Incrementally Aggregatable Vector Commitments and
Applications to Verifiable Decentralized Storage*

Matteo Campanelli’, Dario Fiore!, Nicola Greco®, Dimitris Kolonelos'?, and Luca Nizzardo®

! IMDEA Software Institute, Madrid, Spain
{matteo.campanelli,dario.fiore,dimitris.kolonelos}@imdea.org
2 Universidad Politecnica de Madrid, Spain
3 Protocol Labs
{nicola,luca}@protocol.ai

Abstract. Vector commitments with subvector openings (SVC) [Lai-Malavolta, Boneh-Bunz-Fisch;
CRYPTO’19] allow one to open a committed vector at a set of positions with an opening of size
independent of both the vector’s length and the number of opened positions.

We continue the study of SVC with two goals in mind: improving their efficiency and making them more
suitable to decentralized settings. We address both problems by proposing a new notion for VC that
we call incremental aggregation and that allows one to merge openings in a succinct way an unbounded
number of times. We show two applications of this property. The first one is immediate and is a method
to generate openings in a distributed way. For the second one, we use incremental aggregation to design
an algorithm for faster generation of openings via preprocessing.

We then proceed to realize SVC with incremental aggregation. We provide two constructions in groups
of unknown order that, similarly to that of Boneh et al. (which supports only one-hop aggregation),
have constant-size public parameters, commitments and openings. As an additional feature, for the first
construction we propose efficient arguments of knowledge of subvector openings which immediately
yields a keyless proof of storage with compact proofs.

Finally, we address a problem closely related to that of SVC: storing a file efficiently in completely
decentralized networks. We introduce and construct verifiable decentralized storage (VDS), a crypto-
graphic primitive that allows to check the integrity of a file stored by a network of nodes in a distributed
and decentralized way. Our VDS constructions rely on our new vector commitment techniques.

* This article is the full version of the paper that appears in the proceedings of ASTACRYPT 2020, © IACR 2020.

g awe ©

Table of Contents

Introduction

1.1 A new notion for SVCs: incremental aggregation
1.2 Verifiable Decentralized Storage........ ... i
1.3 Concurrent Work

Preliminaries

2.1 Groups of Unknown Order and Computational Assumptions...................
2.2 Arguments of Knowledge. i

Vector Commitments with Incremental Aggregation

3.1 Vector Commitments with Subvector Openings
3.2 Incrementally Aggregatable Subvector Openings

Applications of Incremental Aggregation

4.1 Divide-and-Conquer Extensions of Aggregation and Disaggregation.............
4.2 Committing and Opening with Precomputation

Our Realizations of Incrementally Aggregatable Vector Commitments

5.1 Our First SVC Construction.ttt i
5.2 Our Second SVC ConstrucCtion u et
5.3 Comparison with Related Work

Arguments of Knowledge for Our First SVC

6.1 Building block: A Stronger Proof of Product...........,
6.2 A Succinct AoK of Opening for our VC Construction
6.3 An AoK for commitments with common subvector
6.4 A Succinct AoK for Commitment on Subvector

Verifiable Decentralized Storage

0 T 01 725 P
7.2 Correctness and Efficiency of VDS
7.3 Security of VDS .o

Our Realizations of VDS in Hidden-Order Groups

8.1 Our First VDS Constructionii e
8.2 Our Second VDS Construction.t
8.3 Efficiency and CompariSont

Experimental Evaluation

PoProd protocol for Union of RSA Accumulators

Committing and Opening with Precomputation for the [BBF19] SVC
Succinct Arguments of Knowledge for VDS

VDS Proof of Storage

D.1 Proof of Retrievability for any VDS
D.2 Proof of Data Possession for our first VDS scheme

A Variant VDS Construction with Strong Security

E.1 Strong Securityt e

E.2 A VDS Construction with Strong Security

F Experimental Results

1 Introduction

Commitment schemes are one of the most fundamental cryptographic primitives. They can be seen
as the digital equivalent of a sealed envelop: committing to a message m is akin to putting m in the
envelop; opening the commitment is like opening the envelop and revealing the value inside. They
have two basic properties. Hiding guarantees that a commitment reveals no information about the
underlying message. Binding instead ensures that one cannot change its mind about the committed
message; namely, it is not possible to open a commitment to two distinct values m # m/.

Vector commitments (VC) [LY10, CF13] are a special class of commitment schemes in which
one can commit to a vector ¥ of length n and to later open the commitment at any position i € [n].
The distinguishing feature of VCs is that both the commitment and an opening for a position 4
have size independent of n. In terms of security, VCs should be position binding, i.e., one cannot
open a commitment at position ¢ to two distinct values v; # v..

VCs were formalized by Catalano and Fiore [CF13] who also proposed two constructions based
on the CDH assumption in bilinear groups and the RSA assumption respectively. Both schemes
have constant-size commitments and openings but suffer from large public parameters that are
O(n?) and O(n) for the CDH- and RSA-based scheme respectively. Noteworthy is that Merkle
trees [Mer88] are VCs with O(logn)-size openings.

Two recent works [BBF19, LM19] proposed new constructions of vector commitments that en-
joy a new property called subvector openings (also called batch openings in [BBF19]). A VC with
subvector openings (called SVC, for short) allows one to open a commitment at a collection of posi-
tions I = {i1,...,i,} with a constant-size proof, namely of size independent of the vector’s length
n and the subvector length m. This property has been shown useful for reducing communication
complexity in several applications, such as PCP/IOP-based succinct arguments [LM19, BBF19]
and keyless Proofs of Retrievability (PoR) [Fis18].

In this work we continue the study of VCs with subvector openings with two main goals: (1)
improving their efficiency, and (2) enabling their use in decentralized systems.

With respect to efficiency, although the most attractive feature of SVCs is the constant size
of their opening proofs, a drawback of all constructions is that generating each opening takes at
least time O(n) (i.e., as much as committing). This is costly and may harm the use of SVCs in
applications such as the ones mentioned above.

When it comes to decentralization, VCs have been proposed as a solution for integrity of a
distributed ledger (e.g., blockchains in the account model [BBF19]): the commitment is a succinct
representation of the ledger, and a user responsible for the i-th entry can hold the corresponding
opening and use it to prove validity of v;. In this case, though, it is not obvious how to create a
succinct subvector opening for, say, m positions held by different users each responsible only of its
own position/s in the vector. We elaborate more on the motivation around this problem in Section
1.2.

1.1 A new notion for SVCs: incremental aggregation

To address these concerns, we define and investigate a new property of vector commitments with
subvector openings called incremental aggregation. In a nutshell, aggregation means that different
subvector openings (say, for sets of positions I and .J) can be merged together into a single concise
(i.e., constant-size) opening (for positions U.J). This operation must be doable without knowing the

entire committed vector. Moreover, aggregation is incremental if aggregated proofs can be further
aggregated (e.g., two openings for [U J and K can be merged into one for I U J U K, and so on
an unbounded number of times) and disaggregated (i.e., given an opening for set I one can create
one for any K C I).

While a form of aggregation is already present in the VC of Boneh et al. [BBF19], in [BBF19]
this can be performed only once. In contrast, we define (and construct) the first VC schemes where
openings can be aggregated an unbounded number of times. This incremental property is key to
address efficiency and decentralized applications of SVCs, as we detail below.

Incremental aggregation for efficiency. To overcome the barrier of generating each opening in
linear time* Oy (n), we propose an alternative preprocessing-based method. The idea is to precom-
pute at commitment time an auxiliary information consisting of n/B openings, one for each batch
of B positions of the vector. Next, to generate an opening for an arbitrary subset of m positions,
one uses the incremental aggregation property in order to disaggregate the relevant subsets of pre-
computed openings, and then further aggregate for the m positions. Concretely, with this method,
in our construction we can do the preprocessing in time Oy(nlogn) and generate an opening for
m positions in time roughly O)(mBlogn).

With the VC of [BBF19], a limited version of this approach is also viable: one precomputes an
opening for each bit of the vector in Oy(nlogn) time; and then, at opening time, one uses their one-
hop aggregation to aggregate relevant openings in time roughly O, (mlogn). This however comes
with a huge drawback: one must store one opening (of size p(A) = poly(\) where X is the security
parameter) for every bit of the vector, which causes a prohibitive storage overhead, i.e., p(\) - n
bits in addition to storing the vector ¥ itself.

With incremental aggregation, we can instead tune the chunk size B to obtain flexible time-
memory tradeoffs. For example, with B = /n one can use p(\)/n bits of storage to get Oy (m+/nlogn)
opening time. Or, by setting B = p(\) as the size of one opening, we can obtain a storage overhead
of exactly n bits and opening time Oy (m logn).

Incremental aggregation for decentralization. Essentially, by its definition, incremental aggre-
gation enables generating subvector openings in a distributed fashion. Namely, consider a scenario
where different parties each hold an opening of some subvector; using aggregation they can create
an opening for the union of their subvectors, moreover the incremental property allows them to
perform this operation in a non-coordinated and asynchronous manner, i.e. without the need of
a central aggregator. We found this application of incrementally aggregatable SVCs to decentral-
ized systems worth exploring in more detail. To fully address this application, we propose a new
cryptographic primitive called verifiable decentralized storage which we discuss in Section 1.2.

Constructing VCs with incremental aggregation. Turning to realizing SVC schemes with
our new incremental aggregation property, we propose two SVC constructions that work in hidden-
order groups [DK02] (instantiatable using classical RSA groups, class groups [BHO1] or the recently
proposed groups from Hyperelliptic Curves [DG20)).

Our first SVC has constant-size public parameters and constant-size subvector openings, and its
security relies on the Strong RSA assumption and an argument of knowledge in the generic group
model. Asymptotically, its efficiency is similar to the SVC of Boneh et al. [BBF19], but concretely

* We use the notation O (+) to include the factor depending on the security parameter A. Writing “O (t)” essentially
means “O(t) cryptographic operations”.

we outperform [BBF19]. We implement® our new SVC and show it can obtain very fast opening
times thanks to the preprocessing method described earlier: opening time reduces by several orders
of magnitude for various choices of vector and opening sizes, allowing us to obtain practical opening
times—of the order of seconds—that would be impossible without preprocessing—of the order of
hundred of seconds. In a file of 1 Mibit (22° bits), preprocessing reduces the time to open 2048 bits
from one hour to less than 5 seconds!

For the second construction, we show how to modify the RSA-based SVC of [LM19] (which in
turn extends the one of [CF13] to support subvector openings) in order to make it with constant-
size parameters and to achieve incremental aggregation. Compared to the first construction, it is
more efficient and based on more standard assumptions, in the standard model.

Efficient Arguments of Knowledge of Subvector Opening. As an additional result, we
propose efficient arguments of knowledge (AoK) with constant-size proofs for our first VC. The first
AoK can prove knowledge of the subvector that opens a commitment at a public set of positions,
and it extends to proving that two commitments share a common subvector. The second AoK is
similar except that the subvector one proves knowledge of is also committed; essentially one can
create two vector commitments C' and C’ together with a short proof that C’ is a commitment to
a subvector of the vector committed in C.

An immediate application of our first AoK is a keyless proof of storage (PoS) protocol with
compact proofs. PoS allows a client to verify that a server is storing intactly a file via a short-
communication challenge-response protocol. A PoS is said keyless if no secret key is needed by
clients, a property useful in open systems where the client is a set of distrustful parties (e.g.,
verifiers in a blockchain) and the server may even be one of these clients. A classical keyless PoS
is based on Merkle trees and random spot-checks [JKO7], recently generalized to work with vector
commitments [Fis18]. A drawback of this construction is that proofs grow with the number of spot-
checks (and the size of the tree) and become undesirably large in some applications, e.g., if need
to be stored in a blockchain. With our AoK we can obtain openings of fixed size, as short as 2KB,
which is 40x shorter than those based on Merkle trees in a representative setting without relying
on SNARKs (that would be unfeasible in terms of time and memory)®.

From Updatable VCs to Verifiable Decentralized Storage. In their seminal work on VCs,
Catalano and Fiore [CF13] also defined updatable VCs. This means that if one changes the i-th
value of a vector from v; to v} it is possible to update: a commitment C' to ¢ into a commitment
C’ to ¥, a valid opening for C' (at any position) into a valid opening for C’. And importantly,
these updates can be done without knowing the entire vector and in time that depends only on the
number of modified positions. As an application, in [CF13] it is shown how updatable VCs can be
used to realize verifiable databases (VDB) [BGV11], a primitive that enables a client to outsource
a database to an untrusted server in such a way that the client can retrieve (and update) a DB
record and be assured that it has not been tampered with by the server.

In this work we study how to extend this model to a scenario where storage is distributed
across different nodes of a decentralized network. This problem is motivated by the emerging trend
of decentralized storage networks (DSNs), a decentralized and open alternative to traditional cloud

® Code publicly available at https://github.com/nicola/rust-yinyan
5 We provide further details in Section 6

https://github.com/nicola/rust-yinyan

storage and hosting services. Filecoin (which is built on top of IPFS), Storj, Dat, Freenet and
general-purpose blockchains like Ethereum” are some emerging projects in this space.

Our contribution is to put forward a new cryptographic primitive called verifiable decentralized
storage (VDS) that can be used to obtain data integrity guarantees in DSNs. We propose a definition
of VDS and a construction obtained by extending the techniques of our VC scheme; in particular,
both incremental aggregation and the arguments of knowledge are key ingredients for building a
cost-effective VDS solution.

In the following section we elaborate on the VDS problem: we begin by discussing the require-
ments imposed by DSNs, and then give a description of our VDS primitive and realization.

1.2 Verifiable Decentralized Storage

Decentralized Storage Networks. Openness and decentralization are the main characteristics of
DSNs: anyone can enter the system (and participate as either a service provider or a consumer) and
the system works without any central management or trusted parties. Abstracting from the details
of each system, a DSN consists of participants called nodes that can be either a storage provider (aka
storage node) or a client node. Akin to centralized cloud storage, a client can outsource the storage
of large data; the key difference of DSN however is that storage is provided by, and distributed
across, a collection of nodes that can enter and leave the system at their wish. Also, DSNs can have
some reward mechanism to economically incentivize storage nodes.

The openness and the presence of economic incentives raise a number of security questions that
need to be solved in order to make these systems viable. In this work, we focus on the basic problem
of ensuring that the storage nodes of the DSN are doing their job properly, namely:

How can any client node check that the whole DSN
is storing correctly its data (in a distributed fashion)?

While this question is well studied in the centralized setting where the storage provider is a single
server, for decentralized systems the situation is less satisfactory. In what follows we elaborate on
the problem and the desired requirements, and then on our solution.

The Problem of Verifiable Decentralized Storage in DSNs. Consider a client who outsources
the storage of a large file F', consisting of blocks (F1, ..., Fy), to a collection of storage nodes. A
storage node can store a portion of F' and the network is assumed to be designed in order to
self-coordinate so that the whole F' is stored, and to be fault-resistant (e.g., by having the same
data block stored on multiple nodes). Once the file is stored, clients can request to the network to
retrieve or modify a data block F; (or more), as well as to append (resp. delete) blocks to (resp.
from) the file.

In this scenario, our goal is to formalize a cryptographic primitive that can provide clients with
the guarantee of integrity of the outsourced data and its modifications. The basic idea of VDS is
that: (i) the client retains a short digest dr that “uniquely” points to the file F'; (ii) any operation
performed by the network, be it a retrieval or a file modification, can be proven by generating a
short certificate that is publicly verifiable given dp.

This problem is similar in scope to the one addressed by authenticated data structures (ADS)
[TamO03]. But while ADS is centralized, VDS is not. In VDS nodes act as storage in a distributed

" https://filecoin.io, https://storj.io, https://datproject.org, https://freenetproject.org, https://
www.ethereum.org

https://filecoin.io
https://storj.io
https://datproject.org
https://freenetproject.org
https://www.ethereum.org
https://www.ethereum.org

and uncoordinated fashion. This is more challenging as VDS needs to preserve some basic properties
of the DSN:

Highly Local. The file is stored across multiple nodes and no node is required to hold the entire F"
in VDS every node should function with only its own local view of the system, which should be
much smaller than the whole F', e.g., logarithmic or constant in the size of F'. Another challenge is
dynamic files: in VDS both the digest and the local view must be locally updatable, possibly with
the help of a short and publicly verifiable update advice that can be generated by the node who
holds the modified data blocks.

Decentralized Keyless Clients. In a decentralized system the notion of a client who outsources the
storage of a file is blurry. It may for example be a set of mutually distrustful parties (even the
entire DSN in the most extreme case, e.g., the file is a blockchain), or a collection of storage
nodes themselves that decide to make some data available to the network. This comes with two
implications:

1. VDS must work without any secret key on the clients side, so that everyone in the network can
delegate and verify storage. This keyless setting captures not only clients requiring no coordina-
tion, but also a stronger security model. Here the attacker may control both the storage node and
the client, yet it must not be able to cheat when proving correctness of its storage. The latter is
crucial in DSNs with economic rewards to well-behaving storage nodes®.

2. In VDS a file F' exists as long as some storage nodes provide its storage and a pointer to the file
is known to the network through its digest. When a file F' is modified into F’ and its digest dp
is updated into dzv, both versions of the file may coexist. Forks are possible and it is left to each
client (or the application) to choose which digest to track: the old one, the new one, or both.

Non-Coordinated Certificates Generation. There are multiple ways in which data retrieval queries
can be answered in a DSN. In some cases, e.g., IPFS, after executing a P2P protocol to discover
the storage nodes holding the desired data blocks, one gets such blocks from these nodes. In other
cases (e.g., Freenet [CSWHO1] or the original Gnutella protocol), data retrieval is also answered in
a peer-to-peer non-coordinated fashion. When a query for blocks i1, . .., i, propagates through the
network, every storage node replies with the blocks that it owns and these answers are aggregated
and propagated in the network until they reach the client who asked for them. Notably, data
aggregation and propagation may follow different strategies.? To accommodate flexible aggregation
strategies, in VDS we consider the incremental aggregation of query certificates in an arbitrary
and bandwidth-efficient fashion. For example, short certificates for file blocks F; and Fj; should
be mergeable into a short certificate for (Fj, F;) and this aggregation process should be carried
on and on. Noteworthy that having certificates that stay short after each aggregation keeps the
communication overhead of the VDS integrity mechanism at a minimum.'°

Defining VDS. We define VDS as a collection of algorithms that capture all the properties above;
these are the algorithms that can be executed by clients and storage nodes to maintain the system.
A client for a file F' is anyone who holds a digest §p with which it can: verify retrieval queries,
verify and apply updates of F' (that result in forks of § into some other dz/). A storage node for

8 Since in a decentralized system a storage node may also be a client, an attacker could “delegate storage to itself”
and use the client’s secret key to cheat in the proof in order to steal rewards (akin to the so-called “generation
attack” in Filecoin [Labl7]).

9 E.g., in Freenet data is sent back along the same route the query came through, with the goal of providing
anonymity between who requests and who delivers data.

10 The motivation of this property is similar to that of sequential aggregate signatures, see e.g., [LMRS04, BGR12].

some blocks F; = {F;}ier of a file F' is anyone that in addition to F stores the digest dp and a
local state stz, with which it can: answer and certify retrieval queries for any subset of F7; push
and certify updates of F' that involve blocks in F7; verify and apply updates of F' from other nodes.
Finally, any node can aggregate retrieval certificates for different blocks of the same file.

In our VDS notion, an update of F' can be: (i) a modification of some blocks, (ii) appending
new blocks, or (iii) deleting some blocks (from the end). In all cases, an update of F' results into a
file F/ and a new digest dp.

In terms of efficiency, in VDS the digests and every certificate (for both retrieval queries or
modifications) are required to be of size at most O(log |F'|); similarly, the storage node’s local state
stp, has size at most O(|Fr| + log|F|). In a nutshell, no node should run linearly in the size of the
file (unless it is explicitly storing it in full).

The main security property of a VDS scheme intuitively requires that no efficient adversary
can create a certificate for falsified data blocks (or updates) that passes verification. As an extra
security property, we also consider the possibility that anyone holding a digest dr can check if
the DSN is storing correctly F' without having to retrieve it. Namely, we let VDS provide a Proof
of Storage mechanism, which we define similarly to Proof of Retrievability [JK07] and Proof of
Data Possession [ABCT07]. Similarly to the case of data retrieval queries, the creation of these
proofs of storage must be possible while preserving the aforementioned properties of locality and
no-central-coordination.

Constructing VDS. We propose two constructions of VDS in hidden-order groups. Both our
VDS schemes are obtained by extending our first and second SVC scheme respectively, in order to
handle updates and to ensure that all such update operations can be performed locally. In particular
we show crucial use of the new properties of our construction: subvector openings, incremental
aggregation and disaggregation, and arguments of knowledge for sub-vector commitments (the
latter for the first scheme only).

Our two VDS schemes are based on the Strong RSA [BP97] and Strong distinct-prime-product
root [LM19], and Low Order [BBF18] assumptions and have similar performances. The second
scheme has the interesting property that the storage node can perform and propagate updates by
running in time that is independent of even its total local storage. Our first scheme instead supports
an additional type of update that we call “CreateFrom”. In it, a storage node holding a prefix F’
of a file F' can publish a new digest dz corresponding to F’ as a new file and convince any client
about its correctness without the need for the client to know neither F nor F'.'' As a potential
use case for this feature, consider a network that is supposed to store the entire editing history of
some data (e.g., one or more files of a Git project); namely the i-th block of the VDS file contains
the data value after the i-th edit (e.g., the i-th Git commit). Then “CreateFrom” can be used to
verifiably create a digest of any past version of the data (e.g., of a fork at any point in the past).
Finally, our approach is not limited to a prefix of the file but to whatever subset of indices we want
to create the new file from.

It is worth noting that by abstracting the ideas of our constructions, other VDS schemes can be
obtained using Merkle trees or RSA accumulators.!? Compared to a Merkle-tree based solution, we
can achieve constant-size certificates for every operation as well as to (efficiently) support compact

' This can be seen as a deletion that can be performed without holding the blocks to be deleted and is more efficient
to verify when the prefix F’ is much smaller than F.
2 In fact, a similar idea from RSA accumulators was discussed in [BBF19)].

proofs of storage without expensive SNARKs'3. Compared to RSA Accumulators, our first VDS
scheme takes advantage of our AoK thanks to which it supports CreateFrom updates and compact
proofs of storage.

Finally, we note that VDS shares similarities with the notion of updatable VCs [CF13] extended
with incrementally aggregatable subvector openings. There are two main differences. First, in VDS
updates can be applied with the help of a short advice created by the party who created the update,
whereas in updatable VC this is possible having only the update’s description. The second difference
is that in VDS the public parameters must be short, otherwise nodes could not afford storing them.
This is not necessarily the case in VCs and in fact, to the best of our knowledge, there exists no
VC construction with short parameters that is updatable (according to the updatability notion of
[CF13]) and has incrementally aggregatable subvector openings. We believe this is an interesting
open problem.

1.3 Concurrent Work

In very recent concurrent works, Gorbunov et al. [GRWZ20] and Tomescu et al. [TABT20] study sim-
ilar problems related to aggregation properties of vector commitments. In [TAB*20], Tomescu et al.
study a vector commitment scheme based on the Kate et al. polynomial commitment [KZG10]: they
show how it can be made both updatable and aggregatable, and propose an efficient Stateless Cryp-
tocurrency based on it. In Pointproofs [GRWZ20] they propose the notion of Cross-Commitment
Aggregation, which enables aggregating opening proofs for different commitments, and show how
this notion is relevant to blockchain applications. The VC schemes in both [TAB*20] and [GRWZ20]
work in bilinear groups and have linear-size public parameters. Also, these constructions do not sup-
port incremental aggregation or disaggregation. In contrast, our VCs work in hidden-order groups,
which likely makes them concretely less efficient, but they have constant-size parameters, and they
support incremental aggregation and disaggregation. Finally, we note that by using techniques sim-
ilar to [GRWZ20] we can extend our constructions to support cross-commitment aggregation; we
leave formalizing this extension for future work.

2 Preliminaries

In this section we describe notation and definitions used throughout the paper.

Notation. We denote the security parameter by A and the set of all polynomial functions by
poly(A). A function €(\) is said negligible — denoted €(\) € negl(\) — if it vanishes faster than the
inverse of any polynomial. An algorithm A is said PPT if it is modeled as a probabilistic Turing
machine that runs in time poly(A). We denote by y < A(z) the process of running .4 on input =
and assigning the output to y. For a set S, |S| denotes its cardinality, and x <—s S denotes selecting
x uniformly at random over S. For a positive integer n € N we let [n] := {1,...,n}. We denote
vectors ¥ in bold, and for v € M™ v; is its entry at position i. We let Primes(\) be the set of all
prime integers less than 2*.

13 In Merkle trees certificates depend logarithmically on the file size and linearly on the number of blocks (since they
are not aggregatable).

10

2.1 Groups of Unknown Order and Computational Assumptions

Our constructions use a group G of unknown (aka hidden) order, in which the Low Order assump-
tion [BBF18] and the Strong RSA assumption [BP97] or the Strong Distinct-Prime-Product Root
assumption [LM19] (defined below) hold.

We let Ggen(1?) be a probabilistic algorithm that generates such a group G with order in a
specific range [ordin, Ordmes| such that ordl 1 L € negl(\).

min’ Ordmaw ’ ordwnaz_ordmin

Definition 2.1 (Low Order Assumption [BBF18]). We say that the low order assumption
holds for Ggen if for any PPT adversary A:
u' =1
Pr [Au#1
Al < £ < 2PV

- G+« Ggen(\) |
) AG)| ~ "B

Remark 2.1. The Low Order Assumption is implied by the more commonly known Adaptive Root
assumption, which is defined below. For the reduction we refer to [BBF18]. We also notice that
the definition of the Low Order assumption given in [BBF18] is for smaller £, 1 < ¢ < 2*, which
was sufficient for the application in the paper, whereas ours is for any polynomial-size £. We note
that the same reduction to the Adaptive Root assumption described in [BBF18] also holds for our
definition of the problem.

Definition 2.2 (Adaptive Root Assumption [Wesl18]). We say that the adaptive root as-
sumption holds for Ggen if for any PPT adversary (A1, A2):

G «+ Ggen(A)
¢ _
py| ¥ =W (w,stat.e) — A1(G) — negl(\)
Aw #1 £<sPrimes(\)

u < Aa (¥, state)

Definition 2.3 (Strong-RSA Assumption [BP97]). We say that the strong RSA assumption
holds for Ggen if for any PPT adversary A:

. G « Ggen(\)
u =
Pr , g. D gsG = negl(\)
Ae 18 prime
(’LL, 6) — A(Ga g)

Definition 2.4 (Strong Distinct-Prime-Product Root assumption [LM19]). We say that
the Strong Distinct-Prime-Product Root assumption holds for Ggen if for any PPT adversary A:

wlliese — ¢ G <+ Ggen(\)
Pr | AVie; € Primes(\) : g+sG = negl(})
NVi # j, e; # €; (u,{eities) < A(G, g)

The assumption is implied by the strong RSA assumption over RSA groups.
As discussed in [BBF18, BBF19, LM19], two concrete instantiations of G are class groups [BHO1]
and the quotient group Z} /{1, —1} of an RSA group [Wesl18]. The reason why we cannot directly

11

use the RSA group is that the order of —1 € Z}; is known, and thus the adaptive root assumption
does not hold. In the quotient group, {—1, 1} is the identity element; hence, knowing the order of
—1 does not help in finding a root for a non-identity element and thus solving the adaptive root
assumption.

Shamir’s Trick. Informally speaking, Shamir’s trick [Sha83] is a way to compute an xy-root of a
group element g given an x-root and a y-root of it in groups of unknown order, when x and y are
1

co-prime. That is, given p, = g%, py = g¥, v and y, one can compute a,b st ax + by = 1 using
az+by g_,’_g

1
the extended ged algorithm. Then gov = g #v = gv's = pp - pl. More formally, we recall the
following algorithm:

ShamirTrick(p., py, =,)

if p; # py then return L
Use the extended Euclidean Algorithm to compute a,b,d s.t. az + by = d = ged(z, y)
if d #1 then return L

b a
return p,p,

2.2 Arguments of Knowledge

Let R : X x W — {0,1} be an NP relation for a language £ = {z : Jw s.t. R(z,w) = 1}. An
argument system for R is a triple of algorithms (Setup, P, V) such that: Setup(1*) takes as input a
security parameter A and outputs a common reference string crs; the prover P(crs,z,w) takes as
input the crs, the statement x and witness w; the verifier V(crs,) takes in the crs, the statement
x, and after interacting with the prover outputs 0 (reject) or 1 (accept). An execution between the
prover and verifier is denoted with (P(crs, z,w), V(crs, z)) = b, where b € {0, 1} is the output of the
verifier. If V uses only public randomness, we say that the protocol is public coin.

Definition 2.5 (Completeness). We say that an argument system (Setup,P,V) for a relation
R:X xW —{0,1} is complete if, for all (z,w) € X x W such that R(x,w) = 1 we have

Pr [(P(crs, z, w), V(crs,z)) = 1 : crs « Setup(1Y)] = 1.

Consider an adversary A = (Ap,.A;) modeled as a pair of algorithms such that Ag(crs) —
(z,state) (i.e. outputs an instance = € X" after crs < Setup(A) is run) and A, (crs, z, state) interacts
with a honest verifier. We want an argument of knowledge to satisfy the following properties:

Soundness. We say that an argument (Setup, P, V) is sound if for all PPT adversaries A = (A, A1)
we have

(Aj(crs, x,state),V(crs,x)) = 1| crs + Setup())

Pr and fw : R(z,w) =1 (z,state) < Ap(crs)

€ negl(\).

Knowledge Extractability. We say that (Setup,P,V) is an argument of knowledge if for all
polynomial time adversaries Ay there exists an extractor £ running in polynomial time such that,
for all adversaries Ag it holds

crs < Setup(A)
(x,state) < Ap(crs) | € negl(N).
w' + E(crs, x, state)

(Aji(crs, z, state), V(crs, z)) = 1

br and (z,w') ¢ R

12

Succinctness. Finally we informally recall the notion of succinct arguments, which requires the
communication and verifier’s running time in a protocol execution to be independent of the witness
length.

Succinct Arguments of Knowledge for Hidden Order Groups. We recall two succinct
AoK protocols for the exponentiation relation in groups of unknown order that have been recently
proposed by Boneh et. al. [BBF19]. Both protocols work for a hidden order group G generated by
Ggen in which the adaptive root assumption holds. Also, they are public-coin protocols that can
be made non-interactive in the random oracle model using the Fiat-Shamir [FS87] heuristic and its
generalization to multi-round protocols [BCS16].

1. Protocol PoE: is an argument system for the following relation:
Rpoe = {((u,w,2) €G* X 2,2) : v =weG }

PoE is a sound argument system under the adaptive root assumption for Ggen. It is neither zero-
knowledge nor knowledge sound. Its main feature is succinctness, as the verifier can get convinced
about u* = w without having to execute the exponentiation herself. Moreover the information
sent by the prover is only 1 group element.

2. Protocol PoKE*: is an argument of knowledge for the following relation, parametrized by a gen-
erator g € G

RPOKE*:{(M,I)EGXZ : gx:waG }

PoKE™ is an argument of knowledge that in [BBF19] is proven secure in the generic group model
for hidden order groups [DK02]. This protocol is also succinct consisting of only 1 group element
and 1 field element in Zyx.

3. Protocol PoKE2: is an argument of knowledge for the following relation, parametrized by a gen-
erator g € G:

Rpokez = {((w,u) €G>,z €Z) : ' =weG }

PoKE2 is similar to PoKE* but it is secure for arbitrary bases u chosen by the adversary, instead
of bases randomly sampled a priori as in PoKE*. Similarly, it is an argument of knowledge in the
generic group model for hidden order groups and is also succinct, with a proof consisting of 2
group elements and 1 element of Zyx.

3 Vector Commitments with Incremental Aggregation

In this section, we recall the notion of vector commitment with subvector openings [CF13, LM19,
BBF19] and then we formally define our new incremental aggregation property.

3.1 Vector Commitments with Subvector Openings

A vector commitment (VC) [LY10, CF13] is a primitive that allows one to commit to a vector
U of length n in such a way that it can later open the commitment at any position i € [n]. For

14 Technically, this protocol is not succinct as there is no witness and the verifier must read and process the exponent
x; however, verification is still more efficient than running the full exponentiation.

13

security, a VC should be position binding in the sense that it is not possible to open a commitment
to two different values at the same position. Also, what makes VC interesting is conciseness, which
requires commitment and openings to be of fixed size, independent of the vector’s length.

In our work we consider a generalization of vector commitments proposed by Lai and Malavolta
[LM19] that is called VCs with subvector openings,'® which is in turn a specialization of the notion
of functional vector commitments by Libert et al. [LRY16]. In a nutshell, a functional VC is like
a VC with the additional possibility of opening the commitment to a function of the committed
vector, i.e., f(¥). Subvector openings are a specific class of functions in which one can open the
commitment to an ordered collection of positions (with a short proof).

In this section we recall this generalization of vector commitments with subvector openings
(that for brevity we call SVC). It is easy to see that the original notion of Catalano and Fiore
[CF13] is a special case when the opened subvector includes one position only.

We begin by recalling the notion of subvectors from [LM19].

Definition 3.1 (Subvectors [LM19]). Let M be a set, n € N be a positive integer and I =
{i1,...,ii} € [n] be an ordered index set. For a vector v € M", the I-subvector of U is U :=

(Uil,.. . ’,Uilfl)'

Let I, J C [n] be two sets, and let ¢, ¥y be two subvectors of some vector 7 € M™. The ordered
union of U; and U is the subvector U7,y := (Vky, - - -, Uk,), where TUJ = {ki,..., kp} is the ordered
sets union of I and J.

Definition 3.2 (Vector Commitments with Subvector Openings). A vector commitment
scheme with subvector openings (SVC) is a tuple of algorithms VC = (VC.Setup, VC.Com, VC.Open,
VC.Ver) that work as follows and satisfy correctness, position binding and conciseness defined below.

VC.Setup(1*, M) — crs Given the security parameter \, and description of a message space M for
the vector components, the probabilistic setup algorithm outputs a common reference string crs.

VC.Com(crs, ¥) — (C,aux) On input crs and a vector v € M™, the committing algorithm outputs a
commitment C' and an auziliary information aux.

VC.Open(crs, I,4,aux) — w7 On input the CRS crs, a vector j € M™, an ordered index set I C N
and auxiliary information aux, the opening algorithm outputs a proof my that i is the I-subvector
of the committed message.

VC.Ver(crs,C, I,y,m1) — b € {0,1} On input the CRS crs, a commitment C, an ordered set of in-
dices I C N, a vector j € M™ and a proof 7y, the verification algorithm accepts (i.e., it outputs
1) only if 71 is a valid proof that C was created to a vector ¥ = (vy,...,v,) such that § = Ur.

Correctness. A SVC scheme VC is (perfectly) correct if for all A € N, any vector length n any
ordered set of indices I C [n], and any v € M™, we have:

crs + VC.Setup(1*, M)
Pr |VCVer(crs,C, I, vr,mr) =1 : (C,aux) «+ VC.Com(crs,v)| =1
7 < VC.Open(crs, I, U7, aux)

15 This is also called VCs with batchable openings in an independent work by Boneh et al. [BBF'19].

14

Position Binding. A SVC scheme VC satisfies position binding if for all PPT adversaries A we

have:
VC.Ver(crs,C, I, 7, m) =1

Pr TR XTI
VC.Ver(crs,C, I, ,7') =1

crs < VC.Setup(1*, M)

: € [(\
(€, LG 7) Afers) | "B

Conciseness. A vector commitment is concise if there is a fized polynomial p(\) in the security
parameter such that the size of the commitment C' and the outputs of VC.Open are both bounded by
p(A), i.e., they are independent of n.

Vector Commitments with Specializable Universal CRS. The notion of VCs defined above
slightly generalizes the previous ones in which the generation of public parameters (aka common
reference string) depends on a bound n on the length of the committed vectors. In contrast, in our
notion VC.Setup is length-independent. To highlight this property, we also call this primitive vector
commiatments with universal CRS.

Here we formalize a class of VC schemes that lies in between VCs with universal CRS (as
defined above) and VCs with length-specific CRS (as defined in [CF13]). Inspired by the recent
work of Groth et al. [GKM™18], we call these schemes VCs with Specializable (Universal) CRS. In
a nutshell, these are schemes in which the algorithms VC.Com, VC.Open and VC.Ver work on input
a length-specific CRS crs,,. However, this crs,, is generated in two steps: (i) a length-independent,
probabilistic setup crs < VC.Setup (17, M), and (ii) a length-dependent, deterministic specialization
crs, < VC.Specialize(crs,n). The advantage of this model is that, being VC.Specialize deterministic,
it can be executed by anyone, and it allows to re-use the same crs for multiple vectors lengths.

Definition 3.3 (VCs with Specializable CRS). A VC scheme VC has a specializable CRS if
there exists a DPT algorithm VC.Specialize(crs,n) that, on input a (universal) CRS crs generated
by VC.Setup(1*, M) and an integer n = poly(\), produces a specialized CRS crs,, such that the
algorithms VC.Com, VC.Open and VC.Ver can be defined in terms of algorithms VC.Com™, VC.Open*
and VC.Ver* as follows:

— VC.Com(crs, ¥) setsn := |U], runs crs,, < VC.Specialize(crs, n) and (C*, aux*) <— VC.Com*(crsy, V),
and returns C' := (C*,n) and aux := (aux*,n).

— VC.Open(crs, I, y,aux) parses aux := (aux*,n), runs crs, < VC.Specialize(crs,n) and returns
7; < VC.Open*(crsy, I, ¥/, aux*).

— VC.Ver(crs,C, 1,4, mr) parses C := (C*,n), runs crs, < VC.Specialize(crs,n) and returns
VC.Ver*(crs,, C*, 1,4, mr).

Basically, for a VC with specializable CRS it is sufficient to describe the algorithms VC.Setup,
VC.Specialize, VC.Com*, VC.Open* and VC.Ver*. Furthermore, a concrete advantage is that when
working on multiple commitments, openings and verifications that involve the same length n, one
can execute crs,, <— VC.Specialize(crs,n) only once.

3.2 Incrementally Aggregatable Subvector Openings

In a nutshell, aggregation means that different proofs of different subvector openings can be merged
together into a single short proof which can be created without knowing the entire committed vector.

15

Moreover, this aggregation is composable, namely aggregated proofs can be further aggregated.
Following a terminology similar to that of aggregate signatures, we call this property incremental
aggregation (but can also be called multi-hop aggregation). In addition to aggregating openings, we
also consider the possibility to “disaggregate” them, namely from an opening of positions in the
set I one can create an opening for positions in a set K C [I.

We stress on the two main requirements that make aggregation and disaggregation non-trivial:
all openings must remain short (independently of the number of positions that are being opened),
and aggregation (resp. disaggregation) must be computable locally, i.e., without knowing the whole
committed vector. Without such requirements, one could achieve this property by simply concate-
nating openings of single positions.

Definition 3.4 (Aggregatable Subvector Openings). A vector commitment scheme VC with
subvector openings is called aggregatable if there exists algorithms VC.Agg, VC.Disagg working as
follows:

VC.Agg(crs, (1,071, 71), (J, U5, my)) — mx takes as input two triples (I,0r,7r),(J, U5, m5) where I
and J are sets of indices, U5 € M and 55 € M1 are subvectors, and 7 and 7y are opening
proofs. It outputs a proof wx that is supposed to prove opening of values in positions K =1 U J.

VC.Disagg(crs, I, 07,71, K) — mi takes as input a triple (1,07, 7r) and a set of indices K C I, and
it outputs a proof w that is supposed to prove opening of values in positions K.

The aggregation algorithm VC.Agg must guarantee the following two properties:

Aggregation Correctness. Aggregation is (perfectly) correct if for all X € N, all honestly gener-
ated crs < VC.Setup(1*, M), any commitment C and triple (I, v, 7) s.t. VC.Ver(crs, C, I, vy, 711) =
1, the following two properties hold:
1. for any triple (J, vy, my) such that VC.Ver(crs,C, J, U5, 7m5) = 1,

Pr [VC.Ver(crs, C, K, vk,) =1 : mg < VC.Agg(crs, (I,07,77), (J, UJ,WJ))] =1

where K = 1U J and Uk is the ordered union Uryy of Ur and Uy;

2. for any subset of indices K C I,
Pr [VC.Ver(crs, C, K, Uk,) =1 : g < VC.Disagg(crs, I, 07,77, K)| =1
where Uk = (vi,)ijek, for U5 = (Viys .-, i)

Aggregation Conciseness. There exists a fixed polynomial p(-) in the security parameter such
that all openings produced by VC.Agg and VC.Disagg have length bounded by p()\).

We remark that the notion of specializable CRS can apply to aggregatable VCs as well. In this

case, we let VC.Agg” (resp. VC.Disagg”) be the algorithm that works on input the specialized crs,,
instead of crs.

16

4 Applications of Incremental Aggregation

We discuss two general applications of the incremental aggregation property of vector commitments.

One application is generating subvector openings in a distributed and decentralized way. Namely,
assume a set of parties hold each an opening of some subvector. Then it is possible to create
a (concise) opening for the union of their subvectors by using the VC.Agg algorithm. Moreover,
the incremental (aka multi-hop) aggregation allows these users to perform this operation in an
arbitrary order, hence no coordination or a central aggregator party are needed. This application
is particularly useful in our extension to verifiable decentralized storage.

The second application is to generate openings in a faster way via preprocessing. As we men-
tioned in the introduction, this technique is useful in the scenario where a user commits to a vector
and then must generate openings for various subvectors, which is for example the use case when
the VC is used for proofs of retrievability and IOPs [BBF19].

So, here the goal is to achieve a method for computing subvector openings in time sub-linear
in the total size of the vector, which is the barrier in all existing constructions. To obtain this
speedup, the basic idea is to (A) compute and store openings for all the position at commitment
time, and then (B) use the aggregation property to create an opening for a specific set of positions.
In order to obtain efficiency using this approach it is important that both steps (A) and (B) can be
computed efficiently. In particular, step (A) is challenging since typically computing one opening
takes linear time, hence computing all of them would take quadratic time.

In this section, we show how steps (A) and (B) can benefit from disaggregation and aggregation
respectively. As a preliminary for this technique, we begin by describing two generic extensions of
(incremental) aggregation (resp. disaggregation) that support many inputs (resp. outputs). Then we
show how these extended algorithms can be used for committing and opening with preprocessing.

4.1 Divide-and-Conquer Extensions of Aggregation and Disaggregation

We discuss how the incremental property of our aggregation and disaggregation can be used to
define two extended versions of these algorithms. The first one is an algorithm that can aggregate
many openings for different sets of positions into a single opening for their union. The second one
does the opposite, namely it disaggregates one opening for a set I into many openings for partitions
of I.

Aggregating Many Openings We consider the problem of aggregating several openings for
sets of positions I,..., I, into a single opening for U;nzl I;. Our syntax in Definition 3.4 only
considers pairwise aggregation. This can be used to handle many aggregations by executing the
pairwise aggregation in a sequential (or arbitrary order) fashion. Sequential aggregation might
however be costly since it would require executing VC.Agg on increasingly growing sets. If f, (k) is
the complexity of VC.Agg on two sets of total size k, then the total complexity of the sequential
method is D77, f(zg;ll |I;] + |1;]), which for example is quadratic in m, for f,(k) = O(k).

In Fig. 1, we show an algorithm, VC.AggManyToOne, that is a nearly optimal solution for
aggregating m openings based on a divide-and-conquer methodology. Assuming for simplicity that
all I;’s have size bounded by some s, then the complexity of VC.AggManyToOne is given by the
following recurrence relation:

T(m) =27 () + fals - m)

17

VC.AggManyToOne(crs, (I, T1;, T5) je[m]) VC.DisaggOneToMany(crs, B, I, U7, 71)

1: if m =1 return m; 1: if n=|I| = B return n;

2: m < m/2 2: n' < n/2

3: L« UM I, R Ui, 3: L« Uliij, R Uiy,

4: mp + VC.AggManyToOne(crs, (I;, U1;, ;) j=1,....m’) 4: 77, + VC.Disagg(crs, I, @1, 71, L)

5: wr + VC.AggManyToOne(crs, (I;, U1, , Tj)j=m/41,...m) 5: nr + VC.Disagg(crs, I, ¥r, 71, R)

6: wrur < VC.Agg(ers, (L, v, 7L), (R, Ur,TR)) 6: 7 + VC.DisaggOneToMany(crs, B, L, ¥'r,, 71)
7: return Trugr 7: #r + VC.DisaggOneToMany(crs, B, R, Ur, T)

8: return 7L||Tr

Fig. 1. Extensions of Aggregation and Disaggregation

which for example solves to @(s-mlogm) if f,(n) € ©(n), or to O(s - mlog(sm)logm) if f,(n) €
O(nlogn).

Disaggregating from One to Many Openings We consider the problem that is dual to the one
above, namely how to disaggregate an opening for a set I into several openings for sets Iy, ..., I,
that form a partition of I. Our syntax in Definition 3.4 only considers disaggregation from one set [
to one subset K of I. Similarly to the aggregation case, disaggregating from one set to many subsets
can be trivially obtained via a sequential application of VC.Disagg on all pairs (I, I;). This however
can be costly if the number of partitions approaches the size of I, e.g., if we want to disaggregate
to all the elements of I.

In Fig. 1, we show an algorithm, VC.DisaggOneToMany, we show a divide-and-conquer algorithm
for disaggregating an opening for a set I of size m into m’ = m/B openings, each for a partition of
size B. For simplicity, we assume that m is a power of 2, and B | m.

Let f4(|I|) be the complexity of VC.Disagg. Then the complexity of VC.DisaggOneToMany is
given by the following recurrence relation:

T(m) = 2T (%) +2fa(m/2)

which for example solves to @(mlog(m/B)) if fa(n) € O(n), or to O(mlogmlog(m/B)) if fa(n) €
O(nlogn).

4.2 Committing and Opening with Precomputation

We present a construction of committing and opening algorithms (denoted VC.PPCom and VC.FastOpen
respectively) that works generically for any SVC with incremental aggregation and that, by relying
on preprocessing, can achieve fast opening time.

Our preprocessing method works with a flexible choice of a parameter B that allows for different
time-memory tradeoffs. In a nutshell, ranging from 1 to n, a larger B reduces memory but increases
opening time while a smaller B (e.g., B = 1) requires larger storage overhead but gives the fastest
opening time.

Let B be an integer that divides n, and let n’ = n/B. The core of our idea is that, during
the commitment stage, one can create openings for n’ = n/B subvectors of ¢ that cover the all

18

vector (e.g., B contiguous positions). Let wp,, ..
as advice information.

., mp , be such openings; these elements are stored

Next, in the opening phase, in order to compute the opening for a subvector 7 of m positions,
one should: (i) fetch the subset of openings 7p, such that, for some S, I C UjesP;, (ii) possibly
disaggregate some of them and then aggregate in order to compute 7.

To give a very general example of the above process, assume one has stored 7y 2y and 7(345)
and is asked for 7 33, then she has to compute first w3 and 73 by disaggregating 71 9y and 73 4 5
respectively, and then aggregate them to 75 31. Below are two more examples in picture:

il Ua U3 Ty Ts
B=2|1]o]JofJofrt[1]1]oflr]r]1]1flt]o]l1]offo]lo]O]O]
{12} {34} {5}
~ p(A) - n/2 bits in opening advice
Gl U U3 o T
B=n:[1]0[0]0[1][1]1]of1]1]1][1]f1]0o][1]0]0][0]0]O]
7{1,2,3,4,5}

p(A) bits in opening advice

The two algorithms VC.PPCom and VC.FastOpen are described in detail in Fig. 2.

VC.PPCom(crs, B, ¥) VC.FastOpen(crs, B, aux™, I)

1: (C,aux) + VC.Com(crs, ¥) 1: Let Pj:={(j—1)B+i:ic[B]},Vjcn]
2: m" <« VC.Open(crs, [n], ¥, aux) 2: Let I:={i1,...,im}
3: 7 < VC.DisaggOneToMany(crs, B, [n], v, ") 3. Let S minimal set s.t. U PDI
4: aux” = (T1,..., T, V) jes
5: return C,aux” 4: for je Sdo:
5: I« INP
6: m; < VC.Disagg(crs, P;, Up,,m;, ;)
7: endfor
8: m < VC.AggManyToOne(crs, ((1;,1,,7};))jes)
9: return 7y

Fig. 2. Generic algorithms for committing and opening with precomputation.

In terms of auxiliary storage, in addition to the vector ¥ itself, one needs at most (n/B)p(A)
bits, where p(\) is the polynomial bounding the conciseness of the SVC scheme. In terms of time
complexity, VC.PPCom requires one execution of VC.Com, one execution of VC.Open, and one execu-
tion of VC.DisaggOneToMany, which in turn depends on the complexity of VC.Disagg; VC.FastOpen
requires to perform (at most) |S| disaggregations (each with a set |[;| such that their sum is |]),
and one execution of VC.AggManyToOne on |S| openings. Note that VC.FastOpen’s running time

16 Note that for B = 1 the disaggregation step can be skipped.

19

depends only on the size m of the set I and size B of the buckets P;, and thus offers various
tradeoffs by adjusting B.

More specific running times depend on the complexity of VC.Com, VC.Open, VC.Agg, and VC.Disagg
of the given SVC scheme. See Appendix B for these results for our construction.

5 Our Realizations of Incrementally Aggregatable Vector Commitments

In this section we describe our new SVC realizations.

5.1 Our First SVC Construction

AN OVERVIEW OF OUR TECHNIQUES. The basic idea underlying our VC can be described as a generic
construction from any accumulator with union proofs. Consider a vector of bits ¥ = (v1,...,v,) €
{0,1}™. In order to commit to this vector we produce two accumulator, Accy and Accy, on two
partitions of the set S = {1,...,n}. Each accumulator Acc, compresses the set of positions i such
that v; = b. In other words, Acc, compresses the set S—p := {i € S : v; = b} with b € {0, 1}. In order
to open to bit b at position ¢, one can create an accumulator membership proof for the statement
i € S, where we denote by S, the alleged set of positions that have value b.

However, if the commitment to U is simply the pair of accumulators (Accy,Accy) we do not
achieve position binding as an adversary could for example include the same element 4 in both
accumulators. To solve this issue we set the commitment to be the pair of accumulators plus a
succinct non-interactive proof mg that the two sets So,Sl they compress constitute together a
partition of S. Notably, this proof mg guarantees that each index i is in either Sy or Si, and thus
prevents an adversary from also opening the position 7 to the complement bit 1 — b.

The construction described above could be instantiated with any accumulator scheme that
admits an efficient and succinct proof of union. We, though, directly present an efficient construction
based on RSA accumulators [Bd94, BP97, CL02, Lip12, BBF19] as this is efficient and has some
nice extra properties like aggregation and constant-size parameters. Also, part of our technical
contribution to construct this VC scheme is the construction of efficient and succinct protocols for
proving the union of two RSA accumulators built with different generators.

Succinct AoK Protocols for Union of RSA Accumulators Let G be a hidden order group
as generated by Ggen, and let g1,¢2,93 € G be three honestly sampled random generators. We
propose a succinct argument of knowledge for the following relation

RPoProdZ = {((Y, C)7 (a7 b)) € G*x Z* : Y = 9(11912) NC = gg-b }

Our protocol (described in Fig. 3) is inspired by a similar protocol of Boneh et al. [BBF19], PoDDH,
for a similar relation in which there is only one generator (i.e., g1 = g2 = g3, namely for DDH tuples
(g%, g, g™)). Their protocol has a proof consisting of 3 groups elements and 2 integers of \ bits.

As we argue later PoProd, is still sufficient for our construction, i.e., for the goal of proving
that C' = ¢§ is an accumulator to a set that is the union of sets represented by two accumulators
A = g% and B = g4 respectively. The idea is to invoke PoProd, on (Y,C) with Y = A - B.

To prove the security of our protocol we rely on the adaptive root assumption and, in a non-
black-box way, on the knowledge extractability of the PoKRep and PoKE* protocols from [BBF19].
The latter is proven in the generic group model for hidden order groups (where also the adaptive
root assumption holds), therefore we state the following theorem.

20

Setup(1*) : run G 3 Ggen(1*), g1, g2, g3 +sG, set crs := (G, g1, g2, g3).
Prover’s input: (crs, (Y, C), (a,b)). Verifier’s input: (crs, (Y, C)).

V — P: £ <sPrimes(\)

P—V:7m:=((Qy,Qc),ra,) computed as follows

— (9a, v, 9c) < (la/t], [b/¢], [ab/t])

— (ra,m) < (@ mod £,b mod ¢)

- (Qv,Qc) := (gi"95", 95°)

V(ers, (Y,C), L, m):

— Compute 7. < 74 -7, mod £

— Output 1iff rq, 7 € [f] A QY gi%g5 =Y A QEghe =C

Fig. 3. PoProd, protocol

Theorem 5.1. The PoPrody protocol is an argument of knowledge for Rpoprod, i1 the generic group
model.

Proof For ease of exposition we show a security proof for a slight variant of the protocol PoProd,.
Then, towards the end of this proof we show that security of this variant implies security for our
protocol. We let PoProd,’ be the same protocol as PoProd, with only difference that the prover
computes also r. < r, -1, (mod £) and sends 7. in the proof, and the verifier V checks in the
verification if 7. = 74 - 75 (mod /).

Let A" = (Ajf, A}) be an adversary of the Knowledge Extractability of PoPrody’ such that:
((Y,C),state) + Aj(crs), Aj(crs, (Y,C),state) executes with V(crs, (Y, C)) the protocol PoPrody’
and the verifier accepts with a non-negligible probability €. We will construct an extractor £ that
having access to the internal state of A} and on input (crs, (Y, C),state), outputs a witness (a, b)
of Rpoprod,’ With overwhelming probability and runs in (expected) polynomial time.

To prove knowledge extractability of PoPrody” we rely on the knowledge extractability of the
protocol PoKRep from [BBF19], which is indeed implicit in our protocol. More precisely, given
a PoPrody” execution between A’ and V, (¢,Qy,Qc,Ta,Ts,7c), £ constructs an adversary Ay =
(Ay,0, Ay,1) of PoKRep Knowledge Extractability and, by using the input and internal state of A,
simulates an execution between Ay and V: Ay outputs (crsy, Y, state) := ((G, g1, ¢2), Y, state), Ay
outputs (Qy,7q4,7p). It is obvious that if the initial execution is accepted by V so is the PoKRep
execution. From Knowledge Extractability of PoKRep we know that there exists an extractor &y
corresponding to Ay that outputs (a, b) such that g{g5 = Y. Additionally, it is implicit from the
extraction that a = r, (mod ¢) and b = r, (mod ¢) (for more details we refer to the Knowledge
Extractability proof of PoKRep in [BBF19]). So, &’ uses £y and gets (a,b). Similarly, it simulates
PoKE* for g§ = C, uses the extractor £, and gets c.

As one can see, the expected running time of £’ is the (expected) time to obtain a successful
execution of the protocol plus the running time of the 2 extractors: % +te, +tg, = poly(N).

Now what is left to prove to conclude our theorem is to show that the extracted a, b, c are such
that a - b = ¢ with all but negligible probability. To this end, we observe that we could run &’
a second time using a different random challenge ¢'; by using again &y, &, (after simulating the
corresponding PoKRep and PoKE* executions) we would get o/, ¥, ¢’ such that ¢ ¢§ =Y = ¢¢g8,
g§/ = C = ¢5. We argue that a = @/, b = b’ and ¢ = ¢’ holds over the integers with overwhelming
probability under the assumption that computing a multiple of the order of the group G is hard
(such assumption is in turn implied by the adaptive root assumption). If such event does not hold

21

one can make a straightforward reduction to this problem. Therefore, we proceed by assuming that
from the two executions we have a = a/, b = V/, and ¢ = ¢/ over the integers. Moreover, since both
executions are accepted we have 7, =7, -7, (mod ¢') = ¢ =d'-b' (mod ¢') = c=a-b (mod),
but ¢ was sampled uniformly at random from Primes(\) after a, b, ¢ were determined. So a - b = ¢
over the integers, unless with a negligible probability < #{fo,tr?:es(f ST_C} < \P':izlqye(s,?g\)\ = negl(\).
Finally, it is trivial to reduce the Knowledge Extractability of PoProds to Knowledge Ex-
tractability of PoProd,’. Let a generic adversary A against the Knowledge Extractability of protocol
PoProds such that the verifier accepts with a non-negligible probability €, we can construct a generic
adversary A’ against Knowledge Extractability of PoPrody’, so that the verifier accepts with the
same probability. A’ runs the crs < Setup(1*) algorithm and sends crs to A. The adversary A
outputs ((Y, C), state) <— Ap(crs) and sends it to .Af), which outputs as it is. Then A} interacts with
V in the protocol PoPrody’ (as a prover) and at the same time with A; in PoProd, (as a verifier).
After receiving ¢ from V it forwards it to A;. A; answers with 7 := ((Qy, Q¢), 74, 7). A} computes
re + rqrpy mod £ and sends 7' = ((Qy,Qc¢), T4, Ty, Tc) to V. The verifier V accepts 7’ with the
same probability that a verifier of PoProd, would accept 7 since r. = rqrp mod £ in both cases.
From Knowledge Extractability of PoProd,” we know that there is an extractor £ that outputs a
witness (a,b). Then €& = £’ is a valid extractor for PoProds. 0

In Appendix A we give a protocol PoProd that proves g{ = A/\gg = B instead of gi‘gg =Y (ie.,
a version of PoDDH with different generators). Despite being conceptually simpler, it is slightly less
efficient than PoProd,, and thus use the latter in our VC construction.

HASH TO PRIME FUNCTION AND NON-INTERACTIVE PoProd;. Our protocols can be made non-
interactive by applying the Fiat-Shamir transform. For this we need an hash function that can
be modeled as a random oracle and that maps arbitrary strings to prime numbers, i.e., Hprime :
{0,1}* — Primes(2)\)'7. A simple way to achieve such a function is to apply a standard hash
function H : {0,1}* — {0,1}?* to an input § together with a counter 4, and if p,; = H(¥, 1) is
prime then output p, ;, otherwise continue to H(%,7 + 1) and so on, until a prime is found. Due to
the distribution of primes, the expected running time of this method is O(\), assuming that H’s
outputs are uniformly distributed. We do not insist, though, in the previous or any other specific
instantiation of Hpyime in this work. For more discussion on hash-to-prime functions we refer to

[GHR99, CMS99, CS99, BBF19, OWB19].

Our First SVC Construction Now we are ready to describe our SVC scheme. For an intuition
we refer the reader to the beginning of this section. Also, we note that while the intuition was given
for the case of committing to a vector of bits, our actual VC construction generalizes this idea to
vectors where each item is a block of k bits. This is done by creating 2k accumulators, each of them
holding sets of indices ¢ for specific positions inside each block v;.

Notation and Building Blocks. To describe our scheme we use the notation below:

— Our message space is M = {0, 1}¥. Then for a vector 7 € M", we denote with i € [n] the vector’s
position, i.e., v; € M, and with j € [k] the position of its j'th bit. So v;; denotes the j-th bit in
position i.

17 As pointed out in [BBF18], although for the interactive version of such protocols the prime can be of size A, the
non-interactive version requires at least a double-sized prime 2\, as an explicit square root attack was presented.

Notably, even in the interactive version a 2*/Z-attacker would still be able to succeed in breaking knowledge-
soundness with 27*/2 probability, with a A-sized prime.

22

— We make use of a deterministic collision resistant function PrimeGen that maps integers to primes.
In our construction we do not need its outputs to be random (see e.g., [BBF19] for possible
instantiations).

— As a building block, we use the PoProd, AoK from the previous section.

— PartndPrimeProd(/, %) = ((ar,1,b1,1),- -, (ark, brk)): given a set of indices I = {i1,...,im} C [n]
and a vector i € M™, this function computes

m

m
(al’j7blvj) = H pila H pil forj:]_,...,k
lillyl]':O lil:yljil

where p; <— PrimeGen(i) for all 7.

Basically, for every bit position j € [k], the function computes the products of primes that
correspond to, respectively, 0-bits and 1-bits.

In the special case where I = [n], we omit the set of indices from the notation of the outputs, i.e.,
PartndPrimeProd([n], ¥) outputs a; and b;.

— PrimeProd(I) — uy: given a set of indices I, this function outputs the product of all primes
corresponding to indices in I. Namely, it returns u; := [[;c; pi. In the special case I = [n], we
denote the output of PrimeProd([n]) as u,.

Notice that by construction, for any I and g, it always holds ay ; - by ; = uy.

SVC Scheme. Below we describe our SVC scheme and then we show its incremental aggregation.

VC.Setup(1*, {0, 1}*) — crs generates a hidden order group G < Ggen(1*) and samples three gen-
erators g, go, g1 < G. It also determines a deterministic collision resistant function PrimeGen that
maps integers to primes.

Returns crs = (G, g, go, g1, PrimeGen)

VC.Specialize(crs,n) — crs,, computes u,, < PrimeProd([n]) and U, = g¢"~, and returns crs, <

(crs,Uy,). One can think of U,, as an accumulator to the set [n].

VC.Com*(crsy,, ¥) — (C*,aux*) does the following:

1. Compute ((a1,b1),..., (ak,bg)) < PartndPrimeProd([n], ¥); next,
for all j € [k] compute A; = ggj and Bj = gll)j

One can think of each (A4;, B;) as a pair of RSA accumulators for two sets that constitute a
partition of [n] done according to the bits of vij,...,v,;. Namely A; and B; accumulate the
sets {i € [n] : v;; =0} and {7 € [n] : v;; = 1} respectively.

2. For all j € [k], compute C; = A;-B; € G and a proof Wé{gd < PoPrody.P(crs, (C},Uy), (aj, by)).
Such proof ensures that the sets represented by A; and B; are a partition of the set represented
by Up. Since U, is part of the CRS (i.e., it is trusted), this ensures the well-formedness of A;
and B;.

Return C* := ({Al,Bl, ooy Ag, Br}, {71'(1) oy) }) and aux* := 4.

prod’ ***7 “ prod
VC.Open*(crsy,, I, 7, aux*) — 7y proceeds as follows:

— let J = [n]\ I and compute ((a;1,bs1),...,(ask, bsk)) < PartndPrimeProd(J, ¥y);

23

— for all j € [k] compute
ajg; by

It =gy and Ay =g,
Notice that aj; = aj/ar; and by; = bj/br;. Also I7; is a membership witness for the set
{i1 € I - y;; = 0} in the accumulator A;, and similarly for Ay ;.
Return 7y := {7T]71, - ,7T[7k} — {(F]J, A[J), ceey (Fl,k; Al,k)}

VC.Ver*(crsy,,C*, 1,4, 1) = b computes ((ar1,br1),...,(ark, bri)) using

PartndPrimeProd(/, /), and then returns b <= bgec A bproq Where:

k
b = \ (L5 = 40 A7 = 1) W
j=1
k .
bprod /\ (PoProdz.V(crs, (A; - By, Un)vﬂ-;()]rid)) 2)
j=1

Remark 5.1. For more efficient verification, VC.Open* can be changed to include 2k (non-interactive)
proofs of exponentiation PoE (which using the POKCR aggregation from [BBF19] add only k ele-
ments of G). This reduces the exponentiations cost in VC.Ver*. As noted in [BBF19], although the
asymptotic complexity is the same, the operations are in Zs2x instead of G, which concretely makes
up an improvement.

The correctness of the vector commitment scheme described above is obvious by inspection
(assuming correctness of PoPrody).

Incremental Aggregation. Here we show that our SVC scheme is incrementally aggregatable.

VC.Disagg(crs, I, 07,71, K) = mg. Let L := 1\ K, and 9, be the subvector of ¥ at positions in L.
Then compute {ar, j,br j}jex) < PartndPrimeProd(L, v,), and for each j € [K] set:
Iy« I75, Awg < AP
and return TK ‘— {’/TKJ, ey 7TK’]€} = {(FKJ, AKJ), ey (FK,ka AKJg)}
VC'Agg(CrSa (Iv 2717 77[)7 (Ja 17], ﬂ-J)) — TR = {(FK,D AK,I)a ceey (FK,ka AK,k:)}'
1. Let L:=INJ.If L # (), set I' := I'\ L and compute 7» + VC.Disagg(crs, I, 07,7, I'); otherwise
let Ty = TJ.
2. Compute {ay j, by j}jer PartndPrimeProd(I’, 71) and {as;, b7} jep) < PartndPrimeProd(J, v'y).

3. Parse mpp == {(FI/J, AI/J)}?:P i ={(Iy;, AJ’]‘)}?:]_, and for all j € [k], compute
FKJ < ShamirTrick(FpJ, FJJ, ay j, (ZJJ‘), AK]' — SharnirTrick(Ap,j, AJJ', b[/J, b(]J').

Note that our algorithms above can work directly with the universal CRS crs, and do not need the
specialized one crs,,.

Aggregation Correctness. The second property of aggregation correctness (the one about VC.Disagg)
is straightforward by construction:

if we let {ak j, bk j} ek < PartndPrimeProd(K, vk), then as j = ar, j - ar j, and thus A; = FIa;’j =

r ? ?j‘aK’j =r ?{3] (and similarly for Ag ;).

’,

24

The first property instead follows from the correctness of Shamir’s trick if the integer values
provided as input are coprime; however since I' N J = 0, ap; and ay; (resp. bp j and by;) are
coprime unless a collision occurs in PrimeGen.

Efficiency. We summarize the efficiency of our construction in terms of both the computational
cost of the algorithms and the communication (CRS, commitment and openings size). For this
analysis we consider an instantiation of PrimeGen with a deterministic function that maps every
integer in [n] into a unique prime number, which can be of oo = logn bits.

Our scheme is presented in order to support vectors of length n of k-bits-long strings. We
summarize efficiency in terms of k and n. However, we note that k is actually only a parameter and
our scheme can work with any setting of vectors ¢ of length NV of ¢-bits long strings. In this case, it
is sufficient to fix an arbitrary & that divides ¢ and to spread each v; € {0,1}¢ over £/k positions.
For example, for k = 1 with have n = N/ and thus the prime size is o = log(NY).

SETUP. In terms of computation, VC.Setup generates the group description and samples 3 gener-
ators, while VC.Specialize computes one exponentiation in G with an (n«a)-long integer. The CRS
consists of 3 elements of G, and the specialized CRS (for any n) is one group element.

CoMMITTING. Committing to a vector # € ({0,1}*)" requires about k exponentiations with an
(na)-long integer each. A commitment consists of 4k elements of G and 2k integers in Zgox.

OPENING. Creating an opening for a set I of m positions has about the same cost of committing,
and the opening consists of 2k group elements. Using the PoE to make verification more efficient
(see Remark 5.1) would (naively) result to 4k elements. However, as described in [BBF19], many
PoE’s for coprime exponents can be aggregated into a single group element. In our case, applying
this optimization would result to k group elements for all the PoE’s, which totally gives 3k group
elements for an opening.

VERIFICATION. Verifying an opening for set I requires about k exponentiations with (m - «)-
bit integers (resp. 4k exponentiations with A-bit integers, 2k multiplications in G and O(kma)
multiplications in Zy2x, when using PoE) to check equation (1), plus 5k exponentiations with 2A-bit
integers and 3k multiplications in G to verify PoProd, proofs in equation (2).

AGGREGATION AND DISAGGREGATION. Disaggregation requires 2k exponentiations with ((]Z] —
|K|)a)-bit integers, while aggregation requires 2k computations of ShamirTrick that amount to
O(k(|I]+]J|)c) operations in G. From this, we obtain that VC.AggManyToOne and VC.DisaggOneToMany
take time O(ksmlogma) G and O(kmlog(m/B)a) G, respectively.

COMMITMENT AND OPENING WITH PRECOMPUTATION. Finally, let us summarize the costs of
committing and opening with preprocessing obtained by instantiating our method of Section 4.2.
The preprocessing VC.PPCom takes time O(knalog(n/B)). The opening requires computing at
most |S| < m disaggregation, each taking time O(ka(|P;| — |I;])), for a total of O(ka(|S|B — |I1)),
followed by the aggregation step that counts O(ka|S|log|S|). So, in the worst case VC.FastOpen
takes O(k - m - a(log(m) + B — 1)) operations of G.

Security. The security of our SVC scheme, i.e., position binding, can be reduced to the Strong
RSA and Adaptive root assumptions in the hidden order group G used in the construction and to
the knowledge extractability of PoProds.

A bit more in detail the steps of the proof are as follows. Let an adversary to the position
binding output (C,I,y,m, ¢, 7’). First from knowledge extractability of PoProd; it comes that

25

A;B; = gi” ggj and g%% = U, = g"». However, this does not necessarily means that ajb; = u, over
the integers and to prove it we need the Low Order assumptions, under which it holds. Afterwards
we prove that since A;B; = gfj 9127]- no different proofs m, 7’ for the same positions can pass the
verification under the strong RSA assumption, which is the core of our proof. The main caveat of
the proof is that instead of knowing that A; = ¢}’ and B; = ggj we know only that A;B; = g}’ ggj)
The former case would directly reduce to RSA Accumulator’s security (strong RSA assumption).
For this we first need to prove an intermediate lemma (lemma 5.5) which shows that specifically
for our case A;B; = g?j ggj is enough, since the choice of the primes p; in the exponent is restricted
to a polynomially bounded set.

Theorem 5.2 (Position-Binding). Let Ggen be the generator of hidden order groups where the
Strong RSA and Low Order assumptions hold, and let PoProds be an argument of knowledge for
Rpoprod,- Then the subVector Commitment scheme defined above is position binding.

Proof To prove the theorem we use a hybrid argument. We start by defining the game G as
the actual position binding game of Definition 3.2, and our goal is to prove that for any PPT A,
Pr[Go = 1] € negl(\).

Game Gj:
Go = PosBind{\c(\)
crs + VC.Setup(1*, M)
(C7 I? g’ 71-7 g"? 71-/) <_ A(Crs)
b < VC.Ver(crs, C, I,4,7) = 1 A§ # if AVCVer(crs,C, 1,7, 7') =1

return b

Lemma 5.1. For any PPT A in game Gq there exists an algorithm £ and an experiment G1 such
that

Pr[Gy = 1] < Pr[G; = 1] + negl())

Proof By construction of VC.Com, the commitment C' returned by the adversary A in game G
contains k proofs of PoProd,, and by construction of VC.Ver if G returns 1 all these proofs verify.
It is not hard to argue that for any adversary A playing in game Gq there is an extractor £ that
outputs the k witnesses {a;, b;} ;-

Game G: is the same as (o except that we also execute £, which outputs {aj,b;};c(x), and we
additionally check that U,, = ¢g%% for all j € [k]. Below is a detailed description of G in which we
“open the box” of the VC algorithms.

26

Gy
crs < VC.Setup(1*, M); bad; < false
({45, By, mlos}sems m), Lo A5, Ar e, ¥ {75, Ar i iem)) < Alers)

{aj,bj}jemw) < E(crs)
U, < PrimeProd(n); U, + g""

k
bprod < /\ (PoProdg.V(ch, (A; - By, Un),ﬂ'(j)))

prod
j=1

k

a; b a.:-b;

buwit < [\ Aj - Bj = g5° 9" NUn = """
j=1

if bproa = 1 A bwir = 0 then bad; < true
{az,j,bj,j}je[k] + PartndPrimeProd(I,); {af;, b}, }je[k] < PartndPrimeProd(I,§’)

k
b bproa A J\ (F,,jaf’f = Aj N A, = Bj) ANT#TA
j=1
k ’ !
A (Ff,jal’j = A; A AL = Bj)

j=1
if bad; = true then b+« 0

return b

Clearly, the games Gy and G are identical except if the flag bad; is raised true, i.e., Pr[Gy =
1] = Pr[G; = 1] < Pr[bad; = true|. However, the event in which bad; is set true is the event in which
one of the witnesses returned by the extractor is not correct. By the knowledge extractability of
PoProd, we immediately get that Pr[bad; = true] € negl(\). O

Game Go: is the same as G except that Gy outputs 0 if there is an index j such that U,, = g%
but u, # a;-bj. Precisely, if this happens a flag bads is set true and the outcome of the experiment
is 0. See below for the detailed description of Gs.

27

Go
crs VC‘Setup(l’\7 M); bady, bads + false
({45, By, s} sems m), Lo A5, Ar e, ¥ {75, Ar i iem)) < Alers)

{aj,bj}jemw) < E(crs)
U, < PrimeProd(n); U, + g""

k
bprod < /\ (PoProdg.V(ch, (A; - Bj, U")v”,(:fgd))
j=1
A b
buwit < \ A+ B = g5’ 9" ANUp = g*i"%
j=1

if bproa = 1 A bwir = 0 then bad; < true

k
bcol<—/\un:aj~bj

j=1
if bprod = 1 Abcoi = 0 then bads <+ true
{ar,j,b1,5},c « PartndPrimeProd(1,9); {af ;07 ; }je[k] + PartndPrimeProd(I,§")

k
b — prod /\ /\ (F[,jalv-f = AJ /\ A]’jbl’j = Bg) Ag# ﬂ’A
j=1
k ’ ’
/\ (Fllvjalyj = AJ A A/I]'blyj = BJ)

j=1
if bad; = true V bads = true then b+ 0

return b
Lemma 5.2. If the Low Order assumption holds for Ggen, then Pr|G; = 1]—Pr[G2 = 1] < negl(}).

Proof Clearly, G; and G2 proceed identically except if bads is set true. We claim that Pr[bady =
true] is negligible for any A, £ running in Go. If this event happens, one indeed obtains an integer
v =u, —aj-bjsuch that g =1€ G, whereg# 1 and 1 <v < 2pPoly(N) and solves the Low Order
problem.]

Game (GJ3: is an experiment that can be seen as a simplification of Gs.
Gs
crs <+ VC.Setup(1*, M)
(U,{A), BiYjew)s L7 AT 5, A iem)s T {1155 AT s }iem) + A'(ers)
{aj, b} e < PartndPrimeProd([n], v)

{az,j,bI,j}je[k] < PartndPrimeProd(Z, %); {a;’j,bg,]- }je[k] < PartndPrimeProd(I,§’)
k k
b N\(A;-B; =gy) A (Fl,ja”j = A NAL = Bj) NG #G N
j=1 j=1

k
A (Fﬂjal‘j = Aj NALT = Bj)
j=1

return b
First, we show the following lemma that relates the probability of winning in GG with that of

winning in Gs.

28

Lemma 5.3. For any (A, &) running in Gg there is an A" running in G3 such that Pr[Gy = 1] =
PI‘[Gg = 1}
Proof We build A’ from (A, &) as follows. On input crs, A’ executes
({4, Bjaﬁ,()igd}je[kbn%l»g’ g Argtjew 75 {17 j» A% jYiew) < Alers) and {a;, b;} i < E(crs).
Next, A’ reconstructs a vector @ € ({0, 1}¥)" from the set {a;, bj}jelx)- This can be done by setting
vi; = 0 if p; | a; and vi; = 1 if p; | bj, where p; <— PrimeGen(i) (in case both or neither cases occur,
abort). Finally, A’ runs all the checks as in game G2, and if G would output 1, then A" outputs
(W, {Aj, Bi}jew), 1, 4, T4, A tiew, ¥ {17 ;- A5 ;}jew)» otherwise A" aborts.

To claim that Pr[Gy = 1] = Pr[G3 = 1], we observe that whenever Gy returns 1 it is the case
that a;j - bj = u, = [[;_, pi for all j € [k]; therefore A’ never aborts. O

Game Gy: this is the same as game G35 except that the game outputs 0 if during any computation
of lines 3 and 4 it happens that PrimeGen(i) = PrimeGen(i') for distinct ¢ # i’. It is straightforward
to show that the probability of this event is bounded by the probability of finding collisions in
PrimeGen, i.e., that under the collision resistance of PrimeGen it holds Pr[G3 = 1] — Pr[G4 = 1] €
negl(\).

To conclude the proof of our Theorem, we prove that any PPT adversary can win in G4 with
only negligible probability assuming that the strong RSA assumption holds in G.

Lemma 5.4. If the strong RSA assumption holds for Ggen, then for every PPT adversary A’
running in game G4 we have that Pr{G4 = 1] € negl(\).

Proof For the proof, we rely on the following lemma that defines a computational problem that
we prove it is implied by the Strong RSA assumption.

Lemma 5.5. Let Ggen be a hidden order group generation algorithm where the strong RSA as-
sumption holds and PrimeGen a deterministic collision resistant function that maps integers to
primes. Then for any PPT adversary A and any n = poly(\), the probability below is negligible:

G + Ggen(\)

g1 <G
Pr ANptaVptb) . J0- 9 € negl(A)

NEGA () €T ApeS S = {pi < PrimeGen(7)}i-,
u e a, S S
P (uvpv a, b) <_A(G7g()aglas)

We proceed assuming that the lemma holds; its proof is deferred to the end.

Suppose by contradiction the existence of a PPT adversary A’ such that Pr[G4 = 1] = € with €
non-negligible. Below we show how to construct an adversary B that uses A’ in order to solve the
problem of Lemma 5.5 with probability e.

— B(G, go, g1) samples a random g +—s G, determines a PrimeGen as in VC.Setup, sets
crs « (G, g, 90, g1, PrimeGen), and runs A on input crs.

— A(crs) responds with a tuple (v, {4, B;}jem, L, ¥, 7, 7,).

— B computes {aj,bj}je[k] < PartndPrimeProd([n], ¥),
{aLj,b],j}je[k] < PartndPrimeProd(1, %) and
{af ;,b7 }jew) < PartndPrimeProd(7, ") as in game G3.

29

— If A’ wins the game then we have that all the following conditions holds:

g#,

k
Jj=

k
<Ff,ja“' = Aj N A = Bj) =1\ (Ff,jal”' = 4j N A = Bj) =1
1 j=1

k
/\(Aj -Bj = gg” 97)-
Jj=1

From §j # i we get that there is at least one pair of indices [€ [m] and j € [k] such that y;; # y; ;-
Say wlog that y;; = 0 and yfj = 1. Also, if we parse I = {i1,...,%m}, we let i = 4; € [m]. So we
fix these indices 7 and j, and let p; = PrimeGen(i) be the corresponding prime.

Notice that by construction of PartndPrimeProd (and since we assumed no collision occurs in
PrimeGen) we have that either p; { a; or p; 1 b; holds. Additionally, by our assumption that
yi; = 0 and y;; = 1, the following holds: p; | arj, pi { brj, pi t af ;, pi | b7 ;-

From the other condition on the validity of the proofs, B can compute two group elements I, A
such that [= Aj and Ari = B;.

Combining this with the condition A; - B; = g’ - glfj, we have that (I"- A)Pi = g7 - glfj.

— Bsetsw=1"-A and outputs the tuple (w, p;, a;, bj).

From all the above observations, if A’ makes game G4 return 1, then the tuple returned by B
is a suitable solution for the problem of Lemma 5.5, which in turn reduces to the Strong RSA
assumption. [l

By combining all the lemmas we have that any PPT adversary has at most negligible probability
of breaking the position binding of our SVC scheme. O

Proof [Proof of Lemma 5.5] Suppose that for a PPT adversary A the above probability is a
non-negligible value e. We will construct an adversary B that breaks strong RSA assumption with
a non-negligible probability. B takes as input (G, g). We denote as G4 the game defined in lemma
(parametrized by an adversary A). We define two different reductions:

REDUCTION 1. In reduction 1 the adversary B breaks strong RSA assumption only in case where
the adversary A outputs a tuple (u,p,a,b) such that p | a (and thus from assumption p 1 b) and
fails otherwise. B proceeds as follows.

B(G, g) samples v < [1, 2 0rd ;02], where ord,,qz is the upper bound of the order of G outputted
by Ggen(1) (see section 2.1), and sets go < g7, g1 < g. B runs A on input (G, go, g1). v is sampled
from a large enough domain so that g7 is statistically close to a uniformly distributed gg from G
hence gg, g1 are indistinguishable to two uniformly random elements of G. A(G, go, g1, S) responds
with a tuple (u,p,a,b) and sends it to B. We condition our analysis on the event p | a, meaning
that B stops in case p{ a.

Assume that u? = g¢ - g A(p | aAptb)Au € GA (a,b) € Z2Ap € S then we will show
that B can break the strong RSA assumption. We argue that p | a leads to ged(p,va + b) = 1.
Let ged(p,va + b) # 1, meaning that ged(p,va +b) = p, then p | ya+b = ya+ b =0 (mod p).
However, p | a = a =0 (mod p). From the two previous facts we infer that b =0 (mod p) = p | b,
hence p | a A p | b, which is a contradiction. Therefore, assuming that ged(p,va + b) = 1, B uses

30

the extended Euclidean algorithm to compute («a, #) such that ap + f(ay + b) = 1. We know that
b b avy+b . 1 ap+pB(ay+b)=1 a+ﬂm
uP = glg] = g7 = w =g » hence it follows that g P =y P =g P

Finally, B outputs (¢ - u®,p) which is a valid strong-RSA solution.

:gauﬁ

REDUCTION 2. In reduction 2 the adversary B breaks strong RSA assumption only in case where
the adversary A outputs a tuple (u,p,a,b) such that p{a and fails otherwise.

B(G, g) samples v < [1, 2 0ord ;02], where ord,,qz is the upper bound of the order of G outputted
by Ggen(1%) (see section 2.1), defines S := {p; + PrimeGen(i)}"_, and prod «+ []}_, p; and sets
9o < 9,91 < ¢g7P°%. B sends (G, go, g1) to A. 7 is sampled from a large enough domain so that g7
is statistically close to a uniformly distributed g; from G hence gg, g1 are indistinguishable to two
uniformly random elements of G. A(G, go, g1, S) responds with a tuple (u,p,a,b) and sends it to
B. We condition our analysis on the event p { a, meaning that B stops in case p | a.

Assume that w? = g3- g8 Aptanu € GA(a,b) € Z> Ap € S then we will show that B can break
the strong RSA assumption. We argue that ged(p,a + byprod) = 1. Let ged(p, a + byprod) # 1,
meaning that ged(p, a4 byprod) = p, then p | a+ byprod = a+ byprod = 0 (mod p). However, prod
includes p (p € S) we know that p | byprod = byprod = 0 (mod p). From the two previous facts we
infer that @ = 0 (mod p) = p | @ which is a contradiction. B uses the extended Euclidean algorithm
to compute (a, 3) such that ap + 8(a + byprod) = 1. We know that uP = gdg} = g@+toProd = ¢ =

a+b~yprod ap+B(a+byprod)=1 Ol+ﬁ a+byprod

g » hence it follows that ¢'/? = ¢ P =g » = ¢g“-uP. Finally, B outputs
(g% - u”,p) which is a valid strong-RSA solution.

To conclude the proof, notice that:

Pr[G4 =1] =Pr[G4 = 1|p | a] Prlp | a] + Pr[G4 = 1|p{ a] Pr[p { d]
<Pr[Ga=1lp|a]+Pr[Ga=1|ptad

The reductions 1 and 2 described above show that under the strong RSA assumption Pr[G4 =
1lp | a] and Pr[G 4 = 1|p 1 a] respectively are negligible. Hence, we have that Pr[G 4 = 1] € negl()),
which concludes the proof. O
On concrete instantiation. Our SVC construction is described generically from a hidden order
group G, an AoK PoProd;, and a mapping to primes PrimeGen. The concrete scheme we analyze
is the one where PoProd; is instantiated with the non-interactive version of the PoProds protocol
described in Sec. 5.1. The non-interactive version needs a hash-to-prime function Hyrime. We note
that the same function can be used to instantiate PrimeGen, though for the sake of PrimeGen we
do not need its randomness properties. One can choose a different mapping to primes for PrimeGen
and even just a bijective mapping (which is inherently collision resistant) would be enough: this
is actually the instantiation we consider in our efficiency analysis. Finally, see Section 2.1 for a
discussion on possible instantiations of G.

We note that by using the specific PoProd, protocol given in Sec. 5.1 we are assuming adversaries
that are generic with respect to the group G. Therefore, our SVC is ultimately position binding in
the generic group model.

5.2 Our Second SVC Construction

In this section we propose another SVC scheme with constant-size parameters and incremental
aggregation. This scheme builds on the SVC of [LM19] based on the RSA assumption, which in

31

turn extends the VC of [CF13] to support subvector openings. Our technical contribution is twofold.
First, we show that the SVC of [CF13, LM19] can be modified in order to have public parameters
and verification time independent of the vector’s length. Second, we propose new algorithms for
(incremental) aggregation and disaggregation for this SVC.

Our second SVC Construction. Let us start by giving a brief overview of the [CF13] VC scheme
and of the basic idea to turn it into one with succinct parameters and verification time. In brief, in
[CF13] a commitment to a vector ¢'is C' = S;* --- Sp», where each S; := gl % with g € G a
random generator and e; being distinct prime numbers (which can be deterministically generated
using a suitable map-to-primes). The opening for position 7 is an element A; such that AS*- S = C
and the key idea is that such A; is an e;-th root that can be publicly computed as long as one
does it for the correct position ¢ and value v;. Also, as it can be seen, the element S; is necessary
to verify an opening of position 4, and thus (Si,...,S,) were included in the public parameters.
Catalano and Fiore observed that it might be possible to remove the S;-s from crs if the verifier
opts for recomputing S; at verification time at the price of linear-time verification.

Our goal is to obtain constant-size parameters and constant-time verification. To do that we
let the prover compute S; and include it in the opening for position ¢. To prevent adversaries from
providing false S;’s, we store in the public parameters U, = igpn € (i.e., an accumulator to all
positions) so that the verifier can verify the correctness of S; in constant-time by checking S;* = U,,.
This technique easily generalizes to subvector openings.

In the following, we describe the scheme in details and then propose our incremental aggregation
algorithms. To simplify our exposition, we use the following notation: for a set of indices I C [n],
er := [lier i denotes the product of all primes corresponding to the elements of I, and St :=
gHiG[n]\f “ = gfln\T = Ué/el (which is a generalization of the former S;), where, we recall, the e;’s
are defined from the crs.

VC.Setup(1*,£,n) — crs generates a hidden order group G < Ggen(1}) and samples a generator
g < G. It also determines a deterministic collision resistant function PrimeGen that maps integers
to primes.

Returns crs = (G, g, PrimeGen)

VC.Specialize(crs,n) — crs,, computes n (¢ + 1)-bit primes eq,...,e,, €; < PrimeGen(i) for each
i € [n], and U,, = ¢°I" and returns crs,, < (crs,Uy). One can think of U,, as an accumulator to
the set [n].

VC.Com(crs, ¥) — (C,aux) Computes for each i € [n], S; « g°"\li} and then C' « S7* ... S5 and
aux < (v1,...,0p).

VC.Open(crs, I, y,aux) — 7y Computes for each j € [n] \ I, S;/el + ¢fPN\UVEY and Sp <+ ¢fmIM

and then
1/er

ae I0 (0 =(11 s

Jj=1j¢I J=1j¢l

Returns 7y := (St, A7)
VC.Ver(crs,C, I,y,77) — b Parse 7y := (Sy, Ar), and compute S; = Slel\{” = U%/e" for every i € I.
Return 1 (accept) if both the following checks hold, and 0 (reject) otherwise:

S =U, N C=A7]] SV
iel

32

The correctness of the above construction holds essentially the same as the one of the SVC of
[CF13, LM19] with the addition of the S; elements of the openings, whose correctness can be
seen by inspection (and is the same as for RSA accumulators).

Incremental Aggregation. Let us now show that the SVC above has incremental aggregation.
Note that our algorithms also implicitly show that the RSA-based SVC of [LM19] is incrementally
aggregatable.

VC.Disagg(crs, I, 0,71, K) — mx Parse 7 := (Sy, Ar). First compute Sk from S;, Sk + SIEI\K,
and then, for every j € I\ K, x; = Sll(/ej, e.g., by computing x; < S;I\(KU“}).
Return g := (Sk, Ax) where

Ag A T X7
jeI\K

VC.Agg(crs, (1,07, 71), (J, U5, m7)) — 7 Parse my := (Sy, A7) and similarly 7. Also, let K = ITUJ,
and assume for simplicity that I NJ =) (if this is not the case, one could simply disaggregate 7y
(or ;) to mp s (or T 1))
First, compute Sk < ShamirTrick(Sr, Sy, er, ey). Next, compute ¢; S;J\{” = S}/ej for every
j € J, and similarly ¢; < Sg\“} = Shl/ “ for every i € I. Then compute

L
[Tjes 7

A
[Lics 0"

pr — and og

Return ng := (Sk, Ax) where Ax < ShamirTrick(ps,07,er,e).

Aggregation Correctness. It follows from the correctness of Shamir’s trick and by construction.
In Aggregation and disaggregation Sk’s correctness is straightforward, so we emphasize on Ag.
For the disaggregation algorithm:

n 561\1{
A=A T = I s 1 (SWK)”
: J J J
JEN\K j=1,j¢1 JEN\K
n o3 1ex
=\ II s | II s
J=1,j¢I JEIN\K
n 1/ex
_ Uy
= II 5
J=1,j¢K

which is a valid opening for the K-subvector. And for the aggregation algorithm:

1/6] l/eJ

- Ap _ - S”J‘ d - AJ _ - SUJ
S P VR Y S B sl W
JeJ 7 j=1,j¢1UJ JEL 7] j=1,j¢JuIl

33

SO
Ak := ShamirTrick(pr, 0, er,ey)

1 1
n /er n /eq
. . V4 Vj
= ShamirTrick H Sjj , H Sjj €I, €eJ
G=1,j¢10J J=1,j¢Jul
1 1
n erey n eruJ
. v . Vi
(I os) - 1S
_]:]_J%[U.] ‘7:17‘7¢IU‘]

which is a valid opening for the (I U J)-subvector.

Efficiency. We summarize the efficiency of this construction in terms of both the computational
cost of each algorithm and the communication. For the analysis we consider an instantiation of
PrimeGen with a deterministic function that maps every integers in [n] into an ¢-bit prime number.
Also, we observe that the algorithms described above may have different implementations: while
straightforward instantiations may lead to a complexity quadratic in the (sub)vector’s length, in
what follows we discuss more efficient ways that keeps the complexity quasilinear. For this, we
often rely on the MultiExp algorithm described in [BBF19]. On input an integer n, and two
vectors @ € G" and ¥ € Z", MultiExp(n, @, ¥) is a divide-and-conquer algorithm that computes
I, af*/xi where z* = [, z;, and it does it in time O(nlogn), instead of a naive O(n?).
SETUP. VC.Setup generates a group description and samples one random group element, while
VC.Specialize computes one exponentiation with an (- n)-bits integer. Both the universal and the
specialized CRS consist each of 1 element of G.

COMMITTING. Committing to a vector 7 € ({0,1}*)" can be done in time O(¢ nlogn) by using
the MultiExp algorithm from [BBF19], i.e., C' +— MultiExp(n, @, €) where o; = ¢% and e; =
PrimeGen(i). The commitment is a single element of G.

OPENING. An opening for a set I of m positions consists of two group elements, and it can be com-
puted as follows. First, compute S7 through the exponentiation g°"\! which requires O(¢(n —m))
group operations, and then compute A; in a way similar to committing, i.e., A7 + MultiExp(n/, &, ¥),
where n' =n —m, @ = (¢"7) je)\1> T = (€5)jem)\1, Which takes time O(¢(n —m)log(n —m)).

VERIFICATION. Verifying an opening for I of size m requires two exponentiations with an (¢m)-bits
long integer (S’ and A7), and the computation of [],.; SY* can be done in time O(¢mlogm) by

running MultiExp(m, @,) with @ = (S¥',...,5Y") and & = (e;)ier-
AGGREGATION AND DISAGGREGATION. Disaggregation can be computed in time O (¢(|I|—|K|) log(|I|—
|K|)) in a way similar to verification: two exponentiations with an £(|/| — |K|)-bits long integer

each, and an invocation of MultiExp((|/| — |K]), &, Z), with & = (S}}j)j@\K and ¥ = (e;)jer\k to

p -
compute [];cp x S NERT

Aggregation can be computed in time O(¢mlogm) where m = max(|I],|J|) as follows. Two
invocations of ShamirTrick, each requiring two exponentiations with (¢m)-bits long integers,
to compute Sk and Ag, and two invocations of MultiExp to compute Hje J ¢§j and [[;c ;"
respectively. From this, we obtain that VC.AggManyToOne and VC.DisaggOneToMany take time
O(fmlog®m) G and O(fmlogmlog(m/B)) G, respectively.

COMMITMENT AND OPENING WITH PRECOMPUTATION. Finally, let us summarize the costs of
committing and opening with preprocessing obtained by instantiating our method of Section 4.2.

34

The preprocessing VC.PPCom, with parameter B, requires O(¢nlognlog(n/B)) operations of G
and produces a storage advice of 2n/B group elements. The opening requires computing at most
|S| < m disaggregation, each taking time O(¢(|P;| — |I;|) log((|P;| —|Z;1]))), for a total of O(¢(]S|B —
|1])1og(|S])), followed by the aggregation step that counts O(¢|S|log?|S|). So, in the worst case
VC.FastOpen takes O(¢ - m - (log®(m) + B — 1)) operations of G.

Security. For the security of the above SVC scheme we observe that the difference with the
corresponding [LM19] lies in the generation of S;’s. In [LM19] they are generated in the trusted
setup phase, thus they are considered “well-formed” in the security proof. In our case, the S;’s are
reconstructed during verification time from the S; that comes in the opening 77 which can (possibly)
be generated in an adversarial way. However, in the verification it is checked that S7’ = U, where
U = ¢°i is computed in the trusted setup. So under the Low Order assumption we get that St has
the correct form, S; = ¢°n/¢" = ¢¢"\7 | with overwhelming probability. Except for this change, the
rest reduces to the position binding of the [LM19] SVC.

Theorem 5.3 (Position-Binding). Let Ggen be the generator of hidden order groups where the
Low Order assumption holds and the [LM19] SVC' is position binding. Then the SVC scheme defined
above is position binding.

Proof We start by defining the game Gy as the actual position binding game of Definition 3.2,
and our goal is to prove that for any PPT A, Pr[Gp = 1] € negl()\):

Game Gj:
Go = PosBind{\c(\)
crs + VC.Setup(1*, M)
(C, 1,4, m i, ") + Alcrs)
b < VC.Ver(crs, C, I, 4, 7) = 1 A§ # i AVCVer(crs,C, 1,7 ,7') =1

return b

More specifically crs := (G, g, PrimeGen), 7 := (S7, Ar), 7’ := (S, A}) and

b=S{ =UANC= A7 [[SVAGT=7 ASF =U, AC = AFTT] S
i€l iel
where S; = S;I\“} and S, = S}el\m for each i € I.
Now let G be the same as above except for the outputted by the adversary St and S it holds

that S; = g°t\ = S7. The SY' = U,, = S}" checks are not done in the verification (as they are
redundant):

Game G7:
Gy
crs < VC.Setup(1*, M)
(07 17 ?77 (317 AI)’?JJ7 (S}7 A/I)) <~ A(CFS)
if S; # ¢°l"\I\! or ST # ¢\ then abort

’

b C= AP TL(s) ng=g ne=ar T (si)”

el i€l
return b
Then Pr[Gy = 1] < Pr[G; = 1] + negl(\). In Gy, S7* = U, = ¢°"l. Assume that S; # ¢°n\!
then ¢\ = S7, hence S}’ = S79 = (Sl_ls}“)el = 1. Since S} is efficiently computable and

35

er < 2PN this constitutes a solution to the Low Order problem for the hidden order group.
The previous happens only with negligible probability under the Low Order assumption. The same
holds for S7. Notice that it follows that S; = S} = g\,

Let G2 be the same as above except the adversary receives e; - PrimeGen(i) and S; = g°inI\{i}
for each i € [n], together with the parameters:

Game G3:
Go
(G, g, PrimeGen) «+ VC.Setup(1*, M)
e; + PrimeGen(i); S; = gllicn\ 3} % for each i € [n]
(Cz I: ?77 A17 ?7: A/I) — A (Gv 9, PrimeGen, {Si}ie[n])
b C=A7[] sV Ag:yAc:A';zHSgi

iel i€l

return b

It is straightforward that Pr[G; = 1] = Pr[G2 = 1] and furthermore Gs is identical to the position
binding game of the [LM19] SVC scheme and according to the hypothesis Pr[G2 = 1] = negl()). O

As showed in [LM19], their SVC is position binding under the strong Distinct-Prime-Product
Root assumption in the standard model. We conclude that the above SVC is position binding in

hidden order groups where the Low Order and the Strong Distinct-Prime-Product Root assumptions
hold.

5.3 Comparison with Related Work

We compare our two SVC schemes with the recent scheme proposed by Boneh et al. [BBF19] and
the one by Lai and Malavolta [LM19], which extends [CF13] to support subvector openings.'® We
present a detailed comparison in Table 1, considering to work with vectors of length N of /-bit
elements and security parameter \. In particular we consider an instantiation of our first SVC with
k=1 (and thus n = N - /).

SETUP MODEL. [BBF19] works with a fully universal CRS, whereas our schemes have both a
universal CRS with deterministic specialization, which however, in comparison to [CF13, LM19],
outputs constant-size parameters instead of linear.

AGGREGATION. The VC of [BBF19] supports aggregation only on openings created by VC.Open
(i.e., it is one-hop) and does not have disaggregatable proofs (unless in a different model where one
works linearly in the length of the vector or knows the full vector). In contrast, we show the first
schemes that satisfy incremental aggregation (also, our second one immediately yields a method
for the incremental aggregation of [LM19]). As we mention later, incremental aggregation can be
very useful to precompute openings for a certain number of vector blocks allowing for interesting
time-space tradeoffs that can speedup the running time of VC.Open.

EFFICIENCY. From the table, one can see that our first SVC has: slightly worse commitments size
than all the other schemes, computational asymptotic performances similar to [BBF19], and opening
size slightly better than [BBF19]. Our second SVC is the most efficient among the schemes with
constant-size parameters; in particular, it has faster asymptotics than our first SVC and [BBF19]

18 We refer to [BBF19] to see how these schemes compare with Merkle trees.

36

for having a smaller logarithmic factor (e.g., log(N —m) vs. log(¢N)), which is due to the avoidance
of using one prime per bit of the vector. In some cases, [CF13, LM19] is slightly better, but this
is essentially a benefit of the linear-size parameters, namely the improvement is due to having the
S;’s elements already precomputed.

When considering applications in which a user creates the commitment to a vector and (at
some later points in time) is requested to produce openings for various subvectors, our incremental
aggregation property leads to use preprocessing to achieve more favorable time and memory costs.
In a nutshell, The idea of preprocessing is that one can precompute and store information that
allows to speedup the generation of openings, in particular by making opening time less dependent
on the total length of the vector. Our method in Section 4.2 works generically for any SVC that
has incremental aggregation. A similar preprocessing solution can also be designed for the SVC
of [BBF19] by using its one-hop aggregation; we provide a detailed description of the method
in Appendix B. The preprocessing for [BBF19] however has no flexibility in choosing how much
auxiliary storage can be used, and one must store (a portion of) a non-membership witness for
every bit of the vector.

Even in the simplest case of B = 1 (shown in Table 1) both our SVCs save a factor ¢ in storage,
which concretely turns into 3x less storage.

Furthermore we support flexible choices of B thus allowing to tune the amount of auxiliary
storage. For instance, we can choose B = v/N so as to get 2/ N |G| bits of storage, and opening time
about O(¢mlogn(y/n+logm)) and O(m(y/n+log?m)) in the first and second scheme respectively.
Our flexibility may also allow one to choose the buckets size B and their distribution according
to applications-dependent heuristics; investigating its benefit may be an interesting direction for
future work.

Metric Our First SVC Our Second SVC [BBF19] ‘ [CF13, LM19]
Setup
VC.Setup O(1) O(1) O(1) o(1)
|crs| 3 |G| 1 |G| 1 |G| 1 |G|
VC.Specialize O(£- N -1og(¢N)) G O(t-N) G O(¢- N -log N) G
lersw| 1|G| 1G] — N |G|
Commit a vector 7 € ({0,1})"
VC.Com O(€- N -10g(fN)) G O(C-N-lgN) G O(€- N -10g(fN)) G O(t-N)G
|C] 4 |G| + 2 |Zg2x| 1 |G| 1 |G| 1 |G|

Opening and Verification for v; with |I| =m
VC.Open| O(- (N —m)-log¢N)) G |O(:-(N —m)-log(N —m)) G| O -(N—m)-logllN))G |[O(-(N —m)-mlogm) G

ke 3 |G| 2 |G| 5 |G|+ 1 |Zg2x| 1G]
VC.Ver|O(£ - m -10g(¢N)) Zy2x + O(N) G O(L-mlogm) |G| O(m - £ -10g(¢N)) Zy2x + O(N) G o-m)G
Commitment and Opening with Precomputation
VC.Com| O(£- N -log(¢- N)-log(N)) G O(¢- Nlog?(N)) G O(¢- N -log(¢- N)-log(N)) G O(£- Nlog?(N))
|aux| 2N |G| 2N |G| 2N |G|+ O(£ - Nlog(¢N)) 2N |G|
VC.Open| O(m - £-log(m)log(¢N)) G O(£-mlog®m) G O(m - £ -log(m)log(¢N)) G O(m - £ -log?(m)) G
Aggregation Incremental Incremental One-hop Incremental
Disaggregation Yes Yes No Yes

Table 1. Comparison between the SVC’s of [BBF19], [LM19] and this work; our contributions are highlighted in gray.
We consider committing to a vector 7 € ({0,1}%)" of length N, and opening and verifying for a set I of m positions.
By ‘O(z) G’ we mean O(xz) group operations in G; |G| denotes the bit length of an element of G. An alternative
algorithm for VC.Open in [LM19] costs O(¢ - (N — m) - log(N — m)). Our precomputation is for B = 1.

37

Setup(1*) : run G <3 Ggen(1*), g s G, set crs™ := (G, g).
Prover’s input: (crs*, (A4, B,C, I, A), (a,b)). Verifier’s input: (crs*, (A, B,C, I, A)).

VP h+sG

P — V: z:= (24,2) computed as z, h®, zp < hb

V — P: £ <sPrimes(\) and a +s0,2%)

P—V:m:=((Qa,®@B,Qc),a,) computed as follows

— (qas qv, qas) = (La/e], [b/¢], [ab/t])

— (ra,7p) < (@ mod £,b mod £)

— (QA,QB7QC) = (F‘IahQQa7AQbha‘1b,g‘1ab)

V(ers, (A, B,C), za, 20, £, o, T):

— Compute 1. < 74 - 75 mod £

— Output 1iff ro,rp € [f] A Q4YTTR = A28 A QEA™A™ = Bz A Q&g™ = C

Fig. 4. PoProd™ protocol

6 Arguments of Knowledge for Our First SVC

We propose three Arguments of Knowledge (AoK) related to our vector commitment scheme pre-
sented in section 5.1. More specifically, the first AoK allows one to prove knowledge of an opening
of a subvector. The second AoK, is a direct outcome of the first and allows one to prove that two
given commitments share a common subvector. Finally, the third protocol allows one to commit to
a prefix-subvector of a vector and prove the knowledge of it succinctly.

Similarly to section 5.1, our protocols build on the techniques for succinct proofs in groups of
unknown order from [BBF19]. Furthermore, these arguments of knowledge are not zero knowledge
and they serve efficiency purposes. Interestingly, one can prove knowledge of a portion of a vector
committed without having to send the actual vector values. The proofs are constant-size which leads
to an improvement of communication complexity linear in the size of the opening.

6.1 Building block: A Stronger Proof of Product

Before proceeding to describing the main protocols, we introduce another one that is used as
building block. This is an argument of knowledge, called PoProd*, for the relation Rpyp,oq+ described
below, which uses a common reference string consisting of a hidden order group G + Ggen(1*) and
a random generator g € G:

Rpoprog = {((A,B,C, I, A),(a,b)) €GO xZ? : A=T*AB=A"AC=g¢*" }

The relation Rpgprog* is similar to Rpeprod defined in Section 5.1 with the difference that now
the first two bases I" and A are not part of the common reference string, but part of the statement
instead. As argued in [BBF19] the PoKE* protocol is not secure anymore for adversarially chosen
bases, therefore we cannot use PoProd protocol which assumes knowledge extractability of PoKE*.
To deal with this problem, we thus modify the protocol by using the protocol PoKE2, which is
secure for arbitrary bases. This comes with some cost: in our PoProd™ a proof consists of 5 group
elements and 2 field elements, that is 2 group elements more comparing to proofs of PoProd. The
protocol is in Fig. 6.1.

Theorem 6.1. The PoProd* protocol in Fig. 6.1 is an argument of knowledge for Rpoprog+ in the
generic group model.

38

The proof of the theorem above is similar to the proof of Theorem 5.1, except that we use
the extractor Epokea of the protocol POKE2 from [BBF19] in order to extract integers a and b and
EpokE* 1n order to extract the exponent of C.

6.2 A Succinct AoK of Opening for our VC Construction

We show an argument of knowledge of an I-opening with respect to a commitment C' to a vector,
where [is a set of positions. We emphasize that the goal of this protocol is not to keep the opening
secret (i.e., the protocol is not zero knowledge, also our vector commitment scheme is not hiding).
The goal is to reduce the communication complexity of an opening by proving knowledge of the
subvector at positions I without having to actually send the values ¢7. Even though the argument
of knowledge itself adds an overhead it is independent of the number of the positions. Hence, the
protocol makes more sense for large sets of positions I as for a small number of positions the
overhead of the AoK would exceed the size of the opening values.

Let VC = (VC.Setup, VC.Specialize, VC.Com, VC.Open, VC.Ver) be our SVC scheme from Section
5.1, and let us define the following relation

Rpokopen = {((C, 1), (y,7r)) : VCVer(crs,C, 1,9, 7r) = 1}

that is parametrized by a CRS crs < VC.Setup(1*, M), and where the statement consists of a
commitment C' and a set of indices I C [n], and the witness consists of a vector ¥ € M/ and an
opening 7y.

For simplicity we present a protocol PoKOpen for the case when k£ = 1 in our VC (see section 5.1);
extension to larger k is immediate. The idea of our protocol is that, given a commitment C :=
((A, B), Tprod) and a set of indices I, the prover, holding 7y := (17, Ay), first sends 77 to the verifier
and then provides an AoK of (ar, br) such that I'7! = AA AI;’ = B A ¢ = U;, where Uj + g
with uy < PrimeProd(I). This can be proven by using the PoProd* protocol presented above.
Finally the verifier should also verify the m,o4 proof as in the normal verification of an opening
algorithm.

We state the following theorem.

Theorem 6.2. If PoProd* is a succinct argument of knowledge for Rpopog, then protocol PoKOpen
is a succinct argument of knowledge for relation Rpokopen with Tespect to algorithm VC.Ver of our
construction of Section 5.1.

Proof Let Abe an adversary of the Knowledge Extractability of PoKOpen such that: ((C, I), state) «
Ao(pp), A1(pp, (C,I),state) executes with V(pp, (C,I)) the protocol PoKOpen and the verifier ac-
cepts with a non-negligible probability e. We will construct an extractor £ that having access to
the internal state of A; and on input (pp, (C,I), state), outputs a witness (¥, 77) of Rpokopen With
overwhelming probability and runs in (expected) polynomial time.

To prove knowledge extractability of PoKOpen we rely on the knowledge extractability of
PoProd*. More precisely, given a PoKOpen execution between A and V, (I'1, A1, Tpoprog’), € coOn-
structs an adversary A" = (A4(, A}) of PoProd* Knowledge Extractability and, by using the input
and internal state of A, simulates an execution between A" and V: Ajf outputs (((G, g), (4, B, Uy,
I'1, Ap)), state), A} outputs tuple
(Za, 20, (QA,QB,Qc),Ta,Tp). It is obvious that if the initial execution is accepted by V so is the
PoProd* execution. From Knowledge Extractability of PoProd we know that there exists an extrac-
tor & corresponding to A} that outputs (ar,br) such that A =I7" A B = A?I AU = g1, Since

39

PoKOpen protocol

Prover’s input: (crs, (C,I), (¢, 7). Verifier’s input: (crs, (C,I)).

V Compute u; < PrimeProd(I) and then U; < g“!.
Similarly compute u, < PrimeProd([n]) and then U, « g"»

P: Parse crs = (G,g,g9o,91,PrimeGen, U,), C = ({A, B}, mprod), 71 = (I'1,Ar). Compute (ar,br) <+
PartndPrimeProd(1, %) and then u; < PrimeProd(l) and Uy < g*!.
P = V: (IT,Ar)

Finally a PoProd* protocol (with an additional check of the commitment) between P((G, g), (A, B,Ur, I'r, Ar), (ar,br))
and V((G, g), (A4, B,Ur, I'1, Ar)) is executed:

V- P:h+sG

P —V: z:= (24, 2) computed as z, < h®7, z, + h%!

V — P: £ <sPrimes(\) and a +s0,2%)

P—V:m:=((Qa,QB,Qc),Ta,) computed as follows

— (9a, v, qav) < (las /L], [br/2], arbs/E])

— (ra,m) < (ar mod £,b; mod ¢)

(Q4,Q5,Qc) = (If= o, AT o gtev)

Parse crs := (G, g, go, g1, PrimeGen, Uy,) and C := ({A, B}, Tprod)-

Compute 7. < 74 -7, mod £

— Output 1iff ro,m € [(] A Q4YTThe = AzZ A QZAPR™ = Bz AN Q&g™ = Ur A PoProds.V(crs, (A -
B, Un),ﬂ'prod)

V:

Fig. 5. PoKOpen protocol

U; is also computed from V it holds that U; = ¢*I, unless with a negligible probability that A’
can find an z # wuy such that ¢g* = Uy = ¢" (which implies finding a multiple of the order of G).
Therefore g = Uy = ¢***" and using the same argument we know that u; = ay - by (unless with
negligible probability).

So, &€ uses £ and gets a (ar,br) such that A = I A B = AI}I AUp = g™, Then computes
us < PrimeProd(I) and works as follows: for each ¢ € I computes p; <— PrimeGen(i) and if p; | as
then sets y; = 0, otherwise if p; | a; then sets y; = 1. It is clear that p; divides exactly one of
ar,by since ay - by = ur = [[;c; pi := [l;c; PrimeGen(i) (unless with a negligible probability that
a collision happened in PrimeGen). Finally sets the subvector ¥ = (y;)ic; and 7wy = (I'1, Af). As
stated above I'7 = A A AI}’ = B and also since V verifies the PoKOpen protocol it holds that
PoProds.V(pp, (A - B,U,), Tprod) Which means that VC.Ver(pp,C, I, ¥, m1) = 1.

As one can see, the expected running time of £ is the (expected) time to obtain a successful
execution of the protocol plus the running time to obtain % plus the running time of £’. To obtain i
it will need to make |I| divisibility checks which takes time O(|I]) plus |I| calls of PrimeGen, which

takes poly(A) time. So overall the expected time is 2 + tg + O(|I]) + poly(A) = poly(X). O

Non-interactive PoKOpen. A non-interactive version of the protocol PoKOpen after applying the
generalized Fiat-Shamir transform [BCS16] is shortly presented below:

PoKOpen.P(crs, (C, 1), (y, 7)) — m: Parse crs := (G, g, go, g1, PrimeGen, U,,), C := ({4, B}, Tprod)»
mr = (I, Ar). Compute (ay,br) < PartndPrimeProd(7,%) and then u; + PrimeProd(/) and
Ur + g*. Finally compute a proof mpeproqg+ < PoProd*.P((G,g), (A, B,Ur, I'r, Ar), (ar,br)).

40

Return 7 < (I, Az, Tpoprod*)

PoKOpen.V(crs, (C, I), Tpoprod+) — b: Parse crs := (G, g, go, g1, PrimeGen, U,,), C' := ({4, B}, Tprod)
and 7 := (I'1, A7, Tpoprod*)- Compute uy <— PrimeProd(I) and then Uy < g"I.
Return 1 if both PoProds.V(crs, (A - B,U,), Tprod) and
PoProd*.V((G, g), (A, B, 1, Ar,Ur), Tpoprog*) Output 1, and 0 otherwise.

Remark 6.1 (Achieving sub-linear verification time). For ease of exposition we presented the case
of k = 1 in the above. For the case of arbitrary k£ one should prove knowledge of (a[j, b[j) such
that /\‘l;:1 Ffj“ =A4; /\?:1 A%j = BAg™iti = Uy, where Uy <— g™ and uy < PrimeProd(I). Using
the same technique as above the size of the AoK is O(k) (as is the commitment and the opening
proof). However, since the Uy is the same for each j, the verification is done in O(|I|/k+ A- k) time.
Interestingly, if &k = \/m the verification time gets O(\/m), which is sublinear in the size of the
opening. Essentially, in cases where the opening queries are (approximately) fixed, one can trade a
larger commitment size O(\/m) in order to achieve an argument of knowledge of subvectors that
has sublinear size and sublinear verification time O(m)

Applications to Compact Proofs of Storage. We observe that the protocol PoKOpen for our
VC immediately implies a keyless proof of storage, or more precisely a proof of retrievable commit-
ment (PoRC) [Fis18] with non-black-box extraction. In a nutshell, a PoRC is a proof of retrievability
[JKOT7] of a committed file. In [Fis18] Fisch defines PoORC and proposes a construction based on
vector commitments — called VC-PoRC — which abstracts away a classical proof of retrievability
based on Merkle trees. A bit more in detail, in the VC-PoRC scheme the prover uses a VC to
commit to a file (seen as a vector of blocks); then at every audit the verifier chooses a challenge
by picking a set of Apes randomly chosen positions I = {i<s[n|}, and the prover responds by
sending the subvector U7 and an opening 7. Here Apos is a statistical parameter that governs the
probability of catching an adversary that deletes (or corrupts) a fraction of the file. For example, if
the file is first encoded using an erasure code with constant rate p (i.e., one where a p-fraction of
blocks suffices to decode and such that the encoded file has size roughly = - |F]), then an erasing
adversary has probability at most p*ees of passing an audit.

Our PoRC scheme is obtained by modifying the VC-PoRC of [Fis18] in such a way that the
VC opening is replaced by a PoKOpen AoK. This change saves the cost of sending the Apos vector
values, which gives us proofs of fixed size, 7 elements of G and 2 values of Zy2x. As drawback, our
scheme is not black-box extractable; strictly speaking, this means it is not a PoR in the sense of
[JKO07] since the extractor does not exist in the real world.®

We note that another solution with fixed-size proofs can be achieved by using a SNARK to
prove knowledge of the VC openings so that the VC-PoRC verifier would accept. For the Merkle
tree VC, this means proving knowledge of A\pos Merkle tree openings, which amounts to proving
correctness of about Aposlogn hash computations. On a file of 220 bits with 128 spot-checks, this
solution would reduce proof size from 80KB to less than 1KB. But its concrete proving costs are
high (more than 20 minutes and hundreds of GB of RAM).

In contrast we can estimate our AoK to be generated in less than 20 seconds and of size roughly
2KB.

19 The notion of PoR. with non-black-box extractability is close to that of robust proof of data possession [ABC107,
ABCT11].

41

Since our PoRC scheme is a straightforward modification of Fisch’s VC-PoRC construction, a
complete description is omitted. We stress that our technical contribution here is the design of the
AoK.

Finally, we note that we can apply the observation of the previous remark in order to also
achieve verification time sub-linear in the size |I| of the challenged subvector at the expense of
slightly larger commitments (of size /|I]).

6.3 An AoK for commitments with common subvector

We note that a simple AND composition of two PoKOpen arguments of knowledge on two different
vector commitments can serve as a protocol proving knowledge of a common subvector of the two
vectors committed. More specifically given two vector commitments, C7, Cy on two different vector
U1, Uy respectively, one can prove knowledge of a common subvector ¢7 with a succinct (constant
sized) argument without having to send the actual subvector. The two commitments should share
the same CRS crs < VC.Setup(1*, M) though they can have distinct specialized CRSs crs,,, and
crsy, respectively (i.e., ¥ and v, may have different length). The underlying relation is:

Rpokcomsub = {((Clv 0271)7 (771777171,”[72)) : VC.Ver*(crsm, Ci, 1, 17[,71'[,1) =1
A VC.Ver*(crsy,, Ca, I, 07, m12) = 1}

As mentioned above, it is straightforward to show that an AND composition of PoKOpen on
different vector commitments C; and Cs is a protocol for the above relation. That is the prover,
holding 771 := (I'11,471) and 772 = (L2, Ar2), first sends 771,772 to the verifier and then
provides an argument of knowledge of (ay, br) such that FIa’l =A /\Al}fl = By Agubr = UI/\FIaé =
Ay A A?{Q = By, where Uy < ¢/ and uj < PrimeProd(I).

6.4 A Succinct AoK for Commitment on Subvector

Here we present a protocol which succinctly proves that a commitment C” opens to an I-subvector
v of the opening ¥ of another commitment C. Since C’ is a vector commitment ¥; should be a
normal vector instead of a general subvector, i.e. I should be a set of consecutive positions starting
from 1, I = {1,...,n'} for some n’ € N. We note though that both commitments should share the
same crs (but not the same specialized CRS). Below is the relation of the AoK that is parametrized
by the two specialized CRSs crs,, - VC.Specialize(crs,n) and crs,, < VC.Specialize(crs, n') where
crs + VC.Setup(1*, M) is common.

Rpoksuby = {((C,C", 1), (U1, 71, 77)) - VC.Ver*(crsy,, C, 1,4, m7) = 1
AVC.Ver*(crs,, C', 1,01, 77) = 1A 07| =n'}

The idea of our protocol is that since the opening ¥ is the I-subvector of ¥ one can provide a
succinct proof of knowledge of the opening at these positions using the PoKOpen protocol presented
above. However this is not enough as one should bind the opening proof with C’. This concretely can
happen if one embeds a proof of product for the two components, A’ and B’, of C’ inside the proof
of opening. More specifically the prover provides an opening proof 7y := (I'7, Ar) then computes
(ar,br) < PartndPrimeProd(1,v7) and proves that gy’ = A’ A gll)f =B AUy = gubr AT =
AN AI}I = B. Notice that the last three equalities correspond to the proof of opening protocol

42

and the first three to the proof of product. So a conjunction of PoKOpen and PoProd protocol
is sufficient. Lastly g, go, g1 and U, are part of crs,, and (A, B), (A’, B') part of the C' and C’
commitments respectively.

Fig. 6. PoKSubV protocol

Prover input: ((crsy, crs,), (C,C’, I), (01,). Verifier input: ((crsy,crs,/), (C, C', I)).
P—V:m:= (F[7AI)

A conjuction of PoProd* and PoKOpen protocols between P(crs,,, crs,./, (C,C’, I), (¥r, 7)) and V(crsy, crs,/, (C,C’, I))
is executed:

VP h+sG

P —V: z:= (24, 2) computed as z, < h®7, 2, + h%!

V — P: £ <sPrimes(\) and a +s]0,2%)

P—V:m:=((Qa,QB,Q%,Q%,Qc),ra,ms) computed as follows

— (9a, v, qav) < (las /2], [br /2], arbs/t])

— (ra,m) < (ar mod ¢,by mod ¢)

- (QA’7 QB’7 QA> QB7 QC) = (gga) gtlzbv FIqathu) A?)haq%gqab)
V: Parse crs,, := (G, g, go, g1, PrimeGen, Uy,), crs,» := (G, g, go, g1, PrimeGen, U,,/) and C := ({4, B}, Tprod)-
— Compute 7. < 74 -7, mod £

— Output 1iff ra,m € 0] A QYgp® = A A QBr91° = B A QUIToh®™ = Azg A QBAPRY™ = Bz A Qég™ =

U,» A PoProd2.V(pp, (A - B,Ux), Tprod)

We state the following theorem for the security of the protocol above.

Theorem 6.3. If PoProd* and PoKOpen are succinct arguments of knowledge for Rpoproq* and
Rpokopen: then protocol PoOKSubV in Fig. 6 is a succinct argument of knowledge for relation Rpoksubv
with respect to algorithm VC.Ver of our construction of Section 5.1.

The intuition of the proof is that one proves knowledge of an opening I for C, namely that o7
is an I-subvector of C, where (ay, by) < PartndPrimeProd(1, ¢7), with a normal proof of subvector
opening. This is equivalent to VC.Ver*(crs,,, C, I, v7,m7) = 1. Then in the same proof proves that
the accumulators of C’ are composed by the same (ay, by) which results to proving that C’ commits
to U7. The last point is equivalent to VC.Ver*(crs,/,C’, I, U1, 7)) = 1 A |07| = n'.

7 Verifiable Decentralized Storage

In this section we introduce verifiable decentralized storage (VDS). We recall that in VDS there
are two types of parties (called nodes): the generic client nodes and the more specialized storage
nodes (a storage node can also act as a client node). The main goal of client nodes is to retrieve
some blocks (i.e., a portion) of a given file. The role of a storage node is instead to store a portion
of a file (or more files) and to answer to the retrieval queries of clients that are relevant to the
portion it stores. In terms of security, VDS guarantees that malicious storage nodes cannot send to
the clients blocks of the file that have been tampered with.

We refer the reader to Section 1.2 for a discussion on the motivation and requirements of VDS.

In Table 2 we summarize the main roles/capabilities of VDS nodes.

43

ALL PARTICIPATING NODES

STORAGE NODES

Store current digest. Store a portion of the file.
Can retrieve blocks of the file and verify responses. Can answer and certify retrievals of subportions.
Can aggregate proofs they received. Can produce and publish updates to their view.

Can update the digest following updates from other nodes |Can apply updates from other nodes efficiently.

Table 2. Roles in a decentralized verifiable database.

7.1 Syntax

Here we introduce the syntax of VDS. A VDS scheme is defined by a collection of algorithms that
are to be executed by either storage nodes or client nodes. The only exception is the Bootstrap
algorithm that is used to bootstrap the entire system and is assumed to be executed by a trusted
party, or to be implemented in a distributed fashion (which is easy if it is public coin).

The syntax of VDS reflects its goal: guaranteeing data integrity in a highly dynamic and de-
centralized setting (the file can change and expend/shrink often and no single node stores it all).
In VDS we create both parameters and an initial commitment for an empty file at the beginning
(through the probabilistic Bootstrap algorithm, which requires a trusted execution). From then on
this commitment is changed through incremental updates (of arbitrary size). Updating is divided
in two parts. A node can carry out an update it and “push” it to all the other nodes, i.e. providing
auxiliary information (that we call “update hint”) other nodes can use to update their local certifi-
cates (if affected by the change) and a new digest??. These operations are done respectively trough
StrgNode.PushUpdate and StrgNode.ApplyUpdate. Opening and verifying are where VC (with incre-
mental aggregation) and VDS share the same mechanism. To respond to a query, a storage node can
produce (possibly partial) proofs of opening via the StrgNode.Retrieve algorithm.. If these proofs
need to be aggregated, any node can use algorithm AggregateCertificates. Anyone can verify a proof
through CIntNode.VerRetrieve.

In VDS we model the files to be stored as vectors in some message space M (e.g., M = {0, 1}
or {0,1}%), i.e., F = (Fy,...,Fy). Given a file F, we define a portion of it as a pair (I, Fy) where Fy
is essentially the I-subvector of F.

Definition 7.1 (Verifiable Decentralized Storage).
Algorithm to bootstrap the system:

Bootstrap(1*) — (pp, do,sto) Given the security parameter X, the probabilistic bootstrap algorithm
outputs public parameters pp, initial digest §g and state stg. §g and sty correspond to the digest
and storage node’s local state respectively for an empty file.

All the algorithms below implicitly take as input the public parameters pp.

The algorithms for storage nodes are:

StrgNode.AddStorage(d, n,st, I, F1,Q, Fg,mg) — (st', J,F ;) This algorithm allows a storage node to
add more blocks of a given file F to its local storage. Its first inputs are the local view of the storage
node that is defined by a digest 0, a length n, a state st, and a file portion (I,Fr). Then it takes

20 One can also see this update hint as a certificate to check that a new digest is consistent with some changes. This
issue does not arise in our context at all but the Bootstrap algorithms are deterministic.

44

as input a file subportion (Q,Fq) together with a valid retrieval certificate mg. The output is an
updated view of the storage node, that is a new state st’ and file portion (J,F) := (I,Fr)U(Q, Fg).
Note that this algorithm can be used to enable anyone who holds a valid retrieval certificate for a
file portion Fg to become a storage node of such portion.

StrgNode.RmvStorage(d, n,st, I, Fr, K) — (st', J,F ;) This algorithm allows a storage node to remove
blocks of a given file F from its local storage. Its first inputs are the local view of the storage node
that is defined by a digest §, a length n, a state st, and a file portion (I,Fr). Then it takes as
input a set of positions K C I, and the output is an updated view of the storage node, that is a
new state st’ and file portion (J,Fy) := (I,Fr)\ (K,").

StrgNode.CreateFrom(d, n,st, I, Fy, J) — (&',n/,st’, J,F;,Ty) This algorithm allows a storage node
for a file subportion F; to create a mew file containing only a subset F; of Fr along with the
corresponding digest &' and length n' and a hint to help other nodes generate their own digest.
The algorithm takes as input the local view of the storage node, i.e., digest §, length n, local state
st and file portion (I,F;), and a set of indices J C I. The algorithm returns a new digest &,
length n’, a local state st', a file portion (J,Fj) and an advice T. This advice can be used by a
client holding only the former digest § to obtain the new digest &', by using the ClntNode.GetCreate
algorithm described below.

StrgNode.PushUpdate(d, n,st, I, Fr,op, A) — (8',n/,st', J,F';,TA) This algorithm allow a storage node
of a file subportion Fr to perform an update on the file and to generate a corresponding digest,
length and local view, along with a hint other nodes can use to accordingly update their digests and
local views. The inputs include the local view of the storage node, i.e., digest §, length n, local state
st and file portion (I,Fr), an update operation op € {mod, add,del} and an update description A.
The outputs are a new digest 6’ and length n', a new local state st’, an updated file portion (J,F';)
and an update hint Ta. If op = mod, then A contains a file portion (K, Fy) such that K C I and
Fl represents the new content to be written in positions K. If op = add, it is also A = (K, Fl)
except that K is a set of new (sequential) positions K NI = () that start from n+ 1 (and end to
n+ |K|). If op = del, then A only contains a set of positions K C I, which are the ones to be
deleted (and are ought to be the | K| last sequential positions). The proof Yo can be used by client
nodes holding § in order to check the validity of the new digest &', and by other storage nodes,
holding additionally the length n, in order to check the validity of the changes and to update their
local views accordingly.

StrgNode.ApplyUpdate(d, n, st, I, Fr,op, A, Ya) — (b,0',n/,st', J,F/;) This algorithm allows a stor-
age node to incorporate changes in a file pushed by another node. The inputs include the local
view of the storage node, i.e., digest 9, length n, local state st and file portion (I,Fr), an update
operation op € {mod,add,del}, an update description A and an update hint Ta. The algorithm
returns a bit b (to accept/reject the update) and (if b= 1) a new digest &', a new length n’, a new
(local) state st’ and an updated file subportion (J,F’;). If op € {mod,add} we have that J = I,
i.e., the node keeps storing the same indices; if op = del then J is I minus the deleted indices.

StrgNode.Retrieve(d, n,st, I, Fr, Q) — (Fg,mg) This algorithm allows a storage node to answer a
retrieval query for blocks with indices in QQ and to create a certificate vouching for the correctness
of the returned blocks. The inputs include the local view of the storage node, i.e., digest §, length
n local state st and file portion (I,Fr), and a set of indices Q. The output is a file portion Fg and
a retrieval certificate mg.

The algorithms for clients nodes are:

45

CIntNode.GetCreate(d, J,Yy) — (b,0") On input a digest 6, a set of indices J and a creation advice
T, this algorithm returns a bit b (to accept/reject) and (if b =1) a new digest 0’ that corresponds
to a file F' that is the prefiz with indices J of the file represented by digest 0.

CIntNode.ApplyUpdate(d, op, A, Ta) — (b,8") On input a digest §, an update operation
op € {mod,add,del}, an update description A and an update hint T, it returns a bit b (to
accept/reject update) and (if b=1) a new digest §'.

CIntNode.VerRetrieve(6, Q, Fg,mg) — b On input a digest §, a file portion (Q,Fq) and a certificate
nQ, this algorithm accepts (i.e. it outputs 1) only if mq is a valid proof that § corresponds to a
file F with length n of which Fg is the portion corresponding to indices Q).

AggregateCertificates(0, (I, Fr, 7r), (J,Fs, 7)) = 7 On input a digest 6 and two certificated re-
trieval outputs (I,Fr,7r) and (J,Fj,7y), this algorithm aggregates their certificates into a single
certificate T (with K := I U J). In a running VDS system, this algorithm can be used by any
node to aggregate two (or more) incoming certified data blocks into a single certified data block.

Remark 7.1 (On CreateFrom). For completeness, our VDS syntax also includes the functionalitis
(StrgNode.CreateFrom, CIntNode.GetCreate) that allow a storage node to initialize storage (and cor-
responding digest) for a new file that is a subset of an existing one, and a client node to verify
such resulting digest. Although this feature can be interesting in some application scenarios (see
the Introduction), we still see it as an extra feature that may or may not be satisfied by a VDS
construction.

7.2 Correctness and Efficiency of VDS

Intuitively, we say that a VDS scheme is efficient if running VDS has a “small” overhead in terms
of the storage required by all the nodes and the bandwidth to transmit certificates. More formally,
a VDS scheme is said efficient if there is a fixed polynomial p(-) such that p(\,logn) (with A the
security parameter and n the length of the file) is a bound for all certificates and advices generated
by the VDS algorithms as well as for digests § and the local state st of storage nodes. Note that
combining this bound with the requirement that all algorithms are polynomial time in their input,
we also get that no VDS algorithm can run linearly in the size of the file (except in the trivial case
that the file is processed in one shot, e.g., in the first StrgNode.AddStorage).

Efficiency essentially models that running VDS is cost-effective for all the nodes in the sense
that it does not require them to store significantly more data then they would have to store
without. Notice that by requiring certificates to have a fixed size implies that they do not grow
with aggregation.

For correctness, intuitively speaking, we want that for any (valid) evolution of the system in
which the VDS algorithms are honestly executed we get that any storage node storing a portion
of a file F can successfully convince a client holding a digest of F about retrieval of any portion
of F. And such (intuitive notion of) correctness is also preserved when updates, aggregations, or
creations of new files are done.

Turning this intuition into a formal correctness definition turned out to be nontrivial. This is
due to the distributed nature of this primitive and the fact that there could be many possible
ways in which, at the time of answering a retrieval query, a storage node may have reached its
state starting from the empty node state. The basic idea of our definition is that an empty node is
“valid”, and then any “valid” storage node that runs StrgNode.PushUpdate “transfers” such validity
to both itself and to other nodes that apply such update. A bit more precisely, we model “validity”

46

as the ability to correctly certify retrievals of any subsets of the stored portion. A formal definition
correctness follows. To begin with, we define the notion of validity for the view of a storage node.

Definition 7.2 (Validity of storage node’s view). Let pp be public parameters as generated
by Bootstrap. We say that a local view (0,n,st,I,Fy) of a storage node is valid if VQ C I:

CIntNode.VerRetrieve(d, @, Fg,mg) =1
where (Fg,mg) < StrgNode.Retrieve(d, n,st, I, Fr, Q)

Remark 7.2. By Definition 7.2 the output of a bootstrapping algorithm (pp, do, stg) <— Bootstrap(1*)
is always such that (pp, dp, 0, sto, @,) is valid. This provides a “base case” for Definition 7.4.

Second, we define the notion of admissible update, which intuitively models when a given update
can be meaningfully processed, locally, by a storage node.

Definition 7.3 (Admissible Update). An update (op, A) is admissible for (n,I,Fr) if:

_ forop:mod, K C1I and |F/K’ — |K|’ where A = (K7F/K)
— forop=add, KNI =0 and |Fy| = |K| and K = {n+1,n+2,...,n+|K|}, where A := (K,F.).
— forop=del, KCI and K = {n—|K|+1,...,n}, where A:= K.

In words, the above definition formalizes that: to push a modification at positions K, the storage
node must store those positions; to push an addition, the new positions K must extend the currently
stored length of the file; to push a deletion of position K, the storage node must store data of the
positions to be deleted and those positions must also be the last |K| positions of the currently
stored file (i.e., the file length is reduced).

Definition 7.4 (Correctness of VDS). A VDS scheme VDS is correct if for all honestly gen-
erated parameters (pp, do, stg) < Bootstrap(1*) and any storage node’s local view (§,n,st, I, Fr) that
1s valid, the following conditions hold.

UPDATE CORRECTNESS. For any update (op, A) that is admissible for (n,I,Fr) and for any (', n’,
st’, J,F';,Ya) < StrgNode.PushUpdate(d, n,st, I, F1,0p, A):

1. (pp, &', 0/ st', J,F))) is valid;
2. for any valid (0,n,sts, Is, Fr,), if (bs, 0L, n' st I, F.) < StrgNode.ApplyUpdate(d, n, sts, Is, F1,, op,

A, TA) then we have: by =1, 8, = ¢, nl, =n', and (8}, n,stl, I', F.) is valid;

57787 S

3. if (be,0.) < CIntNode.ApplyUpdate(d, op, A, TA), then 0. = 6" and b. = 1.

ADD-STORAGE CORRECTNESS. For any (Q,Fg,mg) such that

CIntNode.VerRetrieve(d, Q, Fg,mg) = 1, if (st’, J,F;) < StrgNode.AddStorage(d,st, I, F,Q,Fg,mq)
then (6,n,st’, J,F) is valid.

REMOVE-STORAGE CORRECTNESS. For any K C I,

if (st’, J,F) < StrgNode.RmvStorage(d,st, I, F, K) then (§,n,st’, J,F;) is valid.

CREATE CORRECTNESS. For any J C I, if (6',n/,st', J,F;,Ty) is output of
StrgNode.CreateFrom (9, n,st, I, F;, J) and (b,8") < CIntNode.GetCreate(d, J,Yy), then b =1, n' =
|J], 6" =o' and (pp,d’,n’,st', J,F) is valid.

AGGREGATE CORRECTNESS. For any pair of triples (I,Fy, 7)) and (J,F,m7) such that
CIntNode.VerRetrieve(d, I, Fr,mr) = 1 and CIntNode.VerRetrieve(d, J,F;, ;) = 1,

if i+ AggregateCertificates((I, Fr,n7), (J,Fs, 7)) and (K,Fg) := (I,F;) U (J,Fy), then
CIntNode.VerRetrieve(d, K, Fx, 1) = 1.

47

Remark 7.3 (Relation with Updatable VCs). Our notion of VDS is very close to the notion of
updatable VCs [CF13] extended to support subvector openings and incremental aggregation. On
a syntactical level, in comparison to updatable VCs, our VDS notion makes more evident the
decentralized nature of the primitive, which is reflected in the definition of our algorithms where
for example it is clear that no one ever needs to store/know the entire file. One major difference
is that in VDS the public parameters must necessarily be short since no node can run linearly in
the size of the file (nor it can afford such storage), whereas in VCs this may not be necessarily
the case. Another difference is that in updatable VCs [CF13] updates can be received without any
hint, which is instead the case in VDS. Finally, it is interesting to note that, as of today, there
exists no VC scheme that is updatable, incrementally aggregatable and with subvector openings,
that enjoys short parameters and has the required short verification time. So, in a way, our two
VDS realizations show how to bypass this barrier of updatable VC by moving to a slightly different
(and practically motivated) model.

7.3 Security of VDS

In this section we define the security of VDS schemes. Intuitively speaking, we require that a
malicious storage node (or a coalition of them) cannot convince a client of a false data block in a
retrieval query. To formalize this, we let the adversary fully choose a history of the VDS system
that starts from the empty state and consists of a sequence of steps, where each step is either an
update (addition, deletion, modification) or a creation (from an existing file) and is accompanied
by an advice. A client’s digest § is updated following such history and using the adversarial advices,
and similarly one gets a file F corresponding to such digest. At this point, the adversary’s goal is
to provide a tuple (@, g, F’é) that is accepted by a client with digest § but where Fg, # Fg.

Definition 7.5 (History for Decentralized Storage). Let VDS be a verifiable decentralized
storage scheme. A history for VDS is a sequence H = (opf’, Ai,TZ)z‘e[e] of tuples, where op' is either
in {mod, add, del} (i.e., it is an update of the file), or op® = cfrom (i.e., it is the creation of a new
file related to the current one), in which case A is a set of indices. In order to define valid histories
we define the function EvalHistory(pp, do, sto, H) as follows

EvalHistory(pp, do, sto, H) FileChange(F,op, A)
Fo<+ ;0«1 if op € {mod, add} parse A = (K, Fk)
for i € [{] Vie K :F; « F;Vie[[F\ K :F; « F;,
F: < FileChange(F;_1,0p’, AY) elseif op = del parse A = K
if op’ € {mod, add, del} then Vi€ [[FJ\ K : F; « Fi,

elseif op = cfrom parse A = K
Vie K : F; « F;,

endif return F*

(bs,0;) + CIntNode.ApplyUpdate(d;—1, op’, A%, TZ)
elseif op’ = cfrom then
(bi,8;) < CIntNode.GetCreate(d;_1, A, 1)
endif
b+ bAb;
endfor
return (b, ¢, F¢)

We say that a history H is valid w.r.t. public parameters pp and initial digest dg and state stg
if EvalHistory(pp, do, sto, 1) returns bit b = 1.

48

Definition 7.6 (Security for Verifiable Decentralized Storage). Consider the experiment
VDS-SecurityéDs()\) below. Then we say that a VDS scheme VDS is secure if for all PPT A we
have Pr[VDS-Security{ips(A) = 1] € negl()).

VDS-Security{ps (A)

(pp, do,sto) « Bootstrap(lA)

(1, Q,Fg, ") < A(pp, do, sto)

(b, 8, F) < EvalHistory(pp, do, sto, H)

b bAFY % FoA
CIntNode.VerRetrieve(pp, 6, @, F5, ")

return b

VDS PROOF OF STORAGE. As an additional security mechanism we consider the possibility to
ensure a client that a given file is stored by the network at a certain point of time without having
to retrieve it. To this end, we extend the VDS notion to provide a proof of storage mechanism in
the form of a proof of retrievability (PoR) [JKOT7] or a proof of data possession (PDP) [ABC*07].
Our proof of storage model for VDS is such that proofs are publicly verifiable given the file’s digest.
Also, in order to support the decentralized and open nature of DSNs, the entire proof mechanism
should not use any secret, and proofs should be generatable in a distributed fashion (this is a main
distinguishing feature compared to existing PoRs/PDPs) while staying compact. The formalization
of this property is in Appendix D.

8 Our Realizations of VDS in Hidden-Order Groups

In this section, we present two constructions of VDS that work in hidden-order groups. The two
schemes are presented in Sections 8.1 and 8.2 respectively, and we discuss a comparison in Section
8.3.

8.1 Our First VDS Construction

We build our first scheme by extending the techniques used to construct our first SVC scheme
from Section 5.1. In particular, we start from a modified version of our SVC that achieves a weaker
position binding property (in which the adversary reveals the full vector, yet its goal is to find two
distinct openings for the same position) and then show how to make this scheme dynamic (i.e., to
change vector values or its length) and fully distributed (i.e., updates can be performed without
knowing the entire vector).

Preliminaries. We begin by describing the simplified version of our SVC, considering the case of
k = 1, which fits best our VDS construction, regarding efficiency and communication complexity.
For convenience of the reader we describe again shortly the algorithms and functions (and variations
of them) from section 5.1 that are used in the scheme (for more details we refer to the corresponding
section):

— PrimeGen, a deterministic collision resistant function that maps integers to primes.

— PartndPrimeProd(7,y) — (ar,br): given a set of indices I = {i1,...,in} C [n] and a vector
y € M™ the function computes (as,by) = H;ll:yl:opil,]_[;il:yl:l pi, |, where p; <— PrimeGen(i)
for all i € N.

49

VC.Setup(1*, {0, 1}*) — crs := (G, g, go, g1, PrimeGen).
VC.Com’(crs, 7) — C' compute (a,b) < PartndPrimeProd([n], ¥'), where n < |¥]; next compute A =
g2 and B = ¢. Return C := (C*,n) := ((4, B), |7]).
VC.Ver'(crs, C, I, 4, 7r) — b compute (ar,by) < PartndPrimeProd(/, %), and then parse 7 := (I'1, Ar)
and return b+ (I'*1 = A) A (AY = B).
VC.Disagg'(crs, I, 07,77, K) — 7 let L := I\ K, and @7 be the subvector of ¥ at positions in
L. Then compute ar,b;, < PartndPrimeProd(L, v1) parse n; := ([, A7) and set (I['x, Ax) +
(FI“L,AI}L). Return 7x < (I'x, Ak).
VC.Agg'(crs, (I, 17[, 7'('[), (J, UJ, TI'J)) — TK
1. Let L:=INJ.If L # (), set I' :== I'\ L and compute 7» < VC.Disagg(crs, I, 07, 71, I'); otherwise
let wpr = oy,

2. Compute (aj,by) < PartndPrimeProd (I, ¥1/) and {aj,bs} < PartndPrimeProd(J, ;).

3. Parse mpp == (I'p, Ap), my = (I'y, Ay) and compute ['x < ShamirTrick(Iy, [y, ap,ay) and
AK — ShamirTrick(Ap, AJ, b]/, bJ)

4. Return TR < (FK,AK)

Finally, let PoKSubV’ be the same protocol as in section 6 but adjusted according to the above
algorithms. That is the CRS of is simply crs instead of the two specialized CRSs. Furthermore,
since C' is not accompanied with PoPrody the verifier does not have to check the validity of it. The
rest of the protocol remains the same and the underlying relation is:

RPOKSubV’ = {((Ca Cla I)a (1717 I, 7T,I)) : VC.Ver’(crs, Ca I, ur, 771) =1
A VC.Ver(crs,C' I, v, 7)) = 1 A |o7] = n'}
Finally, we note that for simplicity in the following we abuse the notation for Shamir’s trick

by writing e.g. (I}, A}) < (ShamirTrick(I}, I'x,Fr, Fx)% , ShamirTrick(A;, Ag, Fr, Fg)¥x)
instead of writing, more precisely,

(I}, A}) + (ShamirTrick(I7, Ik, ar, ax)® , ShamirTrick(Ar, Ag, br, br)?x).

Our scheme VDS;. The algorithms of the VDS scheme VDS, are the following:?!

Bootstrap(1*) — (pp, o, no, sty) Execute VC.Setup(1*, {0, 1}*) and get pp := (G, g, go, g1, PrimeGen).
Set ng < 07 60 — ((90791)7”‘0) and StO — (g()ugl)'

The algorithms for storage nodes are:

StrgNode.AddStorage(d, n,st, I, Fr,Q,Fg,mg) — (st’, J,F;) If I = () then set st’ < mg, otherwise
st := 7. Then compute st’ + VC.Agg'(pp, (I, Fr,71), (Q,Fg,mg)). The computation of J and F;
is straightforward: (J,Fy) <~ (1 UQ,Fr UFq).

StrgNode.RmvStorage(d, n,st, I, F;, K) — (st', J,F;) Compute J < I\ K and the corresponding
F;. Then 7 < VC.Disagg'(pp, I, Fr, 77, J) and set st’ < .

21 Since the scheme has several parts in common with the above VC algorithms, we use those algorithms as shorthands
in the description.

50

StrgNode.CreateFrom (9, n,st, I, Fy, J) — (8',n',st’, J,F;,7;) The new digest ¢’ of F; is computed
with the commitment algorithm ¢ < VC.Com’(pp,F;). The new length gets n’ < |J|. The
previous local state is st = 7y and the new local state gets st' «<— VC.Disagg(pp, I, Fr, 71, J).
Finally, for 7’y it computes an argument of knowledge of subvector (see section 6), Tpoksupy’
PoKSubV'.P(pp, (6,8, J), (¥7, 7)) and sets Ty < (8, Tpoksuby’)-

StrgNode.PushUpdate(d, n, st, I, Fr,op, A) — (8',n/,st’, J,F/;,Ta) The algorithm works according to
the type of update operation op:

— op = mod: parse A := (K,F)) and st := m;. Execute mx « VC.Disagg'(pp,I,Fr, 71, K)
and parse g := (I'x, Ax). Then compute (ay, b)) < PartndPrimeProd(K, F)) and set ¢’ «+
((F;(/K, A%{),n) (i.e., ”’ = n remains the same). st’ is the new opening of I, 7} < 77, which
is the same so the local state does not change st’ +— st. Since it is a modification operation
(J,F}) < (I,F}), where F} is simply the modified file F, = (F; \ Fx) U F/. Finally, set Tx <
(Fr,mK).

— op = add: parse A := (K,F}), st := 77, and the old digest ¢ := ((A, B),n). Then compute
(ahe, Uy) + PartndPrimeProd(K, F%.) and the new digest gets 8’ < ((A% , BY),n') where n/
n + |K|. The new state refers to the new file subportion (J,F;) - (I UK,F; UFg), st’ :== 7/},
and is the same as the old one st’ - st since 77 = 7/;. Finally, set T4 < @.

— op = del: parse A := K and st := 7;. Execute g < VC.Disagg'(pp, I, F;, 7, K) and parse
ik = (I'x,Ak). Then the new digest is ¢’ + ((I'x, Ak),n’) where n’ + n — |K|. The new
state refers to the new file subportion (J,F;) < (I'\ K,F;\ Fx)) and is the same as the old one
st’ < st since 77 = 7'} Finally set Ya < (Fx,7K).

StrgNode.ApplyUpdate(d, n, st, I, Fr,0p, A,Ya) — (b,0’,n/,st’, J,F/;) Again, it works according to
the type of update operation op:

— op = mod: parse A := (K,Fy), st := m; and Yo := (Fg,7x). Compute acceptance bit
b < VC.Ver (pp,d, K,Fx,mr). Then, if b = 1 parse T = (I'x, Ak), compute (a, by)
PartndPrimeProd(K, F/) and set §' < ((FI‘?(, A(;?), n’) where n’ < n. It is clear that in the case
of a modify operation (J, F’;) <— (I, F}), where F/ is simply the modified file F; = (F;\ Fx) UF.
For the new local state st’ that we discern three cases:

e I N K = : then compute
(I, AY) «+ (ShamirTrick(FI, I'i,Fr, Fx)% , ShamirTrick(A;, Ay, F, FK)b}() and set st’ «
mp = (I, A).

e INK = K: compute (I}, A}) « (I'1,Ar) and set st’ < 7} := (177, A}).

e For the case where neither IN K =@ nor INK = K, ie. INK =L ¢ {K,0} we parti-
tion K as K = L U L and apply two sequential updates to 77, one with L’ (s.t. I N L = ()
and one with L (s.t. INL = L). That is, compute (a’;, b) < PartndPrimeProd(L, F’;) and then

(1, A1) (ShamirTrick(FI, ;. Fr.F;)% , ShamirTrick(A7, A, Fr, FE)%). Then (I, A”) «
(I'7, A%). Finally, set st’ «— (I'/', AY). Essentially, since the case of I N L = L doesn’t cause any
change to the state, computationally it is as a single update.
— op = add: parse A := (K, F/), st := 77 and the old digest as § := ((4,B),n). Set b = 1 iff
K={n+1,...,n+|K|}. Then if b = 1 compute (a/s, b}) < PartndPrimeProd(K, F’.) and the
new digest becomes & « ((A%, BYx),n’) where n' < n + |K|. For the new local state, first

parse the old one st := 7y := (I'7, Ar) and the new one gets st’ < 7} where 7} (FIaK, A?K).
Finally set (J,F/;) < (I,F;), i.e., the file remains unchanged.

o1

— op =del: parse A := K, st:=77, and Ta := (Fx, 7). Set b=1iff K ={n—|K|+1,...,n}A
VC.Ver'(pp,d, K,Fx,mx) = 1. Then if b = 1 sets & + ((I'x, Ax),n’) where n’ < n — |K|. For
the new local state, similarly to the modify operation, we discern three cases. If I N K = () then
(I'7, A}) < (ShamirTrick(I'7, I'x, Fr,Fr), ShamirTrick(Ar, Ax, Fr,Fi)) and set st’ < mx =
(I}, AL)selse if INK = K st/ =st, elseif INK = L then (let L =K\ L)

(FI/’ A/I) — (ShamirTrick(FI, FZn Fr, FE) s Shamir’I‘rick(AI, Afn F[, FE)) and set st’ « T =
(I'7, A%) (similarly to the op = mod case). Finally (J,F;) «- (I \ L,F; \ Fp).
StrgNode.Retrieve(d, n,st, I, Fr, Q) — (Fg,mg) Compute both portion Fg C F; as well as proof
mg + VC.Disagg'(pp, I, Fr,st, Q).

The algorithms for client nodes are:

CIntNode.GetCreate(d, J,Yy) — (b,0") Parse Ty := (&', Tpoksuby’), set n’ = |J| and output b <
PoKSubV'.V(pp, (6,8, J),m;) AJ = {1,...,|J|} and &'
CIntNode.VerRetrieve(d, Q, Fg, mg) — b Output b < VC.Ver'(pp, 4, Q, Fo, Q)

ClntNode.ApplyUpdate(d, op, A, T'A) — (b,0’) This algorithm is almost identical to the first part of
the Storage Node algorithm StrgNode.ApplyUpdate(d, n,st, I, Fr,op, A, 7A). The difference is that
it executes only the parts that are related to the output of b and ¢.

AggregateCertificates(d, (I, Fr,7r), (J,Fr,7m1)) = 7r

5

Return mx < VC.Agg'(pp, (I, Fr,77), (J,F 7, 75)).

Correctness. Here we state and prove the correctness of VDS;.
Theorem 8.1. The scheme VDS presented above is a correct verifiable decentralized storage scheme.

Proof In the following we will always assume that st := (sty, stp) and § := (6*,n) := ((d1,2),n).
Furthermore, whenever (ay, by) appear, we assume that they are the outputs of PartndPrimeProd(7, Fy),
for each set of indices I. Finally for each set of indices I we assume n := (I'7, Ap).

First we note that in our construction it is sufficient for a local view (pp,d,n,st,I,Fr) of a
storage node to be valid that
CIntNode.VerRetrieve(d, I, StrgNode.Retrieve(d, n, st, I, Fy, I)) = 1 holds. More concretely this trans-
lates to st}’ = &; /\stg’ = d2 and due to the correctness of disaggregation property st/laQ = 51/\st/2bQ =
2 holds where st’ + StrgNode.Retrieve(d, n, st, I, F7, Q) for each @ C I. To put things clear, a local
view of a storage node (pp, d, n,st, I, Fy) is valid if st{? = §; A stg’ = 09.

Let (pp, d,n,st, I,Fr) be a valid local view of a storage node:
UPDATE CORRECTNESS. Let (op, A) be an admissible update for (I,Fr,n) and (¢’,n/,st’, J,F;,Ta)
be the output of StrgNode.PushUpdate(d, n,st, I, Fr,op, A). We discern three cases depending on
the type of update:

— op = mod:

. . ’ a/ b
1. According to our construction 6* = (I, AX), where
a b a b
I I I a’ I v

(I, Ag) = (I AVEY = (st st2K) (due to VC.Disagg'). So & = (st'% * st2 ™). Fur-
thermore st’ = st and J = I, so

ra’y b STI{ K zj%b% Y
(sty 7,8ty) = (st ,sty) = (07, 09)

52

2. Let (6,n,sts, Is, F,) be valid and (bs, 5, n, stg, Js, F);) be the output of
StrgNode.ApplyUpdate(d, n,st, I, Fr,op, A, Ta). bs = 1,0, = ¢’ and n); = n’ come from inspection.

If INK =0 then
(sth1,5tho) (Shamir’I‘rick(sts,l, Iy, Fr,Fr)% , ShamirTrick(st, 2, Ag, Fr, F K)b’K) =

! /
ok Yk

= (st?f,stgg) and (a’,b}) = (ar,br) remains the same. So
a,ll(b}(
1a’ " an OI b O
(St:{7 Sts,é) = (St;,ll(?Stgg) = ((58,17 58,2)

If 1N K = K then st, doesn’t change and (a7,b7) = (fLal, lf’—;{b/K), hence

ra, %
(sty1,stsh) = (051, t2)

The validity of (pp, d5, nj, sts, Js, F';) in the case of IN K = L ¢ {(), K} is covered by the above

two, since it essentially is a sequence of the two above cases.
3. Let (b, 0.) be the output of ClntNode.ApplyUpdate(d,op, A, T A). It follows directly from the
definition of CIntNode.ApplyUpdate (and its similarity with StrgNode.ApplyUpdate) that b, =

bs =1and §, =9, =0

— op = add:
1. According to our construction §* = (5(111(,(521() and st’ = st. Also, J = JUK and (d},V;) =

(aray,brby) and so
(st 5t)7) = (st]" " sty ") = (37, 85) = (57,)

2. Let (6, n,sts, Is, F,) be valid and (bs, d5, 1, stg, Js, F;) be the output of
StrgNode.ApplyUpdate(d, n,st, I, Fr,op, A, Ta). bs = 1,6, = ¢’ and n); = n’ come from inspection.
Also J =1 so (d/},V;) = (ar,br). st’' = (st‘llK,sth) and 6% = ((5?1{,53‘() S0

= (iv 51)

3. Let (be,d.) be the output of ClntNode.ApplyUpdate(d,op, A,TA). Again correctness comes di-
rectly from the definition of CIlntNode.ApplyUpdate.

/7 / / /
(stllaJ, stlle) = (st}<*, sthbI)

— op = del:))
1. According to our construction (87,05) = (I'k, Ax) = (51“?,557{), st =stand J =T\ K.
Furthermore, (a;, ;) = (gL, I?TI()

ra’ ' ik bLI i
(sty 7,sty7) = (st sty™) = (07, 0,%) = (01, 93)
2. Let (6, n,sts, Is, Fr,) be valid and (bs, d5, n, stg, Js, F';) be the output of
StrgNode.ApplyUpdate(d, n, st, I, Fr,op, A, Th). bs = 1,0, = ¢’ and n/; = n’ come from inspection.

Alsolet L=INK then J=1TI\L and if L = K \ L then
11
(st},st,) < (ShamirTrick(st;, I';, F7,F;), ShamirTrick(sty, Az, F7,F;)) = (st;©, sty%)
ay by ar/ar, br/bp, 1

1
! / — = —_
(st st) = (styT styl) = (st{ 'k st]A /0) = (675,855) = (5], 6)

53

3. Let (be, d.) be the output of CintNode.ApplyUpdate(d,op, A,YA). b. = bs = 1 and 0, = 0, = ¢
from inspection.

ADD STORAGE CORRECTNESS. It comes directly from aggregation correctness of VC.Agg’ (see

section 5.1).

REMOVE STORAGE CORRECTNESS. It comes directly from disaggregation correctness of VC.Disagg'

(see section 5.1).

CREATE CORRECTNESS. Let J C I and (¢',n/,st’, J,F;,7) be the output of

StrgNode.CreateFrom(d, n,st, I, Fy, J) and (b,¢”) the output of ClntNode.GetCreate(d, J, 1), then

n’ = |J| comes from inspection of StrgNode.CreateFrom, §” = 4’ comes from inspection of

CIntNode.GetCreate algorithm and validity of (pp, &', n/,st’, J, F ;) comes from correctness of VC.Com’

and VC.Agg. Finally, b = 1 comes from correctness of PoKSubV’ protocol.

AGGREGATE CORRECTNESS. It comes directly from aggregation correctness of VC.Agg' (see sec-

tion 5.1).

0

Security. Below we state and prove the security of our VDS; scheme.

Theorem 8.2 (Security). Let G < Ggen(1") be a hidden order group where the strong RSA
assumption holds, then the scheme VDSq presented above is a secure Verifiable Decentralized Storage
scheme in the generic group model.

Proof First we observe that in our scheme, for every valid history #, with Bootstrap(1?) —
(pp, do,sto) = ((G, g, g0, g1, PrimeGen), ((g0,91),0), (g0, 91)), the digest that arises is the same
as a commitment of the file with VC.Com’. Concretely, let (b,d,F) < EvalHistory(pp, do, sto, H)
then if b = 1 it holds that § = VC.Com/(pp,F) or 6* = (81,82) = (gg,gll’), where (a,b) <«
PartndPrimeProd([|F|], F). Particularly this is central to our construction and one can validate that
it holds by inspecting all the algorithms that alter the digest.

To prove the theorem we use a hybrid argument. We start by defining the game Gy as the actual
VDS security game of Definition 7.6, and our goal is to prove that for any PPT A, Pr[Gy = 1] €
negl(\).

Game Gj:
Gy = VDS-Security\“;lDS()\) EvalHistory(pp, do, sto, H)
(PP, 80, sto) < Bootstrap(1™) Fo<«< 0;b«1
(H,Q,F5,7") + A(pp, do, sto) for i € [{]
(b,6, F) < EvalHistory(pp, do, sto, 1) Fi « FileChange(F;_1,0p’, A%
b bAFg #Fan if op’ € {mod, add, del} then
CIntNode.VerRetrieve(pp, 6, Q,F5, ") (bs, 5:) < ClntNode.ApplyUpdate(d;_1, op’, A", T)
return b

elseif op’ = cfrom then
(bi, 8;) + ClntNode.GetCreate(d; 1, A", 1)
endif
b+ bADb;
endfor
return (b, d,, Fr)

Recall that H = (op’, A", T4);c(q Where:

54

— for op’ = mod: A’ := (K, FZ'KZ.), T = (F;l,wé(_il) and ClntNode.ApplyUpdate(§°~1, op?, A% T%)

outputs b = 1 if VC.Ver'(pp, '~ !, K*, Fi(_il, W;(_il) =1or (F;(ffi = 5%‘1) A (Ai?f = 5;‘1).
— for op’ = add: A" := (K,F.,), T := @ and CIntNode.ApplyUpdate(d’~!, op’, A", T} outputs

V=1if K'={n""1+1,...,n"" ' 4+ |K|}.

— op' = del: A" ;= K, T := (F;},ﬂ';l) and ClntNode.ApplyUpdate(§°~1, op?, A%, T%) outputs
b =1if (K" = {n"1 = |K'|+1,...,n" 1)) AVC.Ver (pp, "1, K1 Fil i) or (K = {n'~! -
a

K1 A (TR = 67 A (A =67,

— op’ = cfrom: A® := KU, T := (4", TrIiDOKSubV') and ClntNode.GetCreate(6°~1, A", T) outputs b° = 1
if POKSubV’.V(pp, (6°71, 6%, ’K’L‘,KZ),W;@) =1.

Game G;: define GG; be the same as G;_1 except for the update :

— if op’ = mod: A" := (K',F}.), T := (Fi;;}m;l) but in the i-th step of EvalHistory b is instead
output of: '
b« (agila) A (bg:i[b)
where (a,b) < PartndPrimeProd([|F*=1|], F©=1)

In case b* = 0 aborts (abort;). Otherwise ¢° is computed normally from
CIntNode.ApplyUpdate(d°~1, op?, A 7%).

— for op’ = add: A’ := (K, FZ'KZ-), Y% := @ and everything is the same as in G;_1. Le. (b', ") is the
output of CIntNode.ApplyUpdate(6:=1, op?, A?, 7).

— op' =del: A" := K' T = (F;il, 77;.1). Similarly to the mod case b’ is the output of:

b (agila) A (bgelb) A (K7 = {0 = [K| +1,...,n"1})

where (a,b) + PartndPrimeProd([|Fi=1|], Fi=1)
In case b® = 0 aborts (abort;). Otherwise ¢ is computed normally from
CIntNode.ApplyUpdate(6°~1, op?, A%, 7).

— op’ = cfrom: A’ := K*, TA = (5i777|i>oK5ubV’) but in the i-th step of EvalHistory b’ is instead:

b+ (Fit CF Y A6 = VC.Com'(pp, Fi) AT ={1,...,]|}
In case b® = 0 aborts (abort;).

Lemma 8.1. Let op’ = mod then if the strong RSA assumption holds for Ggen, Pr[G;_1 = 1] <
Pr[G; = 1] + negl()).

Proof It is straightforward that the only difference between G;_1 and G; is in the computation

of b’ inside the EvalHistory. That is in G;_1 : b = (F;Ifi =5HA (Al;ff =0y M) and in Gy @ b =
(agila) A (bgi|b). Since aborty, aborts, . .., abort;_s have not happen, from correctness of the VDS
scheme it comes that (5171, 6571) = (g3, ¢%), where (a,b) « PartndPrimeProd([|F*~1(], F*~1).
|Pr[G;_1 = 1] — Pr[G; = 1]| = Pr[abort;]] = Pr[b® = 0] = Pr[(agila) A (bg:|b)]. But since
abort;_; didn’t happen (F;(Ifi = g5) A (Al;?f = g¢%). Therefore it is straightforward to abort; to
the strong RSA assumption, i.e. Prlabort;] = negl(}). O

95

Lemma 8.2. Let op’ = del then if the strong RSA assumption holds for Ggen, Pr[G;_1 = 1] <
Pr[G; = 1] 4 negl(\).

Proof The same as the above case of op’ = mod holds. O

Lemma 8.3. Let op’ = add then Pr[G;_1 = 1] = Pr[G; = 1].

Proof G;_1 and G; are identical.]

Lemma 8.4. Let op’ = cfrom then for any PPT A in G; there exists an algorithm & such that
Pr[Gi—1 = 1] < Pr[G; = 1] + negl()\) of the strong RSA assumption holds.

Proof Let & be the extractor of PoKSubV’ protocol that corresponds to .A. Since PoKSubV’
is knowledgel sogng? & outputs (ngl,ﬁKi,w’Ki) such' that VC.yer'(pp,él_l,Ki,Flfgil,ﬁKi) =1A
VC.Ver'(pp, 8%, K*, FZI;-I, Thei) = 1/\]F1[;-1| =n/, where §" = (6*,n"). Since aborty, abort,, . .., abort;_o
have not happen, from correctness of the VDS scheme it comes that 6~ = VC.Com" (pp, Fi71).
From the first verification equation above we get that under strong RSA assumption F’K? C Fi—1,
From the second verification equation above we get that FiK_il is an opening of §°. From the third
equation above we get that ¢’ is a digest for a file of size]szgll From the last two points we get
that &' = VC.Com'(pp, F%;").

So Pr[Gi—1 = 1] < Pr[G; = 1] + negl(\). O

We conclude that in any case Pr[G;—1 = 1] < Pr[G; = 1] + negl()). Since |H| = ¢ = poly(A)
with a hybrid argument we get that Pr[Go = 1] < Pr[G; = 1] + negl(\). But clearly Gy = 0 always
(since no abort has happened), and thus Pr[VDS-Security{ps(\) = 1] = P[Go = 1] = negl(\). O

8.2 Our Second VDS Construction

To construct our second VDS scheme, denoted VDSs, we build on our second SVC scheme from
section 5.2. The main difficulty that we face in turning our SVC into a VDS is the specializtion
phase of the CRS, i.e. the trusted generation of U = gHiE["J . Although VDS schemes can support
a trusted setup phase, it can only be done once by the Bootstrap algorithm. However, U depends
on the current size of the file (though not on its content), meaning that normally at each addition
(or deletion) to the file it should be updated??. To solve this problem, we attach U to the VDS’s
digest (together with n for technical reasons), 6 = ((U,C),n).

Then, U can be built progressively while the file is extended or reduced. Namely, when adding
new positions from the set K to the file, all ¢;’s in K are added to the accumulator, i.e. U’ +
Ulliex ¢ The definition of VDS security (def. 7.6) ensures that the digest is evaluated honestly
which ensures that U has the correct form U = gllien i,

Finally, we make use of the dynamic properties of the [CF13, LM19] scheme (in which our
SVC builds) and the RSA Accumulator, to construct the VDS scheme. The latter is important if

22 Another solution would be to recompute it at the verification time, but it would require linear work, which
contradicts VDS requirements.

56

one notice that U = gHiE[n] ‘.8 = gHiE["]\I “ resemble an RSA Accumulator value and witness
respectively.

Our scheme VDS;. In the following ¢ := ((U,C),n), st := m, where n; := (S, Ar). Also, each
e; is computed as e; < PrimeGen(i); so PrimeGen(i) is omitted for simplicity in the description.

VC.Agg,VC.Disagg are the aggregation and disaaggregation algorithms defined in section 5.2. We

highlight that possession of S; allows anyone to compute Sy < SIHj SN for each J C 1, thus for

simplicity we omit explicitly refer to the procedure of computing any such S;.

Bootstrap(1*, £) — (pp, 60, no, stg) generates a hidden order group G < Ggen(1?) and samples a
generator g <—sG. It also determines a deterministic collision resistant function PrimeGen that
maps integers to primes of £ + 1 bits. Set ng < 0, dg < ((1, g),ng) and sty < g.

StrgNode.AddStorage(d, n,st, I, Fr,Q, Fg,mg) — (st’, J,F ;) aggregates the parameters and the open
ing proofs

Siuq < ShamirTrick(Sr, So, [[ei [[€:) and Arug < VC.Age((St, Sy), (I, Fr, Ar), (J,Fs, Aj))
el 1€Q

StrgNode.RmvStorage(d, n,st, I,F, K) — (st’, J,F;) disaggregates
Sy« SHEnK and Ay « VC.Disagg(Sy,1,Fr, A, J)

StrgNode.PushUpdate(d, n, st, I, Fr,op, A) — (8',n/,st’, J,F/;,Ta) the algorithm works according to
the type of update operation op:
— op =mod: A := (K,F).

C'+« C- HSiF;_Fi, U + U, b Ap St « Sy YA < (Fk,Sk)
ieK

— op =add: A := (K,Fy).

' -[[57, U« vllexe, LA, Sy« S, Ta+ Sk
JEK
—op=del: A:=K.

C Il

G Vs S S, A MUY S e, Ta e (Fi, Sk)
JEK]

StrgNode.ApplyUpdate(d, n, st, I, Fr,op, A,Ya) — (b,0",n',st’, J,F/;) Again, it works according to
the type of update operation op:

— op =mod: A := (K,F) and Tx := Sg. Compute b < (ngeKej =U) and if b = 1:

= e F.—F;
e IS veu ape s I (s s e s
ieK JERNT

57

— op=add: A= (K,F,) and T4 := S. Compute b « (S5 =) and if b = 1:
. e Fi e
C' e 187, v eullens, apea- I (/1) 7, sp e sphex
jEK jEK
where S;/ Mierei _ ShamirTrick (S, S;, [[;c; ei, e;) for each j € K.
— op=del: A:= K and Y» := (Fg, Sk). Compute b + (ngeKej =U)andif b= 1:

Cl < LF" U/ < SK,
Ijer S5
A;[ieKr‘nI €i
/ / . .
T oo S+ ShamirTrick(Ss, Sk 1, Hei, | H)
ers (Sj) i€l ieK\I

StrgNode.Retrieve(d, n,st, I, F;, Q) — (Fg,mg) disaggregates

I1

Sg S, "2 and Ag + VC.Disagg(Sq, I, Fr, Ar, Q)

The algorithms for client nodes are:

CIntNode.VerRetrieve(d, Q, Fg, mg) — b output

b < VC.Ver(pp, C, Q, Fo, Ao) A sgiw “_u

ClntNode.ApplyUpdate(d, op, A, Ta) — (b,0’) This algorithm is almost identical to the first part of
the Storage Node algorithm StrgNode.ApplyUpdate(d, n,st, I, Fr,op, A, 7A). The difference is that
it executes only the parts that are related to the output of b and 6.

AggregateCertificates(, (I, Fr, 7r), (J,Fs,ms)) = Tk return

S1ug + ShamirTrick(Sy, Sy, [ei, [es) and Ak + VC.Agg ((SI, Sy), (I, F1, Ap), (J,F, AJ))
el ieJ

We note that we do not define an efficient StrgNode.CreateFrom operation for the VDS, construc-
tion. While general-purpose SNARKSs would work to achieve this result, they would be extremely
expensive. We leave it as an open problem to find an efficient arguments of knowledge of subvector
opening for this scheme.

Theorem 8.3 (VDS;). Let G < Ggen(1*) be a hidden order group where the strong Distinct-
Prime-Product Root and the Low Order assumptions hold. Then the VDS scheme presented above
is a correct and secure Verifiable Decentralized Storage scheme.

The intuition of the above theorem is as follows: the VDS scheme can be seen as preserving
and updating a vector commitment C' and an RSA Accumulator U. So correctness of VDS comes
from correctness of the updatable vector commitment SVC and correctness of updates of the RSA
Accumulator (see [BBF19]). Similarly, security comes from security of SVC and the RSA accumu-
lator’s security, which in turn rely on the strong distinct-prime-product root assumption and the

58

strong RSA assumption respectively. Note that strong Distinct-Prime-Product Root implies strong
RSA (the opposite also holds in RSA groups).

Recall that U is an RSA accumulator of all e;’s and is used to verify S7’s. The RSA accumulator’s
security demands that the accumulated value U is honestly computed, which is ensured in the VDS
setting since we assume a valid history. So given a valid history one knows that U is of correct
form (i.e. U = gHiG[n] “) and then can securely check that S; is of correct form (by checking

S}_["el “=U), which is ensured from RSA Accumulator’s security. After checking the validity of
St it all boils down to position binding of the vector commitment. To conclude, the gap between
position binding of the original VC and security of our VDS construction is to ensure that Sy is
well formed, which in turn relies on the correct form of U.

8.3 [Efficiency and Comparison

In Table 3 we provide a detailed efficiency analysis and comparison of the two VDS schemes, VDS
and VDSs, proposed in the two earlier sections.

In terms of performances, the two schemes do similarly, though VDSs outperforms the first one
by a logarithmic factor. Its efficiency advantage comes from the fact that operations are not bit-by-
bit as in the first one. More in detail, in VDS; most of the operations require one exponentiation
with an a-bit prime for each bit and each position of the subfile, roughly O(¢ - |I| - @) group
operations. In VDSj, the main overhead is related to handling the distributed parameters {S;}.
In fact, computing S; for each i € I, given Sy takes O(Ilog|I|) exponentiations with (¢ + 1)-bit
primes, roughly O(¢ - |I] - log |I]) group operations.

To compare the two methods, recall that « is at least log(¢n) (since we need at least ¢n distinct
primes), which means that VDS; has a (logarithmic) dependence on the size of the file. On the
other hand, VDSy’s cost depends only on the size of the subfile that is processed. Hence, since
a > log(fn) > log(n) > log(|I]) the VDSy always outperforms VDS; (see Table 3).

Another notable difference regards the StrgNode.PushUpdate algorithm for op = mod. In VDSs,
the running time depends solely on the size of the update, whereas in VDS, it depends on the size
of the entire subfile stored locally. This can be a huge difference for nodes that decide to store large
portions, and it constitutes a major theoretical (and practical) improvement of VDS, over VDS;.

In terms of security, VDS; is based on a weaker assumption®?, over groups of unknown or-
der, than VDSs (although for the specific case of RSA groups the two assumptions are equiva-
lent). Finally, in terms of functionality, VDS; is the only scheme that can support efficiently the
StrgNode.CreateFrom functionality and the (compact) Proofs of Data Possession; this is thanks to
its compatibility with the efficient succinct arguments of knowledge that we propose in section 6.

23 This holds when considering the basic scheme without the StrgNode.CreateFrom functionality.

59

Metric VDS, VDS»
Bootstrap 0(1) 0(1)
pp| 3 |G| 1|G|
Digest |4| 2 |G| + log |F| 2 |G| + log |F|
Storage Node storing (I, F;)
State |str] 2 |G| 2 |G|
StrgNode.AddStorage (K) | O(¢-a - (|I| + |K])) | O£ - (|I|log |I| + |K|log|K]))
StrgNode.RmvStorage (K) O-a-|K|) Ol -|K|log|K]|)
StrgNode.CreateFrom (.J) o-a-|I)) 1
51| 91G|+2 |Zy "
mod o-a-|I)) O(l-|Allog|A|)
StrgNode.PushUpdate (A) add O-a-|A) O(l-|Allog|A|)
del | O(¢-a- (11— |A) | O (1] - 4] + Al log|A]))
Tal mod,del | O(|4]) +2- |G| o(lA]) +1-|G]
add %) 1
mod | O(-a- (11 +A]) | O(- (1] + Allog|A])
StrgNode.ApplyUpdate (A) add O-a-|A) O - (|I] + |Allog |A]))
del | O(-a- (1] +14)) | O (1] +|A]log |A])
StrgNode Retrieve (Q) | O(-a- (11— Q1)) | O(C- (1] — Q1) log (1] — |Q])
e 2 |G 2G|
Client Node
CIntNode.GetCreate (.J) o-a-|J|) no !
CintNode.VerRetrieve (Q) o-a-|Ql) Ol -|Q|log|Q|)
ClIntNode.ApplyUpdate (A) (mod, add, del) O-a-|A|) O(l-|Allog|A|)
AggregateCertificates (I,J) | O(¢-a- (|I| +1|J|)) | O (|I|log|I|+ |J|log|J|))
PoR yes yes
PDP yes no !

Table 3. Comparison between our two VDS schemes. The running time is expressed in number of G-group oper-
ations. Notation for the sets of positions: I are the ones held by the storage node, K the ones added or removed
from local storage by the storage node, J the ones used to create the file in StrgNode.CreateFrom, A the updated
ones, and @ the ones of a retrieval query. In VDS, o denotes the size of the primes (returned by PrimeGen); so
a > log(nf) where n is the size of the file and £ the bit-size of each position (i.e. F € ({0,1}%)").

! Such a protocol exists but it is either inefficient for the prover (SNARKS) or it has a large overhead in communi-
cation complexity (X-protocols or POKE*-based ones).

9 Experimental Evaluation

We have implemented in Rust our new SVC scheme of section 5.1 (with and without preprocessing)
and the recent SVC of [BBF19] (referred as BBF in what follows). Here we discuss an experimen-

60

tal evaluation of these three schemes. ?* Below is a summary of the comparison, details of the
experiments are in Appendix F.

— Our SVC construction is faster in opening and verification than BBF (up to 2.5x and 2.3x faster
respectively), but at the cost of a slower commitment stage (up to 6x slower). These differences
tend to flatten for larger vectors and opening sizes.

— Our SVC construction with preprocessing allows for extremely fast opening times compared to
non-preprocessing constructions. Namely, it can reduce the running time by several orders of
magnitude for various choices of vector and opening sizes, allowing to obtain practical opening
times—of the order of seconds—that would be impossible without preprocessing—of the order of
hundred of seconds. In a file of 1 Mibit (220 bits), preprocessing reduces the time to open 2048
bits from one hour to less than 5 seconds! This efficient opening, however, comes at the cost of a
one-time preprocessing (during commitment) and higher storage requirements. We discuss how to
mitigate these space requirements by trading for opening time and/or communication complexity
later in this section. We stress that it is thanks to the incremental aggregation property of our
construction that allows these tradeoffs (they are not possible in BBF with preprocessing).

— Although our SVC construction with preprocessing has an expensive commitment stage, this
tends to be amortized throughout very few openings?3, as few as 30 (see Figure 9 in Appendix F).
These effects are particularly significant over a higher number of openings: over 1000 openings
our SVC construction with preprocessing has an amortized cost of less than 6 seconds, while our
SVC construction and BBF have amortized openings above 90 seconds.

Mitigating Space Requirements for Preprocessing Construction Our experiments show
that preprocessing improves opening time. This comes at the cost of storing an auxiliary information—
N openings—which, in spite of being much smaller than in BBF, can still be quite large. Here we
discuss two general ways to mitigate this storage cost, which can be used either separately or
together.

— Hashing in blocks. Let us recall that by selecting a block size £ = 2\ (e.g., 256) one can
combine our VC with a collision-resistant hash function and support larger vectors at virtually
the same cost. Concretely, given a vector ¥ of N blocks, each of £f bits, one can obtain a vector
7 € ({0,1})N by hashing each £g-bits block into a £-bits one. The downside of this approach is
that subvector openings with respect to the original vector ¢ are less fine grained. On the good
side, though, one gets that the efficiency of a VC for a vector of size N - is virtually the same?% as
the one for a VC for a vector of size N2\. For example, by selecting £ = 2 Kibit our timings for a
vector of 262 144 bits would work for one of 1 Mibit. This would yield a committing/preprocessing
time of roughly 10 minutes. These advantages also translate opening times: for example, if we
expect openings of roughly M = 2'! bits we can expect a virtually instantaneous opening time
(as we just need to look up a cached precomputed proof). A larger opening size such as M = 214
(resp. M = 2'7) bits, would yield a running time of roughly 4 seconds (resp. 70 seconds).

24 We did not include BBF with precomputation in our experimental evaluation because this scheme has worse
performances than our preprocessing construction in terms of both required storage and running time. We elaborate
on this in Appendix F

25 Amortized opening time roughly represents how computationally expensive a scheme is “in total” throughout all
its operations. Amortized opening time for m openings is the cost of one commitment plus the cost of m openings,
all averaged over the m openings.

26 This is because the cost of hashing is negligible compared to group operations.

61

— Selecting larger precomputed chunks. Another possibility to reduce storage is to precom-
pute less openings by storing more aggregated openings, namely instead of an opening for every
chunk of ¢ bits, store one opening for every chunk of B - ¢ bits. This technique requires a bit
more computation in order to compute disaggregations—about m(B — 1) G operations in the
worst case for m positions (cf. Section B)—but opens the way to various tradeoffs to be explored.
For instance, one could use certain application-dependent heuristics to choose which positions
to precompute aggregated. As an example in the VC application to proofs of space and repli-
cation [Fis19] one opens a set of randomly chosen positions, and for each of them, also a set of
predetermined positions.?”

Acknowledgements

We thank Ben Fisch for valuable clarifications about the notions of Proof of Retrievable Com-
mitment and Proof of Replication, and Justin Drake for pointing out the need (due to the attack
discussed in [BBF18]) of using a hash function mapping into Primes(2)\) in the Fiat-Shamir trans-
formation when making our succinct arguments of knowledge non-interactive.

Research leading to these results has been partially supported by the Spanish Government under
projects SCUM (ref. RT12018-102043-B-100), CRYPTOEPIC (refs. ERC2018-092822, EUR2019-
103816), and SECURITAS (ref. RED2018-102321-T), by the Madrid Regional Government under
project BLOQUES (ref. S2018/TCS-4339), and by research gifts from Protocol Labs.

References

ABCY07. G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J. Peterson, and D. Song. Provable
data possession at untrusted stores. In P. Ning, S. De Capitani di Vimercati, and P. F. Syverson, editors,
ACM CCS 2007, pages 598-609. ACM Press, October 2007.

ABCT11. G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peterson, and D. Song. Remote
Data Checking Using Provable Data Possession. ACM Trans. Inf. Syst. Secur., 14(1):12:1-12:34, June
2011.

BBF18. D. Boneh, B. Biinz, and B. Fisch. A Survey of Two Verifiable Delay Functions. Cryptology ePrint Archive,
Report 2018/712, 2018. https://eprint.iacr.org/2018/712.

BBF19. D. Boneh, B. Biinz, and B. Fisch. Batching Techniques for Accumulators with Applications to IOPs and
Stateless Blockchains. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part I, volume 11692
of LNCS, pages 561-586. Springer, Heidelberg, August 2019.

BCS16. E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive Oracle Proofs. In M. Hirt and A. D. Smith, editors,
TCC 2016-B, Part II, volume 9986 of LNCS, pages 31-60. Springer, Heidelberg, October / November 2016.

Bdo4. J. C. Benaloh and M. de Mare. One-Way Accumulators: A Decentralized Alternative to Digital Sinatures
(Extended Abstract). In T. Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 274-285.
Springer, Heidelberg, May 1994.

BGR12. K. Brogle, S. Goldberg, and L. Reyzin. Sequential Aggregate Signatures with Lazy Verification from
Trapdoor Permutations - (Extended Abstract). In X. Wang and K. Sako, editors, ASTACRYPT 2012,
volume 7658 of LNCS, pages 644-662. Springer, Heidelberg, December 2012.

BGV11. S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable Delegation of Computation over Large Datasets. In
P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 111-131. Springer, Heidelberg, August

2011.

BHOL1. J. Buchmann and S. Hamdy. A Survey on {IQ} Cryptography, 2001.

BP97. N. Bari and B. Pfitzmann. Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees.
In W. Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 480-494. Springer, Heidelberg, May
1997.

2T There, each vector entry is the node of a DAG and one opens a set of randomly chosen nodes and for each of them
a given number of parents.

62

https://eprint.iacr.org/2018/712

CF13.

CLo02.

CMS99.

CS99.
CSWHOL.
DG20.

DKO2.

Fis18.
Fis19.

FS87.

GHR99.

GKMT18.

GRWZ20.
JKO7.

KZG10.

Lab17.

Lip12.

LM19.

LMRS04.

LRY16.

LY10.

Mer88.

OWBI19.

D. Catalano and D. Fiore. Vector Commitments and Their Applications. In K. Kurosawa and G. Hanaoka,
editors, PKC 2013, volume 7778 of LNCS, pages 55-72. Springer, Heidelberg, February / March 2013.
J. Camenisch and A. Lysyanskaya. Dynamic Accumulators and Application to Efficient Revocation of
Anonymous Credentials. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 61-76. Springer,
Heidelberg, August 2002.

C. Cachin, S. Micali, and M. Stadler. Computationally Private Information Retrieval with Polylogarithmic
Communication. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 402-414. Springer,
Heidelberg, May 1999.

R. Cramer and V. Shoup. Signature Schemes Based on the Strong RSA Assumption. In J. Motiwalla and
G. Tsudik, editors, ACM CCS 99, pages 46-51. ACM Press, November 1999.

I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Distributed Anonymous Information Storage
and Retrieval System, pages 46-66. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

S. Dobson and S. D. Galbraith. Trustless Groups of Unknown Order with Hyperelliptic Curves. Cryptology
ePrint Archive, Report 2020/196, 2020. https://eprint.iacr.org/2020/196.

I. Damgard and M. Koprowski. Generic Lower Bounds for Root Extraction and Signature Schemes in
General Groups. In L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 256—271.
Springer, Heidelberg, April / May 2002.

B. Fisch. PoReps: Proofs of Space on Useful Data. Cryptology ePrint Archive, Report 2018/678, 2018.
https://eprint.iacr.org/2018/678.

B. Fisch. Tight Proofs of Space and Replication. In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019,
Part 11, volume 11477 of LNCS, pages 324-348. Springer, Heidelberg, May 2019.

A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature Prob-
lems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186-194. Springer, Heidelberg,
August 1987.

R. Gennaro, S. Halevi, and T. Rabin. Secure Hash-and-Sign Signatures Without the Random Oracle.
In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 123-139. Springer, Heidelberg, May
1999.

J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updatable and Universal Common Refer-
ence Strings with Applications to zk-SNARKs. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018,
Part III, volume 10993 of LNCS, pages 698-728. Springer, Heidelberg, August 2018.

S. Gorbunov, L. Reyzin, H. Wee, and Z. Zhang. Pointproofs: Aggregating Proofs for Multiple Vector
Commitments. Cryptology ePrint Archive, Report 2020/419, 2020. https://eprint.iacr.org/2020/419.
A. Juels and B. S. Kaliski Jr. Pors: proofs of retrievability for large files. In P. Ning, S. De Capitani di
Vimercati, and P. F. Syverson, editors, ACM CCS 2007, pages 584-597. ACM Press, October 2007.

A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-Size Commitments to Polynomials and Their
Applications. In M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177-194. Springer,
Heidelberg, December 2010.

P. Labs. Filecoin: A Decentralized Storage Network, 2017. https://filecoin.io/filecoin.pdf.

H. Lipmaa. Secure Accumulators from Euclidean Rings without Trusted Setup. In F. Bao, P. Samarati,
and J. Zhou, editors, ACNS 12, volume 7341 of LNCS, pages 224-240. Springer, Heidelberg, June 2012.
R. W. F. Lai and G. Malavolta. Subvector Commitments with Application to Succinct Arguments. In
A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 530-560.
Springer, Heidelberg, August 2019.

A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential Aggregate Signatures from Trapdoor
Permutations. In C. Cachin and J. Camenisch, editors, FUROCRYPT 2004, volume 3027 of LNCS, pages
74-90. Springer, Heidelberg, May 2004.

B. Libert, S. C. Ramanna, and M. Yung. Functional Commitment Schemes: From Polynomial Com-
mitments to Pairing-Based Accumulators from Simple Assumptions. In I. Chatzigiannakis, M. Mitzen-
macher, Y. Rabani, and D. Sangiorgi, editors, ICALP 2016, volume 55 of LIPIcs, pages 30:1-30:14. Schloss
Dagstuhl, July 2016.

B. Libert and M. Yung. Concise Mercurial Vector Commitments and Independent Zero-Knowledge Sets
with Short Proofs. In D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 499-517. Springer,
Heidelberg, February 2010.

R. C. Merkle. A Digital Signature Based on a Conventional Encryption Function. In C. Pomerance,
editor, CRYPTO’87, volume 293 of LNCS, pages 369-378. Springer, Heidelberg, August 1988.

A. Ozdemir, R. S. Wahby, and D. Boneh. Scaling Verifiable Computation Using Efficient Set Accumulators.
Cryptology ePrint Archive, Report 2019/1494, 2019. https://eprint.iacr.org/2019/1494.

63

https://eprint.iacr.org/2020/196
https://eprint.iacr.org/2018/678
https://eprint.iacr.org/2020/419
https://filecoin.io/filecoin.pdf
https://eprint.iacr.org/2019/1494

Sha83. A. Shamir. On the Generation of Cryptographically Strong Pseudorandom Sequences. ACM Trans.
Comput. Syst., 1(1):38-44, 1983.

STYO1. T. Sander, A. Ta-Shma, and M. Yung. Blind, Auditable Membership Proofs. In Y. Frankel, editor, FC
2000, volume 1962 of LNCS, pages 53—71. Springer, Heidelberg, February 2001.

TAB'20. A. Tomescu, I. Abraham, V. Buterin, J. Drake, D. Feist, and D. Khovratovich. Aggregatable Subvector
Commitments for Stateless Cryptocurrencies. Cryptology ePrint Archive, Report 2020/527, 2020. https:
//eprint.iacr.org/2020/527.

TamO03. R. Tamassia. Authenticated Data Structures. In G. Di Battista and U. Zwick, editors, Algorithms - ESA
2003, pages 2-5, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

Wes18. B. Wesolowski. Efficient verifiable delay functions. Cryptology ePrint Archive, Report 2018/623, 2018.
https://eprint.iacr.org/2018/623.

A PoProd protocol for Union of RSA Accumulators

Let G be a an hidden order group as generated by Ggen, and let g1, g2, 93 € G be three honestly
sampled random generators. A more straightforward succinct argument of knowledge for the union
of RSA Accumulators is for the following relation

Rpoprod = {((A,B,C),(a,0)) € G* x Z? : A=g{ A\B=gyAC=g§" }

Our protocol PoProd is described below.

PoProd protocol

Setup(1*) : run G < Ggen(1?), g1, g2, 93 <G, set crs := (G, g1, g2, g3).
Prover’s input: (crs, (4, B, C), (a,b)). Verifier’s input: (crs, (4, B, C)).

V — P: £ <sPrimes(\)
P—V:m:=((Qa,QB,Qc),rq,rp) computed as follows

= (da> @, qc) < (la/t], [b/€], [ab/L])

— (ra,mp) « (@ mod £,b mod ¢)

— (Qa,QB,Qc) := (91, 93", 9%°)

V(cers, (A, B,C), ¢, 7):

— Compute 7. < r, -1, mod £

— Output 1 iff ro,rp € [(] A Qﬁlg{“ =AA Q%ggb =B A Qéggc =C

To prove the security of our protocol we rely on the adaptive root assumption and, in a non-
black-box way, on the knowledge extractability of the POKE* protocol from [BBF19]. The latter is
proven in the generic group model for hidden order groups (where also the adaptive root assumption
holds).

Theorem A.1. The PoProd protocol is an argument of knowledge for Rpoprod in the generic group
model.

The proof is quite similar to the one of theorem 5.1 only instead of using the extractor if PoKRep
protocol we use the extractors of two PoKE™ protocols (one for ¢gf = A and one for gg = B).

64

https://eprint.iacr.org/2020/527
https://eprint.iacr.org/2020/527
https://eprint.iacr.org/2018/623

B Committing and Opening with Precomputation for the [BBF19] SVC

We discuss how the preprocessing technique can also be applied to the SVC scheme of [BBF19]
(instantiated for binary vectors of length n = N/). In this case, however, we will not use the
incremental disaggregation and aggregation but only one-hop aggregation.

Let us recall that in [BBF19] a commitment to ©' € {0,1}" is Acc = g* with b = Hje[n},vjzl D;-
When asked for opening of some positions in the set I, the vector owner has to provide a batched
membership proof for all {p; : j = (i —1)¢{+1,i € I,l € [{],v; = 1} and a batched non-membership
proof for all {p; : j=(i—1){+1,iel,le[{,v; =0}

For the membership proofs, we can use ideas similar to the ones discussed earlier. In the com-
mitment phase one can precompute {W; = ¢*/% : i € [N]} where b; = Hlem’vﬂzl P(i—1)¢+1> Which
can be done in time O(N log N - £log(¢/N)) using the RootFactor algorithm from [STYO01, BBF19).
This adds at most N elements of G to the advice information. Next, in the opening phase, in order
to compute a membership witness for a set of positions I one can use the aggregation property to
compute a witness Wy from all W; with ¢ € I, which is doable in time O(mlogm).

For the non-membership proof, there are instead two options:

1. Compute the batch-nonmembership witness from scratch

2. Precompute and store (unbatched) non-membership witnesses for all 0’s of the vector and then
aggregate the necessary ones to provide the opening asked.

We argue that an intermediate solution of precomputing a fraction of non-membership witnesses and
computing the rest from scratch does not provide any benefit since even if a single non-membership
witness needs to be computed, it requires the whole vector and computing the corresponding
product of primes. So, in the end the intermediate solution will be more costly than both the above
ones.

1. COMPUTE NON-MEMBERSHIP WITNESS FROM SCRATCH. To compute a non-membership witness
one needs the product b of all the primes in the accumulator (i.e., all primes that correspond to 1’s
in ¥). There are in turn two possible ways to deal with this:

— Precompute and store b, which requires O(log(N¥)- N -£) computation and |b| = O(N -£-log(N¥))
bits of storage.

— Compute b online from all p;’s, which requires O(log(N¥¢) - N - £) computing power.

The computations needed to obtain a single non-membership witness is proportional to the size
of b, which is O(¢ - N -log(¢/N)) G. Hence, virtually there is no big improvement in the opening
time by precomputing b, since the group exponentiations are more costly (although concretely it
saves the online computation of it). Furthermore, keeping |b| = O(N - £ - log(N¥)) bits of storage
may get impractical for big N.

2. PRECOMPUTE NON-MEMBERSHIP WITNESSES AND THEN AGGREGATE. The idea is similar to the
aggregation technique mentioned above for membership witnesses. However, a crucial difference
is that, as stated in [BBF19], for non-membership witnesses one has only one-hop aggregation.
This means one must precompute and store non-membership witnesses for each block of the vector.
However these non-membership witnesses have size proportional to the number of bits of each block
(plus one group element).

65

This technique requires storage of O(N) group elements plus O(N - £log(NY¥)) field elements
on average. Precisely, the size of a non-membeship witness for each block is |G| + log(N?¢) x
#{0-bits in the block}, hence the total size of non-membership witnesses is N|G| + N{log(N?)
in the worst case and N|G| + N¢log(N¥)/2 in an average case where half of the bits of the vector
are 0. To conclude, with the VC of [BBF19], one would need, on average, to precompute and store
2N|G| + Ntlog(N¥)/2 bits.

Comparison. To conclude, even if we consider the case B = 1, both our solutions require much
less storage than in [BBF19]: 2N |G| vs. 2N|G|+ N/log(N?¢)/2 bits. In terms of computing time, the
preprocessing has roughly the same complexity in all three solutions, although our second scheme
is slightly less favorable due to the log? m factor in the opening. Comparing [BBF19] and our first
scheme, in [BBF19] the computing time for an opening of m blocks requires at least 50% more time
than in our first scheme due to the handling of non-membership witnesses (which leads to 25%
more time in the average case).

C Succinct Arguments of Knowledge for VDS

All the protocols below are for simplicity presented for the case of k = 1.

AoK of correct change

((Ca Clv I)a (7T17 17]7 7‘_}4[)) : VC.VerUpdate(crs, C, (Ia I, 17[7 rl—}?)) =1 }

R nge =
PoKChange { AC" = VC.ComUpdate(crs, C, (I, 7y, v, T7))

In case of an update the new commitment is normally C" := (A, B") = (I IbI , A7"). Therefore the
prover first sends the proof 7y := (I7, Ar) to the verifier. Then provides knowledge of the opening of
positions I with respect to C and further that FIbI = A'NAY = B'. Putting all together the prover
proves knowledge of (ar,br) such that I'/? = A A All” = BAgut =U; A FIb’ =ANAY =B,
where Uy <— ¢"! and uy < PrimeProd([).

AoK of correct add

AC" = VC.ComUpdate(crs, C, (I, 5, @, T7))

((C,C",I),v7) : VC.VerUpdate(crs, C, (I, 2,2,77)) = 1
Rpokadd =

The prover provides an argument of knowledge of (a’;, ;) such that A% = A’ABY = B/Ag™r =
Ur, where Uy < ¢g"7 and uy < PrimeProd(I). Also, C := (A, B) and C" = (A’, B) are part of the
statement.

AoK of correct delete
((C,C", 1), (x1,01)) : VC.VerUpdate(crs, C, (I, 77, 71, @)) = 1 }

R p—
PokDelete { AC" = VC.ComUpdate(crs, C, (I, 7, U1, D))

Recall that in case of deletion the new commitment C’ is simply the proof 7 of the subvector
deleted. So the prover has only to provide an argument of knowledge of opening in the deleted
positions I. That is (ar,by) such that A’ = A A B = B A g% = Uy, where Uy + ¢ and
ur < PrimeProd(I). Also, C := (A, B) and C' = (A4’, B’) are part of the statement.

66

D VDS Proof of Storage

For a VDS scheme we additionally consider the possibility to ensure a client that a given file
is stored by the network at a certain point of time without having to retrieve it. To this end,
we extend the VDS notion to provide a proof of storage mechanism in the form of a proof of
retrievability (PoR) [JKO07] or a proof of data possession (PDP) [ABC*07]. Our proof of storage
model for VDS is such that proofs are publicly verifiable given the file’s digest. Also, in order to
support the decentralized and open nature of DSNs, the entire proof mechanism should not use any
secret. Finally, a main distinguishing feature compared to existing PoRs/PDPs is that proofs are
generated in a distributed fashion by a collection of storage nodes and remain compact regardless
of the number of nodes involved in the their generation.

Below we begin by defining the syntax and correctness of proof of storage for a VDS scheme;
these are defined the same for modeling both retrievability and data possession. The difference
between the two is only in the security notion.

A VDS scheme VDS as in Definition 7.1 admits proofs of storage if there exist algorithms
(CIntNode.PoS-Challenge, StrgNode.PoS-Prove, CintNode.PoS-Ver) that work as follows.

CIntNode.PoS-Challenge(d) — r This is a probabilistic algorithm that, given a file’s digest d, outputs
a challenge r.

StrgNode.PoS-Prove(d, n,st, I, Fr,7) — m, This algorithm allows a storage node to (partially) an-
swer a PoS challenge . The inputs include the local view of the storage node, i.e., digest d, length
n local state st and file portion (I, F), and a challenge € C. The output is a proof .

StrgNode.PoS-Aggregate(d, 7, m, 1, mr2) — (b, m) On input a digest J, a challenge r € C and two
partial proofs m, 1, m, 2, this algorithm outputs an aggregated proof 7, and a bit b such that b =1
iff m, is a “complete” proof for challenge r (i.e., it can be verified).

CIntNode.PoS-Ver(d, 7, m.) — b On input a digest J, a challenge r € C and a “complete” proof .,
this algorithm accepts (outputs 1) or rejects (outputs 0).

Definition D.1 (Correctness of VDS PoS). A VDS scheme VDS has a correct PoS mechanism
if VDS is correct and if for all honestly generated parameters (pp, 8o, stg) < Bootstrap(1?), any file F
of length n and any set of £ valid storage node’s local views (6, n, stj, I;,Fr,) such that U§:1(Ij7 Fr,) =
([n], F), the following holds:

if 7 <=sCIntNode.PoS-Challenge(d), 7 ; < StrgNode.PoS-Prove(d, n,st;, I;, Fy;,7) for all j €
(€], and T, is obtained by aggregating {m.;}jejq in an arbitrary order using repeated usage of
StrgNode.PoS-Aggregate until getting b = 1, then ClntNode.PoS-Ver(d,r, 7,) = 1.

PoS Security. Here we define two security properties for the above PoS mechanism: retrievability
and data possession. Similarly to [JK07, ABCT07], the idea is to ask that from any adversary, con-
trolling all storage nodes, who creates a proof 7, that is accepted with sufficiently high probability
it is possible to extract the entire file. In the retrievability case, this is formalized through requiring
the existence of an extractor that extracts the file by interacting multiple times with such prover
(via rewinding). In the data possession case, it is the same except that the extractor is non-black-
box, i.e., we assume that for any adversary there is an extractor; in other words, the extractor is
a cryptographic one that does not exist in the real world, and for this reason the data possession
notion is weaker than retrievability.

67

We build our definitions inspired to the one of Proof of Retrievable commitment (PoRC) sound-
ness in [Fis18]. To this end, we define the following two experiments.

VDSPoSAdmi/ns(A) VDSPoSExtrs (\)
(pp, 80, sto) < Bootstrap(1™) (pp, 80, sto) < Bootstrap(1™)
(H*,auxa) < Ai(pp, do, sto) (H*,auxa) < Ai(pp, do, sto)
(b™,8",F") «+ EvalHistory(pp, do, sto, H") (b™,8",F") + EvalHistory(pp, do, sto, H")
if b =0 abort, F o gA20m0050,0% 204 (p 50 sty 6%)

else 7 <+ CIntNode.PoS-Challenge(5™);
7'[': < AQ(ppv 507 sto, 5*5 auxa4, 7ﬂ)
return ClntNode.PoS-Ver(5™, r, m;.)

return 1 iff F# L AF* %5 F

Above, given two files F € M™ and F/ € M"™ and a parameter u € [0, 1] we say that F agrees
on a p-fraction with F/, denoted F =, F/, if and only if n =n’ and |{i € [n] : F; = F}}| > p - n.

The experiment VDSPoSAdm{/ps()) is parametrized by a two-stage adversary A = (Aj,As)
and models the interaction between an adversarial prover that creates a (valid) VDS history which
results into a digest 0* and then replies to one honestly generated challenge. This experiment is
used to formalize the notion of e-admissible adversaries, which in brief are adversaries that in
this game answer successfully to the challenge with probability at least e. The second experiment
VDSPoSExtréng()\) is again parametrized by a two-stage adversary A = (Aj,.A2), and additionally
by an extractor £ having oracle access to As. The goal of the extractor is to return a file F which
agrees on a p-fraction of indices with the file F* implicitly returned by A;.

Definition D.2 (Admissible VDS PoS Adversary). A VDS adversary A = (A1, As) is e-
admissible if and only if the experiment VDSPoRAdméDS()\) does not abort with probability 1 —
negl(\) and Pr[VDSPoRAdm{rs(\, F) = 1] > e.

Definition D.3 (Retrievability for VDS). A VDS scheme VDS is (u, €)-retrievable if it is se-
cure and for some A, € O(loge/log i) and every A > A, there exists an extractor € that runs in
time poly(A, n, 1/€) such that for any adversary A which is e-admissible we have Pr[VDSPoSExtréI’DES()\) =
1] € negl(\).

Definition D.4 (Data Possession for VDS). A VDS scheme VDS has e-data-possession if it
is secure and for some A, € O(loge/log) and every A > A, and every adversary A which is e-
admissible there is an extractor € that runs in time poly(\, n, 1/€) such that Pr[VDSPoSExtréng()\) =
1] € negl(\).

Parallel Proof of Storage. We extend our PoS notion for VDS to a setting where one can
simultaneously check storage of k different files of the same length with a single challenge. The
syntactical change we do is to assume that one can generate a challenge by only knowing the length
of the files. Informally, the parallel version of retrievability (resp. data possession) is a parallel
repetition of the protocol, and then from any adversary that answers successfully for all files it is
possible to extract files so that each is consistent with at least a p-fraction of the original one.

The parallel security experiments are as follows.

68

VDSP0S-Par-Admiiss (A) VDSPoS-Par-Extrind (\)

(pp, 80, sto) < Bootstrap(1™) (pp, 80, sto) < Bootstrap(1™)
{(H;,auxa,i) Yozt + Ai(pp, do, sto) {(H,auxaq)} 1 « Ai(pp, 6o, sto)
* ok % . *\ k
{(bi, 67, F7) < EvalHistory(pp, do, sto, H.) }iz1 {(b}, 67, F}) + EvalHistory(pp, 8o, sto, H)},

if 3i € [k] : b7 = 0V =(Nigp—1)|Fi| = [Fij1]) abort,
else 7 +—s CIntNode.PoS-Challenge(|F1]);
{mr o1 < A2(pp, 0o, sto, {07, auxa,itiey, 7)
return 1 iff CIntNode.PoS-Ver(§;,r, 7, ;) Vi € [K]

(Fih, « ghalpdostodiamai) (py 5, sto, {6715))

returnliffWG[k}:?i#J_/\EIjE[k]:Fjiaﬁj

Definition D.5 (Admissible VDS PoS Parallel Adversary). A VDS adversary A = (A1, .As)
is parallel e-admissible if and only if the experiment VDSPoS-Par-Adm{/ns(\) does not abort with
probability 1 — negl(\) and

Pr[VDSPoS-Par-Admiips(\, F) = 1] > €.

Definition D.6 (Parallel Retrievability for VDS). A VDS scheme VDS is parallel (p,€)-
retrievable if it is secure and for some A, € O(loge/logp) and every X > A, there exists an
extractor £ that runs in time poly(\,n,1/€) such that for any adversary A which is parallel e-
admissible we have

Pr[VDSPoS-Par-Extriiis () = 1] € negl(\).

Definition D.7 (Parallel Data Possession for VDS). A VDS scheme VDS has parallel e-
data-possession if it is secure and for some A, € O(loge/log) and every A > A, and every

adversary A which is e-admissible there is an extractor £ that runs in time poly(A,n, 1/€) such that
Pr[VDSPoS—Par—Extrébgs()\) = 1] € negl(A).

With the following theorem we show that it is enough to prove security in the nonparallel setting.
The idea of the proof is that one can construct an extractor for the parallel game by running k
extractors of the nonparallel game. The analysis of this reduction is rather simple and is therefore
omitted.

Theorem D.1. A VDS scheme that has (u,€)-retrievability (resp. data possession) also achieves
parallel (u, €)-retrievability (resp. data possession).

D.1 Proof of Retrievability for any VDS

In this section we show that any VDS scheme admits a PoR mechanism.
We describe the algorithms generically from the VDS algorithms.

CIntNode.PoS-Challenge(n) — 7 samples Apos integers 71, . .., 7, <= [n] and define r = {ry,..., 7y .. }-
StrgNode.PoS-Prove(d, n,st, I,Fr,r) — m, Parse r := {r1,...,7x,,} and let @ := I N r, compute
(Fg,mq) < StrgNode.Retrieve(d, n,st, I, Fr, Q) and return 7, g := (Q, Fg, 7, Q).
StrgNode.PoS-Aggregate(d, 7, m, 1, mr2) — (b, ™) Parse w1 := (Q1,Fg,,m,) and 2 := (Q2, FQ,, mQ,)-
If 3i € {1,2} such that Q; = set b:=1 and 7, := 7,;.
Otherwise, compute (Q,Fg) := (Q1,Fg,) U (Q2,Fg,) and

nq < AggregateCertificates(d, (Q1,Fg,, 79,), (Q2, FQ,,7Q,)), and set m, := (Q,Fg,mq). If Q@ =r,
set b:= 1, otherwise set b := 0.
Return (b, ;)

69

CIntNode.PoS-Ver (0,7, m.) — b parse m, := (Q, Fg, 7o) and return 1 iff Q = r and CIntNode.VerRetrieve(d,
Q,Fg,mg) = 1.

Correctness is easy by inspection and by the correctness of VDS.

For security we state the following theorem. The proof is omitted since it is almost identical to
the proof of the VC-PoRC construction in [Fis18]; the only difference is that instead of reducing to
the position binding of the VC we reduce to the security of the VDS scheme.?®

Theorem D.2. If VDS is a secure VDS scheme then its extension with the PoS algorithms de-
scribed above is a (j,€)-retrievable VDS for any € > 0 such that € — > is non-negligible in
A

D.2 Proof of Data Possession for our first VDS scheme

Here we show that our first VDS scheme from Section 8.1 admits a proof of storage mechanism that
satisfies the PDP notion. This extension works the same as the PoR described above for any VDS,
except that the last step of aggregation “compacts” the proof by generating an AoK of opening
(see Section 6). More precisely, let PoKOpen’ be the same as protocol PoKOpen but adjusted for
the simpler version of our VC scheme given in Section 8.1. Namely, the one where the commitment
is (A, B) and the verification is the VC.Ver’ algorithm. So, the relation proven by PoKOpen' is:

RPoKOpen/ = {((07 I)v (377 7TI)) : VC'Ver/(ppv 07 Ia 371 7TI) = 1}
Then, the PDP aggregation algorithm works as follows.

StrgNode.PoS-Aggregate(d, 7, w1, mr2) — (b, ™) Parse w1 := (Q1,Fg,,m,) and 2 := (Q2,FQ,, mQ,)-
If 3i € {1,2} such that Q; =r set b:=1 and (Q,Fg,mQ) = mp;.
Otherwise, compute (Q,Fg) := (Q1,Fg,) U (Q2,Fg,) and

mqQ < AggregateCertificates(d, (Q1,Fg,, 79,), (Q2, FQ,, 7Q,))-
If Q # r, set m, := (Q,Fg,mg) and return (0, 7,). Otherwise, proceed to compute an AoK of

opening, i.e., compute 7, < PoKOpen’.P((4,Q), (Fg,mg)), and then return (1,7,)
CIntNode.PoS-Ver(d, r, ;) — b return PoKOpen'.V((§,7), 7).

Correctness is easy by inspection and by the correctness of VDS.

For security we state the following theorem. The proof is essentially the same as the one for
retrievability except that in this case we define a non-black-box extractor which is build from the
extractor for PoKOpen’.

Theorem D.3. If PoKOpen' is a secure AoK for relation Rpokopen' @nd the VDS scheme VDS from
Section 8.1 is secure, then its extension with the PoS algorithms described above satisfies (u, €)-data
possession for any € > 0 such that € — o is non-negligible in \.

Parallel PDP. We observe that in the case of executing the PDP protocol in parallel for k different
digests, our construction has an interesting efficiency property. While verifying one PDP takes time
O(Apos) due to the computation of the group element U, := g with w, := PrimeProd(r), in the
case of verifying k PDPs with the same challenge the element U, can be reused. This yields a total
verification time O(Apos + k) instead of O(k - Apos)-

28 For this we also observe that Fisch’s proof could go through even assuming a weaker notion of position binding

in which the adversary declares the whole committed vector in addition to the two discording openings for one
position.

70

E A Variant VDS Construction with Strong Security

We define a stronger notion of security for VDS schemes where the digest is chosen adversarially,
namely without having the verifier need to check the corresponding history. Also, we show that a
variant of our second VDS construction can be proven secure under this strong notion; this however
comes at the price of dropping one of the efficiency requirements as now the verifier may sometimes
run in time linear in the size of the file (still all proofs remain short).

E.1 Strong Security

In this notion the digest can diverge from a valid history, meaning that the VDS scheme is secure
independently of the corresponding history: an adversary cannot convince a client of a false data
block in a retrieval query for any arbitrary digest § (that is possibly not an EvalHistory). This
notion is analogous to the position binding of vector commitments. This allows a client that has
not followed the complete history of the VDS to make certain that for the given digest no invalid
retrieval answers can be given.

Definition E.1 (Strong Security for Verifiable Decentralized Storage). Consider the ex-
periment VDS—strongSecurityéDS()\) below. Then we say that a VDS scheme VDS 1is strongly-secure
if for all PPT A we have Pr[VDS-strongSecurity{ins(A\) = 1] € negl(\).

VDS-strongSecurityiins (A)

(pp, do,sto) « Bootstrap(lk)

(5*3 Q7 FQ7 ™, Fé;h ﬂ—,) — A(PFH 603 St())

b « CIntNode.VerRetrieve(pp, 3*, Q, Fo, ')A
CIntNode.VerRetrieve(pp, 5%, Q, Fq,) A Fy # Fg

return b

E.2 A VDS Construction with Strong Security

Our second VDS scheme from Section 8.2 is built upon the [CF13, LM19] SVC. This scheme is not
strongly secure although it inherits the standard position binding of VC (differently from our other
construction). This property states that, even for adversarially chosen C’s, which possibly do not
come from a valid history, no PPT adversary can provide openings mg, 7T’Q for different subfiles.

What prevents our VDS scheme to be strongly secure is the U-part of the digest. For U it must
be ensured that it has the correct form U <« gHiE[n] . There are two ways to ensure this, either one
follows the history of the VDS or it computes it from scratch when necessary. The first case leads
to the VDS scheme of Section 8.2, while the second one leads to a strongly-secure VDS scheme,
let us call it VDS', that however has the drawback of having linear-time (in the size of the file)
verification of a retrieval.

We note that in practice a client may not need to check U at each retrieval. Observe that it
only depends on the size of the file and not on its context, meaning that only addition and deletion
updates affect it. So one may keep U, = gHiE["J “ stored and at the time of the query verification
update it with the new file length n’. This gives an O(|n — n’|) computational cost for verification
at the cost of storing a single group element, U.

Let the alternative verification algorithm be:

71

CIntNode.VerRetrieve' (8, Q, Fo, mg) — b compute U + gHiE[n] “ and output acceptance bit
b < VC.Ver(pp, C, Q, F, o) A SgiEQ “_u

and the corresponding VDS scheme be the same as the one in Section 8.2 except for the verification
of retrieval query algorithm, i.e.,

VDS’ = (Bootstrap, StrgNode.AddStorage, StrgNode.RmvStorage, StrgNode.PushUpdate,
StrgNode.ApplyUpdate, StrgNode.Retrieve, CIntNode.VerRetrieve’, CIntNode.ApplyUpdate,
AggregateCertificates)

Theorem E.1 (Security). Let G < Ggen(1*) be a hidden order group where the Strong Distinct-
Prime-Product Root assumption, then the VDS’ scheme presented above is a strongly-secure Verifi-
able Decentralized Storage scheme in the standard model.

The proof is almost the same to the one of Theorem 8.3 and is omitted.

F Experimental Results

In this section we include complete tables and plots for our benchmarks of our first VDS construc-
tion.

In some of the tables and plots we show only results for openings of size at most 25% of the
vector size as this is often the case in practice. We remark that the timings for verification of our
SVC construction and BBF do not use proofs of knowledge of exponent, thus both timings can
in practice be reduced through the use of this technique. Finally, although we show amortized
openings (Figure 9) for only openings of size 2048 bits, we stress that different choices of file and
opening size show very similar patterns.

We exclude BBF with precomputation from our experiments as its storage requirements and
running times dominate those of our construction with preprocessing. In terms of storage it is linear
in the number of the bits in the vector. For our choice of security parameters and block size, it
would require 3 x more memory independently of the size of the vector. In terms of time, the running
times of BBF with preprocessing always dominate those of our preprocessing scheme. Concretely
opening and verification of each zero bit requires one more group exponentiation. Finally, the lack
of incremental aggregation makes this scheme less flexible than ours as it does not allow to choose
different tradeoffs in terms of memory/running time.

The Experimental Setting We implemented our VC, its preprocessing variant and BBF?? in
Rust. We executed our experiments on a virtual machine running Debian GNU/Linux with 8 Xeon
Gold 6154 cores and 30 GB of RAM.

We measured running times for the commitment stage (including or not a preprocessing), open-
ing and verification for different choices of vector length (V) and subvector openings (m). Vectors
have blocks of £ = 256 bits (which is representative of vectors where blocks are hash outputs) and
their total size n = N/ range from 16 kibibit (Kibit) to 1 mebibit (Mibit)3". For preprocessing we
considered the basic case in which we precompute one proof per block, i.e., a total of n/¢ proofs is

2 nhttps://github.com/nicola/rust-yinyan
30 1 Kibit = 2'° bits; 1 Mibit = 2'° Kibit. We choose powers of two for convenience.

72

https://github.com/nicola/rust-yinyan

precomputed. We chose m, the opening size to be of 1, 8 or 64 blocks (i.e. 256, 2048 or 16536 bits).
On security parameters: our experiments always used an RSA modulus of 2048 bits and primes of

64 bits for accumulation.

n (file size in bits)| Running Time
16 384 52s
32768 1m 56s
64 536 4m 23s
131072 10m 7s
262144 24m 5s
524 288 1h1m
1048576 2h 54m

Table 4. Commitment times for our preprocessing construction (block size £ = 256).

n (size in bits)| This work| BBF
16 384 18s 3s
32768 37s 8s
64536 1m 19s 18s
131072 3m Os 45s
262144 Tm 22s 2m 29s
524 288 20m 12s 7Tm 8s

1048576 1h10m |29m 54s

Table 5. Commitment Times (no preprocessing)

n (size in bits)| This work (precomp.)|This work| BBF
16 384 2.1071 5.56 5.86
32768 2.1074 11.17 11.69
64536 2.107% 22.44 23.26
131072 2.107% 44.68 45.49
262144 2.107% 88.98 90.72
524 288 2.107% 178.94 |184.86

1048 576 2.107% 357.50 |370.82

Table 6. Opening Times (in s) for openings of 256 bits

73

Running Time in Seconds

n (size in bits)|This work (precomp.)|This work| BBF
16 384 4.27 5.70 7.96
32768 4.27 11.34 14.75
64536 4.27 22.84 28.10
131072 4.27 45.44 54.17
262144 4.27 91.45 108.69
524 288 4.27 182.29 |222.47

1048576 4.27 362.50 453.28

Table 7. Opening Times (in s) for openings of 2048 bits

n (size in bits)| This work (precomp.)|This work| BBF
64 536 73.57 25.96 66.16
131072 73.57 52.42 122.68
262144 73.57 104.63 238.07
524 288 73.57 210.40 521.89

1048576 73.57 423.48 |1100.10

Table 8. Opening Times (in s) for openings of 16384 bits

m - £ (opening in bits)| This work| BBF
256 3.31 7.72
2048 8.97 13.28
16384 309.82 |314.28

Table 9. Verification Times (in ms)

Commitment (No Preprocessing)

This work
—— BBF18

103 4

102 4

101 4

16384 32768 65536 131072 262144 524288 1048576
Size of Committed Vector in Bits (log scale)

Fig. 7. Commitment Experiments

74

Opening (# of bits open = 256)

wn
2 2
;] /(/k/)/"
[9)
(5]
n This work
E 100 4 ~ (precomp.)
E This work
'_
_ —— BBF18
g 10 2]
'c
<
>
o T L L T LA B L A N R |
16384 32768 65536 131072 262144 5242881048576
Size of Committed Vector in Bits (log scale)
Opening (# of bits open = 2048)
wn
2 This work
% (precomp.)
Lg 102 - This work
‘S] — BBF18
£ 1
£
g
g 101 i
C
=}
o I LI I B B B RN R T L B L L L |
16384 32768 65536 131072 262144 5242881048576
Size of Committed Vector in Bits (log scale)
Opening (# of bits open = 16384)
(%)
2 10° 5 This work
§ ~ (precomp.)
UC’ 1 This work
‘S | —« BBF18
€
F 107 -
2 Z
c
C
=}
x

16384 32768 65536 131072 262144 5242881048576
Size of Committed Vector in Bits (log scale)

Fig. 8. Opening Experiments

75

Amortized Opening (of 2048 bits)

1

25 4
w
o
c
o
1)
[
0 This work
f=s
° (precomp.)
£ This work
=
o —— BBF18
c
e
c
=3
o

10 A

0 200 400 600 800 1000

of amortized openings

Fig. 9. Amortized Opening Experiments for a file of size 128 Kibib.

76

	Incrementally Aggregatable Vector Commitments and Applications to Verifiable Decentralized Storage
	Introduction
	A new notion for SVCs: incremental aggregation
	Verifiable Decentralized Storage
	Concurrent Work

	Preliminaries
	Groups of Unknown Order and Computational Assumptions
	Arguments of Knowledge

	Vector Commitments with Incremental Aggregation
	Vector Commitments with Subvector Openings
	Incrementally Aggregatable Subvector Openings

	Applications of Incremental Aggregation
	Divide-and-Conquer Extensions of Aggregation and Disaggregation
	Committing and Opening with Precomputation

	Our Realizations of Incrementally Aggregatable Vector Commitments
	Our First SVC Construction
	Our Second SVC Construction
	Comparison with Related Work

	Arguments of Knowledge for Our First SVC
	Building block: A Stronger Proof of Product
	A Succinct AoK of Opening for our VC Construction
	An AoK for commitments with common subvector
	A Succinct AoK for Commitment on Subvector

	Verifiable Decentralized Storage
	Syntax
	Correctness and Efficiency of VDS
	Security of VDS

	Our Realizations of VDS in Hidden-Order Groups
	Our First VDS Construction
	Our Second VDS Construction
	Efficiency and Comparison

	Experimental Evaluation
	PoProd protocol for Union of RSA Accumulators
	Committing and Opening with Precomputation for the C:BonBunFis19 SVC
	Succinct Arguments of Knowledge for VDS
	VDS Proof of Storage
	Proof of Retrievability for any VDS
	Proof of Data Possession for our first VDS scheme

	A Variant VDS Construction with Strong Security
	Strong Security
	A VDS Construction with Strong Security

	Experimental Results

