’s, removing all these commitments in the purification-binding game w.r.t.
the scheme U-QBC(n)®" will not affect the sender’s success probability of cheating. But removing
these commitments gives exactly the same commit stage as that of the purification-binding game
w.r.t. the scheme S-QBC(n)®". Reduction 2 follows.

Reduction 3. Consider the purification-binding game w.r.t. the scheme S-QBC(n)®", whose com-
mit stage is just that of n copies of the purification-binding game w.r.t. the atomic scheme S-QBC
running in parallel. Note that introducing the hypothetical measurements as in the description
of the scheme M-QBC to this game will result in the purification-binding game w.r.t. the scheme
M-QBC(n)®", which will affect nothing but #;’s (i.e. the receiver’s private measurement outcomes)
where i € I;_. (or 91 # 6;) in the commit stage of each copy of the atomic game. Henceforth,
neither the sender’s view nor the receiver’s verification (of d.’s, where only #;’s for ¢ € I. matter)
in the subsequent reveal stage will change. This implies that the sender’s probability of winning
the game will not change after introducing the hypothetical measurements. Reduction 3 follows.

The scheme M-QBC(n)®" is statistically purification-binding. We first argue that the scheme
M-QBC(n)®" is statistically honest-binding. Then we show that this binding property extends
to the purified scheme; this is equivalent to say that the scheme M-QBC(n)®" is statistically
purification-binding.

First consider the honest-binding game w.r.t. the scheme M-QBC(n)®", which is n copies of the
honest-binding game w.r.t. the atomic scheme M-QBC running in parallel. Note that within each
atomic game, the hypothetical measurements will become redundant; this is because each qubit
|zi)g, has already been collapsed by the honest-but-curious sender’s measurement in the basis 6; in
step (S1). Hence, the honest-binding game w.r.t. the atomic scheme M-QBC is exactly the game
w.r.t. the atomic scheme (of the simplified CLS scheme) described in Figure 8. Henceforth, as we
have already argued in Subsubsection C.2, the scheme M-QBC(n))®" is statistically honest-binding.

Now we turn to consider the purification-binding game w.r.t. the scheme M-QBC(n))®", which
is n copies of the purification-binding game w.r.t. the atomic scheme M-QBC running in parallel.
If we can show that all collapses of the sender’s (quantum) messages in the corresponding honest-
binding game are still enforced in this purification-binding game, then the probability that the
sender can win the purification-binding game will be the same as that of the honest-binding game,
and we are done. To see this, consider the atomic purification-binding game (w.r.t. the atomic
scheme M-QBC). First, we note that the bases 6;’s chosen in the step (S1) will be collapsed by
the honest receiver. Second, the x;’s chosen in the same step will be collapsed by the hypothetical
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measurements. Third, in step (S3), since bits ag,a; are uniquely determined by bits ag,a; and
T1,..., Ty, they will collapse after ag, a1 are collapsed by the honest receiver. As such, all collapses
happened in the honest-binding game are still enforced in the corresponding purification-binding
game.

This finishes the proof of that the scheme M-QBC(n)®" is statistically purification-binding.
Combining with Reduction 1, 2, and 3, this finishes the proof of the lemma. |

10.2 The backward direction

Now the canonical quantum bit commitment scheme (Qg, Q1) plugged in the scheme QBC (de-
scribed in Figure 5) will be statistically-hiding and computationally-binding.

To prove the backward direction of Theorem 7, after a few thoughts, it turns out that the proof
of the forward direction almost extends here in a straightforward way except for one place: namely,
in arguing the statistical purification-hiding property (the proof of Lemma 22), we use a technique
developed in [FUYZ20] which allows us to view quantum bit commitments with perfect binding
as implicit measurements of the committed value. However, here we will use instead quantum bit
commitments that are only guaranteed computationally binding, in which case the same technique
cannot be applied. Actually, this is just where the analysis of quantum oblivious transfer gets
stuck when computationally-binding quantum bit commitments are used [CDMS04], where the
difficulty was circumvented by turning to a stronger yet “non-standard” quantum computational
string binding property. However, even today there is still no instantiation of quantum commitments
with such binding property based on well-founded quantum complexity assumptions.

Fortunately, our situation seems inherently easier than that is considered in [CDMS04], because
we only need to take into account of the purification attack (as opposed to an arbitrary attack). It
turns out that in our situation we can show that quantum commitments with just the computational
honest-binding property indeed can realize a computational collapse that is similar to the one caused
by statistically-binding quantum commitments as argued in the proof of Lemma 22.

Formally, the proof of the backward direction of Theorem 7 relies on a what we will refer to
as the computational collapse theorem, which might be of independent interest. Its proof, which is
deferred to Appendix F, is inspired by the technique developed in [Yan21] to establish the quantum
computational string predicate-binding property.

Theorem 8 (Computational collapse) Suppose that (Qo, Q1) is a canonical computationally
e-binding quantum bit commitment scheme. Then for each b € {0,1},

[mv 37l @0 B ) 02 < S0 Tl [0 1s) (@0 100 0 10)2 [ me,
se{0,1}m s€{0,1}m

where the projector I, = |b) (b| acts on the qubit B; the efficiently realizable unitary transformation
U is arbitrary and acts on the whole system other than the system C®™: complex coefficients cv’s
satisfy ZsE{O,l}m ]a8]2 = 1; |¢s) is a unit vector; and the quantum circuit Qs is given by the equation

(4)-

Now we are ready to sketch a proof of the backward direction of Theorem 7 using Theorem 8.

PROOF of Theorem 7 (the backward direction): It suffices to prove that the CLS scheme QBC(n)®™,
i.e. the parallelization of the atomic scheme QBC described in Figure 5 with a canonical statistically-
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hiding computationally-binding quantum bit commitment scheme plugged in, is both computation-
ally purification-hiding and statistically purification-binding.

The proof of the statistical purification-binding property follows almost the same line as that of
Lemma 23, except that now “computationally hiding” will be replaced with “statistically hiding”
literally.

For the proof of the computational purification-hiding property, we will adapt the proof of
Lemma 22. As discussed, it suffices to show that using computationally-binding quantum commit-
ments will result in a similar collapse of the quantum state as that is caused by using perfectly-
binding quantum commitments. We are left to elaborate how to apply the computational collapse
theorem (Theorem 8) to justify this.

Recall that in the proof of Lemma 22, we argue that although the cheating receiver will not
measure each pair (éi,ii), the corresponding collapse is enforced by perfectly-binding quantum
bit commitments. Now we are going to argue that using computationally-binding quantum bit
commitments will cause a similar effect. Specifically, suppose that a uniformly random bit b € {0,1}
has been chosen by the sender to commit. The quantum state of the whole system at the end of
the commit stage can be written in the following form:

> g Bl e (@

0,8€{0,1}»

0> )C®nR®n ( > )C®nR®n 0>B 7 (19)

Q310

® |¢é,g@>

where quantum circuits ()3 and @; are circuits used to commit the chosen bases 0 and the mea-
surement outcomes I, respectively; the qubit B will be used to store the guess for the bit b that
is committed by the sender; and ]wé w) is the state of the residual system. Note that the quantum

state corresponding to (é,ﬁ:) being measured at this moment is given by the uniform mixture of
the quantum state ensemble

> )C®nR®n ( > )C®nR®n

0

{18)3) @ (@ Q:10 ® [5,5) 107} (20)

0,2€{0,1}n

Next, the cheating receiver may attack by performing a polynomial-time realizable unitary

operation U on its system, which in particular does not touch the commitment registers C®2". (It

may also additionally receives a quantum state for the attack, but which will not affect the analysis

below; so we omit it.) After the attack, seeing from the expression (19) the success probability of
the receiver guessing the random bit b correctly is given by

1 0. B2
(mo > bl e (@ 0" (21)

. 2
6,2€{0,1}»

0))(Q:10)) @ 5 ,)

In comparison, seeing from the expression (20) the success probability when the attack U performs
on the collapsed quantum state (i.e. obtained by measuring (0, ) of the quantum state (19)) is

given by
1
2. g
6,8€{0,1}»

2
, (22)

U (10)12) @ (Q410))(@210)) © 15} 10))]

Now we are ready to apply the computational collapse theorem. Specifically, we instantiate
parameters m, s, [¢bs) , Iy, U and ay for each s € {0,1}™ in Theorem 8 with 2n, (0, 2), [¢; ;), 11, U

and 1/22", respectively. It follows that if the real quantum state (given by the expression (19)) of
the whole system at the end of the commit stage is replaced by the collapsed one corresponding to
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(é, Z) is measured (given by the expression (20)), then the receiver’s success probability of guessing
the committed bit b correctly decreases at most 2ne (which is negligible).

Hence, the proof Lemma 22 can be modified to establish the computational purification-hiding
property here by just replacing the information-theoretic collapse caused by perfectly-binding quan-
tum bit commitments with the computational collapse caused by computationally-binding quantum
bit commitments. ]

11 Parallel composition of a canonical statistically-binding quan-
tum bit commitment scheme

In cryptography, a typical way to commit a string is to commit it in a bitwise fashion using a
bit commitment scheme. We naturally ask, what binding property can we obtain if we commit
a string in a bitwise fashion using a canonical quantum bit commitment scheme? The answer to
this question on the parallel composition of quantum bit commitments turns out to be elusive,
especially w.r.t. computationally-binding quantum bit commitment [CDMS04].

In this section, we will study the parallel composition of a canonical statistically-binding quan-
tum bit commitment scheme, establishing a very strong quantum string binding property that we
may hope for. We also show that this binding property implies the CDMS-binding property of
quantum string commitment, which is useful in quantum cryptography [CDMS04]. However, we
do not expect the same binding property extends to canonical computationally-binding quantum
bit commitment schemes.

11.1 Quantum string sum-binding

We first define the sum-binding property of a general quantum string commitment scheme.

Definition 24 (Sum-binding) Suppose that a possibly cheating sender interacts with an honest
receiver prescribed by a quantum string commitment scheme, and completes the commit stage. For
any string s € {0,1}™), where m(-) is a polynomial of the security parameter n, let p, denote the
success probability that the sender can open the commitment as the string s in the reveal stage.
We say that this quantum string commitment scheme is sum-binding if

Z ps < 1+ negl(n). (23)
s€{0,1}m

Remark. The sum-binding property defined above is very strong for quantum string commit-
ment in the following sense. Note that a cheating sender can trivially achieve »___ {01}m Ps = 1,
by committing to an arbitrary superposition of the strings in {0, 1} honestly and then open the
commitment honestly. But showing that the advantage of any cheating sender in opening a com-
mitment is negligible is likely to be hard or even impossible [CDMS04]. Roughly speaking, the
main difficulty comes from that there are exponentially many strings (2™, exactly) in {0, 1}™, but
we still hope to bound the sum of exponentially many advantages by a negligible quantity.

In spite of the difficulty mentioned above, we can prove the following parallel composition
theorem w.r.t. a canonical statistically-binding quantum bit commitment scheme.
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Theorem 9 (Parallel composition) Suppose that a canonical quantum bit commitment scheme
(Qo, Q1) is statistically binding. Then the quantum string commitment scheme obtained by com-
posing it in parallel is statistically sum-binding. Formally, if the scheme (Qo, Q1) is statistically
e(n)-binding where the function €(-) is negligible, then

> ps < 1+ 0(m). (24)

s€{0,1}m

The proof of the theorem above will be information-theoretic, thus does not extend to the
computational setting. Before giving the proof, we provide some preliminaries first.

When we use the quantum bit commitment scheme (Qp, Q1) to commit an m-bit string s in a
bitwise fashion, the quantum (string) commitment (stored in the quantum register C*™) is given

by the quantum state
m
Ps = ® Ps;> (25)
i=1

where the “s;” denotes the i-th bit of the string s. The fact below gives an information-theoretic
characterization of the success probability of opening a claimed quantum commitment as an arbi-
trary string.

Fact 25 ([YWLQ15]) Let (Qo, Q1) be a non-interactive statistically-binding quantum bit commit-
ment scheme. Given an arbitrary quantum state p € C®™ which is claimed to be the commitment to
an m-bit string by a (possible cheating) computationally-unbounded sender, the success probability
of opening this commitment as an arbitrary string s € {0,1}™ is at most F(p, ps)?.

The following lemma states that the honest-binding error decreases exponentially w.r.t. the
Hamming distance between the committed string and the string to reveal.

Lemma 26 ([YWLQ15]) Let (Qo, Q1) be a canonical quantum bit commitment scheme that is

statistically e-binding. Given the honest commitment to a string s € {0,1}™, the success probability

of opening it as s’ € {0,1}™ by any computationally-unbounded sender is at most 2 dist(s,s")

PrROOF SKETCH: Combining Fact 25 and the equation (25), the success probability

m

F(ps,psx)2 = HF(ps“pS;)Q < 62-dist(s,s )
=1

We also need a technical lemma as below, whose proof is deferred to Appendix G.

Lemma 27 Let {[ths) € X'} 1 1ymm) be an essemble of unnormalized vectors, where X is a Hilbert
space, m(-) is a polynomial, and n is the security parameter. For each pair of indices s, s’ € {0,1}™
such that s # §', the inner product |(Yy|1hs)| < e(n)34) for some fized function e(-) such that
0 < e(n) < 1/m(n) when n is sufficiently large. Fiz coefficients as > 0 for all s € {0,1}™. Then it

holds that
| > awa| = X aiwar|sm* Y ok (26)

s€{0,1}m se{0,1}m s€{0,1}m

‘ 2
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Now we are ready to prove Theorem 9.

PROOF of Theorem 9: Let p € C®™ be an arbitrary quantum state which is claimed as the
commitment to an m-bit string sent by a cheating sender. Let ps; be the quantum state corre-
sponding to the honest commitment to the string s € {0,1}™. By Fact 25, it suffices to prove
> sefoaym F(ps ps)? < 14+0(m?e). Denote by |p) to be an arbitrary purification of p. Fact 3 allows
us to choose a unit vector |1)5) to be a purification of ps such |(p|¢s)| = F(p, ps). In turn, our goal
becomes to prove

S )P < 1+ O(m).

se{0,1}n

Since the projection of the vector |p) on the orthogonal complement of the subspace spanned
by {’¢s>}se{o,1}m contributes zero to the summation on the r.h.s. of the inequality above, we can
assume without loss of generality that |¢) € span {[1)s)} e 13m; that is, we can write

)= D ).

te{0,1}m

(We note that the |¢;) in the equation above is not necessarily orthogonal to [iy) for t' # t,
and ), {0,1}m |ozt]2 is not necessarily equal to one.) Moreover, again without loss of generality we
can assume that the a;’s are non-negative reals; for otherwise, we can absorb the corresponding
normalization (complex) phases into [¢;)’s without affecting other settings. Thus,

Sokelwdl = > | Y anwiles)

se{0,1}m se{0,1}™ te{0,1}™

< Z Z o [(he |02 (triangle inequality)

s€{0,1}™ te{0, 1}m

= ) a ZZ |(Weleps)|?

te{0,1}™  j=0 se{0,1}™:
dist(s,t)=j

< Y A Y Feen? (e
tefoym =0 e
S a?i S ¥ (Lemma 26)

te{0,1}™ 7=0 se{0,1}™:
dist(s,t)=j

- tegl:}’" JZ;< )
= (1+6) Z o?. (27)

te{0,1}m

We are left to bound . {0,13m a?. To this end, we apply Lemma 27; specifically, we replace
|ths) and D e g0 1ym Qs [¥0s) in Lemma 27 with [¢¢) and [p), respectively. We note that all [¢y)’s

and |) are now unit vectors, and the condition | (1| 1y)| < edt) is guaranteed by Lemma 26.
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Hence,
2
2 2 2 2 2
mre 3 etz S aln| - Y el =i- Y o
te{0,1}m te{0,1}m te{0,1}m te{0,1}m

Then there are two cases:

1. Zte{o,l}m a? < 1. In this case, 1 serves as a good upper bound.

2. Zte{o,l}m a? > 1. In this case, we have m2e Ete{o,l}m of > Ete{m}m a? — 1. Rewriting

terms, we have Zte{O,l}m a? < 1/(1 —m2e).

It follows that in either cases, we have

S el _
E =1 —m2e
te{0,1}m

Plugging the upper bound above in the inequality (27), we have

2\m
> Nelva < (;ffnge =1+ m2e + O((m +m*)e2) = 1+ O(m2e).
se{0,1}m

This completes the proof of the theorem. ]

11.2 Relationship with other quantum string binding properties

We show that the quantum string sum-binding property established above is stronger than two
other quantum string binding properties that have been previously studied.

Honest-binding

Informally, we say that a quantum string commitment scheme is honest-binding if the honest
commitment to an arbitrary string s cannot be opened as s’ # s with non-negligible probability
(implicit in [YWLQ15]). By a simple hybrid argument, it is not hard to see that any quantum non-
interactive (statistically-binding or computationally-binding) bit commitment scheme composed in
parallel gives an honest-binding quantum string commitment scheme.

To see that the quantum string sum-binding implies the quantum string honest-binding, we
just fix the ps = 1 in the inequality (24) for an arbitrary string s € {0,1}"™; it then follows that
py < O(m?2e) for any s’ # t.

CDMS-binding

The CDMS-binding is defined w.r.t. a function or a set of functions. The following definition is
adapted from [CDMS04].

Definition 28 (CDMS-binding) Function f : {0,1}" — {0,1}!, where m(-) and [(-) are two
polynomials of the security parameter n. A possibly cheating sender interacts with an honest
receiver prescribed by a quantum string commitment scheme and completes the commit stage.
Let ﬁ{; be the success probability that the sender can open the string commitment as any string
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s € {0,1}™ in the reveal stage such that f(s) = y, where y € {0,1}. We say that this (string)
commitment scheme is binding w.r.t. the function f(-) (or f-binding as in [CDMS04]) if

Z 155 < 1+ negl(n).

ye{0,1}!

When a set of functions F is considered, we say that a quantum string commitment scheme is
F-binding if it is f-binding for each f € F.

The (string) sum-binding property (Definition 24) can be viewed as a special case of the CDMS-
binding property, by noting that when the function f is fixed to be the identity function, then the
f-binding becomes the sum-binding.

Conversely, it is also not hard to see that the (string) sum-binding property implies the f-binding
property whatever the function f is. To see this, a key observation is that

5§ Z Ds,

s:f(s)=y

where ps denotes the success probability that the sender can open a claimed commitment as the
string s € {0,1}" (as in Definition 24). This follows straightforwardly from definitons of ]5{; and
ps: while the cheating sender uses the same strategy to open the commitment as each preimage of
y in the definition of p’f;, it may reveal each preimage of y adaptively in the definition of p;. Hence,
given the sum-binding we have

Z pgjg Z Z Ds = Z Ps < 14 negl(n),

ye{0,1} ye{0,1} s:f(s)= se{0,1}m

which establishes the f-binding property.
Therefore, the (string) sum-binding property implies the CDMS-binding property w.r.t. any
function or set of functions.

12 Conclusion and open problems

In this work, we study general properties of complexity-based/computational quantum bit com-
mitments. Specifically, we show that any quantum bit commitment scheme can be compressed
into the canonical form (Theorem 4), which is non-interactive and whose semi-honest security im-
plies the full security (Theorem 3). This yields several applications (Section 5 and 9), allowing
us to not only obtain new constructions of quantum bit commitment but also simplify the secu-
rity analysis of existing ones. Moreover, it also enables us to establish an equivalence between
two flavors of quantum bit commitments (Theorem 7). Regarding the parallel composition, we
establish a very strong quantum statistical string sum-binding property by composing a canonical
statistically-binding quantum bit commitment scheme in parallel (Theorem 9).

We propose to study quantum bit commitments in the future from both quantum cryptography
and quantum complexity theory perspectives. In the below, we summarize and raise some open
problems that are related to this work and beyond:

1. Can canonical quantum bit commitments satisfy any stronger binding properties than sum-
binding that are interesting? The answer to this question is “yes” [FUYZ20, Yan21] (and
Appendix B of this paper). We expect further exploration towards this open question in the
future.
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2. In this work, we plug a canonical computationally-binding quantum bit commitment scheme
in a somewhat simplified CLS scheme for the purpose of converting its flavor (Section 10.2).
This construction essentially realizes a quantum oblivious transfer (QOT) that satisfies the
following security requirements: the purified receiver of QOT does not know the other bit that
the honest sender is given as input, while the purified sender of QOT does not know which
input bit the honest receiver is aware of. We highlight that this security is neither the security
against an arbitrary quantum attack nor the simulation security [GLSV21, BCKM21] that is
preferable in cryptography. Recall that we prove a computational collapse theorem (Theorem
8) for the analysis this security. So a natural open question is, can this computational-collapse
technique be extended to show the same security but against an arbitrary quantum attack
(as opposed to against the purification attack) for the original QOT protocol (or some of
its variant like the one considered in [CDMS04]) with a canonical computationally-binding
quantum bit commitment scheme plugged in [CK88]? Possibly combine it with the quantum
sampling technique devised in [BF10]? Though this security is not as good as the simulation
security, the corresponding construction is much simpler (in particular, consisting of constant
number of rounds). And it might be sufficient in some interesting applications, just like
[CLS01] and here for the purpose of converting the flavor of quantum bit commitment.

3. In this work, we show that the NOVY bit commitment scheme can be compressed into the
canonical form and shown secure against quantum attacks (Theorem 6). A natural and
interesting extension of this result would be compressing the construction of statistically-
hiding computationally-binding (classical) bit commitment scheme based on one-way func-
tions [HNO™09] into the canonical form and showing its quantum security (when the under-
lying one-way function used is quantum secure).

4. As mentioned in Section 1.3, it is interesting to explore whether quantum bit commitments
conversely imply pseudorandom quantum states (of any sort).

5. This open question regards quantum hardness amplification. The big question here is, if a
unitary operation U is hard to realize (e.g. requires super-polynomial number of elementary
quantum gates), then is the unitary operation U®" (i.e. perform the unitary operation U n
times in parallel) harder? Specific to a canonical quantum bit commitment scheme, we ask:
can the parallel composition of quantum bit commitments reduce the binding error? The
answer is a trivial “yes” w.r.t. a canonical statistically-binding quantum bit commitment
scheme, whose binding error can be captured by an information-theoretic notion known as
fidelity [YWLQ15]. However, the answer becomes unclear when it comes to a canonical
computationally-binding quantum bit commitment scheme. In particular, can the parallel
composition reduce the computational binding error from, say 1/2 or even inverse polynomial,
to a negligible quantity? This question looks very similar to the question of amplifying the
one-wayness of one-way functions in classical cryptography [Yao82]. If the answer to this
question is “yes”, then combining it with results in [Wat02, YWLQ15, FUYZ20, Yan21] will
complete the proof for an equivalence between quantum bit commitment and quantum zero-
knowledge like in the classical setting [OV08].

6. Some fancier open questions include: can quantum bit commitment find more applications
in quantum cryptography? Are there any other quantum cryptographic applications (be-
sides quantum zero-knowledge and quantum oblivious transfer) that also imply quantum bit
commitment? That is, can quantum bit commitment serve as the foundation of quantum
cryptography?
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7. Finally, the perhaps biggest open question that is related to the quantum complexity theory
is: do computational quantum bit commitments really exist?
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A The proof of the quantum rewinding lemma in [FUYZ20]

Lemma 29 (The restatement of Lemma 4) Let X and ) be two Hilbert spaces. Unit vector
|y € X ® Y. Orthogonal projectors T'y,..., Ty perform on the space X ® ), while unitaries
Ui,..., Uy perform on the space Y. If 1/k - Zle HI’Z-(UZ- ® 1%) W)Hz >1—mn, where 0 <n <1,
then

|l e 1@ 1%) - Ul 0 100 2 1Y) || 2 1= Vi,

PROOF: From the assumption 1/k - Zf:l IT:Ui |¢>H2 2 1 —n, we have
k
= 1-72\|PU|¢ Z(l—llFiUiW”Q)
1
= 3 Z IT3Us |90) — U [9) |2
=1

2
) - 19|

where the second “=" is by noting that 1 — ||I;U; ]¢>H2 is equal to the square of the projection of
Ui [¢) on the subspace 1 —I';. Rearranging terms, we get

2
)= 18)|| < kn. (28)

We claim that

|11 - @iro - @iro | <

vl - ol (29)

If this is true, then combining the inequalities (28) and (29), we have
[1) - @irsv) - @ir (93] < Vi

Applying the triangle inequality to the left hand side of the inequality above and rearranging terms,
we arrive at

H(Uﬁ‘l(h) (UL U) W)H >1—/kn,

56



as desired.

We are left to prove the inequality (29), which will be done by induction on k.
1. E=1. The “=" of inequality (29) holds trivially.

2. Suppose that the inequality (29) holds for £k — 1. We now prove that it also holds for k.
2
) (UfT4UR) - (I3 ) [0
2 2
= |l - witw 1)+ Wi 1) - @l - @ir) )|

9~ @) )|+ ) - L meatie) - @rmoy 1|

IN

IN

) — (UTRUL) [0) "4 ki HUJFZ-UZ- ) — |1/)>H2
=1

2

i |virae) - 1)
=1

where the first “=" follows from Pythagorean theorem by observing that the subspaces U, ng Uy and

1- U,IFkUk are orthogonal; in the second “<”, we apply the induction hypothesis. This finishes
the proof of the inequality (29), and in turn the proof of the lemma. |

B The extractor-based AQY-binding definition vs. the analysis
framework in [FUYZ20]

Basically, the analysis framework introduced in [FUYZ20] for the purpose of basing the quantum
security on the perfect/statistical binding property of canonical quantum bit commitments proceed
in two steps:

1. Perturb the canonical statistically-binding quantum bit commitment scheme used to obtain
another scheme that is perfectly binding, which will only introduce a negligible error.

2. After the perturbation, one can assume without loss of generality that quantum commitments
“collapse” by some imaginary measurement (which is inefficient and called commitment mea-
surement there) immediately after they are sent.

In this way, the quantum security analysis will be similar to those based on the unique-binding
property of classical commitments in the classical cryptography.

It is not hard to see that the imaginary measurement in the second step of the analysis frame-
work in [FUYZ20] is equivalent to the extractor in the AQY-binding definition [AQY21], which is
reproduced as below?%:

Definition 30 (Extractor-based AQY-binding) We say that a quantum commitment scheme
(S, R) satisfies statistical binding if for any (non-uniform) cheating sender S* = {S;},, there
exists a (possibly inefficient) extractor algorithm & such that the trace distance between the two
experiments ReaIExptS* and IdeaIExptﬁ*’g, whose definitions are as below, is negligible:

26 Actually, we modify the original definition in [AQY21] a little bit to fit the notation and the terminology used in
this paper.
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+ RealExpt? : Execute the commit stage to obtain the joint state og-r + Commit(S*, R,).
Execute the reveal stage to obtain the trit u < (S}, Ry, 05+r). Let 79« denote the final state
of the sender. Output the pair (7=, i).

o ldealExpty **: Execute the commit stage to obtain the joint state og«g + Commit(S*, R,).
Apply the extractor 1 ® £ on og+r (acting only on the receiver’s part) to obtain a new joint
sender-receiver state 0. along with a trit ¢/ € {0,1, L}. Execute the reveal stage to obtain
the trit p < (S}, Rn, 0%« ). Let Ts« denote the final state of the sender. If =1 or p = 1/,
then output the pair (7g+,u). Otherwise, output a special symbol err (unused in the real
experiment) indicating the extraction error.

In our opinion, the analysis framework in [FUYZ20] is as easy as the AQY-binding definition
to work with in the security analysis. But in comparison, the AQY-binidng definition is more
general (not only restricted to the quantum bit commitment of the canonical form), and more
readily usable by other cryptographers who are not willing to care about the instantiations of
quantum commitments. In spite of this, the analysis framework in [FUYZ20] explicitly allows one
to ignore the statistical binding error while focusing on perfectly-binding (canonical) quantum bit
commitments in general. This will often make the security analysis conceptually simpler.

A natural question to ask is whether canonical statistically-binding quantum bit commitments
satisfy the AQY-binding definition. Inspired by the extractor constructed in [AQY21], we answer
this question affirmatively, by tweaking techniques developed in [FUYZ20] to construct a extractor
as required in the AQY-binding definition for an arbitrary canonical perfectly/statistically-binding
quantum bit commitment scheme. We will give a formal proof of this in the remainder of this
section.

B.1 Canonical statistically-binding quantum bit commitments satisfy the AQY-
binding property

The proof basically follows [AQY21], except that the technical lemma in the below will be used
to construct the extractor as required in the AQY-binding property. This lemma is tweaked from
the one used in [YWLQ15, FUYZ20], which plays a key role in the study of canonical statistically-
binding quantum bit commitments there.

Lemma 31 Let X, be two Hilbert spaces. Unit vectors |¢g) ,|e1) € X ® Y. Let py and p1 be the
reduced states of |po) and |p1) in the Hilbert space X, respectively; their fidelity F(po, p1) =€ > 0.
Then there ezists a projective measurement I = {11y, 111,11, (= 1 — Iy — II;)}, where all1ly, 113,11,
are projectors on the Hilbert space X, such that for each b € {0,1}:

2
L[| @ 1) o)X = () =1 -6

2. ||lee) — (I @ 1Y) |23)]| < V2e,

Proo¥F: The projective measurement 11 is constructed as below. Since pg—p; is Hermitian, consider
its spectral decomposition

po— p1= Z Aﬂﬂ}
J

where the A\; € R is an eigenvalue (counted with multiplicity) and the z; is the corresponding
eigenvector. Define projectors

_ f _ i _
o =2 502ty =325, cozjzy, T =1—1—1II.
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From the assumption that F(pg, p1) = €, by Fuchs-van de Graaf inequalities, we have ||pg — p1]|; =
2-TD(po, p1) > 2(1 —€); that is, >, [A;| = 2(1 —€). Together with Tr(pg — p1) = 0, it follows that

Yo Z 1= Yo (=) >1—e

Thus, Tr(Ilp(po — p1)) > 1 — € and Tr(II;(p1 — po)) > 1 — €. From that both pg and p; are positive
semidefinite operators, we have Tr(Ilppg) > 1 — € and Tr(Ilyp1) > 1 — €. This proves the item 1 of
the lemma.

For the item 2, since the unit vector |¢g) is a purification of the state pg, we have

[ (ol (I @ 1) |ipo)| = Tr((I" @ 17) |po) (i20]) = Tr(Tlopo) > 1 — .

It follows that

llgo) — (X @ 1Y) o) = /1~ (ol (TF @ 1Y) o) * < V1= (1 — )2 < V2e.

We can similarly prove that |||¢1) — (IIY ® 1¥) |p1)|| < v/2e. This finishes the proof of the item 2,
and hence the whole lemma. ]

Now we are ready to argue that canonical statistically-binding quantum bit commitments satisfy
the AQY-binding property. Before proving the theorem in the below, we would like to highlight that
Lemma 31 allows us to construct a projective measurement, as opposed to a POVM in [AQY21],
for the purpose of constructing the extractor as required in the AQY-binding property.

Theorem 10 Canonical statistically-binding quantum bit commitment satisfies the extractor-based
AQY-binding property.

PROOF: Suppose that (Qp, Q1) is a canonical statistically e-binding quantum bit commitment
scheme, where €(-) is some negligible function of the security parameter. By replacing |¢g) and
|p1) in Lemma 31 with Qg |0>CR and Qq |0>CR, respectively, we obtain the projective?” commitment
measurement?® II = {Ip, IT;, I, } performing on the commitment register C. It induces an extractor
£ that will be used subsequently to define the ideal experiment w.r.t. an arbitrary attack against
the canonical quantum bit commitment scheme (Qo,@1). For each bit b € {0,1} that will be
revealed in the reveal stage by the honest receiver, define the binary projective measurement P(b) =
{Py,1 — By}, where

Py = (Qy10) (0] Q)™ (30)

W.r.t. an arbitrary cheating sender S*, we define the real and the ideal experiments RealExpt®”
and ldealExpt® ¢ induced by the canonical quantum bit commitment scheme (Q, Q1), respectively,
as follows:

The real experiment RealExpt® :
1. Execute the commit stage to obtain a joint state of the whole system (C, R, B, S).

2. The cheating sender S* performs its operation on the system (R, B, S) in the reveal stage.

2TThis is in contrast to the POVM introduced for the purpose of constructing the desired extractor in [AQY21].

%8 Compared with the commitment measurement introduced in [FUYZ20], which is only defined w.r.t. canonical
perfectly-binding quantum bit commitment, here it has an additional projector II; to handle the possible statistical
binding error.
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3. The honest receiver measures the qubit B in the computational basis to obtain the bit b that
will be revealed.

4. The honest receiver performs the binary projective measurement P(b) (defined in the equation
(30)) on the register pair (C, R). If the outcome is 1, i.e. the opening is successful, let the trit
= b; otherwise, u =_1.

5. The experiment outputs (S, ).

The ideal experiment IdeaIExptS*’g:
1. Execute the commit stage to obtain a joint state of the whole system (C, R, B, S).

2. Invoke the extractor £ that is induced the by commitment measurement IT = {IIy, II;, IT, }
as aforementioned, obtaining a trit u/ € {0,1, L}.

3. The cheating sender S* performs its operation on the system (R, B, S) in the reveal stage.

4. The honest receiver measures the qubit B in the computational basis to obtain the bit b that
will be revealed.

5. The honest receiver performs the binary projective measurement P(b) (defined in the equation
(30)) on the register pair (C, R). If the outcome is 1, i.e. the opening is successful, let the trit
= b; otherwise, u =_1.

6. If u € {0,1} but p # 1, that is, the opening is successful but the revealed bit is different
from to the extracted trit, then the experiment outputs (S, err); otherwise, outputs (S, u).

To show that the two experiments defined above are statistically indistinguishable, we first
compute the density operators corresponding to their outputs, respectively. To this end, consider
the moment at the end of Step 3 in the real experiment conditioned on a bit b € {0, 1} obtained by
the honest receiver measuring the qubit B in the computational basis. Let o, denote the quantum
state of the whole system (C, R, S) at this moment. Since the extractor £ in the ideal experiment
only acts on the commitment register C, its operation commutes with those induced by Step 3 and
Step 4 of the ideal experiment. Thus, one can modify the ideal experiment by moving Step 2 to the
end of Step 4 without affecting its output. After this modification, one can see that in the modified
ideal experiment, the quantum state of the whole system before invoking the extractor is also in
the state oy.

Now we are ready to calculate the density operators preai(b) and pigeal(b) corresponding to the
real and the ideal experiments, respectively, as follows:

prea|(b) = TI‘CR(PbO'bP(,) & ‘b> <b| + TI“CR((]l — Pb)Ub(]l — Pb)) & ‘_L> <J_’
= TrCR(PbO'b) (29 |b> <b’ + TI"CR((]I — Pb)O'b) &® ‘L) <L‘ , (31)

where the second “=" follows by noting that the partial trace is cyclic w.r.t. operators acting on
the system (C, R). Moreover,

pideal(b) = TI“CR(NbO'b) ® |b> <b| + TI‘CR(NLO'I,) ® |J_> <J_| + TTCR(NerrO'b) ® \err) <err| , (32)
where positive semidefinite operators

Ny =1 PplI, Nere = (1 — 11, Py (1 — 1), N} =1 — Np — Neyr. (33)
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To simplify the notation, write

prea(b) = fé’a’.®rb> <b|+7<“®u>< 1],

real
(err)

pideal(b) = |dea| ® |b> <b| + deal ® |J_> <J_| + 7-|dea| ® |err> <err| I
for some subnormalized density operators T( )I and TIEj) - Then

TD(preal; pideal) = TD(Ep(preat(b)), Ep(pideat (b))
< Ep(TD(preal(b), pideal (b)) (The joint convexity of trace distance)

= Eb[TD( ®) () )_|_TD( (@D (l))+ T( (err))]

Treal> Tideal Treal » Tideal Tideal

(err) .

where the last “=" follows by noting that since 7, is a subnormalized density operator, its trace
norm is equal to its trace. Moreover,
il
TD( r(eal)’ |Ejea)l) = TD(TTCR((H - Pb)ab) TrCR(NLUb))

= TD (]l Pb)O'b) TI‘CR((]l — Ny — Nerr)ab))
Pyo), Trar((No + Nerr)op))

1
Pyoy), TI‘CR(NbO'b)) + §Tr(Nerr0b) (The triangle inequality)

INA

}%

=}

2 B &
3 q
5 53

— TD 7_() (b) )+ T( (“-‘”’))

real” Tideal Tideal

it follows that b
TD(preal; pideal) < 2Ey [TD( (b) ( ) )] + Tr ( (e"))

Treal> Tideal Tideal

Then it suffices for us to bound both TD( r(elgl, |E:Ie)a|) and Tr( Ige;arl)) for an arbitrary b € {0,1}, by
some negligible quantity.
First,

Tr(ri) = Tr(Newon) = Tr((1 — TI,) Po(1 — p)oy) < [|[(1 — ) Qs [0) [|? < €

Tideal

where the last “<” uses the item 1 of Lemma 31.
Second,

TD(r, ®) () ) = TD(Trer(Pyoy), Trar(Noow)).

Treal’ Tideal
Using the joint convexity of trace distance, it suffices for us to show that the r.h.s. of the inequality
above is bounded by some negligible quantity w.r.t. any pure state o, which then can be written
as |1p) (¢p| in the calculation below:

TD(Tror(Py [¢) (Vol), Tror(No [tn) (¥3])) = %mgﬂ (| (U @ 1°%) (P, — I, ByIT,) [thy) |

1
< 3 | Py — I PpITp ||

_ % HQb 10) (0] Qf — IL,Qy |0) (0] QZHbH
< 3Ve

where in the last “<” we use the item 2 of Lemma 31.
Putting it together,

TD(preala pideal) < 2e+ Sﬁv
which is negligible. This finishes the proof of the whole theorem. |
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Commit stage: Let b € {0,1} be the bit to commit.

1. The sender chooses a uniformly random string x = 1 ---x,, where each x; & {0,1}.
Choose the basis § = +if b =0, and § = x if b = 1. Send each qubit |z;)4, 7 =1,2,...,n,
to the receiver.

2. For each ¢ = 1,...,n, the receiver chooses the basis éz i {+, x} and measures each
qubit |x;), in the basis ;, obtaining the outcome ;.
Reveal stage:
1. The sender sends the bit b and all x;’s to the receiver.

2. The receiver checks that for each 1 = 1,2,...,n, ; = x; whenever éz = 0; reject other-
wise.

Figure 7: The BB84 scheme

C Two simple quantum bit commitment schemes that are semi-
honest secure but vulnerable to the purification attack

We present two schemes that are inspiring for the study of the relationship between the semi-
honest security of a general interactive quantum bit commitment scheme and its purification. Both
of these two schemes are statistically (information-theoretic) semi-honest secure, but vulnerable
to the purification attack. We expect these two toy examples to give readers some idea of how
the purification may compromise the semi-honest security of the original quantum bit commitment
scheme. In particular, the security analysis of the second scheme (i.e. the oversimplified CLS
scheme as we call) is helpful in understanding that of the correct one in Section 10.1.

C.1 The BB84 scheme

The non-interactive BB84 scheme [BB84, May97] is described in Figure 7. We next informally
argue that the BB84 scheme is statistically honest-hiding and statistically honest-binding.

The BB84 scheme is statistically honest-hiding, by noting that both the honest commitment
to 0 and that to 1 are just the maximally mixed state. The scheme is statistically honest-binding,
because almost a half of the bases 6;’s chosen by the receiver are not equal to the basis 6 that is
determined by the bit b to commit. Thus, for each 0; # 0, any cheating sender cannot guess ;
correctly with probability more than 1/2. It follows that the success probability of any cheating
sender opening the honest commitment to the bit b as 1 — b is exponentially small.

However, the BB84 scheme is vulnerable to the purification attack of the sender, or not purification-
binding. To see this, note that the commit stage of the BB84 scheme can be purified in such a
way that the sender prepares n EPR pairs and sends half of each EPR pair to the receiver as the
commitment; another half is kept by the sender. Then the sender simulates the measurement of its
halves of EPR pairs in the basis 6 unitarily; we denote this unitary operation by U when a bit 0 is
committed. As such, the cheating sender who performs as follows can open the honest commitment
to 0 as 1 with certainty:

1. Perform UT to roll its system back to the state at the moment just before the sender measuring
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Commit stage: Let b € {0,1} be the bit to commit.

e (S1) For ¢ = 1,2,...,n, the sender chooses a bit x; & {0,1} and a basis 6; & {+, x},
sending (|z;)g, , i) to the receiver.

e (R2) Fori=1,2,...,n, the receiver chooses each basis 6; & {+, x} and measures each

received BB84 qubit [z;), in the basis 0;, obtaining the outcome ;. Choose ¢ & {0,1}.
Choose at random two disjoint subsets of positions Iy, I1 C [n] of size n/3 such that for
each i € I, 0; = 6;. Send (I, I1) to the sender.

o (S3) The sender chooses ag & {0,1} and sets a3 = ap®b. Then compute ag = P;c;, :®
ao, 41 = P;cy, i ® a1, sending (Go, G1) to the receiver.

¢+ (R4) The receiver computes d. = P,y i D de.
Reveal stage:

o The sender sends the bit b and (ag,a1) to the receiver.

e The receiver checks that b = a9 ® a1 and d. = a..

Figure 8: The atomic scheme which composes in parallel gives the oversimplified CLS scheme

its halves of EPR pairs in the commit stage.
2. Measure its halves of EPR pairs in the basis “x”. Denote the outcomes by x1, ..., Zy.
3. Send the revealed bit 1, as well as all x;’s to the receiver.

In this way, it is not hard to see that the sender can open the bit commitment as 1 successfully
with certainty.

C.2 An oversimplified CLS scheme

The oversimplified CLS scheme, which is adapted from [CLS01], is the parallel composition of the
atomic scheme as described in Figure 8. Compared with the original CLS scheme, the sender
additionally sends bases #;’s in its first message, and the receiver removes commitments to all its
random chosen bases and measurement outcomes in its first message. We are next to argue that
this oversimplified CLS scheme is statistically honest-hiding and statistically honest-binding.

Statistical honest-hiding. Consider an honest execution of the commit stage of the atomic
scheme. Note that with an overwhelming probability, we have 0, = 0; for nearly half of indices i
where 1 <4 < n. Since |Io|+ 1| = 2n/3 > n/2, it follows from the pigeon hole principle that there
exists at least one index j € I1_. such that éj # 0;. It is for this index j that the receiver’s guess
for the z; can be no better than a random guess. In turn, the receiver’s guess for a;_., and thus
the committed bit b (which is equal to ag @ a1), can be no better than a random guess. That is, the
sender’s messages contain no information about the committed bit b. And this should hold for each
copy when there are n copies of the atomic scheme running in parallel. As such, the oversimplified
CLS scheme is statistically honest-hiding.
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Statistical honest-binding. First consider the honest-binding game w.r.t. the atomic scheme
in which a bit 0 is committed in the commit stage and the cheating sender is trying to open
the commitment as 1 in the reveal stage; the case when a bit 1 is committed can be proved
symmetrically.

A key observation here is that a cheating sender can win the game above if and only if it can
guess the receiver’s random choice of the bit ¢ correctly. To see this, note that for the purpose of
cheating successfully, in the reveal stage the sender must send (ag,1—a1) when ¢ = 0, or (1—ayp, a;)
when ¢ = 1, to the receiver; this is because the receiver will check the correctness of a. (but not
a1—c). This implies that a successful sender should guess the receiver’s random choice of the bit ¢
correctly. The converse holds trivially.

Since the receiver’s only message in the commit stage, i.e. the subsets (Iy, 1), contains no
information about the bit ¢ (the sender just saw two random disjoint subsets of size n/3), it follows
that the probability of the sender winning the game is no more than 1/2.

The honest-binding game w.r.t. the oversimplified CLS scheme consists of n copies of the
atomic honest-binding game above running in parallel. Since the random bits ¢’s corresponding
to each copy of the atomic game are independent, the probability of the sender winning all copies
of the atomic game is no more than 27". This establishes that the oversimplified CLS scheme is
statistically honest-binding.

An attack against the purification-hiding property. Consider a running of the atomic scheme
in which the receiver performs a unitary simulation of each of its non-unitary operation as prescribed
by the scheme, including the measurement of each qubit |xi>9¢ in the basis 6;, as well as the random

coin tosses corresponding to the choices of éi, c and Iy, I1. Note that the receiver’s measurement of
each received qubit in the bases 0;’s is independent of its choices of the bit ¢ and the subsets Iy, I7.
Thus, this measurement can be postponed to the beginning of step (R4) in the commit stage; let U
be the unitary transformation that simulates this new step. Once the commit stage is finished, the
cheating receiver can perform as follows to guess the committed bit b:

1. Perform UT to roll its system back to the state in which the received qubits |Zi),’s have not
been measured yet.

2. For each qubit |z;),, i =1,2,...,n, measure it in the basis 0; that is received in step (S1) to
obtain x;.
3. Compute ag, aj from do, a1 and z1, ..., 7,; that is, let ag = @;c;, i Dao, and a1 = Pjcp, O

a1. Output b =ag ® ay.

In this way, the receiver can guess the committed bit b correctly with certainty. The oversimplified
CLS scheme is not purification-hiding.

D Compress Naor’s scheme

As the first application, we can apply the collapse theorem (Theorem 4) to Naor’s construc-
tion of statistically-binding bit commitment [Nao91], obtaining a quantum computationally-hiding
statistically-binding bit commitment scheme. Actually, similar result was already known before
[YWLQ15].

Given a quantum-secure pseudorandom generator G : {0,1}" — {0,1}?", a statistically-binding
bit commitment scheme can be constructed in the following way [Nao91]. Its commit stage proceeds
in two rounds: the receiver first sends a uniformly random string » € {0,1}?" to the sender. In
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response, the sender chooses a uniformly random string s € {0,1}", and if a bit 0 is to commit,
then the sender sends G(s) to the receiver; if a bit 1 is to commit, then the sender sends G(s) & r
(the “@” denotes the bitwise xor) to the receiver. The reveal stage is canonical; namely, the sender
sends its random coin tosses s to the receiver for verification.

To compress Naor’s scheme, we consider an honest execution of the commit stage of the purified
Naor’s scheme, which can be formalized in the way as described in Section 6. At the end of the
commit stage, when a bit 0 is committed the whole system will be in the state

1
NoTT D 19)PAG(s),r) P |G (s),r) P (34)
se{0,1}7,

re{0,1}3n

and when a bit 1 is committed the whole system will be in the state

1
NI > 9P G(s) @ )P |Gls) @, )P (35)
se{0,1}7",

re{0,1}3n

By the general compiler (Figure 3, within the proof of Theorem 4), the compressed scheme is
given by the quantum circuit pair (Qo, Q1) as follows:

e 1
I =D DIV CORVAS (36)
se{0,1}7",
re{0,1}3n
def 1 R c
Q.0 = > 19 IGs) o). (37)

24n

ﬁ

sefon,
re{0,1}3n

Since Naor’s scheme is quantum-secure given that the pseudorandom generator G(-) is secure
against any polynomial-time quantum distinguisher [HSS11], applying Theorem 4 concludes that
the scheme (Qo, Q1) is computationally hiding and statistically binding. Its security can also be
established in a more direct way like that in [YWLQ15].

E Reduction 1 in Lemma 23

We inherit all notations in Section 10.1. Additionally, for convenience and to avoid ambiguity here,
let us call the sender and the receiver of the inner quantum bit commitment scheme (Qq, Q1) Alice
and Bob, respectively, while “the sender” and “the receiver” are reserved for the scheme QBC(n)®"
and other outer schemes.

For contradiction, suppose that the scheme U-QBC(n)®™ is statistically purification-binding
whereas the scheme QBC(n)®" is not computationally purification-binding; in particular, let S* be
a cheating sender in the reveal stage? who breaks the computational purification-binding property
of the latter. That is, consider the purification-game w.r.t. the scheme QBC(n)®", where in the
reveal stage the cheating sender S* attempts to open the commitment as 1. By our hypothesis,
the probability of the S* cheating (revealing 1) successfully is non-negligible. We shall construct
a cheating Bob B*, with oracle access to S*, who can break the computational hiding property of

Xn

29Recall that regarding the purification-binding (Definition 14), the sender’s operation is fixed to be the purification
of that of the honest sender in the commit stage.
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the inner quantum bit commitment scheme (Qo, @1), thus arriving at a contradiction. To this end,
we use the hybrid argument. Detail follows.

As prescribed by the atomic scheme QBC, there are 2n bit commitments (to (0;,x;), for i =
1,2,...,n) sent in step (R2); thus, there are in total 2n? bit commitments sent in the parallelized
scheme QBC(n)®". For k = 0,1,2,...,2n2, we define hybrid scheme Hy, as follows: it is basically
the parallelized scheme QBC(n)®", except that in step (R2) in place of the first k¥ (when k& > 1)
bits the receiver would have committed, it picks k£ fresh uniformly random bits and commits to
them. It is easy to check that the hybrids Hyg and Hy,2 are just the parallelized scheme QBC(n)®"
and U-QBC(n)®", respectively.

Now for each hybrid H;, (0 < k < 2n2), consider the corresponding purification-binding game
such that in the reveal stage the cheating sender runs S*. We define event succ as the sender cheat-
ing (revealing 1) successfully. From our hypothesis that the scheme U-QBC(n)®" is statistically
purification-binding and S* breaks the computational purification-binding property of the scheme

QBC(n)®", we have
1
Eg[SUCC] - %gnz [succ] > o)’ (38)

where ¢(+) is some fixed polynomial.

Now we are ready to construct a cheating Bob B*, with oracle access to S*, who can break the
computational hiding property of the inner quantum bit commitment scheme (Qg, @1). Specifically,
B* operates as follows after receiving the commitment to a random bit b € {0,1} from Alice:

1. Choose k & {0,1,...,2n2 — 1}.

2. Internally simulate the commit stage of the purification-binding game w.r.t. the hybrid Hy,
except that in step (R2) replace the commitment to the (k + 1)-th bit, which we denote by
by+1, with the commitment to the bit b (which is received from Alice externally).

3. Invoke the S* in the reveal stage of the purification-game. If the opening is successful, i.e.

the event succ happens, then let b = by1; otherwise, choose b & {0,1}.
4. Output the guess b.

Clearly, B* runs in polynomial time if S* does. We are left to lowerbound the probability of
the B* guessing the bit b correctly.
Averaging over all choices of the random k € {0, 1,...,2n% — 1},

2n2—1

' 1
br b =t= o pr [b=1], 39
P R I DI P Ul (39)

where the B* under the “Pr” indicates the experiment induced by the cheating Bob B*, and B;
indicates the same experiment conditioned on the k is chosen. For the summand on the r.h.s. of
the equation above,

be{(l):,)lr},B; b=0b] = b%{(f)ilr}’B]z [(b=1b) Asucc] + bk{g?lr}’B; [(b = b) ASucc|
> Pr[(b=b) Asucclb=byi1] - Pr [b = bg1] + Pr [(b= b)|succ] - Pr[succ]
1 1
= 3 Pr [succ|b = byi1] + 5 Pr[succ], (40)

where the last “=" follows from the following:
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o The first “1/2” is due to that the bit b is chosen uniformly random by Alice, and thus with
probability 1/2 equal to the (k+ 1)-th bit (i.e. bgi1) that the receiver would have committed
in a semi-honest execution of the commit stage of the hybrid Hy.

+ Conditioned on both the events succ and b = by11 happening, according to step 3 of the B*,
we must have b = by; = b. Thus,

b<—{0,1r},Bz I ) A\ succ| k1] be{O,f},B; [suce] k1]

o The second “1/2” is due to that conditioned on that the opening of the commitment (as 1)
fails, B* (step 3) will output a random guess b.

Another important observation is that

P b=byi1| =P P - P 41
be{O,f},BZ [Succ| k—H] H;f [SUCCL b<—{0,f}7Bz[succ] Hkil[SUCC], ( )

where the Hy and Hy 1 under the “Pr” indicate the experiments induced by a semi-honest execution
of the hybrids Hy, and Hj1, respectively.
Combing equations (40) and (41), we have

[b=t] >

Pr
be{0,1},B; Hysr

2
1 1
= 3 + 5(Pr [succ] — Pr [succ]>.

Hg Hyqq

Plug this inequality in the equation (39),

3 1 2n?—1 1 1
500 > g 3 (5 g (pr e - pr e
_ 2 + i<P1r [succ] — Pr [succ])
2 4n2 Hg on2
1 1
= 97 4n2q(n)’

where the last “>” follows from the inequality (38). But this violates the computational hiding
property of the quantum bit commitment scheme (Qp, Q7). Thus, if the scheme U-QBC(n)®" is
statistically purification-binding, then the scheme QBC(n)®" computationally purification-binding.

F A proof of the computational-collapse theorem

Theorem 11 (A restatement of Theorem 8) Suppose that (Qo, Q1) is a canonical computa-
tionally e-binding quantum bit commitment scheme. Then for each b € {0, 1},

[mv 37 alsh @0 B ) 02 < S0 Tl [0 1s) (@0 100 0 10)2 [ me,

se{0,1}m se{0,1}m

where the projector 11, = |b) (b| acts on the qubit B; the efficiently realizable unitary transformation
U is arbitrary and acts on the whole system other than the system C®™: complex coefficients cv’s
satisfy Zse{o,l}m ]aS]Q = 1; |¢s) is a unit vector; and the quantum circuit Qs is given by the equation

(4)-
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PROOF: Actually, we will prove a strengthening of the theorem as follows: for each k (0 < k < m)
and each z € {0,1}™~% it holds that

2 2
[ S alsh @0 w10 < 30 ol ([ 1s) (@100 ) 02 | ke,
s€{0,1}kox s€{0,1}kox
(42)
where {0,1}* o x denotes the set of all m-bit strings with the suffix . Then what the theorem
states is just a special case of the inequality above when k& = m and z is an empty string.
We will prove by induction.

Base. k = 0. In this case, fix an arbitrary « € {0,1}". Then the inequality (42) holds trivially.

Induction. Suppose that the inequality (42) holds for k — 1 and each string z € {0,1} (*=D_ We
will prove that it also holds for k and an arbitrary string = € {0,1}™*.

Without loss of generality, we assume that the complex number as > 0 for each s € {0,1}"™;

. . . . d
otherwise, we can absorb its phase into the quantum state. We also introduce a shorthand |¢s) tef

|s) (Qs0)) |1bs) |0) to simplify the notation. Then our goal becomes to show

HHbU S oade | = S Q2(ImU I6) |12 + k).

s€{0,1}kozx s€{0,1}Fox

’ 2

We first expand the Lh.s. of the inequality above:

o > aded| = |mu > aded+mU Y aslel)

s€{0,1}kox s€{0,1}k—100z s€{0,1}k—1olz

i i

2 2
< HHbU S asy¢s>) +HHbU S a5|¢8)‘ (43)
s€{0,1}*~100z s€{0,1}k~1olz
+2’ S ae UTLU- S agle .
s€{0,1}k—1o0z s€{0,1}k—1olx

For convenience, we introduce additional shorthands «g,, a1, o, such that
2 def 2 2 def 2
Qoz = Z Qs A1y = Z Qs (44)
s€{0,1}k—100z s€{0,1}k—1olz
The remainder of the analysis splits into two cases:

Case 1: either ap, = 0 or a1, = 0. Without loss of generality, we assume oy, = 0. This implies
as =0 for all s € {0,1}*~1 o 1z. Hence, from the inequality (43) we have

e S adlen o > ale)

s€{0,1}rox s€{0,1}k—1o0z

IN

i i

< Z O‘g(”HbU bs) |I* + (k — 1)e) (induction hypothesis)
s€{0,1}*~1o0z

= > a2(ImU g} |2+ (k = 1)e)
s€{0,1}kox

< Y Q21U |6 |2 + ke).
s€{0,1}kox
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Case 2: both gy, @1, > 0. From the inequality (43) we have
2
HHbU Z as |ps) ‘ < Z a2 (|ILU |¢s) I + (k — 1)e) (induction hypothesis)
s€{0,1}kox s€{0,1}k~100z
+ ) a2(ImU|¢s) >+ (k —1)e)  (induction hypothesis)
s€{0,1}k~1olz
1 1

— Z As <¢8’ : UTHbU : ? Z Qs ‘¢s>
Oz s€{0,1}+*~1o0z Lz s€{0,1}+~1olz

(%)

+200,0012

< Y Q2(IMmUg) | + (k = 1)€) + 200501, - € (Claim 32)
s€{0,1}Fox
< Y ad(MmU |6s) [P+ (k= 1)e) + (ad, + o, )e
s€{0,1}kox
= Z ag(HHbU ps) |12 + ke). (recall shorthands (44))
s€{0,1}Fox
This completes the proof of the induction step, and hence the theorem. |

We are left to prove the following claim.

Claim 32 The absolute value (x) in the proof of Theorem 8 above is less than e.

PROOF: Inherit all notations introduced within the statement and the proof of Theorem 8. Recall
that the shorthand |¢s) = s) (Qs0)) |s) |0), where the (unitary) quantum circuit Qs = @, Qs,
performs on n copies of the quantum register pair (C,R). Then the proof of the claim is just a simple
application of the quantum computational e-binding property of the quantum bit commitment
scheme (Qo, @1).

In greater detail, note that w.r.t. the unit quantum state vector 1/aos 3 scq0136-1005 Os [@s),
the (k+ 1)-th quantum register pair (C,R) is in the state Qo |0) that is unentangled with the rest of
the system; similarly, w.r.t. the unit quantum state vector 1/oua Y- e 101351015 @s |s), the (K+1)-
th quantum register pair (C, R) is in the state @1 |0) that is unentangled with the rest of the system.
Then the absolute value () can be bounded by € by applying Lemma 6 straightforwardly; we omit
further details here. n

G A proof of Lemma 27

For convenience, we restate Lemma 27 as below.

Lemma 33 (A restatement of Lemma 27) Let {|t)s) € X'} (g 13mm) e an ensemble of unnor-
malized vectors, where X is a Hilbert space, m(-) is a polynomial, and n is the security parameter.
For each pair of indices s,s € {0,1}™ such that s # §', the inner product |{(1s|1)s)| < e(n)dist(s:s")
for some fized function €(-) such that 0 < e(n) < 1/m(n) when n is sufficiently large. Fix coefficients
as >0 for all s € {0,1}™. Then it holds that

| 3w - X allwaP|<me Y ol (15)

‘2
s€{0,1}m se{0,1}m s€{0,1}m

69



Proor: We prove the lemma by induction on m.

1. m =1. We first expand |lag [¢0) + a1 |11)]? as

o |[[vo)|I” + a2 [[[n)))* + coar (tolwr) + arao (i |to).

Thus,

llevo [2b0) + o1 [w1)[|* — (o (1o} I” + o |[w1)[1%)
= |agar (Yo|t1) + oo (¥ |vo)|

2 2
ay +
< 26'a0a1§2e‘g

= e(ad +a?).
The lemma holds for m = 1.

2. Assume that the theorem holds for m — 1, where m > 2. We then prove it also holds for m.
‘2

as

First, one can expand H Ese{o,l}m as |Ps)

Yo anlto)+ D o |vim) H2

te{0,1}m~1 t'e{0,1}m—1
2 2
| S o+ X wlenn]
tE{O,l}m71 t’E{O,l}m71
+ Y e (Welte) + Y e (e lib).
t,t'e{0,1}m—1 t,t’'e{0,1}m-1

Thus, the left hand side of the inequality (45)

| 3 ] = X atier
se{0,1}m se{0,1}m

=l = ko[ +] X amlmen| - X a2l
te{0,1}m—-1 t'e{0,1}m—1 se{0,1}m

+ Y e (Welte) + Y awono (Y lib)

t,t’e{0,1}m—1 tt’'e{0,1}m—1
2 2
< || X ek - X ehlwalP|+]] D emlwen| - > adilweni
te{0,1}m-1 te{0,1}m-1 t'e{0,1}m-1 t'e{0,1}m-1

+ 2 Z laioey (Y |[Yi0)| (triangle inequality)
t,t’e{0,1}m—1

< (m—1)% Z a2y + (m —1)% Z g +2 Z o (Y [Yr0)

tef0,1}m—1 te{0,1}m—1 1 e{0,1}m-1
= (m=1% Y ai+2 Y e (Gl
se{0,1}™ t,t'e{0,1}m—1
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where the last “<” is by the induction hypothesis. We are left to bound the second term in the
above.

Indeed,
2 ) Jovoap (e vio)]
t,t’e{0,1}m—1
m—1
= 2> > oy - [(elti)|
j=0 ¢,t/e{0,1ym—1.
dist(t,t’)=j
m—1
< Z et Z 20u0041 (by the assumption (Vg |1s)] < ediSt(s’s/))
7=0 t,t’e{0,1}m—1;
dist(t,t/)=35
m—1
< Z et Z (o + afn).
7=0 t,t’e{0,1}m—1:
dist(t,t/)=35

We next count how many times each a2, (resp. a%,l) is added up in the inner summation above.
Since for each ¢ (resp. t’), there are exactly (m;l) t”’s (resp. t’s) such that dist(¢,t') = j, it follows

that there are in total (m 1) a2y’s (resp. aZ,’s) appearing in the inner summation. Therefore,

> whran= ("7 X b ¥ oan]-(") X e

t,t/€{0,1}ym—1; te{0,1}m-1 t'e{0,1}m-1 se{0,1}m
dist(t,t/)=j
Hence,
m—1
2 E lao (P [Phio) | < 6J+1< ) g a? =€(1+¢e)m ! g o,
t,t'e{0,1}m—1 7=0 J se€{0,1}m s€{0,1}m

Putting it together,

| > ama - X aliwil < -1t Y atrearont 3l
se{0,1}m s€{0,1}™ se{0,1}m se{0,1}m
= ((m-12+1+e™ e Y ol
se{0,1}m

IN
Sl\')
[

(]

Can\')

This completes the proof of the lemma. |
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