
Guaranteed Output Delivery Comes Free in Honest Majority
MPC

Vipul Goyal1, Yifan Song1(�), and Chenzhi Zhu2

1 Carnegie Mellon University, Pittsburgh, USA
vipul@cmu.edu, yifans2@andrew.cmu.edu

2 Tsinghua University, Beijing, China
mrbrtpt@gmail.com

Abstract. We study the communication complexity of unconditionally secure MPC with guaranteed
output delivery over point-to-point channels for corruption threshold t < n/2, assuming the existence
of a public broadcast channel. We ask the question: “is it possible to construct MPC in this setting
s.t. the communication complexity per multiplication gate is linear in the number of parties?” While a
number of works have focused on reducing the communication complexity in this setting, the answer
to the above question has remained elusive until now. We also focus on the concrete communication
complexity of evaluating each multiplication gate.
We resolve the above question in the affirmative by providing an MPC with communication complexity
O(Cnφ) bits (ignoring fixed terms which are independent of the circuit) where φ is the length of an
element in the field, C is the size of the (arithmetic) circuit, n is the number of parties. This is the first
construction where the asymptotic communication complexity matches the best-known semi-honest
protocol. This represents a strict improvement over the previously best-known communication com-
plexity of O(C(nφ+κ) +DMn

2κ) bits, where κ is the security parameter and DM is the multiplicative
depth of the circuit. Furthermore, the concrete communication complexity per multiplication gate is
5.5 field elements per party in the best case and 7.5 field elements in the worst case when one or more
corrupted parties have been identified. This also roughly matches the best-known semi-honest protocol,
which requires 5.5 field elements per gate.

1 Introduction

In secure multiparty computation (MPC), a set of n parties together evaluate a function f on their private
inputs. This function f is public to all parties, and, may be modeled as an arithmetic circuit over a finite field.
Very informally, a protocol of secure multiparty computation guarantees the privacy of the inputs of every
(honest) individual except the information which can be deduced from the output. This notion was first
introduced in the work [Yao82] of Yao. Since the early feasibility solutions proposed in [Yao82,GMW87],
various settings of MPC have been studied. Examples include semi-honest security vs malicious security,
security against computational adversaries vs unbounded adversaries, honest majority vs corruptions up to
n− 1 parties, security with abort vs guaranteed output delivery and so on.

In this work, we focus on the information-theoretical setting (i.e., security against unbounded adversaries)
with guaranteed output delivery. The adversary is allowed to corrupt at most t < n/2 parties and is fully
malicious. We assume the existence of private point-to-point communication channels and a public broadcast
channel. We are interested in the communication complexity of the secure MPC, which is measured by the
number of bits X via private point-to-point channels and the number of bits Y via the public broadcast

V. Goyal—Research supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via 2019-1902070008, an NSF award 1916939, a gift from Ripple,
a JP Morgan Faculty Fellowship, a PNC center for financial services innovation award, and a Cylab seed funding
award.
Y. Song—Research supported in part by a Cylab Presidential Fellowship and grants of Vipul Goyal mentioned
above.
C. Zhu—Work done in part while at CMU.

channel, i.e., X + Y · BC. The first positive solutions in this setting were proposed in [RBO89,Bea89]. After
those, several subsequent works [CDD+99,BTH06,BSFO12] have focused on improving the communication
complexity of the protocol. Note that, by representing the functionality as an arithmetic circuit, the com-
munication complexity of the protocol in the unconditional setting is typically dominated by the number of
multiplication gates in the circuit. This is because the addition gates can usually be done locally, requiring
no communication at all.

In this paper, we ask the following natural question:

“Is it possible to construct unconditional MPC with guaranteed output delivery for t < n/2 s.t. the
communication complexity per multiplication gate is linear in the number of parties? Furthermore, what is
the concrete communication complexity per multiplication gate?”

Having linear communication complexity per multiplication gate greatly benefits the scalability of the
protocol, as it means that the work done by each party is independent of the number of parties but only
related to the size of the circuit. While a number of works have made significant progress, this question has
remained opened until now.

The best-known result in this setting is the construction in the work [BSFO12] of Ben-Sasson, Fehr
and Ostrovsky. The construction in [BSFO12] has communication complexity O(C(nφ+ κ) +DMn

2κ) bits
(ignoring fixed terms which are independent of the circuit), where C is the size of the circuit, φ is the length
of a field element, κ is the security parameter and DM is the multiplicative depth of the circuit. Comparing
with the best-known result against semi-honest adversaries in [DN07], which has communication complexity
O(Cnφ) bits, there is an additional term DMn

2κ related to the circuit. In the worst case where the circuit
is “narrow and deep”, DMn

2κ may even become the dominating term of the communication complexity and
result in O(n2) elements per gate. Ben-Sasson et. al asked if this quadratic term related to the depth of the
circuit is inherent.

In a beautiful work, Ishai et al. [IKP+16] provided a general transformation from a protocol in the setting
of security with abort to a protocol with guaranteed output delivery. Instantiation this transformation with
the best-known protocol for security with abort, the resulting construction eliminates the quadratic term
w.r.t. the circuit depth. However, the communication complexity of the resulting protocol now has a term
O(W · poly(n)), where W is the width of the circuit, and, poly(n) can be at least n4 for certain circuits. For
the circuit with a large width, this term may even become the dominating term.

In the setting of t < n/3 corruptions (where a public broadcast channel can be securely simulated),
question of getting a construction with linear communication complexity was recently resolved in the recent
work of Goyal et. al [GLS19], which presented a construction with communication complexity O(Cnφ) bits.
Similar results were also known in the setting of security with abort in [GIP+14,LN17,CGH+18,NV18,GS20].

Our Results. In this work, we answer the above question in the affirmative by presenting an MPC protocol
with communication complexity O(Cnφ) bits (ignoring fixed terms which are independent of the circuit).
Furthermore, we also focus on the concrete efficiency, i.e., the number of elements per multiplication gate
per party. Concretely, our result achieves 5.5 + ε elements in the best case and 7.5 + ε elements in the worst
case when one or more corrupted parties have been identified, where ε can be an arbitrarily small constant.
Comparing with the best-known result [DN07] in the semi-honest setting, which requires 6 elements, and
the best-known result [GS20] in the setting of security with abort, which requires 5.5 elements, our result
essentially shows that achieving output delivery guarantee requires no additional cost compared to semi-
honest security and malicious security (with abort).

Our main contributions lie in two aspects, (1) we present the first construction in this setting where
the asymptotic communication complexity matches that in the semi-honest setting, and, (2) our protocol
roughly achieves the same concrete efficiency as the best-known semi-honest protocol. These improvements
stem from the idea of developing a suite of techniques to efficiently compile the best-known secure-with-abort
protocol [GS20] into a fully secure protocol. Additionally, we introduce a technique which allows us to re-use
authentication keys towards developing a more efficient verifiable secret sharing scheme. An overview of our
new ideas can be found in Section 2.

2

Related Works. In this section, we compare our result with several related constructions in both techniques
and efficiency. In the following, let C denote the size of the circuit, φ denote the size of a field element, κ
denote the security parameter, DM denote the depth of the circuit, and W denote the width of the circuit.
We will ignore fixed terms which are independent of the circuit.

Comparison with [BSFO12]. The construction in [BSFO12] is most related to our result. In fact, we reuse
and modify many protocols in [BSFO12] in our construction.

The communication complexity achieved by the construction in [BSFO12] is O(C(nφ+κ)+DMn
2κ) bits.

Our result removes both the quadratic term related to DM and the term O(Cκ). Furthermore, the use of
Beaver triples for multiplication gates in [BSFO12] is more expensive than the multiplication protocol in the
best-known secure-with-abort protocol [GS20]. As a result, the communication cost per multiplication gate
in [BSFO12] is a fixed 20 field elements (without considering the effect of O(DMn

2κ)). Our result achieves
5.5+ε field elements per multiplication gate in the best case and 7.5+ε field elements in the worst case when
one or more corrupted parties have been identified, where ε can be an arbitrarily small constant. In the best
case, our result matches the best-known semi-honest protocol [DN07] and the best-known secure-with-abort
protocol [GS20].

Technically, while the construction from [BSFO12] uses Beaver triples to compute multiplications in
the computation phase, we directly use a modified version of the multiplication protocol of the best-known
protocol [DN07] from the semi-honest setting. We note that Beaver triples provide plenty of redundancy which
simplifies the checking process in the computation phase. However, the use of Beaver triples unfortunately
requires a verification for each layer of the circuit, which leads to the quadratic term related to DM . On the
other hand, we start from the best-known secure-with-abort protocol [GS20], which does not make use of
Beaver triples. While this idea can potentially remove the term O(DMn

2), without the redundancy provided
by Beaver triples, the verification becomes difficult and even the computation cannot proceed when malicious
parties refuse to participate in the computation. We will show how to tackle these difficulties in Section 2.

Comparison with [IKP+16]. Ishai et al. [IKP+16] provided a general transformation from a protocol in
the setting of security with abort to a protocol with guaranteed output delivery. When instantiating their
transformation with the best-known protocols [GS20] in the setting of security with abort, the resulting
protocol can achieve 5.5 field elements per multiplication gate when the width of the circuit is small.

However, a drawback of this transformation is that the efficiency of the resulting protocol has a large
dependency on the width of the circuit. Specifically, the communication complexity of the resulting protocol
contains a term O(W · poly(n, κ)) (where poly is relatively large). For the circuit with a large width, this
term may even become the dominating term.

Comparison with [GLS19]. Recently, Goyal et al. [GLS19] gave the first construction against 1/3 corruption
such that the communication complexity per multiplication gate is linear in the number of parties. The
communication complexity is O(Cnφ) bits. Since they mainly focused on the feasibility and the protocol is
perfectly secure, the concrete efficiency is 66 elements per multiplication gate.

Unfortunately the techniques developed in [GLS19] fail in the setting of honest majority. Technically,
we use a significantly different approach from that in [GLS19] to remove the quadratic term related to the
circuit depth. The reason for O(DMn

2) is that all parties need to ensure the correctness of multiplications in
one layer before moving on to the next layer. To this end, each layer requires at least O(n2) communication,
which results in O(DMn

2) overhead. While Goyal et al. [GLS19] used n-out-of-n secret sharings to overcome
the layer restriction, our approach is to directly compile the best-known secure-with-abort protocol [GS20],
which does not have the term O(DMn

2), to a fully secure one.

Comparison with [GS20]. The recent work [GS20] in the setting of security with abort shows that the
concrete efficiency can be the same as the best-known semi-honest protocol [DN07]. Specifically, the proto-
col [GS20] achieves the asymptotic complexity O(Cnφ) bits and concrete efficiency of 5.5 field elements per
multiplication gate per party. In the best case, our protocol matches the concrete efficiency of [GS20].

3

Technically, we directly compile the protocol [GS20] into a fully secure one. While a secure-with-abort
protocol simply aborts when a failure occurs in the computation, we need to find out where things went
wrong and ensure the success of the computation. However, due to the lack of redundancy (compared with the
protocol [BSFO12] which uses Beaver triples), the verification becomes difficult and even the computation
cannot proceed when malicious parties refuse to participate in the computation. We address these two
problems in Section 2.

Other Related Works. The notion of MPC was first introduced in [Yao82,GMW87] in 1980s. Feasibil-
ity results for MPC were obtained by [Yao82,GMW87,CDVdG87] under cryptographic assumptions, and
by [BOGW88,CCD88] in the information-theoretic setting. Subsequently, a large number of works have
focused on improving the efficiency of MPC protocols in various settings.

A series of works focus on improving the communication efficiency of MPC with output delivery guarantee
in the settings with different threshold on the number of corrupted parties. In the setting where t < n/3, a
public broadcast channel can be securely simulated and therefore, only private point-to-point communication
channels are required. A rich line of works [HMP00,HM01,DN07,BTH08], [GLS19] have focused on improving
the asymptotic communication complexity in this setting. In the setting where t < (1/3− ε)n, packed secret
sharing can be used to hide a batch of values, resulting in more efficient protocols. E.g., Damgard et al.
[DIK10] introduced a protocol with communication complexity O(C logC log n · κ + D2

Mpoly(n, logC)κ)
bits.

A rich line of works have also focused on the performance of MPC in practice. Many concretely efficient
MPC protocols were presented in [LP12,NNOB12,FLNW17] [ABF+17,LN17,CGH+18]. All of these works
emphasized the practical running time and only provided security with abort. Some of them were specially
constructed for two parties [LP12,NNOB12], or three parties [FLNW17,ABF+17].

2 Technical Overview

Our construction is based on Shamir Secret Sharing Scheme [Sha79]. We will use [x]d to denote a degree-d
sharing, or a (d+ 1)-out-of-n Shamir sharing. It requires at least d+ 1 shares to reconstruct the secret and
any d shares do not leak any information about the secret.

In the following, we will use a variable with bold font x to represent a vector.

2.1 Background: Using An Efficient Secure-With-Abort Protocol without O(DMn
2)

We observe that several recent secure-with-abort protocols [GIP+14,CGH+18,NV18,GS20] in this setting do
not have the factor O(DMn

2) in the communication complexity. In particular, the best-known result [GS20]
has achieved asymptotic communication complexity O(Cnφ) bits (ignoring fixed terms which are independent
of the circuit) and concrete efficiency of 5.5 field elements per gate, which matches the best-known result in
the semi-honest setting [DN07].

Therefore, our starting idea is to compile the protocol in [GS20] into one with guaranteed output delivery.
Hopefully, it will help us remove the factor O(DMn

2) and achieve the same concrete efficiency as the semi-
honest setting. We first give a sketch of the construction from [GS20].

Overview. The protocol in [GS20] is composed of the best-known semi-honest protocol [DN07], which we
referred to as the DN protocol, and an efficient verification for a batch of multiplication gates.

The high-level idea of the DN protocol is to let all parties compute a degree-t Shamir secret sharing for
each wire. For an addition gate, the output sharing can be computed by locally adding the input sharings.
For a multiplication gate, we directly describe an extension of the DN multiplication protocol [GS20] (which
is a slightly optimized version of that in [CGH+18]), which allows all parties to compute an inner-product of
two vectors of sharings [x]t, [y]t. The original DN multiplication protocol is a special case when the dimension
is 1.

For each inner-product operation, all parties will prepare a pair of random sharings ([r]t, [r]2t), which we
refer to as double sharings. In brief, double sharings are prepared in the following manner:

4

1. Each party generates and distributes a pair of random double sharings.
2. Each pair of double sharings is a linear combination of the random double sharings distributed by each

party.

Note that a random degree-t sharing can be prepared in the same way except that all parties only distribute
the degree-t sharing. Then, all parties execute the following steps to compute [x� y]t, where � denotes the
inner-product operation.

1. All parties first locally compute [e]2t := [x]t � [y]t + [r]2t.
2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking generates a degree-t sharing [e]t

and distributes the shares to all other parties.
3. All parties locally compute [x� y]t = [e]t − [r]t.

Here Pking is the party all parties agree on in the beginning. We point out that the communication cost is
independent of the dimension of the input vectors.

Note that the DN protocol only provides security against semi-honest adversaries. After evaluating the
whole circuit, all parties together verify the multiplications. If the check passes, all parties proceed to recon-
struct the output. Otherwise, the protocol aborts.

Sketch of Batch-wise Multiplication Verification in [GS20]. Suppose the multiplication tuples we
want to verify are

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t, [y
(m)]t, [z

(m)]t).

The verification contains three steps, (1) De-Linearization, (2) Dimension-Reduction, and (3) Recursion and
Randomization.

Step One: De-Linearization. The first step is transforming the check of m multiplication tuples into a
check of an inner-product tuple of dimension m. Note that simply setting [x]t = ([x(1)]t, . . . , [x

(m)]t), [y]t =
([y(1)]t, . . . , [y

(m)]t), [z]t =
∑m
i=1[z(i)]t and checking the correctness of ([x]t, [y]t, [z]t) is insufficient. For ex-

ample, the corrupted parties may only cause z(1) = x(1) · y(1) + 1 and z(2) = x(2) · y(2)− 1. We cannot detect
it by using this approach. Therefore, we need to add some randomness so that the inner-product tuple will
be incorrect with overwhelming probability if any one of the original multiplication tuples is incorrect.

Consider the following two polynomials:

F (X) = (x(1) · y(1)) + (x(2) · y(2))X + . . .+ (x(m) · y(m))Xm−1

G(X) = z(1) + z(2)X + . . .+ z(m)Xm−1.

Note that if some multiplication tuple is incorrect, we will have F 6= G. In this case, the number of λ
such that F (λ) = G(λ) is bounded by m − 1. Therefore, for a random λ, F (λ) 6= G(λ) with overwhelming
probability.

All parties will generate a random element λ as challenge. Then, the inner-product tuple ([x]t, [y]t, [z]t)
is set to be

[x]t = ([x(1)]t, λ[x(2)]t, . . . , λ
m−1[x(m)]t)

[y]t = ([y(1)]t, [y
(2)]t, . . . , [y

(m)]t)

[z]t =

m∑
i=1

λi−1[z(i)]t.

Note that F (λ) = x � y and G(λ) = z. Therefore, the inner-product tuple ([x]t, [y]t, [z]t) is what we wish
to verify.

5

Step Two: Dimension-Reduction. Although we only need to verify a single inner-product tuple, it seems
that verifying an inner-product tuple with dimension m would require communicating at least O(mn) field
elements. Therefore, instead of directly doing the check, the second step is to reduce the dimension of
the inner-product tuple we want to verify. It is achieved by using a natural extension of the Batch-wise
Multiplication Verification technique in [BSFO12]. In short, this technique can compresses the check of `
multiplication tuples into one check of a new generated multiplication tuple. However, the main drawback
of this technique is that it requires additional ` multiplication operations to do the compression.

A natural extension of Batch-wise Multiplication Verification [NV18] is to compress the check of ` inner-
product tuples into one check of a new generated inner-product tuple. The communication cost is roughly `
inner-product operations, which is the same as ` multiplication operations.

Let k be a compression parameter. The goal is to transform the original inner-product tuple of dimension
m to be a new inner-product tuple of dimension m/k. The two input vectors of sharings are first chopped
into k equal parts:

[x]t = ([x(1)]t, [x
(2)]t, . . . , [x

(k)]t)

[y]t = ([y(1)]t, [y
(2)]t, . . . , [y

(k)]t),

where {x(i),y(i)}i∈[k] are vectors of dimension m/k. For each i ∈ [k − 1], all parties compute the inner-

product of ([x(i)]t, [y
(i)]t) using the extension of the DN multiplication protocol. Let [z(i)]t denote the result.

Then set [z(k)]t = [z]t −
∑k−1
i=1 [z(i)]t to be the result for the inner-product of ([x(k)]t, [y

(k)]t). In this way, if
the original inner-product tuple is incorrect, then at least one of the new inner-product tuples is incorrect.

Finally, all parties use the extension of Batch-wise Multiplication Verification [NV18] to compress the
check of these k inner-product tuples into one check of a single inner-product tuple. In particular, the output
inner-product tuple has dimension m/k.

Step Three: Recursion and Randomization. The second step is repeated logkm times so that all parties only
need to check the correctness of a single multiplication tuple in the end. To simplify the checking process
for the last tuple, all parties will prepare a random multiplication tuple as a random mask in the last call of
the second step.

Concretely, in the last call of the second step, all parties need to compress the check of k multiplication
tuples into one check of a single multiplication tuple. A random multiplication tuple will be included as
a random mask of these k multiplication tuples in the compression. That is, the last call will compress
the check of k + 1 multiplication tuples into one check of a single multiplication tuple, which we refer to
as the ultimate multiplication tuple. In this way, to check the ultimate multiplication tuple, all parties can
simply reconstruct the sharings and check whether the multiplication is correct. This reconstruction reveals
no additional information about the original inner-product tuple because of this added randomness.

The random multiplication tuple is prepared in the following manner.

1. All parties prepare two random sharings [a]t, [b]t in the same way as that in the DN protocol.
2. All parties compute [c]t = [a · b]t using the DN multiplication protocol.

Problems with the Starting Idea. The most direct problem of using the secure-with-abort protocol
in [GS20] is that a single error leads to an abortion of the whole computation. However, our purpose is
to build a protocol with guaranteed output delivery, which should ensure the success of the computation
no matter how corrupted parties behave. It means that, when facing a failure in the check of the ultimate
multiplication tuple, we need to find out where things went wrong and be able to proceed the computation.

Another problem is that, when a corrupted party maliciously refuses to participate in the computation
or an identified corrupted party is kicked out from the computation, the DN protocol cannot even proceed.
This is because in the DN multiplication protocol, Pking needs to reconstruct a degree-2t sharing [e]2t :=
[x]t � [y]t + [r]2t. Pking needs 2t+ 1 = n shares to do reconstruction. This cannot be achieved if some party
does not send its share to Pking.

In the following, we will tackle these two problems respectively.

6

2.2 Efficient Verification Using Virtual Transcripts

To be able to identify the corrupted parties that deviate from the protocol when a failure occurs in the check of
the ultimate multiplication tuple, our idea is to compute a virtual transcript of the ultimate multiplication
tuple. A virtual transcript can be seen as the transcript where all parties directly compute the ultimate
multiplication tuple using the DN multiplication protocol. Although the transcript does not correspond to
a real execution, all parties should agree on the messages they sent in a virtual transcript. In the case that
a failure occurs in the check of the ultimate multiplication tuple, all parties can open the whole virtual
transcripts to identify the parties which behaved maliciously.

We first give a sketch of the extension of Batch-wise Multiplication Verification [NV18].

Extension of Batch-wise Multiplication Verification [NV18]. Suppose we have ` inner-product tuples
{([x(i)]t, [y

(i)]t, [z
(i)]t)}`i=1 and would like to verify whether z(i) = x(i) � y(i) for all i ∈ [`]. The extension of

Batch-wise Multiplication Verification [NV18] works as follows.

1. Let F (·),G(·) be two vectors of degree-(`− 1) polynomials such that

∀i ∈ [`], F (i) = x(i), G(i) = y(i).

All parties can locally compute the shares of [F (·)]t and [G(·)]t by using their shares of [x(1)]t, . . . , [x
(`)]t

and [y(1)]t, . . . , [y
(`)]t, i.e., by doing interpolation on their own vectors of shares.

2. All parties compute [x(i)]t = [F (i)]t, [y
(i)]t = [G(i)]t for all i ∈ {`+ 1, . . . , 2`− 1}.

3. For all i ∈ {` + 1, . . . , 2` − 1}, all parties compute [z(i)]t where z(i) = x(i) � y(i) using the extension of
the DN multiplication protocol.

4. Let H(·) be a degree-2(`− 1) polynomial such that

∀i ∈ [2`− 1], H(i) = z(i).

All parties can locally compute the shares of [H(·)]t by using their shares of [z(1)]t, . . . , [z
(2`−1)]t, i.e., by

doing interpolation on their own shares.

Note that if all inner-product tuples {([x(i)]t, [y
(i)]t, [z

(i)]t)}2`−1i=1 are correct, we should have F �G = H.
Otherwise, F � G 6= H, and the number of λ such that F (λ) � G(λ) = H(λ) is bounded by 2(` − 1).
Therefore, to verify the original ` inner-product tuples, it is sufficient to sample a random point λ and only
verify ([F (λ)]t, [G(λ)]t, [H(λ)]t). We refer to ([F (λ)]t, [G(λ)]t, [H(λ)]t) as the final inner-product tuple.

Preparing Virtual Transcript for the Final Inner-product Tuple. We note that the transcript of the extension
of the DN multiplication protocol contains 7 sharings

([x]t, [y]t, [r]t, [r]2t, [e]2t, [e]t, [z]t).

The idea of the virtual transcript is to recover the missing parts [r]t, [r]2t, [e]2t, [e]t. Therefore, in the case
that the check of the final inner-product tuple fails, by examining the corresponding virtual transcripts, we
can find out where things went wrong and potentially identify a corrupted party.

Recall that the final inner-product tuple ([x]t, [y]t, [z]t) is derived by using polynomial interpolation on
2` − 1 inner-product tuples. In a similar way, we derive [r]t, [r]2t, [e]2t, [e]t by polynomial interpolation on
the corresponding values in the transcripts of these 2`− 1 inner-product tuples.

In more detail, given the transcripts of the original m inner-product tuples

{([x(i)]t, [y
(i)]t, [r

(i)]t, [r
(i)]2t, [e

(i)]2t, [e
(i)]t, [z

(i)]t)}`i=1,

we want to compute the transcript of the resulting tuple.
Let {([x(i)]t, [y

(i)]t, [r
(i)]t, [r

(i)]2t, [e
(i)]2t, [e

(i)]t, [z
(i)]t)}2`−1i=`+1 denote the transcripts generated in the ex-

tension of Batch-wise Multiplication Verification. Recall that [F (·)]t, [G(·)]t, [H(·)]t satisfy that

∀i ∈ [2`− 1] : [F (i)]t = [x(i)]t, [G(i)]t = [y(i)]t, [H(i)]t = [z(i)]t.

7

Let [R(·)]t, [R(·)]2t, [E(·)]2t, [E(·)]t be sharings of polynomials of degree 2(m− 1) such that

∀i ∈ [2`− 1] : [R(i)]t = [r(i)]t, [R(i)]2t = [r(i)]2t,

[E(i)]2t = [e(i)]2t, [E(i)]t = [e(i)]t.

Therefore, we have [E(·)]2t = [F (·)]t � [G(·)]t + [R(·)]2t and [H(·)]t = [E(·)]t − [R(·)]t. It means that, for
every λ, one can regard

([F (λ)]t, [G(λ)]t, [R(λ)]t, [R(λ)]2t, [E(λ)]2t, [E(λ)]t, [H(λ)]t)

as a transcript of the following steps:

1. All parties first locally compute [E(λ)]2t := [F (λ)]t � [G(λ)]t + [R(λ)]2t.

2. Pking collects all shares of [E(λ)]2t and reconstructs the secret E(λ). Then Pking generates a degree-t
sharing [E(λ)]t and distributes the shares to all other parties.

3. All parties locally compute [H(λ)]t = [E(λ)]t − [R(λ)]t.

To this end, all parties locally compute the shares of [R(·)]t, [R(·)]2t by using their shares of [r(1)]t, . . . , [r
(2`−1)]t

and [r(1)]2t, . . . , [r
(2`−1)]2t. Then set [E(·)]2t = [F (·)]t� [G(·)]t+ [R(·)]2t and [E(·)]t = [H(·)]t+ [R(·)]t. Pking

further computes [E(·)]2t by using the sharings [e(1)]2t, . . . , [e
(2m−1)]2t it received, and [E(·)]t by using the

sharings [e(1)]t, . . . , [e
(2m−1)]t it distributed.

All parties generate a random element λ as challenge. The transcript

([F (λ)]t, [G(λ)]t, [R(λ)]t, [R(λ)]2t, [E(λ)]2t, [E(λ)]t, [H(λ)]t)

is what we want to verify.

Preparing Virtual Transcript for the Ultimate Multiplication Tuple. We will follow the Batch-wise
Multiplication Verification in [GS20] and prepare a virtual transcript for the tuple generated in each step.
Suppose the transcripts of the original m multiplication tuples are

{([x(i)]t, [y(i)]t, [r(i)]t, [r(i)]2t, [e(i)]2t, [e(i)]t, [z(i)]t)}mi=1,

and we want to verify that z(i) = x(i) · y(i) for all i ∈ [m].

Step One: De-Linearization. Recall that in Step One, all parties first generate a random element λ and set

[x]t = ([x(1)]t, λ[x(2)]t, . . . , λ
m−1[x(m)]t)

[y]t = ([y(1)]t, [y
(2)]t, . . . , [y

(m)]t)

[z]t =

m∑
i=1

λi−1[z(i)]t.

The virtual transcript for ([x]t, [y]t, [z]t) can be prepared by setting

([r]t, [r]2t, [e]2t, [e]t) =

m∑
i=1

λi−1([r(i)]t, [r
(i)]2t, [e

(i)]2t, [e
(i)]t).

The transcript ([x]t, [y]t, [r]t, [r]2t, [e]2t, [e]t, [z]t) is what we need to verify. Note that this transcript corre-
sponds to a single inner-product tuple of dimension m.

8

Step Two: Dimension-Reduction. Recall that in Step Two, we want to reduce the dimension of the inner-
product tuple from Step One. Let

([x]t, [y]t, [r]t, [r]2t, [e]2t, [e]t, [z]t)

denote the transcript. Recall that [x]t, [y]t are first chopped into k equal parts:

[x]t = ([x(1)]t, [x
(2)]t, . . . , [x

(k)]t)

[y]t = ([y(1)]t, [y
(2)]t, . . . , [y

(k)]t),

where {x(i),y(i)}i∈[k] are vectors of dimension m/k. For each i ∈ [k − 1], all parties compute [z(i)]t =

[x(i)�y(i)]t by using the extension of the DN multiplication protocol. Let ([r(i)]t, [r
(i)]2t) be the corresponding

double sharings used by the parties, [ei]2t, [e
(i)]t be the sharings which Pking received and sent respectively.

Hence,
([x(i)]t, [y

(i)]t, [r
(i)]t, [r

(i)]2t, [e
(i)]2t, [e

(i)]t, [z
(i)]t)

denote the transcript for the inner-product tuple ([x(i)]t, [y
(i)]t, [z

(i)]t). So far, we have only used [x]t, [y]t
from the input inner-product tuple. To ensure that if the input transcript of the inner-product tuple is
incorrect, then one of the new generated transcripts is also incorrect, the transcript of the last tuple is
computed from the input transcript. By setting

([r(k)]t, [r
(k)]2t, [e

(k)]2t, [e
(k)]t, [z

(k)]t)

= ([r]t, [r]2t, [e]2t, [e]t, [z]t)−
k−1∑
i=1

([r(i)]t, [r
(i)]2t, [e

(i)]2t, [e
(i)]t, [z

(i)]t),

the transcript for ([x(k)]t, [y
(k)]t) is

([x(k)]t, [y
(k)]t, [r

(k)]t, [r
(k)]2t, [e

(k)]2t, [e
(k)]t, [z

(k)]t).

Now we can use the extension of Batch-wise Multiplication Verification [NV18] to compress these k
transcripts of inner-product tuples into one transcript of a single inner-product tuple as we described above.

Step Three: Recursion and Randomization. In this step, all parties first recursively invoke Step Two to reduce
the dimension of the inner-product tuple fromm to k. In the meantime, all parties will also recursively prepare
the virtual transcripts.

All parties then prepare a random multiplication tuple, and include this tuple when doing the last call
of compression. After all parties prepare this random multiplication tuple and its transcript, all parties can
do the same way as that in Step Two to get a transcript of a single multiplication tuple. Let

([x?]t, [y
?]t, [r

?]t, [r
?]2t, [e

?]2t, [e
?]t, [z

?]t)

denote the transcript for the ultimate multiplication tuple. It can be regarded as the transcript where all
parties run the following steps:

1. All parties first locally compute [e?]2t := [x?]t · [y?]t + [r?]2t.
2. Pking collects all shares of [e?]2t and reconstructs the secret e?. Then Pking generates a degree-t sharing

[e?]t and distributes the shares to all other parties.
3. All parties locally compute [z?]t = [e?]t − [r?]t.

Checking the Virtual Transcript. Recall that all parties have opened [x?]t, [y?]t, [z
?]t to verify the

ultimate multiplication tuple. In the case that ([x?]t, [y
?]t, [z

?]t) is not a correct multiplication tuple, all
parties will publish their shares of [r?]t, [r

?]2t, [e?]2t, [e
?]t. In addition, Pking will publish the whole sharing

[e?]2t it received and the whole sharing [e?]t it distributed. Then all parties must observe one of the following
cases:

9

– The input sharings [x?]t, [y
?]t are inconsistent.

– The pair of double sharings ([r?]t, [r
?]2t) is incorrect or inconsistent.

– Some party Pi does not follow the protocol.

– Two parties (Pi, Pking) do not agree on the message sent from one party to the other party.

For the first two cases, there will be another protocol to help find errors. The main observation is that
each sharing [x]t can be decomposed into [x]t =

∑n
i=1[x(i)]t where [x(i)]t is a linear combination of the

sharings dealt by Pi. In other words, Pi should be responsible for the consistency of [x(i)]t. Therefore, all
parties will check each [x(i)]t to find errors.

For the last two cases, we can immediately identify a corrupted party or a pair of parties which have
conflict with each other. We refer to this pair of parties as a pair of disputed parties.

In summary, all parties will finally identify either a corrupted party or a pair of disputed parties.

2.3 Relying on a Small Surgery to Proceed

Now suppose a corrupted party causes the computation to fail and has been identified using the described
checks. What do we do? A straightforward idea is to restart the whole computation with the corrupted
party excluded and a smaller corruption threshold. In the worst case, however, we may need to rerun the
whole protocol O(n) times, which is too expensive. To reduce the penalty due to failures, we rely on Dispute
Control [BTH06], which is a general strategy to achieve unconditional security efficiently.

At a high-level, the whole circuit will be partitioned into several small segments. These segments will
be evaluated in sequence. In the case that a failure occurs, the computation of this segment is discarded
and all parties restart to evaluate the current segment. In other words, the end of each segment is served
as a checkpoint. However, one problem with this strategy is that we cannot easily restart the computation
with a smaller corruption threshold. This is because all the input sharings, which come from the end of last
segment, are shared using the threshold t. Changing threshold means that one need to re-share all the input
sharings. In fact, it is the main reason of the factor of O(W · poly(n)) in [IKP+16], where W is the width of
the circuit.

To avoid the expensive re-sharing process, we would like to keep the corruption threshold unchanged.
Furthermore, we also want to keep the influence on the concrete efficiency as little as possible. To be able to
let the protocol proceed without changing the corruption threshold, our idea is to prepare the shares held
by identified corrupted parties so that Pking will have enough shares to reconstruct a degree-2t sharing.

Notation. Recall that n is the number of all parties and t is the number of corrupted parties. We have
n = 2t+ 1. Let P be the set of all parties, Corr be the set of parties which have been identified as corrupted
parties so far, and Pactive = P\Corr be the set of remaining parties. If a party is identified as a corrupted
party, it will not participate in the rest of the computations. Hereafter, we use all parties to refer parties in
Pactive.

Overview. Recall that for each multiplication gate with input sharings ([x]t, [y]t), all parties first prepare
a pair of random double sharings ([r]t, [r]2t). Then all parties execute the following steps to compute [x · y]t.

1. All parties first locally compute [e]2t := [x]t · [y]t + [r]2t.

2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking generates a degree-t sharing [e]t
and distributes the shares to all other parties.

3. All parties locally compute [x · y]t = [e]t − [r]t.

In our construction, when a party Pd needs to generate a random sharing, we require that the shares
held by parties in Corr should be 0. Note that, it does not break the secrecy of the random sharing since
parties in Corr are corrupted. We observe the following two facts.

10

1. During the generation process of ([r]t, [r]2t), each dealer sets the shares held by parties in Corr to be
0. Since ([r]t, [r]2t) is a linear combination of the double sharings dealt by each party, the shares of
([r]t, [r]2t) held by parties in Corr are all 0.

2. For each party Pi, if the i-th share of either [x]t or [y]t is 0, then the i-th share of [x · y]2t := [x]t · [y]t is
also 0.

Our idea is doing a small “surgery” to one input sharing [x]t. Roughly speaking, this means changing the
shares of [x]t held by parties in Corr to 0 while keeping the secret value x. Let [x̃]t denote the sharing after
the “surgery”. Then, it satisfies that x̃ = x and the shares of [x̃]t held by parties in Corr are 0. Detailed
procedure for this “surgery” will be introduced at a later point.

Recall that the shares of [x̃]t, [r]2t held by parties in Corr are 0. Now, when we invoke the DN multiplica-
tion protocol on ([x̃]t, [y]t), the shares of [e]2t := [x̃]t · [y]t+ [r]2t held by parties in Corr are also 0. Therefore,
Pking can reconstruct [e]2t by setting the shares held by parties in Corr to be 0. Thus, each multiplication
can be evaluated in two steps, (1) doing a small “surgery” to [x]t, and (2) invoking the DN multiplication
protocol on ([x̃]t, [y]t). We refer to the first step as Refresh and the second step as PartialMult.

Refresh: Performing the “Surgery”. Since parties in Corr are all corrupted, there is no need to protect the
secrecy of their shares. The high-level idea is letting Pking learn the shares of [x]t held by parties in Corr.
Then Pking distributes a random degree-t sharing [o]t such that o = 0 and the shares of [o]t, [x]t held by
parties in Corr are the same. Therefore [x̃]t := [x]t − [o]t is what we need.

In more detail, all parties first prepare a random degree-t sharing [r]t (as that in the DN protocol). Recall
that, in the generation process of [r]t, each dealer sets the shares of parties in Corr to be 0. Therefore, the
shares of [r]t held by parties in Corr are 0. Then, all parties run the following steps.

1. All parties locally compute [e]t := [x]t + [r]t. Note that the shares of [e]t, [x]t held by parties in Corr are
the same.

2. Pking collects all shares of [e]t and computes the shares held by parties in Corr.
3. Pking generates and distributes a random degree-t sharing [o]t where o = 0 and the shares of [o]t, [e]t

held by parties in Corr are the same.
4. All parties set [x̃]t := [x]t − [o]t.

PartialMult: Multiplying [x̃]t and [y]t. To compute [z]t, all parties invoke the multiplication protocol
in [DN07] on ([x̃]t, [y]t). All parties first prepare a pair of double sharings ([r]t, [r]2t) (as that in the DN
protocol). Recall that, the shares of [r]t, [r]2t held by parties in Corr are 0. Then, all parties run the following
steps.

1. All parties locally compute [e]2t := [x̃]t · [y]t + [r]2t.
2. Pking collects shares of [e]2t from parties in Pactive. For each party Pi ∈ Corr, Pking sets the i-th share of

[e]2t to be 0. Then Pking generates a degree-t sharing [e]t and distributes the shares to all other parties.
3. All parties locally compute [z]t = [e]t − [r]t.

Reducing the Communication of Refresh and PartialMult. We note that, to reconstruct a degree-t
sharing, Pking only needs t+ 1 shares. Therefore, there is no need to let all parties receive the shares of [r]t.
In the beginning of each segment, all parties agree on a set of parties T ⊆ Pactive such that (1) |T | = t+ 1,
and (2) Pking ∈ T . In brief, T contains Pking and t other parties in Pactive.

When generating [r]t, only parties in T will receive the shares of [r]t. This can be achieved by requiring
each dealer only sends shares to parties in T . In the first step of Refresh, parties in T compute their shares
of [x]t + [r]t and send them to Pking. Together with the share held by Pking, there are t + 1 shares, which
are enough to reconstruct the whole sharing [e]t := [x]t + [r]t. In this way, the cost of generating random
sharings for Refresh is reduced by half.

Furthermore, when Pking generates [o]t, we can require that the shares of [o]t held by parties in Pactive\T
are set to be 0. Recall that Pking learns the shares of [x]t held by parties in Corr and the shares of [o]t held by

11

parties in Corr are the same as those of [x]t. Since the shares held by parties in P\T are fixed and |P\T | = t,
with these t shares and the secret value o = 0, Pking can compute the shares of [o]t held by parties in T .
Now, Pking only needs to distribute [o]t to parties in T , and, parties in Pactive\T simply set their shares of
[o]t to be 0. In this way, the cost of distributing [o]t is reduced by half.

In the DN multiplication protocol, Pking can set the shares of [e]t held by parties in P\T to be 0. With
these |P\T | = t shares and the secret value e, Pking can recover the whole sharing [e]t. In this way, Pking only
needs to distribute [e]t to parties in T , and, parties in Pactive\T simply set their shares of [e]t to be 0. As a
result, the cost of distributing [e]t is reduced by half. Note that in the overall protocol, several multiplication
gates will be evaluated in parallel, and this optimization can potentially lead to a reduction in the overall
communication by a factor of 1/2.

In summary, when Corr = ∅, there is no need to run the “Surgery”. Our approach achieves 5.5 field
elements per multiplication gate, as that in [GS20]. When at least one party is identified as a corrupted
party, our approach needs 7.5 field elements per multiplication gate.

Further Problems. We point out that the above approach does not guarantee the correctness. In particular,
we need to verify Refresh in the end of the evaluation of each segment. It is worth noting that the verification
of Refresh also utilize the virtual transcript idea. We refer the readers to Section 4 for more details.

Another problem is that we need to make sure adding the surgery procedure in the protocol will not break
the security of [GS20]. In fact, the security of [GS20] relies on the fact that the DN protocol provides perfect
privacy before the output phase even when the adversary is fully malicious. Replacing the DN protocol by
another semi-honest protocol in [GS20] may break down the security entirely. We refer the readers to Section 6
for more details.

Removing Higher Order Circuit Dependent Terms. We note that the construction from [BSFO12]
uses Beaver triples to compute multiplications in the computation phase. One benefit of this method is that
Beaver triples provide plenty of redundancy which simplifies the checking process in the computation phase.
However, the use of Beaver triples unfortunately requires a verification for each layer of the circuit, which
leads to the quadratic term related to DM .

On the other hand, although when instantiating the transformation from [IKP+16] with the best-known
protocol for security with abort, the quadratic term w.r.t. the circuit depth is eliminated, it introduces a
new higher order term related to the circuit width. This is because the transformation needs to change the
corruption threshold whenever a new corrupted party is identified, which requires an expensive re-sharing
process for the input sharings of each segment.

As a summary, we start from the best-known secure-with-abort protocol [GS20], which does not make
use of Beaver triples, to remove the quadratic term related to DM . To avoid the expensive re-sharing process,
we rely on a small surgery to proceed. Combining these two ideas, we remove both the higher order terms
related to the circuit depth and the circuit width.

2.4 An Omitted Problem: Verifiable System for Checkpoints

To allow all parties to restart the computation from a checkpoint, i.e., the end of the last segment, all the
output sharings of the last segment should be verifiable. This is also a problem we omit when checking the
virtual transcript: If all parties finally find out that one of the input sharings is inconsistent, then there is
no way to identify a new corrupted party or a new pair of disputed parties by only examining the transcript
in this segment. This is because the failure comes from the sharings computed in the previous segment.

Therefore, we borrow the idea from [BSFO12] to add verifiability to the output sharings of each segment.
At a high-level, for every pair of parties (Pv, Pi) where Pv acts as a verifier, Pv will generate an authentication
key (µ, ν) and Pi will receive an authentication tag τ = µ · sharei + ν of its share sharei. The authentication
tag is computed using an MPC protocol. At a later point, Pv can verify the shares of Pi by asking Pi to send
the associated authentication tags. Since a wrong share will be rejected by at least t+ 1 honest parties and

12

a correct share will be rejected by at most t corrupted parties, a majority vote can decide whether a share
is correct or not.

In [BSFO12], each authentication tag is used to authenticate a batch of shares. As a result, the commu-
nication cost is independent of the number of shares and therefore, does not affect the concrete efficiency
per gate. We make a further improvement to this idea to achieve a larger size of batching by reusing the
authentication keys. Some modifications in the verification of authentication tags are also necessary to fit
this improvement. We refer the readers to Section 5 for more details.

3 Preliminaries

3.1 Model

We consider a set of parties P = {P1, P2, ..., Pn} where each party can provide inputs, receive outputs,
and participate in the computation. For every pair of parties, there exists a secure (private and authentic)
synchronous channel so that they can directly send messages to each other. Beyond that, we also assume the
existence of a secure broadcast channel, which is available to all parties. The communication complexity is
measured by the number of bits X via private channels plus the number of bits Y via the broadcast channel,
i.e., X + Y · BC.

We focus on functions which can be represented as arithmetic circuits over a finite field F (with |F| ≥ n+1)
with input, addition, multiplication, random, and output gates. Let φ = log |F| be the size of an element
in F. We use κ to denote the security parameter and let K be an extension field of F (with |K| ≥ 2κ). For
simplicity, we use κ to denote the size of an element in K. We assume κ to be a multiple of n. Let e = [K : F]
be the extension degree. We also fix an F-linear bijection Fe → K so that every vector (s1, . . . , se) ∈ Fe maps
to an element σ ∈ K.

An adversary is able to corrupt at most t < n/2 parties, provide inputs to corrupted parties, and receive
all messages sent to corrupted parties. Corrupted parties can deviate from the protocol arbitrarily. For
simplicity, we assume n = 2t+ 1.

Each party Pi is assigned with a unique non-zero field element αi ∈ F\{0} as the identity.
Let cI , cM , cR, cO be the numbers of input gates, multiplication gates, random gates and output gates

respectively. We set C = cI + cM + cR + cO to be the size of the circuit.

3.2 Dispute Control

Dispute control was first introduced in [BTH06]. It is a general strategy to achieve unconditional security
efficiently.

The basic idea is to divide the circuit into several segments. For each segment, all parties first evaluate
this segment and then check the correctness of the evaluation. After the check is completed, all parties reach
a consensus on whether this segment is successfully evaluated.

– If the evaluation is successful, all parties continue to evaluate the next segment.
– Otherwise, the computation for the current segment is discarded and all parties re-evaluate this segment.

To avoid failures due to the same reasons, for each failure of evaluation, all parties run another protocol
to locate a pair of two parties, which we refer to as a pair of disputed parties, such that at least one of them
is corrupted.

To keep track of the identified disputed parties, all parties publicly maintain two sets, Corr and Disp,
which are initially set to be empty. If a new pair of disputed parties is identified, all parties add this pair
into Disp. The protocol should guarantee that the same pair of disputed parties will not be identified again.
If a party is disputed with at least (t + 1) parties, this party is identified as a corrupted party and then
added into Corr. For every party in Corr, since it has been identified as a corrupted party, every other party
is considered to be disputed with this party. The re-evaluation will use the updated Corr and Disp.

13

Therefore, each failure results in an increase in the size of Disp and only a bounded number (O(n2)) of
failures may happen.

In this work, we partition the whole circuit into n2 segments and the size of each segment is m = C/n2. Let
Dispi denote the set of parties which are disputed with Pi. Note that Corr ⊆ Dispi. We use Pactive = P\Corr
to denote the set of parties which are not identified as corrupted parties currently. Only parties in Pactive
can participate in the remaining computation. Hereafter, we use all parties to refer to parties in Pactive.

3.3 Secret Sharing

In our protocol, we use the standard Shamir’s secret sharing scheme [Sha79].
A degree-d Shamir sharing of w ∈ F is a vector (w1, . . . , wn) which satisfies that, there exists a polynomial

f(·) ∈ F[X] of degree at most d such that f(0) = w and f(αi) = wi for i ∈ {1, . . . , n}. Each party Pi holds
a share wi and the whole sharing is denoted by [w]d.

Properties of the Shamir’s Secret Sharing Scheme. In the following, we will utilize two properties of the
Shamir’s secret sharing scheme.

– Linear Homomorphism:
∀ [x]d, [y]d, [x+ y]d = [x]d + [y]d.

– Multiplying two degree-d sharings yields a degree-2d sharing. The secret value of the new sharing is the
product of the original two secrets.

∀ [x]d, [y]d, [x · y]2d = [x]d · [y]d.

As [BSFO12], when a dealer Pd distributes a sharing, all shares belong to parties which are disputed with
Pd are set to be 0. In this way, two parties that are disputed with each other do not need to communicate
when distributing sharings.

When the communication is necessary between disputed parties, a third party which is not disputed with
either of parties, referred to as a relay, helps pass messages from one party to the other. Note that, for every
party Pi 6∈ Corr, the number of parties which are disputed with Pi is at most t. Therefore, for every pair of
disputed parties (Pi, Pj) where Pi, Pj 6∈ Corr, there is at least one party which can be the relay of (Pi, Pj).
We use Pi↔j = Pj↔i to denote the first party which is not disputed with Pi, Pj , referred to as the relay
between Pi and Pj .

3.4 Generating Challenge

We introduce a simple protocol Challenge, which comes from [BSFO12], to let all parties generate an
element in K with high min-entropy. The communication complexity of Challenge is O(κ) · BC.

Procedure 1: Challenge

1. Each party Pi ∈ Pactive chooses a random string stri ∈ {0, 1}
log |K|

n and broadcasts stri.

2. All parties set the string stri of Pi ∈ Corr to be 0
log |K|

n ∈ {0, 1}
log |K|

n . Then convert (str1, . . . , strn) into
an element λ in K.

Lemma 1 ([BSFO12]). For any fixed set of t corrupted parties and for any given subset S ∈ K, the
probability that a challenge generated by Challenge lies in S is at most

|S|
2(t+1)

log |K|
n

≤ |S|
2κ/2

.

14

3.5 Generating Random Sharings

We introduce a simple protocol Rand, which comes from [DN07], to let all parties prepare t + 1 = O(n)
random degree-t sharings in the semi-honest setting.

The protocol will utilize a predetermined and fixed Vandermonde matrix of size n × (t + 1), which is
denoted by MT (therefore M is a (t+ 1)× n matrix). An important property of a Vandermonde matrix is
that any (t + 1) × (t + 1) submatrix of MT is invertible. The description of Rand appears in Protocol 2.
The communication complexity of Rand is O(n2) field elements.

Protocol 2: Rand

1. Each party Pi ∈ Pactive randomly samples a sharing [s(i)]t such that the shares held by parties in Dispi are
set to be 0. Then Pi distributes the shares to other parties. For each Pi ∈ Corr, all parties take an all-0
sharing as [s(i)]t.

2. All parties locally compute

([r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t)
T = M([s(1)]t, [s

(2)]t, . . . , [s
(n)]t)

T

and output [r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t.

3.6 Generating Random Double Sharings

A pair of double sharings ([r]t, [r]2t) is a pair of two sharings of the same secret. One is a degree-t sharing
and the other one is a degree-2t sharing. We introduce a simple protocol DoubleRand, which comes
from [DN07], to let all parties prepare t + 1 = O(n) random double sharings in the semi-honest setting.
The description of DoubleRand appears in Protocol 3. The communication complexity of DoubleRand
is O(n2) field elements.

Protocol 3: DoubleRand

1. Each party Pi ∈ Pactive randomly samples a pair of double sharings ([s(i)]t, [s
(i)]2t) such that the shares held

by parties in Dispi are set to be 0. Then Pi distributes the shares to other parties. For each Pi ∈ Corr, all
parties take all-0 sharings as ([s(i)]t, [s

(i)]2t).
2. All parties locally compute

([r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t)
T = M([s(1)]t, [s

(2)]t, . . . , [s
(n)]t)

T

([r(1)]2t, [r
(2)]2t, . . . , [r

(t+1)]2t)
T = M([s(1)]2t, [s

(2)]2t, . . . , [s
(n)]2t)

T

and output ([r(1)]t, [r
(1)]2t), ([r

(2)]t, [r
(2)]2t), . . . , ([r

(t+1)]t, [r
(t+1)]2t).

We note that the randomness of the double sharings is preserved in the fully malicious setting. The
following lemma is proved in [GS20].

Lemma 2 ([GS20]). Given the views of DoubleRand of corrupted parties, all shares of [r(1)]2t, . . . , [r
(t+1)]2t

held by honest parties are uniformly random.

15

4 Evaluation and Verification

In this section, we describe our construction for evaluating one segment of circuit and verifying the compu-
tation after evaluation. We start from describing how the protocol proceeds without changing the corruption
threshold when identified corrupted parties are kicked out. Then we show how to use virtual transcripts to
identify a new corrupted party or a new pair of disputed parties when the computation fails.

4.1 Evaluating a Single Multiplication Gate.

At a high-level, our idea is to compute the shares held by parties in Corr so that Pking can still reconstruct
a degree-2t sharing even without receiving shares from parties in Corr. This is done by first doing a small
surgery to one of the input sharing [x]t so that the shares of the resulting sharing [x̃]t held by parties in Corr
becomes 0.

In the beginning of the surgery, all parties agree on a set of parties T such that (1) |T | = t + 1, (2)
Pking ∈ T , and (3) T

⋂
Dispking = ∅. All parties prepare a random degree-t sharing [r]t by using Rand

with the modification that each dealer only distributes shares to parties in T . Recall that each dealer sets
the shares held by parties in Corr to be 0 in Rand. Since [r]t is a linear combination of the sharings dealt
by each party. The shares of [r]t held by parties in Corr are all 0. The description of Refresh appears in
Protocol 4.

Protocol 4: Refresh([x]t)

All parties agree on the special party Pking and a set of parties T in the beginning. Let [r]t be the random sharing
which will be used in the protocol. Only parties in T hold the shares of [r]t.

1. Parties in T compute [e]t := [x]t + [r]t and send their shares of [e]t to Pking.
2. Pking reconstructs the whole sharing [e]t and computes the shares held by parties in Corr.
3. Pking generates a degree-t sharing [o]t such that (1) o = 0, (2) the shares held by parties in Pactive\T are set

to be 0, and (3) the shares of [o]t, [e]t held by parties in Corr are the same.
4. Pking distributes [o]t to parties in T . Parties in Pactive\T set their shares of [o]t to be 0.
5. All parties locally compute [x̃]t := [x]t − [o]t.

Then, all parties use the DN multiplication protocol on ([x̃]t, [y]t) to compute the result [x ·y]t, where [x̃]t
is the output of Refresh. To this end, all parties first prepare a pair of random double sharings ([r]t, [r]2t)
by DoubleRand. Recall that each dealer sets the shares held by parties in Corr to be 0 in DoubleRand.
Since ([r]t, [r]2t) is a linear combination of the double sharings dealt by each party. The shares of [r]t, [r]2t
held by parties in Corr are all 0. The description of PartialMult appears in Protocol 5.

Combining Refresh and PartialMult, the description of Mult appears in Protocol 6. The commu-
nication complexity of Mult([x]t, [y]t) is O(n) elements.

4.2 Evaluating One Segment

In the beginning of each segment, all parties need to prepare enough random sharings for Refresh and
random double sharings for PartialMult. All parties first select a special party Pking and a set of parties
T . Recall that the size of each segment is set to be m.

– For Refresh, we need to prepare m random sharings [r̃(1)]t, . . . , [r̃
(m)]t such that only parties in T

receive the shares. To this end, all parties invoke m
t+1 times of Rand with the modification that each

dealer only distributes shares to parties in T .

16

Protocol 5: PartialMult([x̃]t, [y]t)

All parties agree on the special party Pking and a set of parties T in the beginning. Let ([r]t, [r]2t) be the random
double sharings which will be used in the protocol.

1. All parties locally compute [e]2t = [x̃]t · [y]t + [r]2t.
2. Pking collects shares of [e]2t from parties in Pactive (via relays for parties inDispking). For each party Pi ∈ Corr,

Pking sets the i-th share of [e]2t to be 0. Then Pking reconstructs the result e.
3. Pking generates a degree-t sharing [e]t such that the shares held by parties in P\T are set to be 0.
4. Pking distributes [e]t to parties in T . Parties in Pactive\T set their shares of [e]t to be 0.
5. All parties locally compute [x · y]t = [e]t − [r]t.

Protocol 6: Mult([x]t, [y]t)

1. If Corr 6= ∅, all parties invoke Refresh([x]t) and take [x̃]t as output. Otherwise, set [x̃]t := [x]t.
2. All parties invoke PartialMult([x̃]t, [y]t).

– For PartialMult, all parties invoke m
t+1 times of DoubleRand to prepare ([r(1)]t, [r

(1)]2t), . . . , ([r
(m)]t, [r

(m)]t).

For each addition gate, all parties locally add their shares. For each multiplication gate, all parties
invoke Mult. The description of Compute appears in Protocol 7. The communication complexity of
Compute(seg) is O(mnφ+ n2φ) bits.

Protocol 7: Compute(seg)

All parties hold the shares of input sharings of seg. There are m multiplication gates in seg.

1. All parties agree on a special party Pking and a set of parties T .
2. If Corr 6= ∅, all parties invoke m

t+1
times of Rand in F with the modification that each dealer only distributes

shares to parties in T . The output random sharings are denoted by [r̃(1)]t, . . . , [r̃
(m)]t.

3. All parties invoke m
t+1

times of DoubleRand in F to prepare ([r(1)]t, [r
(1)]2t), . . . , ([r

(m)]t, [r
(m)]t).

4. Evaluate seg as following.
– For each addition gate with input sharings [x]t, [y]t, all parties locally compute [z]t = [x]t + [y]t.
– For the k-th multiplication gate with input sharings [x(k)]t and [y(k)]t, all parties invoke

Mult([x(k)]t, [y
(k)]t) with a random sharing [r̃(k)]t (if Corr 6= ∅) and a pair of random double shar-

ings ([r(k)]t, [r
(k)]2t).

4.3 Checking the Correctness of Refresh.

We note that the transcript of Refresh contains 5 degree-t sharings:

([x]t, [x̃]t, [r̃]t, [e]t, [o]t).

Here [x]t is the input sharing, [x̃]t is the output sharing, [r̃]t is a random sharing which is only held by parties
in T , [e]t is a sharing Pking collected from parties in T , and [o]t is a sharing of 0 dealt by Pking.

17

Given m transcripts {([x(i)]t, [x̃(i)]t, [r̃(i)]t, [e(i)]t, [o(i)]t)}mi=1, we want to verify that, for each i ∈ [m], (1)
x(i) = x̃(i) and (2) the shares of [x̃(i)] held by parties in Corr are 0. To this end, we will compress m checks
of the transcripts into one check of a single transcript. To protect the privacy of the original m transcripts,
we first prepare a random transcript as a mask.

Preparing a Random Transcript of Refresh. All parties first invoke Rand to prepare a random degree-
t sharing [x(0)]t, and then prepare a random degree-t sharing [r̃(0)]t by Rand with the modification that
each dealer only distributes shares to parties in T . Here [x(0)]t, [r̃

(0)]t will be used as random masks for
{[x(i)]t}mi=1 and {[r̃(i)]t}mi=1 respectively. Note that we only use one random sharing per call of Rand and the
rest of sharings are discarded. Recall that each random sharing generated by Rand is a linear combination
of the sharings dealt by each party. At a later point, we may need to reveal the sharings dealt by each party,
which will break the privacy of the rest of output sharings by Rand.

The transcript is prepared by invoking Refresh on [x(0)]t with the random sharing [r̃(0)]t. Let

([x(0)]t, [x̃
(0)]t, [r̃

(0)]t, [e
(0)]t, [o

(0)]t)

denote the resulting transcript.

Compressing the Transcripts into One. Consider the following 5 sharings of polynomials:

[F (λ)]t =

m∑
i=0

[x(i)]tλ
i, [F̃ (λ)]t =

m∑
i=0

[x̃(i)]tλ
i, [R̃(λ)]t =

m∑
i=0

[r̃(i)]tλ
i,

[E(λ)]t =

m∑
i=0

[e(i)]tλ
i, [O(λ)]t =

m∑
i=0

[o(i)]tλ
i.

Note that, by the linear homomorphism property of the Shamir secret sharing scheme, for every λ,

([F (λ)]t, [F̃ (λ)]t, [R̃(λ)]t, [E(λ)]t, [O(λ)]t)

is a transcript of Refresh.
If at least one transcript of the original m transcripts is incorrect, then the number of λ such that

([F (λ)]t, [F̃ (λ)]t, [R̃(λ)]t, [E(λ)]t, [O(λ)]t) is a correct transcript is bounded by m. Therefore, to verify the
original m transcripts, it is sufficient to examine the transcript ([F (λ)]t, [F̃ (λ)]t, [R̃(λ)]t, [E(λ)]t, [O(λ)]t) for
a random λ ∈ K. The description of Check-Refresh appears in Protocol 8. The communication complexity
of Check-Refresh is O(n2κ) bits plus O(nκ) · BC.

The protocol Check-Refresh needs to invoke two other protocols Analyze-Sharing and Check-
Rand to find errors when the transcript is incorrect. Here the protocol Analyze-Sharing is used to handle
an inconsistent degree-t sharing. More details can be found in Section 5. The protocol Check-Rand will be
introduced later.

Lemma 3. If all parties broadcast ok in the end of Check-Refresh, with overwhelming probability, for
all i ∈ {1, . . . ,m}, x(i) = x̃(i) and the shares of [x̃(i)]t held by parties in Corr are 0.

Handling Incorrect [r̃]t. Recall that for each i ∈ [m], [r̃(i)]t is a linear combination of the sharings
generated by each party. Since [r̃]t is a linear combination of {[r̃(i)]t}mi=1, we can decompose [r̃]t into the
following form:

[r̃]t =

n∑
i=1

[r̃(i)]t,

where [r̃(i)]t is a linear combination of the sharings dealt by Pi. To handle an incorrect [r̃]t, we can examine
each [r̃(i)]t.

The description of Check-Rand appears in Protocol 9. The communication complexity of Check-Rand
is O(n2κ) bits plus O(κ) · BC.

18

Protocol 8: Check-Refresh

1. Preparing A Random Transcript.
(a) All parties invoke Rand in K to prepare a random degree-t sharing [x(0)]t.
(b) All parties prepare a random degree-t sharing [r̃(0)]t by Rand in K with the modification that each

dealer only distributes shares to parties in T .
(c) All parties invoke Refresh on [x(0)]t with random sharing [r̃(0)]t. Let ([x(0)]t, [x̃

(0)]t, [r̃
(0)]t, [e

(0)]t, [o
(0)]t)

denote the resulting transcript.
2. All parties invoke Challenge to generate λ ∈ K.
3. All parties compute

([x]t, [x̃]t, [r̃]t, [e]t, [o]t) =

m∑
i=0

([x(i)]t, [x̃
(i)]t, [r̃

(i)]t, [e
(i)]t, [o

(i)]t)λ
i.

4. All parties broadcast their shares of [x]t, [x̃]t, [o]t. Parties in T broadcast their shares of [r̃]t, [e]t. Pking

broadcasts the sharing [e]t it received and [o]t it distributed.
5. All parties check the following.

– If [x]t is inconsistent, all parties invoke Analyze-Sharing to identify a new corrupted party or a new
pair of disputed parties.

– If the shares of [r̃]t held by parties in Corr are not 0, all parties invoke Check-Rand to identify a new
corrupted party or a new pair of disputed parties.

– If some party Pi ∈ Pactive does not follow the protocol, Pi is identified as a new corrupted party.
– If Pking and some party Pi ∈ T do not agree on the value sent from one party to the other, (Pking, Pi) is

identified as a new pair of disputed parties.
If a new corrupted party or a new pair of disputed party is identified, all parties update Corr and Disp. If
none of above cases happens, all parties take ok as output.

Protocol 9: Check-Rand

Let [r̃]t =
∑n
i=1[r̃(i)]t be the decomposition of [r̃]t.

1. Each party Pi ∈ Pactive sends the sharing [r̃(i)]t to Pking (via a relay if necessary).
2. Each party Pi ∈ T sends to Pking their shares of {[r̃(j)]t}nj=1 it received.
3. Pking checks the following.

– If Pking observes that some party Pi does not follow the protocol, Pking broadcasts (accuse, Pi). In the
case that (Pking, Pi) 6∈ Disp, (Pking, Pi) is a new pair of disputed parties. Otherwise, the relay Pking↔i
checks the messages it passed from Pi to Pking and broadcasts its opinion. If Pking↔i agrees, (Pking↔i, Pi)
is a new pair of disputed parties. Otherwise, (Pking↔i, Pking) is a new pair of disputed parties.

– If Pking observes that Pi ∈ Pactive, Pj ∈ T do not agree on the value u sent from one party to the other,
Pking broadcast (open, Pi, u, Pj , u

′) where u is the value received from Pi and u′ is the value received
from Pj . Then Pi, Pj and the relay Pking↔i (if used) broadcast the value u. The pair of two parties,
where one party directly sends message to the other but two parties do not agree on the same value, is
regarded as a new pair of disputed parties.

4.4 Checking the Correctness of PartialMult.

We will use the technique in [GS20] to verify a batch of multiplications. We refer the readers to Section 2
for a sketch of our method.

19

We first describe the extension of the DN multiplication protocol, which we refer to as Extend-
PartialMult, in Protocol 10. Here the input sharing [x̃]t satisfies that x̃ = x and the shares held by
parties in Corr are 0.

Protocol 10: Extend-PartialMult([x̃]t, [y]t)

All parties agree on the special party Pking and a set of parties T in the beginning. Let ([r]t, [r]2t) be the random
double sharings which will be used in the protocol.

1. All parties locally compute [e]2t = [x̃]t � [y]t + [r]2t.
2. Pking collects shares of [e]2t from parties in Pactive (via relays for parties inDispking). For each party Pi ∈ Corr,

Pking sets the i-th share of [e]2t to be 0. Then Pking reconstructs the result e.
3. Pking generates a degree-t sharing [e]t such that the shares held by parties in P\T are set to be 0.
4. Pking distributes [e]t to parties in T . Parties in Pactive\T set their shares of [e]t to be 0.
5. All parties locally compute [x� y]t = [e]t − [r]t.

The transcript of Extend-PartialMult is denoted by

([x̃]t, [y]t, [r]t, [r]2t, [e]2t, [e]t, [z]t).

We now describe the extension of the Batch-wise Multiplication Verification technique in [BSFO12] which
can compress the check of m transcripts of inner-product tuples into a check of a single transcript. The
description of Compress appears in Protocol 11. The communication complexity of Compress is O(mnκ)
bits plus O(κ) · BC.

The verification of the original m multiplication tuples in [GS20] is consist of the following three steps.

Step One: De-Linearization. The first step is transforming a batch of m multiplication tuples into an
inner-product tuple of dimension m. The description of De-Linearization appears in Protocol 12. The
communication complexity of De-Linearization is O(κ) · BC.

Step Two: Dimension-Reduction. The second step is to reduce the dimension of the inner-product
tuple from De-Linearization. The description of Dimension-Reduction appears in Protocol 13. The
communication complexity of Dimension-Reduction is O(nκ2) bits plus O(κ) · BC.

Step Three: Randomization. In the final step, all parties prepare a random transcript of PartialMult
and add this transcript in the last call of Compress. The description of Randomization appears in
Protocol 14. The communication complexity of Randomization is O(n2κ+ nκ2) bits plus O(κ) · BC.

Checking the Final Transcript. The transcript of the final multiplication protocol is denoted by

([α]t, [β]t, [δ]t, [δ]2t, [η]2t, [η]t, [γ]t).

The description of Check-Single-Mult appears in Protocol 15. The communication complexity of Check-
Single-Mult is O(nκ) · BC (not counting Analyze-Sharing).

The protocol Check-Single-Mult needs to invoke two other protocols Analyze-Sharing and Check-
DoubleRand to find errors when the transcript is incorrect. Here the protocol Analyze-Sharing is used
to handle an inconsistent degree-t sharing. More details can be found in Section 5. The protocol Check-
DoubleRand will be introduced later.

20

Protocol 11: Compress

Let {([x̃(i)]t, [y
(i)]t, [r

(i)]t, [r
(i)]2t, [e

(i)]2t, [e
(i)]t, [z

(i)]t)}mi=1 denote the transcripts of the m inner-product tuples.

1. Let [F̃ (·)]t, [G(·)]t be two sharings of vectors of polynomials of degree (m− 1) such that

∀i ∈ [m] : [F̃ (i)]t = [x̃(i)]t, [G(i)]t = [y(i)]t.

All parties can use {([x̃(i)]t, [y
(i)]t)}mi=1 to compute [F̃ (·)]t, [G(·)]t locally.

2. All parties compute [x̃(i)]t = [F̃ (i)]t, [y
(i)]t = [G(i)]t for all i ∈ {m+ 1, . . . , 2m− 1}.

3. For all i ∈ {m+ 1, . . . , 2m− 1}, all parties invoke Extend-PartialMult on [x̃(i)]t, [y
(i)]t. Let

([x̃(i)]t, [y
(i)]t, [r

(i)]t, [r
(i)]2t, [e

(i)]2t, [e
(i)]t, [z

(i)]t)

denote the transcript.
4. Let [R(·)]t, [R(·)]2t, [E(·)]2t, [E(·)]t, [H(·)]t be sharings of polynomials of degree 2(m− 1) such that

∀i ∈ [2m− 1] : [R(i)]t = [r(i)]t, [R(i)]2t = [r(i)]2t, [E(i)]2t = [e(i)]2t,

[E(i)]t = [e(i)]t, [H(i)]t = [z(i)]t.

All parties can use {([r(i)]t, [r(i)]2t, [e(i)]2t, [e(i)]t)}2m−1
i=1 to compute these sharings locally.

5. All parties invoke Challenge to generate λ ∈ K.
6. All parties output

([F̃ (λ)]t, [G(λ)]t, [R(λ)]t, [R(λ)]2t, [E(λ)]2t, [E(λ)]t, [H(λ)]t).

Protocol 12: De-Linearization

Let {([x̃(i)]t, [y(i)]t, [r(i)]t, [r(i)]2t, [e(i)]2t, [e(i)]t, [z(i)]t)}mi=1 denote the transcripts of the m multiplication tuples.

1. All parties invoke Challenge to generate λ ∈ K.
2. All parties set

[x̃]t = ([x̃(1)]t, λ[x̃(2)]t, . . . , λ
m−1[x̃(m)]t)

[y]t = ([y(1)]t, [y
(2)]t, . . . , [y

(m)]t)

([r]t, [r]2t, [e]2t, [e]t, [z]t) =

m∑
i=1

λi−1([r(i)]t, [r
(i)]2t, [e

(i)]2t, [e
(i)]t, [z

(i)]t),

and output ([x̃]t, [y]t, [r]t, [r]2t, [e]2t, [e]t, [z]t).

Handling Incorrect ([δ]t, [δ]2t). Note that ([δ]t, [δ]2t) can be decomposed into the following form:

([δ]t, [δ]2t) =

n∑
i=1

([δ(i)]t, [δ(i)]2t),

where ([δ(i)]t, [δ(i)]2t) is a linear combination of the double sharings dealt by Pi. To handle an incorrect pair of
double sharings ([δ]t, [δ]2t), we will examine each ([δ(i)]t, [δ(i)]2t). The description of Check-DoubleRand
appears in Protocol 16. The communication complexity of Check-DoubleRand is O(n2κ) bits plus O(κ) ·
BC.

21

Protocol 13: Dimension-Reduction

1. Let ([x̃]t, [y]t, [r]t, [r]2t, [e]2t, [e]t, [z]t) denote the transcript of the inner-product tuple of dimension m.
2. All parties partition [x̃]t, [y]t into κ equal pieces as following:

[x̃]t = ([x̃(1)]t, [x̃
(2)]t, . . . , [x̃

(κ)]t), [y]t = ([y(1)]t, [y
(2)]t, . . . , [y

(κ)]t).

3. For every i ∈ [κ − 1], all parties invoke Extend-PartialMult with input [x̃(i)]t, [y
(i)]t to compute [z(i)]t.

The transcript is denoted by ([x̃(i)]t, [y
(i)]t, [r

(i)]t, [r
(i)]2t, [e

(i)]2t, [e
(i)]t, [z

(i)]t).
4. All parties compute

([r(κ)]t, [r
(κ)]2t, [e

(κ)]2t, [e
(κ)]t, [z

(κ)]t)

= ([r]t, [r]2t, [e]2t, [e]t, [z]t)−
κ−1∑
i=1

([r(i)]t, [r
(i)]2t, [e

(i)]2t, [e
(i)]t, [z

(i)]t)

and regard ([x̃(κ)]t, [y
(κ)]t, [r

(κ)]t, [r
(κ)]2t, [e

(κ)]2t, [e
(κ)]t, [z

(κ)]t) as the transcript of Extend-PartialMult.
5. Invoke Compress on {([x̃(i)]t, [y

(i)]t, [r
(i)]t, [r

(i)]2t, [e
(i)]2t, [e

(i)]t, [z
(i)]t)}κi=1. The resulting transcript of the

inner-product tuple is of dimension m/κ.

Protocol 14: Randomization

1. Preparing A Random Transcript.
(a) All parties invoke Rand in K to prepare random degree-t sharings [x̃(0)]t, [y

(0)]t. All parties invoke
DoubleRand in K to prepare a pair of random double sharings ([r(0)]t, [r

(0)]2t). Only one pair of
random double sharings is used in DoubleRand and the rest of sharings are discarded.

(b) All parties invoke PartialMult on [x̃(0)]t, [y
(0)]t with random double sharings ([r(0)]t, [r

(0)]2t). The
resulting transcript is denoted by ([x̃(0)]t, [y

(0)]t, [r
(0)]t, [r

(0)]2t, [e
(0)]2t, [e

(0)]t, [z
(0)]t).

2. Let ([x̃]t, [y]t, [r]t, [r]2t, [e]2t, [e]t, [z]t) denote the transcript of the inner-product tuple of dimension κ.
3. All parties interpret [x̃]t, [y]t as

[x̃]t = ([x̃(1)]t, [x̃
(2)]t, . . . , [x̃

(κ)]t), [y]t = ([y(1)]t, [y
(2)]t, . . . , [y

(κ)]t).

4. For each i ∈ [κ−1], all parties invoke PartialMult on [x̃(i)]t, [y
(i)]t to compute [z(i)]t where z(i) = x(i) ·y(i).

The transcript is denoted by ([x̃(i)]t, [y
(i)]t, [r

(i)]t, [r
(i)]2t, [e

(i)]2t, [e
(i)]t, [z

(i)]t).
5. All parties compute

([r(κ)]t, [r
(κ)]2t, [e

(κ)]2t, [e
(κ)]t, [z

(κ)]t)

= ([r]t, [r]2t, [e]2t, [e]t, [z]t)−
κ−1∑
i=1

([r(i)]t, [r
(i)]2t, [e

(i)]2t, [e
(i)]t, [z

(i)]t)

and regard ([x̃(κ)]t, [y
(κ)]t, [r

(κ)]t, [r
(κ)]2t, [e

(κ)]2t, [e
(κ)]t, [z

(κ)]t) as the transcript of PartialMult.
6. Invoke Compress on {([x̃(i)]t, [y(i)]t, [r(i)]t, [r(i)]2t, [e(i)]2t, [e(i)]t, [z(i)]t)}κi=1. The output is denoted by

([α]t, [β]t, [δ]t, [δ]2t, [η]2t, [η]t, [γ]t).

4.5 Summary of the Evaluation

Now we are ready to present the whole protocol for evaluating each segment, which is shown in Protocol 17.
The communication complexity of Eval(seg) is O(mnφ+ n2κ+ nκ2) bits plus O(nκ) · BC.

22

Protocol 15: Check-Single-Mult

1. Each party broadcasts its shares of [α]t, [β]t, [δ]t, [δ]2t, [η]2t, [η]t, [γ]t. Pking broadcasts the sharing [η]2t it
received and [η]t it distributed.

2. All parties check the following.
– If either of [α]t, [β]t is inconsistent, all parties invoke Analyze-Sharing to identify a new corrupted

party or a new pair of disputed parties.
– If ([δ]t, [δ]2t) is not a valid pair of double sharings, all parties invoke Check-DoubleRand to identify

a new corrupted party or a new pair of disputed parties.
– If some party Pi ∈ Pactive does not follow the protocol, Pi is identified as a new corrupted party.
– If Pking and some party Pi ∈ Pactive do not agree on the value sent from one party to the other, there

are two cases:
• If (Pking, Pi) 6∈ Disp, (Pking, Pi) is identified as a new pair of disputed parties.
• Otherwise, the relay Pking↔i publishes the value it helped pass. If Pi and Pking↔i publishes different

values, (Pking↔i, Pi) is identified as a new pair of disputed parties. Otherwise, (Pking↔i, Pking) is
identified as a new pair of disputed parties.

If a new corrupted party or a new pair of disputed party is identified, all parties update Corr and Disp. If
none of above cases happens, all parties take ok as output.

Protocol 16: Check-DoubleRand

Let ([δ]t, [δ]2t) =
∑n
i=1([δ(i)]t, [δ(i)]2t) be the decomposition of ([δ]t, [δ]2t).

1. Each party Pi ∈ Pactive sends the double sharings ([δ(i)]t, [δ(i)]2t) to Pking (via a relay if necessary).
2. Each party Pi ∈ Pactive sends to Pking their shares of {([δ(j)]t, [δ(j)]2t)}nj=1 it received.
3. Pking checks the following.

– If Pking observes that some party Pi does not follow the protocol, Pking broadcasts (accuse, Pi). In the
case that (Pking, Pi) 6∈ Disp, (Pking, Pi) is a new pair of disputed parties. Otherwise, the relay Pking↔i
checks the messages it passed from Pi to Pking and broadcasts its opinion. If Pking↔i agrees, (Pking↔i, Pi)
is a new pair of disputed parties. Otherwise, (Pking↔i, Pking) is a new pair of disputed parties.

– If Pking observes that Pi, Pj ∈ Pactive do not agree on the value u sent from one party to the other, Pking

broadcast (open, Pi, u, Pj , u
′) where u is the value received from Pi and u′ is the value received from

Pj . Then Pi, Pj and the relays Pking↔i, Pking↔j (if used) broadcast the value u. The pair of two parties,
where one party directly sends message to the other but two parties do not agree on the same value, is
regarded as a new pair of disputed parties.

5 Verifiable System

As discussed in Section 2, after evaluating a segment successfully, we need to add verifiability to the output
sharings of this segment. We observe that for each wire, the associated sharing [x]t can be decomposed into
the following form:

[x]t =

n∑
i=1

[x(i)]t,

where [x(i)]t is a linear combination of the sharings dealt by Pi. To see this, it is sufficient to show that this
property is preserved under evaluation of multiplication gates and addition gates.

First note that this property is preserved under linear combination, i.e. if [x]t, [y]t can be decomposed into
the above form, then any linear combination of [x]t, [y]t can also do. Therefore, this property is preserved
when evaluating addition gates. As for a multiplication gate, note that the output of PartialMult is

23

Protocol 17: Eval(seg)

1. All parties invoke Compute(seg).
2. All parties invoke Check-Refresh.

– If a new corrupted party or a new pair of disputed parties is identified, all parties update Corr and Disp.
Then halt.

– Otherwise, all parties proceed to verify PartialMult.
3. All parties do the following steps to verify PartialMult.

(a) All parties invoke De-Linearization.
(b) All parties repeatedly invoke Dimension-Reduction until the dimension of the output inner-product

tuple is reduced to κ.
(c) All parties invoke Randomization.
(d) All parties invoke Check-Single-Mult.

– If a new corrupted party or a new pair of disputed parties is identified, all parties update Corr and
Disp. Then halt.

– Otherwise, all parties accept the computation of this segment.

[z]t = [e]t − [r]t, where [e]t is a sharing dealt by Pking and [r]t is a sharing generated by DoubleRand.
Recall that [r]t generated by DoubleRand is a linear combination of sharings dealt by each party. Therefore,
[z]t can also be decomposed into the above form. The property is preserved when evaluating multiplication
gates.

With this observation, instead of directly adding verifiability to the output sharings, we can add verifia-
bility to the sharings dealt by each party in this segment. In this way, the dealer is able to help us identify a
new corrupted party or a new pair of disputed parties when its sharing is inconsistent. We borrow the idea
in [BSFO12] to add verifiability to the sharings dealt by each party. We also improve the communication
complexity of this idea, which will be introduced in the following.

5.1 Adding Verifiability to Sharings dealt by Each Party

Before we add verifiability to the sharings dealt by each party, we first check the consistency of these sharings.
Although a consistency check is not necessary when evaluate the protocol, it is necessary for the verifiability
of sharings since each party will be responsible for the shares it received.

Suppose [s(1)]t, [s
(2)]t, . . . , [s

(k)]t are the degree-t sharings dealt by each party in this segment. In our
construction, k is of size O(m). The description of Verify-Sharing appears in Protocol 18. The commu-
nication complexity of Verify-Sharing is O(n2κ) bits plus O(nκ) · BC (not counting Anaylze-Sharing).
The protocol Analyze-Sharing is used to handle an inconsistent degree-t sharing, which is introduced in
Section 5.

For each party Pd ∈ Pactive, let [s(1)(d)]t, [s
(2)(d)]t, . . . , [s

(`)(d)]t denote the sharings we want to add
verifiability. Here ` is the size of each batch. In the final protocol, all the sharings dealt by Pd will be handled
in a batch way. Since in each segment, Pd dealt m

t+1 sharings in Compute(seg), the batch size ` will be set
to be O(m

t+1).

Recall that K is an extension field of F and e = [K : F] is the extension degree. For each vector of
e sharings ([s(1)(d)]t), . . . , [s

(e)(d)]t in F, it maps to a sharing [σ]t in K. Let q = `/e. Then the sharings
dealt by Pd are transformed into [σ(1)(d)]t, . . . , [σ

(q)(d)]t in K. Let [σ(d)]t denote the vector of sharings
([σ(1)(d)]t, . . . , [σ

(q)(d)]t).

After Pd distributes the sharings to other parties, for every pair of parties (Pv, Pi), Pi needs to authenticate
its shares of [σ(d)]t to Pv. To this end, Pv prepares a pair of authentication keys (µv→i, ν) where µv→i ∈ Kq
and ν ∈ K are chosen randomly. Let σi(d) denote the shares held by Pi. All parties will engage an MPC

24

Protocol 18: Verify-Sharing

1. All parties prepare a random degree-t sharing [s(0)]t by Rand in K.
2. All parties invoke Challenge to generate λ ∈ K.
3. All parties compute the sharing:

[σ]t =

k∑
i=0

λi[s(i)]t.

4. All parties broadcast their shares of [σ]t and check whether [σ]t is consistent.
– If [σ]t is inconsistent, all parties invoke Analyze-Sharing to identify a new corrupted party or a new

pair of disputed parties.
– Otherwise, all parties accept the sharings dealt by each party in this segment.

protocol to compute an authentication tag

τ = µv→i � σi(d) + ν,

and Pi is the only receiver of the tag τ . Note that, without learning the authentication keys (µv→i, ν), the
probability that Pi generates a valid authentication tag for a batch of wrong shares is negligible.

The functionality FTag of this process is described in Functionality 19.

Functionality 19: FTag(Pd)

1. On receiving (disputed, Pi, Pj), where (Pi, Pj) 6∈ Disp and at least one of Pi, Pj is corrupted, FTag sends
(disputed, Pi, Pj) to all parties and halts. On receiving (corrupted, Pi), where Pi 6∈ Corr and Pi is corrupted,
FTag sends (corrupted, Pi) to all parties and halts.

2. FTag receives the degree-t sharings {[s(j)(d)]t}`j=1 from Pd. FTag interprets it as [σ(d)]t.
3. For each pair of parties (Pv, Pi) such that (Pv, Pi), (Pi, Pd) 6∈ Disp, FTag does the following.

(a) If Pv is corrupted, FTag receives (µv→i, ν) from Pv. Otherwise, FTag randomly samples (µv→i, ν) for Pv
and sends (µv→i, ν) to Pv.

(b) FTag computes
τ = µv→i � σi(d) + ν

and sends τ to Pi.
(c) If Pv, Pi are both honest, FTag sends µv→i to the adversary.

Remark 1. In FTag, for a pair of honest parties (Pv, Pi), the functionality will reveal the authentication key
µv→i to the adversary. This leakage is acceptable since the tags between (Pv, Pi) will never be examined.
For the adversary, they are just several random elements in K. However, allowing this leakage simplifies the
realization of FTag.

5.2 Realization of FTag

In this part, we introduce the protocol which realizes FTag presented above.
Recall that ` = O(m

t+1) is the batch size. For a dealer Pd, let [s(1)(d)]t, [s(2)(d)]t, . . . , [s
(`)(d)]t denote the

sharings we want to add verifiability. Let q = `/e, where e = [K : F] is the extension degree. Then these

25

sharings map to a vector of sharings [σ(d)]t with dimension q in K. Let σi(d) denote the shares of Pi. For a
pair of parties (Pv, Pi), Pv will generate a pair of authentication keys (µv→i, ν) and our goal is to compute
the authentication tag

τ = µv→i � σi(d) + ν

for Pi.
To this end, the high-level idea is to let Pv share its authentication keys to all parties such that the

secrets are hidden at position αi instead of 0. We use dµv→icit, dνcit to denote these two sharings. Then
locally computing dµv→icit � [σ(d)]t + dνcit yields a degree-2t sharing where the secret hidden at position αi
is τ . To learn the secret, Pi will collects all the shares and reconstruct the secret.

As for a pair of authentication keys (µv→i, ν), µv→i is served as a long term key, i.e., it is used in many
different batches of shares held by Pi. On the other hand, a new ν will be generated per batch. Therefore,
the authentication tags are computed in two steps: (1) preparing the sharings of long term keys and (2)
computing tags using the above method.

In [BSFO12], the long term keys are generated each segment. However, we note that if all parties behaved
honestly in the last segment, then there is no need to change the long term keys. Therefore, our idea is to
reuse the long term keys in different segments and only generate a new one if necessary. In this way, we can
use a longer key and achieve a larger size of batching. Some modifications in verifying the authentication
tags are also necessary to ensure the communication complexity does not blow up.

In the following, we will show how authentication keys are shared in Section 5.3 and then show how to
compute the tags in Section 5.4.

5.3 Key Distribution and Maintenance

We first introduce the notion of twisted sharings, which is a variant of Shamir secret sharing scheme.
A twisted degree-d sharing of w ∈ F with respect to Pj is a vector (w1, . . . , wj−1, wj+1, . . . , wn) which

satisfies that, there exists a polynomial f(·) ∈ F[X] of degree at most d such that f(0) = 0, f(αj) = w and
f(αi) = wi for i ∈ {1, . . . , n}\{j}. Each party Pi 6= Pj holds a share wi and the whole sharing is denoted as

dwcjd.

Key-Distribution. The first step is let Pv distribute twisted degree-t sharings dµv→icit for every Pi such
that (Pv, Pi) 6∈ Disp. Recall that ` = O(m

t+1) and the size of µv→i is q = `/e. The description of Key-
Distribution(Pv, Pi) appears in Protocol 20. The communication complexity of Key-Distribution(Pv, Pi)
is O(`nφ) bits.

Protocol 20: Key-Distribution(Pv, Pi)

1. Pv randomly samples µv→i ∈ Kq.
2. Pv randomly samples dµv→icit such that all shares belong to parties in Dispv are set to be 0.
3. For every party Pj 6∈ Dispv

⋃
{Pv, Pi}, Pv sends the j-th shares of dµv→icit to Pj .

Checking the Correctness. In this step, we check the validness of all twisted degree-t sharings of the
authentication keys. To be more clear, for every twisted degree-t sharing, we will check whether all shares
held by honest parties lie on a polynomial f(·) of degree at most t and f(0) = 0. The verification is

26

Protocol 21: Check-Key

For every pair of parties (Pv, Pi) 6∈ Disp, the following steps are done in parallel:

1. Pv randomly generates dµ(0)
v→ic

i
t in K such that shares belong to parties in Dispv are set to be 0.

2. For every party Pj 6∈ Dispv
⋃
{Pv, Pi}, Pv sends the j-th share of dµ(0)

v→ic
i
t to Pj .

3. All parties invoke Challenge and generate λ ∈ K. This step is done only once across executions for all
pairs of parties.

4. Let dµv→icit = (dµ(1)
v→ic

i
t, . . . , dµ

(q)
v→ic

i
t). All parties locally compute dσv→icit = dµ(0)

v→ic
i
t +

∑q
k=1 λ

kdµ(k)
v→ic

i
t.

5. For every Ps acting as a verifier, every party Pj 6∈ Disps sends its share of dσv→icit to Ps. Ps checks whether
all shares lie on a polynomial f(·) of degree at most t such that f(0) = 0 and the shares held by parties in
Dispv are 0.

6. For every Ps acting as a verifier, if all checks pass, it broadcasts ok. Otherwise, it broadcasts (fault, v, i) to
indicate that the check for (Pv, Pi) fails. If multiple checks fail, Ps only broadcasts one of them. This step is
done only once after Ps receives all shares in all executions.

done in a similar way to Verify-Sharing. The description of Check-Key appears in Protocol 21. The
communication complexity of Check-Key is O(n4κ) bits plus O(nφ+ κ) · BC.

Combining with Lemma 1, we have the following lemma.

Lemma 4. If all parties broadcast ok in the end of Check-Key, then with overwhelming probability, all
twisted degree-t sharings are valid.

In the case that some party Ps broadcast (fault, v, i) in the end of Check-Key we need to find a new
pair of disputed parties. If multiple parties broadcast fault, let Ps be the party with the smallest index.

We first select a reviewer Pr which is not disputed with either Ps or Pv. Since all twisted degree-t sharings
are generated by Pv, Pv is able to provide the valid version of dσv→icit to Pr. Ps is required to provide the
invalid version of dσv→icit to Pr. Then Pr is able to find the different shares and identify a new pair of
disputed parties. The description of FL-Key appears in Protocol 22. The communication complexity of
FL-Key is O(nκ) bits plus O(κ) · BC.

Protocol 22: FL-Key

1. If (Pv, Ps) ∈ Disp, let Pr := Pv↔s. Otherwise, let Pr := Pv.
2. Ps and Pv send the twisted degree-t sharing dσv→icit to Pr.
3. Pr checks the following:

– If the sharing provided by Pv is invalid, Pr broadcasts (accuse, v). All parties regard (Pv, Pr) as a new
pair of disputed parties.

– If the sharing provided by Ps is valid, Pr broadcasts (accuse, s). All parties regard (Ps, Pr) as a new
pair of disputed parties.

– If neither of above cases happens, Pr finds the party Pj where the j-th shares of these two twisted
degree-t sharings are different. Let σj , σ

′
j denote the j-th shares sent by Pv and Ps respectively.

(a) Pr broadcasts (incorrect, j, σj , σ
′
j).

(b) Pv, Ps, Pj broadcast the j-th shares of dσv→icit they sent/received.
(c) The pair of parties, where one party directly sent the share to the other party but two parties

broadcast different values, is regarded as a new pair of disputed parties.

27

Key Distribution and Maintenance. In this step, we present the full protocol for key distribution and
maintenance. At the end of the protocol, either a new pair of disputed parties is identified or all twisted
degree-t sharings are valid with overwhelming probability.

The functionality is presented in Functionality 23.

Functionality 23: FKey

1. On receiving (disputed, Pi, Pj), where (Pi, Pj) 6∈ Disp and at least one of Pi, Pj is corrupted, FKey sends
(disputed, Pi, Pj) to all parties and halts. On receiving (corrupted, Pi), where Pi 6∈ Corr and Pi is corrupted,
FKey sends (corrupted, Pi) to all parties and halts.

2. For every honest party Pv, FKey randomly generates twisted degree-t sharings dµv→icit for every party
Pi 6∈ Dispv

⋃
{Pv} such that the shares of dµv→icit held by parties in Dispv are set to be 0.

3. For every honest party Pv, FKey distributes the shares of dµv→icit to parties not in Dispv
⋃
{Pv, Pi}. In

addition, FKey sends dµv→icit and µv→i to Pv.
4. On receiving dµv→icit, where Pv is corrupted and (Pv, Pi) 6∈ Disp, such that all shares lie on a vector of

polynomials f(·) of degree at most t such that f(αi) = µv→i, f(0) = 0 and f(αj) = 0 for all parties
Pj ∈ Dispv, FKey distributes the shares of dµv→icit to parties not in Dispv

⋃
{Pv, Pi}.

Now we give an overview of the protocol Key, which realizes the functionality FKey. In the beginning of
Key, each party Pv checks whether Pv has distributed twisted degree-t sharings of authentication keys. In
the case that Pv has not distributed the sharings (e.g., Key is invoked the first time) or the shares of some
party which is disputed with Pv are not all 0 (e.g., a new pair of disputed parties including Pv was identified
after Pv distributed the sharings), Pv invokes Key-Distribution(Pv, Pi) for every Pi 6∈ Dispv. In the case
that Pv has already distributed the sharings of authentication keys and the shares of parties in Dispv are
all 0, Pv does nothing.

Then, all parties invoke Check-Key to check the validness of all twisted degree-t sharings of the authen-
tication keys. In the case that some party Ps broadcasts (fault, v, i) at the end of Check-Key, all parties
invoke FL-Key to identify a new pair of disputed parties.

The description of Key appears in Protocol 24. Note that each party Pv only needs to re-distribute
the sharings of authentication keys O(n) times. Therefore, Key-Distribution will be invoked at most
O(n3) times. Further more, Key will be invoked O(n2) times (once per segment). Therefore, the overall
communication complexity of Key (in the whole protocol) is O(`n4φ+ n6κ) bits plus O(n3φ+ n2κ) · BC.

Protocol 24: Key

1. For every party Pv ∈ Pactive, Pv checks whether it has distributed the twisted degree-t sharings of authen-
tication keys and the shares of parties in Dispv are 0. If not, Pv invokes Key-Distribution(Pv, Pi) for all
Pi 6∈ Dispv.

2. All parties invoke Check-Key. If all parties broadcast ok, halt. Otherwise, suppose Ps broadcasts
(fault, v, i). All parties proceed to the next step.

3. All parties invoke FL-Key to identify a new pair of disputed parties and update Disp, Corr.

28

Lemma 5. Protocol Key computes FKey with unconditional security in the presence of honest majority.

Proof. Note that FKey generates and distributes twisted degree-t sharings of authentication keys on behalf
of honest parties and directly distributes the sharings received from corrupted parties. The correctness of
Key is straightforward.

Consider the following construction of a simulator S.
In the beginning, S invokes FKey and receives the shares of corrupted parties from FKey. When Pv needs

to generate and distribute new twisted degree-t sharings of authentication keys, there are two cases.

– If Pv is honest, S distributes the shares received from FKey to corrupted parties.
– If Pv is corrupted, S receives the shares of honest parties. For the shares of each twisted degree-t sharing,
S verifies whether these shares lie on a polynomial f(·) of degree at most t such that f(0) = 0 and for
all Pj ∈ Dispv, f(αj) = 0.
• If these shares satisfy the above requirement, S recovers the whole sharings and sends to FKey. Note

that, for each sharing, S receives at least t shares from corrupted parties (If Pi is an honest party,
S does not receive the share of Pi). Together with the constrain f(0) = 0, S can recover the whole
sharing.

• Otherwise, S does nothing.

Then, when checking the validity of all twisted degree-t sharings of the authentication keys, for every

pair of parties (Pv, Pi) 6∈ Disp where Pv is honest, S sets the shares of dµ(0)
v→icit held by parties in Dispv to

be 0 and distributes uniform elements in K to corrupted parties not in Dispv as their shares of dµ0
v→icit on

behalf of Pv. S honestly follows the protocol Challenge. For every pair of parties (Pv, Pi) 6∈ Disp where Pv
is honest, S first computes the shares of dσv→icit corrupted parties should hold. Then, S randomly samples
a polynomial f(·) of degree at most t such that all shares of corrupted parties lie on it and f(0) = 0. For
every honest party Pj , S sets the share of Pj to be f(αj).
S behaves honestly in the remaining steps. When a new pair of disputed parties (Pi, Pj) is identified after

FL-Key, it is easy to see that at least one of Pi, Pj is corrupted. S sends (disputed, Pi, Pj) to FKey.
Note that, the only difference between the real world execution and the ideal world execution is when a

corrupted party Pv distributes invalid twisted degree-t sharings and all parties broadcast ok in the end of
Check-Key. In this case, S does not send the twisted degree-t sharings to FKey and thus honest parties in
the ideal world do not receive their shares, which is different from the real world. By Lemma 4, this scenario
only happens with negligible probability.

5.4 Generating Authentication Tags

Recall that we have already verified the correctness of twisted sharings of authentication keys in Key and
the consistency of sharings distributed by each dealer in Verify-Sharing.

Computing Authentication Tags. In this part, we introduce a protocol to compute the authentication
tags of the shares dealt by active parties.

Recall that m = C/n2 is the size of each segment. We have further set ` = O(m
t+1) and q = `/e. In

Particular, q is the size of the authentication keys generated in Key and ` is the number of shares we can
authenticate each time.

For every pair of parties (Pv, Pi) and every dealer Pd, our goal is to compute an authentication tag for
every ` shares sent from Pd to Pi using the authentication keys of Pv. We use si(d) ∈ F` to represent the
vector of shares we want to authenticate. By mapping every e shares in F to one share in K, si(d) ∈ F`
is mapped to σi(d) ∈ Kq. For each batch, Pv randomly samples ν(d) ∈ K and we want to compute the
authentication tag τ(d) = µv→i � σi(d) + ν(d) for Pi, where µv→i is the authentication keys generated in
Key and � is the inner-product operation.

To compute the authentication tag, we need to secret-share every component used to compute the au-
thentication tag. Note that µv→i has already been shared in Key and [σ(d)]t can be seen as the sharings

29

of σi(d) except that the secrets are hidden at position αi. Pv randomly samples and distributes a twisted
degree-2t sharing dν(d)ci2t. In addition Pd randomly samples and distributes a twisted degree-2t sharing doci2t
where o = 0 to protect the secrecy of [σ(d)]t.

Then we have

dτ(d)ci2t = dµv→icit � [σ(d)]t + dν(d)ci2t + doci2t.

Finally, all parties in Pactive send their shares of dτ(d)ci2t to Pi. Note that, each dealer Pd has set the shares
held by parties in Corr ⊆ Dispd to be 0, which means that the shares of dµv→icit, [σ(d)]t, dν(d)ci2t, doci2t held
by parties in Corr are 0. Therefore, Pi can reconstruct τ(d) by using the shares of dτ(d)ci2t held by parties
in Pactive and setting the shares held by parties in Corr to be 0.

The description of SingleTagComp appears in Protocol 25. The communication complexity of Single-
TagComp is O(nκ) bits.

Protocol 25: SingleTagCompv,i,d([σ(d)]t)

1. Pv randomly samples ν ∈ K and generates dνci2t such that the shares of parties in Dispv are set to be 0.
2. Pv distributes the shares of dνci2t to parties not in Dispv

⋃
{Pv, Pi}.

3. Pd randomly generates doci2t such that o = 0 and the shares of parties in Dispd are set to be 0.
4. Pd distributes the shares of doci2t to parties not in Dispd

⋃
{Pd, Pi}.

5. All parties compute dτci2t = dµv→icit � [σ(d)]t + dνci2t + doci2t. Then every party Pj ∈ Pactive sends its share
to Pi (via the relay Pi↔j if (Pi, Pj) ∈ Disp).

6. Pi reconstructs τ by setting the shares of dτci2t held by parties in Corr to be 0.

Checking the Correctness. Since we use a larger batch size, for every pair of parties (Pv, Pi) 6∈ Disp, all
batches of shares and authentication tags are verified at once. As a comparison, in [BSFO12], this is done for
every three parties (Pv, Pi, Pd). For simplicity, we consider the case where each party deals O(m

t+1) sharings.
It can be simply adapted to handle the case where only one party deals O(m) sharings without increasing
the communication complexity.

Let w = O(1) denote the number of batches in each segment, i.e., each party deals w · ` sharings. Let

σ
(k)
i (d) denote the k-th batch of shares sent from Pd to Pi, ν

(k)(d) denote the key for the k-th batch, and
τ (k)(d) denote the tag for the k-th batch.

To check the correctness of all authentication tags. Each party will in additional distributes ` random
degree-t sharings as random masks. These new sharings are only used in the checking phase and will be
discarded after this step. Also, all parties need to make sure the generated sharings held by honest parties
are consistent. The functionality is described in Functionality 26. The realization of FBaseSharing can be
found in [BSFO12]. The communication complexity of the realization in [BSFO12] is O(`n2φ+n3κ) bits plus
O(nκ) · BC.

For every pair of parties (Pv, Pi) 6∈ Disp, let σ
(0)
i (1),σ

(0)
i (2), . . . ,σ

(0)
i (n) denote the shares Pi received.

Then Pv, Pi invoke SingleTagCompv,i,d([σ
(0)(d)]t) to compute the authentication tag τ (0)(d) of σ

(0)
i (d) for

every Pd.

30

Functionality 26: FBaseSharing(`)

1. On receiving (disputed, Pi, Pj), where (Pi, Pj) 6∈ Disp and at least one of Pi, Pj is corrupted, FBaseSharing

sends (disputed, Pi, Pj) to all parties and halts. On receiving (corrupted, Pi), where Pi 6∈ Corr and Pi is
corrupted, FBaseSharing sends (corrupted, Pi) to all parties and halts.

2. For every honest party Pi, FBaseSharing randomly generates ` degree-t sharings [s(1)(i)]t, . . . , [s
`(i)]t such that

the shares held by parties in Dispi are set to be 0.
3. For each corrupted party Pi 6∈ Corr, FBaseSharing receives [s(1)(i)]t, . . . , [s

(`)(i)]t from Pi where for each
k ∈ [`], [s(k)(i)]t is a consistent sharing such that the shares held by parties in Dispi are 0.

4. For each party Pi ∈ Pactive, FBaseSharing distributes the shares of [s(1)(i)]t, . . . , [s
(`)(i)]t to parties not in

Dispi
⋃
{Pi}.

5. For each honest party Pi, FBaseSharing sends [s(1)(i)]t, . . . , [s
(`)(i)]t to Pi.

Consider the following 3 polynomials:

F (X) :=

n∑
d=1

(
w∑
k=0

σ
(k)
i (d)Xk

)
X(d−1)(w+1)

Γ (X) :=

n∑
d=1

(
w∑
k=0

τ (k)(d)Xk

)
X(d−1)(w+1)

∆(X) :=

n∑
d=1

(
w∑
k=0

ν(k)(d)Xk

)
X(d−1)(w+1)

If all authentication tags are correct, we should have Γ (X) = µv→i�F (X) +∆(X). However, if at least
one authentication tag is incorrect, then the above equation holds on at most n(w + 1) points. Thus, by
testing a random point λ ∈ K, with overwhelming probability, the above equation does not hold.

The description of Check-Tag appears in Protocol 27. The communication complexity of Check-Tag
is O(`n2φ+ n4κ) bits plus O(nκ) · BC.

Lemma 6. If all parties broadcast ok in the end of Check-Tag, then with overwhelming probability, all
authentication tags are correct.

Fault Localization. In the case that some party Pv broadcast (fault, i) in the end of Check-Tag, we
need to find out a new pair of disputed parties.

The first step is to figure out the dealer Pd of the shares where the authentication tags are incorrect.
For each d ∈ {1, . . . , n}, let

σ′i(d) =

w∑
k=0

σ
(k)
i (d)λk, τ ′(d) =

w∑
k=0

τ (k)(d)λk, ν′(d) =

w∑
k=0

ν(k)(d)λk.

Then, we have σ′i =
∑n
d=1 σ

′
i(d)λ(d−1)(w+1), τ ′ =

∑n
d=1 τ

′(d)λ(d−1)(w+1) and ν′ =
∑n
d=1 ν

′(d)λ(d−1)(w+1).
To find such Pd, Pi sends (σ′i(1),σ′i(2), . . . ,σ′i(n)) and (τ ′(1), τ ′(2), . . . , τ ′(n)) to Pv. Pv then checks

whether the following two equations hold:

σ′i =

n∑
d=1

σ′i(d)λ(d−1)(w+1) τ ′ =

n∑
d=1

τ ′(d)λ(d−1)(w+1)

31

Protocol 27: Check-Tag

1. All parties invoke FBaseSharing(`) to generate [σ(0)(1)]t, . . . , [σ
(0)(n)]t.

2. For every Pv, Pi, Pd ∈ Pactive such that (Pv, Pi), (Pi, Pd) 6∈ Disp, all parties invoke
SingleTagCompv,i,d([σ

(0)(d)]t). In the end, Pi obtains τ (0)(d) and Pv obtains ν(0)(d).
3. All parties invoke Challenge to generate λ ∈ K.
4. For every (Pv, Pi) 6∈ Disp, Pi computes

σ′i =

n∑
d=1

(
w∑
k=0

σ
(k)
i (d)λk

)
λ(d−1)(w+1)

τ ′ =

n∑
d=1

(
w∑
k=0

τ (k)(d)λk
)
λ(d−1)(w+1).

Pv computes

ν′ =

n∑
d=1

(
w∑
k=0

ν(k)(d)λk
)
λ(d−1)(w+1).

Pi sends σ′i and τ ′ to Pv. Pv accepts if τ ′ = µv→i � σ′i + ν′. Otherwise Pv rejects.
5. For every Pv ∈ Pactive, Pv broadcasts ok if it accepts all verifications. Otherwise Pv broadcasts (fault, i)

where i is the smallest index such that Pv rejects the verification of Pi.

If not, (Pv, Pi) is a new pair of disputed parties. Otherwise, Pv finds Pd where τ ′(d) 6= µv→i�σ′i(d) + ν′(d).

The description of FL-Tag appears in Protocol 28. The communication complexity of FL-Tag is O(`nφ+
nκ) bits plus O(φ) · BC.

Protocol 28: FL-Tag

1. Let Pv be the first party which broadcast (fault, i).

2. For all d ∈ {1, 2, . . . , n}, Pi computes σ′i(d) =
∑w
k=0 σ

(k)
i (d)λk and τ ′(d) =

∑w
k=0 τ

(k)(d)λk. Then Pi sends
(σ′i(1), . . . ,σ′i(n)) and (τ ′(1), . . . , τ ′(n)) to Pv.

3. Pv checks whether the following two equation hold:

σ′i =

n∑
d=1

σ′i(d)λ(d−1)(w+1) τ ′ =

n∑
d=1

τ ′(d)λ(d−1)(w+1)

– If not, Pv broadcasts (accuse, i) and all parties regard (Pv, Pi) as a new pair of disputed parties.
– Otherwise, Pv computes ν′(d) =

∑w
k=0 ν

(k)(d)λk for all d ∈ {1, 2, . . . , n}. Pv then broadcasts (fault, d)
if τ ′(d) 6= µv→i � σ′i(d) + ν′(d).

In the case that Pv broadcast (fault, d), we need to check the messages sent by all parties when computing
the authentication tags of shares distributed by Pd. Let do(k)ci2t be the twisted degree-2t sharing of 0 when

computing the authentication tag for the k-th batch of shares σ
(k)
i (d) for all k ∈ {0, 1, . . . , w}.

32

All parties locally compute the following sharings:

dτ ′(d)ci2t =

w∑
k=0

dτ (k)(d)ci2tλk

[σ′(d)]t =

w∑
k=0

[σ(k)(d)]tλ
k

dν′(d)ci2t =

w∑
k=0

dν(k)(d)ci2tλk

do′ci2t =

w∑
k=0

do(k)ci2tλk

Then, we should have dτ ′(d)ci2t = dµv→icit � [σ′(d)]t + dν′(d)ci2t + do′ci2t. To protect the secrecy of µv→i,
all parties need to send their shares of above sharings to Pv. In addition, Pd needs to send [σ′(d)]t, do′ci2t to
Pv and Pi needs to send dτ ′(d)ci2t to Pv. In this way, Pv is able to find a new pair of disputed parties.

The description of FL-SingleDealer appears in Protocol 29. The communication complexity of FL-
SingleDealer is O(`nφ+ nκ) bits plus O(κ) · BC.

Protocol 29: FL-SingleDealer(Pv, Pd)

1. All parties locally compute dτ ′(d)ci2t, [σ′(d)]t and do′ci2t. Then they send their shares to Pv (via relays if
necessary).

2. Pd sends [σ′(d)]t and do′ci2t to Pv (via the relay Pv↔d if (Pv, Pd) ∈ Disp).
3. Pi sends dτ ′(d)ci2t to Pv.
4. Pv checks the following.

– If Pv observes that some party Pj does not follow the protocol, Pv broadcast (accuse, Pj). If (Pv, Pj) 6∈
Disp, (Pv, Pj) is a new pair of disputed parties. Otherwise, the relay Pv↔j checks the messages it helped
transfer and broadcasts its opinion. If Pv↔j agrees with Pv, (Pv↔j , Pj) is a new pair of disputed parties.
Otherwise, (Pv↔j , Pv) is a new pair of disputed parties. (Note that if (Pv, Pj) ∈ Disp, then the j-th
share of dτ ′(d)ci2t should be the same as the j-th share of do′ci2t since every j-th share of the sharings
dealt by Pv is set to be 0.)

– If Pv receives different values for some share of dτ ′(d)ci2t, [σ′(d)]t or do′ci2t, say the j-th share of do′ci2t
for concreteness, let o′j and õ′j denote the shares received from Pd and Pj respectively.

(a) Pv broadcasts (open, j, o′j , õ
′
j).

(b) Pj , Pd and the relays Pv↔d, Pv↔j broadcast the j-th shares of do′ci2t they sent/received.
(c) The pair of parties, where one party directly sends the share to the other party but two parties

broadcast different values, is regarded as a new pair of disputed parties.

The Full Protocol. In this part, we introduce the protocol which realizes FTag. The description of Tag
appears in Protocol 30. The overall communication complexity of Tag (in the whole protocol) is O(`n4φ+
n6κ) bits plus O(n3κ) · BC.

Lemma 7. Protocol Tag computes FTag with unconditional security in the presence of honest majority.

Proof. The correctness of Tag is straightforward. Consider the following construction of a simulator S.

33

Protocol 30: Tag

1. All parties invoke FKey.
2. For every Pd ∈ Pactive, let [σ(1)(d)]t, . . . , [σ

(w)(d)]t denote the sharings dealt by Pd. For every Pv, Pi, Pd ∈
Pactive such that (Pv, Pi), (Pi, Pd) 6∈ Disp, all parties invoke SingleTagCompv,i,d([σ

(k)(d)]t) for all k ∈
{1, 2, . . . , w}.

3. All parties invoke Check-Tag. If all parties broadcast ok, all parties halt. Otherwise, suppose Pv broadcasts
(fault, i). All parties proceed to the next step.

4. All parties invoke FL-Tag. If a new pair of disputed parties is identified, all parties halt. Otherwise, suppose
Pv broadcasts (fault, d). All parties proceed to the next step.

5. All parties invoke FL-SingleDealer(Pv, Pd) to find a new pair of disputed parties and halt.

Simulating Step 1 of Tag. In Step 1, S simulates the functionality FKey.

1. S behaves honestly when receiving (disputed, Pi, Pj) and (corrupted, Pi).
2. For every pair of parties (Pv, Pi) 6∈ Disp such that Pv is honest, if Pi is corrupted, S set the shares of
dµv→icit held by parties in Dispv to be 0 and the shares held by other corrupted parties to be uniform
field elements. If Pi is honest, S requests µv→i from FTag and samples a vector of random twisted degree-t
sharings as dµv→icit such that the secret is µv→i and the shares held by parties in Dispv are 0.

3. For every honest party Pv, S distributes the shares of dµv→icit to parties not in Dispv
⋃
{Pv, Pi}.

4. S faithfully checks the sharings received from corrupted parties and reconstructs the keys.

Simulating Step 2 of Tag. In Step 2, let [σ(1)(d)]t, . . . , [σ
(w)(d)]t denote the sharings dealt by Pd. Note

that if Pd is an honest party, then S learns the shares held by corrupted parties. If Pd is a corrupted party,
then S learns the whole sharings and in particular, the each sharing dealt by Pd is consistent (since we have
checked the consistency in Verify-Sharing before computing the authentication tags). For each corrupted
party Pd, S sends (each of) [σ(1)(d)]t, [σ

(2)(d)]t, . . . , [σ
(w)(d)]t to (each call of) FTag.

Now, S needs to simulate the behaviors of honest parties in SingleTagComp. We use wide-tilde over
a sharing to represent the sharing it should be (in contrast to the sharing received from all parties), i.e.,
replacing the shares received from corrupted parties by the shares corrupted parties should hold. Depending
on whether Pv, Pi, Pd are honest or corrupted respectively, there are 8 cases.

– Case 1: If Pv, Pi, Pd are honest, S randomly generates and distributes dν(k)(d)ci2t and do(k)ci2t on behalf
of Pv, Pd respectively. After receiving the shares of dτ (k)(d)ci2t from corrupted parties, S computes the
shares of dτ (k)(d)ci2t corrupted parties should hold and checks whether

dOci2t = dτ (k)(d)ci2t − ˜dτ (k)(d)ci2t

is a twisted degree-2t sharing of 0. Note that the shares of dOci2t held by honest parties are all 0. If true,
S marks this invocation as accept. Otherwise S marks this invocation as reject.

– Case 2: If Pv, Pi are honest and Pd is corrupted, S randomly generates and distributes dν(k)(d)ci2t on
behalf of Pv. S receives from Pd the shares of do(k)ci2t held by honest parties. Let dηci2t = dµv→icit �
[σ(k)(d)]t+dν(k)(d)ci2t. S computes the shares of dηci2t corrupted parties should hold. After receiving the
shares of dτ (k)(d)ci2t from corrupted parties, S checks whether

dOci2t = dτ (k)(d)ci2t − d̃ηci2t

is a twisted degree-2t sharing of 0. Note that the shares of dOci2t held by honest parties are the same
as the shares of dokci2t received from corrupted parties. If true, S marks this invocation as accept.
Otherwise S marks this invocation as reject.

34

– Case 3: If Pv, Pd are honest and Pi is corrupted, S randomly generates and distributes do(k)ci2t on
behalf of Pd. S receives τ (k)(d) from FTag. S randomly samples a twisted degree-2t sharing dηci2t such
that the shares held by parties in Dispv are set to be 0 and η = τ (k)(d). Set dν(k)(d)ci2t = dηci2t −
dµv→icit� [σ(k)(d)]t. Note that, S is able to compute the shares of dν(k)(d)ci2t held by corrupted parties.
S distributes dν(k)(d)ci2t on behalf of Pv. Finally, S sets dτ (k)(d)ci2t = dηci2t + do(k)ci2t and sends the
shares of honest parties to Pi accordingly.

– Case 4: If Pv is honest and Pi, Pd are corrupted, S receives τ (k)(d) from FTag. S samples dηci2t and
computes the shares of dν(k)(d)ci2t held by corrupted parties in the same way as that in Case 3. Then S
distributes dν(k)(d)ci2t on behalf of Pv. Finally, S sets dτ (k)(d)ci2t = dηci2t + do(k)ci2t and sends the shares
of honest parties to Pi accordingly.

– Case 5: If Pi, Pd are honest and Pv is corrupted, S randomly generates and distributes do(k)ci2t on behalf
of Pd. S receives the shares of dν(k)(d)ci2t held by honest parties. After receiving the shares of dτ (k)(d)ci2t
held by corrupted parties, S computes the shares of dν(k)(d)ci2t = dτ (k)(d)ci2t − dµv→icit � [σ(k)(d)]t −
do(k)ci2t held by corrupted parties. Then S can reconstruct dν(k)(d)ci2t and compute ν(k)(d). Finally S
sends (µv→i, ν

(k)(d)) to FTag.
– Case 6: If Pi is honest and Pv, Pd are corrupted, S receives the shares of dν(k)(d)ci2t and do(k)ci2t held by

honest parties. Then S computes the shares of dν(k)(d)ci2t+do(k)ci2t held by honest parties. After receiving
the shares of dτ (k)(d)ci2t held by corrupted parties, S computes the shares of dν(k)(d)ci2t + do(k)ci2t =
dτ (k)(d)ci2t−dµv→icit� [σ(k)(d)]t held by corrupted parties. Then S can reconstruct dν(k)(d)ci2t+do(k)ci2t
and compute ν(k)(d) + o(k) = ν(k)(d). Finally S sends (µv→i, ν

(k)(d)) to FTag.

– Case 7: If Pd is honest and Pv, Pi are corrupted, S first computes γ = µv→i � σ(k)
i (d). Note that,

S has reconstructed µv→i when simulating FKey. And σki (d) are the shares Pd sent to Pi. Then S
randomly samples a twisted degree-2t sharing dγci2t such that the shares held by parties in Dispd are
set to be 0. Set do(k)ci2t = dγci2t − dµv→icit � [σ(k)(d)]t. Note that S is able to compute the shares of
do(k)ci2t held by corrupted parties. S distributes do(k)ci2t on behalf of Pd. Finally, S sets dτ (k)(d)ci2t =
dγci2t + dν(k)(d)ci2t and sends the shares of honest parties to Pi accordingly. S randomly samples ν(k)(d)
and sends (µv→i, ν

(k)(d)) to FTag. S ignores the tag received from FTag.
– Case 8: If Pv, Pi, Pd are corrupted, S behaves honestly. S randomly samples ν(k)(d) and sends (µv→i, ν

(k)(d))
to FTag. S ignores the tag received from FTag.

Simulating Step 3 of Tag. In Step 3, S needs to simulate the behaviors of honest parties when executing
Check-Tag.

1. S first simulates FBaseSharing as following. S behaves honestly when receiving (disputed, Pi, Pj) and
(corrupted, Pi). For each honest party Pd, S sets the shares of [σ(0)(d)]t held by parties in Dispd to
be 0 and the shares held by other corrupted parties to be random field elements. For each corrupted
party Pd, S receives the sharings [σ(0)(d)]t from adversaries. S then faithfully follows the rest of steps
in FBaseSharing.

2. S simulates the invocations of SingleTagCompv,i,d([σ
(0)(d)]t) in the same way as described above.

3. S behaves honestly when generating λ ∈ K.
4. For each honest party Pd, S randomly samples [σ′(d)]t based on the shares held by corrupted parties.

For each corrupted party Pd, S faithfully computes [σ′(d)]t =
∑w
k=0[σ(k)(d)]tλ

k. Depending on whether
Pv, Pi are honest or corrupted respectively, there are 4 cases.
– Case 1: If Pv, Pi are honest, S checks whether S marked some invocation SingleTagCompv,i,d([σ

(k)(d)]t)
as reject. If true, S marks that Pv rejects the verification of Pi.

– Case 2: If Pv is honest and Pi is corrupted, S first checks whether the shares σ′i are correct. Note
that, in this case, S received all the tags from FTag (see Case 3 and Case 4 in Step 2). Therefore,
S directly computes τ ′ and check whether it is the same as that received from Pi. If either of these
two checks fails, S marks that Pv rejects the verification of Pi.

– Case 3: If Pi is honest and Pv is corrupted, S computes

σ′i =

n∑
d=1

σ′i(d)λ(d−1)(w+1).

35

Note that, in this case, {ν(k)(d)}nd=1 have been reconstructed by S (see Case 5 and Case 6 in Step
2). S computes

ν′ =

n∑
d=1

(
w∑
k=0

ν(k)(d)λk

)
λ(d−1)(w+1).

Recall that S has recovered µv→i when simulating FKey. Finally S sends σ′i and τ ′ = µv→i�σ′i+ ν′

to Pv.
– Case 4: If Pv, Pi are corrupted, S does nothing.

5. S follows the protocol for all honest parties.

Simulating Step 4 of Tag. In Step 4, S needs to simulate the behaviors of honest parties when executing
FL-Tag. Depending on whether Pv, Pi are honest or corrupted respectively, there are 4 cases.

– Case 1: If Pv, Pi are honest, S broadcasts (fault, d) where d is the smallest index such that the
invocation SingleTagCompv,i,d([σ

(k)(d)]t) is marked as reject for some k ∈ {0, 1, . . . , w}.
– Case 2: If Pv is honest and Pi is corrupted, S first checks whether σ′i =

∑n
d=1 σ

′
i(d)λ(d−1)(w+1) and

τ ′ =
∑n
d=1 τ

′(d)λ(d−1)(w+1). If not, S broadcasts (accuse, i) on behalf of Pv. Otherwise, S directly
computes {τ ′(d)}nd=1 and broadcasts (fault, d) where d is the smallest index such that τ ′(d) received
from Pi is incorrect. (S received all tags from FTag in this case.)

– Case 3: If Pi is honest and Pv is corrupted, S computes

ν′(d) =

w∑
k=0

ν(k)(d)λk.

for all d ∈ {1, 2, . . . , n}. Then S computes τ ′(d) = µv→i �σ′i(d) + ν′(d) for all d ∈ {1, . . . , n}. Finally, S
sends (σ′i(1), . . . ,σ′i(n)) and (τ ′(1), . . . , τ ′(n)) to Pv.

– Case 4: If Pv, Pi are corrupted, S does nothing.

Simulating Step 5 of Tag. In Step 5, S needs to simulate the behaviors of honest parties when executing
FL-SingleDealer. Depending on whether Pv is honest or not, there are two cases.

– Case 1: If Pv is honest, then S can simply follow the protocol. This is because Pv is the only recipient of
all shares and sharings, i.e., S does not need to send any message to corrupted parties. Although S does
not know the whole sharings dµv→icit, S knows the shares held by corrupted parties, which is enough to
check whether corrupted parties followed the protocol.

– Case 2: If Pv is corrupted, then S only needs to prepare the messages honest parties need to send to cor-
rupted parties. Note that, S knows the shares of dµv→icit, dν′(d)ci2t held by honest parties. Furthermore,
S has known [σ′(d)]t, which is computed when simulating Check-Tag. In the case that Pd is corrupted,
S knows the shares of do′ci2t held by honest parties. In the case that Pd is honest, if Pi is honest, then
it corresponds to Case 5 when simulating SingleTagCompv,i,d and {do(k)ci2t}wk=0 are explicitly gen-
erated. Otherwise, it corresponds to Case 7 when simulating SingleTagCompv,i,d([σ

(k)(d)]t). Recall
that, S explicitly generated dγ(k)ci2t and do(k)ci2t = dγ(k)ci2t − dµv→icit � [σ(k)(d)]t. We have

do′ci2t =

w∑
k=0

do(k)ci2tλk

=

w∑
k=0

(dγ(k)ci2t − dµv→icit � [σ(k)(d)]t)λ
k

=

w∑
k=0

dγ(k)ci2tλk − dµv→icit �
w∑
k=0

[σ(k)(d)]tλ
k

=

w∑
k=0

dγ(k)ci2tλk − dµv→icit � [σ′(d)]t.

36

From the last equation, S can compute the shares of do′ci2t held by honest parties. Furthermore, S can
compute the shares of dτ ′(d)ci2t held by honest parties using the equation

dτ ′(d)ci2t = dµv→icit � [σ′(d)]t + dν′(d)ci2t + do′ci2t.

After preparing the above shares held by honest parties, S follows the rest of the protocol.

This finishes the description of the simulator S. We claim that, with overwhelming probability, the view
of corrupted parties in the ideal world is identical to that in the real world. We check it step by step.

In Step 1, it is clear that S perfectly simulates FKey.
In Step 2, we show that the distribution of messages sent from S to corrupted parties is identical to the

distribution of messages sent from honest parties to corrupted parties in the real world.

– For Case 1 and Case 2, S faithfully follows the protocol to generates the shares of honest parties.
– For Case 3 and Case 4, ν(k)(d) is a uniform element in K sampled by honest party Pv, which is identical

to the ideal world. Furthermore, in the real world, Pv randomly samples dν(k)(d)ci2t such that the shares
held by parties in Dispv are set to be 0. Since the shares of dµv→icit held by parties in Dispv are 0,
dηci2t = dµv→icit � [σ(k)(d)]t + dν(k)(d)ci2t is a random twisted degree-2t sharing such that η = τ (k)(d)
and the shares held by parties in Dispv are 0. Note that the distribution of dηci2t generated by S is
identical to that in the real world. Therefore, the distribution of dν(k)(d)ci2t generated by S is identical
to the real world.

– For Case 5 and Case 6, S faithfully follows the protocol to generates the shares of honest parties.
– For Case 7, Pd randomly samples do(k)ci2t such that the shares held by parties in Dispd are set to be

0 in real world. Since the shares of [σ(k)(d)]t held by parties in Dispd are also 0, dγci2t = dµv→icit �
[σ(k)(d)]t + do(k)ci2t is a random twisted degree-2t sharing such that γ = µv→i � σ(k)(d) and the shares
held by parties in Dispd are 0. Note that the distribution of dγci2t generated by S is identical to that in
the real world. Therefore, the distribution of do(k)ci2t generated by S is identical to the real world.

In Step 3, it is clear that S perfectly simulates FBaseSharing. For all honest party Pd, since [σ(0)(d)]t are
random degree-t sharings such that the shares held by parties in Dispd are 0, [σ′(d)]t =

∑w
k=0[σ(k)(d)]tλ

k

are random degree-t sharings such that the shares held by parties in Dispd are 0. Note that, the distribution
of [σ′(d)]t generated by S is identical to that in the real world. In Step 5 of Check-Tag, we show that S
perfectly simulates honest parties in the real world with overwhelming probability.

– For Case 1, note that in Case 1 and Case 2 when simulating SingleTagComp, S has checked whether
honest parties received the correct tags. In the ideal world, Pv rejects the verification of Pi if at least
one tag is incorrect. According to Lemma 6, with overwhelming probability, Pv rejects the verification
of Pi if at least one tag is incorrect.

– For Case 2, S directly checks whether σ′i and the authentication tag are correct. The only difference
between the real world and the ideal world is that, if Pi provided an incorrect σ′i and a valid authentication
tag, Pv will accept the verification of Pi in the real world while it will reject the verification in the
ideal world. However, since the authentication keys µv→i are uniformly distributed given the shares of
corrupted parties, it happens with negligible probability.

– For Case 3, S has recovered ν(k)(d) chosen by corrupted party Pd in Case 5 and Case 6 when simulating
SingleTagComp. Therefore, S simulates honest parties perfectly.

In Step 4, S perfectly simulates honest parties in Case 1 and Case 3. In Case 2, the only difference is
that, if Pi provided an incorrect σ′i(d

′) and a valid authentication tag for some d′ ∈ {1, 2, . . . , n}, Pv may
identify a different d from that in the real world. However, since the authentication keys µv→i are uniformly
distributed given the shares of corrupted parties, it happens with negligible probability.

In Step 5, all messages sent by S can be computed from the shares S learned before. Therefore, in the
case that S perfectly simulate honest parties in previous steps, S also perfectly simulate honest parties in
this step.

37

Efficiency Analysis of Tag. Note that the overall communication complexity of Tag (in the whole
protocol) is O(`n4φ+n6κ) bits plus O(n3κ) · BC. Recall that ` = O(m

t+1). For any constant ε > 0, by setting
` = εm

t+1 , the overall communication complexity of Tag is only O(εnφ) bits per gate.

5.5 Analyze Sharing

In this part, we introduce the whole protocol Analyze-Sharing to handle an inconsistent sharing [x]t.
Recall that each sharing [x]t which needs to be examined can be decomposed into the following form:

[x]t =

n∑
i=1

[x(i)]t,

where [x(i)]t is a linear combination of the sharings dealt by Pi.

Localize A Suspect Dealer. Recall that when all parties want to examine some sharing [x]t, each party
has broadcast its share of [x]t and the sharing [x]t is inconsistent. The description of Localize appears in
Protocol 31. The communication complexity of Localize is O(n2κ) bits plus O(nκ) · BC.

Protocol 31: Localize

All parties have broadcast their shares of [x]t and the sharing [x]t is inconsistent. Let the decomposition of [x]t
be [x]t =

∑n
i=1[x(i)]t. Recall that Pking is the special party all parties agree on in the beginning of each segment.

1. All parties prepare a random degree-t sharing [r]t by invoking Rand in K. Let the decomposition of [r]t be
[r]t =

∑n
i=1[r(i)]t, where [r(i)]t is dealt by Pi.

2. All parties broadcast their shares of [r]t.
– If [r]t is inconsistent, set [z]t := [r]t and [z(i)]t := [r(i)]t for all i ∈ [n].
– Otherwise, set [z]t := [x]t + [r]t and [z(i)]t = [x(i)]t + [r(i)]t for all i ∈ [n].

3. All parties send their shares {[z(i)]t}ni=1 to Pking (via relays if necessary).
4. Pking checks the following.

– If for some party Pj ∈ Pactive, the summation of its shares of {[z(i)]t}ni=1 does not equal to the share
of [z]t broadcast by Pj . Pking broadcasts (accuse, Pj). If (Pking, Pj) 6∈ Disp, (Pking, Pj) is a new pair
of disputed parties. Otherwise, the relay Pking↔j broadcasts its opinion. If Pking↔j agrees with Pking,
(Pking↔j , Pj) is a new pair of disputed parties. Otherwise, (Pking↔j , Pking) is a new pair of disputed
parties.

– Otherwise, Pking broadcasts (inconsistent, i) to indicate that [z(i)]t it received is inconsistent.
5. All parties broadcast their shares of [z(i)]t. If [z(i)]t is consistent, Pking broadcasts (accuse, Pj) to indicate

that Pj didn’t send the correct share to Pking.
– If (Pking, Pj) 6∈ Disp, (Pking, Pj) is a new pair of disputed parties.
– Otherwise, the relay Pking↔j broadcasts its opinion. If Pking↔j agrees with Pking, (Pking↔j , Pj) is a new

pair of disputed parties. Otherwise, (Pking↔j , Pking) is a new pair of disputed parties.
Otherwise, all parties take Pi as output.

Handling an Active Dealer. If Pi 6∈ Corr, then Pi checks the sharing [z(i)]t and identify the party Pj
who broadcast a wrong share. If (Pi, Pj) 6∈ Disp, then all parties take (Pi, Pj) as a new pair of disputed
parties and halt. Otherwise, all the sharings dealt by Pi in this segment should satisfy that the shares held
by Pj are set to be 0. Therefore, the non-zero shares Pi sent to Pj were all generated in previous segments,
which have been authenticated.

38

Pi and Pj will run a 3-round search to locate a problematic batch of shares. Recall that the number of
segments is O(n2).

– All previous segments are partitioned into n equal parts. For each part, Pj broadcasts the linear com-
bination of the shares sent by Pi using the same coefficients as those of the j-th share of [z(i)]t. If the
summation of the values broadcast by Pj does not match the j-th share of [z(i)]t, all parties regard Pj
as a new corrupted party. Otherwise, Pi broadcasts an index to point out the problematic part.

– For each segment of the problematic part pointed out by Pi, Pj broadcasts the linear combination of the
shares sent by Pi using the same coefficients as those of the j-th share of [z(i)]t. If the summation of the
values broadcast by Pj does not match the value Pj broadcast for this part, all parties regard Pj as a
new corrupted party. Otherwise, Pi broadcasts an index to point out the problematic segment.

– For each batch of the problematic segment pointed out by Pi, Pj broadcasts the linear combination of
the shares sent by Pi using the same coefficients as those of the j-th share of [z(i)]t. If the summation
of the values broadcast by Pj does not match the value Pj broadcast for this segment, all parties regard
Pj as a new corrupted party. Otherwise, Pi broadcasts an index to point out the problematic batch.

Then Pj sends the shares in this batch and the associated authentication tag to each other party Pv.
Pv verifies the authentication tag and checks whether the linear combination of these shares using the same
coefficients as those of the j-th share of [z(i)]t equals to the value Pj broadcast for this batch. If at least
t+ 1 parties accept the shares, Pi is regarded as a corrupted party. Otherwise, Pj is regarded as a corrupted
party.

The description of Active-Dealer appears in Protocol 32. The communication complexity of Active-
Dealer is O(`nφ+ nκ) bits plus O(nκ) · BC. Here ` is the size of each batch of shares.

Protocol 32: Active-Dealer

1. Pi broadcasts (accuse, j) to indicate that the j-th share of [z(i)]t broadcast by Pj is incorrect. If (Pi, Pj) 6∈
Disp, then (Pi, Pj) is a new pair of disputed parties. Otherwise, continue to the next step.

2. Pi, Pj run a 3-round search to locate one batch of shares which Pi, Pj do not agree on.
3. For every party Pv ∈ Pactive, Pj send this batch of shares together with the corresponding authentication

tag to Pv. Pv checks the validity of the authentication tag and whether the linear combination of the shares
in this batch using the same coefficients as those of the j-th share of [z(i)]t is the same as the value Pj
broadcast for this batch. If both checks pass, Pv broadcasts accept. Otherwise, Pv broadcasts reject.

4. If majority broadcast accept, Pi is identified as a corrupted party. Otherwise, Pj is identified as a corrupted
party.

Handling a Corrupted Dealer. If Pi ∈ Corr, Pi did not participate in the computation of this segment.
Therefore, the non-zero sharings dealt by Pi were all generated in previous segments, which have been
authenticated.

All parties run a 3-round search to locate a problematic batch of shares using a similar way to that in
Active-Dealer. The only difference is that each party now needs to broadcast its shares. All parties will
use the index of the first inconsistent sharing as the problematic part, segment or batch. Then, each party
Pj asks other parties to verify its shares in the same way as that in Active-Dealer.

The description of Corrupted-Dealer appears in Protocol 33. The communication complexity of
Corrupted-Dealer is O(`n2φ+ n2κ) bits plus O(n2κ) · BC. Here ` is the size of each batch of shares.

39

Protocol 33: Corrupted-Dealer

1. All parties in Pactive run a 3-round search to locate one batch of sharings where at least one sharing is
inconsistent.

2. For every two parties Pj , Pv ∈ Pactive, Pj sends this batch of shares together with the corresponding authen-
tication tag to Pv. Pv checks the validity of the authentication tag and whether the linear combination of the
shares in this batch using the same coefficients as those of the j-th share of [z(i)]t is the same as the share
broadcast by Pj for this batch. If both checks pass, Pv broadcasts (accept, j). Otherwise, Pv broadcasts
(reject, j).

3. For each party Pj ∈ Pactive, if majority broadcast (reject, j), Pj is identified as a corrupted party.

Protocol 34: AnalyzeSharing

1. All parties invoke Localize.
2. In the case that all parties take Pi as output, there are two cases.

– If Pi ∈ Pactive, all parties invoke Active-Dealer.
– Otherwise, all parties invoke Corrupted-Dealer.

Summary of Analyze Sharing. The full description of Analyze-Sharing appears in Protocol 34.
Note that each call of Analyze-Sharing allows all parties to identify a new corrupted party or a new

pair of disputed parties. In particular, each call of Corrupted-Dealer identifies at least one corrupted
party. Therefore, in the whole protocol, Localize and Active-Dealer will be invoked at most n2 times and
Corrupted-Dealer will be invoked at most n times. The overall communication complexity of Analyze-
Sharing is O(`n3φ+ n4κ) = O(Cφ+ n4κ) bits plus O(n3κ) · BC. Here ` = O(m

t+1) is the size of each batch
of shares. Note that for any constant ε > 0, by setting ` = εm

t+1 , the overall communication complexity of
Analyze-Sharing is only O(εφ) bits per gate.

6 Protocol

6.1 Handling Input Gates

In this part, we handle the input gates of the circuit. Recall that m = C/n2 is the size of each segment.
Each time, at most m input gates are handled. We further require that all inputs in each segment belong to
the same party. The description of Input appears in Protocol 35. The communication complexity of input
is O(mnφ) bits.

6.2 Handling Output Gates

We assume that all parties are supposed to receive the same outputs. Each time, at most m output gates are
handled. The description of Output appears in Protocol 36. The communication complexity of Output(m)
is O(mnφ) bits plus O(nκ) · BC (not counting Analyze-Sharing).

Lemma 8. If all parties accept the output, with overwhelming probability, all parties receive the same correct
results.

40

Protocol 35: Input(Pi)

1. Let x(1), x(2), . . . , x(m) denote the inputs of Pi.
2. For each j ∈ [m], Pi samples a random degree-t sharing [x(j)]t such that the shares held by parties in Dispi

are set to be 0. Then Pi distributes [x(j)]t to all other parties.

Protocol 36: Output(m)

1. A special party Pking is selected.
2. Suppose {[x(i)]t}mi=1 are sharings we need to reconstruct. All parties send their shares of {[x(i)]t}mi=1 to Pking

(via relays if necessary).
3. For each i ∈ [m], Pking checks whether [x(i)]t is consistent.

– If [x(i)]t is inconsistent, Pking broadcasts (inconsistent, i). All parties broadcast their shares of [x(i)]t.
• If [x(i)]t broadcast by all parties is inconsistent, all parties invoke Analyze-Sharing to identify a

new corrupted party or a new pair of disputed parties.
• Otherwise, Pking broadcasts (accuse, j) to indicate that Pj didn’t send the correct share to Pking.

If (Pking, Pj) 6∈ Disp, (Pking, Pj) is a new pair of disputed parties. Otherwise, the relay Pking↔j
broadcasts its opinion. If Pking↔j agrees with Pking, (Pking↔j , Pj) is a new pair of disputed parties.
Otherwise (Pking↔j , Pking) is a new pair of disputed parties.

– Otherwise, Pking reconstructs the result x(i) and sends it back to all other parties.
4. Verify the Reconstructions

(a) All parties invoke Challenge to generate λ ∈ K.
(b) All parties locally compute [σ]t =

∑m
i=1[x(i)]t · λi and σ =

∑m
i=1 x

(i) · λi.
(c) All parties broadcast their shares of [σ]t and σ. Then check the following.

– If [σ]t is inconsistent, all parties invoke Analyze-Sharing to identify a new corrupted party or a
new pair of disputed parties.

– If some party Pi broadcasts a different σ from that broadcast by Pking, if (Pi, Pking) 6∈ Disp, (Pi, Pking)
is a new pair of disputed parties. Otherwise, if the relay Pking↔i broadcasts the same value as Pking,
(Pking↔i, Pi) is a new pair of disputed parties. Otherwise, (Pking↔i, Pking) is a new pair of disputed
parties.

– If the secret of [σ]t does not match σ, Pking is regarded as a corrupted party.
If none of above cases happens, all parties accept the output.

6.3 Main Protocol

Now we are ready to present our main construction.
The whole circuit is divided into O(n2) segments. Recall that C is the size of the circuit and the size of

each segment is set to be m = C/n2. There are 4 types of segments:

1. Input-Seg: only contains input gates and all inputs belong to one party.
2. Rand-Seg: only contains rand gates.
3. Comp-Seg: only contains addition gates and multiplication gates.
4. Output-Seg: only contains output gates.

Each time a new corrupted party or a new pair of disputed parties is identified, all parties restart the
evaluation of current segment with updated Disp, Corr. The communication complexity of the whole protocol
is O(Cnφ+ n3κ2 + n6κ) bits plus O(n3κ) · BC.

41

Protocol 37: Main

The whole circuit is divided into O(n2) segments. For each segment seg, all parties do the following steps. If
a new corrupted party or a new pair of disputed parties is identified, all parties restart the evaluation of this
segment with updated Disp, Corr.

1. Depending on the type of seg, there are 4 cases.
– If seg is an Input-Seg and the inputs belong to Pi, all parties invoke Input(Pi).
– If seg is a Rand-Seg, all parties invoke m

t+1
times of Rand and take [r(1)]t, . . . , [r

(m)]t as output.
– If seg is a Comp-Seg, all parties invoke Eval(seg).
– If seg is an Output-Seg, all parties invoke Output.

2. For Input-Seg, Rand-Seg and Comp-Seg, all parties invoke Verify-Sharing to verify the consistency of the
sharings dealt by each party in this segment.

3. All parties add verifiability to the sharings dealt by each party for Input-Seg, Rand-Seg and Comp-Seg.
Recall that the size of each batch is set to be ` = O(m

t+1
).

– For an Input-Seg, only the input holder Pi deals O(m) degree-t sharings. All parties invoke O(n) times
of FTag(Pi) to authenticate the sharings dealt by Pi.

– For a Rand-Seg, each party Pi ∈ Pactive deals O(m
t+1

) random degree-t sharings when invoking Rand.
For each party Pi, all parties invoke O(1) times of FTag(Pi) to authenticate the sharings dealt by Pi.

– For a Comp-Seg, each party Pi ∈ Pactive deals O(m
t+1

) random degree-t sharings when invoking Dou-
bleRand in Compute(seg). These sharings are authenticated in the same way as that for a Rand-Seg.
In addition, Pking deals O(m) degree-t sharings when invoking PartialMult in Compute(seg). These
sharings are authenticated in the same way as that for an Input-Seg.

Theorem 1. Let F be a finite field of size |F| ≥ n+ 1 and Circuit be an arithmetic circuit over F. Protocol
Main evaluates Circuit with unconditional security against a fully malicious adversary which corrupts at
most t < n/2 parties.

Concrete Efficiency of Main. We give a brief analysis of the concrete efficiency of Main. Recall that
each multiplication is done by two steps, Refresh and PartialMult. The concrete cost of PartialMult
is the same as that in [GS20], i.e., 5.5 elements per party.

For Refresh, all parties need to prepare a degree-t random sharing [r]t such that only parties in T
receive the shares. By invoking a modified version of Rand, the average cost per sharing is 1 element. Also,
each party in T needs to send one element to Pking and Pking needs to distribute a degree-t sharing to T .
Therefore, the cost of Refresh is 2 elements per party.

We also need to count the cost of FTag and Analyze-Sharing. Recall that ` = O(m
t+1) is the size of

each batch of shares we can authenticate each time. For any constant ε > 0, by choosing ` = εm
t+1 , the cost

of FTag and Analyze-Sharing can be reduced to O(ε) elements per gate per party.
In summary, for any fixed constant ε > 0, the cost per multiplication gate of Main is (7.5 + ε) elements

per party. When Corr = ∅, we do not need to run Refresh. Therefore, the cost is reduced to (5.5 + ε)
elements per party.

6.4 Construction of the Simulator

In this part, we construct a simulator S, which will be used to prove the security of Main in the next part.
Suppose A is the adversary in the real world. In the beginning, we set Pactive to be the set of all parties.

Let C denote the set of corrupted parties. Let H be the set of all honest parties. We always have H ⊆ Pactive.
After partitioning the circuit into O(n2) segments, S does the following steps for each segment seg.

Simulating Step 1. Depending on the type of seg, there are 4 cases.

42

Input-Seg. If seg is an Input-Seg and the inputs belong to Pi, S simulates the behaviors of honest parties
in Input(Pi). S reconstructs the inputs of corrupted parties using the first t+ 1 shares of honest parties.

If Pi is a corrupted party, S receives the shares of honest parties distributed by Pi.
If Pi is an honest party, for each input x(j), S sets the shares of parties in Dispi to be 0 and the shares of

other corrupted parties to be uniformly random elements. Then S distributes [x(j)]t to parties in C\Dispi.

Rand-Seg. If seg is a Rand-Seg, S simulates the behaviors of honest parties in Rand. Whenever an honest
party Pi needs to generate a random sharing [s]t, S sets the shares of parties in Dispi to be 0 and the shares
of other corrupted parties to be uniformly random elements. Then S distributes [s]t to parties in C\Dispi.

Comp-Seg. If seg is a Comp-Seg, S simulates the behaviors of honest parties in Eval(seg).
Simulating Compute: S first simulates the behaviors of honest parties in Compute(seg) as following.

1. S behaves honestly when choosing Pking and T .
2. If Corr = ∅, S does nothing. Otherwise, for each call of Rand, whenever an honest party Pi needs to

generate a random sharing [s]t, S sets the shares of parties in Dispi to be 0 and the shares of other
corrupted parties to be uniformly random elements. Then S distributes [s]t to parties in T \Dispi.

3. For each call of DoubleRand, whenever an honest party Pi needs to generate a pair of random double
sharings ([s]t, [s]2t), S sets the shares of parties in Dispi to be 0 and the shares of other corrupted parties
to be uniformly random elements. Then S distributes ([s]t, [s]2t) to parties in C\Dispi.

4. S does nothing when computing addition gates.
5. For each call of Mult([x]t, [y]t), S does the following.

(a) For Refresh, S needs to prepare the shares of [e]t := [x]t + [r]t held by honest parties in T .
Recall that [x]t and [r]t can be decomposed into [x]t =

∑n
i=1[x(i)]t and [r]t :=

∑n
i=1[r(i)]t, where

[x(i)]t, [r(i)]t are linear combinations of the sharings dealt by Pi. Let [x(H)]t =
∑
i∈H[x(i)]t and

[x(C)]t =
∑
i∈C [x(i)]t. Similarly we can define [r(H)]t and [r(C)]t. For [e(C)]t := [x(C)]t + [r(C)]t, the

shares held by honest parties are distributed by corrupted parties and therefore are known to S. For
[e(H)]t := [x(H)]t + [r(H)]t, the shares held by corrupted parties are distributed by S and therefore
are known to S. S samples a random sharing as [e(H)]t based on the shares held by corrupted parties.
Then S computes the shares of [e]t = [e(H)]t + [e(C)]t held by honest parties.

(b) For PartialMult, S sets the shares of [e]2t held by honest parties to be uniformly random elements.
(c) If Pking is an honest party, S behaves honestly on behalf of Pking.

Simulating Check-Refresh and Check-Rand: Then, S simulates the behaviors of honest parties in
Check-Refresh and Check-Rand. For Check-Refresh, S does the following.

1. When preparing a random transcript of Refresh, S simulates Rand and Refresh as described above.
2. S behaves honestly when generating a challenge.
3. S needs to prepare the shares of [x]t, [x̃]t, [r̃]t, [e]t, [o]t held by honest parties.

– Recall that [x]t can be decomposed into [x]t = [x(H)]t + [x(C)]t. The shares of [x(C)]t held by honest
parties are distributed by corrupted parties and therefore are known to S. For [x(H)]t, S samples a
random sharing as [x(H)]t.

– Recall that [e]t = [x]t + [r̃]t. The shares of [e]t held by honest parties in T have been determined
since they were explicitly generated and sent to Pking when simulating Refresh. Therefore, S is
able to compute the shares of [e]t, [r̃]t held by honest parties.

– The shares of [o]t held by honest parties are known since they are distributed by Pking. Note that
even if Pking is an honest party, S faithfully simulates Pking. The shares of [x̃]t held by honest parties
can be computed by [x̃]t = [x]t − [o]t.

4. S honestly broadcasts the shares held by honest parties.
5. S honestly checks the sharings. The simulation for Analyze-Sharing and Check-Rand will be intro-

duced later.

43

For Check-Rand, S first prepares the shares of [r̃(i)]t held by honest parties for each i. For a corrupted
party Pi, the shares of [r̃(i)]t held by honest parties are distributed by Pi and therefore are known to S. S
computes the shares of [r̃(H)]t held by honest parties by [r̃(H)]t = [r̃]t−

∑
i∈C [r̃(i)]t. Suppose Pi? ∈ H is the

first honest party. For each honest party Pi ∈ H\{Pi?}, S samples a random sharing as [r̃(i)]t based on the
shares held by corrupted parties. Then the sharing [r̃(i?)]t is set to be [r̃(H)]t −

∑
i∈H\{Pi?}[r̃(i)]t. S then

faithfully follows the protocol Check-Rand.

Simulating the Verification for PartialMult: Finally, S simulates the behaviors of honest parties
when verifying PartialMult. Note that Extend-PartialMult can be simulated in a similar way to
PartialMult. Since the communication are only required when invoking Extend-PartialMult and
Challenge in Compress, S simulates these two protocols as described above when simulating Compress.

– For De-Linearization, the communication is only required when invoking Challenge. S behaves
honestly when invoking Challenge.

– For Dimension-Reduction, it can be simulated by simulating Extend-PartialMult and Compress
as described above.

– For Randomization, S simulates Rand, DoubleRand and PartialMult when preparing a random
transcript of PartialMult. The rest of steps can be simulated in the same way as that in Dimension-
Reduction.

For Check-Single-Mult, S needs to prepare the shares of [α]t, [β]t, [δ]t, [δ]2t, [η]2t, [η]t, [γ]t held by
honest parties.

– For [α]t, [β]t, the shares held by honest parties can be prepared as that in Check-Refresh.
– Recall that [η]2t = [α]t · [β]t + [δ]2t and the shares of [η]2t held by honest parties have been determined

since they were explicitly generated and sent to Pking when simulating PartialMult and Extend-
PartialMult. S computes the shares of [η]2t, [δ]2t held by honest parties.

– Recall that [δ]2t can be decomposed into [δ]2t = [δ(H)]2t + [δ(C)]2t. Since the shares of [δ(C)]2t held
by honest parties are distributed by corrupted parties and therefore are known to S, S computes the
shares of [δ(H)]2t held by honest parties. Note that the shares of [δ(H)]2t held by corrupted parties
are explicitly generated and distributed by S. Therefore, S reconstructs the whole sharing [δ(H)]2t and
learns the secret value δ(H). As for [δ(H)]t, S samples a random sharing based on the secret value δ(H)
and the shares held by corrupted parties. Finally, [δ]t can be computed by [δ]t = [δ(H)]t + [δ(C)]t.

– Recall that [γ]t = [η]t − [δ]t. The shares of [η]t held by honest parties are explicitly distributed by Pking

and therefore are known to S. S computes the shares of [η]t, [γ]t held by honest parties.

Then, S honestly broadcasts the shares held by honest parties and checks the sharings. The simulation for
Analyze-Sharing and Check-DoubleRand will be introduced later.

For Check-DoubleRand, it can be simulated in a similar way to Check-Rand.

Output-Seg. If seg is an Output-Seg, S simulates the behaviors of honest parties in Output(m). S first
sends the inputs of corrupted parties to the functionality of Main and receives the outputs. Then S simulates
Output(m) as following.

1. S behaves honestly when selecting Pking.
2. For each output sharing [x]t, S prepares the shares held by honest parties. Recall that [x]t can be

decomposed into [x]t = [x(H)]t + [x(C)]t. S reconstructs the value x(C) by using the first t+ 1 shares of
honest parties. Then S samples a random sharing as [x(H)]t based on the secret value x(H) = x− x(C)
and the shares held by corrupted parties. S computes the shares of [x]t held by honest parties by
[x]t = [x(H)]t + [x(C)]t and sends the shares to Pking.

3. If Pking is an honest party, S faithfully follows the protocol.
4. Since S has already generated all the shares of honest parties, S faithfully follows the rest of steps. The

simulation for Analyze-Sharing will be introduced later.

44

Simulating Step 2. S simulates Verify-Sharing as following.

1. S simulates Rand as described above to prepare a random degree-t sharing [s(0)]t.
2. S behaves honestly when generating the challenge.
3. S computes the shares of [σ]t held by honest parties. Recall that [σ]t can be decomposed into [σ]t =

[σ(H)]t + [σ(C)]t. S samples a random sharing as [σ(H)]t based on the shares held by corrupted parties.
Since the shares of [σ(C)]t held by honest parties are distributed by corrupted parties, S can compute
the shares of [σ]t held by honest parties.

4. S honestly follows the protocol. The simulation for Analyze-Sharing will be introduced later.

Simulating Step 3. For each call of FTag, S simulates the functionality FTag as following.

1. S behaves honestly if receiving (disputed, Pi, Pj) and (corrupted, Pi).
2. If Pd is a corrupted party, S receives the whole sharings {[s(j)(d)]t}`j=1 from Pd. If Pd is an honest party,

S provides the shares of {[s(j)(d)]t}`j=1 held by corrupted parties C on behalf of Pd.
3. For each pair of parties (Pv, Pi) such that (Pv, Pi), (Pi, Pd) 6∈ Disp, S does the following.

(a) If Pv is corrupted, S receives (µv→i, ν) from Pv.
(b) Depending on whether Pv, Pi are corrupted, there are 4 cases:

– If Pv, Pi are honest, S does nothing.
– If Pv is honest but Pi is corrupted, S samples a random field element as the tag and sends it to
Pi. S records (τ,σi(d)).

– If Pi is honest but Pv is corrupted, S keeps (µv→i, ν).
– If Pv, Pi are corrupted, S faithfully computes τ and sends τ to Pi.

(c) If Pv, Pi are honest, S samples random field elements as (µv→i, ν) and sends the keys to the adversary.

Simulating Analyze-Sharing. Now we are ready to present the simulation for Analyze-Sharing.

Simulating Localize. S first simulates Localize.

1. S simulates Rand as described above when preparing a random degree-t sharing [r]t. Recall that [r]t
can be decomposed into [r]t = [r(H)]t + [r(C)]t. S samples a random sharing as [r(H)]t and computes
the shares of [r]t held by honest parties.

2. S honestly follows the protocol. Note that the whole sharing [z]t has been broadcast. S prepares the
shares of [z(i)]t held by honest parties for each i ∈ [n]. For a corrupted party Pi, the shares of [z(i)]t
held by honest parties are distributed by Pi and therefore are known to S. Suppose Pi? ∈ H is the first
honest party. For each honest party Pi ∈ H\{Pi?}, S samples a random sharing as [z(i)]t based on the
shares held by corrupted parties. Then the sharing [z(i?)]t is set to be [z]t −

∑
i∈[n]\{i?}[z(i)]t.

3. S faithfully follows the rest of steps in Localize.

Simulating Active-Dealer. In the case that Pi 6∈ Corr, S simulates the behaviors of honest parties in
Active-Dealer. Note that in the first step, we will locate a pair of disputed parties (Pi, Pj) (which may have
already been identified). If Pj is honest but Pi is corrupted, then S learns all shares held by Pj distributed
by Pi. If Pi is honest but Pj is corrupted, then S has explicitly generated and distributed the shares to Pj .
Therefore, in either case, S is able to honestly follow the protocols in the first two steps to locate a batch of
shares which Pi, Pj do not agree on.

In Step 3, if Pv, Pj are honest, S broadcasts accept on behalf of Pv. If Pv is honest but Pj is corrupted, S
receives the batch of shares and the tag from Pj . S then checks whether the tag matches the one S recorded
when simulating FTag and broadcast accept or reject faithfully. If Pj is honest but Pv is corrupted, S uses
the authentication keys (µv→j , ν) stored when simulating FTag to compute the tag of the shares Pj hold.
Then S sends the batch of shares and the tag to Pv. The rest of steps are followed honestly.

45

Simulating Corrupted-Dealer. In the case that Pi ∈ Corr, S has learned all shares of honest parties
distributed by Pi. S faithfully follows the first step to locate a batch of sharings such that at least one of
them is inconsistent. Step 2 can be simulated in the same way as Step 3 in Active-Dealer. The rest of
steps are followed honestly.

This finishes the description of S.

6.5 Proof of the Security

In this part, we prove Theorem 1. Formally,

Theorem 1. Let F be a finite field of size |F| ≥ n+ 1 and Circuit be an arithmetic circuit over F. Protocol
Main evaluates Circuit with unconditional security against a fully malicious adversary which corrupts at
most t < n/2 parties.

Proof. We show that, the view of the adversary A when interacting with the simulator S we constructed in
Section 6.4 has the same distribution as that in the real world with all but a negligible probability. Consider
the following hybrids.

Hybrid0: Execution in the real world.
Hybrid1: In this hybrid, S honestly follows FTag and records the tags sent to corrupted parties. Then

Analyze-Sharing is simulated by S. The two hybrids differ only in the case during the process of Analyze-
Sharing when a corrupted party provides incorrect shares with a valid authentication tag to an honest party.
In this case, S would reject this verification while an honest party would accept it in the real world. How-
ever, since the authentication keys of honest parties are uniformly distributed, this happens with negligible
probability. Therefore, Hybrid0 is statistically close to Hybrid1.

Hybrid2: In this hybrid, FTag is simulated by S. The distribution is the same as Hybrid1.
Hybrid3: In this hybrid, Verify-Sharing is replaced by the simulation of S. Note that if the sharings are

inconsistent, with overwhelming probability, Verify-Sharing can detect it. The distribution is statistically
close to Hybrid2. (Although S perfectly simulates Verify-Sharing, if Verify-Sharing fails to detect
inconsistency sharings, other protocols will not be able to simulated by S. Therefore, we assume a failure
detection is a failure simulation, which happens with negligible probability.)

Hybrid4: In this hybrid, Output is replaced by the simulation of S. Note that, S can compute the
inputs of corrupted parties when executing Input. According to Lemma 8, the distribution is statistically
close to Hybrid3.

Hybrid5: In this hybrid, De-Linearization, Dimension-Reduction, Randomization and Check-
Single-Mult (which are invoked in Eval) are simulated by S. The distribution is statistically close to
Hybrid4. The negligible probability comes from the case when the challenge inner-product tuple (or multi-
plication tuple) is correct while one of the original multiplication tuples is incorrect.

Hybrid6: In this hybrid, Check-Refresh (which is invoked in Eval) is simulated by S. The distribution
is statistically close to Hybrid5. The negligible probability comes from the case when the challenge transcript
is correct while one of the original transcripts is incorrect.

Hybrid7: In this hybrid, Compute (which is invoked in Eval) is simulated by S. The distribution is
identical to Hybrid6.

Hybrid8: In this hybrid, Input is simulated by S. The distribution is the same as Hybrid7.
Hybrid9: In this hybrid, Rand and DoubleRand are simulated by S. The distribution is identical to

Hybrid8.
Note that Hybrid9 is the execution between S and A in the ideal world.
We conclude that the distribution of Hybrid9 is statistically close to Hybrid0.

References

ABF+17. Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof, Kazuma Ohara,
Adi Watzman, and Or Weinstein. Optimized honest-majority mpc for malicious adversariesbreaking

46

the 1 billion-gate per second barrier. In Security and Privacy (SP), 2017 IEEE Symposium on, pages
843–862. IEEE, 2017.

Bea89. Donald Beaver. Multiparty protocols tolerating half faulty processors. In Conference on the Theory and
Application of Cryptology, pages 560–572. Springer, 1989.

BOGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proceedings of the twentieth annual ACM symposium on The-
ory of computing, pages 1–10. ACM, 1988.

BSFO12. Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure multiparty com-
putation with a dishonest minority. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, pages 663–680, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

BTH06. Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party computation with dispute control.
In Theory of Cryptography Conference, pages 305–328. Springer, 2006.

BTH08. Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure mpc with linear communication complex-
ity. In Ran Canetti, editor, Theory of Cryptography, pages 213–230, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

CCD88. David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure protocols. In
Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 11–19. ACM, 1988.

CDD+99. Ronald Cramer, Ivan Damg̊ard, Stefan Dziembowski, Martin Hirt, and Tal Rabin. Efficient multiparty
computations secure against an adaptive adversary. In Jacques Stern, editor, Advances in Cryptology —
EUROCRYPT ’99, pages 311–326, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

CDVdG87. David Chaum, Ivan B Damg̊ard, and Jeroen Van de Graaf. Multiparty computations ensuring privacy
of each partys input and correctness of the result. In Conference on the Theory and Application of
Cryptographic Techniques, pages 87–119. Springer, 1987.

CGH+18. Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and Ariel Nof.
Fast large-scale honest-majority mpc for malicious adversaries. In Annual International Cryptology Con-
ference, pages 34–64. Springer, 2018.

DIK10. Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation and the com-
putational overhead of cryptography. In Annual international conference on the theory and applications
of cryptographic techniques, pages 445–465. Springer, 2010.

DN07. Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computation.
In Annual International Cryptology Conference, pages 572–590. Springer, 2007.

FLNW17. Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure three-party com-
putation for malicious adversaries and an honest majority. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 225–255. Springer, 2017.

GIP+14. Daniel Genkin, Yuval Ishai, Manoj M. Prabhakaran, Amit Sahai, and Eran Tromer. Circuits resilient to
additive attacks with applications to secure computation. In Proceedings of the Forty-sixth Annual ACM
Symposium on Theory of Computing, STOC ’14, pages 495–504, New York, NY, USA, 2014. ACM.

GLS19. Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional mpc with guaranteed
output delivery. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, pages 85–114, Cham, 2019. Springer International Publishing.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In Proceedings of the
nineteenth annual ACM symposium on Theory of computing, pages 218–229. ACM, 1987.

GS20. Vipul Goyal and Yifan Song. Malicious security comes free in honest-majority mpc. Cryptology ePrint
Archive, Report 2020/134, 2020. https://eprint.iacr.org/2020/134.

HM01. Martin Hirt and Ueli Maurer. Robustness for free in unconditional multi-party computation. In Annual
International Cryptology Conference, pages 101–118. Springer, 2001.

HMP00. Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-party computation. In Interna-
tional Conference on the Theory and Application of Cryptology and Information Security, pages 143–161.
Springer, 2000.

IKP+16. Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching-Hua Yu. Secure protocol
transformations. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO
2016, pages 430–458, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

LN17. Yehuda Lindell and Ariel Nof. A framework for constructing fast mpc over arithmetic circuits with
malicious adversaries and an honest-majority. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 259–276. ACM, 2017.

LP12. Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
Journal of cryptology, 25(4):680–722, 2012.

47

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new ap-
proach to practical active-secure two-party computation. In Advances in Cryptology–CRYPTO 2012,
pages 681–700. Springer, 2012.

NV18. Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-majority mpc
by batchwise multiplication verification. In Bart Preneel and Frederik Vercauteren, editors, Applied
Cryptography and Network Security, pages 321–339, Cham, 2018. Springer International Publishing.

RBO89. Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority.
In Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 73–85. ACM,
1989.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.
Yao82. Andrew C Yao. Protocols for secure computations. In Foundations of Computer Science, 1982. SFCS’08.

23rd Annual Symposium on, pages 160–164. IEEE, 1982.

48

	Guaranteed Output Delivery Comes Free in Honest Majority MPC

