
1

Privacy-Preserving Epidemiological
Modeling on Mobile Graphs

Daniel Günther∗, Marco Holz∗, Benjamin Judkewitz†, Hellen Möllering∗, Benny Pinkas‡, Thomas
Schneider∗, Ajith Suresh§

∗Technical University of Darmstadt, Germany †Charité-Universitätsmedizin, Germany ‡Bar-Ilan
University, Israel §Technology Innovation Institute (TII), Abu Dhabi
{guenther, holz, moellering, schneider}@encrypto.cs.tu-darmstadt.de,

benjamin.judkewitz@charite.de, benny@pinkas.net, ajith.Suresh@tii.ae

Abstract—The latest pandemic COVID-19 brought
governments worldwide to use various containment
measures to control its spread, such as contact tracing,
social distance regulations, and curfews. Epidemiologi-
cal simulations are commonly used to assess the impact
of those policies before they are implemented. Unfortu-
nately, the scarcity of relevant empirical data, specif-
ically detailed social contact graphs, hampered their
predictive accuracy. As this data is inherently privacy-
critical, a method is urgently needed to perform pow-
erful epidemiological simulations on real-world contact
graphs without disclosing any sensitive information.

In this work, we present RIPPLE, a privacy-
preserving epidemiological modeling framework en-
abling standard models for infectious disease on a pop-
ulation’s real contact graph while keeping all contact
information locally on the participants’ devices. As a
building block of independent interest, we present PIR-
SUM, a novel extension to private information retrieval
for secure download of element sums from a database.
Our protocols are supported by a proof-of-concept
implementation, demonstrating a 2-week simulation
over half a million participants completed in 7 minutes,
with each participant communicating less than 50 KB.

Keywords—epidemiological modeling, private infor-
mation retrieval, secure multi-party computation

I. INTRODUCTION

The COVID-19 pandemic has profoundly im-
pacted daily life, leading to heightened mental ill-
ness and domestic abuse cases [1]–[3]. Governments
globally have taken steps, such as lockdowns and
institution closures, to curb the virus while support-
ing the economy. Despite these measures, infections
surged, and many lives were lost. Afterwards, new
infectious diseases like monkeypox have spread,
resulting in quarantines in Europe [4]–[6].

In the context of COVID-19, contact tracing apps
were used all over the world to notify contacts of
potential infections [7]–[14]. Unfortunately, there is
a fundamental limitation to contact tracing: It only
notifies contacts of an infected person after the infec-
tion has been detected, i.e., typically after a person
develops symptoms, is tested, receives the test result,
and can connect with contacts [15], [16]. Tupper
et al. [15] report that in British Columbia in April
2021, this process ideally took five days, reducing
new cases by only 8% compared to not using contact

tracing. They conclude that contact tracing must be
supplemented with multiple additional containment
measures to control disease spread effectively.

In contrast, we consider epidemiological mod-
eling, which allows predicting the spread of an
infectious disease in the future and has received a
lot of attention [17]–[23]. It allows us to assess
the effectiveness of containment measures by math-
ematically modeling their impact on the spread. As
a result, it can be an extremely valuable tool for
governments to select effective containment mea-
sures [22]. For example, Davis et al. [24] predicted
in early 2020 that COVID-19 would infect 85%
of the British population without any containment
measures in place, causing a massive overload of the
health system (13-80× the capacity of intensive care
units). Their forecast also indicated that short-term
interventions such as school closures, social distanc-
ing, and so on would not effectively reduce the
number of cases. As a result, the British government
decided to implement a lockdown in March 2020,
effectively reducing transmissions and stabilising the
health system [22].

Access to detailed information about a popula-
tion’s size, density, transportation, and health care
system enables accurate epidemiological modeling
to forecast disease transmission in various scenar-
ios [25]. Precise, up-to-date data on movements
and physical interactions is crucial for forecasting
transmission and assessing the impact of control
measures before implementation [26]. In practice,
these simulations can quickly model the spread of
a disease, project the number of infections based on
specific actions, and predict how the disease might
spread to specific areas.

However, data on personal encounters is scarce,
limiting accurate assessments of containment mea-
sures’ impacts [25]–[27]. This scarcity arises be-
cause encounter data is often obtained through sur-
veys, which fail to capture the reality of random
encounters in public places [26], [28]. Additionally,
social interaction patterns can change rapidly, as
seen with social distancing measures, making col-
lected data quickly outdated. Therefore, existing data
cannot realistically simulate person-to-person social
contact graphs. Ideally, epidemiologists need a com-

mailto:guenther@encrypto.cs.tu-darmstadt.de
mailto:holz@encrypto.cs.tu-darmstadt.de
mailto:moellering@encrypto.cs.tu-darmstadt.de
mailto:guenther@encrypto.cs.tu-darmstadt.de
mailto:benjamin.judkewitz@charite.de
mailto:benny@pinkas.net
mailto:ajith.Suresh@tii.ae

2

plete physical interaction graph of the population,
but strict privacy regulations make accurate tracking
of interpersonal contacts unacceptable.

To address the issue of preserving privacy while
obtaining up-to-date contact data, we present RIP-
PLE, a practical framework for epidemiological
modeling that allows precise disease spread sim-
ulations using current contact information, incor-
porating control measures without leaking infor-
mation about individuals’ contacts. RIPPLE pro-
vides a privacy-preserving method for collecting
real-time physical encounters and can compute ar-
bitrary compartment-based epidemiological models1

on the latest contact graph of the previous days.
RIPPLE is not only applicable to COVID-19, but
to any infectious diseases. We anticipate that our
framework’s privacy guarantee will encourage more
people to participate, allowing epidemiologists to
compute more accurate simulations for developing
effective containment strategies.

Our Contributions: This paper introduces RIP-
PLE (cf. Fig. 1), a framework for expanding the
scope of privacy research from contact tracing to epi-
demiological modeling. While the former only warns
about potential infections in the past, epidemiolog-
ical modeling can predict the spread of infectious
diseases in the future. Anticipating the effects of
various control measures allows for the development
of informed epidemic containment strategies and
political interventions before their implementation.

time steps

#
of
in
di
vi
du
al
s

Research Institute

3b

3c

3a 2

1
4

ΣAnonymous
Communication Participants

1 Mobile apps collect anonymous encounter to-
kens during interactions. 2 Research Institute begins
the simulation by providing initialization parameters.
3a Participants securely upload infection likelihood to
servers. 3b Servers securely compute cumulative infec-
tion likelihood per participant. 3c Participants retrieve
their cumulative infection likelihood. 4 The aggregate
results (#S,#E,#I,#R) are sent to the Research Institute.

Fig. 1: Overview of RIPPLE Framework.

RIPPLE uses a fully decentralised system similar
to the federated learning paradigm [29] to achieve
high acceptance and trust in the system and to
motivate many participants to join the system to
generate representative contact information. All
participant data, such as encounter location, time,
and distance, are kept locally on the participants’
devices. Participants in RIPPLE communicate
through anonymous communication channels
enabled by a group of semi-honest central servers.

RIPPLE is instantiated with two methods for
achieving privacy-preserving epidemiological mod-

1 The implementation of concrete simulation functions is outside
the scope of this work and referred to medical experts. More
details on epidemiological modeling are given in §II.

eling, each covering a different use case. The first
is RIPPLETEE, which assumes each participant’s
mobile device has a Trusted Execution Environ-
ment (TEE). The second method is RIPPLEPIR,
which eliminates this assumption by utilising cryp-
tographic primitives such as Private Information Re-
trieval (PIR). Along the way, we develop a multi-
server PIR extension that allows a client to retrieve
the sum of a set of elements (in our case, infection
likelihoods) from a database without learning indi-
vidual entries.

We assess the practicality of our methods by
benchmarking core building blocks using a proof
of concept implementation. Our findings indicate
that, with adequate hardware, both protocols can
scale up to millions of participants. For instance, a
simulation of 14 days with 1 million participants can
be completed in less than half an hour.

Our contributions are summarized as follows:
1) We present RIPPLE, the first privacy-

preserving framework for epidemiological modeling
on contact information stored on mobile devices.

2) RIPPLE formalises the notion of privacy-
preserving epidemiological modeling and defines
privacy requirements in the presence of both semi-
honest and malicious participants.

3) We present two techniques – RIPPLETEE and
RIPPLEPIR – that combine anonymous communi-
cation techniques with either TEEs or PIR and
anonymous credentials.

4) We propose PIR-SUM, an extension to existing
PIR schemes, that allows a client to download the
sum of τ distinct database entries without learning
the values of individual entries or revealing which
entries were requested.

5) We demonstrate the practicality of our frame-
work by providing an open source implementation
and a detailed performance evaluation of RIPPLE.

II. RELATED WORK & BACKGROUND
INFORMATION

This section discusses related works addressing
privacy challenges in the context of infectious dis-
eases as well as necessary background information
on contact tracing and epidemiological modeling (in-
cluding a clarification of the differences between the
two). An overview of the (cryptographic) primitives
and other techniques used in this work is presented
in §A.

A. Cryptography-based Solutions in the Context of
Infectious Diseases

CrowdNotifier [13] notifies visitors of (large)
events about an infection risk when another visi-
tor reported SARS-CoV-2 positive after the event,
even if they have not been in close proximity
of less than 2 meters. To protect user privacy, it
follows a distributed approach where location and
time information is stored encrypted on the user’s
device. Bampoulidis et al. [30] introduce a privacy-
preserving two-party set intersection protocol that

3

detects infection hotspots by intersecting infected
patients, input by a health institute, with customer
data from mobile network operators.

CoVault [31] is a data analytics platform based
on secure multi-party computation techniques (MPC)
and trusted execution environments. The authors
discuss the usage of CoVault for storing location and
timing information of people usable by epidemiolo-
gists to analyse (unique) encounter frequencies or
linkages among two disease outbreak clusters while
preserving privacy.

Al-Turjman and David Deebak [32] integrate
privacy-protecting health monitoring into a Medical
Things device that monitors the health status (heart
rate, oxygen saturation, temperature, etc.) of users
in quarantine with moderate symptoms. Only in the
event of an emergency is medical personnel notified.
Pezzutto et al. [33] optimize the distribution of a
limited set of tests to identify as many positive
cases as possible, which are then isolated. Their
system can be deployed in a decentralized, privacy-
preserving environment to identify individuals who
are at high risk of infection. Barocchi et al. [34]
develop a privacy-preserving architecture for indoor
social distancing based on a privacy-preserving ac-
cess control system. When users visit public facilities
(e.g., a supermarket or an airport), their mobile
devices display a route recommendation for the
building that maximizes the distance to other peo-
ple. Bozdemir et al. [35] suggest privacy-preserving
trajectory clustering to identify typical movements of
people and detect forbidden gatherings when contact
restrictions are in place.

a) Contact Tracing.: A plethora of contact trac-
ing systems has been introduced and deployed since
the outbreak of the pandemic [7], [8], [36]. They
either use people’s location (GPS or telecommuni-
cation provider information) or measure proximity
(via Bluetooth LE). Most systems can be categorized
into centralized and decentralized designs [10]. In a
centralized contact tracing system (e.g., [37], [38]),
computations such as the generation of the tokens
exchanged during physical encounters are done by a
central party. This central party may also store some
contact information depending on the concrete sys-
tem design. In contrast, in decentralized approaches
(e.g., [9], [12], [39]), computation and encounter
information remain (almost completely) locally at
the participants’ devices.

Contact tracing focuses on determining contacts
of infected people in the past. In contrast, epidemio-
logical modeling, which we consider in this work,
forecasts the spread of infectious diseases in the
future. Thus, epidemiological modeling goes beyond
established contact tracing systems. They share some
technical similarities (specifically, the exchange of
encounter tokens), but on top of anomalously record-
ing the contact graph, simulations have to be run on
it. Similarly, presence tracing and hotspot detection
are concerned with “flattening the curve” in relation
to infections in the past. In contrast, epidemiological
modeling is a tool for decision-makers to evaluate

the efficacy of containment measures like social
distancing in the future, allowing them to “get ahead
of the wave”.

B. Epidemiological Modeling
a) Disease Modeling: There are various ways to

model a disease mathematically [23], [40]–[46]. Pop-
ular compartment models use a few continuous vari-
ables linked by differential equations to capture dis-
ease spread. In the SEIR model [46], [47], individ-
uals are assigned to four compartments: susceptible
(S), exposed (E), infectious (I), and recovered (R).
These models are useful for understanding macro-
scopic trends and are widely used in epidemiological
research [48], [49]. However, they condense complex
individual behaviors into a few variables, limiting
predictive power [50]. In contrast, agent-based epi-
demiological models [51] simulate the spread by ini-
tializing numerous agents with individual properties
(e.g., location, age) and interaction rules. This allows
for more realistic disease transmission simulations
by modeling individual behaviors. Combining agent-
based models with compartment models enhances
the realism and accuracy of disease forecasting.
Simulations with varying parameters, like interaction
reductions or targeted vaccinations, are run to predict
the effects of different policy interventions.

A key challenge is modeling agents’ contact be-
haviors. Older models used survey-based contact
matrices to estimate average contacts within age
ranges [26], which improved over uniform assump-
tions but still fell short. Aggregated network statis-
tics can’t replicate real network dynamics, including
super-spreaders with numerous contacts [52]. Ide-
ally, epidemiologists would like to use real-world
contact graphs of all individuals, but this is often
challenging due to privacy concerns.

b) Contact Tracing for Privacy-Preserving
Epidemiological Modeling: If contact information
collected through contact tracing apps was
centralised, an up-to-date full contact graph could
be constructed for epidemiological simulations.
However, contact information is highly sensitive
and should not be shared. Contact information
collected via mobile phones can reveal who, when,
and whom people meet, which is sensitive and
must be protected. Beyond, such information also
enables to derive indications about the financial
situation [53] and personality [54]. One can think
about many more examples: By knowing which
medical experts are visited by a person, information
about the health condition can be anticipated; contact
with members of a religious minority as well as
visits to places related to religion might reveal a
religious orientation, etc. Thus, it would be ideal
for enabling precise epidemiological simulations
without leaking individual contact information.

One way to achieve privacy-preserving epidemi-
ological modeling using contact tracing apps is by
allowing each participant’s device to share its contact
information secretly with a set of non-colluding

4

servers. These servers can then run simulations using
secure multi-party computation (MPC). Araki et
al. [55] demonstrated efficiently running graph algo-
rithms on secret shared graphs via MPC. However,
despite the common non-collusion assumption in the
crypto community, public trust issues may arise if all
contact information is disclosed once servers collude.
To address this, RIPPLE distributes trust by enabling
participants to keep their contact information local
while anonymously sending messages to each other
to simulate the disease spread. Only aggregated
simulation results are shared with research insti-
tutes, ensuring no direct identity or contact data is
disclosed. This method resembles Federated Learn-
ing [29] and the contact tracing designs by Apple
and Google.2 This distributed design can increase
trust and facilitate broad adoption of the system.

To the best of our knowledge, RIPPLE is the first
framework that allows executing any agent-based
compartment model on the distributed real contact
graph while maintaining privacy.

III. THE RIPPLE FRAMEWORK

RIPPLE’s primary goal is to enable the evaluation
of the impact of multiple combinations of potential
containment measures defined by epidemiologists
and the government, and to find a balance between
the drawbacks and benefits of those measures, rather
than to deploy the measures in “real-life” first and
then analyse the impact afterwards. Such measures
may include, for example, the requirement to wear
face masks in public places, restrictions on the
number of people allowed to congregate, the closure
of specific institutions and stores, or even complete
curfews and lockdowns within specific regions.

Participants in RIPPLE collect personal encounter
data anonymously and store it locally on their mobile
devices, similar to privacy-preserving contact tracing
apps. For epidemiological modeling, RIPPLE must
derive a contact graph without leaking sensitive
personal information to simulate disease spread over
a specific period, like two weeks. Most countries
have a 6-hour period at night when most people are
asleep, and their mobile devices are idle, connected
to WiFi, and possibly charging—an ideal time for
running RIPPLE simulations. Medical experts can
then analyze the results to understand the disease
better, and political decision-makers can identify the
most effective containment measures to implement.

To acquire representative and up-to-date physical
encounter data, widespread public usage of RIPPLE
would be ideal. One way to encourage this is to pig-
gyback RIPPLE on most countries’ official contact
tracing applications. On the other hand, politicians
can motivate residents beyond the intrinsic incentive
of supporting public health by coupling the use of
RIPPLE with additional benefits such as discounted
or free travel passes.

2 https://covid19.apple.com/contacttracing

A. System and Threat Model
RIPPLE comprises of p participants, denoted col-

lectively by P , a research institute RI who is in
charge of the epidemiological simulations, and a
set of MPC servers C responsible for anonymous
communication among the participants.

We assume that the research institute and MPC
servers are semi-honest [56], meaning they follow
protocol specifications correctly while attempting
to gather additional information. These semi-honest
MPC servers also establish an anonymous commu-
nication channel. We discuss the security of the
anonymous communication channel in more detail
in §B-C. A protocol is secure if nothing is leaked be-
yond what can be inferred from the output. While the
semi-honest security model is not the strongest, it of-
fers a good trade-off between privacy and efficiency,
making it popular in practical privacy-preserving ap-
plications such as privacy-preserving machine learn-
ing [57]–[59], genome/medical research [60]–[62],
and localization services [63], [64].. This model pro-
tects against passive attacks by curious administra-
tors and accidental data leakage and often serves as
a foundation for developing protocols with stronger
privacy guarantees [65], [66]. We consider this a
reasonable assumption, as the research institute and
servers will be controlled by generally trusted enti-
ties such as governments or public medical research
centers, potentially collaborating with NGOs like the
EFF3 or the CCC4.

Given the widespread interest in discovering effec-
tive containment measures, we expect a high level of
intrinsic motivation among participants for success-
ful epidemiological modeling. However, assuming
complete honesty from millions of potential partic-
ipants is impractical. Therefore, we incorporate a
client-malicious security model [67], [68] within P ,
covering the possibility of some participants being
malicious and deviating from the protocol to gain
extra information. Malicious behavior could also dis-
rupt or compromise the accuracy of the simulation.
However, our focus here is on addressing deviations
aimed at information gain. Tab. I summarises the
notations used in this work.

B. Phases of RIPPLE
RIPPLE is divided into four phases as shown in

Fig. 1: i) Token Generation, ii) Simulation Initial-
ization, iii) Simulation Execution, and iv) Result
Aggregation. While our framework can be applied
to any compartment-based epidemiological modeling
of any infectious disease (cf. §II-B), we explain
RIPPLE using the prevalent Covid-19 virus and the
SEIR model [47], [69] as a running example. For
simplicity, we assume that an app that emulates RIP-
PLE is installed on each participant’s mobile device
and that the participants locally enter attributes such
as workplace, school, regular eateries, and cafes in
the app after installing the app.

3 https://www.eff.org 4 https://www.ccc.de/en/

https://www.eff.org
https://www.ccc.de/en/

5

Parameter Description

P Set of all participants; P = {P1, . . . ,Pp}
RI Research Institute
C Communication Servers {S0, S1, S2}

paramsim simulation parameters defined by RI
Nsim # distinct simulations (executed in parallel)
Nstep # steps per simulation
classinf infection classes; classinf = {class1inf , . . . , class

Ninf
inf }

Is
i Pi’s infection class in simulation step s ∈ [0, Nstep]

Ei Encounter tokens of Pi

Emax
i #max. encounters by Pi in pre-defined time interval

Eavg average number of encounters

κ computational security parameter κ = 128
re Unique token for encounter e ∈ [0, Emax]
δrei Pi’s infection likelihood w.r.t token re
∆i Pi’s cumulative infection likelihood
me

i metadata of an encounter e by Pi

(pki, ski) Pi’s public/private key pair
σe
i . Pi’s signature on message about encounter e

Entities

Simulations

Protocols

TABLE I: Notations used in RIPPLE.

Fig. 2 summarises the phases of the RIPPLE
framework in the context of a single simulation set-
ting and we give details below. Multiple simulations
can be executed in parallel. The concrete number of
simulation runs with the same parameters or different
parameters should be determined by epidemiologists.
Note that simulations are run on collected data, e.g.,
from the last days, and not on real-time encounter
information. This combines efficiency requirements
with maximally up-to-date encounter information.

1 - Token Generation

• Pi ∈ P executes Fgen all the time (on its mobile de-
vice), collecting encounter data of the form (re,me)
with e < Emax

i .

2 - Simulation Initialization

• Pi ∈ P receives paramsim from RI and locallysets
I1i = I initi .

3 - Simulation Execution
For each simulation step s ∈ [Nstep], Pi ∈ P execute:
• Filter out encounters using paramsim to obtain en-

counter set E s
i .

• For each token re ∈ E s
i , compute the infection

likelihood δrei locally using the formula from RI.
• Invoke Fesim with the input {δrei }re∈Es

i
and obtain

∆s
i =

∑
re∈Es

i

δ̂rei .

• Update the infection class Isi using ∆s
i and the

guidelines from RI.

4 - Result Aggregation
For each simulation step s ∈ [Nstep], execute:
• Pi ∈ P prepares {v1i , . . . , v

Ninf
i }s with vki = 1 if

Isi = classkinf and vki = 0 otherwise, for k ∈ [Ninf].
• Invoke Fagg with inputs {v1i , . . . , v

Ninf
i }s to enable

RI obtain the tuple {C1
inf , . . . ,C

Ninf
inf }s, where Ck

inf =∑
Pi∈P

vki for k ∈ [Ninf].

Protocol RIPPLE

Fig. 2: RIPPLE Framework (for one simulation setting).

1 - Token Generation: During a physical en-
counter, participants exchange data via Blue-
tooth LE to collect anonymous encounter infor-
mation (Fig. 3a), similar to contact tracing [12],
[70]. These tokens are stored locally on the users’
devices and do not reveal any sensitive information
(i.e., identifying information) about the individuals
involved. In addition to these tokens, the underlying
application will collect additional information on
the context of the encounter known as “metadata”
for simulation purposes. This varies depending on
the underlying instantiation of the protocol and can
include details such as duration, proximity, time, and
location. The metadata can include or exclude differ-
ent encounters in the simulation phase, allowing the
effect of containment measures to be modelled (e.g.,
restaurant closings by excluding all encounters that
happened in restaurants). The token generation phase
is not dependent on the simulation phase, so no
simulation-dependent infection data is exchanged.
The token generation phase is modelled as an ideal
functionality Fgen that will be instantiated later in
§IV.
Running Example: Assume that a participant, Alice,
takes the bus to pick up her daughter from school.
There are several other people on this bus – for
simplicity, we call them Bob1, . . . , Bobx. As part of
the token generation phase, Alice’s phone exchanges
unique anonymous tokens with the devices of the
different Bobs. Now, two weeks later, it is night,
and the national research institute (RI) wants to run
a simulation covering 14 days to see how closing
all schools would affect the spread of the disease.
To accomplish this, the RI notifies all registered
participants’ applications to run a simulation using
encounter data from the previous two weeks.
2 - Simulation Initialization: The research insti-

tute RI initiates the simulation phase by sending a
set of parameters, denoted by paramsim, to the par-
ticipants in P . The goal is to “spread” a fictitious in-
fection across Nsim different simulation settings. To

6

dkc9

b1kq

(a) Token Generation

Sent:
dkc9

Sent:
b1kq

Received:
dkc9
b1kq

simulated

(b) Simulation

Fig. 3: Token Generation and Simulation phases in
RIPPLE.

begin a simulation, each participant Pi is assigned to
an infection class I initi ∈ classinf (e.g., {S}usceptible,
{E}xposed, {I}nfectious, {R}ecovered for the SEIR
model) as specified in paramsim. For each individual
simulation, paramsim defines a set of containment
measures, such as school closings and work from
home, which the participants will use as filters
to carry out the simulation in the next stage. In
addition, RI publishes a formula to calculate the
infection likelihood δ. The likelihood is determined
by several parameters in the underlying modeling,
such as encounter distance and time. For example,
this likelihood might range from 0 (no chance of
infection) to 100 (certain to get infected).
Running Example: Assume Alice is designated as
infectious, while Bob1 is designated as susceptible
by RI. The other participants Bob2, . . . , Bobx are
also assigned to an infection class (S, E, I, or R).
To simulate containment measures, the RIPPLE-
app now employs filters defined in paramsim. Using
the information provided by the participants5, the
application may automatically filter out encounters
that would not happen if a containment measure
were in place, such as encounters in school while
simulating school closings.
3 - Simulation Execution: Once RI initialises the

simulation, Nstep simulation steps (3a , 3b , 3c
in Fig. 1) are performed for each of the Nsim simu-
lation settings (e.g., Nstep = 14 days). Without loss
of generality, consider the first simulation step and
let Nsim = 1. The simulation proceeds as follows:
1) Participant Pi ∈ P filters out the relevant en-
counters based on the containment measures defined
5 This may also include location data obtained from the mobile
app., e.g., Check In and Journal fields in the Corona-Warn contact
tracing app.

by RI. Let the set Ei represent the corresponding
encounter tokens.
2) For each token re ∈ Ei, Pi computes the infec-
tion likelihood δrei using the formula from RI, i.e.,
the probability that Pi infects the participant met
during the encounter with identifier token re.
3) Participants use the likelihood values δ obtained
in the previous step to execute an ideal functionality
called Fesim, which allows them to communicate
the δ values anonymously through a set of MPC
servers C. Furthermore, it allows each participant Pj

to receive a cumulative infection likelihood, denoted
by ∆j , based on all of the encounters they had on the
day being simulated, i.e., ∆j =

∑
re∈Ej

δ̂rej . In this
case, δ̂rej denotes the infection likelihood computed
by participant Pf and communicated to Pj for an en-
counter between Pf and Pj with identifier token re.
As will be discussed later in §III-C, Fesim must
output the cumulative result rather than individual
infection likelihoods because the latter can result in
a breach of privacy.
4) Following the guidelines set by the RI, Pj up-
dates its infection class Ij using the cumulative in-
fection likelihood ∆j acquired in the previous step.
These steps above are repeated for each of the Nstep

simulation steps in order and across all the Nsim

simulation settings.
Running Example: Let the simulated containment
measure be the closure of schools. As Alice is
simulated to be infectious, Alice’s phone computes
the infection likelihood for every single encounter
it recorded on the day exactly two weeks ago
(Day 1) except those that occurred at her daughter’s
school. Then, Alice’s phone combines the computed
likelihood of each encounter with the corresponding
unique encounter token to form tuples, which are
then sent to the servers instantiating the anonymous
communication channel. Using the encounter token
as an address, the servers anonymously forward the
likelihood to the person Alice has met, for example,
Bob1 (cf. Fig. 3b). Likewise, Bob1 receives one
message from each of the other participants he
encountered and obtains the corresponding likeli-
hood information. Bob1 aggregates all likelihoods he
obtained from his encounters on Day 1 and checks
the aggregated result to a threshold defined by the
RI to see if he has been infected in the simulation6.
4 - Result Aggregation: For a given simulation

setting, each participant Pi ∈ P will have its infec-
tion class Isi updated at the end of every simulation
step s ∈ [Nstep]. This phase allows RI to obtain
each simulated time step’s aggregated number of
participants per class (e.g., #S, #E, #I, #R). For
this, we rely on a Secure Aggregation functionality,
denoted by Fagg, which takes a Ninf -tuple of the
form {v1i , . . . , v

Ninf

i }s from each participant for every
simulation step s and outputs the aggregate of this
tuple over all the p participants to RI. In this case,

6 Bob1 obtains the aggregated likelihood in the actual protocol.

7

vki is an indicator variable for the k-th infection
class, which is set to one if Isi = classkinf and
zero otherwise. Secure aggregation [71]–[73], [73]
is a common problem in cryptography these days,
particularly in the context of federated learning, and
there are numerous solutions proposed for various
settings, such as using TEEs, a semi-trusted server
aggregating ciphertexts under homomorphic encryp-
tion, or multiple non-colluding servers that aggregate
secret shares. In this work, we consider Fagg a black
box that can be instantiated using existing solutions
compatible with our framework.
Running Example: All participants will know their
updated infection class at the end of Day 1’s sim-
ulation round, and they will prepare a 4-tuple of
the form {vS, vE, vI, vR} representing their updated
infection class in the SEIR model. Participants will
then engage in a secure aggregation protocol that
determines the number of participants assigned to
each infection class, which is then delivered to
the RI. Then, the second simulation round begins,
replicating the procedure but using encounters from
13 days ago, i.e., Day 2. The RI holds the aggre-
gated number of participants per day per class after
simulating all 14 days, i.e., a simulation of how the
disease would spread if all schools had been closed
in the previous 14 days (cf. graph in Fig. 1).

C. Privacy Requirements

A private contact graph necessitates that partici-
pants remain unaware of any unconscious interac-
tions. This means they cannot determine if they had
unconscious contact with the same person more than
once or how often they did. We remark that an inse-
cure variant of RIPPLE, in which each participant Pi

receives the infection likelihood δ̂ei for all its encoun-
ters e ∈ Ei separately, will not meet this condition.

a) Linking Identities Attacks.: To demon-
strate this, observe that when running multiple
simulations (with different simulation parameters
paramsim) on the same day, participants will use the
same encounter tokens and metadata from the token
generation phase in each simulation. If a participant
Pi (Alice) can see the infection likelihood δ̂i of each
of her interactions, Pi can look for correlations be-
tween those likelihoods to see if another participant
Pj (Bob) was encountered more than once. We call
this a Linking Identities Attack and depict it in Fig. 4,
where, for simplicity, the infection likelihood accepts
just two values: 1 for high and 0 for low infection
likelihood.

1
1
1

Fig. 4: Linking Identities Attack. Al-
ice and Bob had several encounters,
but Alice and Charlie only had one.

Consider
the following
scenario to help
clarify the issue:
Alice and Bob
work together in
the same office.
As a result, they
have numerous
conscious

encounters
during working
hours. However,
in their spare time, they may be unaware that
they are in the same location (e.g., a club) and
may not want the other to know. Their phones
constantly collect encounters even if they do not
see each other. Assume the RI sent the participants
a simple infection likelihood formula that returns
0 (not infected) or 1 (infected). Furthermore, since
the data is symmetric, Alice and Bob have the
same metadata (duration, distance, etc.) about their
conscious and unconscious encounters. Let Bob be
modelled as infectious in the first simulation. As
a result, he will send a 1 for each (conscious and
unconscious) encounter he had (including those
with Alice). If multiple simulations are run on the
same day (i.e., with the same encounters), Alice
will notice that some encounters, specifically all
conscious and unconscious encounters with Bob,
always have the same infection likelihood: If Bob
is not infectious, all will return a 0; if Bob is
infectious, all will return a 1. Thus, even if Alice
had unconscious encounters with Bob, she can
detect the correlations between the encounters and,
as a result, determine which unconscious encounters
were most likely with Bob.

The more simulations she runs, the more confident
she becomes. Since every participant knows the
formula, this attack can also be extended to complex
infection likelihood functions. While it may be more
computationally expensive than the simple case,
Alice can still identify correlations. This attack also
works even if all of the encounters are unconscious.
In such situations, Alice may be unable to trace
related encounters to a single person (Bob), but she
can infer that they were all with the same person
(which is more than learning nothing). To avoid a
Linking Identities attack, RIPPLE ensures that each
participant receives an aggregation of all infection
likelihoods of their encounters during the simulation.
It cannot be avoided that participants understand
that when “getting infected” some of their contacts
must have been in contact with a (simulated)
infectious participant. As this is only a simulated
infection, we consider this leakage acceptable.

11

Fig. 5: Sybil Attack.

b) Sybil
Attack.: While
the Linking
Identities Attack is
already significant
in the semi-
honest security
model, malicious
participants may
further circumvent
aggregation mechanisms that prevent access to
individual infection likelihoods. They could, for
example, construct many sybils, i.e., multiple
identities using several mobile devices, to collect
each encounter one by one and then conduct a
Linking Identities Attack with the information.

8

A registration system can be used to increase the
costs of performing sybil attacks, i.e., to prevent an
adversary from creating many identities. This assures
that only legitimate users can join and participate in
the simulation. In a closed ecosystem, such as a firm,
this can be achieved by letting each member receive
exactly one token to participate in the simulation.
On a larger scale at the national level, one can let
each citizen receive a token linked to a digital ID
card. In such authentication mechanisms, anonymous
credentials (cf. §A)can be used to ensure anonymity,
and we leave the problem for future work.

c) Inference Attacks.: Note that although
RIPPLE mimics the spirit of Federated Learning
(FL) [29], it is not susceptible to so-called inference
attacks [74], [75] in the same sense as FL. First,
RIPPLE only reveals the final output (to a research
institute RI) and no individual updates/results that
ease information extraction. We, however, note that
the analysis results provided to RI (cf. §III-A) con-
tain information about the spread of the modeled dis-
ease in a specific population (otherwise it would be
meaningless to run the simulation). The ideal func-
tionality does not cover leakage from the final output
but protects privacy during the computation. Thus,
our security model does not consider anything that
might be inferred from the output. We also argue that
it is in the public interest to provide such aggregated
information to the RI for deciding upon effective
containment measures against infectious diseases.

IV. INSTANTIATING Fesim

We propose two instantiations of Fesim that cover
different use cases and offer different trust-efficiency
trade-offs. Our first design, RIPPLETEE, is presented
in the full version [76, §4.1] and assumes the pres-
ence of trusted execution environments (TEEs) such
as ARM TrustZone on the mobile devices of the par-
ticipants. In our second design, RIPPLEPIR (§IV-B),
we eliminate this assumption and provide privacy
guarantees using cryptographic techniques such as
PIR and anonymous communications.

A. RIPPLETEE

The deployment of the entire operation in a sin-
gle designated TEE would be a simple solution to
achieving the ideal functionality Fesim. However,
given the massive amount of data that must be
handled in a large-scale simulation with potentially
millions of users, TEE resource limitations are a
prohibitive factor. Furthermore, since the TEE would
contain the entire population’s contact graph, it
would be a single point of failure and an appealing
target for an attack on TEE’s known vulnerabilities.
RIPPLETEE (Fig. 6), on the other hand, leverages the
presence of TEEs in participants’ mobile devices but
in a decentralised manner, ensuring that each TEE
handles only information related to the encounters
made by the respective participant.

Before going into the details of RIPPLETEE, we
will go over the Fanon functionality (cf. §B-C),

which allows two participants, Pi and Pj , to send
messages to each other anonymously via a set of
communication servers C. The set C consists of one
server acting as an entry node (Nentry), receiving
messages from senders, and one server acting as an
exit node (Nexit), forwarding messages to receivers.
In Fanon, sender Pi does not learn to whom the
message is sent, and receiver Pj does not learn who
sent it. Similarly, the servers in C will be unable to
relate receiver and sender of a message. Anonymous
communication (cf. §A-A) is an active research area,
e.g., [77]–[80], and Fanon in RIPPLETEE can be
instantiated using any of these efficient techniques.

72 1

0
3

Anonymous Communication

4

6

5

Fig. 6: RIPPLETEE Overview. Messages in red de-
note additional steps needed for malicious partici-
pants.

a) Token Generation: (steps 0 to 1 in Fig. 6):
During the pre-computation phase, the TEE of each
participant Pi ∈ P generates a list of fresh unique
public/private key pairs (pkei , sk

e
i) for all possible

encounters e ∈ [Emax
i]. The keys, for example, can

be generated and stored a day ahead of time. The
newly generated public keys are then sent by Pi’s
TEE to the exit node Nexit (step 0 in Fig. 6)
to enable anonymous communication (cf. §B-C) via
Fanon later in the protocol’s simulation part.

During a physical encounter e, Pi and Pj ex-
change two unused public keys pkei and pkej (step 1
in Fig. 6). Simultaneously, both participants compute
and record metadata me, such as the time, location,
and duration of the encounter, and store this infor-
mation alongside the received public key.

Additional measures are required for malicious
participants to ensure that the participants are ex-
changing public keys generated by the TEEs: After
obtaining the new public keys from Pi, the exit
node Nexit goes one step further: It signs them
and returns the signatures to Pi after checking
that it is connecting directly with a non-corrupted
TEE (step 0 in Fig. 6 and §A). During a physical
encounter, Pj will provide the corresponding sig-
nature, denoted by σe

j along with pkej so that the
receiver Pi can verify that the key was correctly
generated by Pj’s TEE (step 2 in Fig. 6).

9

b) Simulation Execution: (steps 2 to 7 in
Fig. 6): All local computations, including infection
likelihood calculation and infection class updates,
will be performed within the participants’ TEEs. In
detail, for each encounter e involving participants Pi

and Pj , the following steps are executed:
– Pi’s TEE computes δrei and encrypts it using

the public key pkej of Pj obtained during the
token generation phase. Let the ciphertext be
cei,j = Encpke

j
(δrei) (step 2 in Fig. 6).

– Pi’s TEE establishes a secure channel with the
entry node Nentry of C via remote attestation
and uploads the tuple (pkej , c

e
i,j) (step 3 in

Fig. 6).
– The tuple (pkej , c

e
i,j) traverses through the

servers in C and reaches the exit node Nexit

(step 4 in Fig. 6, instantiation details for the
anonymous communication channel are given
in §B-C).

– If the public key pkei has already been used in
this simulation step7, Nexit discards the tuple
(step 5 in Fig. 6).

– Otherwise, Nexit uses pkej to identify the re-
cipient Pj and sends the ciphertext cei,j to Pj

(step 6 in Fig. 6).
After receiving the ciphertexts for all of the en-

counters, Pj’s TEE decrypts them and aggregates the
likelihoods to produce the desired output (step 7 in
Fig. 6).

1) Security of RIPPLETEE.: First, we consider the
case of semi-honest participants. During the token
generation phase, since the current architecture in
most mobile devices does not allow direct commu-
nication with a TEE while working with Bluetooth
LE interfaces, participant Pi can access both the sent
and received public keys before they are processed
in the TEE. However, unique keys are generated
per encounter and do not reveal anything about
an encounter’s identities due to the security of the
underlying Fgen functionality, which captures the
goal of several contact tracing apps in use.

The Fanon functionality, which implements an
anonymous communication channel utilising the
servers in C, aids in achieving contact graph privacy
by preventing participants from learning to/from
whom they are sending/receiving messages. While
the entry node learns who sends a message, it does
not learn who receives them. Similarly, the exit
node Nexit has no knowledge of the sender but
learns the recipient using the public key. Regarding
confidentiality, participants in RIPPLETEE have no
knowledge of the messages being communicated be-
cause they cannot access the content of the TEEs and
the TEEs communicate directly to the anonymous
channel. Furthermore, servers in C will not have
access to the messages as they are encrypted.

For the case of malicious participants, they could
send specifically crafted keys during the token gener-
ation phase instead of the ones created by their TEE.
However, this will make the signature verification

7 This step is not required for semi-honest participants.

fail and the encounter will get discarded. Further-
more, a malicious participant may reuse public keys
for multiple encounters. This manipulation, however,
will be useless because the exit node Nexit checks
that each key is only used once before forward-
ing messages to participants. During the simulation
phase, all data and computation are handled directly
inside the TEEs of the participants, so no manip-
ulation is possible other than cutting the network
connection, i.e., dropping out of the simulation,
ensuring correctness. Dropouts occur naturally when
working with mobile devices and have no effect on
privacy guarantees.

B. RIPPLEPIR

In the following, we show how to get rid of
RIPPLETEE’s assumption of each participant having
a TEE on their mobile devices. If we simply remove
the TEE part of RIPPLETEE and run the same pro-
tocol, decryption and aggregation of a participant’s
received infection likelihoods would be under their
control. Thus, the individual infection likelihoods
of all encounters would be known to them, leaking
information about the contact graph (cf. §III-C). To
get around this privacy issue, we need to find a
way to aggregate the infection likelihoods so that the
participants can only derive the sum, not individual
values.

Fpirsum interacts with M servers, denoted by C, and
participant Pi ∈ P .
Input: Fpirsum receives τ indices denoted by Q =
{q1, . . . , qτ} from Pi and a database D from C.
Output: Fpirsum sends

∑τ
j=1 D[qj] to Pi as the output.

Functionality Fpirsum

Fig. 7: Ideal functionality for PIR-SUM (semi-honest).

Private Information Retrieval (PIR, cf. §A) is
one promising solution for allowing participants to
retrieve infection likelihoods sent to them anony-
mously. PIR enables the private download of an
item from a public database D held by M servers
without leaking any information to the servers, such
as which item is queried or the content of the queried
item. However, classical PIR is unsuitable for our
needs because we need to retrieve the sum of τ
items from the database rather than the individual
ones. As a result, we introduce the ideal functionality
Fpirsum (Fig. 7), which is similar to a conventional
PIR functionality but returns the sum of τ queried
locations of the database as a result. For the remain-
der of this section, we consider Fpirsum to be an ideal
black-box and will discuss concrete instantiations in
§V.We now detail the changes needed in the token
generation phase to make it compatible with the rest
of the RIPPLEPIR protocol.

Token Generation (step 1 in Fig. 8): During a
physical encounter e among participants Pi and Pj ,
they generate and exchange unique random tokens
denoted by rei and rej . Both participants, like in

10

2

6
2 1

4

5
3

Anonymous Communication

Fig. 8: RIPPLEPIR Overview.

RIPPLETEE, also record the metadata me. Thus,
at the end of a simulation step s ∈ [Nstep] (e.g.,
a day), Pi holds a list of sent encounter tokens,
denoted by Es

i = {rei }e∈Ei
, where Ei is the complete

(sent/received) set of encounters of Pi, and a list of
received tokens, denoted by Rs

i = {rej}e∈Ei
. Looking

ahead, these random tokens will be used as addresses
to communicate the corresponding infection likeli-
hood among the participants.

Simulation Execution (steps 2 to 6 in Fig. 8):
Local computations such as encounter filtering and
infection likelihood calculation proceed similarly to
RIPPLETEE but without TEE protection. The steps
for an encounter e among Pi and Pj are as fol-
lows:
• Pi blinds each infection likelihood δrei com-

puted with the corresponding random token rej re-
ceived from Pj and obtains the ciphertext cei,j =
δrei + H(rej ||ssim||0). In addition, it computes the
destination address for the ciphertext as ai,j =
H(rej ||ssim||1). Here, H() is a cryptographic hash
function and ssim ∈ [Nsim] denotes the current
simulation setting. (step 2 in Fig. 8)

– ssim is used in H() to ensure that distinct
(ciphertext, address) tuples are generated for the
same encounters across multiple simulation set-
tings, preventing the exit node Nexit from poten-
tially linking messages from different simulations.
• Pi sends the tuple (cei,j , ai,j) anonymously to

Nexit with the help of the servers in C. Nexit

discards all the tuples with the same address field
(ai,j) (steps 3 to 4 in Fig. 8). The instantiation
details for the anonymous communication channel
are given in §B-C).

As a server in C, Nexit locally creates the
database D for the current simulation step using all
of the (ai,j , c

e
i,j) tuples received (part of step 4 in

Fig. 8). A naive solution of inserting cei,j using a
simple hashing of the address ai,j will not provide
an efficient solution in our case since we require
only one message to be stored in each database entry
to have an injective mapping between addresses
and messages. This is required for the receiver
to download the messages sent to them precisely.

Simple hashing would translate to a large database
size to ensure a negligible probability of collisions.
Instead, in RIPPLEPIR, we use a novel variant of a
garbled cuckoo table that we call arithmetic garbled
cuckoo table (AGCT, see below), with ai,j as the
insertion key for the database.

Once the database D is created, Nexit sends it to
the other servers in C based on the instantiation of
Fpirsum (cf. §V). Each Pj ∈ P will then participate
in an instance of Fpirsum with the servers in C acting
as PIR servers holding the database D. Pj uses
the addresses of all its sent encounters from Es

j ,
namely H(re||ssim||1), as the input to Fpirsum and
obtains a blinded version of the cumulative infection
likelihood, denoted by ∆̂j , as the output (step 5
in Fig. 8). The cumulative infection likelihood, ∆j ,
is then unblinded as

∆j = ∆̂j −
∑

re∈ Es
j

H(re||ssim||0)

concluding the current simulation step (step 6
in Fig. 8).

1) Security of RIPPLEPIR: Except for the database
constructions at exit node Nexit and the subse-
quent invocation of the Fpirsum functionality for
the cumulative infection likelihood computation, the
security guarantees for semi-honest participants in
RIPPLEPIR are similar to those of RIPPLETEE.
Unlike RIPPLETEE, Nexit in RIPPLEPIR will be
unable to identify the message’s destination from
the address because it will be known only to the
receiving participant. Furthermore, each participant
obtains the cumulative infection likelihood directly
via the Fpirsum functionality, ensuring that Nexit

cannot infer the participant’s encounter details and,
thus, contact graph privacy.

Malicious participants in RIPPLEPIR, as opposed
to RIPPLETEE,can tamper with the protocol’s cor-
rectness by providing incorrect inputs. However, as
stated in the threat model in §III, we assume that ma-
licious participants in our framework will not tamper
with the correctness and will only seek additional
information. A malicious participant could re-use
the same encounter token for multiple encounters
during token generation, causing the protocol to
generate multiple tuples with the same address. How-
ever, as the protocol states, Nexit will discard all
such tuples, removing the malicious participant from
the system. Another potential information leakage
caused by the participant’s aforementioned action is
that the entry point of the anonymous communica-
tion channel can deduce that multiple participants
encountered the same participant. This is not an issue
in our protocol because we instantiate the Fanon

functionality using a 3-server oblivious shuffling
scheme (cf. §B-C), where all the servers except
Nexit will not see any messages in the clear, but
only see secret shares.

2) Arithmetic Garbled Cuckoo Table (AGCT): We
design a variant of garbled cuckoo tables ([81],
cf. §A)that we term arithmetic garbled cuckoo table

11

0 1 N-1

...
2

0 1 N-1

...
2

0 1 N-1

...
2

Fig. 9: Insertion into the Arithmetic Garbled Cuckoo Table (AGCT). H1 and H2 are two hash functions.
{k1,m1} and {k2,m2} are key-value pairs where the key is used to determine the data address in the
database.

(AGCT) to reduce the size of the PIR database while
ensuring a negligible collision likelihood. It uses
arithmetic sharing instead of XOR-sharing to share
database entries and present the details next.

Assume two key-message pairs {k1,m1} and
{k2,m2}8 are to be added to database D with
N bins, using two hash function H1 and H2 to
determine the insertion addresses.
1. Insertion of {k1,m1}:

a) Compute a1 = H1(k1) mod N and a2 =
H2(k1) mod N .
b) Check if bins a1 and a2 are already occupied.
Let’s assume this is not the case.
c) Compute the arithmetic sharing of the mes-
sage m1: ⟨m1⟩0 = r1 ∈R Z2ℓ and ⟨m1⟩1 =
m1 − ⟨m1⟩0.
d) Insert D[a1] = ⟨m1⟩0 and D[a2] = ⟨m1⟩1.

2. Insertion of {k2,m2}:
a) Compute b1 = H1(k2) mod N and b2 =
H2(k2) mod N .
b) Check if bins b1 and b2 are already occupied.
Let’s assume b1 = a1, i.e., the first bin is already
occupied, but bin b2 is free.
c) Compute the arithmetic sharing m2 with
⟨m2⟩0 = ⟨m1⟩0 as b1 = a1. Then, the other share
is ⟨m2⟩1 = m2 − ⟨m2⟩0.
d) Insert D[b1] = ⟨m2⟩0 and D[b2] = ⟨m2⟩1.

Double Collision: Now the question is how to
handle the insertion of a database entry if both
addresses determined by the two hash functions are
already occupied. An easy solution is to pick differ-

8 k corresponds to a key and m to a message in our application.

ent hash functions s.t. no double collision occurs for
all n elements that shall be stored in the database.
Alternatively, Pinkas et al. [81] demonstrate for a
garbled cuckoo table how to extend the database by
d + λ bins, where d is the upper bound of double
collisions and λ is an error parameter, such that
double collisions occur with a negligible likelihood.
For details, please refer to [81, §5].

V. PIR-SUM: INSTANTIATING Fpirsum

So far, the discussion has focused on RIPPLE as a
generic framework composed of multiple ideal func-
tionalities that could be efficiently instantiated using
state-of-the-art privacy-enhancing technologies. In
this section, we will use three semi-honest MPC
servers to instantiate our novel Fpirsum functional-
ity (Fig. 7). In particular, we have three servers
S0,S1, and S2, and we design the PIRsum protocol
to instantiate the Fpirsum functionality.

The problem statement in our context is formally
defined as follows: Participant Pi ∈ P has a set of
τ indices denoted by Q = {q1, . . . , qτ} and wants
to retrieve res =

∑
q∈Q D[q]. In this case, D is a

database with N elements of ℓ-bits each that is held
in the clear by both the servers S1 and S2. The server
S0 aids in the computation performed by the servers
S1 and S2. Furthermore, we assume a one-time setup
(cf. §B-A)among the servers and Pi that establishes
shared pseudorandom keys among them to facilitate
non-interactive generation of random values and,
thus, save communication [55], [57], [59].

A. Overview of PIRsum protocol
At a high level, the idea is to use multiple in-

stances of a standard 2-server PIR functionality [82],
[83], denoted by F2S

pir , and combine the responses

12

to get the sum of the desired blocks as the output.
Dm = D + m denotes a modified version of the
database D in which every block is summed with
the same ℓ-bit mask m, i.e., Dm[i] = D[i] +m for
i ∈ [N]. The protocol proceeds as follows:

– S1 and S2 non-interactively sample τ ran-
dom mask values {m1, . . . ,mτ} such that∑τ

j=1 mj = 0.
– S1,S2, and Pi execute τ instances of F2S

pir in
parallel, with servers using Dmj as the database
and Pi using qj as the query for the j-th
instance for j ∈ [τ].

– Let resj denote the result obtained by Pi from
the j-th F2S

pir instance. Pi locally computes∑τ
j=1 resj to obtain the desired result.

The details for instantiating F2S
pir using the stan-

dard linear summation PIR approach [82] are pro-
vided in §C-A. The approach requires Pi to com-
municate N · τ bits to the servers, which is further
reduced in RIPPLEPIR (cf. §V-C).

a) Malicious participants.: While it is simple to
show that the above solution is adequate for semi-
honest participants, malicious participants must be
dealt with separately. A malicious participant, for
example, could use the same query, say qj , in all τ
instances and retrieve only the block corresponding
to qj by dividing the result by τ . We present a simple
verification scheme over the F2S

pir functionality to
prevent these manipulations.

For malicious participants, we want to ensure that
Pi used a distinct vector b⃗ (representing a PIR query
qj , cf. §C-A) during the τ parallel instances. One
naive approach is to have S1 and S2 compute the
bitwise-OR of all the τ bit query vectors b⃗1, . . . , b⃗τ ,
and then run a secure two-party computation proto-
col to compare the number of ones in the resultant
vector to τ . We use the additional server S0 to
optimize this step further. S1 and S2 send randomly
shuffled versions of their secret shared bit vectors
to S0, who reconstructs the shuffled vectors and
performs the verification locally. This approach leaks
no information to S0 because it has no information
about the underlying database D. The verification
procedure is as follows:

– S1 and S2 non-interactively agree on a random
permutation, denoted by π.

– Su sends π([⃗bj]u) to S0, j ∈ [τ], u ∈ {1, 2}.
– S0 locally reconstructs π(b⃗j) = π([⃗bj]1) ⊕

π([⃗bj]2), for j ∈ [τ]. If all the τ bit vectors are
correctly formed and distinct, it sends Accept to
S1 and S2. Else, it sends abort.

Note that the verification using P0 will incur
a communication of 2τN bits among the servers.
Furthermore, the above verification method can be
applied to any instantiation of F2S

pir that generates a
boolean sharing of the query bit vector among the
PIR servers and computes the response as described
above, e.g., the PIR schemes of [82]–[84].

B. Instantiating Fpirsum

The formal protocol for PIRsum in the case of ma-
licious participants is provided in Fig. 10, assuming
the presence of an ideal functionality F2S

pir (as will
be discussed in HYB2 below). In PIRsum, the servers
S1,S2 and the participant Pi run τ instances of F2S

pir
in parallel, one for each query q ∈ Q. Following the
execution, Pi receives D[q]+ rq whereas Su receives
rq, [q]u, for u ∈ {1, 2} and q ∈ Q. Pi then adds
up the received messages to get a masked version
of the desired output, i.e,

∑
q∈Q D[q] +maskQ with

maskQ =
∑

q∈Q rq . S1,S2 compute maskQ in the
same way.

Input(s): i) S1,S2 : D; |D| = N , ii) Pi : Q =
{q1, . . . , qτ}, and iii) S0 : ⊥.
Output: Pi : res =

∑
q∈Q D[q] for distinct queries, else

res = ⊥.

Computation

1. For each q ∈ Q,
a. S1, S2 and Pi invoke F2S

pir (cf. HYB2 in proof of
Lemma 1) with the inputs D, q.
b. Let rq, [q]u denote the output of Su, for u ∈
{1, 2} and D[q] + rq denote the output of Pi.

2. Pi computes res′ =
∑

q∈Q(D[q]+rq), while S1, S2

computes maskQ =
∑

q∈Q rq .
3. S1, S2 and S0 invokes Fvrfy on the secret shares of
queries, denoted by {[q]u}q∈Q,u∈{1,2}, to check the
distinctness of the queries in Q.
4. If Fvrfy returns Accept, S1,S2 sends maskQ to
Pi, who computes res = res′ − maskQ. Otherwise,
abort.

Protocol PIRsum

Fig. 10: PIRsum Protocol.

The protocol could be completed by S1 and
S2 sending maskQ to Pi, then Pi unmasking its
value to obtain the desired output. However, before
communicating the mask, the servers must ensure
that all queries in Q are distinct, as shown in
Fpirsum (Fig. 11). For this, S1,S2 use their share
of the queries q ∈ Q and participate in a secure
computation protocol with S0. We capture this with
an ideal functionality Fvrfy, which takes the secret
shares of τ values from S1 and S2 and returns
Accept to the servers if all of the underlying
secrets are distinct. Otherwise, it returns abort.

1) Security of PIRsum Protocol: Fig. 11 presents
the ideal functionality for PIRsum in the context
of malicious participants. In this case, Fpirsum first
checks whether all the queries made by the partici-
pant Pi are distinct. If yes, the correct result is sent
to Pi; otherwise, ⊥ is sent to Pi.

Fpirsum interacts with servers in C, and participant Pi ∈
P .
Input: Fpirsum receives τ indices denoted by Q =
{q1, . . . , qτ} from Pi and a database D from C.

Functionality Fpirsum

13

Computation: Fpirsum sets y =
∑τ

j=1 D[qj] if all the
queries in Q are distinct. Else, it sets y = ⊥.
Output: Fpirsum sends y to Pi.

Fig. 11: PIR-SUM functionality (malicious participants).

Lemma 1. Protocol PIRsum (Fig. 10) securely re-
alises the Fpirsum ideal functionality (Fig. 11) for the
case of malicious participants in the {F2S

pir ,Fvrfy}-
hybrid model.

Proof: The proof follows with a hybrid argu-
ment based on the three hybrids HYB0, HYB1,
and HYB2 discussed below. Furthermore, any secure
three-party protocol can be used to instantiate Fvrfy

in RIPPLE.
We use a standard 2-server PIR functionality,

denoted by F2S
pir , to instantiate Fpirsum. The guaran-

tees of F2S
pir , however, are insufficient to meet the

security requirements of Fpirsum, so we modify F2S
pir

as a sequence of hybrids, denoted by HYB. The
modification is carried out in such a way that for
a malicious participant Pi, each hybrid is computa-
tionally indistinguishable from the one before it. As
the first hybrid, F2S

pir is denoted by HYB0.

HYB0: Let F2S
pir denote a 2-server PIR ideal func-

tionality for our case, with database holders S1 and
S2, and client Pi. For a database D held by S1 and
S2 and a query q held by Pi, F2S

pir returns D[q] to
Pi, but S1 and S2 receive nothing.

HYB1: We modify F2S
pir so that it returns D[q] + r

to Pi, and S1,S2 receive r, where r is a random
value from the domain of database block size. In
other words, the modification can be thought of as
the standard F2S

pir being executed over a database
Dr = D + r rather than the actual database D.
This modification leaks no additional information
regarding the query to the servers because they will
receive random masks that are independent of the
query q. Furthermore, from the perspective of Pi

with no prior knowledge of the database D, HYB1

will be indistinguishable from HYB0 because the
values it sees in both cases are from the same
distribution. As a result, HYB0 ≈ HYB1.

HYB2: Looking ahead, in PIRsum, servers S1,S2 and
participant Pi run τ instances of F2S

pir in parallel, one
for each query q ∈ Q. As shown in Fpirsum (Fig. 11),
the servers must ensure that all of the queries in Q
are distinct. For this, we modify F2S

pir in HYB1 to
additionally output a secret share of the query q to
each of S1 and S2. Because the servers S1 and S2 are
assumed to be non-colluding in our setting, this mod-
ification will leak no information about the query q
to either server. Since the output to Pi remains un-
changed, HYB1 ≈ HYB2 from Pi’s perspective.

C. Reducing participant’s communication
PIRsum is realized in RIPPLEPIR using two differ-

ent approaches, each with its own set of trade-offs,
with a goal of minimizing the communication at the

participant’s end. While the first approach, denoted
by PIRI

sum (Fig. 12), sacrifices computation for better
communication, the second approach, denoted by
PIRII

sum (Fig. 13), reduces both the computational and
communication overhead of the participant in PIRI

sum
with the help of additional server S0 ∈ C.

1) PIRI
sum (Fig. 12): In this approach, we instan-

tiate F2S
pir using PIR techniques based on Function

Secret Sharing (FSS) [83]–[85]. To retrieve the q-
th block from the database, Pi uses FSS on a
Distributed Point Function (DPF) [86] that evaluates
to a 1 only when the input q is 1 and to 0 otherwise.
Pi generates two DPF keys k1 and k2 that satisfy the
above constraint and sends one key to each of the
servers S1 and S2. The servers S1 and S2 can then
locally expand their key share to obtain their share
for the bit vector b⃗ and the rest of the procedure pro-
ceeds similarly to the naive linear summation method
discussed in §V-A (more details on Linear Summa-
tion PIR are given in §C-A). The key size for a
database of size N records using the optimised DPF
construction in [83] is about λ log(N/λ) bits, where
λ = 128 for an AES-based implementation. Fig. 12
provides the formal details of the PIRI

sum protocol.
Security: For semi-honest participants, the se-

curity of our method directly reduces to that of
the 2-server PIR protocol in [83]. However, as
mentioned in [83], a malicious participant could
generate incorrect DPF keys, risking the scheme’s
security and correctness. To prevent this type of
misbehavior, Boyle et al. [83] present a form of
DPF called “verifiable DPF”, which can assure the
correctness of the DPF keys created by Pi at the cost
of an increased constant amount of communication
between the servers.

While verifiable DPFs in PIRI
sum ensure the va-

lidity of the τ bit vectors generated by Pi, they
do not ensure that bit vectors b⃗1, . . . , b⃗τ correspond
to τ distinct locations in the database D. However,
we use the correctness guarantee of verifiable DPFs
to reduce the communication cost for verification,
as discussed in §V-A0a, §B-D, and §C-A1. In de-
tail, all τ bit vectors b⃗1, . . . , b⃗τ (PIR queries) are
secret-shared between S1 and S2, each guaranteed
to have exactly one 1 and the rest 0. To ensure
distinctness, S1 and S2 XOR their respective τ shares
locally to obtain the secret-share of a single vector
b⃗c = ⊕τ

k=1b⃗k. The challenge is then to check if b⃗c

has exactly τ1 bits. This can be accomplished by
having S1 and S2 agree on a random permutation
π and reconstructing π(b⃗c) to S0 and allowing S0
to perform the check, as in the naive approach
(cf. §V-A0a).

Input(s): i) S1,S2 : D; |D| = N , ii) Pi : Q =
{q1, . . . , qτ}, and iii) S0 : ⊥.
Output: Pi : res =

∑
q∈Q D[q]

Computation S1 and S2 sample τ random mask values

Protocol PIRI
sum

14

{m1, . . . ,mτ} ∈ Zτ
2ℓ such that

∑τ
j=1 mj = 0. For

each q ∈ Q, execute the following:
1. S1, S2 locally compute Dmq = D+mq .
2. Execute DPF protocol [83] (verifiable DPF for
malicious participants) with Pi as client with input q.
Server Su obtains [b⃗q]u with bjq = 1 for j = q and
bjq = 0 for j ̸= q, for u ∈ {1, 2}.

Verification Let {b⃗q1 , . . . , b⃗qτ } denote the bit vectors
whose XOR-shares are generated during the preceding
steps.
3. Servers verify correctness of qj , j ∈ [τ], by
executing the Ver algorithm of the verifiable DPF
protocol [83] (cf. §B-D). It outputs Accept to S1

and S2 if qj has exactly 1 one and (N − 1) zeroes.
Else, it outputs abort.
4. Su computes [b⃗c]u = ⊕q∈Q[b⃗q]u, for u ∈ {1, 2}.
5. S1 and S2 non-interactively agree on random
permutation π.
6. Su sends π([b⃗c]u) to S0, for u ∈ {1, 2}.
7. S0 locally reconstructs π(b⃗c) = π([b⃗q]1) ⊕
π([b⃗q]2). It sends Accept to S1 and S2, if π(b⃗c)
has exactly τ ones. Else, it sends abort.

Output Transfer Send ⊥ to Pi if verifiable DPF or
S0 generated abort during verification. Otherwise,
proceed as follows:

8. Su sends [yq]u =
N⊕

j=1

[bjq]uD
mq [j] to Pi, for q ∈

Q, u ∈ {1, 2}.
9. Pi locally computes res =

∑
q∈Q([yq]1 ⊕ [yq]2).

Fig. 12: PIRI
sum Protocol.

Computation Complexity (#AES operations): In
PIRI

sum, the participant Pi must perform 4·log(N/λ)
AES operations as part of the key generation algo-
rithm for each of the τ instances of F2S

pir over a
database of size N , where λ = 128 for an AES-
based implementation. Similarly, S1 and S2 must
perform log(N/λ) AES operations for each of the
N DPF evaluations. We refer to Table 1 in [83] for
more specifics.

2) PIRII
sum (Fig. 13): In this approach, we use the

server S0 to reduce the computation and communi-
cation of the participant Pi in PIRI

sum. The idea is
that S0 plays the role of Pi for the PIR protocol
in PIRI

sum. However, Pi cannot send its query q to
S0 in clear because it would violate privacy. As a
result, Pi selects random values q′, θq ∈ [N] such
that q = q′ + θq . In this case, q′ is a shifted version
of the index q, and θ is a shift correction for q. Pi

sends q′ to S0 and θq to both S1 and S2. The rest of
the computation until output retrieval will now occur
solely among the servers.

Input(s): i) S1,S2 : D; |D| = N , ii) Pi : Q =
{q1, . . . , qτ}, and iii) S0 : ⊥.
Output: Pi : res =

∑
q∈Q D[q]

Computation S1 and S2 sample τ random mask values

Protocol PIRII
sum

{m1, . . . ,mτ} ∈ Zτ
2ℓ such that

∑τ
j=1 mj = 0. For

each q ∈ Q, execute the following:
1. S1, S2 locally compute Dmq = D + mq , i.e.,
Dmq [j] = D[j] +mq , for j ∈ [N].
2. Pi, S1,S2 sample random θq ∈ [N].
3. Pi computes and sends q′ = q − θq to S0.
4. Servers execute DPF protocol [83] with S0 as client
with input q′. Server Su obtains [b⃗q′]u with bjq′ = 1

for j = q′ and bjq′ = 0 for j ̸= q′, for u ∈ {1, 2}.

5. Su locally applies θu on [b⃗q′]u to generate [b⃗q]u,
for u ∈ {1, 2}.

Verification Let {b⃗q1 , . . . , b⃗qτ } denote the bit vectors
whose XOR-shares are generated during the preceding
steps:

6. Sk computes [b⃗c]k = ⊕q∈Q[b⃗q]k, for u ∈ {1, 2}.
7. S1 and S2 non-interactively agree on random per-
mutation π.
8. Su sends π([b⃗c]u) to S0, for u ∈ {1, 2}.
9. S0 locally reconstructs π(b⃗c) = π([b⃗q]1) ⊕
π([b⃗q]2). It sends Accept to S1 and S2, if π(b⃗c) has
exactly τ ones. Else, it sends abort.

Output Transfer Send ⊥ to Pi if S0 generated abort
during verification. Otherwise, proceed as follows:

10. Su sends [yq]u =
N⊕

j=1

[bjq]uD
mq [j] to Pi, for q ∈

Q, u ∈ {1, 2}.
11. Pi locally computes res =

∑
q∈Q([yq]1 ⊕ [yq]2).

Fig. 13: PIRII
sum Protocol.

The servers run a DPF instance [83] with S0 acting
as the client and input query q′. At the end of the
computation, S1 and S2 obtain the bit vector b⃗q′ ,
which corresponds to q′. However, as discussed in
PIRI

sum, the servers require an XOR sharing cor-
responding to the actual query q to continue the
computation. S1 and S2 do this by using the shift
correction value θq received from Pi. Both S1 and
S2 will perform a right cyclic shift of their b⃗q′ shares
by θq units. A negative value for θq indicates a cyclic
shift to the left.

It is easy to see that the XOR shares obtained
after the cyclic shift corresponds to the bit vector
b⃗q . To further optimise Pi’s communication, Pi

and servers S1,S2 non-interactively generate random
shift correction values θq first using the shared-
key setup (cf. §B-A), and only the corresponding
q′ values are communicated to S0. The rest of
the protocol is similar to PIRI

sum, and the formal
protocol is shown in Fig. 13. In terms of malicious
participants, PIRII

sum has an advantage over PIRI
sum as

there is no need to use a verifiable DPF to protect
against malicious Pi, because the semi-honest server
S0 generates the DPF key instead of Pi.

Improving Verification Costs in PIRII
sum: A large

amount of communication is used in the PIRII
sum pro-

tocol to verify malicious participants. More specifi-
cally, in Step 8 of Fig. 13, 2N bits are communicated
towards S0 to ensure the distinctness of the queries
made by the participant Pi. We note that allowing

15

Stage PIRI
sum PIRII

sum

Pi to servers in C 2τ(λ + 2) log(N/λ) + 4τλ τ logN
Server to server 0 2τ(λ + 2) log(N/λ) + 4τλ

Servers in C to Pi τ · 2ℓ τ · 2ℓ

+ Verification (mal.) 2N + 2 + δ 2N + 2

TABLE II: Summary of communication costs for PIRsum. λ denotes the AES key size (λ = 128 in [84]), ℓ
denotes the block size in bits (ℓ = 128 in this work), and δ denotes the constant involved in the verifiable
DPF approach [83] (cf. §C-A1).

a small amount of leakage to S0 could improve this
communication and is discussed next.

Consider the following modification to the PIRII
sum

protocol. Instead of sampling θq for each query
q ∈ Q (cf. Step 2 in Fig. 13), Pi,S1, and S2 sample
only one random shift value θ and uses it for all τ
instances. Since the queries must be distinct, Pi is
forced to send distinct q′ values to S0 in Step 3 of
Fig. 13. If not, S0 can send abort to S1 and S2 at
this step, eliminating the need for communication-
intensive verification. The relative distance between
the queried indices would be leaked to S0 as a result
of this optimization. In concrete terms, if we use the
same θ value for any two queries qm, qj ∈ Q, then
qm − qn = q′m − q′n. Because S0 sees all q′ values
in the clear, it can deduce the relative positioning
of Pi’s actual queries. However, since S0 has no
information about the underlying database D, this
leakage may be acceptable for some applications.

3) Summary of communication costs: Tab. II sum-
marises the communication cost for our two PIRsum

approaches for instantiating Fpirsum over a database
of size N with τ PIR queries per client.

VI. EVALUATION

In this section, we evaluate and compare the com-
putation and communication efficiency of our two
RIPPLE protocols presented in §IV. A fully-fledged
implementation, similar to existing contact tracing
apps, would necessitate collaboration with industry
partners to develop a real-world scalable system
for national deployment. Instead, we carry out a
proof-of-concept implementation and provide micro
benchmark results for all major building blocks.9
We focus on the simulation phase for benchmarking,
which is separate from the token generation phase.
The simulations can ideally be done overnight while
mobile phones are charging and have access to a
high-bandwidth WiFi connection. According to stud-
ies [87], [88], sleeping habits in various countries
provide a time window of several hours each night
that can be used for this purpose.

9 Note that we are not attempting to create the most efficient
instantiation. More optimizations will undoubtedly improve effi-
ciency, and our protocols can be heavily parallelized with many
servers. Instead, our goal here is to demonstrate the viability of
RIPPLE protocols for large-scale deployment.

a) Setup and Parameters.: We run the bench-
marks on the server-side with three servers (two for
FSS-PIR and one as a helper server as discussed
in §V-C) with Intel Core i9-7960X CPUs@2.8 GHz
and 128 GB RAM connected with 10 Gbit/s LAN
and 0.1 s RTT. The client is a Samsung Galaxy S10+
with an Exynos 9820@2.73 GHz and 8GB RAM. As
Android does not allow third-party developers to im-
plement applications for Android’s TEE Trusty [89],
we use hardware-backed crypto operations already
implemented by Android instead. We use the code
of [90] to instantiate FSS-PIR. We implement the
AGCT in C++ and follow previous work on cuckoo
hashing [91] by using tabulation hashing for the hash
functions.

We instantiate our protocols in RIPPLE with κ =
128 bit security. We use RSA-2048 as the encryp-
tion scheme in RIPPLETEE since Android offers a
hardware-backed implementation. We omit the over-
head of remote attestation for the sake of simplicity.
For RIPPLEPIR, we use the FSS-PIR scheme of [83],
[90] as the baseline. The addresses are hashed with
SHA-256 and trimmed to 40 − 1 + log2(p · Eavg)
bits, where p is the number of participants and Eavg

represents the average number of encounters per
participant per simulation step. We set Eavg = 100
while benchmarking based on numbers provided by
research on epidemiological modeling [92], [93]. To
avoid cycles when inserting n messages into the
AGCT (cf. §IV-B2), we set its size to 10n. This can
be further improved as discussed in §IV-B2 [81],
[91], [94]. A typical simulation step corresponds to
one day, such that 14 simulation steps can simulate
two weeks.

A. Communication Complexity
Here, we look at the communication costs that

our protocols incur. To analyse the scalability of our
protocols, we consider p participants ranging from
thousand (1K) to twenty million (20M). Tab. III
summarises the communication costs of each par-
ticipant as well as the communication servers (C)
for one simulation step in a specific simulation. One
simulation step includes all protocol steps, beginning
with participants locally computing their infection
likelihood δ and ending with them obtaining their
cumulative infection likelihood ∆ for that step.

1) Participant Communication: As shown in
Tab. III, a participant in RIPPLETEE requires just
16KB of total communication in every simulation

16

1K 10K 50K 100K 500K 1M 2M 5M 10M 20M

RIPPLETEE (§IV-A) 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00

RIPPLEPIR: PIRI
sum (§V-C1) 51.63 62.42 69.97 73.22 80.77 84.02 87.27 91.56 94.81 98.06

RIPPLEPIR: PIRII
sum (§V-C2) 3.45 3.49 3.52 3.53 3.56 3.57 3.59 3.60 3.62 3.63

RIPPLETEE (§IV-A) 0.02 0.19 0.96 1.92 9.60 19.20 38.40 96.00 192.00 384.00

RIPPLEPIR (§V) 0.01 0.10 0.48 0.96 4.80 9.60 19.20 48.00 96.00 192.00

Entities Protocol
Population (p)

Participants in P
(in KB)

Servers in C
(in GB)

TABLE III: Communication costs per simulation step in our RIPPLE instantiations.

step, and this is independent of the population on
which the simulation is done. This is because each
participant will only send and receive infection like-
lihood messages related to its encounters. While the
value in the table corresponds to an average of 100
encounters (Eavg = 100), we depict the participants’
communication in Fig. 14a with varied Eavg ranging
from 10 to 500 for a population of 10M. Note
that a 2-week simulation with Eavg = 500 can
be completed by a participant in RIPPLETEE with
roughly 1MB of communication.

Unlike RIPPLETEE, participant communication in
both PIRI

sum and PIRII
sum increases for larger popu-

lations as the corresponding database size increases.
The communication, however, is only sub-linear in
the database size10.

In particular, the participant’s communication in
PIRI

sum ranges from 51.63KB to 98.06KB, with
the higher cost over RIPPLETEE attributed to the
size of DPF keys used in the underlying FSS-PIR
scheme [83], as discussed in §V. The communica-
tion in PIRII

sum, on the other hand, is about 3.5KB
for all participant sizes we consider. This reduced
communication is due to the optimization in PIRII

sum,
which offloads the DPF key generation task to the
helper server S0 (cf. §V-C2). A participant in PIRI

sum
must communicate approximately 7MB of data for
a 2-week simulation for a 10M population with
Eavg = 500, whereas it is only 0.25MB in the case
of PIRII

sum.
Tab. IV provides the communication per partic-

ipant for multiple population sizes in RIPPLETEE,
PIRI

sum, and PIRII
sum, while varying the average num-

ber of encounters Eavg per simulation step from 10
to 500. The communication cost in RIPPLETEE is in-
dependent of the population size and grows linearly
in Eavg. A similar trend can be seen in RIPPLEPIR
except that the cost increases sub-linearly with the
population size due to using the FSS-based PIR
scheme in RIPPLEPIR.

2) Server Communication: The servers’ commu-
nication is primarily attributed to the anonymous
communication channel they have established, which
provides unlinkability and, thus, privacy to the par-
ticipants’ messages. Communicating M messages
through the channel requires the servers to communi-

10 DB size of 10n and communication costs of RIPPLEPIR can be
reduced by optimizing the database size by extending the database
by only d+λ bins, where d is the upper bound of double collisions
and λ is an error parameter (cf. §IV-B2 and [81])

50 100 250 500

100

200

300

400

500

Eavg

Comm. (in KB)

RIPPLETEE

RIPPLEPIR: PIRI
sum

RIPPLEPIR: PIRII
sum

(a) Participant’s communication with varying Eavg for a
population of 10M.

2M 5M 10M 20M

100

200

300

Population (p)

Comm. (in GB)

RIPPLETEE
RIPPLEPIR
RIPPLEPIR

⋆

(b) Servers’ communication per simulation step for vary-
ing population. ⋆ denotes the results for optimized bit
addresses in RIPPLEPIR (cf. full version [76]).

Fig. 14: Communication Costs of RIPPLE.

cate 2M messages in RIPPLETEE, and 3M messages
in RIPPLEPIR. When it comes to concrete values,
however, the server communication in RIPPLEPIR is
half that of RIPPLETEE, as shown in Tab. III. This
is due to the larger message size in RIPPLETEE due
to the use of public-key encryption.

For a population of 10M, the servers in
RIPPLETEE must communicate 192GB of data
among themselves, whereas RIPPLEPIR requires
96GB.Setting the proper bit length for the address
field in the messages can further reduce commu-
nication. For example, a population of 20M with
Eavg = 100 can be accommodated in a 70-bit
address field. Using this optimization will result in
an additional 23 % reduction in communication at
the servers, as shown in Tab. V. Fig. 14b captures
these observations better, and Tab. V and Tab. IV in
the next subsection provide a detailed analysis of the
concrete communication costs.

17

10 50 100 250 500

RIPPLETEE (§IV-A) 1.60 8.00 16.00 40.00 80.00

RIPPLEPIR: PIRI
sum 6.24 34.99 73.22 193.79 403.83

RIPPLEPIR: PIRII
sum 0.35 1.76 3.53 8.87 17.81

RIPPLETEE (§IV-A) 1.60 8.00 16.00 40.00 80.00

RIPPLEPIR: PIRI
sum 7.32 40.38 84.02 220.78 457.81

RIPPLEPIR: PIRII
sum 0.35 1.78 3.57 8.98 18.01

RIPPLETEE (§IV-A) 1.60 8.00 16.00 40.00 80.00

RIPPLEPIR: PIRI
sum 8.40 45.78 94.81 247.77 511.79

RIPPLEPIR: PIRII
sum 0.36 1.80 3.62 9.08 18.22

Population p Protocol
Eavg

100K

1M

10M

TABLE IV: Communication (in KB) per participant
in a simulation step for varying average numbers of
encounters Eavg and population sizes p.

3) Communication Micro Benchmarks.: Tab. V
details the communication costs per simulation step
at various stages in our instantiations of RIPPLE. We
find that a participant’s communication costs are very
low compared to the overall costs. In RIPPLETEE, a
participant communicates at most 268 KB and incurs
a runtime of 92 seconds over a two-week simulation
over a population of one million. In PIRII

sum, the cost
is reduced to 100 KB and 40 seconds of runtime.
Communication increases to 1.2 MB in PIRI

sum due
to the participant’s handling of DPF keys.

Finally, Tab. V does not include costs for verifica-
tion against malicious participants since they can be
eliminated using server S0 (cf. §V-C2) or sketching
algorithms similar to those in [83].

B. Computation Complexity

This section focuses on the runtime, including
computation time and communication between
entities. Tab. VI summarizes the computation time
with respect to a participant Pi for a two-week
simulation over a half-million population. The
longer computation time in RIPPLETEE, as shown
in Tab. VI, is due to the public key encryption and
decryption that occurs within the mobile device’s
TEE. This cost, however, is independent of popula-
tion size and scales linearly with the average number
of encounters, denoted by Eavg. In particular, for
a 14-day simulation with a population of half a
million, Pi in RIPPLETEE needs approximately 43.7
seconds to perform the encryption and decryption
tasks and may require additional time for the remote
attestation procedure, which is not covered in our
benchmarks. Pi’s computation time in RIPPLEPIR,
on the other hand, is significantly lower and is at
most 5 milliseconds for PIRII

sum, while it increases to
around 165 milliseconds for PIRI

sum. The increased
computation time in PIRI

sum is due to DPF key gener-
ation, which scales sub-linearly with population size.

In Fig. 15, we plot the overall runtime of our
two instantiations in RIPPLE for a full simulation of
2 weeks over various populations ranging from 1K
to 500K. After a population of 100K, the runtime
of RIPPLEPIR begins to exceed that of RIPPLETEE

due to an increase in database size, which results in
longer data transfer times. More details regarding
computation time is presented in Tab. VII. Note
that the runtimes in Fig. 15 include runtime for
computation and communication of the secure shuf-
fle among the servers for anonymous communica-
tion and among servers and clients for the PIR in
RIPPLEPIR.

10K 50K
100K

500K

100

200

300

400

Population (p)

Time. (in sec)

RIPPLETEE
RIPPLEPIR

Fig. 15: Runtime per simulation in RIPPLE (14 days).

1) Computation Micro Benchmarks.: Tab. VII
contains the computation costs per simulation at the
different stages of our instantiations of RIPPLE’s.
As visible, data transfer time as part of anonymous
communication through servers accounts for the
majority of computation time and begins to affect
overall performance as the population grows. Our
system crashed due to memory constraints after a
population of 500K while running the experiments.
This will not be the case in a real-world deployment
of powerful servers linked by high-speed networks.
Similar as w.r.t. communication, participants’ com-
putation costs are very low in comparison to the
overall costs.

2) Battery Usage.: The token generation phase in
RIPPLE consumes the most amount of mobile bat-
tery as this phase is active throughout the day. This
usage could be optimized by mobile OS providers
like Apple and Google, as discussed by Vaudenay
et al. [95] and Avitabile et al. [96] in the context
of contact tracing apps. Their technology enables
an app to run in the background, thus, significantly
improving battery life, which is otherwise impos-
sible for a standard third-party mobile application.
Additionally, RIPPLE could offer users the choice
to participate only in simulations while charging so
as not to cause any unwanted battery drain.

3) Comparison to Related Work.: Note that no
experimental comparison to related work is (and
can be) done, as RIPPLE is the first distributed
privacy-preserving epidemiological modeling sys-
tem. Established contact tracing apps, such as the
SwissCovid11, the German Corona-Warn-App12, or
the Australian COVIDSafe13 only record contacts
for notifying contacts of infected people. Concretely,
contact tracing basically relates to RIPPLE’s to-
11 https://github.com/SwissCovid
12 https://www.coronawarn.app/en/ 13 https:
//www.health.gov.au/resources/apps-and-tools/covidsafe-app

https://github.com/SwissCovid
https://www.coronawarn.app/en/
https://www.health.gov.au/resources/apps-and-tools/covidsafe-app
https://www.health.gov.au/resources/apps-and-tools/covidsafe-app

18

1K 10K 50K 100K 500K 1M 2M 5M 10M 20M

RIPPLETEE (§IV-A)b 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80

RIPPLEPIR: (§IV-B) 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20

RIPPLEPIR: G# (§IV-B) 2.30 2.34 2.38 2.39 2.41 2.43 2.44 2.45 2.46 2.48

RIPPLETEE (§IV-A) 0.02 0.19 0.96 1.92 9.60 19.20 38.40 96.00 192.00 384.00

RIPPLEPIR - (§IV-B) 0.01 0.10 0.48 0.96 4.80 9.60 19.20 48.00 96.00 192.00

RIPPLEPIR - G# (§IV-B) 0.01 0.07 0.36 0.72 3.62 7.28 14.63 36.75 73.88 148.50

RIPPLETEE (§IV-A) 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40

PIRI
sum - (§V-C1) 51.36 62.42 69.97 73.22 80.77 84.02 87.27 91.56 94.81 98.06

PIRI
sum - G# (§V-C1) 26.48 32.64 37.69 39.82 44.77 47.05 49.38 52.33 54.77 57.26

PIRII
sum (§V-C2) 3.45 3.49 3.52 3.53 3.56 3.57 3.59 3.60 3.62 3.63

Stages of RIPPLE Protocola
Population (p)

Message Generation
by Pi ∈ P

(in KB)

Secure Shuffle by C
(in GB)

Output Computation
by Pi ∈ P

(in KB)c

a - 128-bit address for RIPPLEPIR and G# - 40 − 1 + log2(p · Eavg) bit address for RIPPLEPIR. bIncludes registration of public keys with the exit
node Nexit. cincludes message download, decryption/PIR queries, summation.

TABLE V: Detailed communication costs per simulation step in RIPPLE.

RIPPLETEE 1.12 / 80.00 - 42.56 / 3040.00

PIRI
sum 0.30 / 4.26 11.73 / 160 4.8e-2 / 6.72e-1

PIRII
sum 0.30 / 4.26 3.0e-3 / 4.2e-2 4.8e-2 / 6.72e-1

Per Simulation Step / Simulation (Nstep = 14)

Message Generation
(in ms)

PIR Queries
(in ms)

Output Computation
(in ms)

TABLE VI: Average participant computation times
per simulation step distributed across various tasks.
Values are obtained using a mobile for a population
of 500K with Eavg = 100.

ken generation phase, while the other three phases
(simulation initialization, simulation execution, and
result aggregation, cf. §III-B) are not covered by any
contact tracing system. Crucially, the main contri-
bution of our work is how to realize the simulation
execution, which has never been done before. Hence,
no meaningful comparison between the systems is
possible due to differences in the fundamental func-
tionalities.

4) Code availability: Available at DOI:
10.5281/zenodo.6595448.

a) Summmary.: Our benchmarking using the
proof-of-concept implementation demonstrated the
RIPPLE framework’s viability for real-world adap-
tation. One of the key benefits of our approaches
is that participants have very little work to do. The
system’s efficiency can be further improved with
appropriate hardware and optimized (non-prototype)
implementations.

REFERENCES

[1] N. Vindegaard and M. E. Benros, “COVID-19 pandemic
and mental health consequences: Systematic review of the
current evidence,” Brain, Behavior, and Immunity, 2020.

[2] D. Maison, D. Jaworska, D. Adamczyk, and D. Af-
feltowicz, “The challenges arising from the COVID-19
pandemic and the way people deal with them. a qualitative
longitudinal study,” PloS One, 2021.

[3] A. Taub, “A new Covid-19 crisis: Domestic abuse rises
worldwide,” The New York Times, 2020.

[4] C. Caulcutt, “Belgium introduces quarantine for monkey-
pox cases,” Politico, 2022, https://www.politico.eu/article/
belgium-introduce-quarantine-monkeypox-case/.

[5] A. D. Christy Cooney, “High-risk monkeypox contacts
advised to isolate,” BBC, 2022, https://www.bbc.com/
news/uk-61546480.

[6] E. C. for Disease Prevention and Control,
“Epidemiological update: Monkeypox outbreak,”
2022, https://www.ecdc.europa.eu/en/news-
events/epidemiological-update-monkeypox-outbreak.

[7] L. Reichert, S. Brack, and B. Scheuermann, “Poster:
Privacy-preserving contact tracing of covid-19 patients,”
IEEE S&P, 2021.

[8] N. Ahmed, R. A. Michelin, W. Xue, S. Ruj, R. Malaney,
S. S. Kanhere, A. Seneviratne, W. Hu, H. Janicke, and
S. K. Jha, “A survey of COVID-19 contact tracing apps,”
IEEE Access, 2020.

[9] C. Troncoso, M. Payer, J. Hubaux, M. Salathé, J. R.
Larus, W. Lueks, T. Stadler, A. Pyrgelis, D. Antonioli,
L. Barman, S. Chatel, K. G. Paterson, S. Capkun, D. A.
Basin, J. Beutel, D. Jackson, M. Roeschlin, P. Leu,
B. Preneel, N. P. Smart, A. Abidin, S. Gurses, M. Veale,
C. Cremers, M. Backes, N. O. Tippenhauer, R. Binns,
C. Cattuto, A. Barrat, D. Fiore, M. Barbosa, R. Oliveira,
and J. Pereira, “Decentralized privacy-preserving proxim-
ity tracing,” IEEE Data Eng. Bull., 2020.

[10] S. Vaudenay, “Centralized or decentralized? the con-
tact tracing dilemma,” Cryptology ePrint Archive, Report
2020/531, 2020, https://ia.cr/2020/531.

[11] N. Trieu, K. Shehata, P. Saxena, R. Shokri, and D. Song,
“Epione: Lightweight contact tracing with strong privacy,”
arXiv preprint arXiv:2004.13293, 2020, https://arxiv.org/
abs/2004.13293.

[12] B. Pinkas and E. Ronen, “Hashomer–privacy-preserving
bluetooth based contact tracing scheme for hamagen,”
Real World Crypto and NDSS Corona-Def Workshop,
2021.

[13] W. Lueks, S. F. Gürses, M. Veale, E. Bugnion, M. Salathé,
K. G. Paterson, and C. Troncoso, “CrowdNotifier: De-
centralized privacy-preserving presence tracing,” PoPETs,
2021.

[14] K. Hogan, B. Macedo, V. Macha, A. Barman, X. Jiang
et al., “Contact tracing apps: Lessons learned on privacy,

http://dx.doi.org/10.5281/zenodo.6595448
http://dx.doi.org/10.5281/zenodo.6595448
https://www.politico.eu/article/belgium-introduce-quarantine-monkeypox-case/
https://www.politico.eu/article/belgium-introduce-quarantine-monkeypox-case/
https://www.bbc.com/news/uk-61546480
https://www.bbc.com/news/uk-61546480
https://www.ecdc.europa.eu/en/news-events/epidemiological-update-monkeypox-outbreak
https://www.ecdc.europa.eu/en/news-events/epidemiological-update-monkeypox-outbreak
https://ia.cr/2020/531
https://arxiv.org/abs/2004.13293
https://arxiv.org/abs/2004.13293

19

1K 10K 50K 100K 500K 1M

RIPPLETEE (§IV-A) 1.12 1.12 1.12 1.12 1.12 1.12

RIPPLEPIR: (§IV-B) 4.26e-3 4.26e-3 4.26e-3 4.26e-3 4.26e-3 4.26e-3

RIPPLETEE (§IV-A) 0.70 5.20 25.38 60.77 211.47 493.33⋆a

RIPPLEPIR (§IV-B) 0.78 6.65 32.36 71.17 386.68 1542.30⋆

RIPPLETEE (§IV-A) 44.66 44.66 44.66 44.66 44.66 44.66

PIRI
sum (§V-C1) 32.31 32.33 32.34 32.35 32.36 32.37

PIRII
sum (§V-C2) 32.20 32.20 32.20 32.20 32.20 32.20

Stages of RIPPLE Protocol
Population (p)

Message Generation by Pi ∈ P
(in sec)

Secure Shuffle by C
(in sec)

Output Computationb

(in sec)

a⋆ denotes system crash due to memory. bincludes message download, decryption/PIR queries, summation.

TABLE VII: Detailed computation costs per simulation (Nstep = 14, i.e., 14 days) in RIPPLE.

autonomy, and the need for detailed and thoughtful im-
plementation,” JMIR Medical Informatics, 2021.

[15] P. Tupper, S. P. Otto, and C. Colijn, “Fundamental limi-
tations of contact tracing for covid-19,” FACETS, 2021.

[16] D. Lewis, “Where covid contact-tracing went wrong,”
Nature, 2020.

[17] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri,
A. Di Filippo, A. Di Matteo, and M. Colaneri, “Modelling
the covid-19 epidemic and implementation of population-
wide interventions in Italy,” Nature Medicine, 2020.

[18] A. J. Kucharski, P. Klepac, A. J. Conlan, S. M. Kissler,
M. L. Tang, H. Fry, J. R. Gog, W. J. Edmunds, J. C.
Emery, G. Medley et al., “Effectiveness of isolation,
testing, contact tracing, and physical distancing on re-
ducing transmission of SARS-CoV-2 in different settings:
a mathematical modelling study,” The Lancet Infectious
Diseases, 2020.

[19] I. Cooper, A. Mondal, and C. G. Antonopoulos, “A SIR
model assumption for the spread of COVID-19 in different
communities,” Chaos, Solitons & Fractals, 2020.

[20] P. C. Silva, P. V. Batista, H. S. Lima, M. A. Alves, F. G.
Guimarães, and R. C. Silva, “COVID-ABS: an agent-
based model of COVID-19 epidemic to simulate health
and economic effects of social distancing interventions,”
Chaos, Solitons & Fractals, 2020.

[21] G. R. Shinde, A. B. Kalamkar, P. N. Mahalle, N. Dey,
J. Chaki, and A. E. Hassanien, “Forecasting models for
coronavirus disease (covid-19): A survey of the state-of-
the-art,” SN Computer Science, 2020.

[22] R. N. Thompson, “Epidemiological models are important
tools for guiding covid-19 interventions,” BMC Medicine,
vol. 18, no. 1, p. 152, 2020.

[23] T. Šušteršič, A. Blagojević, D. Cvetković, A. Cvetković,
I. Lorencin, S. B. Šegota, D. Milovanović, D. Baskić,
Z. Car, and N. Filipović, “Epidemiological predictive
modeling of covid-19 infection: Development, testing, and
implementation on the population of the benelux union,”
Frontiers in Public Health, vol. 9, 2021.

[24] N. G. Davies, A. J. Kucharski, R. M. Eggo, A. Gimma,
W. J. Edmunds, T. Jombart, K. O’Reilly, A. Endo,
J. Hellewell, E. S. Nightingale et al., “Effects of non-
pharmaceutical interventions on covid-19 cases, deaths,
and demand for hospital services in the UK: a modelling
study,” The Lancet Public Health, 2020.

[25] D. Adam, “Special report: The simulations driving the
world’s response to COVID-19.” Nature, 2020.

[26] P. Klepac, A. J. Kucharski, A. J. Conlan, S. Kissler, M. L.

Tang, H. Fry, and J. R. Gog, “Contacts in context: large-
scale setting-specific social mixing matrices from the BBC
pandemic project,” MedRxiv, 2020.

[27] N. Ferguson, “What would happen if a flu pandemic arose
in Asia?” Nature, 2005.

[28] W. J. Edmunds, C. O’callaghan, and D. Nokes, “Who
mixes with whom? a method to determine the contact
patterns of adults that may lead to the spread of airborne
infections,” Proceedings of the Royal Society of London.
Series B: Biological Sciences, 1997.

[29] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas, “Communication-efficient learning of deep
networks from decentralized data,” in International Con-
ference on Artificial Intelligence and Statistics, 2017.

[30] A. Bampoulidis, A. Bruni, L. Helminger, D. Kales,
C. Rechberger, and R. Walch, “Privately connecting mo-
bility to infectious diseases via applied cryptography,”
PoPETs, 2022.

[31] R. De Viti, I. Sheff, N. Glaeser, B. Dinis, R. Rodrigues,
J. Katz, B. Bhattacharjee, A. Hithnawi, D. Garg et al.,
“Covault: A secure analytics platform,” 2022, https://
arxiv.org/pdf/2208.03784.pdf.

[32] F. Al-Turjman and B. D. Deebak, “Privacy-aware energy-
efficient framework using the internet of medical things
for COVID-19,” IEEE Internet Things Mag., vol. 3, no. 3,
2020.

[33] M. Pezzutto, N. B. Rosselló, L. Schenato, and E. Garone,
“Smart testing and selective quarantine for the control of
epidemics,” Annu. Rev. Control., vol. 51, pp. 540–550,
2021.

[34] P. Barsocchi, A. Calabrò, A. Crivello, S. Daoudagh,
F. Furfari, M. Girolami, and E. Marchetti, “COVID-19
& privacy: Enhancing of indoor localization architectures
towards effective social distancing,” Array, vol. 9, 2021.

[35] B. Bozdemir, S. Canard, O. Ermis, H. Möllering,
M. Önen, and T. Schneider, “Privacy-preserving density-
based clustering,” in ASIACCS, 2021.

[36] M. Ciucci and F. Gouardères, “National COVID-19 con-
tact tracing apps,” EPRS: European Parliamentary Re-
search Service, 2020.

[37] H. Stevens and M. B. Haines, “Tracetogether: Pan-
demic response, democracy, and technology,” 2020, https:
//www.tracetogether.gov.sg.

[38] Inria and Fraunhofer AISEC, ROBust and privacy-
presERving proximity Tracing protocol, 2020, https://
github.com/ROBERT-proximity-tracing/documents.

[39] J. Chan, D. Foster, S. Gollakota, E. Horvitz, J. Jaeger,

https://arxiv.org/pdf/2208.03784.pdf
https://arxiv.org/pdf/2208.03784.pdf
https://www.tracetogether.gov.sg
https://www.tracetogether.gov.sg
https://github.com/ROBERT-proximity-tracing/documents
https://github.com/ROBERT-proximity-tracing/documents

20

S. Kakade, T. Kohno, J. Langford, J. Larson, P. Sharma,
S. Singanamalla, J. Sunshine, and S. Tessaro, “PACT: Pri-
vacy sensitive protocols and mechanisms for mobile con-
tact tracing,” 2020, https://arxiv.org/pdf/2004.03544.pdf.

[40] F. Brauer, “Compartmental models in epidemiology,” in
Mathematical Epidemiology, 2008.

[41] F. Brauer, C. Castillo-Chavez, and Z. Feng, “Simple
compartmental models for disease transmission,” in Math-
ematical Models in Epidemiology, 2019.

[42] T. Harko, F. S. Lobo, and M. Mak, “Exact analytical solu-
tions of the susceptible-infected-recovered (SIR) epidemic
model and of the SIR model with equal death and birth
rates,” Applied Mathematics and Computation, 2014.

[43] R. Schlickeiser and M. Kröger, “Analytical modeling of
the temporal evolution of epidemics outbreaks accounting
for vaccinations,” 2021.

[44] J. Fernández-Villaverde and C. I. Jones, “Estimating and
simulating a sird model of covid-19 for many countries,
states, and citie,” Journal of Economic Dynamics and
Control, 2022.

[45] A. Gray, D. Greenhalgh, L. Hu, X. Mao, and J. Pan, “A
stochastic differential equation sis epidemic model,” SIAM
Journal on Applied Mathematics, 2011.

[46] S. He, Y. Peng, and K. Sun, “Seir modeling of the covid-
19 and its dynamics,” Nonlinear Dynamics, 2020.

[47] W. O. Kermack and A. G. McKendrick, “Contributions to
the mathematical theory of epidemics—i,” in Bulletin of
Mathematical Biology, 1991.

[48] M. Small and C. K. Tse, “Small world and scale free
model of transmission of SARS,” in International Journal
of Bifurcation and Chaos, 2005.

[49] Y.-C. Chen, P.-E. Lu, C.-S. Chang, and T.-H. Liu, “A
time-dependent SIR model for covid-19 with undetectable
infected persons,” Transactions on Network Science and
Engineering, 2020.

[50] R. M. May and A. L. Lloyd, “Infection dynamics on scale-
free networks,” Phys. Rev. E, 2001.

[51] N. M. Ferguson, D. A. Cummings, C. Fraser, J. C. Cajka,
P. C. Cooley, and D. S. Burke, “Strategies for mitigating
an influenza pandemic,” Nature, 2006.

[52] K. Kupferschmidt, “Case clustering emerges as key
pandemic puzzle,” 2020, https://www.science.org/doi/full/
10.1126/science.368.6493.808.

[53] S. Luo, F. Morone, C. Sarraute, M. Travizano, and H. A.
Makse, “Inferring personal economic status from social
network location,” Nature Communications, 2017.

[54] Y.-A. d. Montjoye, J. Quoidbach, F. Robic, and A. S. Pent-
land, “Predicting personality using novel mobile phone-
based metrics,” in International conference on social
computing, behavioral-cultural modeling, and prediction,
2013.

[55] T. Araki, J. Furukawa, K. Ohara, B. Pinkas, H. Rosemarin,
and H. Tsuchida, “Secure graph analysis at scale,” in ACM
CCS, 2021.

[56] O. Goldreich, Foundations of Cryptography: Volume 2,
Basic Applications. Cambridge University Press, 2009.

[57] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh,
“ASTRA: High Throughput 3PC over Rings with Appli-
cation to Secure Prediction,” in ACM CCSW@CCS, 2019.

[58] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and
R. A. Popa, “Delphi: A cryptographic inference service
for neural networks,” in USENIX Security, 2020.

[59] A. Patra, T. Schneider, A. Suresh, and H. Yalame,
“ABY2.0: Improved Mixed-Protocol Secure Two-Party
Computation,” in USENIX Security, 2021.

[60] M. Veeningen, S. Chatterjea, A. Z. Horváth, G. Spindler,
E. Boersma, P. van der SPEK, O. Van Der Galiën,
J. Gutteling, W. Kraaij, and T. Veugen, “Enabling ana-

lytics on sensitive medical data with secure multi-party
computation,” in Medical Informatics Europe, 2018.

[61] O. Tkachenko, C. Weinert, T. Schneider, and
K. Hamacher, “Large-scale privacy-preserving statistical
computations for distributed genome-wide association
studies,” in ASIACCS, 2018.

[62] T. Schneider and O. Tkachenko, “EPISODE: efficient
privacy-preserving similar sequence queries on outsourced
genomic databases,” in ASIACCS, 2019.

[63] K. Järvinen, H. Leppäkoski, E.-S. Lohan, P. Richter,
T. Schneider, O. Tkachenko, and Z. Yang, “PILOT: practi-
cal privacy-preserving indoor localization using outsourc-
ing,” in EUROS&P, 2019.

[64] C. van der Beets, R. Nieminen, and T. Schneider,
“FAPRIL: towards faster privacy-preserving fingerprint-
based localization,” in SECRYPT, 2022.

[65] Y. Lindell and B. Pinkas, “An efficient protocol for
secure two-party computation in the presence of malicious
adversaries,” in EUROCRYPT, 2007.

[66] Y. Aumann and Y. Lindell, “Security against covert ad-
versaries: Efficient protocols for realistic adversaries,”
Journal of Cryptology, 2010.

[67] R. Lehmkuhl, P. Mishra, A. Srinivasan, and R. A. Popa,
“MUSE: Secure inference resilient to malicious clients,”
in USENIX Security, 2021.

[68] N. Chandran, D. Gupta, S. L. B. Obbattu, and A. Shah,
“SIMC: ML inference secure against malicious clients at
semi-honest cost,” in USENIX Security, 2022.

[69] O. Diekmann, H. Heesterbeek, and T. Britton, Mathemati-
cal Tools for Understanding Infectious Disease Dynamics.
Princeton University Press, 2012.

[70] G. F. Hatke, M. Montanari, S. Appadwedula, M. Wentz,
J. Meklenburg, L. Ivers, J. Watson, and P. Fiore, “Using
bluetooth low energy (BLE) signal strength estimation
to facilitate contact tracing for covid-19,” 2020, https:
//arxiv.org/ftp/arxiv/papers/2006/2006.15711.pdf.

[71] Z. Erkin, J. R. Troncoso-pastoriza, R. L. Lagendijk, and
F. Perez-Gonzalez, “Privacy-preserving data aggregation
in smart metering systems: An overview,” in Signal Pro-
cessing Magazine, 2013.

[72] K. Kursawe, G. Danezis, and M. Kohlweiss, “Privacy-
friendly aggregation for the smart-grid,” in PETS, 2011.

[73] F. Li, B. Luo, and P. Liu, “Secure information aggrega-
tion for smart grids using homomorphic encryption,” in
International Conference on Smart Grid Communications,
2010.

[74] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive
privacy analysis of deep learning: Passive and active
white-box inference attacks against centralized and fed-
erated learning,” in SP, 2019.

[75] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini,
H. Möllering, T. D. Nguyen, P. Rieger, A.-R. Sadeghi,
T. Schneider, H. Yalame et al., “SAFELearn: secure ag-
gregation for private federated learning,” in IEEE Security
and Privacy Workshops (SPW), 2021.

[76] D. Günther, M. Holz, B. Judkewitz, H. Möllering,
B. Pinkas, T. Schneider, and A. Suresh, “Privacy-
Preserving Epidemiological Modeling on Mobile Graphs,”
arXiv preprint, 2022, https://arxiv.org/abs/2206.00539.

[77] N. Alexopoulos, A. Kiayias, R. Talviste, and T. Zacharias,
“MCMix: Anonymous messaging via secure multiparty
computation,” in USENIX Security, 2017.

[78] T. Haines and J. Müller, “Sok: Techniques for verifiable
mix nets,” in CSF, 2020.

[79] S. Eskandarian and D. Boneh, “Clarion: Anonymous
communication from multiparty shuffling protocols,” in
NDSS, 2022.

[80] I. Abraham, B. Pinkas, and A. Yanai, “Blinder: MPC

https://arxiv.org/pdf/2004.03544.pdf
https://www.science.org/doi/full/10.1126/science.368.6493.808
https://www.science.org/doi/full/10.1126/science.368.6493.808
https://arxiv.org/ftp/arxiv/papers/2006/2006.15711.pdf
https://arxiv.org/ftp/arxiv/papers/2006/2006.15711.pdf
https://arxiv.org/abs/2206.00539

21

based scalable and robust anonymous committed broad-
cast,” in ACM CCS, 2020.

[81] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “PSI
from PaXoS Fast, Malicious Private Set Intersection,” in
EUROCRYPT, 2020.

[82] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan,
“Private information retrieval,” in FOCS, 1995.

[83] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret shar-
ing: Improvements and extensions,” in ACM CCS, 2016.

[84] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and
Y. Ishai, “Lightweight techniques for private heavy hit-
ters,” in IEEE S&P, 2021.

[85] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, “Riposte:
An anonymous messaging system handling millions of
users,” in IEEE S&P, 2015.

[86] N. Gilboa and Y. Ishai, “Distributed point functions and
their applications,” in EUROCRYPT, 2014.

[87] O. J. Walch, A. Cochran, and D. B. Forger, “A global
quantification of “normal” sleep schedules using smart-
phone data,” Science advances, 2016.

[88] V. Woollaston, Sleeping habits of the world revealed:
The US wakes up grumpy, China has the best quality
shut-eye and South Africa gets up the earliest, 2015,
https://www.dailymail.co.uk/sciencetech/article-3042230/
Sleeping-habits-world-revealed-wakes-grumpy-China-
best-quality-shut-eye-South-Africa-wakes-earliest.html.

[89] Android, “Third-party Trusty applications,” unk, https://
source.android.com/security/trusty.

[90] D. Kales, O. Omolola, and S. Ramacher, “Revisiting user
privacy for certificate transparency,” in EuroS&P, 2019.

[91] B. Pinkas, T. Schneider, and M. Zohner, “Scalable private
set intersection based on OT extension,” TOPS, 2018.

[92] J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen,
R. Mikolajczyk, M. Massari, S. Salmaso, G. S. Tomba,
J. Wallinga et al., “Social contacts and mixing patterns rel-
evant to the spread of infectious diseases,” PLoS Medicine,
2008.

[93] S. Y. Del Valle, J. M. Hyman, H. W. Hethcote, and S. G.
Eubank, “Mixing patterns between age groups in social
networks,” Social Networks, 2007.

[94] B. Pinkas, T. Schneider, C. Weinert, and U. Wieder,
“Efficient circuit-based PSI via cuckoo hashing,” in EU-
ROCRYPT, 2018.

[95] S. Vaudenay and M. Vuagnoux, “Analysis of swisscovid,”
Tech. Rep., 2020.

[96] G. Avitabile, V. Botta, V. Iovino, and I. Visconti,
“Towards defeating mass surveillance and SARS-CoV-2:
The Pronto-C2 fully decentralized automatic contact
tracing system,” 2020. [Online]. Available: https://
eprint.iacr.org/2020/493

[97] D. L. Chaum, “Untraceable electronic mail, return ad-
dresses, and digital pseudonyms,” Communications of the
ACM, 1981.

[98] D. Chaum, “The dining cryptographers problem: Uncon-
ditional sender and recipient untraceability,” Journal of
Cryptology, 1988.

[99] W. Du, “A study of several specific secure two party
computation problems,” USA: Purdue University, 2001.

[100] G. Wang, T. Luo, M. T. Goodrich, W. Du, and Z. Zhu,
“Bureaucratic protocols for secure two-party sorting, se-
lection, and permuting,” in ASIACCS, 2010.

[101] Y. Huang, D. Evans, and J. Katz, “Private set intersection:
Are garbled circuits better than custom protocols?” in
NDSS, 2012.

[102] P. Mohassel and S. Sadeghian, “How to hide circuits in
MPC an efficient framework for private function evalua-
tion,” in EUROCRYPT, 2013.

[103] S. Laur, J. Willemson, and B. Zhang, “Round-efficient

oblivious database manipulation,” in International Con-
ference on Information Security, 2011.

[104] J. Ekberg, K. Kostiainen, and N. Asokan, “The untapped
potential of trusted execution environments on mobile
devices,” in S&P, 2014.

[105] P. Jauernig, A. Sadeghi, and E. Stapf, “Trusted execution
environments: Properties, applications, and challenges,” in
S&P, 2020.

[106] Intel, “Intel® software guard extensions programming
reference,” 2014, https://software.intel.com/sites/default/
files/managed/48/88/329298-002.pdf.

[107] ARM, “ARM security technology building a se-
cure system using trustzone technology,” 2009, https:
//developer.arm.com/documentation/genc009492/c.

[108] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Mar-
tin, “TrustZone explained: Architectural features and use
cases,” in International Conference on Collaboration and
Internet Computing, 2016.

[109] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,
K. Vaswani, and M. Costa, “Oblivious multi-party ma-
chine learning on trusted processors,” in USENIX Security,
2016.

[110] S. P. Bayerl, T. Frassetto, P. Jauernig, K. Riedhammer,
A.-R. Sadeghi, T. Schneider, E. Stapf, and C. Weinert,
“Offline model guard: Secure and private ML on mobile
devices,” DATE, 2020.

[111] G. Chen, Y. Zhang, and T.-H. Lai, “OPERA: Open Re-
mote Attestation for Intel’s Secure Enclaves,” in CCS,
2019.

[112] Intel, “Attestation service for intel software guard
extensions,” unk, https://api.trustedservices.intel.com/
documents/sgx-attestation-api-spec.pdf.

[113] E. Kushilevitz and R. Ostrovsky, “Replication is NOT
needed: SINGLE database, computationally-private infor-
mation retrieval,” in FOCS, 1997.

[114] S. Angel, H. Chen, K. Laine, and S. Setty, “PIR with
Compressed Queries and Amortized Query Processing,”
in IEEE S&P, 2018.

[115] C. Gentry and S. Halevi, “Compressible FHE with Appli-
cations to PIR,” in TCC, 2019.

[116] H. Corrigan-Gibbs and D. Kogan, “Private information
retrieval with sublinear online time,” in EUROCRYPT,
2020.

[117] B. Pinkas, T. Schneider, G. Segev, and M. Zohner,
“Phasing: Private set intersection using permutation-based
hashing,” in USENIX Security, 2015.

[118] C. Dong, L. Chen, and Z. Wen, “When private set inter-
section meets big data: an efficient and scalable protocol,”
in ACM CCS, 2013.

[119] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of
Algorithms, 2004.

[120] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More
robust hashing: Cuckoo hashing with a stash,” Journal
on Computing, 2010.

[121] A. C.-C. Yao, “How to Generate and Exchange Secrets,”
in FOCS, 1986.

[122] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and
N. P. Smart, “Practical covertly secure MPC for dishonest
majority – or: Breaking the SPDZ limits,” in ESORICS,
2013.

[123] Y. Lindell, B. Pinkas, N. P. Smart, and A. Yanai, “Efficient
constant round multi-party computation combining BMR
and SPDZ,” in CRYPTO, 2015.

[124] D. Demmler, T. Schneider, and M. Zohner, “ABY -
A Framework for Efficient Mixed-Protocol Secure Two-
Party Computation,” in NDSS, 2015.

[125] A. Patra and A. Suresh, “BLAZE: Blazing Fast Privacy-
Preserving Machine Learning,” in NDSS, 2020.

https://www.dailymail.co.uk/sciencetech/article-3042230/Sleeping-habits-world-revealed-wakes-grumpy-China-best-quality-shut-eye-South-Africa-wakes-earliest.html
https://www.dailymail.co.uk/sciencetech/article-3042230/Sleeping-habits-world-revealed-wakes-grumpy-China-best-quality-shut-eye-South-Africa-wakes-earliest.html
https://www.dailymail.co.uk/sciencetech/article-3042230/Sleeping-habits-world-revealed-wakes-grumpy-China-best-quality-shut-eye-South-Africa-wakes-earliest.html
https://source.android.com/security/trusty
https://source.android.com/security/trusty
https://eprint.iacr.org/2020/493
https://eprint.iacr.org/2020/493
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://developer.arm.com/documentation/genc009492/c
https://developer.arm.com/documentation/genc009492/c
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf

22

[126] M. Byali, H. Chaudhari, A. Patra, and A. Suresh,
“FLASH: Fast and Robust Framework for Privacy-
preserving Machine Learning,” PETS, 2020.

[127] H. Chaudhari, R. Rachuri, and A. Suresh, “Trident: Ef-
ficient 4PC Framework for Privacy Preserving Machine
Learning,” in NDSS, 2020.

[128] N. Koti, M. Pancholi, A. Patra, and A. Suresh, “SWIFT:
Super-fast and Robust Privacy-Preserving Machine Learn-
ing,” in USENIX Security, 2021.

[129] N. Koti, A. Patra, R. Rachuri, and A. Suresh, “Tetrad:
Actively Secure 4PC for Secure Training and Inference,”
in NDSS, 2022.

[130] D. Chaum, “Security without identification: Transaction
systems to make big brother obsolete,” in Communications
of the ACM, 1985.

[131] C. Paquin and G. Zaveruch, U-Prove Crypto-
graphic Specification V1.1 (Revision 3), 2013,
http://www.microsoft.com/uprove.

[132] G. Danezis and L. Sassaman, “Heartbeat traffic to counter
(n-1) attacks: Red-green-black mixes,” ser. WPES ’03,
2003.

[133] L. de Castro and A. Polychroniadou, “Lightweight, ma-
liciously secure verifiable function secret sharing,” in
EUROCRYPT, 2022.

[134] V. I. Kolobov, E. Boyle, N. Gilboa, and Y. Ishai,
“Programmable distributed point functions,” in CRYPTO,
2022.

[135] D. Günther, M. Heymann, B. Pinkas, and T. Schneider,
“GPU-accelerated PIR with client-independent prepro-
cessing for large-scale applications,” in USENIX Security,
2022.

APPENDIX A
RELATED PRIMITIVES

In the following, we provide an overview about
the (cryptographic) primitives and other techniques
used in this work.

A. Anonymous Communication
To simulate the transmission of the modelled

disease, RIPPLE requires anonymous messaging
between participants. Mix-nets [97] and protocols
based on the dining cryptographer (DC) problem
[98] were the first approaches to anonymous messag-
ing. A fundamental technique underlying mix-nets
is the execution of an oblivious shuffling algorithm
that provides unlinkability between the messages
before and after the shuffle. In a mix-net, so-called
mix servers jointly perform the oblivious shuffling
so that no single mix server is able to reconstruct
the permutation performed on the input data. Past
research established a wide variety of oblivious shuf-
fle protocols based on garbled circuits [99]–[101],
homomorphic encryption [101], distributed point
functions [80], switching networks [102], permuta-
tion matrices [103, §4.1], sorting algorithms [103,
§4.2], and re-sharing [103, §4.3+4.4]. Recently, the
works of [55] and [79] proposed efficient oblivious
shuffling schemes using a small number of mix net
servers.

B. Trusted Execution Environment (TEE)
RIPPLETEE (§IV-A) assumes the availability of

TEEs on the mobile devices of participants. TEEs

are hardware-assisted environments providing secure
storage and execution for sensitive data and appli-
cations isolated from the normal execution envi-
ronment. Data stored in a TEE is secure even if
the operating system is compromised, i.e., it offers
confidentiality, integrity, and access control [104],
[105]. Widely adopted TEEs are Intel SGX [106] and
ARM TrustZone [107] (often used on mobile plat-
forms [108]). Using TEEs for private computation
has been extensively investigated, e.g., [109], [110].
A process called remote attestation allows external
parties to verify that its private data sent via a secure
channel is received and processed inside the TEE
using the intended code [111], [112].

C. Private Information Retrieval (PIR)
The first computational single-server PIR (cPIR)

scheme was introduced by Kushilevitz and Ostro-
vsky [113]. Recent cPIR schemes [114], [115] use
homomorphic encryption (HE). However, single-
server PIR suffers from significant computation over-
head since compute intensive HE operations have to
be computed on each of the database block for each
PIR request. In contrast, multi-server PIR relies on
a non-collusion assumption between multiple PIR
servers and uses only XOR operations [82]–[85],
[116] making it significantly more efficient than
cPIR.

D. Cuckoo Hashing
In RIPPLEPIR (§IV-B), messages of participants

have to be stored in a database D. To do so, a hash
function H can be used to map an element x into
bins of the database: D[H(x)] = x. However, as we
show in §IV-B, RIPPLEPIR requires that at most one
element is stored in every database location which
renders simple hashing impracticable [117]. Cuckoo
hashing uses h hash functions H1, . . . ,Hh to map
elements into bins. It ensures that each bin contains
exactly one element. If a collision occurs, i.e., if a
new element is to be added into an already occupied
bin, the old element is removed to make space for the
new one. The evicted element, then, is placed into
a new bin using another of the h hash functions. If
the insertion fails for a certain number of trials, an
element is inserted into a special bin called stash
which is the only one that is allowed to hold more
than one element. Pinkas et al. [117] show that for
h = 2 hash functions and n = 220 elements inserted
to 2.4n bins, a stash size of 3 is sufficient to have a
negligible error probability.

E. Garbled Cuckoo Table (GCT)
As RIPPLEPIR uses key-value pairs for the in-

sertion into the database, a combination of garbled
Bloom filters [118] with cuckoo hashing [119],
[120], called Garbled Cuckoo Table [81], is needed.
Instead of storing x elements in one bin as in an
ordinary cuckoo table (cf. §A-D), in a GCT h XOR
shares of x are stored at the h locations determined

http://www.microsoft.com/uprove

23

by inputting k into all h hash functions. E.g., with
h = 2, if one of these two locations is already in use,
the XOR share for the other (free) location is set to
be the XOR of x and the data stored in the used
location. In §IV-B2, we introduce a variant of GCT
called arithmethic garbled cuckoo table (AGCT) that
uses arithmetic sharing over the ring Z2ℓ instead
of XOR sharing. For a database with 2.4n entries
where n is the number of elements inserted, Pinkas et
al. [81] show that the number of cycles is maximally
log n with high probability.

F. Secure Multi-Party Computation (MPC)

MPC [121] allows a set of mutually distrusting
parties to jointly compute an arbitrary function on
their private inputs without leaking anything but the
output. In the last years, MPC techniques in various
security models have been introduced, extensively
studied, and improved, e.g., in [122]–[124]. These
advancements significantly enhance the efficiency of
MPC making it more and more practical for real-
world applications. Due to the practical efficiency it
can provide, various works [55], [125]–[129] have
recently concentrated on MPC for a small number
of parties, especially in the three and four party
honest majority setting tolerating one corruption. In
RIPPLE, we employ MPC techniques across three
servers to enable an anonymous communication
channel (cf. §B-C) and to develop efficient PIRsum

protocols (cf. §V).

G. Anonymous Credentials

To protect against sybil attacks (cf. §III-C), i.e., to
hinder an adversary from creating multiple identities
that can collect encounter information to detect cor-
relations among unconscious encounters, we suggest
to use anonymous credentials such that only regis-
tered participants can join RIPPLE. In this manner,
the registration process can, for example, be linked to
a passport. Such a registration system increases the
cost to create (fake) identities. Chaum [130] intro-
duced anonymous credentials where a client holds
the credentials of several unlinkable pseudonyms.
The client can then prove that it possesses the cre-
dentials of pseudonyms without the service provider
being able to link different pseudonyms to the same
identity. Additionally, anonymous credentials allow
to certify specific properties like the age. Several
instantiations for anonymous credentials have been
proposed, e.g., Microsoft U-Prove [131].

APPENDIX B
BUILDING BLOCKS IN RIPPLE

This section contains details about the build-
ing blocks used in the RIPPLE framework, such
as shared-key setup, collision-resistant hash func-
tions, anonymous communication channels, and Dis-
tributed Point Functions.

A. Shared-Key Setup
Let F : {0, 1}κ × {0, 1}κ → X be a secure

pseudo-random function (PRF), with co-domain X
being Z2ℓ and C′ = C ∪ {Pi} for a participant
Pi ∈ P . The following PRF keys are established
among the parties in C′ in RIPPLE:

– kij among every Pi, Pj ∈ C′ and i ̸= j.
– kijk among every Pi, Pj , Pk ∈ C′ and i ̸= j ̸=
k.

– kC′ among all the parties in C′.
To sample a random value rij ∈ Z2ℓ non-
interactively, each of Pi and Pj can invoke
Fkij

(idij). In this case, idij is a counter that Pi and
Pj maintain and update after each PRF invocation.
The appropriate sampling keys are implied by the
context and are, thus, omitted.

B. Collision Resistant Hash Function
A family of hash functions {H : K × L → Y} is

said to be collision resistant if, for all probabilistic
polynomial-time adversaries A, given the description
of Hk, where k ∈R K, there exists a negligible
function negl() such that Pr[(x, x′) ← A(k) :
(x ̸= x′) ∧ Hk(x) = Hk(x

′)] = negl(κ), where
x, x′ ∈R {0, 1}m and m = poly(κ).

C. Anonymous Communication Channel
This section describes how to instantiate the Fanon

functionality used by RIPPLE for anonymous com-
munication, as discussed in §IV. We start with the
protocol for the case of RIPPLEPIR and then show
how to optimize it for the use in the RIPPLETEE
protocol. Recall from §IV-B that in RIPPLEPIR,
participants in P upload a set of messages from
which a database D must be constructed at the end
by S1 and S2. The anonymous communication is
required to ensure that neither S1 nor S2 can link
the source of the message even after receiving all
messages in clear, which may not be in the same
order. To tackle this problem, we use an approach
based on oblivious shuffling inspired by [55], [79],
which is formalised next.

Problem Statement. Consider the vector m⃗ =
{m1, . . . ,mτ} of τ messages with mj ∈ Z2ℓ for
j ∈ [τ]. We want servers S1 and S2 to obtain π(m⃗),
where π() denotes a random permutation that neither
S1 nor S2 knows. Furthermore, an attacker with
access to a portion of the network and, hence, the
ability to monitor network data should not be able
to gain any information about the permutation π().

In RIPPLEPIR, the vector m⃗ corresponds to the
infection likelihood messages of the form (ai,j , c

e
i,j)

that each participant Pi ∈ P sends over the network
(cf. §IV-B). W.l.o.g., we let Pi have the complete
m⃗ with them. The protocol makes use of the third
server S0 in our setting and proceeds as follows:

1. Pi generates an additive sharing of m⃗ among
S0 and S1:

a) Pi,S0 sample random ⃗⟨m⟩1 ∈ Zτ
2ℓ .

24

b) Pi computes and sends ⃗⟨m⟩2 = m⃗ −
⃗⟨m⟩1 to S1.

2. S0 and S1 agree on a random permutation
π01 and locally apply π01 to their shares. Let
π01(m⃗) = π01(⃗⟨m⟩1) + π01(⃗⟨m⟩2).

3. S0,S1 perform a re-sharing of π01(m⃗), denoted
by m⃗01, by jointly sampling a random r⃗01 ∈
Zτ
2ℓ and setting ⃗⟨m01⟩1 = π01(⃗⟨m⟩1)+ r⃗01 and
⃗⟨m01⟩2 = π01(⃗⟨m⟩2)− r⃗01.

4. S1 sends ⃗⟨m01⟩2 to S2. Now, (⃗⟨m01⟩1, ⃗⟨m01⟩2)
forms an additive sharing of m⃗01 among S0 and
S2.

5. S0 and S2 agree on a random permutation π02

and apply π02 to their shares. Let π02(m⃗01) =

π02(⃗⟨m01⟩1) + π02(⃗⟨m01⟩2).
6. S0 sends π02(⃗⟨m01⟩1) to S2, who reconstructs

π02(m⃗01).
7. S2 generates an additive-sharing of π02(m⃗01),

denoted by m⃗02, among S1 and S2, by jointly
sampling ⃗⟨m02⟩1 ∈ Zτ

2ℓ with S1 and locally
setting ⃗⟨m02⟩2 = π02(m⃗01)− ⃗⟨m02⟩1.

8. S2 sends ⃗⟨m02⟩2 to S1, who locally compute
the output as m⃗02 = ⃗⟨m02⟩1 + ⃗⟨m02⟩2.
a) Anonymous Communication in RIPPLETEE.:

As discussed in §IV-A, the server S2 is only required
to have the complete set of messages in the clear
but in an unknown random order. As a result, in
the case of RIPPLETEE, only the first permutation
(π01 in Step 2) is sufficient and steps 5-8 are no
longer required. Furthermore, in addition to the
communication by S1 in step 4, S0 sends its share of
m⃗01 to S2, who can then reconstruct m⃗01 = π01(m⃗).

b) Security Guarantees.: As discussed in
§III-A, we assume that the MPC servers Si, i ∈ [2],
that also instantiate the anonymous communication
channel are semi-honest. We claim that the protocol
described above will produce a random permutation
of the vector m⃗ that neither S1 nor S2 is aware of.
To see this, note that

m⃗02 = π02(m⃗01) = π02(π01(m⃗))

and both S1 and S2 know only one of the two
permutations π01 and π02, but not both. Furthermore,
the re-sharing performed in step 3 and the generation
of additive shares in step 6 above ensures that an
attacker observing the traffic cannot relate messages
sent and received.

As we also consider a client-malicious security
model [67], [68], where some clients might devi-
ate from the protocol to gain additional informa-
tion, we also have to take into consideration how
the clients could manipulate the communication to
break anonymity. For RIPPLETEE, this is trivial: The
TEE ensures that clients’ messages are correctly
generated and uploaded. For RIPPLEPIR, a mali-
cious client could manipulate how many messages
it uploads. However, messages with addresses that
are already used will be dropped, i.e., effectively
removing the malicious client from the system. A

receiver will never fetch messages with unknown,
random addresses. Furthermore, the servers use se-
cure communication channels and even send freshly
re-shared shares. We also consider a global attacker
being able to monitor the full network traffic to
be unrealistic. Hence, considering the discussed as-
pects/assumptions, classical attacks on anonymous
communication such as flooding [132] are not rele-
vant for our model.

D. Distributed Point Functions (DPF)
Consider a point function Pα,β : Z2ℓ → Z2ℓ′ such

that for all α ∈ Z2ℓ and β ∈ Z2ℓ′ , Pα,β(α) = β and
Pα,β(α

′) = 0 for all α′ ̸= α. That is, when evaluated
at any input other than α, the point function Pα,β

returns 0 and when evaluated at α it returns β.
An (s, t)-distributed point function (DPF) [85],

[86] distributes a point function Pα,β among s
servers in such a way that no coalition of at most
t servers learns anything about α or β given their t
shares of the function. We use (2, 1)-DPFs in RIP-
PLE to optimize the communication of PIR-based
protocols, as discussed in §V-C. Formally, a (2, 1)-
DPF comprises of the following two functionalities:

– Gen(α, β) → (k1, k2). Output two DPF keys
k1 and k2, given α ∈ Z2ℓ and β ∈ Z2ℓ′ .

– Eval(k, α′) → β′. Return β′ ∈ Z2ℓ′ , given key
k generated using Gen, and an index α′ ∈ Z2ℓ .

A (2, 1)-DPF is said to be correct if for all α, x ∈
Z2ℓ , β ∈ Z2ℓ′ , and (k1, k2) ← Gen(α, β), it holds
that

Eval(k1, x) + Eval(k2, x) = (x = α) ? β : 0.

A (2, 1)-DPF is said to be private if neither of the
keys k1 and k2 leaks any information about α or
β. That is, there exists a polynomial time algorithm
that can generate a computationally indistinguishable
view of an adversary A holding DPF key ku for
u ∈ {1, 2}, when given the key ku.

As mentioned in [83], [85], a malicious participant
could manipulate the Gen algorithm to generate in-
correct DPF keys that do not correspond to any point
function. While [85] used an external non-colluding
auditor to circumvent this issue in the two server
setting, [83] formalised this issue and proposed an
enhanced version of DPF called Verifiable DPFs. In
addition to the standard DPF, a verifiable DPF has
an additional function called Ver that can be used to
ensure the correctness of the DPF keys. In contrast to
Eval, Ver in a (2, 1)-verifiable DPF is an interactive
protocol between the two servers, with the algorithm
returning a single bit indicating whether the input
DPF keys k1 and k2 are valid.

A verifiable DPF is said to be correct if for all
α ∈ Z2ℓ , β ∈ Z2ℓ′ , keys (k1, k2)← Gen(α, β), the
verify protocol Ver outputs 1 with probability 1. Ver
should ensure that no additional information about α
or β is disclosed to the party in possession of one
of the DPF keys. Furthermore, the probability that

25

Ver outputs 1 to at least one of the two servers for
a given invalid key pair (k′1, k

′
2) is negligible in the

security parameter κ.
Recent results in the area of (verifiable)

DPFs [133], [134] might be an interesting direction
for future work to further enhance the efficiency of
our RIPPLEPIR construction.

a) Communication Complexity.: Using the pro-
tocol of Boyle et. al. [83], a (2, 1)-DPF protocol for
a point function with domain size N has key size
(λ+2) · log(N/λ)+2 ·λ bits, where λ = 128 for an
AES based implementation. The additional cost in
the case of verifiable DPF is for executing the Ver
function, which has a constant number of elements
in [83]. Furthermore, as stated in [83], the presence
of additional non-colluding servers can improve the
efficiency of Ver, and we use S0 in the case of
PIRI

sum, as discussed in §V-C1. We refer to [83] for
more details regarding the scheme.

APPENDIX C
PIR-SUM PROTOCOL DETAILS

This section provides additional details of our
PIRsum protocols introduced in §V-A. We begin by
recalling the security guarantees of a 2-server PIR
for our setting [82], [135]. Informally in a two-server
PIR protocol, where the database D is held by two
non-colluding servers S1 and S2, a single server
Su ∈ {S1,S2} should not learn any information
about the client’s query. The security requirement
is formally captured in Definition 1.

Definition 1. (Security of 2-server PIR) A PIR
scheme with two non-colluding servers is called
secure if each of the servers does not learn any
information about the query indices.

Let view(Su,Q) denote the view of server Su ∈
{S1,S2} with respect to a list of queries, denoted
by Q. We require that for any database D, and for
any two τ -length list of queries Q = (q1, . . . , qτ)
and Q′ = (q′1, . . . , q

′
τ), no algorithm whose run time

is polynomial in τ and in computational parameter κ
can distinguish the view of the servers S1 and S2,
between the case of participant Pi using the queries
in Q ({view(Su,Q)}u∈{1,2}), and the case of it
using Q′ ({view(Su,Q′)}u∈{1,2}).

A. Linear Summation PIR for F2S
pir with optimized

Communication.
This section describes the 2-server linear sum-

mation PIR protocol in [82], as well as how to
optimize communication using DPF techniques dis-
cussed in Appendix B-D. To retrieve the q-th block
from database D of size N , the linear summation
PIR proceeds as follows:
• Participant Pi prepares an N -bit string b⃗q =
{b1q, . . . , bNq } with bjq = 1 for j = q and bjq = 0
and j ̸= q, for j ∈ [N].

• Pi generates a Boolean sharing of b⃗q among S1
and S2, i.e., Pi,S1 non-interactively sample the

random [⃗bq]1 ∈ {0, 1}N and Pi sends [⃗bq]2 =

b⃗q ⊕ [⃗bq]1 to S2.

• Su, for u ∈ {1, 2}, sends [y]u =
N⊕
j=1

[bjq]uD[j]

to Pi.
• Pi locally computes D[q] = [y]1 ⊕ [y]2.

The linear summation PIR described above requires
communication of N + 2ℓ bits, where ℓ denotes the
size of each data block in D.

1) Optimizing Communication using DPFs.: Sev-
eral works in the literature [83], [85], [86], [135]
have used DPFs (cf. Appendix B-D) as a primitive to
improve the communication in multi-server PIR. The
idea is to use a DPF function to allow the servers
S1 and S2 to obtain the XOR shares of an N -bit
string b⃗ that has a zero in all positions except the
one representing the query q. Because DPF keys
are much smaller in size than the actual database
size, this method aids in the elimination of N -bit
communication from Pi to the servers, as in the
aforementioned linear summation PIR.
To query the q-th block from a database D of size
N ,

– Participant Pi executes the key generation al-
gorithm with input q to obtain two DPF keys,
i.e., (k1, k2)← Gen(q, 1).

– Pi sends ku to Su, for u ∈ {1, 2}.
– Su, for u ∈ {1, 2}, performs a DPF evaluation

at each of the positions j ∈ [N] using key ku
and obtains the XOR share corresponding to bit
vector b⃗q .
• Su expands the DPF keys as [bjq]u ←

Eval(ku, j) for j ∈ [N].

– Su, for u ∈ {1, 2}, sends [y]u =
N⊕
j=1

[bjq]uD[j]

to Pi.
– Pi locally computes D[q] = [y]1 ⊕ [y]2.

For the case of semi-honest participants, we use
the DPF protocol of [83] and the key size is O(λ ·
log(N/λ)) bits, where λ = 128 is related to AES
implementation in [83].

To prevent a malicious participant from sending
incorrect or malformed keys to the servers, we use
the verifiable DPF construction proposed in [83] for
the case of malicious participants. This results only
in a constant communication overhead over the semi-
honest case. Furthermore, as noted in [83], we use
the additional server S0 for a better instantiation of
the verifiable DPF, removing the need for interaction
with the participant Pi for verification. We provide
more information in Appendix B-D and refer the
reader to [83] for all details.

	Introduction
	Related Work & Background Information
	Cryptography-based Solutions in the Context of Infectious Diseases
	Epidemiological Modeling

	The RIPPLE Framework
	System and Threat Model
	Phases of RIPPLE
	Privacy Requirements

	Instantiating Fesim
	RIPPLETEE
	Security of RIPPLETEE.

	RIPPLEPIR
	Security of RIPPLEPIR
	Arithmetic Garbled Cuckoo Table (AGCT)

	PIR-SUM: Instantiating Fpirsum
	Overview of PIRsum protocol
	Instantiating Fpirsum
	Security of PIRsum Protocol

	Reducing participant's communication
	PIRIsum (Fig. 12)
	PIRIIsum (Fig. 13)
	Summary of communication costs

	Evaluation
	Communication Complexity
	Participant Communication
	Server Communication
	Communication Micro Benchmarks.

	Computation Complexity
	Computation Micro Benchmarks.
	Battery Usage.
	Comparison to Related Work.
	Code availability

	References
	Appendix A: Related Primitives
	Anonymous Communication
	Trusted Execution Environment (TEE)
	Private Information Retrieval (PIR)
	Cuckoo Hashing
	Garbled Cuckoo Table (GCT)
	Secure Multi-Party Computation (MPC)
	Anonymous Credentials

	Appendix B: Building Blocks in RIPPLE
	Shared-Key Setup
	Collision Resistant Hash Function
	Anonymous Communication Channel
	Distributed Point Functions (DPF)

	Appendix C: PIR-SUM Protocol Details
	Linear Summation PIR for F2Spir with optimized Communication.
	Optimizing Communication using DPFs.

