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Abstract. In this work, we present:

– the first adaptively secure ABE for DFA from the k-Lin assumption in prime-order bilinear groups; this resolves

one of open problems posed by Waters [CRYPTO’12];

– the first ABE for NFA from the k-Lin assumption, provided the number of accepting paths is smaller than the

order of the underlying group; the scheme achieves selective security;

– the first compact adaptively secure ABE (supporting unbounded multi-use of attributes) for branching pro-

grams from the k-Lin assumption, which generalizes and simplifies the recent result of Kowalczyk and Wee for

boolean formula (NC1) [EUROCRYPT’19].

Our adaptively secure ABE for DFA relies on a new combinatorial mechanism avoiding the exponential security loss

in the number of states when naively combining two recent techniques from CRYPTO’19 and EUROCRYPT’19. This

requires us to design a selectively secure ABE for NFA; we give a construction which is sufficient for our purpose and

of independent interest. Our ABE for branching programs leverages insights from our ABE for DFA.
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1 Introduction

Attribute-based encryption (ABE) [19,12] is an advanced form of public-key encryption that supports fine-grained

access control for encrypted data. Here, ciphertexts are associated with an attribute x and keys with a policy Γ; de-

cryption is possible only when Γ(x) = 1. One important class of policies we would like to support are those specified

using deterministic finite automata (DFA). Such policies capture many real-world applications involving simple com-

putation on data of unbounded size such as network logging application, tax returns and virus scanners.

Since the seminal work of Waters [21] introducing ABE for DFA and providing the first instantiation from pairings,

substantial progress has been made in the design and analysis of ABE schemes for DFA [4,5,1,11,2,3], proving various

trade-offs between security assumptions and security guarantees. However, two central problems posed by Waters [21]

remain open. The first question pertains to security and assumptions:

Q1: Can we build an ABE for DFA with adaptive security from static assumptions in bilinear groups,

notably the k-Lin assumption in prime-order bilinear groups?
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From both a practical and theoretical stand-point, we would like to base cryptography on weaker and better under-

stood assumptions, as is the case with the k-Lin assumption, while also capturing more realistic adversarial models,

as is the case with adaptive security. Prior ABE schemes for DFA achieve either adaptive security from less desirable

q-type assumptions [21,4,5,1], where the complexity of the assumption grows with the length of the string x, or very

recently, selective security from the k-Lin assumption [2,11]. Indeed, this open problem was reiterated again in the

latter work [11], emphasizing a security loss that is polynomial (and not exponential) in the size of the DFA.

The next question pertains to expressiveness:

Q2: Can we build an ABE for nondeterministic finite automata (NFA) with a polynomial dependency

on the NFA size?

The efficiency requirement rules out the naive approach of converting a NFA to a DFA, which incurs an exponential

blow-up in size. Here, we do not know any construction even if we only require selective security under q-type as-

sumptions. Partial progress was made very recently by Agrawal et al. [3] in the more limited secret-key setting, where

encryption requires access to the master secret key. Throughout the rest of this work, we refer only to the standard

public-key setting for ABE, and where the adversary can make an a-priori unbounded number of secret key queries.

1.1 Our Results

In this work, we address the afore-mentioned open problems:

– We present an adaptively secure ABE for DFA from the k-Lin assumption in prime-order bilinear groups, which

affirmatively answers the first open problem. Our scheme achieves ciphertext and key sizes with linear complexity,

as well as security loss that is polynomial in the size of the DFA and the number of key queries. Concretely, over

the binary alphabet and under the SXDH (=1-Lin) assumption, our ABE for DFA achieves ciphertext and key sizes

2–3 times that of Waters’ scheme (cf. Fig 4), while simultaneously improving on both the assumptions and security

guarantees.

– We present a selectively secure ABE for NFA also from the k-Lin assumption, provided the number of accepting

paths is smaller than p, where p is the order of the underlying group. We also present a simpler ABE for NFA with

the same restriction from the same q-type assumption used in Waters’ ABE for DFA. Both ABE schemes for NFA

achieve ciphertext and key sizes with linear complexity.

– Finally, we present the first compact adaptively secure ABE for branching programs from the k-Lin assumption,

which generalizes and simplifies the recent result of Kowalczyk and Wee [15] for boolean formula (NC1). Here,

“compact” is also referred to as “unbounded multi-use of attributes” in [5]; each attribute/input bit can appear

in the formula/program an unbounded number of times. Our construction leverages insights from our ABE for

DFA, and works directly with any layered branching program and avoids both the pre-processing step in the latter

work for transforming boolean formulas into balanced binary trees of logarithmic depth, as well as the delicate

recursive pebbling strategy for binary trees.

We summarize the state of the art of ABE for DFA, NFA and branching programs in Fig 1, 2, 3, respectively.

In the rest of this section, we focus on our three ABE schemes that rely on the k-Lin assumption, all of which follow

the high-level proof strategy in [11,15]. We design a series of hybrids that traces through the computation, and the

analysis carefully combines (i) a “nested, two-slot” dual system argument [20,16,17,18,13,8], (ii) a new combinatorial

mechanism for propagating entropy along the NFA computation path, and (iii) the piecewise guessing framework

[14,15] for achieving adaptive security. We proceed to outline and motivate several of our key ideas. From now on, we

use GWW to refer to the ABE for DFA by Gong et al. [11].

Adaptively secure ABE for DFA. Informally, the piecewise guessing framework [14,15] for ABE adaptive security says

that if we have a selectively secure ABE scheme where proving indistinguishability of every pair of adjacent hybrids
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requires only knowing logL bits of information about the challenge attribute x, then the same scheme is adaptively

secure with a security loss of L. Moreover, when combined with the dual system argument, it suffices to consider

selective security when the adversary only gets a single key corresponding to a single DFA.

In the GWW security proof, proving indistinguishability of adjacent hybrids requires knowing the subset of DFA

states that are reachable from the accept states by “back-tracking” the computation. This corresponds to logL =Q —

we need Q bits to specify an arbitrary subset of [Q]— and a security loss of 2Q . Our key insight for achieving adaptive

security is that via a suitable transformation to the DFA, we can ensure that the subset of reachable states per input

are always singleton sets, which correponds to logL = logQ and a security loss of Q. The transformation is very simple:

run the DFA “in reverse”! That is, start from the accept states, read the input bits in reverse order and the transitions

also in reverse, and accept if we reach the start state. It is easy to see that this actually corresponds to an NFA compu-

tation, which means that we still need to design a selectively secure ABE for NFA. Also, back-tracking along this NFA

corresponds to normal computation in the original DFA, and therefore always reaches singleton sets of states during

any intermediate computation.

ABE for NFA. Next, we sketch our ABE for NFA, which uses an asymmetric bilinear group (G1,G2,GT ,e) of prime order

p where e : G1 ×G2 → GT . As in Waters’ ABE for DFA [21], an encryption of x = (x1, . . . , x`) ∈ {0,1}` contains random

scalars s0, . . . , s`←Zp in the exponent in G1. In the secret key, we pick a random scalar du ←Zp for each state u ∈ [Q].

We can now describe the invariant used during decryption with g1, g2 being respective generators of G1,G2:

– In Waters’ ABE for DFA, if the computation reaches a state ui ∈ [Q] upon reading x1, . . . , xi , decryption computes

e(g1, g2)si dui . In particular, the scheme allows the decryptor to compute the ratios

e(g1, g2)s j dv−s j−1du , ∀ j ∈ [`],u ∈ [Q], v = δ(u, x j ) ∈ [Q] (1)

where δ : [Q]× {0,1} → [Q] is the DFA transition function.

– The natural way to extend (1) to account for non-deterministic transitions in an NFA is to allow the decryptor to

compute

e(g1, g2)s j dv−s j−1du , ∀ j ∈ [`],u ∈ [Q], v ∈ δ(u, x j ) ⊆ [Q] (2)

where δ : [Q]× {0,1} → 2[Q] is the NFA transition function. As noted by Waters [21], such an ABE scheme for NFA is

broken via a so-called “back-tracking attack”, which we describe in Appendix A.

– In our ABE for NFA, we allow the decryptor to compute

e(g1, g2)
s j (

∑
v∈δ(u,x j ) dv )−s j−1du , ∀ j ∈ [`],u ∈ [Q] (3)

A crucial distinction between (3) and (2) is that the decryptor can only compute one quantity for each j ,u in the

former (as is the case also in (1)), and up to Q quantities in the latter. The ability to compute multiple quantities

in (2) is exactly what enables the back-tracking attack.

We clarify that our ABE for NFA imposes an extra restriction on the NFA, namely that the total number of accepting

paths3 be non-zero mod p for accepting inputs; we use NFA⊕p to denote such NFAs. In particular, this is satisfied

by standard NFA where the total number of accepting paths is less than p for all inputs. This is in general a non-

trivial restriction since the number of accepting paths for an arbitrary NFA can be as large as Q`. Fortunately, for NFAs

obtained by running a DFA “in reverse”, the number of accepting paths is always either 0 or 1.

Indeed, the above idea, along with a suitable modification of Waters’ proof strategy, already yields our selectively

secure ABE for NFA⊕p under q-type assumptions in asymmetric bilinear groups of prime order p. We defer the details

to Appendix B.

3 An accepting path on input x ∈ {0,1}` is described by a sequence of states u0, . . . ,u` ∈ [Q] where u0 is the start state, u` is an

accept state and u j ∈ δ(u j−1, x j ) for all j ∈ [`].
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reference assumption security |sk| |ct|
[21] q-type selective O(Q) O(`)

[5,4,1] q-type + k-Lin adaptive X O(Q) O(`)

[11] k-Lin X selective O(Q) O(`)

[3] k-Lin X selective∗ O(Q2) O(`3)

§ 5 (§ F) k-Lin X adaptive X O(Q) O(`)

Fig. 1. Summary of ABE schemes for DFA. In the table, Q is the number of states in the DFA associated with sk and ` is the length of

x associated with ct, and where |Σ| =O(1).

reference |sk| |ct| type of NFA public key? assumption

[2] poly(Q) poly(`) standard X LWE X

§ B O(Q) O(`) NFA⊕p X q-type

§ 4 O(Q) O(`) NFA⊕p X k-LinX

Fig. 2. Summary of ABE schemes for NFA. In the table, Q is the number of states

in the NFA associated with sk and ` is the length of x associated with ct.

reference assumption compact?

[7] k-Lin X

[5] q-type + k-Lin X

k-Lin X

§ 6 k-Lin X X

Fig. 3. Summary of adaptively secure ABE

schemes for branching programs (BP). Here

“compact” is also referred to “unbounded

multi-use” in [5].

– To obtain a selectively secure scheme based on k-Lin, we apply the same modifications as in GWW [11]. For the

proof of security, entropy propagation is defined via back-tracking the NFA computation, in a way analogous to

that for back-tracking the DFA computation.

– To obtain an adaptively secure scheme based on k-Lin, we adapt the selectively secure scheme to the piecewise

guessing framework [15]. One naive approach is to introduce a new semi-functional space. In contrast, we intro-

duce one extra components into master public key, secret key and ciphertext, respectively. With the extra compo-

nents, we can avoid adding a new semi-functional subspace, by reusing an existing subspace as shown in previous

unbounded ABE in [8]. Under k-Lin assumption, our technique roughly saves k ·` elements in the ciphertext and

k · (2|Σ|+2)Q elements in the secret key over the general apporach. This way, we obtain ciphertext and key sizes

that are almost the same as those in the GWW selectively secure scheme.

ABE for branching programs. We build our compact adaptively secure ABE for branching program (BP) in two steps

analogous to our adaptively secure ABE for DFA. In particular, we first show how to transform branching programs to

a subclass of nondeterministic branching programs (NBP) and construct adaptively secure ABE for such class of NBP.

Note that the latter is sufficient to capture a special BP with permutation transition function (without transforming BP

to NBP) and readily simplify the result of Kowalczyk and Wee [15] for boolean formula (NC1).

1.2 Technical Overview

We start by recalling the standard definitions of DFA and NFA using vector-matrix notation: that is, we describe the

start and accept states using the character vectors, and specify the transition function via a transition matrix. The use

of vector-matrix notation enables a more compact description of our ABE schemes, and also clarifies the connection

to branching programs.

NFA, DFA, NFA⊕p . An NFA Γ is specified using (Q,Σ, {Mσ}σ∈Σ,u, f ) where Σ is the alphabet and

Q ∈N; Mσ ∈ {0,1}Q×Q ,∀σ ∈Σ; u, f ∈ {0,1}1×Q .
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reference |ct| |sk| assumption security

[21] (2`+3)|G1| (3|Σ|Q +4)|G2| q-type selective

[5] ((2k +2)`+6k +6)|G1| ((3k +3)|Σ|Q +5k +5)|G2| q-type + k-Lin adaptive X

(3`+12)|G1| (6|Σ|Q +10)|G2| q-type + SXDH adaptive X

[11] ((3k +1)`+4k +1)|G1| ((4k +2)|Σ|Q + (3k +1)Q +2k +1)|G2| k-Lin X selective

(4`+5)|G1| (6|Σ|Q +4Q +3)|G2| SXDHX selective

§ 5 (§ F) ((3k +1)`+6k +2)|G1| ((4k +2)|Σ|Q + (5k +2)Q +2k +1)|G2| k-Lin X adaptive X

(4`+8)|G1| (6|Σ|Q +7Q +3)|G2| SXDH X adaptive X

Fig. 4. Concrete parameter sizes of pairing-based ABE schemes for DFA. Note that [21,11] are selectively secure whereas our scheme

is adaptively secure; [3] is omitted from the table since the ciphertext and key sizes are asymptotically larger, see Fig 1. In the table,

Q is the number of states in the DFA, Σ indicates the alphabet, ` is the length of input x. All the schemes work over bilinear groups

(G1,G2,GT ,e) of prime order p where e : G1 ×G2 →GT . We note that all the schemes shown in the table have mpk of O(|Σ|) group

elements. In the |ct|-column, we omit one GT element. In the assumption column, SXDH means 1-Lin.

The NFA Γ accepts an input x = (x1, . . . , x`) ∈Σ`, denoted by Γ(x) = 1, if

fMx` · · ·Mx2 Mx1 u> > 0 (4)

and rejects the input otherwise, denoted by Γ(x) = 0. We will also refer to the quantity fMx` · · ·Mx2 Mx1 u> as the number

of accepting paths for x. The above relation (4) is equivalent to

uM>
x1

M>
x2
· · ·M>

x` f> > 0

The unusual choice of notation is to simplify the description of our ABE scheme. Let EQ be the collection of Q elemen-

tary row vectors of dimension Q.

– A DFA Γ is a special case of NFA where u ∈EQ and each column in every matrix Mσ is an elementary column vector

(i.e., contains exactly one 1).

– An NFA⊕p , parameterized by a prime p, is the same as an NFA except we change the accept criterion in (4) to:

fMx` · · ·Mx2 Mx1 u> 6= 0 mod p

Note that this coincides with the standard NFA definition whenever the total number of accepting paths for all

inputs is less than p.

Throughout the rest of this work, when we refer to NFA, we mean NFA⊕p unless stated otherwise.

ABE for NFA⊕p . Following our overview in Section 1.1, an encryption of x = (x1, . . . , x`) ∈ Σ` contains random scalars

s0, . . . , s` in the exponent, where the plaintext is masked by e(g1, g2)s`α. To generate a secret key for an NFA⊕p Γ, we

first pick d = (d1, . . . ,dQ ) ←Z
Q
p as before. We allow the decryptor to compute the following quantities in the exponent

over GT :

(i) s`(αf−d) (5)

(ii) s j dMx j − s j−1d, ∀ j ∈ [`] (corresponds to (3))

(iii) s0du>

If we write u>
j ,x = Mx j · · ·Mx1 u> for all j ∈ [`] and u0,x = u, then we have

s`α · fu>
`,x =

(i)︷ ︸︸ ︷
s`(αf−d) ·u>

`,x +
( ∑̀

j=1
(

(ii)︷ ︸︸ ︷
s j dMx j − s j−1d) ·u>

j−1,x

)
+

(iii)︷ ︸︸ ︷
s0du>

0,x
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This means that whenever fu>
`,x 6= 0 mod p, as is the case whenΓ(x) = 1, the decryptor will be able to recover e(g1, g2)s`α.

Indeed, it is straight-forward to verify that the following ABE scheme satisfies the above requirements, where

[·]1, [·]2, [·]T denote component-wise exponentiations in respective groups G1,G2,GT [10].

msk = (
wstart, wend, z, {wσ}σ∈Σ, α

)
(6)

mpk = (
[wstart]1, [wend]1, [z]1,

{
[wσ]1

}
σ∈Σ, [α]T

)
ctx =


[s0]1, [s0wstart]1{

[s j ]1, [s j−1z + s j wx j ]1
}

j∈[`]

[s`]1, [s`wend]1, [s`α]T ·m



skΓ =


[du>+wstartru>]2, [ru>]2{

[−d+ zr]2, [dMσ+wσr]2, [r]2
}
σ∈Σ

[αf−d+wendr]2, [r]2

 , d,r ←Z
1×Q
p

In Appendix B, we prove that this scheme is selectively secure under `-EBDHE assumption; this is the assumption

underlying Waters’ selectively secure ABE for DFA [21].

Selective security from k-Lin. Following the GWW proof strategy which in turn builds on the dual system argument,

we design a series of games G0, . . . ,G` such that in Gi , the quantities si and d have some extra entropy in the so-called

semi-functional space (which requires first modifying the above scheme). The entropy in d is propagated from G0 to

G1, then G2, and finally to G` via a combination of a computational and combinatorial arguments. In G`, we will have

sufficient entropy to statistically mask α in the secret key, which allows us to argue that e(g1, g2)s`α statistically masks

the plaintext. In this overview, we focus on the novel component, namely the combinatorial argument which exploits

specific properties of our scheme for NFA⊕p ; the computational steps are completely analogous to those in GWW.

In more detail, we want to replace d with d+d′
i in Gi , where d′

i ∈Z
Q
p corresponds to the extra entropy we introduce

into the secret keys in the semi-functional space. Note that d′
i will depend on both the challenge attribute x∗ as well as

the underlying NFA⊕p . We have the following constraints on d′
i ’s, arising from the fact that an adversarial distinguisher

for G0, . . . ,G` can always compute what a decryptor can compute in (5):

– to mask α in G`, we set d′
`
=∆f where ∆←Zp , so that

αf− (d+d′
`) = (α−∆)f−d

perfectly hides α;

– (ii) implies that
Gi−1︷ ︸︸ ︷

si dMx∗
i
− si−1(d+d′

i−1) ≈s

Gi︷ ︸︸ ︷
si (d+d′

i )Mx∗
i
− si−1d

=⇒ −si−1d′
i−1 ≈s si d′

i Mx∗
i

to prevent a distinguishing attack4 between Gi−1 and Gi by computing si dMx∗
i
− si−1d in both games;

– (iii) implies that s0(d+d′
0)u> = s0du>, and therefore, d′

0u> = 0 mod p. This is to prevent a distinguishing attack5

between the real keys and those in G0.

In particular, we can satisfy the first two constraints by setting6

d′
i =∆ · fMx∗

`
· · ·Mx∗

i+1
∀i ∈ [0,`]

4 Looking ahead to the proof of security in Section 4, this “simplified” attack corresponds roughly to using cti−1,i
x∗ to distinguish

ski−1,i
Γ

and ski
Γ

; this comes up in the proof of G2.i .2 ≈c G2.i .3 in Lemma 17.
5 In Section 4, this roughly corresponds to distinguish skΓ and sk0

Γ
with ct0

x∗ ; this comes up in the proof ofG1 ≈c G2.1.0 in Lemma 6.
6 We adopt the standard convention that the product of an empty sequence of matrices is the identity matrix. This means d′

`
=∆·f.
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where ≈s holds over ∆←Zp , as long as s0, . . . , s` 6= 0. Whenever Γ(x∗) = 0, we have

fMx∗
`
· · ·Mx∗

1
u> = 0 mod p

and therefore the third constraint is also satisfied.

Two clarifying remarks. First, the quantity

fMx∗
`
· · ·Mx∗

i+1

used in defining d′
i has a natural combinatorial interpretation: its u’th coordinate corresponds to the number of paths

from the accept states to u, while back-tracking along x∗
`

, . . . , x∗
i+1. In the specific case of a DFA, this value is 1 if u is

reachable from an accept state, and 0 otherwise. It is then easy to see that our proof strategy generalizes that of GWW

for DFA: the latter adds ∆ to du in Gi whenever u is reachable from accept state while back-tracking along the last

`− i bits of the challenge attribute (cf. [11, Sec. 3.2]). Second, the “naive” (and insecure) ABE for NFA that captures

non-deterministic transitions as in (2) introduces more equations in (ii) in (5); this in turn yields more –and ultimately

unsatisfiable– constraints on the d′
i ’s.

Finally, we remark that our ABE for NFA⊕p (and ABE for DFA from GWW as well) can be proved in the semi-adaptive

model [9], which is weaker than adaptive security but stronger than both selective and selective* model used in [3].

Adaptive security for restricted NFA⊕p and DFA. Fix a set F⊆ZQ . We say that an NFA or an NFA⊕p is F-restricted if

∀` ∈N, x ∈Σ`, i ∈ [0,`] : fMx` · · ·Mxi+1 ∈F

Note that fMx∗
`
· · ·Mx∗

i+1
corresponding to the challenge attribute x∗ is exactly what is used to define d′

i in the previous

paragraph. Moreover, following GWW, knowing this quantity is sufficient to prove indistinguishability of Gi−1 and Gi .

This means that to prove selective security for F-restricted NFAs, it suffices to know log |F| bits about the challenge

attribute, and via the piecewise guessing framework, this yields adaptive security with a security loss of |F|. Unfortu-

nately, |F| is in general exponentially large for general NFAs and DFAs. In particular, DFAs are {0,1}Q -restricted, and

naively applying this argument would yield adaptively secure DFAs with a 2Q security loss.

Instead, we show how to transform DFAs into EQ -restricted NFA⊕p , where EQ ⊂ {0,1}Q is the collection of Q el-

ementary row vectors of dimension Q; this yields adaptively secure ABE for DFAs with a security loss of |EQ | = Q.

Concretely, our adaptively secure ABE for DFA uses an adaptively secure ABE for EQ -restricted NFA⊕p , and proceeds

– to encrypt x = (x1, . . . , x`), use the ABE for NFA to encrypt x> = (x`, . . . , x1);7

– to generate a secret key for a DFAΓ= (Q,Σ, {Mσ},u, f), use the ABE for NFA to generate a key forΓ> = (Q,Σ, {M>
σ}, f,u).

Note that we reversed x during encryption, and transposed Mσ, and switched u, f during key generation. Correctness

essentially follows from the equality

Γ(x)︷ ︸︸ ︷
fMx` · · ·Mx1 u> = (fMx` · · ·Mx1 u>)> =

Γ>(x>)︷ ︸︸ ︷
uM>

x1
· · ·M>

x` f> .

Furthermore Γ> = (Q,Σ, {M>
σ}, f,u) is indeed a EQ -restricted NFA⊕p . This follows from the fact that for any DFA Γ:

∀` ∈N, x ∈Σ`, i ∈ [0,`] : (Mxi · · ·Mx1 u>)> ∈EQ

which is implied by the property of DFA: u ∈ EQ and each column in every matrix Mσ contains exactly one 1. We give

an example of reversing DFA in Appendix C.

7 We acknowledge that writing x> constitutes an abuse of notation, but nonetheless convenient in analogy with M>
σ.
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policy security decryption proof

direction information direction information

GWW [11] DFA selective forward reachability backward reachability

§ 5 DFA adaptive backward reachability forward reachability

Naive,§ A NFA broken forward reachability - -

§ 4 NFA selective forward # paths backward # paths

Fig. 5. Summary of tracing executions underlying GWW, our adaptively secure ABE for DFA, our selectively secure ABE for NFA⊕p

and naive extension of Waters’ ABE for DFA.

1.3 Discussion

Tracing executions. Recall that a DFA is specified using a transition function δ : [Q]×Σ→ [Q]. A forward computation

upon readingσ goes from a state u to v = δ(u,σ), whereas back-tracking upon readingσ goes from v to u if v = δ(u,σ).

– GWW selective ABE for DFA: Decryption follows normal “forward” computation keeping track of whether a state is

reachable from the start state, whereas the security proof introduces entropy based on whether a state is reachable

from the accept states via “back-tracking”.

– Our adaptive ABE for DFA and branching programs: Decryption uses back-tracking and keeps track of whether a

state is reachable from the accept states, whereas the security proof introduces entropy based on whether a state

is reachable from the start state via forward computation. To achieve polynomial security loss, we crucially rely on

the fact that when reading i input bits, exactly one state is reachable from the start state via forward computation.

– Naive and insecure ABE for NFA⊕p : Decryption follows normal forward computation keeping track of whether a

state is reachable from the start state.

– Our selective ABE for NFA⊕p : Decryption follows normal forward computation keeping track of the number of

paths from the start state, whereas the security proof introduces entropy scaled by the number of paths that are

reachable from the accept states via back-tracking.

We summarize the discussion in Fig 5.

ABE for DFA vs branching programs. Our work clarifies that the same obstacle (having to guess a large subset of

states that are reached upon back-tracking) arose in constructing adaptive ABE for DFA and compact adaptive ABE

for branching programs from k-Lin, and presents a new technique that solves both problems simultaneously in the

setting of KP-ABE. Furthermore, our results and techniques can carry over to the CP-ABE settings using more-or-

less standard (but admittedly non-black-box) arguments, following e.g. [4, Sec.8] and [6, Sec.4]. See Appendix I and

Appendix J for adaptively secure CP-ABE for DFA and branching programs, respectively.

Interestingly, the very recent work of Agarwal et al. [3,2] shows a related connection: namely that compact and

unbounded adaptive KP and CP-ABE for branching programs8 –for which they do not provide any instantiations–

yields compact adaptive KP-ABE (as well as CP-ABE) for DFA. In particular, just getting to KP-ABE for DFA already

requires both KP and CP-ABE for branching programs and also incurs a larger polynomial blow-up in the parameters

compared to our constructions; furthermore, simply getting to compact, unbounded, adaptive KP-ABE for branching

programs would also require most of the technical machinery used in this work, notably the “nested, two-slot” dual

system argument and the piecewise guessing framework. Nonetheless, there is significant conceptual appeal to having

a generic and modular transformation that also yields both KP-ABE and CP-ABE schemes. That said, at the core of

our constructions and analysis is a very simple combinatorial object sketched in Section 1.2. We leave the question

of properly formalizing this object and building a generic compiler to full-fledged KP-ABE and CP-ABE schemes to

further work; in particular, such a compiler should (i) match or improve upon the concrete efficiency of our schemes,

8 The statement in [3] refers to monotone span programs, which is a more powerful object, but we believe that branching program

suffices.
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as with prior compilers such as [7,5], and (ii) properly decouple the combinatorial arguments that are specific to DFA,

NFA and branching programs from the computational arguments that are oblivious to the underlying computational

model.

Organization. The next section gives some background knowledge. Section 3 shows the transformation from DFA

to E-restricted NFA⊕p . We show our selectively secure ABE for NFA⊕p in Section 4 and upgrade to adaptive security

for EQ -restricted NFA⊕p in Section 5. The latter implies our adaptively secure ABE for DFA with concrete description

appeared in Appendix F. Our basic selectively secure ABE for NFA⊕p from q-type assumption can be found in Ap-

pendix B. Finally, in Section 6, we show how to get our compact adaptively secure ABE for branching programs. The

concrete scheme can be found in Appendix H.

2 Preliminaries

Notation. We denote by s ← S the fact that s is picked uniformly at random from a finite set S; by U (S), we indicate

uniform distribution over finite set S. We use ≈s to denote two distributions being statistically indistinguishable, and

≈c to denote two distributions being computationally indistinguishable. We use 〈A,G〉 = 1 to denote that an adversary

A wins in an interactive game G. We use lower case boldface to denote row vectors and upper case boldcase to denote

matrices. We use ei to denote the i ’th elementary (row) vector (with 1 at the i ’th position and 0 elsewhere) and let EQ

denote the set of all elementary vectors of dimension Q. For matrix A, we use span(A) to denote the row span of A and

use basis(A) to denote a basis of column span of A. Throughout the paper, we use prime number p to denote the order

of underlying groups.

2.1 Attribute-based encryption

Syntax. An attribute-based encryption (ABE) scheme for some class C consists of four algorithms:

Setup(1λ,C) → (mpk,msk). The setup algorithm gets as input the security parameter 1λ and class description C. It

outputs the master public key mpk and the master secret key msk. We assume mpk defines the message space M.

Enc(mpk, x,m) → ctx . The encryption algorithm gets as input mpk, an input x and a message m ∈ M. It outputs a

ciphertext ctx . Note that x is public given ctx .

KeyGen(mpk,msk,Γ) → skΓ. The key generation algorithm gets as input mpk, msk and Γ ∈ C. It outputs a secret key

skΓ. Note that Γ is public given skΓ.

Dec(mpk,skΓ,ctx ) → m. The decryption algorithm gets as input skΓ and ctx such that Γ(x) = 1 along with mpk. It

outputs a message m.

Correctness. For all input x and Γ with Γ(x) = 1 and all m ∈M, we require

Pr

Dec(mpk,skΓ,ctx ) = m :

(mpk,msk) ← Setup(1λ,C)

skΓ←KeyGen(mpk,msk,Γ)

ctx ←Enc(mpk, x,m)

= 1.

Security definition. For a stateful adversary A, we define the advantage function

AdvABE
A (λ) := Pr

β=β′ :

(mpk,msk) ← Setup(1λ,C)

(x∗,m0,m1) ←AKeyGen(mpk,msk,·)(mpk)

β← {0,1}; ctx∗ ←Enc(mpk, x∗,mβ)

β′ ←AKeyGen(mpk,msk,·)(ctx∗ )

− 1

2
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with the restriction that all queries Γ that A sent to KeyGen(mpk,msk, ·) satisfy Γ(x∗) = 0. An ABE scheme is adaptively

secure if for all PPT adversariesA, the advantageAdvABE
A (λ) is a negligible function inλ. The selective security is defined

analogously except that the adversary A selects x∗ before seeing mpk. A notion between selective and adaptive is so-

called semi-adaptive security [9] where the adversary A is allowed to select x∗ after seeing mpk but before making any

queries.

2.2 Prime-order Groups

A generatorG takes as input a security parameter 1λ and outputs a descriptionG := (p,G1,G2,GT ,e), where p is a prime

of Θ(λ) bits, G1, G2 and GT are cyclic groups of order p, and e : G1 ×G2 →GT is a non-degenerate bilinear map. We re-

quire that the group operations in G1, G2, GT and the bilinear map e are computable in deterministic polynomial time

in λ. Let g1 ∈G1, g2 ∈G2 and gT = e(g1, g2) ∈GT be the respective generators. We employ the implicit representation of

group elements: for a matrix M over Zp , we define [M]1 := g M
1 , [M]2 := g M

2 , [M]T := g M
T , where exponentiation is carried

out component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T . We recall the matrix Diffie-Hellman (MDDH)

assumption on G1 [10]:

Assumption 1 (MDDHd
k,k ′ Assumption) Let k ′ > k ≥ 1 and d ≥ 1. We say that the MDDHd

k,k ′ assumption holds if for all

PPT adversaries A, the following advantage function is negligible in λ.

Adv
MDDHd

k,k ′

A
(λ) := ∣∣Pr[A(G, [M]1, [MS]1 ) = 1]−Pr[A(G, [M]1, [U]1 ) = 1]

∣∣
where G := (p,G1,G2,GT ,e) ←G(1λ), M ←Zk ′×k

p , S ←Zk×d
p and U ←Zk ′×d

p .

The MDDH assumption on G2 can be defined in an analogous way. Escala et al. [10] showed that

k-Lin ⇒ MDDH1
k,k+1 ⇒ MDDHd

k,k ′ ∀k ′ > k,d ≥ 1

with a tight security reduction. We will use Advk-LIN
A (λ) to denote the advantage function w.r.t. k-Lin assumption.

3 DFA, NFA, and their Relationships

Let p be a global parameter and EQ = {e1, . . . ,eQ } be the set of all elementary row vectors of dimension Q. This section

describes various notions of DFA and NFA and studies their relationships.

Finite Automata. We use Γ = (Q,Σ, {Mσ}σ∈Σ,u, f ) to describe deterministic finite automata (DFA for short), nonde-

terministic finite automata (NFA for short), p-bounded NFA (NFA<p for short) and mod-p NFA (NFA⊕p for short),

where Q ∈N is the number of states, vectors u, f ∈ {0,1}1×Q describe the start and accept states, a collection of matrices

Mσ ∈ {0,1}Q×Q describe the transition function. Let x = (x1, . . . , x`) denote an input, then,

– for DFA Γ, we have u ∈EQ , each column in every matrix Mσ is an elementary column vector (i.e., contains exactly

one 1) and Γ(x) = 1 ⇐⇒ fMx` · · ·Mx1 u> = 1;

– for NFA Γ, we have Γ(x) = 1 ⇐⇒ fMx` · · ·Mx1 u> > 0;

– for NFA<p Γ, we have fMx` · · ·Mx1 u> < p and Γ(x) = 1 ⇐⇒ fMx` · · ·Mx1 u> > 0;

– for NFA⊕p Γ, we have Γ(x) = 1 ⇐⇒ fMx` · · ·Mx1 u> 6= 0 mod p.

We immediately have: DFA ⊂ NFA<p⊂ NFA ∩ NFA⊕p .

EQ -restricted NFA⊕p . We introduce the notion ofEQ -restricted NFA⊕p which is an NFA⊕p Γ= (Q,Σ, {Mσ}σ∈Σ,u, f ) with

an additional property: for all ` ∈N and all x ∈Σ`, it holds that

fi ,x := fMx` · · ·Mxi+1 ∈EQ , ∀i ∈ [0,`]

Here Mx` · · ·Mxi+1 for i = ` refers to I of size Q ×Q.
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Transforming DFA to EQ -restricted NFA⊕p . In general, a DFA is not necessarily a EQ -restricted NFA⊕p . The next

lemma says that we can nonetheless transform any DFA into a EQ -restricted NFA⊕p :

Lemma 1 (DFA toEQ -restricted NFA⊕p ). For each DFAΓ= (Q,Σ, {Mσ}σ∈Σ,u, f ), we have NFA⊕p Γ> = (Q,Σ, {M>
σ}σ∈Σ, f,u)

such that

1. Γ> is EQ -restricted;

2. for all ` ∈N and x = (x1, . . . , x`) ∈Σ`, it holds that

Γ(x) = 1 ⇐⇒ Γ>(x>) = 1 where x> = (x`, . . . , x1) ∈Σ`. (7)

Proof. Recall that the definition of DFA implies two properties:

f ∈ {0,1}Q (8)

and (Mxi · · ·Mx1 u>)> ∈EQ , ∀i ∈ [0,`]. (9)

Property (9) comes from the facts that u ∈EQ and each column in every matrix Mσ is an elementary column vector.

We parse x> = (x>
1, . . . , x>

`
) and prove the two parts of the lemma as below.

1. Γ> is EQ -restricted since we have

uM>
x>
`

· · ·M>
x>i+1

= (Mx`−i · · ·Mx1 u>)> ∈EQ , ∀i ∈ [0,`]

where the equality is implied by the structure of Γ>, x> and we use property (9).

2. To prove (7), we rely on the fact

Γ(x) = 1 ⇐⇒ fMx` · · ·Mx1 u> = 1

⇐⇒ fMx` · · ·Mx1 u> 6= 0 mod p

⇐⇒ uM>
x>
`

· · ·M>
x>1

f> 6= 0 mod p

⇐⇒ Γ>(x>) = 1.

The second ⇐⇒ follows from the fact that fMx` · · ·Mx1 u> ∈ {0,1} which is implied by property (8) and (9) while the

third ⇐⇒ is implied by the structure of Γ>, x>. ut

4 Semi-adaptively Secure ABE for NFA⊕p

In this section, we present our ABE for NFA⊕p in prime-order groups. The scheme achieves semi-adaptive security

under the k-Lin assumption. Our construction is based on GWW ABE for DFA [11] along with an extension of the

key structure and decryption to NFA; the security proof follows that of GWW with our novel combinatorial arguments

regarding our NFA extension. (See Section 1.2 for an overview.) We remark that our scheme and proof work well for a

more general form of NFA⊕p where u, f,Mσ are over Zp instead of {0,1}.

4.1 Basis

We will use the same basis as GWW [11]:

A1 ←Zk×(2k+1)
p , a2 ←Z1×(2k+1)

p , A3 ←Zk×(2k+1)
p (10)

and use (A‖
1 | a‖

2 | A‖
3) to denote the dual basis so that Ai A‖

i = I (known as non-degeneracy) and Ai A‖
j = 0 if i 6= j (known

as orthogonality). For notational convenience, we always consider a‖
2 as a column vector. We review SDG1

A1 7→A1,A3
and

DDHG2
d ,Q assumption from [8] which are parameterized for basis (10) and tightly implied by k-Lin assumption. By

symmetry, we may permute the indices for A1,a2,A3.
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Lemma 2 (MDDHk,2k ⇒ SDG1
A1 7→A1,A3

[8]). Under the MDDHk,2k assumption in G1, there exists an efficient sampler out-

putting random ([A1]1, [a2]1, [A3]1) along with base basis(A‖
1), basis(a‖

2), basis(A‖
1,A‖

3) (of arbitrary choice) such that the

following advantage function is negligible in λ.

Adv
SDG1

A1 7→A1 ,A3

A
(λ) := ∣∣Pr[A(D, [t0]1) = 1]−Pr[A(D, [t1]1) = 1]

∣∣
where

D := ( [A1]1, [a2]1, [A3]1,basis(A‖
1),basis(a‖

2),basis(A‖
1,A‖

3) ),

t0 ← span(A1) , t1 ← span(A1,A3) .

More concretely, we have, for all A, there exists B with Time(B) ≈Time(A) such that Adv
SDG1

A1 7→A1 ,A3

A
(λ) ≤Adv

MDDHk,2k

A
(λ).

Lemma 3 (MDDHd
k,k+d ⇒DDHG2

d ,Q [8]). Let d ,Q ∈N. Under the MDDHd
k,k+d assumption in G2, the following advantage

function is negligible in λ.

Adv
DDHG2

d ,Q

A
(λ) := ∣∣Pr[A([WB]2, [B]2, [WR]2 , [R]2) = 1]−Pr[A([WB]2, [B]2, [WR+U]2 , [R]2) = 1]

∣∣
where W ←Zd×k

p , B ←Zk×k
p , R ←Z

k×Q
p and U ←Z

d×Q
p . More concretely, we have, for allA, there existsBwithTime(B) ≈

Time(A) such that Adv
DDHG2

d ,Q

A
(λ) ≤O(1) ·AdvMDDHd

k,k+d

A
(λ).

Lemma 4 (statistical lemma [8]). With probability 1−1/p over A1,a2,A3,A‖
1,a‖

2,A‖
3, the following two distributions are

statistically identical. {
A1W,A3W, a2W

}
and

{
A1W,A3W, w

}
where W ←Z

(2k+1)×k
p and w ←Z1×k

p .

4.2 Scheme

Our ABE for NFA⊕p in prime-order groups is described as follows:

– Setup(1λ,Σ) : Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A1 ←Zk×(2k+1)
p , k ←Z1×(2k+1)

p and Wstart, Z0, Z1, Wσ,0, Wσ,1, Wend ←Z(2k+1)×k
p , ∀σ ∈Σ.

Output

mpk= (
[A1, A1Wstart, A1Z0, A1Z1, {A1Wσ,0, A1Wσ,1 }σ∈Σ, A1Wend ]1, [A1k>]T

)
msk= (

k, Wstart, Z0, Z1, {Wσ,0, Wσ,1 }σ∈Σ, Wend
)
.

– Enc(mpk, x,m) : Let x = (x1, . . . , x`) ∈Σ` and m ∈GT . Pick s0,s1, . . . ,s`←Z1×k
p and output

ctx =


[s0A1]1, [s0A1Wstart]1{

[s j A1]1, [s j−1A1Z j mod 2 +s j A1Wx j , j mod 2]1
}

j∈[`]

[s`A1]1, [s`A1Wend]1, [s`A1k>]T ·m

 .

– KeyGen(mpk,msk,Γ) : Let Γ= (Q,Σ, {Mσ}σ∈Σ,u, f ). Pick D ←Z
(2k+1)×Q
p , R ←Z

k×Q
p and output

skΓ =


[Du>+WstartRu>]2, [Ru>]2{

[−D+Zb R]2, [DMσ+Wσ,b R]2, [R]2
}
σ∈Σ,b∈{0,1}

[k>f−D+WendR]2, [R]2

 .
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– Dec(mpk,skΓ,ctx ) : Parse ciphertext for x = (x1, . . . , x`) and key for Γ= (Q,Σ, {Mσ}σ∈Σ,u, f ) as:

ctx =


[c0,1]1, [c0,2]1{

[c j ,1]1, [c j ,2]1
}

j

[c`,1]1, [cend]1,C

 and skΓ =


[k>

0]2, [r>0]2{
[Kb]2, [Kσ,b]2, [R]2

}
σ,b

[Kend]2, [R]2


We define

u>
j ,x = Mx j · · ·Mx1 u> mod p, ∀ j ∈ [0,`] (11)

and proceed as follows:

1. Compute

B0 = e([c0,1]1, [k>
0]2) ·e([c0,2]1, [r>0]2)−1;

2. For all j ∈ [`], compute

[b j ]T = e([c j−1,1]1, [K j mod 2]2) ·e([c j ,1]1, [Kx j , j mod 2]2) ·e([−c j ,2]1, [R]2) and B j = [b j u>
j−1,x ]T ;

3. Compute

[bend]T = e([c`,1]1, [Kend]2) ·e([−cend]1, [R]2) and Bend = [bendu>
`,x ]T ;

4. Compute

Ball = B0 ·∏`
j=1 B j ·Bend and B = B

(fu>
`,x )−1

all

and output the message m′ ←C ·B−1.

Correctness. For x = (x1, . . . , x`) and Γ= (Q,Σ, {Mσ}σ∈Σ,u, f ) such that Γ(x) = 1, we have:

B0 = [s0A1Du>]T = [s0A1Du>
0,x ]T (12)

b j = s j A1DMx j −s j−1A1D (13)

B j = [s j A1Du>
j ,x −s j−1A1Du>

j−1,x ]T (14)

bend = s`A1k>f−s`A1D (15)

Bend = [s`A1k>fu>
`,x −s`A1Du>

`,x ]T (16)

Ball = [s`A1k>fu>
`,x ]T (17)

B = [s`A1k>]T (18)

Here (16) is trivial; (14) and (18) follow from

u>
j ,x = Mx j u>

j−1,x mod p, ∀ j ∈ [`] and Γ(x) = 1 ⇐⇒ fu>
`,x 6= 0 mod p (19)

by the definition in (11), the remaining equalities follow from:

(12) s0A1Du> = s0A1 · (Du>+WstartRu>)−s0A1Wstart ·Ru>

(13) s j A1DMx j −s j−1A1D = s j−1A1 · (−D+Z j mod 2R)+s j A1 · (DMx j +Wx j , j mod 2R)− (s j−1A1Z j mod 2 +s j A1Wx j , j mod 2) ·R

(15) s`A1k>f−s`A1D = s`A1 · (k>f−D+WendR)−s`A1Wend ·R

(17) s`A1k>fu>
`,x = s0A1Du>

0,x +
∑`

j=1(s j A1Du>
j ,x −s j−1A1Du>

j−1,x )+ (s`A1k>fu>
`,x −s`A1Du>

`,x ).

Security. We have the following theorem stating that our construction is selectively secure. We remark that our con-

struction achieves semi-adaptive security as is and the proof is almost the same.

Theorem 1 (Selectively secure ABE for NFA⊕p ). The ABE scheme for NFA⊕p in prime-order bilinear groups described

above is selectively secure (cf. Section 2.1) under the k-Lin assumption with security loss O(` · |Σ|). Here ` is the length of

the challenge input x∗.
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4.3 Game Sequence

The proof is analogous to GWW’s proof. We show the proof in the one-key setting where the adversary asks for at most

one secret key; this is sufficient to motivate the proof in the next section. As in [11], it is straightforward to handle

many keys, see Appendix D.2 for more details. Let x∗ ∈Σ` denote the selective challenge and let ¯̀= ` mod 2. Without

loss of generality, we assume `> 1. We begin with some auxiliary distributions.

Auxiliary distributions. We describe the auxiliary ciphertext and key distributions that we use in the proof. Through-

out, the distributions are the same as the original distributions except for the so-called a2-components which is de-

fined as below.

a2-components. For a ciphertext in the following form, capturing real and all auxiliary ciphertexts (defined below):

ctx =


[c0]1, [c0Wstart]1{

[c j A1]1, [c j−1Z j mod 2 +c j Wx j , j mod 2]1
}

j

[c`]1, [c`Wend]1, [c`k>]T ·m

 with c j = s j A1 + s j a2 + s̃ j A3,∀ j (20)

where s j , s̃ j ∈Zk
p and s j ∈Zp , we define its a2-components, denoted by ctx [2], as follows:

ctx [2] =


[s0]1, [s0a2Wstart]1{

[s j ]1, [s j−1a2Z j mod 2 + s j a2Wx j , j mod 2]1
}

j

[s`]1, [s`a2Wend]1, [s`a2k>]T ·m

 .

For a key in the following form, capturing real and all auxiliary keys (defined below):

skΓ =


[k>

0]2, [r>0]2{
[Kb]2, [Kσ,b]2, [R]2

}
σ,b

[Kend]2, [R]2

 (21)

where k0 ∈ Z1×(2k+1)
p , Kb ,Kσ,b ,Kend ∈ Z(2k+1)×Q

p and r0 ∈ Z1×k
p ,R ∈ Zk×Q

p , we define its a2-components, denoted by

skΓ[2], as follows:

skΓ[2] =


[a2k>

0]2, [r>0]2{
[a2Kb]2, [a2Kσ,b]2, [R]2

}
σ,b

[a2Kend]2, [R]2


For notation simplicity of ctx [2] and skΓ[2] with k,D,Wstart,Wend,Zb ,Wσ,b , we write

α= a2k>, d = a2D, wstart = a2Wstart, wend = a2Wend, zb = a2Zb , wσ,b = a2Wσ,b , ∀σ,b

and call them the a2-components of k>,D,Wstart,Wend,Zb ,Wσ,b , respectively. We also omit zeroes and adjust the order

of terms in ctx [2]. Furthermore, for all A1,a2,A3, mpk and various forms of ctx ,skΓ we will use in the proof, we have

ctx [2], skΓ[2], {Ai k>,Ai D,Ai Wstart,Ai Wend,Ai Zb ,Ai Wσ,b }i∈{1,3},σ∈Σ,b∈{0,1}

≈s ctx [2], skΓ[2], {Ai k̃>,Ai D̃,Ai W̃start,Ai W̃end,Ai Z̃b ,Ai W̃σ,b }i∈{1,3},σ∈Σ,b∈{0,1}

where k̃ ← Z
1×(2k+1)
p ,D̃ ← Z

(2k+1)×Q
p ,W̃start,W̃end, Z̃b ,W̃σ,b ← Z

(2k+1)×k
p are fresh. This follows from Lemma 4 and the

fact that all matrices W ∈Z(2k+1)×k ′
p with k ′ ∈N can be decomposed as

W = A‖
1 ·A1W+a‖

2 ·a2W+A‖
3 ·A3W.

The property allows us to simulate mpk,ctx ,skΓ from ctx [2],skΓ[2] and A1,a2,A3 so that we can focus on the crucial

argument over a2-components in the proofs, e.g., those in Section 4.4, 4.5, 4.7 and 4.8.
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Ciphertext distributions. We sample s0, s1, . . . , s`←Zp and define:

– for i ∈ [0,`]: cti
x∗ is the same as ctx∗ except we replace si A1 with si A1 + si a2;

– for i ∈ [`]: cti−1,i
x∗ is the same as ctx∗ except we replace si−1A1,si A1 with si−1A1 + si−1a2,si A1 + si a2.

That is, we have: writing τ= i mod 2,

cti
x∗ [2] =


[s0wstart]1, [s0]1, [s0z1]1 if i = 0

[si wx∗
i ,τ]1, [si ]1, [si z1−τ]1 if i ∈ [`−1]

[s`wx∗
`

, ¯̀]1, [s`]1, [s`wend]1, [s`α]T ·mβ if i = `

cti−1,i
x∗ [2] =


[s0wstart]1, [s0]1, [s0z1 + s1wx∗

1 ,1]1, [s1]1, [s1z0]1 if i = 1

[si−1wx∗
i−1,1−τ]1, [si−1]1, [si−1zτ+ si wx∗

i ,τ]1, [si ]1, [si z1−τ]1 if i ∈ [2,`−1]

[s`−1wx∗
`−1,1− ¯̀]1, [s`−1]1, [s`−1z ¯̀+ s`wx∗

`
, ¯̀]1, [s`]1, [s`wend]1, [s`α]T ·mβ if i = `

They are exactly the same as those used in GWW’s proof [11].

Secret key distributions. Given x∗ ∈Σ` and Γ= (Q,Σ, {Mσ}σ∈Σ,u, f ), we define

fi ,x∗ = fMx∗
`
· · ·Mx∗

i+1
mod p, ∀i ∈ [0,`]. (22)

For all i ∈ [`], we sample ∆←Zp and define:

– sk0
Γ is the same as skΓ except we replace D with D+a‖

2 · s−1
0 ∆ · f0,x∗ in the term [Du>+WstartRu>]2;

– ski
Γ is the same as skΓ except we replace D with D+a‖

2 · s−1
i ∆ · fi ,x∗ in the term [DMx∗

i
+Wx∗

i ,i mod 2R]2;

– ski−1,i
Γ

is the same as skΓ except we replace −D with −D+a‖
2 · s−1

i−1∆ · fi−1,x∗ in the term [−D+Zi mod 2R]2;
– sk`,∗

Γ
is the same as skΓ except we replace −D with −D+a‖

2 · s−1
`
∆ · f`,x∗ in the term [k>f−D+WendR]2.

That is, we have: writing τ= i mod 2,

sk0
Γ[2] =


[(d+ s−1

0 ∆ · f0,x∗ )u>+wstartRu>]2, [Ru>]2{
[−d+zb R]2, [dMσ+wσ,b R]2, [R]2

}
σ∈Σ,b∈{0,1}

[αf−d+wendR]2, [R]2



ski
Γ[2] =



[du>+wstartRu>]2, [Ru>]2{
[−d+zτR]2, [(d+ s−1

i ∆ · fi ,x∗ )Mx∗
i
+wx∗

i ,τR]2, [R]2
}{

[dMσ+wσ,τR]2
}
σ6=x∗

i{
[−d+z1−τR]2, [dMσ+wσ,1−τR]2, [R]2

}
σ∈Σ

[αf−d+wendR]2, [R]2



ski−1,i
Γ

[2] =


[du>+wstartRu>]2, [Ru>]2{

[−d+ s−1
i−1∆ · fi−1,x∗ +zτR]2, [dMσ+wσ,τR]2, [R]2

}
σ∈Σ{

[−d+z1−τR]2, [dMσ+wσ,1−τR]2, [R]2
}
σ∈Σ

[αf−d+wendR]2, [R]2



sk`,∗
Γ

[2] =


[du>+wstartRu>]2, [Ru>]2{

[−d+zb R]2, [dMσ+wσ,b R]2, [R]2
}
σ∈Σ,b∈{0,1}

[αf−d+ s−1
` ∆ · f`,x∗ +wendR]2, [R]2


They are analogous to those used in GWW’s proof [11] with a novel way to change a2-components9. Following the

notations in Section 1.2, we use d′
i = s−1

i ∆ · fi ,x∗ rather than d′
i =∆ · fi ,x∗ . We remark that they are essentially the same

but the former helps to simplify the exposition of the proof. Also, we note that si is independent of the challenge input

x∗ which will be crucial for the adaptive security in the next section.

9 We also change the definition of ski
Γ

, i ∈ [0,`], with the goal of improving the exposition.
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Game sequence. As in GWW’s proof, we prove Theorem 1 via a series of games summarized in Fig 6:

– G0: Identical to the real game.

– G1: Identical to G0 except that the challenge ciphertext is ct0
x∗ .

– G2.i .0, i ∈ [`]: In this game, the challenge ciphertext is cti−1
x∗ and the secret key is ski−1

Γ .

– G2.i .1, i ∈ [`]: Identical to G2.i .0 except that the secret key is ski−1,i
Γ

.

– G2.i .2, i ∈ [`]: Identical to G2.i .1 except that the challenge ciphertext is cti−1,i
x∗ .

– G2.i .3, i ∈ [`]: Identical to G2.i .2 except that the secret key is ski
Γ.

– G2.i .4, i ∈ [`]: Identical to G2.i .3 except that the challenge ciphertext is cti
x∗ .

– G3: Identical to G2.`.4 except that secret key is sk`,∗
Γ

.

Note that G2.1.0 is identical to G1 except that the secret key is sk0
Γ and we have G2.i .0 = G2.i−1.4 for all i ∈ [2,`]. The

remaining of this section will be devoted to proving the indistinguishability of each pair of adjacent games described

above. The proofs will be analogous to those for GWW, however, crucially use the property of f0,x∗ , . . . , f`,x∗ .

Useful lemmas. Before proceed to the proof, we show the next lemma describing the property of f0,x∗ , . . . , f`,x∗ .

Lemma 5 (Property of {fi ,x∗ }i∈[0,`]). For any NFA⊕p Γ= (Q,Σ, {Mσ},u, f) and input x∗ ∈Σ`, we have:

1. Γ(x∗) = 0 ⇐⇒ f0,x∗u> = 0 mod p;

2. fi−1,x∗ = fi ,x∗Mx∗
i

mod p for all i ∈ [`];

3. f`,x∗ = f.

Proof. The lemma directly follows from the definitions of NFA⊕p in Section 3 and f0,x∗ , . . . , f`,x∗ in (22). ut

4.4 Initializing

It is standard to prove G0 ≈c G1, see Appendix D.1. We only show the proof sketch for G1 ≈c G2.1.0.

Lemma 6 (G1 =G2.1.0). For all A, we have

Pr[〈A,G1〉 = 1] = Pr[〈A,G2.1.0〉 = 1].

Proof. Roughly, we will prove that (
mpk, ct0

x∗ , skΓ
)= (

mpk, ct0
x∗ , sk0

Γ

)
where we have

skΓ[2] =


[ du> +wstartRu>]2, [Ru>]2{

[−d+zb R]2, [dMσ+wσ,b R]2, [R]2
}
σ∈Σ,b∈{0,1}

[αf−d+wendR]2, [R]2

 ,

sk0
Γ[2] =


[ (d+ s−1

0 ∆ · f0,x∗ )u> +wstartRu>]2, [Ru>]2{
[−d+zb R]2, [dMσ+wσ,b R]2, [R]2

}
σ∈Σ,b∈{0,1}

[αf−d+wendR]2, [R]2

 ,

and

ct0
x∗ [2] = (

[s0wstart]1, [s0]1, [s0z1]1
)
.

This follows from the statement:

skΓ[2]︷ ︸︸ ︷{
du> +wstartRu>,Ru> }=

sk0
Γ[2]︷ ︸︸ ︷{

(d+ s−1
0 ∆ · f0,x∗ )u> +wstartRu>,Ru> }

given d,

ct0
x∗ [2]︷ ︸︸ ︷

wstart

which is implied by the fact Γ(x∗) = 0 ⇐⇒ f0,x∗u> = 0 mod p (see Lemma 5). This is sufficient for the proof. ut
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Game ctx∗ skΓ[2] Remark

? ·u>+wstartRu> ? ·Mx∗
i−1

+wx∗
i−1,1−τR ? +zτR ? ·Mx∗

i
+wx∗

i ,τR αf+? +zendR

0 ctx∗ skΓ d d −d d −d real game

1 ct0
x∗ skΓ d d −d d −d SD

2.1.0 ct0
x∗ sk0

Γ d+ s−1
0 ∆ · f0,x∗ d −d d −d f0,x∗u> = 0 mod p (Lemma 5)

2.i .0 cti−1
x∗ ski−1

Γ
d d+ s−1

i−1∆ · fi−1,x∗ −d d −d i ∈ [2,`]

2.i .1 cti−1
x∗ ski−1,i

Γ
d d −d+ s−1

i−1∆ · fi−1,x∗ d −d change of variables + DDH

2.i .2 cti−1,i
x∗ ski−1,i

Γ
d d −d+ s−1

i−1∆ · fi−1,x∗ d −d switching lemma

2.i .3 cti−1,i
x∗ ski

Γ d d −d d+ s−1
i ∆ · fi ,x∗ −d transition lemma, fi−1,x∗ = fi ,x∗Mx∗

i
mod p (Lemma 5)

2.i .4 cti
x∗ ski

Γ
d d −d d+ s−1

i ∆ · fi ,x∗ −d switching lemma

3 ct`x∗ sk`,∗
Γ

d d −d d −d+ s−1
` ∆ · f`,x∗ change of variables + DDH

Fig. 6. Game sequence for our selectively secure ABE for NFA⊕p where i ∈ [`]. In the table, we only show the a2-components of secret key. In the Remark column, “SD” and “DDH”

indicate SDG1
A1 7→A1,a2

and DDHG2
1,Q assumption, respectively; switching lemma and transition lemma were given in GWW, cf. Lemma 16 and Lemma 13.
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4.5 Switching secret keys I

In this section, we will show that G2.i .0 ≈c G2.i .1 for all i ∈ [`] and G2.`.4 ≈c G3. The proofs for them are similar. We begin

with the following lemma stating that G2.1.0 ≈c G2.1.1 and sketch the proofs for the remaining statements.

Lemma 7 (G2.1.0 ≈c G2.1.1). For all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,G2.1.0〉 = 1]−Pr[〈A,G2.1.1〉 = 1] ≤O(|Σ|) ·AdvDDHG2
1,Q

B
(λ).

Overview. Roughly, we will prove that (
mpk, ct0

x∗ , sk0
Γ

)= (
mpk, ct0

x∗ , sk0,1
Γ

)
By Lemma 4, we focus on a2-components and prove:

sk0
Γ[2] =


[( d+ s−1

0 ∆ · f0,x∗ )u>+wstartRu>]2, [Ru>]2{
[ −d +z1R]2, [dMσ+wσ,1R]2, [R]2

}
σ∈Σ{

[−d+z0R]2, [dMσ+wσ,0R]2, [R]2
}
σ∈Σ

[αf−d+wendR]2, [R]2

 ≈c


[ d u>+wstartRu>]2, [Ru>]2{

[ −d+ s−1
0 ∆ · f0,x∗ +z1R]2, [dMσ+wσ,1R]2, [R]2

}
σ∈Σ{

[−d+z0R]2, [dMσ+wσ,0R]2, [R]2
}
σ∈Σ

[αf−d+wendR]2, [R]2

= sk0,1
Γ

[2]

given

ct0
x∗ [2] = (

[s0wstart]1, [s0]1, [s0z1]1
)
.

Clearly, change of variables d 7→ d− s−1
0 ∆ · f0,x∗ is at the core of the above statement, which ensures that: for all s0 and

∆, we have

sk0
Γ[2]︷ ︸︸ ︷{

( d+ s−1
0 ∆ · f0,x∗ )u>+wstartRu>, −d +z1R,R

}≈s

sk0,1
Γ

[2]︷ ︸︸ ︷{
d u>+wstartRu>, −d+ s−1

0 ∆ · f0,x∗ +z1R,R
}

given

ct0
x∗ [2]︷ ︸︸ ︷

wstart,z1 (23)

However this does not hold if d is also given out on the both sides which corresponds to d’s appeared at other positions,

as is our case. We address this issue by hiding other occurrences of d’s via DDHG2
1,Q assumption before the change of

variable and getting them back via DDHG2
1,Q assumption again after that.

Auxiliary hybrids. Formally, we need two more auxiliary hybrids:

– G2.1.0.a is the same as G2.1.0 except that, for key query Γ, we return
[(d+ s−1

0 ∆ · f0,x∗ )u>+wstartRu>]2, [Ru>]2{
[−d+z1R]2, [ 0 ·Mσ+wσ,1R]2, [R]2

}
σ∈Σ{

[ 0 +z0R]2, [ 0 ·Mσ+wσ,0R]2, [R]2
}
σ∈Σ

[αf− 0 +wendR]2, [R]2

 .

– G2.1.1.a is the same as G2.1.1 except that, for key query Γ, we return
[du>+wstartRu>]2, [Ru>]2{

[−d+ s−1
0 ∆ · f0,x∗ +z1R]2, [ 0 ·Mσ+wσ,1R]2, [R]2

}
σ∈Σ{

[ 0 +z0R]2, [ 0 ·Mσ+wσ,0R]2, [R]2
}
σ∈Σ

[αf− 0 +wendR]2, [R]2

 .

Then we prove that:

G2.1.0
DDH≈c G2.1.0.a

(23)≈s G2.1.1.a
DDH≈c G2.1.1 (24)

which is summarized in Fig 7.
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Game ? ·u>+wstartRu> ? +z1R ? ·Mσ+wσ,1R ? +z0R ? ·Mσ+wσ,0R αf− ? +wendR Remark

2.1.0 d+ s−1
0 ∆ · f0,x∗ −d d −d d d sk0

Γ
[2]

2.1.0.a d+ s−1
0 ∆ · f0,x∗ −d 0 0 0 0 DDH

2.1.1.a d −d+ s−1
0 ∆ · f0,x∗ 0 0 0 0 d 7→ d− s−1

0 ∆ · f0,x∗

2.1.1 d −d+ s−1
0 ∆ · f0,x∗ d −d d d DDH, sk0,1

Γ
[2]

Fig. 7. Game sequence for G2.1.0 ≈c G2.1.1. In the table, we only show changes of secret key and focus on its a2-components; all

secret key elements in the fourth and sixth column are quantified over σ ∈ Σ. In the Remark column, “DDH” indicates DDHG2
1,Q

assumption.

Lemmas. We describe and prove the following lemmas which imply Lemma 7 by (24).

Lemma 8 (G2.1.0 ≈c G2.1.0.a ). For all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,G2.1.0〉 = 1]−Pr[〈A,G2.1.0.a〉 = 1] ≤O(|Σ|) ·AdvDDHG2
1,Q

B
(λ).

Proof. By Lemma 4, it suffices to prove the lemma over a2-components which roughly means:

sk0
Γ[2] =


[(d+ s−1

0 ∆ · f0,x∗ )u>+wstartRu>]2, [Ru>]2{
[−d+z1R]2, [ d ·Mσ+wσ,1R]2, [R]2

}
σ∈Σ{

[− d +z0R]2, [ d ·Mσ+wσ,0R]2, [R]2
}
σ∈Σ

[αf− d +wendR]2, [R]2

≈c


[(d+ s−1

0 ∆ · f0,x∗ )u>+wstartRu>]2, [Ru>]2{
[−d+z1R]2, [ 0 ·Mσ+wσ,1R]2, [R]2

}
σ∈Σ{

[ 0 +z0R]2, [ 0 ·Mσ+wσ,0R]2, [R]2
}
σ∈Σ

[αf− 0 +wendR]2, [R]2


in the presence of

ct0
x∗ [2] = (

[s0wstart]1, [s0]1, [s0z1]1
)
.

One can sample basis A1,a2,A3,A‖
1,a‖

2,A‖
3 and trivially simulate mpk, ct0

x∗ and secret key using terms given out above.

Furthermore, this follows from DDHG2
1,Q assumption w.r.t z0,wσ,0,wσ,1,wend with σ ∈Σ which implies:

(
[z0R]2,

{
[wσ,0R]2

}
σ∈Σ,

{
[wσ,1R]2

}
σ∈Σ, [wendR]2, [R]2

)≈c U
(

(G1×Q
2 )2|Σ|+2 ×Gk×Q

2

)
where z0,wσ,0,wσ,1,wend ← Z1×k

p for all σ ∈ Σ and R ← Z
k×Q
p . Here we use the fact that ct0

x∗ [2] does not leak z0, wσ,1,

wσ,0, wend with σ ∈Σ. This completes the proof. ut

Lemma 9. For all A, we have

Pr[〈A,G2.1.0.a〉 = 1] = Pr[〈A,G2.1.1.a〉 = 1].

Proof. This immediately follows from (23) implied by the change of variables: d 7→ d− s−1
0 ∆ · f0,x∗ . ut

Lemma 10. For all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,G2.1.1.a〉 = 1]−Pr[〈A,G2.1.1〉 = 1] ≤O(|Σ|) ·AdvDDHG2
1,Q

B
(λ).

Proof. The proof is analogous to that for Lemma 8. ut

Via the same proof idea, we can prove the following two lemmas stating that G2.i .0 ≈c G2.i .1 for all i ∈ [2,`] and

G2.`.4 ≈c G3, respectively. We only sketch the proof for each lemma.

Lemma 11 (G2.i .0 ≈c G2.i .1). For all i ∈ [2,`] and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,G2.i .0〉 = 1]−Pr[〈A,G2.i .1〉 = 1] ≤O(|Σ|) ·AdvDDHG2
1,Q

B
(λ).
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Proof (sketch). We will prove that (
mpk, cti−1

x∗ , ski−1
Γ

)= (
mpk, cti−1

x∗ , ski−1,i
Γ

)
Recall that τ= i mod 2, the proof is analogous to that for Lemma 7: roughly, we want to prove the following statement

over a2-components:

ski−1
Γ [2] =



[du>+wstartRu>]2, [Ru>]2{
[−d+z1−τR]2, [( d+ s−1

i−1∆ · fi−1,x∗ )Mx∗
i−1

+wx∗
i−1,1−τR]2, [R]2

}{
[dMσ+wσ,1−τR]2

}
σ6=x∗

i−1{
[ −d +zτR]2, [dMσ+wσ,τR]2, [R]2

}
σ∈Σ

[αf−d+wendR]2, [R]2



≈c



[du>+wstartRu>]2, [Ru>]2{
[−d+z1−τR]2, [ d Mx∗

i−1
+wx∗

i−1,1−τR]2, [R]2
}{

[dMσ+wσ,1−τR]2
}
σ6=x∗

i−1{
[ −d+ s−1

i−1∆ · fi−1,x∗ +zτR]2, [dMσ+wσ,τR]2, [R]2
}
σ∈Σ

[αf−d+wendR]2, [R]2


= ski−1,i

Γ
[2]

given

cti−1
x∗ [2] = (

[si−1wx∗
i−1,1−τ]1, [si−1]1, [si−1zτ]1

)
.

This relies on:

– change of variables d 7→ d− s−1
i−1∆ · fi−1,x∗ ; this ensures that, for all si−1 and ∆, we have

ski−1
Γ [2]︷ ︸︸ ︷{

( d+ s−1
i−1∆ · fi−1,x∗ )Mx∗

i−1
+wx∗

i−1,1−τR, −d +zτR,R
}≈s

ski−1,i
Γ

[2]︷ ︸︸ ︷{
d Mx∗

i−1
+wx∗

i−1,1−τR, −d+ s−1
i−1∆ · fi−1,x∗ +zτR,R

}
in the presence of wx∗

i−1,1−τ,zτ leaked via cti−1
x∗ [2].

– DDHG2
1,Q assumption w.r.t wstart,z1−τ, {wσ,1−τ}σ6=x∗

i−1
, {wσ,τ}σ∈Σ,wend; this implies that

(
[wstartR]2, [z1−τR]2,

{
[wσ,1−τR]2

}
σ6=x∗

i−1
,
{
[wσ,τR]2

}
σ∈Σ, [wendR]2, [R]2

)≈c U
(

(G1×Q
2 )2|Σ|+2 ×Gk×Q

2

)
and will be used to hide all d’s irrelevant with the change of variables. ut

Lemma 12 (G2.`.4 ≈c G3). For all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,G2.`.4〉 = 1]−Pr[〈A,G3〉 = 1] ≤O(|Σ|) ·AdvDDHG2
1,Q

B
(λ).

Proof (sketch). We will prove that (
mpk, ct`x∗ , sk`Γ

)= (
mpk, ct`x∗ , sk`,∗

Γ

)
Recall that ¯̀= ` mod 2, the proof is analogous to that for Lemma 7: roughly, we want to prove the following statement

over a2-components:

sk`Γ[2] =



[du>+wstartRu>]2, [Ru>]2{
[−d+z ¯̀R]2, [( d+ s−1

` ∆ · f`,x∗ )Mx∗
`
+wx∗

`
, ¯̀R]2, [R]2

}{
[dMσ+wσ, ¯̀R]2

}
σ6=x∗

`{
[−d+z1− ¯̀R]2, [dMσ+wσ,1− ¯̀R]2, [R]2

}
σ∈Σ

[αf −d +wendR]2, [R]2


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≈c



[du>+wstartRu>]2, [Ru>]2{
[−d+z ¯̀R]2, [ d Mx∗

`
+wx∗

`
, ¯̀R]2, [R]2

}{
[dMσ+wσ, ¯̀R]2

}
σ6=x∗

`{
[−d+z1− ¯̀R]2, [dMσ+wσ,1− ¯̀R]2, [R]2

}
σ∈Σ

[αf −d+ s−1
`
∆ · f`,x∗ +wendR]2, [R]2


= sk`,∗

Γ
[2]

given

ct`x∗ [2] = (
[s`wx∗

`
, ¯̀]1, [s`]1, [s`wend]1, [s`α]T ·mβ

)
.

This relies on:

– change of variables d 7→ d− s−1
`
∆ · f`,x∗ ; this ensures that, for all s` and ∆, we have

sk`Γ[2]︷ ︸︸ ︷{
( d+ s−1

` ∆ · f`,x∗ )Mx∗
`
+wx∗

`
, ¯̀R, −d +wendR,R

}≈s

sk`,∗
Γ

[2]︷ ︸︸ ︷{
d Mx∗

`
+wx∗

`
, ¯̀R, −d+ s−1

`
∆ · f`,x∗ +wendR,R

}
in the presence of wx∗

`
, ¯̀,wend leaked via ct`x∗ [2].

– DDHG2
1,Q assumption w.r.t wstart,z0,z1, {wσ, ¯̀}σ6=x∗

`
, {wσ,1− ¯̀}σ∈Σ; this implies that

(
[wstartR]2, [z0R]2, [z1R]2,

{
[wσ, ¯̀R]2

}
σ6=x∗

`
,
{
[wσ,1− ¯̀R]2

}
σ∈Σ, [R]2

)≈c U
(

(G1×Q
2 )2|Σ|+2 ×Gk×Q

2

)
and will be used to hide all d’s irrelevant with the change of variables. ut

4.6 Switching ciphertexts

In this section, we show that G2.i .1 ≈c G2.i .2 and G2.i .3 ≈c G2.i .4 for all i ∈ [`] using the switching lemma from GWW [11].

Lemma 13 ((s,W)-switching lemma [11]). We have

aux, [sA1]1, [a‖
2 · ∆̄+Wr>]2, [r>]2

≈c aux, [sA1 + sa2 ]1, [a‖
2 · ∆̄+Wr>]2, [r>]2

where aux= ([A1,a2,A1W,a2W]1, [WB,B]2) and W ←Z
(2k+1)×k
p , B ←Zk×k

p , s,r ←Z1×k
p , ∆̄, s ←Zp . Concretely, the advan-

tage function AdvSWITCH
B (λ) is bounded by O(1) ·Advk-LIN

B0
(λ) with Time(B0) ≈Time(B).

We begin with the following lemma stating that G2.i .1 ≈c G2.i .2 for all i ∈ [`] and sketch the proof of G2.i .3 ≈c G2.i .4 for

all i ∈ [`], which is analogous.

Lemma 14 (G2.i .1 ≈c G2.i .2). For all i ∈ [`] and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,G2.i .1〉 = 1]−Pr[〈A,G2.i .2〉 = 1] ≤AdvSWITCH
B (λ).

Overview. We will prove that (
mpk, cti−1

x∗ , ski−1,i
Γ

)≈c
(
mpk, cti−1,i

x∗ , ski−1,i
Γ

)
.

This roughly means that we will show that

cti−1
x∗︷ ︸︸ ︷

[si A1]1 ≈c

cti−1,i
x∗︷ ︸︸ ︷

[si A1 + si a2]1 given

ski−1,i
Γ︷ ︸︸ ︷

[−D+a‖
2 · s−1

i−1∆ · fi−1,x∗ +ZτR ]2, [R]2 .

The occurrence of a‖
2 hinders a direct application of SDG1

A1 7→A1,a2
assumption. We will use (si ,Zτ)-switching lemma in

the proof, which roughly states that [si A1]1 ≈c [si A1 + si a2]1 given [a‖
2 · ∆̄+Zτr>]2 and [r>]2; the auxiliary terms given

out in the lemma will be used to simulate the terms involving a‖
2.

21



Proof. Recall that τ= i mod 2. We prove the lemma using (si ,Zτ)-switching lemma. On input

aux, [ci ]1, [a‖
2 · ∆̄+Zτr>]2, [r>]2

where aux= ([A1,a2,A1Zτ,a2Zτ]1, [ZτB,B]2) and Zτ←Z
(2k+1)×k
p , B ←Zk×k

p , r ←Z1×k
p , ∆̄←Zp and

ci = si A1 or ci = si A1 + si a2 , si ←Z1×k
p , si ←Zp

the reduction works as follows:

(Simulating mpk) We sample k ← Z
1×(2k+1)
p ,Wstart,Z1−τ,Wσ,0,Wσ,1,Wend ← Z

(2k+1)×k
p for all σ ∈ Σ, and then we can

trivially simulate mpk from [A1,A1Zτ]1.

(Simulating challenge ciphertext) On input (m0,m1), we want to create a challenge ciphertext in the following form,

which is either cti−1
x∗ or cti−1,i

x∗ depending on ci :
[c0]1, [c0Wstart]1{

[c j ]1, [c j−1Zτ]1 · [c j Wx∗
j ,τ]1

}
j=i mod 2{

[c j ]1, [c j−1Z1−τ]1 · [c j Wx∗
j ,1−τ]1

}
j 6=i mod 2

[c`]1, [c`Wend]1, [c`k>]T ·mβ

 where


ci ∈ { si A1 , si A1 + si a2 }

ci−1 = si−1A1 + si−1a2

c j = s j A1 ∀ j ∉ {i −1, i }

Observe that,

– when ci = si A1 , the distribution is identical to cti−1
x∗ ;

– when ci = si A1 + si a2 , the distribution is identical to cti−1,i
x∗ .

We proceed to create the challenge ciphertext as follows:

– We sample si−1 ← Zp , s j ← Z1×k
p for all j 6= i and simulate {[c j ]1} j 6=i using [A1,a2]1; note that [ci ]1 is given out in

the lemma as the challenge term.

– We rewrite terms in the dashed box as:

[c j Zτ]1 =
[s j A1Zτ]1 if j 6= i −1 and j 6= i mod 2

[si−1A1Zτ]1 · [si−1a2Zτ]1 if j = i −1(and j 6= i mod 2)

which can be simulated using {s j } j 6=i mod 2, si−1 and [A1Zτ,a2Zτ]1; here we use the fact that we do not have any

terms involving [ci Zτ]1 in the challenge ciphertext.

– We simulate all remaining terms using {[c j ]1} j∈[0,`] and k,Wstart,Z1−τ, {Wσ,0,Wσ,1}σ∈Σ,Wend.

(Simulating secret key) On input Γ, we want to return a secret key for Γ in the form

ski−1,i
Γ

=


[Du>+WstartRu>]2, [Ru>]2{

[−D+a‖
2 · s−1

i−1∆ · fi−1,x∗ +ZτR]2 , [DMσ+Wσ,τR]2, [R]2
}
σ∈Σ{

[−D+Z1−τR]2, [DMσ+Wσ,1−τR]2, [R]2
}
σ∈Σ

[k>f−D+WendR]2, [R]2

 .

We sample D ←Z
(2k+1)×Q
p and R̃ ←Z

k×Q
p and implicitly set

∆= si−1∆̄ and R = r> · fi−1,x∗ +B · R̃.

We proceed to simulate ski−1,i
Γ

as follows:

– We simulate [R]2 from [r>]2, [B]2 and fi−1,x∗ , R̃.
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– We can rewrite the term in the dashed box as:

[−D+ (a‖
2 · ∆̄+Zτr>) · fi−1,x∗ +ZτB · R̃]2

which can be simulated using [a‖
2 · ∆̄+Zτr>]2, [ZτB]2 and D, fi−1,x∗ , R̃.

– We simulate all remaining terms using [R]2 and k,D,Wstart,Z1−τ,Wσ,τ,Wσ,1−τ, Wend.

Observe that, when ci = si A1 , the challenge ciphertext is cti−1
x∗ and the simulation is identical to G2.i .1; when ci =

si A1 + si a2 , the challenge ciphertext is cti−1,i
x∗ and the simulation is identical to G2.i .2. This completes the proof. ut

Via the same idea, we can prove the following lemmas stating that G2.i .3 ≈c G2.i .4 for all i ∈ [`]. We only sketch the

proof by highlighting the difference.

Lemma 15 (G2.i .3 ≈c G2.i .4). For all i ∈ [`] and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,G2.i .3〉 = 1]−Pr[〈A,G2.i .4〉 = 1] ≤AdvSWITCH
B (λ).

Proof (sketch). We will prove that (
mpk, cti−1,i

x∗ , ski
Γ

)≈c
(
mpk, cti

x∗ , ski
Γ

)
which roughly means that we need to prove that

cti−1,i
x∗︷ ︸︸ ︷

[si−1A1 + si−1a2]1 ≈c

cti
x∗︷ ︸︸ ︷

[si−1A1]1 given

ski
Γ︷ ︸︸ ︷

[DMx∗
i
+a‖

2 · s−1
i ∆ · fi ,x∗ +Wx∗

i ,τR]2, [R]2 .

The proof is analogous to that of Lemma 14 except that we use (si−1,Wx∗
i ,τ)-switching lemma instead of (si ,Zτ)-

switching lemma so that we can simulate the challenge ciphertext from the challenge term in the lemma and simulate

secret key using the auxiliary terms given out in the lemma. ut

4.7 Switching secret keys II

This section proves G2.i .2 ≈c G2.i .3 for all i ∈ [`] using the the transition lemma from GWW [11].

Lemma 16 ((z,w)-transition lemma [11]). For all si−1, si 6= 0 and ∆̄ ∈Zp , we have

aux, si−1z+ si w, [ s−1
i−1∆̄ +zr>]2, [wr>]2, [r>]2

≈c aux, si−1z+ si w, [zr>]2, [ s−1
i ∆̄ +wr>]2, [r>]2

where aux = ([zB,wB,B]2) and z,w ← Z1×k
p , B ← Zk×k

p , r ← Z1×k
p . Concretely, the advantage function AdvTRANS

B (λ) is

bounded by O(1) ·Advk-LIN
B0

(λ) with Time(B0) ≈Time(B).

Lemma 17 (G2.i .2 ≈c G2.i .3). For all i ∈ [`] and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,G2.i .2〉 = 1]−Pr[〈A,G2.i .3〉 = 1] ≤AdvTRANS
B (λ).

Overview. This roughly means (
mpk, cti−1,i

x∗ , ski−1,i
Γ

)≈c
(
mpk, cti−1,i

x∗ , ski
Γ

)
;

more concretely, we want to prove the following statement over a2-components:

[−d+ s−1
i−1∆ · fi−1,x∗ +zτR ]2, [dMx∗

i
+ wx∗

i ,τR ]2, [R]2 //ski−1,i
Γ

[2]

≈c [−d+ zτR ]2, [dMx∗
i
+ s−1

i ∆ · fi ,x∗Mx∗
i
+wx∗

i ,τR ]2, [R]2 //ski
Γ[2]

given d,∆, si−1, si , si−1zτ+ si wx∗
i ,τ revealed by cti−1,i

x∗ . This can be handled by the (zτ,wx∗
i ,τ)-transition lemma and the

fact that fi−1,x∗ = fi ,x∗Mx∗
i

mod p (see Lemma 5).
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Proof. Recall that τ= i mod 2. By Lemma 4, it suffices to prove the lemma over a2-components which roughly means:

ski−1,i
Γ

[2] =



[du>+wstartRu>]2, [Ru>]2

[−d+ s−1
i−1∆ · fi−1,x∗ +zτR ]2, [dMx∗

i
+ wx∗

i ,τR ]2, [R]2{
[dMσ+wσ,τR]2}σ6=x∗

i{
[−d+z1−τR]2, [dMσ+wσ,1−τR]2, [R]2

}
σ∈Σ

[αf−d+wendR]2, [R]2



≈c



[du>+wstartRu>]2, [Ru>]2

[−d+ zτR ]2, [dMx∗
i
+ s−1

i ∆ · fi ,x∗Mx∗
i
+wx∗

i ,τR ]2, [R]2{
[dMσ+wσ,τR]2}σ6=x∗

i{
[−d+z1−τR]2, [dMσ+wσ,1−τR]2, [R]2

}
σ∈Σ

[αf−d+wendR]2, [R]2


= ski

Γ[2]

in the presence of

cti−1,i
x∗ [2] =


[s0wstart]1, [s0]1, [s0z1 + s1wx∗

1 ,1]1, [s1]1, [s1z0]1 if i = 1

[si−1wx∗
i−1,1−τ]1, [si−1]1, [si−1zτ+ si wx∗

i ,τ]1, [si ]1, [si z1−τ]1 if i ∈ [2,`−1]

[s`−1wx∗
`−1,1− ¯̀]1, [s`−1]1, [s`−1z ¯̀+ s`wx∗

`
, ¯̀]1, [s`]1, [s`wend]1, [s`α]T ·mβ if i = `

One can sample basis A1,a2,A3,A‖
1,a‖

2,A‖
3 and trivially simulate mpk, cti−1,i

x∗ and secret key using terms given out above.

Furthermore, we prove this using (zτ,wx∗
i ,τ)-transition lemma. On input

aux, [∆̄0 +zτr>]2, [∆̄1 +wx∗
i ,τr>]2, [r>]2

where (∆̄0,∆̄1) ∈ {
(s−1

i−1∆̄,0) , (0, s−1
i ∆̄)

}
and

aux= (∆̄, si−1, si , si−1zτ+ si wx∗
i ,τ, [zτB,wx∗

i ,τB,B]2)

with zτ,wx∗
i ,τ←Z1×k

p , B ←Zk×k
p , r ←Z1×k

p and ∆̄←Zp , we sampleα←Zp ,wstart,z1−τ, wσ,1−τ,wend ←Z1×k
p for allσ ∈Σ

and wσ,τ←Z1×k
p for all σ 6= x∗

i and proceed as follows:

(Simulating challenge ciphertext) On input (m0,m1), we trivially simulate cti−1,i
x∗ [2] using si−1, si , si−1zτ+ si wx∗

i ,τ in

aux and α, wstart, wσ,1−τ, z1−τ, wend as well.

(Simulating secret key) On input Γ, we want to return a secret key for Γ in the form:

[du>+wstartRu>]2, [Ru>]2

[−d+∆0 · fi−1,x∗ +zτR]2, [dMx∗
i
+∆1 · fi−1,x∗ +wx∗

i ,τR]2 , [R]2{
[dMσ+wσ,τR]2}σ6=x∗

i{
[−d+z1−τR]2, [dMσ+wσ,1−τR]2, [R]2

}
σ∈Σ

[αf−d+wendR]2, [R]2


where (∆0,∆1) ∈ {

(s−1
i−1∆,0) , (0, s−1

i ∆)
}
.

Observe that

– when (∆0,∆1) = (s−1
i−1∆,0) , the distribution is identical to ski−1,i

Γ
[2] ;

– when (∆0,∆1) = (0, s−1
i ∆) , the distribution is identical to ski

Γ[2] since fi−1,x∗ = fi ,x∗Mx∗
i

mod p (see Lemma 5).

We sample d ←Z
1×Q
p and R̃ ←Z

k×Q
p and implicitly set

∆= ∆̄, (∆0,∆1) = (∆̄0,∆̄1) and R = r> · fi−1,x∗ +B · R̃.

We then generate the key for Γ as follows:
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– We simulate [R]2 from [r>]2, [B]2 and fi−1,x∗ , R̃.

– We rewrite the terms in the dashed box as follows:

[−d+ (∆̄0 +zτr>) · fi−1,x∗ +zτB · R̃]2, [dMx∗
i
+ (∆̄1 +wx∗

i ,τr>) · fi−1,x∗ +wx∗
i ,τB · R̃]2

and simulate them using [∆̄0 +zτr>]2, [∆̄1 +wx∗
i ,τr>]2, [zτB]2, [wx∗

i ,τB]2 and d, fi−1,x∗ , R̃.

– We simulate all remaining terms using [R]2 and α, d, wstart, z1−τ, {wσ,τ}σ6=x∗
i

, {wσ,1−τ}σ∈Σ, wend.

Observe that, when (∆̄0,∆̄1) = (s−1
i−1∆̄,0) , we have (∆0,∆1) = (s−1

i−1∆,0) , then the secret key is ski−1,i
Γ

[2] and the sim-

ulation is identical to G2.i .2; when (∆̄0,∆̄1) = (0, s−1
i ∆̄) , we have (∆0,∆1) = (0, s−1

i ∆) , then the secret key is ski
Γ[2] and

the simulation is identical to G2.i .3. This completes the proof. ut

4.8 Finalize

We finally prove that the adversary wins G3 with probability 1/2.

Lemma 18. Pr[〈A,G3〉 = 1] ≈ 1/2.

Proof. First, we argue that the secret key sk`,∗
Γ

in this game perfectly hides the a2-component of k>, i.e.,α= a2k>. Recall

the a2-components of the secret key:

sk`,∗
Γ

[2] =


[du>+wstartRu>]2, [Ru>]2{

[−d+zb R]2, [dMσ+wσ,b R]2, [R]2
}
σ∈Σ,b∈{0,1}

[αf−d+ s−1
` ∆ · f`,x∗ +wendR]2, [R]2

 .

By the property f`,x∗ = f (see Lemma 5), we can see that sk`,∗
Γ

[2] can be simulated using α+ s−1
`
∆, which means the

secret key perfectly hides α= a2k>. Therefore, the unique term involving k in ct`x∗ , i.e., [s`A1k>+ s`a2k>]T , is indepen-

dently and uniformly distributed and thus statistically hides message mβ. ut

5 Adaptively Secure ABE for EQ -restricted NFA⊕p and DFA

In this section, we present our adaptively secure ABE for EQ -restricted NFA⊕p . By our transformation from DFA to

EQ -restricted NFA⊕p (cf. Lemma 1), this readily gives us an adaptively secure ABE for DFA. We defer the concrete

construction to Appendix F.

Overview. Our starting point is the selectively secure ABE scheme in Section 4. To achieve adaptive security, we handle

key queries one by one following standard dual system method [20]; for each key, we carry out the one-key selective

proof in Section 4 with piecewise guessing framework [15].10 However this does not work immediately, we will make

some changes to the scheme and proof in Section 4.

Recall that, in the one-key setting, the (selective) proof in Section 4 roughly tells us

(mpk,skΓ,ctx∗ ) ≈c (mpk, sk`,∗
Γ

, ct`x∗ ). (25)

The two-key setting, for example, is expected to be handled by hybrid arguments:

(mpk,skΓ1 ,skΓ2 ,ctx∗ ) ≈c (mpk, sk`,∗
Γ1

,skΓ2 , ct`x∗ ) ≈c (mpk,sk`,∗
Γ1

, sk`,∗
Γ2

,ct`x∗ )

10 Handling all key queries simultaneously as in the selective model will cause a security loss exponential in the number of queries.
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The first step seems to be feasible with some natural extension but the second one is problematic. Since we can not

switch the challenge ciphertext back to ctx∗ due to the presence of sk`,∗
Γ1

, the argument (25) can not be applied to the

second key skΓ2 literally. In more detail, recall that

ct`x∗ [2] = (
[s`wx∗

`
, ¯̀]1, [s`]1, [s`wend]1

)
(26)

leaks information of wx∗
`

, ¯̀ and wend while we need them to be hidden in some steps of the one-key proof; for example,

Lemma 4.7 for G2.i .2 ≈c G2.i .3. We quickly argue that the natural solution of adding an extra subspace for fresh copies

of wx∗
`

, ¯̀ and wend blows up the ciphertext and key sizes (see Section 1.1 for discussion).

Our approach reuses the existing a2-components as in [8]. Recall that, our one-key proof (25) uses a series of

hybrids with random coins s0, s1, . . . and finally stops at a hybrid with s` (cf. (25) and (26)). Roughly, we change the

scheme by adding an extra random coin s into the ciphertext and move one more step in the proof so that we finally

stop at a new hybrid with the new s only. This allows us to release s` and reuse wx∗
`

, ¯̀,wend for the next key. More

concretely, starting with the scheme in Section 4.2, we introduce a new component [W]1 ∈G (2k+1)×k
1 into mpk:

– during encryption, we pick one more random coin s ←Z1×k
p and replace the last three components in ctx with

[sA1]1, [s`A1Wend +sA1W]1, [sA1k>]T ·m;

this connects the last random coin s` with the newly introduced s; and s corresponds to s in the proof;

– during key generation, we replace the last two components in skΓ with

[−D+WendR]2, [k>f+WR]2, [R]2;

the decryption will recover [sA1k>f−s`A1D]T instead of [s`A1k>f−s`A1D]T ;

– during the proof, we extend the proof in Section 4.3 by one more step (see the dashed box):

(mpk,skΓ,ctx∗ )
§4.3≈c (mpk, sk`,∗

Γ
, ct`x∗ ) ≈c (mpk, sk∗Γ , ct∗x∗ )

so that ct∗x∗ [2] is in the following form:

ct∗x∗ [2] = (
[sw]1, [s]1, [sα]1 ·mβ

)
which leaks w = a2W instead of wx∗

`
, ¯̀,wend; by this, we can carry out the one-key proof (25) for the next key (with

some natural extensions).

Conceptually, we can interpret this as letting the NFA move to a specific dummy state whenever it accepts the input.

Such a modification has been mentioned in [4] for simplifying the description rather than improving security and

efficiency. In our formal description below, we will rename Wend,W,s, s as Zend,Wend,send, send, respectively.

5.1 Scheme

Our adaptively secure ABE for EQ -restricted NFA⊕p in prime-order groups use the same basis as described in Sec-

tion 4.1 and is described as follows:

– Setup(1λ,Σ) : Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A1 ←Zk×(2k+1)
p , k ←Z1×(2k+1)

p and Wstart,Z0,Z1,Wσ,0,Wσ,1,Zend,Wend ←Z(2k+1)×k
p , ∀σ ∈Σ.

Output

mpk= (
[A1, A1Wstart, A1Z0, A1Z1, {A1Wσ,0, A1Wσ,1 }σ∈Σ, A1Zend, A1Wend ]1, [A1k>]T

)
msk= (

k, Wstart, Z0, Z1, {Wσ,0, Wσ,1 }σ∈Σ, Zend, Wend
)
.
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– Enc(mpk, x,m) : Let x = (x1, . . . , x`) ∈Σ` and m ∈GT . Pick s0,s1, . . . ,s`,send ←Z1×k
p and output

ctx =


[s0A1]1, [s0A1Wstart]1{

[s j A1]1, [s j−1A1Z j mod 2 +s j A1Wx j , j mod 2]1
}

j∈[`]

[sendA1]1, [s`A1Zend +sendA1Wend]1, [sendA1k>]T ·m

 .

– KeyGen(mpk,msk,Γ) : Let Γ= (Q,Σ, {Mσ}σ∈Σ,u, f ). Pick D ←Z
(2k+1)×Q
p , R ←Z

k×Q
p and output

skΓ =


[Du>+WstartRu>]2, [Ru>]2{

[−D+Zb R]2, [DMσ+Wσ,b R]2, [R]2
}
σ∈Σ,b∈{0,1}

[−D+ZendR]2, [k>f+WendR]2, [R]2

 .

– Dec(mpk,skΓ,ctx ) : Parse ciphertext for x = (x1, . . . , x`) and key for Γ= (Q,Σ, {Mσ}σ∈Σ,u, f ) as

ctx =


[c0,1]1, [c0,2]1{

[c j ,1]1, [c j ,2]1
}

j

[cend,1]1, [cend,2]1,C

 and skΓ =


[k>

0]2, [r>0]2{
[Kb]2, [Kσ,b]2, [R]2

}
σ,b

[Kend,1]2, [Kend,2]2, [R]2


We define u>

j ,x for all j ∈ [0,`] as (11) in Section 4.2 and proceed as follows:

1. Compute

B0 = e([c0,1]1, [k>
0]2) ·e([c0,2]1, [r>0]2)−1;

2. For all j ∈ [`], compute

[b j ]T = e([c j−1,1]1, [K j mod 2]2) ·e([c j ,1]1, [Kx j , j mod 2]2) ·e([−c j ,2]1, [R]2) and B j = [b j u>
j−1,x ]T ;

3. Compute

[bend]T = e([c`,1]1, [Kend,1]2) ·e([cend,1]1, [Kend,2]2) ·e([−cend,2]1, [R]2) and Bend = [bendu>
`,x ]T ;

4. Compute

Ball = B0 ·∏`
j=1 B j ·Bend and B = B

(fu>
`,x )−1

all

and output the message m′ ←C ·B−1.

It is direct to verify the correctness as in Section 4.2. See Appendix E.1 for more details.

Security. We prove the following theorem stating the adaptive security of the above ABE for EQ -restricted NFA⊕p . This

readily implies our adaptively secure ABE for DFA thanks to Lemma 1.

Theorem 2 (Adaptively seucre ABE forEQ -restricted NFA⊕p ). The ABE scheme forEQ -restricted NFA⊕p in prime-order

bilinear groups described above is adaptively secure (cf. Section 2.1) under the k-Lin assumption with security loss O(q ·
` · |Σ|3 ·Q2). Here ` is the length of the challenge input x∗ and q is the number of key queries.

5.2 Proof of Main Theorem

From a high level, we employ the standard dual system proof switching the challenge ciphertext and keys into semi-

functional forms in a one-by-one manner. To switch a secret key, we employ the proof technique for one-key selective

setting in Section 4 in the piecewise guessing framework [15,14]. We will capture this by a core lemma. Let x∗ ∈ Σ`
denote the adaptive challenge. We begin with auxiliary distributions and use the notation for a2-components in Sec-

tion 4.3.
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Auxiliary distributions. We sample send ←Zp , ∆←Zp and define semi-functional ciphertext and key:

– ct∗x∗ is the same as ctx∗ except we replace sendA1 with sendA1 + senda2;

– sk∗Γ is the same as skΓ except we replace k> with k>+a‖
2 · s−1

end∆ in the term [k>f+WendR]2.

That is, we have:

ct∗x∗ [2] = (
[sendwend]1, [send]1, [sendα]T ·mβ

)
sk∗Γ[2] =


[du>+wstartRu>]2, [Ru>]2{

[−d+zb R]2, [dMσ+wσ,b R]2, [R]2
}
σ∈Σ,b∈{0,1}

[−d+zendR]2, [αf+ s−1
end∆ · f +wendR]2, [R]2



Game sequence and core lemma. We prove Theorem 2 via a series of games following standard dual system method [20]:

– G0: Identical to the real game.

– G1: Identical to G0 except that the challenge ciphertext is semi-functional, i.e., ct∗x∗ .

– G2.κ for κ ∈ [0, q]: Identical to G1 except that the first κ secret keys are semi-functional, i.e., sk∗Γ.

– G3: Identical to G2.q except that the challenge ciphertext is an encryption of a random message.

Here we have G2.0 =G1. It is standard to prove G0 ≈c G1, G2.q ≈s G3 and show that adversary in G3 has no advantage.

We sketch the proofs in Appendix E.2. To prove G2.κ−1 ≈c G2.κ for all κ ∈ [q], we use core lemma:

Lemma 19 (Core lemma). For all A, there exists B with Time(B) ≈Time(A) and

AdvCORE
A (λ) = Pr[〈A,H0〉 = 1]−Pr[〈A,H1〉 = 1] ≤O(` · |Σ|3 ·Q2) ·Advk-LIN

B (λ)

where, for all b ∈ {0,1}, we define:

〈A,Hb〉 := {
b′ ←AOEnc(·),OKey(·)(mpk,aux1,aux2)

}
where

mpk = (
[A1, A1Wstart, A1Z0, A1Z1, {A1Wσ,0, A1Wσ,1 }σ∈Σ, A1Zend, A1Wend ]1, [A1k>]T

)
aux1 = (

[k, B, WstartB, Z0B, Z1B, {Wσ,0B,Wσ,1B }σ∈Σ, ZendB, WendB]2
)

aux2 = (
[r>, Wstartr>, Z0r>, Z1r>, {Wσ,0r>,Wσ,1r> }σ∈Σ, Zendr>, a‖

2 · s−1
end∆+Wendr>]2

)
with Wstart,Z0,Z1,Wσ,0,Wσ,1,Zend,Wend ← Z

(2k+1)×k
p , B ← Zk×k

p , r ← Z1×k
p , send,∆← Zp and the two oracles work as

follows:

– OEnc(x∗,m): output ct∗x∗ using send in aux2;

– OKey(Γ): output skΓ if b = 0; output sk∗Γ using ∆ and send in aux2 if b = 1;

with the restrictions that (1) A makes only one query to each oracle; (2) queries Γ and x∗ satisfy Γ(x∗) = 0.

It is direct to see that the core lemma implies G2.κ−1 ≈c G2.κ; here aux1 and aux2 are sufficient to simulate other q −1

keys which are either skΓ or sk∗Γ, see Appendix E.2 for more details. The remaining of this section will be devoted to the

proof of the core lemma, which completes the proof of Theorem 2.
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5.3 Piecewise guessing framework

We briefly review the piecewise guessing framework [15] we will use in the proof of core lemma. Suppose we have

two adaptive games H0 and H1 which we would like to show to be indistinguishable. In both games, an adversary A

makes some adaptive choice z∗ ∈ {0,1}R . Informally, the piecewise guessing framework tells us that if we can show

that H0,H1 are ε-indistinguishable in the selective setting where (1) all choices z∗ are committed to in advance via a

series of L +1 hybrids and (2) each hybrid depends only on at most R ′ ¿ R bits of information about z∗, then H0,H1

are 22R ′ ·L ·ε-indistinguishable in the adaptive setting. More formally, we define

– a family of games {Hu}u∈{0,1}R′ where the messages sent to the adversary depend on u;

– a family of h-functions h0, . . . ,hL : {0,1}R 7→ {0,1}R ′
which describes the hybrids;

the piecewise guessing framework ensures that H0 ≈c H1 if {Hu}u∈{0,1}R′ and h0, . . . ,hL satisfy

– end-point equivalence, which means:

H0 =Hh0(z∗), H1 =HhL (z∗) ∀z∗ ∈ {0,1}R ;

– neighbor indistinguishability, which means:

Ĥi ,0(u0,u1) ≈c Ĥi ,1(u0,u1) ∀i ∈ [L],u0,u1 ∈ {0,1}R ′

where Ĥi ,b(u0,u1) is the same as Hub except we output 0 whenever (hi−1(z∗),hi (z∗)) 6= (u0,u1).

This is captured by the adaptive security lemma in [15]:

Lemma 20 (adaptive security lemma [15]). Fix H0,H1 along with h0,h1, . . . ,hL : {0,1}R → {0,1}R ′
and {Hu}u∈{0,1}R′ such

that

∀ z∗ ∈ {0,1}R :Hh0(z∗) =H0, HhL (z∗) =H1

Suppose there exists an adversary A such that

Pr[〈A,H0〉 = 1]−Pr[〈A,H1〉 = 1] ≥ ε

then there exists i ∈ [L] and u0,u1 ∈ {0,1}R ′
such that

Pr[〈A,Ĥi ,0(u0,u1)〉 = 1]−Pr[〈A,Ĥi ,1(u0,u1)〉 = 1] ≥ ε

22R ′L
.

5.4 Proof of Core Lemma

Observe that the core lemma roughly captures the one-key adaptive setting with mpk, key and ciphertext similar to

our selectively secure ABE in 4.2. We prove the core lemma, Lemma 19, by combining the proof for one-key selective

security in Section 4.3 with the piecewise guessing framework reviewed above. In particular, we will use a family of

hybrids, defined by Hu and h-functions, analogous to those in Section 4.3. Let ¯̀ = ` mod 2 and assume ` > 1, we

begin with more auxiliary distributions.

More auxiliary distributions. The auxiliary distributions we use here are motivated by those in Section 4.3.
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Ciphertext distributions. We sample s0, s1, . . . , s`←Zp and define:

– for i ∈ [0,`]: cti
x∗ is the same as ct∗x∗ except we replace si A1 with si A1 + si a2;

– for i ∈ [`]: cti−1,i
x∗ is the same as ct∗x∗ except we replace si−1A1,si A1 with si−1A1 + si−1a2,si A1 + si a2.

That is, we have: writing τ= i mod 2,

cti
x∗ [2] =


[s0wstart]1, [s0]1, [s0z1]1, [sendwend]1, [send]1, [sendα]T ·m if i = 0

[si wx∗
i ,τ]1, [si ]1, [si z1−τ]1, [sendwend]1, [send]1, [sendα]T ·m if i ∈ [`−1]

[s`wx∗
`

, ¯̀]1, [s`]1, [s`zend + sendwend ]1, [send]1, [sendα]T ·m if i = `

cti−1,i
x∗ [2] =


[s0wstart]1, [s0]1, [s0z1 + s1wx∗

1 ,1]1, [s1]1, [s1z0]1, [sendwend]1, [send]1, [sendα]T ·m if i = 1

[si−1wx∗
i−1,1−τ]1, [si−1]1, [si−1zτ+ si wx∗

i ,τ]1, [si ]1, [si z1−τ]1, [sendwend]1, [send]1, [sendα]T ·m if i ∈ [2,`−1]

[s`−1wx∗
`−1,1− ¯̀]1, [s`−1]1, [s`−1z ¯̀+ s`wx∗

`
, ¯̀]1, [s`]1, [s`zend + sendwend ]1, [send]1, [sendα]T ·m if i = `

The auxiliary ciphertext distributions here are analogous to those in Section 4.3 except that they have extra terms

[sendwend]1, [send]1, [sendα]T ·m inherited from ct∗x∗ . We highlighted the differences by dashed boxes.

Secret key distributions. Recall that a query to OKey is EQ -restricted NFA⊕p . For all i ∈ [`], χ ∈Σ and p ∈EQ , we define:

– sk0
Γ,p is the same as skΓ except we replace D with D+a‖

2 · s−1
0 ∆ ·p in the term [Du>+WstartRu>]2;

– ski
Γ,χ,p is the same as skΓ except we replace D with D+a‖

2 · s−1
i ∆ ·p in the term [DMχ+Wχ,i mod 2R]2;

– ski−1,i
Γ,p is the same as skΓ except we replace −D with −D+a‖

2 · s−1
i−1∆ ·p in the term [−D+Zi mod 2R]2;

– sk`,∗
Γ

is the same as skΓ except we replace −D with −D+a‖
2 · s−1

`
∆ · f in the term [−D+ZendR]2.

That is, we have: writing τ= i mod 2,

sk0
Γ,p[2] =


[(d+ s−1

0 ∆ ·p )u>+wstartRu>]2, [Ru>]2{
[−d+zb R]2, [dMσ+wσ,b R]2, [R]2

}
σ∈Σ,b∈{0,1}

[−d+zendR]2, [αf+wendR]2, [R]2



ski
Γ,χ,p[2] =



[du>+wstartRu>]2, [Ru>]2{
[−d+zτR]2, [(d+ s−1

i ∆ ·p )Mχ+wχ,τR]2, [R]2
}{

[dMσ+wσ,τR]2
}
σ6=χ{

[−d+z1−τR]2, [dMσ+wσ,1−τR]2, [R]2
}
σ∈Σ

[−d+zendR]2, [αf+wendR]2, [R]2



ski−1,i
Γ,p [2] =


[du>+wstartRu>]2, [Ru>]2{

[−d+ s−1
i−1∆ ·p +zτR]2, [dMσ+wσ,τR]2, [R]2

}
σ∈Σ{

[−d+z1−τR]2, [dMσ+wσ,1−τR]2, [R]2
}
σ∈Σ

[−d+zendR]2, [αf+wendR]2, [R]2



sk`,∗
Γ

[2] =


[du>+wstartRu>]2, [Ru>]2{

[−d+zb R]2, [dMσ+wσ,b R]2, [R]2
}
σ∈Σ,b∈{0,1}

[−d+ s−1
` ∆ · f +zendR]2, [αf+wendR]2, [R]2


The auxiliary secret key distributions here are analogous to those in Section 4.3 except that we use general χ and p in

the place of x∗
i and fi ,x∗ . Note that these correspond to the piecewise information we need to guess in the proof.

Hybrids {Hu }u and h-functions. We are ready to define {Hu}u and h-functions in the adaptive security lemma (Lemma 20).
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Defining u and Hu . For our setting, we require u to determine the forms of ciphertext (output by OEnc) and key

(output by OKey) in a hybrid, this includes the superscripts of key and ciphertext and piecewise information χ and p.

For this purpose, we define

u ∈ I × I ×Σ×EQ

where

I = {0,1, . . . ,`,∗}∪ {(0,1), (1,2) . . . , (`−1,`), (`,∗)}

is the set of superscripts of auxiliary keys and ciphertexts, Σ and EQ includes all possibilities of χ and p, respectively.

We allow a special symbol “⊥” at any positions indicating an empty output. Then, for all u = (C, S,χ,p) ∈ I × I ×Σ×EQ ,

we define hybrid HC,S,χ,p to be identical to H0 (or H1) except that

– oracle OEnc(x∗,m) returns ctC
x∗ ;

– oracle OKey(Γ) returns skS
Γ,yyy with yyy depending on S or skΓ when S =⊥.

Here we always assume that C and S indicate well-defined auxiliary ciphertext and key distributions and yyy is always

provided in u (i.e., not “⊥”).

Defining h-functions. In both H0 and H1, the adversary A adaptively chooses Γ and x∗, therefore we employ a family

of functions

hxxx : NFA⊕p ×Σ∗ → I × I ×Σ×EQ

with the first input being EQ -restricted. Recall that, for an input x∗ of length ` and a EQ -restricted NFA⊕p Γ, we can

define f0,x∗ , . . . , f`,x∗ ∈ EQ as (22) in Section 4.3. We define h-functions as below which describes a series of hybrids

analogous to those for selective security in Section 4.3. We show the corresponding selective game for each function

as a remark.
h0 : (Γ, x∗) 7−→ ({∗}, ⊥, ⊥, ⊥ ); // G0

h1 : (Γ, x∗) 7−→ ({0}, ⊥, ⊥, ⊥ ); // G1

h2.1.0 : (Γ, x∗) 7−→ ({0}, {0}, ⊥, f0,x∗ ); // G2.1.0

h2.i .0 : (Γ, x∗) 7−→ ({i −1}, {i −1}, x∗
i−1, fi−1,x∗ ); ∀ i ∈ [2,`]; // G2.i .0

h2.i .1 : (Γ, x∗) 7−→ ({i −1}, {i −1, i }, ⊥, fi−1,x∗ ); ∀ i ∈ [`]; // G2.i .1

h2.i .2 : (Γ, x∗) 7−→ ({i −1, i }, {i −1, i }, ⊥, fi−1,x∗ ); ∀ i ∈ [`]; // G2.i .2

h2.i .3 : (Γ, x∗) 7−→ ({i −1, i }, {i }, x∗
i , fi ,x∗ ); ∀ i ∈ [`]; // G2.i .3

h2.i .4 : (Γ, x∗) 7−→ ({i }, {i }, x∗
i , fi ,x∗ ); ∀ i ∈ [`]; // G2.i .4

h3 : (Γ, x∗) 7−→ ({`}, {`,∗}, ⊥, ⊥ ); // G3

h4 : (Γ, x∗) 7−→ ({`}, {∗}, ⊥, ⊥ );

h5 : (Γ, x∗) 7−→ ({∗}, {∗}, ⊥, ⊥ );

Note that we have h2.i .0 = h2.i−1.4 for all i ∈ [2,`] and ct∗x∗ ,sk∗Γ are shown in Section 5.2. Fix Γ and x∗, we summarize all

h-functions by showing hybrids Hhxxx(Γ,x∗) in Fig 8 (which is analogous to Fig 6 in Section 4.3).

Outline of the proof. Roughly, the adaptive security lemma [15] (see Lemma 20) says that we only need to check (1)

end-point equivalence and (2) neighbor indistinguishability.

End-point equivalence. It is clear that our hybrids {Hu}u and h-functions satisfy the end-point equivalence. This fol-

lows from the fact that h0 and h5 are constant functions which indicate the same types of ciphertext and key as in H0

and H1, respectively. Formally, we give the following lemma.

Lemma 21 (End-point equivalence). For all (Γ, x∗) ∈ {0,1}R , we have

Hh0(Γ,x∗) =H0 and Hh5(Γ,x∗) =H1.
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hxxx ctC
x∗ skS

Γ,χ,p[2] Remark

? ·u>+wstartRu> ? ·Mx∗i−1
+wx∗i−1 ,1−τR ? +zτR ? ·Mx∗i

+wx∗i ,τR ? +zendR ? · f+wendR

0 ct∗x∗ skΓ d d −d d −d α real game

1 ct0
x∗ skΓ d d −d d −d α switching lemma

2.1.0 ct0
x∗ sk0

Γ,f0,x∗
d+ s−1

0 ∆ · f0,x∗ d −d d −d α f0,x∗u> = 0 mod p (Lemma 5)

2.i .0 cti−1
x∗ ski−1

Γ,x∗i−1 ,fi−1,x∗
d d+ s−1

i−1∆ · fi−1,x∗ −d d −d α i ∈ [2,`]

2.i .1 cti−1
x∗ ski−1,i

Γ,fi−1,x∗
d d −d+ s−1

i−1∆ · fi−1,x∗ d −d α change of variables, DDH

2.i .2 cti−1,i
x∗ ski−1,i

Γ,fi−1,x∗
d d −d+ s−1

i−1∆ · fi−1,x∗ d −d α switching lemma

2.i .3 cti−1,i
x∗ ski

Γ,x∗i ,fi ,x∗
d d −d d+ s−1

i ∆ · fi ,x∗ −d α transition lemma, fi−1,x∗ = Mx∗i
fi ,x∗ mod p (Lemma 5)

2.i .4 cti
x∗ ski

Γ,x∗i ,fi ,x∗
d d −d d+ s−1

i ∆ · fi ,x∗ −d α switching lemma

3 ct`x∗ sk`,∗
Γ

d d −d d −d+ s−1
` ∆ · f α change of variables, DDH, f`,x∗ = f (Lemma 5)

4 ct`x∗ sk∗Γ d d −d d −d α+ s−1
end∆ transition lemma

5 ct∗x∗ sk∗
Γ

d d −d d −d α+ s−1
end∆ switching lemma

Fig. 8. Definition of h-functions with i ∈ [`]. In the table, we show both ciphertext and key in Hhxxx(Γ,x∗); as in Fig 6, we only describe the a2-components of the key. In the Remark

column, “DDH” indicates DDHG2
1,Q assumption.
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Neighbor indistinguishability. We first define several pairs of hybrids with b ∈ {0,1}:

– Ĥb
0 (u0,u1) is the same as Hub except that we output 0 whenever

(h0(Γ, x∗),h1(Γ, x∗)) 6= (u0,u1).

– Ĥb
1 (u0,u1) is the same as Hub except that we output 0 whenever

(h1(Γ, x∗),h2.1.0(Γ, x∗)) 6= (u0,u1).

– Ĥb
2.i .i ′ (u0,u1), for i ∈ [`] and i ′ ∈ [4], is the same as Hub except that we output 0 whenever

(h2.i .i ′−1(Γ, x∗),h2.i ,i ′ (Γ, x∗)) 6= (u0,u1).

– Ĥb
3 (u0,u1) is the same as Hub except that we output 0 whenever

(h2.`.4(Γ, x∗),h3(Γ, x∗)) 6= (u0,u1).

– Ĥb
4 (u0,u1) is the same as Hub except that we output 0 whenever

(h3(Γ, x∗),h4(Γ, x∗)) 6= (u0,u1).

– Ĥb
5 (u0,u1) is the same as Hub except that we output 0 whenever

(h4(Γ, x∗),h5(Γ, x∗)) 6= (u0,u1).

We will prove that each pair of hybrids are indistinguishable for all u0,u1 ∈ I × I ×Σ×EQ . Straightforward extensions of

the proofs in Section 4 are sufficient for the proof, we formally describe the lemma and defer all details to Appendix E.3.

Lemma 22 (Neighbor indistinguishability). For all xxx ∈ {0,1,3,4,5}∪{2.i .i ′ : i ∈ [`], i ′ ∈ [4]}, u0,u1 ∈ I × I ×Σ×EQ and

all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
xxx(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

xxx(u0,u1)〉 = 1] ≤O(|Σ|) ·Advk-LIN
B (λ).

Summary. By the adaptive security lemma (Lemma 20), Lemma 21 and Lemma 22 imply the core lemma, Lemma 19,

with the following two facts:

– all our h-functions have range of size at most O(|Σ|Q) since the first two outputs are constant and |EQ | = Q; that

is, we have R ′ =O(log |Σ|)+O(logQ);

– our proof employs O(`) h-functions; that is we have L =O(`).

6 Compact Adaptively Secure ABE for Branching Programs

In this section, we present our compact adaptively secure ABE for branching programs. We follow the same technical

line as that for our adaptively secure ABE for DFA from Section 3 to Section 5. In particular, we construct a semi-

adaptively secure ABE for NBP⊕p , which is an analogue of NFA⊕p ; then prove that the same scheme is adaptively secure

for a subclass of NBP⊕p in the piecewise guessing framework. This is sufficient to derive our scheme for branching

program. Before that, we begin with various notions of branching programs and their relationship.

6.1 (Layered) Branching Programs: Notions and Relationship

Recall that p is a global parameter and EQ = {e1, . . . ,eQ } is the set of all elementary row vectors of dimension Q. In this

section, we focus on layered branching programs.
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Branching Programs. As in Section 3, we use vector-matrix notation Γ = (Q,`BP,`, Σ, {M j ,σ} j∈[`BP],σ∈Σ,ρ,u, f ) to de-

scribe branching program (BP for short), nondeterministic branching program (NBP for short), p-bounded NBP (NBP<p

for short) and mod-p NBP (NBP⊕p for short) where width Q ∈N corresponds to the number states in NFA, `BP,` ∈N
describe program and input length, Σ is the alphabet, u, f ∈ {0,1}Q correspond to the start and accept states in NFA;

M j ,σ ∈ {0,1}Q×Q and ρ : [`BP] → [`] describe the transition function and index-to-input map. Let x = (x1, . . . , x`) denote

an input, then,

– for BP Γ, we have u ∈EQ , each column in every matrix M j ,σ is an elementary column vector (i.e., contains exactly

one 1) and Γ(x) = 1 ⇐⇒ fM`BP,xρ(`BP)
· · ·M1,xρ(1) u> = 1;

– for NBP Γ, we have Γ(x) = 1 ⇐⇒ fM`BP,xρ(`BP)
· · ·M1,xρ(1) u> ≥ 1;

– for NBP<p Γ, we have fM`BP,xρ(`BP)
· · ·M1,xρ(1) u> < p and Γ(x) = 1 ⇐⇒ fM`BP,xρ(`BP)

· · ·M1,xρ(1) u> ≥ 1;

– for NBP⊕p Γ, we have Γ(x) = 1 ⇐⇒ fM`BP,xρ(`BP)
· · ·M1,xρ(1) u> 6= 0 mod p.

As various notions of DFA and NFA, we have: BP ⊂ NBP<p⊂ NBP ∩ NBP⊕p .

EQ -restricted NBP⊕p . We introduce the notion of EQ -restricted NBP⊕p which is analogous to that of EQ -restricted

NFA⊕p in Section 3. An NBP⊕p Γ= (Q,`BP,`,Σ, {M j ,σ} j∈[`BP],σ∈Σ,ρ,u, f ) is EQ -restricted if for all x ∈Σ`, it holds that

fi ,x := fM`BP,xρ(`BP)
· · ·Mi+1,xρ(i+1) ∈EQ , ∀i ∈ [0,`].

Here M`BP,xρ(`BP)
· · ·Mi+1,xρ(i+1) for i = `BP refers to I of size Q ×Q.

Transforming BP to EQ -restricted NBP⊕p . In general, a BP is not necessarily a EQ -restricted NBP⊕p . The next lemma

says that we can nonetheless transform any BP into a EQ -restricted NBP⊕p :

Lemma 23 (BP to EQ -restricted NBP⊕p ). For each branching program Γ = (Q,`BP, `,Σ, {M j ,σ} j∈[`BP],σ∈Σ,ρ,u, f ), we

have NBP⊕p Γ> = (Q,`BP,`,Σ, {M>
τ( j ),σ} j∈[`BP],σ∈Σ,ρ ◦τ, f,u) with τ( j ) = `BP +1− j for all j ∈ [`BP] such that

1. Γ> is EQ -restricted;

2. for all x ∈Σ`, it holds that

Γ(x) = Γ>(x). (27)

Proof. Recall that the definition of BP implies two properties:

f ∈ {0,1}Q (28)

and (Mi ,xρ(i ) · · ·M1,xρ(1) u>)> ∈EQ , ∀i ∈ [0,`BP]. (29)

Property (29) comes from the facts that u ∈EQ and each column in every matrix M j ,σ is an elementary column vector.

We prove the two parts of the lemma as below.

– Γ> is EQ -restricted since we have

uM>
τ(`BP),xρ◦τ(`BP)

· · ·M>
τ(i+1),xρ◦τ(i+1)

= (M`BP−i ,xρ(`BP−i )
· · ·M1,xρ(1) u>)> ∈EQ , ∀i ∈ [0,`BP]

where the equality is implied by the structure of Γ> and we use property (29).

– To prove (27), we rely on the fact

Γ(x) = 1 ⇐⇒ fM`BP,xρ(`BP)
· · ·M1,xρ(1) u> = 1

⇐⇒ fM`BP,xρ(`BP)
· · ·M1,xρ(1) u> 6= 0 mod p

⇐⇒ uM>
τ(`BP),xρ◦τ(`BP)

· · ·M>
τ(1),xρ◦τ(1)

f> 6= 0 mod p

⇐⇒ Γ>(x) = 1.

The second ⇐⇒ follows from the fact that fM`BP,xρ(`BP)
· · ·M1,xρ(1) u> ∈ {0,1} which is implied by property (28)

and (29) while the third ⇐⇒ is implied by the structure of Γ>. ut
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6.2 Our ABE scheme for NBP⊕p

In this section, we describe our ABE scheme for NBP⊕p in the prime-order group which is motivated by our ABE

scheme for NFA⊕p in Section 4. We will prove that this scheme is semi-adaptively secure under k-Lin assumption

(see Section 6.3) and adaptively secure if the policy is EQ -restricted under the same assumption (see Section 6.4). We

remark that our scheme and proofs work for a more general form of NBP⊕p where u, f,M j ,σ are overZp instead of {0,1}.

Overview. Thanks to the similarity between NFA⊕p and NBP⊕p (cf. Section 3 and Section 6.1), we build our ABE for

NBP⊕p following the same paradigm as the ABE for NFA⊕p in Section 4. In particular, we pick Wη,σ for each η ∈ ` and

σ ∈Σ and pick D j for each j ∈ [0,`BP].

– During the key generation, we encode each M j ,σ as follows, which follows the spirit of our ABE for NFA⊕p :

[D j M j ,σ−D j−1 +Wρ( j ),σR j ]2, [R j ]2;

– During the encryption of x = (x1, . . . , x`) ∈Σ`, we have the following terms in the ciphertext as common ABEs:

[sA1]1,
{
[sA1Wη,xη ]1

}
η∈[`], [sA1k>]T ·m.

In contrast to ABE for NFA⊕p , we use fresh random coin R j for each j in secret keys. This is crucial to handle non-

injective ρ, see Appendix G.1 for an attack in the case of sharing random coins.

Basis. We will use the following basis used in [7,15] (which is distinct from that in Section 4 and 5):

A1 ←Zk×(k+1)
p , a2 ←Z1×(k+1)

p

and use (A‖
1 | a‖

2)> to denote its dual basis. The assumption SDG1
A1 7→A1,a2

and DDHG2
d ,Q can be defined as in Section 4.1.

Scheme. Our ABE for NBP⊕p in prime-order groups is described as follows:

– Setup(1λ,`,Σ) : Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A1 ←Zk×(k+1)
p , k ←Z1×(k+1)

p and Wstart,Wη,σ,Wend ←Z(k+1)×k
p for all η ∈ [`],σ ∈Σ.

Output

mpk= (
[A1, A1Wstart, {A1Wη,σ }η∈[`],σ∈Σ, A1Wend ]1, [A1k>]T

)
msk= (

k, Wstart, {Wη,σ }η∈[`],σ∈Σ, Wend
)
.

– Enc(mpk, x,m) : Let x = (x1, . . . , x`) ∈Σ` and m ∈GT . Pick s ←Z1×k
p and output

ctx =
(
[sA1]1, [sA1Wstart]1,

{
[sA1Wη,xη ]1

}
η∈[`], [sA1Wend]1, [sA1k>]T ·m

)
.

– KeyGen(mpk,msk,Γ) : Let Γ= (Q,`BP,`,Σ, {M j ,σ} j∈[`BP],σ∈Σ,ρ,u, f). Pick

D0,D1, . . . ,D`BP ←Z
(k+1)×Q
p , R1, . . . ,R`BP ,Rend ←Z

k×Q
p , r ←Z1×k

p

and output

skΓ =


[D0u>+Wstartr>]2, [r>]2{

[D j M j ,σ−D j−1 +Wρ( j ),σR j ]2, [R j ]2
}

j∈[`BP],σ∈Σ
[k>f−D`BP +WendRend]2, [Rend]2

 .
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– Dec(mpk,skΓ,ctx ) : Parse ciphertext for x = (x1, . . . , x`) and key for Γ= (Q,`BP,`,Σ, {M j ,σ} j∈[`BP],σ∈Σ,ρ,u, f) as:

ctx = (
[c]1, [cstart]1,

{
[cη]1

}
η, [cend]1,C

)
and skΓ =


[k>

start]2, [r>]2{
[K j ,σ]2, [R j ]2

}
j ,σ

[Kend]2, [Rend]2


We define

u>
j ,x = M j ,xρ( j ) · · ·M1,xρ(1) u> mod p, ∀ j ∈ [0,`BP] (30)

which are analogous to (11) for NFA⊕p in Section 4.2 and proceed as follows:

1. Compute

Bstart = e([c]1, [k>
start]2) ·e([cstart]1, [r>]2)−1;

2. For all j = 1, . . . ,`BP, compute

[b j ]T = e([c]1, [K j ,xρ( j ) ]2) ·e([−cρ( j )]1, [R j ]2) and B j = [b j u>
j−1,x ]T ;

3. Compute

[bend]T = e([c]1, [Kend]2) ·e([−cend]1, [Rend]2) and Bend = [bendu>
`BP,x ]T ;

4. Compute

Ball = Bstart ·∏`BP
j=1 B j ·Bend and B = B

(fu>
`BP,x )−1

all

and output the message m′ ←C ·B−1.

Correctness. For x = (x1, . . . , x`) and Γ= (Q,`BP,`,Σ, {M j ,σ} j∈[`BP],σ∈Σ,ρ,u, f) such that Γ(x) = 1, we have:

Bstart = [sA1D0u>]T = [sA1D0u>
0,x ]T (31)

b j = sA1D j M j ,xρ( j ) −sA1D j−1 (32)

B j = [sA1D j u>
j ,x −sA1D j−1u>

j−1,x ]T (33)

bend = sA1k>f−sA1D`BP (34)

Bend = [sA1k>fu>
`BP,x −sA1D`BP u>

`BP,x ]T (35)

Ball = [sA1k>fu>
`BP,x ]T (36)

B = [sA1k>]T (37)

Here (35) is trivial; (33) and (37) follow from facts

u>
j ,x = M j ,xρ( j ) u>

j−1,x mod p, ∀ j ∈ [`BP] and Γ(x) = 1 ⇐⇒ fu>
`BP,x 6= 0 mod p (38)

by the definition in (30), the remaining equalities follow from:

(31) sA1D0u> = sA1 · (D0u>+Wstartr>)−sA1Wstart · r>

(32) sA1D j M j ,xρ( j ) −sA1D j−1 = sA1 · (D j M j ,xρ( j ) −D j−1 +Wρ( j ),xρ( j ) R j )−sA1Wρ( j ),xρ( j ) ·R j

(34) sA1k>f−sA1D`BP = sA1 · (k>f−D`BP +WendRend)−sA1Wend ·Rend

(36) sA1k>fu>
`BP,x = sA1D0u>

0,x +
∑`BP

j=1(sA1D j u>
j ,x −sA1D j−1u>

j−1,x )+ (sA1k>fu>
`BP,x −sA1D`BP u>

`BP,x ).

Correctness follows readily.
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6.3 Semi-adaptive Security Security

We have the following theorem stating that the scheme in Section 6.2 is selectively secure. We remark that the proof

described in this subsection can be naturally extended to prove semi-adaptive security.

Theorem 3 (Selectively secure ABE for NBP⊕p ). The ABE scheme for NBP⊕p in prime-order bilinear groups described

above is selectively secure (cf. Section 2.1) under the k-Lin assumption with security loss O(q ·`BP · |Σ|). Here `BP are

maximal length of all NBPs in adversary’s key queries and q is the number of key queries.

We will give the proof in the one-key setting which is sufficient to motivate adaptive proof in Section 6.4 where we will

handle multiple key queries. Due to the similarity between NBP⊕p and NFA⊕p , our proof technique for NBP⊕p in this

section is borrowed from that for NFA⊕p in Section 4. We begin with auxiliary distributions.

Auxiliary distributions. Let x∗ ∈ Σ` denote the selective challenge and assume `BP > 1. We describe the auxiliary

ciphertext and key distributions that we use in the proof of security. Throughout, the distributions are the same as the

original distributions except for the a2-components which are defined analogous to Section 4.3; we will use the same

notation for them.

Ciphertext distribution. We sample s ←Zp and define:

– ct∗x∗ is the same as ctx∗ except we replace sA1 with sA1 + sa2.

That is, we have:

ct∗x∗ [2] = (
[s]1, [swstart]1,

{
[swη,xη ]1

}
η∈[`], [swend]1, [sα]T ·mβ

)
.

Secret key distributions. For any Γ= (Q,`BP,`,Σ, {M j ,σ} j∈[`BP],σ∈Σ,ρ,u, f), we define

fi ,x∗ = fM`BP,x∗
ρ(`BP)

· · ·Mi+1,x∗
ρ(i+1)

mod p, ∀i ∈ [0,`BP] (39)

analogous to (22) for NFA⊕p in Section 4.3. For all i ∈ [`BP], we sample ∆←Zp and define:

– sk0
Γ is the same as skΓ except we replace D0 with D0 +a‖

2 ·∆ · f0,x∗ in the term [D0u>+Wstartr>]2;

– ski
Γ is the same as skΓ except we replace Di with Di +a‖

2 ·∆·fi ,x∗ in the term [Di Mi ,σ−Di−1+Wρ(i ),σRi ]2 for allσ ∈Σ;

– ski−1,i
Γ

is the same as skΓ except we replace −Di−1 with −Di−1+a‖
2 ·∆·fi−1,x∗ in the term [Di Mi ,σ−Di−1+Wρ(i ),σRi ]2

for all σ ∈Σ;

– sk∗Γ is the same as skΓ except we replace −D`BP with −D`BP +a‖
2 ·∆ · f to the term [k>f−D`BP +WendRend]2.

That is, we have:

sk0
Γ[2] =


[(d0 + ∆ · f0,x∗ )u>+wstartr>]2, [r>]2{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j∈[`BP],σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2



ski
Γ[2] =


[d0u>+wstartr>]2, [r>]2{

[(di + ∆ · fi ,x∗ )Mi ,σ−di−1 +wρ(i ),σRi ]2, [Ri ]2
}
σ∈Σ{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j 6=i ,σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2



ski−1,i
Γ

[2] =


[d0u>+wstartr>]2, [r>]2{

[di Mi ,σ−di−1 + ∆ · fi−1,x∗ +wρ(i ),σRi ]2, [Ri ]2
}
σ∈Σ{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j 6=i ,σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2


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sk∗Γ[2] =


[d0u>+wstartr>]2, [r>]2{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j∈[`BP],σ∈Σ
[αf+ ∆ · f −d`BP +wendRend]2, [Rend]2

 .

The definition for keys for NBP⊕p follows the spirit of those for NFA⊕p in Section 4.3.

Game sequence. We prove Theorem 3 via a series of games summarized in Fig 9:

– G0: Identical to the real game.

– G1: Identical to G0 except that the challenge ciphertext is ct∗x∗ .

– G2.i .0, i ∈ [`BP]: In this game, the challenge ciphertext is ct∗x∗ and the secret key is ski−1
Γ .

– G2.i .1, i ∈ [`BP]: Identical to G2.i .0 except that the secret key is ski−1,i
Γ

.

– G2.i .2, i ∈ [`BP]: Identical to G2.i .1 except that the secret key is ski
Γ.

– G3: Identical to G2.`BP.2 except that the secret key is sk∗Γ.

Here we have G2.1.0 =G1 and G2.i .0 =G2.i−1.2 for i ∈ [2,`BP]. We note that the game sequence is quite similar to that in

Section 4.3: the games listed above roughly correspond to G0, G1, G2.i .0, G2.i .1, G2.i .3 and G3 there, respectively, and we

only change the ciphertext distribution once for all. Furthermore, we will borrow the proof technique from Section 4

to show the indistinguishability of each pair of adjacent games. The distinction is that we crucially use the property of

f0,x∗ , . . . , f`BP,x∗ defined in (39), which will be captured by the following lemma.

Useful Lemma. We describe the lemma which is analogous to Lemma 5.

Lemma 24 (Property of {fi ,x∗ }i∈[0,`BP]). For any Γ= (Q,`BP,`,Σ, {M j ,σ} j∈[`BP],σ∈Σ, ρ,u, f) and x∗ ∈Σ`, we have:

1. Γ(x∗) = 0 ⇐⇒ f0,x∗u> = 0 mod p;

2. fi−1,x∗ = fi ,x∗Mi ,x∗
ρ(i )

mod p for all i ∈ [`BP];

3. f`BP,x∗ = f.

Proof. The lemma directly follows from the definitions of NBP⊕p in Section 6.1 and f0,x∗ , . . . , f`BP,x∗ in (39). ut

Initializing & Finalizing. It is standard to prove that G0 ≈c G1 and Pr[〈A,G3〉 = 1] = 1/2. (See Appendix G.2 for details.)

We prove the following lemma stating that G1 ≈c G2.1.0, which is analogous to Lemma 6.

Lemma 25. For all A, we have

Pr[〈A,G1〉 = 1] = Pr[〈A,G2.1.0〉 = 1]

Proof. Roughly, we will prove that (
mpk,ct∗x∗ , skΓ

)= (
mpk,ct∗x∗ , sk0

Γ

)
where we have

skΓ[2] =


[ d0u> +wstartr>]2, [r>]2{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j∈[`BP],σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2

 ,

sk0
Γ[2] =


[ (d0 +∆ · f0,x∗ )u> +wstartr>]2, [r>]2{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j∈[`BP],σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2


and

ct∗x∗ [2] = (
[s]1, [swstart]1,

{
[swη,xη ]1

}
η∈[`], [swend]1, [sα]T ·mβ

)
.
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Game ctx∗ skΓ[2] Remark

? ·u>+wstartr> ? ·Mi−1,σ+? +wρ(i−1),σRi−1 ? ·Mi ,σ+?+wρ(i ),σRi αf+? +wendRend

0 ctx∗ skΓ d0 di−1,−di−2 di ,−di−1 −d`BP
Real game

1 ct∗x∗ skΓ d0 di−1,−di−2 di ,−di−1 −d`BP
SD

2.1.0 ct∗x∗ sk0
Γ d0 +∆ · f0,x∗ di−1,−di−2 di ,−di−1 −d`BP

f0,x∗u> = 0 mod p (Lemma 24)

2.i .0 ct∗x∗ ski−1
Γ d0 di−1 +∆ · fi−1,x∗ ,−di−2 di ,−di−1 −d`BP

i ∈ [2,`BP]

2.i .1 ct∗x∗ ski−1,i
Γ

d0 di−1,−di−2 di , −di−1 +∆ · fi−1,x∗ −d`BP
change of variables

2.i .2 ct∗x∗ ski
Γ d0 di−1,−di−2 di +∆ · fi ,x∗ , −di−1 −d`BP

DDH, fi−1,x∗ = fi ,x∗Mi ,xρ(i )
mod p (Lemma 24)

3 ct∗x∗ sk∗Γ d0 di−1,−di−2 di ,−di−1 −d`BP
+∆ · f change of variables, f`BP,x∗ = f (Lemma 24)

Fig. 9. Game sequence for selectively secure ABE for NBP⊕p with i ∈ [`BP]. We focus on the a2-components of skΓ and all terms in the fifth and sixth columns are quantified over

σ ∈Σ. In the Remark column, “SD” and “DDH” indicate SDG1
A1 7→A1,a2

and DDHG2
1,Q assumption, respectively.
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This follows from the statement:

skΓ[2]︷ ︸︸ ︷{
d0u> +wstartr>,r>

}=
sk0

Γ[2]︷ ︸︸ ︷{
(d0 +∆ · f0,x∗ )u> +wstartr>,r>

}
given d0,

ct∗
x∗ [2]︷ ︸︸ ︷

wstart

which is implied by the fact Γ(x∗) = 0 ⇐⇒ f0,x∗u> = 0 mod p, see Lemma 24. ut

Key switching I. We will prove that G2.i .0 ≈s G2.i .1 for all i ∈ [`BP] and G2.`BP.2 ≈s G3.The proofs of them are similar. We

begin with the following lemma stating that G2.1.0 ≈s G2.1.1, which is analogous to Lemma 7, and sketch the proofs for

remaining statements.

Lemma 26. For all A, we have

Pr[〈A,G2.1.0〉 = 1] ≈ Pr[〈A,G2.1.1〉 = 1].

Proof. Roughly, we will prove that (
mpk,ct∗x∗ , sk0

Γ

)≈s
(
mpk,ct∗x∗ , sk0,1

Γ

)
By Lemma 4, this means that

sk0
Γ[2] =


[ (d0 +∆ · f0,x∗ ) u>+wstartr>]2, [r>]2{

[d1M1,σ −d0 +wρ(1),σR1]2, [R1]2
}
σ∈Σ{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j 6=1,σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2

 ≈s


[ d0 u>+wstartr>]2, [r>]2{

[d1M1,σ −d0 +∆ · f0,x∗ +wρ(1),σR1]2, [R1]2
}
σ∈Σ{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j 6=1,σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2

= sk0,1
Γ

[2]

given

ct∗x∗ [2] = (
[s]1, [swstart]1,

{
[swη,xη ]1

}
η∈[`], [swend]1, [sα]T ·mβ

)
.

This immediately follows from change of variables d0 7→ d0 −∆ · f0,x∗ . Here we use the fact that d0 does not appear

elsewhere. ut

Via the same proof idea, we can prove the following two lemmas stating that G2.i .0 ≈c G2.i .1 for all i ∈ [2,`BP] and

G2.`BP.2 ≈c G3, respectively. The first lemma relies on change of variable di−1 7→ di−1 −∆ · fi−1,x∗ ; while the second

lemma relies on change of variable d`BP 7→ d`BP −∆ · f`BP,x∗ and the fact that f`BP,x∗ = f, see Lemma 24. We give the

lemmas and omit the proofs.

Lemma 27. For all i ∈ [2,`BP] and all A, we have

Pr[〈A,G2.i .0〉 = 1] ≈ Pr[〈A,G2.i .1〉 = 1].

Lemma 28. For all A, we have

Pr[〈A,G2.`BP.2〉 = 1] ≈ Pr[〈A,G3〉 = 1].

Key switching II. We prove the following lemma stating that G2.i .1 ≈c G2.i .2 for all i ∈ [`BP], which is analogous to

Lemma 17 and relies on the property of f0,x∗ , . . . , f`BP,x∗ , see Lemma 24.

Lemma 29. For all i ∈ [`BP] and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,G2.i .1〉 = 1]−Pr[〈A,G2.i .2〉 = 1] ≤O(|Σ|) ·AdvDDHG2
1,Q

B
(λ).
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Overview. Roughly, we are proving (
mpk, ct∗x∗ , ski−1,i

Γ

)≈c
(
mpk, ct∗x∗ , ski

Γ

)
More concretely, we want to prove the following statement over a2-components:

ski−1,i
Γ

[2]︷ ︸︸ ︷{
[di Mi ,σ−di−1 +∆ · fi−1,x∗ +wρ(i ),σRi ]2, [Ri ]2

}
σ∈Σ ≈c

ski
Γ[2]︷ ︸︸ ︷{

[di Mi ,σ−di−1 +∆ · fi ,x∗Mi ,σ +wρ(i ),σRi ]2, [Ri ]2
}
σ∈Σ

given wρ(i ),x∗
ρ(i )

leaked by ct∗x∗ [2] and di ,di−1 appeared in other subkeys. Then,

– we handle terms with σ 6= x∗
ρ(i ) using DDHG2

1,Q assumption w.r.t. wρ(i ),σ; this relies on the fact that wρ(i ),σ with

σ 6= x∗
ρ(i ) are not leaked;

– we handle the remaining term, i.e., one with σ= x∗
ρ(i ), by the fact that fi−1,x∗ = fi ,x∗Mi ,x∗

ρ(i )
mod p, see Lemma 24;

note that we cannot use DDHG2
1,Q assumption for this case since wρ(i ),x∗

ρ(i )
is leaked via ct∗x∗ [2].

Proof. By Lemma 4, it suffices to prove the lemma over a2-components which roughly means:

ski−1,i
Γ

[2] =


[d0u>+wstartr>]2, [r>]2{

[di Mi ,σ−di−1 + ∆ · fi−1,x∗ +wρ(i ),σRi ]2, [Ri ]2
}
σ∈Σ{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j 6=i ,σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2



≈c


[d0u>+wstartr>]2, [r>]2{

[di Mi ,σ−di−1 + ∆ · fi ,x∗Mi ,σ +wρ(i ),σRi ]2, [Ri ]2
}
σ∈Σ{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j 6=i ,σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2

= ski
Γ[2]

in the presence of

ct∗x∗ [2] = (
[s]1, [swstart]1,

{
[swη,xη ]1

}
η∈[`], [swend]1, [sα]T ·mβ

)
.

One can sample basis A1,a2,A‖
1,a‖

2 and trivially simulate mpk, ct∗x∗ and secret key using terms given out above. Fur-

thermore, we prove this using the following statement implied by DDHG2
1,Q assumption: for all ∆ ∈Zp , we have{

[wρ(i ),σB]2, [B]2, [∆ · fi−1,x∗ +wρ(i ),σRi ]2, [Ri ]2
}
σ6=x∗

ρ(i )
≈c

{
[wρ(i ),σB]2, [B]2, [∆ · fi ,x∗Mi ,σ +wρ(i ),σRi ]2, [Ri ]2

}
σ6=x∗

ρ(i )

where wρ(i ),σ←Z1×k
p , B ←Zk×k

p and Ri ←Z
k×Q
p . On input

{
[wρ(i ),σB]2, [B]2, [tσ]2, [Ri ]2

}
σ6=x∗

ρ(i )
where

tσ =∆ · fi−1,x∗ +wρ(i ),σRi or tσ =∆ · fi ,x∗Mi ,σ +wρ(i ),σRi ,

we sample α←Zp ,wstart,wρ(i ),x∗
ρ(i )

,wend ←Z1×k
p and wη,σ←Z1×k

p for all η 6= ρ(i ),σ ∈Σ and proceed as follows:

(Simulating the ciphertext) On input (m0,m1), we sample s ← Zp and simulate ct∗x∗ [2] using the knowledge of

wρ(i ),x∗
ρ(i )

and {wη,x∗
η

}η 6=ρ(i ). Here we use the fact that the ciphertext does not involve {wρ(i ),σ}σ6=x∗
ρ(i )

.

(Simulating the secret key) On input Γ, we want to simulate secret key for Γ in the following form:

[d0u>+wstartr>]2, [r>]2{
[di Mi ,x∗

ρ(i )
−di−1 +∆ · fi−1,x∗ +wρ(i ),x∗

ρ(i )
Ri ]2, [Ri ]2

}{
[di Mi ,σ−di−1 + tσ]2, [Ri ]2

}
σ6=x∗

ρ(i ){
[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2

}
j 6=i ,σ∈Σ

[αf−d`BP +wendRend]2, [Rend]2


Observe that,
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– when tσ =∆ · fi−1,x∗ +wρ(i ),σRi , the distribution is identical to ski−1,i
Γ

[2] ;

– when tσ = ∆ · fi ,x∗Mi ,σ +wρ(i ),σRi , the distribution is identical to ski
Γ[2] since fi−1,x∗ = fi ,x∗Mi ,x∗

ρ(i )
mod p, see

Lemma 24.

We sample d0, . . . ,d`BP ←Z
1×Q
p and simulate the key as follows:

– We simulate the terms in the second row using [Ri ]2 and wρ(i ),x∗
ρ(i )

;

– We simulate the terms in the third row using [tσ]2 and [Ri ]2;

– All remaining terms can be simulated using {wη,σ}η 6=ρ(i ),σ∈Σ, { [wρ(i ),σB]2}σ6=x∗
ρ(i )

, wρ(i ),x∗
ρ(i )

, wstart, wend and [B]2.

Observe that, when tσ = ∆ · fi−1,x∗ +wρ(i ),σRi , the secret key is ski−1,i
Γ

[2] and the simulation is identical to G2.i .1;

when tσ =∆ · fi ,x∗Mi ,σ +wρ(i ),σRi , the secret key is ski
Γ[2] and the simulation is identical to G2.i .2. This completes the

proof. ut

6.4 Adaptive Security for EQ -restricted NBP⊕p

In this subsection, we prove that the scheme in Section 6.2 is adaptively secure for EQ -restricted NBP⊕p . By Lemma 23,

this immediately gives us our compact adaptively secure ABE for branching program. We prove the following theorem

for EQ -restricted NBP⊕p and defer the resultant concrete construction of ABE for branching programs to Appendix H.

Theorem 4 (Adaptively secure ABE for EQ -restricted NBP⊕p ). The ABE scheme for EQ -restricted NBP⊕p in prime-

order bilinear groups described in Section 6.2 is adaptively secure (cf. Section 2.1) under the k-Lin assumption with

security loss O(q ·`BP · |Σ|2 ·Q2). Here `BP are maximal length of all NBPs in adversary’s key queries and q is the number

of key queries.

We will prove the theorem using the proof technique for the one-key selective security in Section 6.3 and the piece-

wise guessing framework [15]. This is analogous to the proof in Section 5. Let x∗ ∈ Σ` denote the adaptive challenge.

Without loss of generality, we assume `BP > 1.

Game sequence. We prove Theorem 4 via a series of games following the standard dual system method [20]:

– G0: Identical to the real game.

– G1: Identical to G0 except that the challenge ciphertext is ct∗x∗ .

– G2.κ for κ ∈ [0, q]: Identical to G1 except that the first κ secret keys are sk∗Γ.

– G3: Identical to G2.q except that the challenge ciphertext is an encryption of a random message.

Here we have G2.0 =G1. It is standard to prove G0 ≈c G1, G2.q ≈c G3 and show that adversary in G3 has no advantage.

To prove G2.κ−1 ≈c G2.κ for all κ ∈ [q], we use the following core lemma.

Lemma 30 (Core lemma). For all A, there exists B with Time(B) ≈Time(A) and

AdvCORE
A (λ) = Pr[〈A,H0〉 = 1]−Pr[〈A,H1〉 = 1] ≤O(` · |Σ|2 ·Q2) ·Advk-LIN

B (λ)

where, for all b ∈ {0,1}, we define:

〈A,Hb〉 := {
b′ ←AOEnc(·),OKey(·)(aux)

}
where

aux= (
[B, {w j ,σB } j∈[`],σ∈Σ]2,α,∆,wstart,wend

)
with wstart,wend,w j ,σ←Z1×k

p , B ←Zk×k
p , ∆←Zp and the two oracles work as follows:

– OEnc(x∗): output {wη,x∗
η

}η∈[`];
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– OKey(Γ): output skΓ[2] if b = 0; output sk∗Γ[2] using ∆ in aux if b = 1;

with the restrictions that (1) A makes only one query to each oracle; (2) queries Γ and x∗ satisfy Γ(x∗) = 0.

It is direct to see that the core lemma implies G2.κ−1 ≈c G2.κ; here aux are used to simulate other q − 1 keys. (See

Appendix G.3 for details.) In the remaining of this section, we will focus on proving the core lemma, which completes

the proof of Theorem 4. For this purpose, we employ the piecewise guessing framework along with a series of hybrids,

defined by Hu and h-functions, analogous to Section 6.3. We begin with more auxiliary distributions.

More auxiliary distributions. Recall that the query to OKey is EQ -restricted. For all i ∈ [`BP] and p ∈EQ , we define:

– sk0
Γ,p[2] is the same as skΓ[2] except we replace d0 with d0 +∆ ·p in the term [d0u>+wstartr>]2;

– ski
Γ,p[2] is the same as skΓ[2] except we replace di with di +∆ ·p in the term [di Mi ,σ−di−1+wρ(i ),σRi ]2 for allσ ∈Σ;

– ski−1,i
Γ,p [2] is the same as skΓ[2] except we replace −di−1 with −di−1+∆ ·p in the term [di Mi ,σ−di−1+wρ(i ),σRi ]2 for

all σ ∈Σ;

That is, we have:

sk0
Γ,p[2] =


[(d0 + ∆ ·p )u>+wstartr>]2, [r>]2{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j∈[`BP],σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2



ski
Γ,p[2] =


[d0u>+wstartr>]2, [r>]2{

[(di + ∆ ·p )Mi ,σ−di−1 +wρ(i ),σRi ]2, [Ri ]2
}
σ∈Σ{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j 6=i ,σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2



ski−1,i
Γ,p [2] =


[d0u>+wstartr>]2, [r>]2{

[di Mi ,σ−di−1 + ∆ ·p +wρ(i ),σRi ]2, [Ri ]2
}
σ∈Σ{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j 6=i ,σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2

 .

The auxiliary distributions here are analogous to those in Section 6.3 except that we use general p in the place of fi ,x∗ .

Note that this corresponds to the piecewise information we need to guess in the proof.

Hybrids {Hu }u and h-functions. We are ready to define {Hu}u and h-functions in the adaptive security lemma (Lemma 20).

Defining u and Hu . For our setting, we require u to determine the forms of key (output by OKey) in a hybrid, this

includes the superscript of key and piecewise information p. For this purpose, we define

u ∈ I ×EQ

where

I = {0,1, . . . ,`BP,∗}∪ {(0,1), (1,2) . . . , (`BP −1,`BP)}

is the set of superscripts of auxiliary keys and EQ includes all possibilities of p. Again, we allow a special symbol “⊥” at

any positions indicating an empty output. Then, for all u = (S,p) ∈ I ×EQ , we define hybrid HS,p to be identical to H0

(or H1) except that

– oracle OKey(Γ) returns skS
Γ,yyy[2] with yyy depending on S or skΓ[2] when S =⊥.
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Defining h-functions. In both H0 and H1, the adversary A adaptively chooses Γ and x∗, therefore we employ a family

of functions

hxxx : NBP⊕p ×Σ∗ → I ×EQ

with the first input being EQ -restricted. Recall that, for x∗ and a EQ -restricted NBP⊕p Γ of length `BP, we can define

f0,x∗ , . . . , f`BP,x∗ ∈EQ as (39) as in Section 6.3. We define h-functions as below which describes a series of hybrids anal-

ogous to that for selective security. We show the corresponding selective game for each function as a remark.

h0 : (Γ, x∗) 7−→ (⊥, ⊥ ); // G1

h1.i .0 : (Γ, x∗) 7−→ ({i −1}, fi−1,x∗ ); ∀ i ∈ [`BP]; // G2.i .0

h1.i .1 : (Γ, x∗) 7−→ ({i −1, i }, fi−1,x∗ ); ∀ i ∈ [`BP]; // G2.i .1

h1.i .2 : (Γ, x∗) 7−→ ({i }, fi ,x∗ ); ∀ i ∈ [`BP]; // G2.i .2

h2 : (Γ, x∗) 7−→ ({∗}, ⊥ ); // G3

Note that we have h1.i .0 = h1.i−1.2 for all i ∈ [2,`BP] and sk∗Γ is shown in Section 6.3.

Proving the core lemma. As in Section 5.4, we check (1) end-point equivalence and (2) neighbor indistinguishability.

End-point equivalence. It is clear that our hybrids {Hu}u and h-functions satisfy the end-point equivalence. This fol-

lows from the fact that h0 and h2 are constant functions which indicate the same types of keys as in H0 and H1, respec-

tively. Formally, we give the following lemma.

Lemma 31 (End-point equivalence). For all (Γ, x∗) ∈ I ×EQ , we have

Hh0(Γ,x∗) =H0 and Hh2(Γ,x∗) =H1.

Neighbor indistinguishability. We first define several pairs of hybrids with b ∈ {0,1}:

– Ĥb
0 (u0,u1) is the same as Hub except that we output 0 whenever

(h0(Γ, x∗),h1.1.0(Γ, x∗)) 6= (u0,u1).

– Ĥb
1.i .i ′ (u0,u1), for i ∈ [`BP] and i ′ ∈ [2], is the same as Hub except that we output 0 whenever

(h1.i .i ′−1(Γ, x∗),h1.i ,i ′ (Γ, x∗)) 6= (u0,u1).

– Ĥb
2 (u0,u1) is the same as Hub except that we output 0 whenever

(h1.`BP.2(Γ, x∗),h2(Γ, x∗)) 6= (u0,u1).

and claim that each pair of hybrids are indistinguishable for all u0,u1 ∈ I ×EQ . Formally, we have the following lemma.

The proof essentially follows those in Section 6.3. (See Appendix G.4 for more details.)

Lemma 32 (Neighbor indistinguishability). For all xxx ∈ {0,2}∪ {1.i .i ′ : i ∈ [`BP], i ′ ∈ [2]}, u0,u1 ∈ I ×EQ and all A,

there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
xxx(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

xxx(u0,u1)〉 = 1] ≤O(|Σ|2) ·Advk-LIN
B (λ).

Summary. By the adaptive security lemma (Lemma 20), we have that Lemma 31 and Lemma 32 imply the core lemma,

Lemma 30, with the following two facts:

– all our h-functions have range of size at most O(Q) since the first output is constant and |EQ | =Q; that is, we have

R ′ =O(logQ);

– our proof employs O(`BP) h-functions; that is we have L =O(`BP).
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Appendix

A An Example for Back-tracking Attack

We assume an (asymmetric) bilinear groupG= (p,G1,G2,GT ,e) of prime order p and use [·]1, [·]2, [·]T to denote component-

wise exponentiations in respective groups G1,G2,GT [10]. The natural NFA extension of Waters’ ABE for DFA [21] men-

tioned in Section 1.1 can be formally described as follows:

msk = (
wstart, wend, z, {wσ}σ∈Σ, α

)
(40)

mpk = (
[wstart]1, [wend]1, [z]1,

{
[wσ]1

}
σ∈Σ, [α]T

)
ctx =


[s0]1, [s0wstart]1{

[s j ]1, [s j−1z + s j wx j ]1
}

j∈[`]

[s`]1, [s`wend]1, [s`α]T ·m



skΓ =


{

[du +wstartrstart,u]2, [rstart,u]2
}

u∈S{
[−du + zru,σ,v ]2, [dv +wσru,σ,v ]2, [ru,σ,v ]2

}
u∈[Q],σ∈Σ,v∈δ(u,σ){

[α−du +wendrend,u]2, [rend,u]2
}

u∈F


where Σ is the alphabet, S,F ⊆ [Q] are the sets of start states and accept states, respectively, and δ : [Q]×Σ→ 2[Q] is the

NFA transition function. Clearly, as (2) in Section 1.1, ctx and skΓ allow us to compute quantities:

[s j dv − s j−1du]T , ∀ j ∈ [`],u ∈ [Q], v ∈ δ(u, x j ) ⊆ [Q]. (41)

We illustrate the back-tracking attack against (40) by an example. Consider a concrete NFA Γ defined by Q = 4,Σ=
{0},S = {1},F = {4} and δ describing two nondeterministic transitions: 1

07→ {1,2} and 3
07→ {2,4}, whose key will be

skΓ =



[d1 +wstartr0]2, [r0]2

[−d1 + zr1]2, [d1 +wr1]2, [r1]2

[−d1 + zr2]2, [d2 +wr2]2, [r2]2

[−d3 + zr3]2, [d2 +wr3]2, [r3]2

[−d3 + zr4]2, [d4 +wr4]2, [r4]2

[α−d4 +wendr ]2, [r ]2


and input x being a single 0, whose ciphertext will be

ctx =


[s0]1, [s0wstart]1

[s1]1, [s0z + s1w]1

[s1]1, [s1wend]1, [s1α]T ·m


Clearly, since the NFA Γ does not accept x = 0, the key skΓ is not supposed to decrypt the ciphertext ctx . However this

is not the case for (40). Following (41), we can recover the following quantities:

D0 = [s0d1]T , D1 = [s1d2 − s0d1]T , D2 = [s1d2 − s0d3]T , D3 = [s1d4 − s0d3]T , D4 = [s1α− s1d4]T

and compute the masking value:

[s1α]T = D0 ·D1 ·D−1
2 ·D3 ·D4.

Intuitively, this corresponds to running the NFA normally with transition 1
07→ 2, and back-tracking along the transition

3
07→ 2, which allows us to restart from state 3 and finally reaching the accept state 4 by transition 3

07→ 4.
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B Basic ABE for NFA⊕p from `-EBDHE assumption

In this section, we describe our basic ABE scheme for NFA⊕p from (asymmetric) bilinear group G= (p,G1,G2,GT ,e) of

prime order p. We assume that respective generators for every groups are described inG and use [·]1, [·]2, [·]T to denote

component-wise exponentiations in the prime-order groups G1,G2,GT [10]. The scheme is selectively secure under

`-EBDHE assumption (in the asymmetric prime-order bilinear groups). The proof is an extension of Waters’ proof for

the ABE for DFA in [21] based on the same assumption. We review the `-EBDHE assumption [21] in the asymmetric

bilinear group of prime order.

Assumption 2 (`-EBDHE assumption) We say that the `-EBDHE assumption holds if for all PPT adversaries A, the

following advantage function is negligible in λ.

Adv`-EBDHE
A (λ) := ∣∣Pr[A(G, [D]1, [D]2, [t0]T ) = 1]−Pr[A(G, [D]1, [D]2, [t1]T ) = 1]

∣∣
where G= (p,G1,G2,GT ,e) ←G(1λ) and

D =



a, b, ab/d , b/d

ai s, ai bs/c j ∀i ∈ [0,2`+1] \ {`+1}, j ∈ [0,`+1]

ai b/ci , ci , ai d , abci /d , bci /d ∀i ∈ [0,`+1]

ai bd/c j ∀i ∈ [0,2`+1], j ∈ [0,`+1]

ai bc j /ci ∀i , j ∈ [0,`+1], i 6= j

 and t0 = a`+1bs, t1 ←Zp

with a,b,c0, . . . ,c`,d , s ←Zp .

Scheme. Our basic ABE for NFA⊕p in the asymmetric bilinear groups is as follows:

– Setup(1λ,Σ) : Run G= (p,G1,G2, ,GT ,e) ←G(1λ). Sample

α, wstart, wend, z, wσ←Zp , ∀σ ∈Σ.

Output

mpk= (
[wstart]1, [wend]1, [z]1,

{
[wσ]1

}
σ∈Σ, [α]T

)
msk= (

wstart, wend, z, {wσ}σ∈Σ, α
)
.

– Enc(mpk, x,m) : Let x = (x1, . . . , x`) ∈Σ` and m ∈GT . Pick s0, s1, . . . , s`←Zp and output

ctx =


[s0]1, [s0wstart]1{

[s j ]1, [s j−1z + s j wx j ]1
}

j∈[`]

[s`]1, [s`wend]1, [s`α]T ·m

 .

– KeyGen(mpk,msk,Γ) : Let Γ = (Q,Σ, {Mσ}σ∈Σ,u, f ). Pick d ← Z
1×Q
p , rstart ← Zp , rσ,rend ← Z

1×Q
p for all σ ∈ Σ and

output

skΓ =


[du>+wstartrstart]2, [rstart]2{

[−d+ zrσ]2, [dMσ+wσrσ]2, [rσ]2
}
σ∈Σ

[αf−d+wendrend]2, [rend]2

 .

– Dec(mpk,skΓ,ctx ) : Parse ciphertext for x = (x1, . . . , x`) and key for Γ= (Q,Σ, {Mσ}σ∈Σ,u, f ) as

ctx =


[s0]1, [c0]1{

[s j ]1, [c j ]1
}

j

[s`]1, [cend]1,C

 and skΓ =


[kstart]2, [rstart]2{

[kσ,1]2, [kσ,2]2, [rσ]2
}
σ

[kend]2, [rend]2


We define

u>
j ,x = Mx j · · ·Mx1 u> mod p, ∀ j ∈ [`]

as (11) and proceed as follows:
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1. Compute

B0 = e([s0]1, [kstart]2) ·e([c0]1, [rstart]2)−1;

2. For all j ∈ [`], compute

[b j ]T = e([s j−1]1, [kx j ,1]2) ·e([s j ]1, [kx j ,2]2) ·e([−c j ]1, [rx j ]2) and B j = [b j u>
j−1,x ]T

3. Compute

[bend]T = e([s`]1, [kend]2) ·e([−cend]1, [rend]2) and Bend = [bendu>
`,x ]T

4. Compute

Ball = B0 ·∏`
j=1 B j ·Bend and B = B

(fu>
`,x )−1

all

and output the message m′ ←C ·B−1.

The correctness is direct.

Selective security. We prove the following theorem.

Theorem 5. The above ABE scheme for NFA⊕p in the asymmetric bilinear groups of prime order p is selectively secure

under the `-EBDHE assumption (cf. Assumption 2). Here ` is the length of the challenge input x∗.

Proof. Let x∗ be the selective challenge input of length `, we use `-EBDHE assumption. For convenience, we artifi-

cially set x∗
0 = x∗

`+1 = ⊥ ∉ Σ. On input (G, [D]1, [D]2, [t ]T ) where either t = a`+1bs or t ← Zp , the reduction works as

follows:

(Simulating mpk) We sample w̃start, w̃end, z̃, w̃σ←Zp for all σ ∈Σ and implicitly set

α= ab, wstart = w̃start −
∑

i∈[`]
a`+1−i b/c`+1−i , wend = w̃end −

∑
i∈[0,`−1]

a`+1−i b/c`+1−i

z = z̃ +ab/d , wσ = w̃σ−b/d − ∑
i∈[0,`+1],σ6=x∗

i

a`+1−i b/c`+1−i , ∀σ ∈Σ

Then terms in mpk can be simulated using [a,b, ab/d ,b/d , {ai b/ci }i∈[0,`+1]]1 provided in [D]1.

(Simulating challenge ciphertext) On input (m0,m1), we sample s̃0, . . . , s̃`←Zp , β← {0,1} and implicitly set

si = s̃`+ai s, ∀i ∈ [0,`]

and want to simulate a challenge ciphertext in the following form:
[s0]1, [s0wstart]1{

[si ]1, [si−1z + si wxi ]1
}

i∈[`]

[s`]1, [s`wend]1, [t ]T ·e([a]1, [b]2)s̃` ·mβ


Observe that, when t = a`+1bs, the ciphertext is identical to the real one; when t ←Zp , the ciphertext perfectly hides

β. We proceed to simulate each term in the challenge ciphertext as below:

– We can simulate [si ]1 = [s̃i ]1 · [ai s]1 for all i ∈ [0,`] using {[ai s]1}i∈[0,`] from [D]1.

– We can simulate [s0wstart]1 where

s0wstart = (s̃0 + s) ·
(
w̃start −

∑
i∈[`]

a`+1−i b/c`+1−i

)
,

using [s, {ai b/ci , ai bs/ci }i∈[`]]1 in [D]1.
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– We can simulate [s`wend]1 where

s`wend = (s̃ +a`s) ·
(
w̃end −

∑
i∈[0,`−1]

a`+1−i b/c`+1−i

)
using [a`s, {ai b/ci , a`+i bs/ci }i∈[2,`+1]]1 in [D]1.

– For all j ∈ [`], we can simulate [s j−1z + s j wx∗
j

]1 where

s j−1z + s j wx∗
j
= (s̃ j−1 +a j−1s) · (z̃ +ab/d)+ (s̃ j +a j s) ·

(
w̃σ−b/d − ∑

i∈[0,`+1],x∗
j 6=x∗

i

a`+1−i b/c`+1−i

)

using [a j−1s, a j s,b/d , {ai b/ci , ai+ j bs/ci }i∈[0,`+1],i+ j 6=`+1]1 from [D]1. This follows from a j−1s ·ab/d−a j s ·b/d = 0.

(Simulating secret key) On input Γ, we compute {fi ,x∗ }i∈[0,`] as in Section 1.2 (also see (22) in Section 4.3) and artifi-

cially set f−1,x∗ = f`+1,x∗ = 0. We sample d̃, r̃σ, r̃end ←Z
1×Q
p , r̃start ←Zp for all σ ∈Σ and implicitly set

d = d̃+ ∑
i∈[0,`]

a`+1−i b · fi ,x∗

rstart = r̃start +
∑

i∈[`]
c`+1−i · fi ,x∗u>

rσ = r̃σ+
∑

i∈[0,`]
a`−i d · fi ,x∗ + ∑

i∈[0,`+1]
c`+1−i · (fi ,x∗Mσ− fi−1,x∗ ), ∀σ ∈Σ

rend = r̃end +
∑

i∈[0,`−1]
c`+1−i · fi ,x∗

We proceed to simulate each term in the secret key as below:

– We can simulate [rstart]2, [rσ]2, [rend]2 from [{ci }i∈[0,`+1], {ai d}i∈[0,`]]2 provided in [D]2.

– We can simulate [du>+wstartrstart]2 where

du>+wstartrstart =
(
d̃+ ∑

i∈[0,`]
a`+1−i b · fi ,x∗u>

)
+

(
w̃start −

∑
i∈[`]

a`+1−i b/c`+1−i

)
·
(
r̃start +

∑
i∈[`]

c`+1−i · fi ,x∗u>
)

using [{ci }i∈[`], {ai b/ci }i∈[`], {ai bc j /ci }i , j∈[`],i 6= j ]2 from [D]2. This follows from∑
i∈[0,`]

a`+1−i b · fi ,x∗u>− ∑
i∈[`]

a`+1−i b/c`+1−i ·
∑

i∈[`]
c`+1−i · fi ,x∗u>

= ∑
i∈[`]

a`+1−i b · fi ,x∗u>− ∑
i∈[`]

a`+1−i b/c`+1−i ·
∑

i∈[`]
c`+1−i · fi ,x∗u>

= − ∑
i , j∈[`],i 6= j

a`+1−i bc`+1− j /c`+1−i f j ,x∗u>

in which all terms of the form ai b are canceled out. Here the first equality uses the fact that f0,x∗u> = 0 mod p.

– We can simulate [αf−d+wendrend]2 where

αf−d+wendrend = ab · f−
(
d̃+ ∑

i∈[0,`]
a`+1−i b · fi ,x∗

)
+

(
w̃end −

∑
i∈[0,`−1]

a`+1−i b/c`+1−i

)
·
(
r̃end +

∑
i∈[0,`−1]

c`+1−i · fi ,x∗
)

using [{ci }i∈[2,`+1], {ai b/ci }i∈[2,`+1], {ai bc j /ci }i , j∈[2,`+1],i 6= j ]2 from [D]2. This follows form

ab · f− ∑
i∈[0,`]

a`+1−i b · fi ,x∗ − ∑
i∈[0,`−1]

a`+1−i b/c`+1−i ·
∑

i∈[0,`−1]
c`+1−i · fi ,x∗

= − ∑
i∈[0,`−1]

a`+1−i b · fi ,x∗ − ∑
i∈[0,`−1]

a`+1−i b/c`+1−i ·
∑

i∈[0,`−1]
c`+1−i · fi ,x∗

= − ∑
i , j∈[0,`−1],i 6= j

a`+1−i bc`+1− j /c`+1−i · fi ,x∗

in which all terms of the form ai b are canceled out. Here the first equality utilizes the definition f`,x∗ = f.
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– For all σ, we can simulate [−d+ zrσ]2 where

−d+ zrσ =−
(
d̃+ ∑

i∈[0,`]
a`+1−i b · fi ,x∗

)
+ (z̃ +ab/d) ·

(
r̃σ+

∑
i∈[0,`]

a`−i d · fi ,x∗ + ∑
i∈[0,`+1]

c`+1−i · (fi ,x∗Mσ− fi−1,x∗ )
)

using [ab/d , {ai d}i∈[0,`], {ci }i∈[0,`+1], {abci /d}i∈[0,`+1]]2 from [D2]. This follows from

− ∑
i∈[0,`]

a`+1−i b · fi ,x∗ +ab/d · ∑
i∈[0,`]

a`−i d · fi ,x∗ =− ∑
i∈[0,`]

a`+1−i b · fi ,x∗ + ∑
i∈[0,`]

a`+1−i b · fi ,x∗ = 0.

– For all σ, we can simulate [dMσ+wσrσ]2 where

dMσ+wσrσ

=
(
d̃+ ∑

i∈[0,`]
a`+1−i b · fi ,x∗Mσ

)
+

(
w̃σ−b/d − ∑

i∈[0,`+1],σ6=x∗
i

a`+1−i b/c`+1−i

)
·
(
r̃σ+

∑
i∈[0,`]

a`−i d · fi ,x∗ + ∑
i∈[0,`+1]

c`+1−i · (fi ,x∗Mσ− fi−1,x∗ )
)

using [b/d , {ai d}i∈[0,`], {ci }i∈[0,`+1], {bci /d}i∈[0,`+1], {ai+ j−1bd/ci }i , j∈[`+1]]2 and {ai bc j /ci }i , j∈[0,`+1],i 6= j ]2 from [D]2.

This follows from∑
i∈[0,`]

a`+1−i b · fi ,x∗Mσ−b/d · ∑
i∈[0,`]

a`−i d · fi ,x∗ − ∑
i∈[0,`+1],σ6=x∗

i

a`+1−i b/c`+1−i ·
∑

i∈[0,`+1]
c`+1−i · (fi ,x∗Mσ− fi−1,x∗ )

= ∑
i∈[0,`]

a`+1−i b · fi ,x∗Mσ−
∑

i∈[1,`+1]
a`+1−i b · fi−1,x∗ − ∑

i∈[0,`+1],σ6=x∗
i

a`+1−i b/c`+1−i ·
∑

i∈[0,`+1]
c`+1−i · (fi ,x∗Mσ− fi−1,x∗ )

= ∑
i∈[0,`+1],σ6=x∗

i

a`+1−i b · (fi ,x∗Mσ− fi−1,x∗ )− ∑
i∈[0,`+1],σ6=x∗

i

a`+1−i b/c`+1−i ·
∑

i∈[0,`+1]
c`+1−i · (fi ,x∗Mσ− fi−1,x∗ )

= − ∑
i , j∈[0,`+1],i 6= j ,σ6=x∗

i

a`+1−i bc`+1− j /c`+1−i · (fi ,x∗Mσ− fi−1,x∗ )

in which all terms of the form ai b are canceled out. Here the second equality utilizes the fact that fi ,x∗Mx∗
i
=

fi−1,x∗ mod p, see Lemma 5.

Observe that, when t = a`+1bs, the simulation is identical to the real game; when t ← Zp , the simulation hides β

perfectly and adversary’s advantage is 0. This readily proves the lemma. ut

C An Example for Reversing DFA

In this section, we give an example showing the idea of reversing DFA. Consider the regular language 01{0,1}∗ recog-

nized by DFA Γ with Q = 3,Σ= {0,1},F = {3} and δ describing transitions:

1
07→ 2, 2

17→ 3, 3
0/17→ 3.

On input x = 0100, the sets Ui of states reachable from start state after reading the first i bits and the sets Fi of states

reachable by back-tracking from accept states after reading the last i bits are as follows:

U0 = {1}, U1 = {2}, U2 = {3}, U3 = {3}, U4 = {3}

F0 = {3}, F1 = {3}, F2 = {3}, F3 = {2,3}, F4 = {1,3}

Clearly, Γ is not E3-restricted; since |F3| > 1 and |F4| > 1, we cannot use elementary row vectors in E3 to express them.

The reversed DFA Γ> is defined by the same Q and Σ but with set of start states U = {3}, set of accept states F = {1}

and δ describing transitions:

3
07→ {3}, 3

17→ {2,3}, 2
07→ {1}.
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Here we have a transition u
σ7→ v whenever there is a transition v

σ7→ u in the original DFA. For correctness, we also

reverse the input as x> = 0010; note that the original x = 0100 will be rejected by Γ>. Then we have

U0 = {3}, U1 = {3}, U2 = {3}, U3 = {2,3}, U4 = {1,3}

F0 = {1}, F1 = {2}, F2 = {3}, F3 = {3}, F4 = {3}

One can see that Γ> is an NFA due to the nondeterministic transition on input bit 1, but now we indeed have |Fi | = 1

for all i = 0,1,2,3,4 that is desirable for the proof. In fact this holds for all inputs and Γ> is E3-restricted (see Section 3

for formal proof). Roughly, by reversing DFA, we exchange the role of Ui and Fi and the E3-restriction of the reversed

DFA immediately comes from the determinism of the original DFA which ensures that |Ui | = 1 (for DFA).

D Missing Material from Section 4

D.1 Initializing

In this section, we sketch the proof of G0 ≈c G1.

Lemma 33 (G0 ≈c G1). For all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,G0〉 = 1]−Pr[〈A,G1〉 = 1] ≤Adv
SDG1

A1 7→A1 ,a2

B
(λ).

Proof (sketch). Roughly, we will prove that

(
mpk, ctx∗ , skΓ

)≈c
(
mpk, ct0

x∗ , skΓ
)
.

Recall that, we have [s0A1]1 in ctx∗ while [s0A1 + s0a2]1 in ct0
x∗ . This relies on SDG1

A1 7→A1,a2
assumption which implies

(
[A1]1, [s0A1]1

)≈c
(

[A1]1, [s0A1 + s0a2]1
)

where s0 ←Z1×k
p and s0 ←Zp . Let x∗ be the selective challenge, the reduction algorithm is sketched as follows:

– we sample k,Wstart,Z0,Z1,Wσ,0,Wσ,1,Wend for all σ ∈Σ and create (mpk,msk) honestly using [A1]1.

– on input key query Γ, we honestly run skΓ←KeyGen(mpk,msk,Γ) using mpk and msk;

– on input challenge query (m0,m1), we sample β,s1,s2, . . . ,s` and create the challenge ciphertext for x∗ using the

term given out in the statement above. ut

D.2 Selective Security in Many-key Setting

Our proof for selective security in Section 4 can be extended to the many-key setting in a straight-forward way as

in [11]. Without loss of generality, we assume that all key queries Γ1, . . . ,Γq share the same state space [Q] and alphabet

Σ, and extend notations d,R, fi ,x∗ for Γκ with an additional subscript κ. Then we sketch the changes that are needed to

handle the many-key setting:

Game sequence. We employ the game sequence described in Section 4.3 except that

– secret keys in G2.i .0, G2.i .1, G2.i .3 and G3 are ski−1
Γκ

, ski−1,i
Γκ

, ski
Γκ

and sk`,∗
Γκ

, respectively, for all κ ∈ [q];

– in each game, all q secret keys share the same ∆←Zp .
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Lemmas and Proofs. Lemma 33,6,7,11,12,14,15,17,18 hold in the many-key setting:

– The proof for Lemma 33,6 can be trivially extended to the many-key setting.

– The proofs for Lemma 7,11,12 can work in the many-key setting due to the fact that

◦ dκ are fresh for each κ ∈ [q]; this ensures that all changes of variables still hold with multiple keys;

◦ Rκ are fresh for each κ ∈ [q]; this ensures that all DDH-based arguments still hold with multiple keys.

– The proofs for Lemma 14,15 and Lemma 17 can be extended to the many-key setting using (s,W)-switching lemma

and (z,w)-transition lemma, respectively.

– To prove Lemma 18 with many keys, we argue that all q secret keys sk`,∗
Γ1

, . . . ,sk`,∗
Γq

only leak α+ s−1
`
∆; here we use

the fact that fκ = f`,x∗,κ for all κ ∈ [q].

E Missing Material from Section 5

E.1 Correctness of Adaptively Secure ABE for EQ -restricted NFA⊕p in Section 5.1

For x = (x1, . . . , x`) and Γ= (Q,Σ, {Mσ}σ∈Σ,u, f ) such that Γ(x) = 1, we have:

B0 = [s0A1Du>]T = [s0A1Du>
0,x ]T (42)

b j = s j A1DMx j −s j−1A1D (43)

B j = [s j A1Du>
j ,x −s j−1A1Du>

j−1,x ]T (44)

bend = sendA1k>f−s`A1D (45)

Bend = [sendA1k>fu>
`,x −s`A1Du>

`,x ]T (46)

Ball = [sendA1k>fu>
`,x ]T (47)

B = [sendA1k>]T (48)

Here (46) is trivial; (44) and (48) follow from facts (19); the remaining equalities follow from:

(42) s0A1Du> = s0A1 · (Du>+WstartRu>)−s0A1Wstart ·Ru>

(43) s j A1DMx j −s j−1A1D = s j−1A1 · (−D+Z j mod 2R)+s j A1 · (DMx j +Wx j , j mod 2R)− (s j−1A1Z j mod 2 +s j A1Wx j , j mod 2) ·R

(45) sendA1k>f−s`A1D = s`A1 · (−D+ZendR)+sendA1 · (k>f+WendR)− (s`A1Zend +sendA1Wend) ·R

(47) sendA1k>fu>
`,x = s0A1Du>

0,x +
∑`

j=1(s j A1Du>
j ,x −s j−1A1Du>

j−1,x )+ (sendA1k>fu>
`,x −s`A1Du>

`,x ).

Correctness follows readily.

E.2 Missing Proofs in Section 5.2

In this section, we prove G0 ≈c G1, G2.κ−1 ≈c G2.κ (from the core lemma, Lemma 19), G2.q ≈s G3 and show that adver-

sary in G3 has no advantage. All games are defined in Section 5.2.

Lemma 34 (G0 ≈c G1). For all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,G0〉 = 1]−Pr[〈A,G1〉 = 1] ≤Adv
SDG1

A1 7→A1 ,a2

B
(λ).

Proof (sketch). This relies on SDG1
A1 7→A1,a2

assumption which implies(
[A1]1, [sendA1]1

)≈c
(

[A1]1, [sendA1 + senda2]1
)

where send ←Z1×k
p and send ←Zp . The reduction algorithm is sketched as follows:

– we sample k,Wstart,Z0,Z1,Wσ,0,Wσ,1,Zend,Wend for all σ ∈Σ and create (mpk,msk) honestly using [A1]1.

– on key query Γ, we honestly run skΓ←KeyGen(mpk,msk,Γ) using mpk and msk;
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– on input challenge query (x∗,m0,m1), we sample β,s0,s1,s2, . . . ,s` and create the challenge ciphertext using the

term given out in the statement above. ut

Lemma 35 (Lemma 19 ⇒G2.κ−1 ≈c G2.κ). For all κ ∈ [q] and all A, there exists B with Time(B) ≈Time(A) and

Pr[〈A,G2.κ−1〉 = 1]−Pr[〈A,G2.κ〉 = 1] ≤AdvCORE
B (λ)

where AdvCORE
B (λ) is defined in Lemma 19.

Proof (sketch). On input (mpk,aux1,aux2), we sketch the reduction B as follows:

– Forward mpk to A.

– On input Γ, proceed as follows:

◦ for the first κ−1 queries Γ, output sk∗Γ which can be created from aux1 and aux2;

◦ for the κ’th query Γ, forward the result of OKey(Γ) to A;

◦ for the remaining query Γ, output skΓ which can be created from aux1;

– On input (x∗,m0,m1), pick β← {0,1} and forward the result of OEnc(x∗,mβ) to A.

Observe that, if OKey(Γ) outputs skΓ, the simulation is identical to G2.κ−1; if OKey(Γ) outputs sk∗Γ, the simulation is

identical to G2.κ. This completes the proof. ut

Lemma 36 (G2.q ≈s G3). For all A, we have

Pr[〈A,G2.q 〉 = 1] ≈ Pr[〈A,G3〉 = 1].

Proof. First, we argue that all q secret keys perfectly hide the a2-component of k>, i.e., α = a2k>. Recall that a2-

components of all q secret keys are in the following form:

sk∗Γ[2] =


[du>+wstartRu>]2, [Ru>]2{

[−d+zb R]2, [dMσ+wσ,b R]2, [R]2
}
σ∈Σ,b∈{0,1}

[−d+zendR]2, [αf+ s−1
end∆ · f +wendR]2, [R]2


we can simulate all of them usingα+s−1

end∆which means all secret keys perfectly hidesα= a2k>. Therefore, the unique

term involving k in ct∗x∗ , i.e., [sendA1k>+ senda2k>]T , is independently and uniformly distributed and thus statistically

hides message mβ. ut

Lemma 37 (Advantage in G3). For all A, we have

Pr[〈A,G3〉 = 1] = 1/2.

Proof (sketch). This follows from the fact that the challenge ciphertext is independent of β in G3. ut

E.3 Detailed Proofs of Neighbor Indistinguishability in Section 5.4

This section provides the detailed for proving Lemma 22 (in Section 5.4) restated below.

Lemma 38 (Neighbor indistinguishability). For all xxx ∈ {0,1,3,4,5}∪{2.i .i ′ : i ∈ [`], i ′ ∈ [4]}, u0,u1 ∈ I × I ×Σ×EQ and

all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
xxx(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

xxx(u0,u1)〉 = 1] ≤O(|Σ|) ·Advk-LIN
B (λ).

All proofs essentially follows those for the selective security of our ABE for NFA⊕p in Section 4. We will also employ the

notation of a2-components described in Section 4.3; in particular, the a2-components of aux1 and aux2 are defined

analogously to skΓ and denoted by aux1[2] and aux2[2], respectively.
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Initializing & Finalizing. We show that Ĥ0
0(u0,u1) ≈c Ĥ

1
0(u0,u1), Ĥ0

5(u0,u1) ≈c Ĥ
1
5(u0,u1) and Ĥ0

1(u0,u1) ≈s Ĥ
1
1(u0,u1)

for all u0,u1. The proofs for the former two are similar. We begin with the following lemma stating that Ĥ0
0(u0,u1) ≈c

Ĥ1
0(u0,u1) for all u0,u1 and sketch the proof for the other one.

Lemma 39. For all u0,u1 ∈ I × I ×Σ×EQ and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
0(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

0(u0,u1)〉 = 1] ≤AdvSWITCH
B (λ).

Overview. Fix Γ and x∗, we will prove that

(
mpk, aux1, aux2, ct∗x∗ , skΓ

)≈c
(
mpk, aux1, aux2, ct0

x∗ , skΓ
)

which roughly means that

ct∗
x∗︷ ︸︸ ︷

[s0A1]1 ≈c

ct0
x∗︷ ︸︸ ︷

[s0A1 + s0a2]1 given

aux2︷ ︸︸ ︷
[a‖

2 · s−1
end∆+Wendr>]2, [r>]2 .

This is similar to Lemma 14 stating that G2.i .1 ≈c G2.i .2; therefore we prove the lemma analogously but using (s0,Wend)-

switching lemma instead of (si ,Zτ)-switching lemma so that we can simulate the challenge ciphertext from the chal-

lenge term in the lemma and simulate aux2 using the auxiliary terms given out in the lemma.

Proof. We prove the lemma for the case

u0 = ( {∗} ,⊥,⊥,⊥ ), u1 = ( {0} ,⊥,⊥,⊥ )

with all Γ and x∗ adaptively chosen byA; the lemma trivially holds in all other cases. Recall that the difference between

the two games lies in OEnc(x∗,m): the former returns ct∗x∗ and the latter returns ct0
x∗ ; oracle OKey(Γ) always returns

skΓ. We prove the lemma using (s0,Wend)-switching lemma (see Lemma 13). On input

aux, [c0]1, [a‖
2 · ∆̄+Wendr>]2, [r>]2

where aux= ([A1,a2,A1Wend,a2Wend]1, [WendB,B]2) and Wend ←Z
(2k+1)×k
p , B ←Zk×k

p , r ←Z1×k
p , ∆̄←Zp and

c0 = s0A1 or c0 = s0A1 + s0a2 , s0 ←Zk
p , s0 ←Zp

the reduction works as follows:

(Simulating mpk and aux1) We sample k ←Z
1×(2k+1)
p ,Wstart,Z0,Z1,Wσ,0,Wσ,1,Zend ←Z

(2k+1)×k
p for all σ ∈ Σ. Then we

can trivially simulate mpk with [A1,A1Wend]1 and simulate aux1 with [B,WendB]2.

(Simulating aux2) We sample send ←Zp and implicitly set

∆= send∆̄.

Then we can rewrite aux2 as

[r>]2, [Wstartr>]2, [Z0r>]2, [Z1r>]2,
{

[Wσ,0r>]2, [Wσ,1r>]2
}
σ∈Σ, [Zendr>]2, [a‖

2 · ∆̄+Wendr>]2

which can be trivially simulated with [a‖
2 · ∆̄+Wendr>]2, [r>]2 given out in the lemma and Wstart,Z0,Z1,Wσ,0,Wσ,1,Zend.

(Answering OKey) On input Γ, we return skΓ which can be generated using aux1.
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(Answering OEnc) On input (x∗,m), we want to create a ciphertext in the following form, which is either ct∗x∗ or ct0
x∗

depending on c0:
[c0]1, [c0Wstart]1{

[c j ]1, [c j−1Z j mod 2]1 · [c j Wx∗
j , j mod 2]1

}
j∈[`]

[cend]1, [c`Zend]1 · [cendWend]1 , [cendk>]T ·m

 where


c0 ∈ { s0A1 , s0A1 + s0a2 }

c j = s j A1 for all j ∈ [`]

cend = sendA1 + senda2

Observe that,

– when c0 = s0A1 , the distribution is identical to ct∗x∗ ;

– when c0 = s0A1 + s0a2 , the distribution is identical to ct0
x∗ .

We proceed to create the ciphertext as follows:

– We sample s1, . . . ,s`,send ← Z1×k
p , send ← Zp and simulate {[c j ]1} j∈[`] and [cend]1 using [A1,a2]1; note that [c0]1 is

given out in the lemma as the challenge term.

– We rewrite the term in the dashed box as:

[cendWend]1 = [sendA1Wend]1 · [senda2Wend]1

which can be simulated using send, send and [A1Wend,a2Wend]1; here we use the fact that we do not have any terms

involving [s0A1Wend]1 in the ciphertext.

– We simulate all remaining terms using {[c j ]1} j∈[0,`], [cend]1 and k,Wstart,Z0,Z1, Wσ,0,Wσ,1,Zend.

Observe that, when c0 = s0A1 , oracle OEnc(x∗,m) returns ct∗x∗ and the simulation is identical to Ĥ0
0(u0,u1); when

c0 = s0A1 + s0a2 , oracle OEnc(x∗,m) returns ct0
x∗ and the simulation is identical to Ĥ1

0(u0,u1). This completes the

proof. ut

Via the same proof idea, we can prove the following lemma stating that Ĥ0
5(u0,u1) ≈c Ĥ

1
5(u0,u1) for all u0,u1. We

only sketch the proof.

Lemma 40. For all u0,u1 ∈ I × I ×Σ×EQ and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
5(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

5(u0,u1)〉 = 1] ≤AdvSWITCH
B (λ).

Proof (sketch). We prove the lemma for the case

u0 = ( {`} , {∗},⊥,⊥ ), u1 = ( {∗} , {∗},⊥,⊥ )

with all Γ and x∗ adaptively chosen by A; the lemma trivially holds in all other cases. Namely, we will prove that

(
mpk, aux1, aux2, ct`x∗ , sk∗Γ

)≈c
(
mpk, aux1, aux2, ct∗x∗ , sk∗Γ

)
which roughly means that

ct`
x∗︷ ︸︸ ︷

[s`A1 + s`a2]1 ≈c

ct∗
x∗︷ ︸︸ ︷

[s`A1]1 given

aux2,sk∗Γ︷ ︸︸ ︷
[a‖

2 · s−1
end∆+Wendr>]2, [r>]2 .

Then the proof is analogous to that for Lemma 39 except that we use (s`,Wend)- instead of (s0,Wend)-switching lemma

and we need aux2 to answer OKey query; in particular,

– we simulate mpk,aux1,aux2 as in the proof of Lemma 39;

– we answer OKey(Γ) by generating sk∗Γ using both aux1 and aux2.
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– we answer OEnc(x∗,m) using the challenge term in the lemma analogously; but we rely on the fact that there is

no term with [s`A1Wend]1. ut

We finally prove the lemma stating that Ĥ0
1(u0,u1) ≈c Ĥ

1
1(u0,u1) for all u0,u1, which is analogous to Lemma 6.

Lemma 41. For all u0,u1 ∈ I × I ×Σ×EQ and all A, we have

Pr[〈A,Ĥ0
1(u0,u1)〉 = 1] = Pr[〈A,Ĥ1

1(u0,u1)〉 = 1]

Proof (sketch). We consider the case that the adversary adaptively chooses Γ and x∗ in the hybrids parameterized by

u0 = ( {0}, ⊥,⊥,⊥ ), u1 = ( {0}, {0},⊥, f0,x∗ );

the lemma trivially holds in all other cases. This roughly means that(
mpk, aux1, aux2, ct0

x∗ , skΓ
)≈c

(
mpk, aux1, aux2, ct0

x∗ , sk0
Γ,f0,x∗

)
where

skΓ[2] =


[ du> +wstartRu>]2, [Ru>]2{

[−d+zb R]2, [dMσ+wσ,b R]2, [R]2
}
σ∈Σ,b∈{0,1}

[−d+zendR]2, [αf+wendR]2, [R]2

 ,

sk0
Γ,f0,x∗

[2] =


[ (d+ s−1

0 ∆ · f0,x∗ )u> +wstartRu>]2, [Ru>]2{
[−d+zb R]2, [dMσ+wσ,b R]2, [R]2

}
σ∈Σ,b∈{0,1}

[−d+zendR]2, [αf+wendR]2, [R]2


with

ct0
x∗ [2] = (

[s0wstart]1, [s0]1, [s0z1]1, [sendwend]1, [send]1, [sendα]T ·m
)

and

aux1[2] = (
[α, B, wstartB, z0B, z1B, {wσ,0B,wσ,1B }σ∈Σ, zendB, wendB]2

)
aux2[2] = (

[r>, wstartr>, z0r>, z1r>, {wσ,0r>,wσ,1r> }σ∈Σ, zendr>, s−1
end∆+wendr>]2

)
.

This immediately follows from the fact Γ(x∗) = 0 ⇐⇒ f0,x∗u> = 0 mod p (see Lemma 5). ut

Switching secret keys I. We show that Ĥ0
2.i .1(u0,u1) ≈c Ĥ1

2.i .1(u0,u1), Ĥ0
3(u0,u1) ≈c Ĥ1

3(u0,u1) for all i ∈ [`] and all

u0,u1. The proofs for them are similar. We begin with the following lemma stating that Ĥ0
2.1.1(u0,u1) ≈c Ĥ

1
2.1.1(u0,u1)

for all u0,u1, which is analogous to Lemma 7, and sketch the proofs for remaining statements.

Lemma 42. For all u0,u1 ∈ I × I ×Σ×EQ , there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
2.1.1(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

2.1.1(u0,u1)〉 = 1] ≤O(|Σ|) ·AdvDDHG2
1,Q

B
(λ).

Overview. Fix Γ and x∗, we will prove that(
mpk, aux1, aux2, ct0

x∗ , sk0
Γ,f0,x∗

)≈c
(
mpk, aux1, aux2, ct0

x∗ , sk0,1
Γ,f0,x∗

)
.

By Lemma 4, we focus on the a2-components and prove:

sk0
Γ,f0,x∗

[2] =


[( d+ s−1

0 ∆ · f0,x∗ )u>+wstartRu>]2, [Ru>]2{
[ −d +z1R]2, [dMσ+wσ,1R]2, [R]2

}
σ∈Σ{

[−d+z0R]2, [dMσ+wσ,0R]2, [R]2
}
σ∈Σ

[−d+zendR]2, [αf+wendR]2, [R]2

 ≈c


[ d u>+wstartRu>]2, [Ru>]2{

[ −d+ s−1
0 ∆ · f0,x∗ +z1R]2, [dMσ+wσ,1R]2, [R]2

}
σ∈Σ{

[−d+z0R]2, [dMσ+wσ,0R]2, [R]2
}
σ∈Σ

[−d+zendR]2, [αf+wendR]2, [R]2

= sk0,1
Γ,f0,x∗

[2]
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given

ct0
x∗ [2] = (

[s0wstart]1, [s0]1, [s0z1]1, [sendwend]1, [send]1, [sendα]T ·m
)

and

aux1[2] = (
[α, B, wstartB, z0B, z1B, {wσ,0B,wσ,1B }σ∈Σ, zendB, wendB]2

)
aux2[2] = (

[r>, wstartr>, z0r>, z1r>, {wσ,0r>,wσ,1r> }σ∈Σ, zendr>, s−1
end∆+wendr>]2

)
.

Clearly, change of variables d 7→ d− s−1
0 ∆ · f0,x∗ is at the core of the above statement, which ensures that, for all s0 and

∆, we have

sk0
Γ,f0,x∗ [2]︷ ︸︸ ︷{

( d+ s−1
0 ∆ · f0,x∗ )u>+wstartRu>, −d +z1R,R

}≈s

sk0,1
Γ,f0,x∗

[2]︷ ︸︸ ︷{
d u>+wstartRu>, −d+ s−1

0 ∆ · f0,x∗ +z1R,R
}

given

ct0
x∗ [2]︷ ︸︸ ︷

wstart,z1

As in the proof of Lemma 7, we need to hide all irrelevant d’s via DDHG2
1,Q assumption before and after the change

of variable via DDHG2
1,Q assumption. Note that, besides wstart and z1, ct0

x∗ [2] also leaks wend, which means we cannot

apply DDHG2
1,Q assumption w.r.t. wend; however the term [αf+wendR]2 does not contain d either and will not interfere

in the change of variable with respect to d.

Auxiliary hybrids. Formally, fix u0 = ({0}, {0},⊥,p) and u1 = ({0}, {0,1},⊥,p), we define two more auxiliary hybrids:

– Ĥ0
2.1.1.a(u0,u1) is the same as Ĥ0

2.1.1(u0,u1) except that OKey(Γ) outputs
[(d+ s−1

0 ∆ ·p)u>+wstartRu>]2, [Ru>]2{
[−d+z1R]2, [ 0 ·Mσ+wσ,1R]2, [R]2

}
σ∈Σ{

[ 0 +z0R]2, [ 0 ·Mσ+wσ,0R]2, [R]2
}
σ∈Σ

[ 0 +zendR]2, [αf+wendR]2, [R]2


– Ĥ1

2.1.1.a(u0,u1) is the same as Ĥ1
2.1.1(u0,u1) except that OKey(Γ) outputs

[du>+wstartRu>]2, [Ru>]2{
[−d+ s−1

0 ∆ ·p+z1R]2, [ 0 ·Mσ+wσ,1R]2, [R]2
}
σ∈Σ{

[ 0 +z0R]2, [ 0 ·Mσ+wσ,0R]2, [R]2
}
σ∈Σ

[ 0 +zendR]2, [αf+wendR]2, [R]2


Then we prove that:

Ĥ0
2.1.1(u0,u1) ≈c Ĥ

0
2.1.1.a(u0,u1) ≈s Ĥ

1
2.1.1.a(u0,u1) ≈c Ĥ

1
2.1.1(u0,u1). (49)

which is summarized in Fig 10 with fixed Γ and x∗.

Lemmas. We describe and prove the following lemmas which imply Lemma 42 by (49).

Lemma 43. For all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
2.1.1(u0,u1)〉 = 1]−Pr[〈A,Ĥ0

2.1.1.a(u0,u1)〉 = 1] ≤O(|Σ|) ·AdvDDHG2
1,Q

B
(λ).

Proof. We consider the case that the adversary adaptively chooses Γ and x∗ in the hybrids parameterized by

u0 = ({0}, {0},⊥, f0,x∗ ), u1 = ({0}, {0,1},⊥, f0,x∗ );

57



Game ? ·u>+wstartRu> ? +z1R ? ·Mσ+wσ,1R ? +z0R ? ·Mσ+wσ,0R ? +zendR Remark

Ĥ0
2.1.1 d+ s−1

0 ∆ ·p −d d −d d −d sk0
Γ,p[2]

Ĥ0
2.1.1.a d+ s−1

0 ∆ ·p −d 0 0 0 0 DDH

Ĥ1
2.1.1.a d −d+ s−1

0 ∆ ·p 0 0 0 0 d 7→ d− s−1
0 ∆ ·p

Ĥ1
2.1.1 d −d+ s−1

0 ∆ ·p d −d d −d DDH, sk0,1
Γ,p[2]

Fig. 10. Game sequence for Ĥ0
2.1.1(u0,u1) ≈c Ĥ1

2.1.1(u0,u1). In the table, we only show changes of secret key and focus on its a2-

components; all secret key elements in the fourth and sixth column are quantified over σ ∈ Σ. In the Remark column, “DDH”

indicates DDHG2
1,Q assumption.

the lemma trivially holds in all other cases. By Lemma 4, it suffices to prove the lemma over a2-components which

roughly means:

sk0
Γ,f0,x∗

[2] =


[(d+ s−1

0 ∆ · f0,x∗ )u>+wstartRu>]2, [Ru>]2{
[−d+z1R]2, [ d ·Mσ+wσ,1R]2, [R]2

}
σ∈Σ{

[− d +z0R]2, [ d ·Mσ+wσ,0R]2, [R]2
}
σ∈Σ

[− d +zendR]2, [αf+wendR]2, [R]2

≈c


[(d+ s−1

0 ∆ · f0,x∗ )u>+wstartRu>]2, [Ru>]2{
[−d+z1R]2, [ 0 ·Mσ+wσ,1R]2, [R]2

}
σ∈Σ{

[ 0 +z0R]2, [ 0 ·Mσ+wσ,0R]2, [R]2
}
σ∈Σ

[ 0 +zendR]2, [αf+wendR]2, [R]2


in the presence of

ct0
x∗ [2] = (

[s0wstart]1, [s0]1, [s0z1]1, [sendwend]1, [send]1, [sendα]T ·m
)

and

aux1[2] = (
[α, B, wstartB, z0B, z1B, {wσ,0B,wσ,1B }σ∈Σ, zendB, wendB]2

)
aux2[2] = (

[r>, wstartr>, z0r>, z1r>, {wσ,0r>,wσ,1r> }σ∈Σ, zendr>, s−1
end∆+wendr>]2

)
One can sample basis A1,a2,A3,A‖

1,a‖
2,A‖

3 and trivially simulate mpk, aux1,aux2, ct0
x∗ and secret key using terms given

out above. Furthermore, this follows from DDHG2
1,Q assumption w.r.t z0,wσ,0,wσ,1,zend with σ ∈Σ which implies:

(
[z0R]2,

{
[wσ,0R]2

}
σ∈Σ,

{
[wσ,1R]2

}
σ∈Σ, [zendR]2, [R]2

)≈c U
(

(G1×Q
2 )2|Σ|+2 ×Gk×Q

2

)
given aux= [B,z0B, {wσ,0B,wσ,1B}σ∈Σ,zendB]2 where z0,wσ,0,wσ,1,zend ←Z1×k

p for allσ ∈Σ and R ←Z
k×Q
p . Here we use

the fact that ct0
x∗ [2] does not leak z0, wσ,1, wσ,0, zend with σ ∈Σ. This completes the proof. ut

Lemma 44. For all A, we have

Pr[〈A,Ĥ0
2.1.1.a(u0,u1)〉 = 1] = Pr[〈A,Ĥ1

2.1.1.a(u0,u1)〉 = 1]

Proof. This immediately follows from the change of variables: d 7→ d− s−1
0 ∆ · f0,x∗ . ut

Lemma 45. For all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ1
2.1.1.a(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

2.1.1(u0,u1)〉 = 1] ≤O(|Σ|) ·AdvDDHG2
1,Q

B
(λ).

Proof. The proof is analogous to that for Lemma 43. ut

Via the same proof idea, we can prove the following lemmas stating that Ĥ0
2.i .1(u0,u1) ≈c Ĥ

1
2.i .1(u0,u1) for all i ∈

[2,`] and Ĥ0
3(u0,u1) ≈c Ĥ

1
3(u0,u1), respectively. We only sketch the proof for each lemma.

Lemma 46. For all i ∈ [2,`], u0,u1 ∈ I × I ×Σ×EQ and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
2.i .1(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

2.i .1(u0,u1)〉 = 1] ≤O(|Σ|) ·AdvDDHG2
1,Q

B
(λ).
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Proof (sketch). We consider the case that the adversary adaptively chooses Γ and x∗ in the hybrids parameterized by

u0 = ({i −1}, {i −1}, x∗
i−1 , fi−1,x∗ ), u1 = ({i −1}, {i −1, i },⊥ , fi−1,x∗ );

the lemma trivially holds in other cases. Namely, we need to prove that(
mpk, aux1, aux2, cti−1

x∗ , ski−1
Γ,x∗

i−1,fi−1,x∗
)≈c

(
mpk, aux1, aux2, cti−1

x∗ , ski−1,i
Γ,fi−1,x∗

)
.

Recall that τ= i mod 2, this roughly means that

ski−1
Γ,x∗

i−1,fi−1,x∗
[2] =



[du>+wstartRu>]2, [Ru>]2{
[−d+z1−τR]2, [( d+ s−1

i−1∆ · fi−1,x∗ )Mx∗
i−1

+wx∗
i−1,1−τR]2, [R]2

}{
[dMσ+wσ,1−τR]2

}
σ6=x∗

i−1{
[ −d +zτR]2, [dMσ+wσ,τR]2, [R]2

}
σ∈Σ

[−d+zendR]2, [αf+wendR]2, [R]2



≈c



[du>+wstartRu>]2, [Ru>]2{
[−d+z1−τR]2, [ d Mx∗

i−1
+wx∗

i−1,1−τR]2, [R]2
}{

[dMσ+wσ,1−τR]2
}
σ6=x∗

i−1{
[ −d+ s−1

i−1∆ · fi−1,x∗ +zτR]2, [dMσ+wσ,τR]2, [R]2
}
σ∈Σ

[−d+zendR]2, [αf+wendR]2, [R]2


= ski−1,i

Γ,fi−1,x∗
[2]

given

cti−1
x∗ [2] = (

[si−1wx∗
i−1,1−τ]1, [si−1]1, [si−1zτ]1, [sendwend]1, [send]1, [sendα]T ·m

)
and

aux1[2] = (
[α, B, wstartB, z0B, z1B, {wσ,0B,wσ,1B }σ∈Σ, zendB, wendB]2

)
aux2[2] = (

[r>, wstartr>, z0r>, z1r>, {wσ,0r>,wσ,1r> }σ∈Σ, zendr>, s−1
end∆+wendr>]2

)
This relies on:

– change of variables d 7→ d− s−1
i−1∆ · fi−1,x∗ ; this ensures that, for all si−1 and ∆, we have

ski−1
Γ,x∗

i−1
,fi−1,x∗

[2]︷ ︸︸ ︷{
( d+ s−1

i−1∆ · fi−1,x∗ )Mx∗
i−1

+wx∗
i−1,1−τR, −d +zτR,R

}≈s

ski−1,i
Γ,fi−1,x∗

[2]︷ ︸︸ ︷{
d Mx∗

i−1
+wx∗

i−1,1−τR, −d+ s−1
i−1∆ · fi−1,x∗ +zτR,R

}
in the presence of wx∗

i−1,1−τ,zτ leaked via cti−1
x∗ [2].

– DDHG2
1,Q assumption w.r.t wstart,z1−τ, {wσ,1−τ}σ6=x∗

i−1
, {wσ,τ}σ∈Σ,zend; this implies that

(
[wstartR]2, [z1−τR]2,

{
[wσ,1−τR]2

}
σ6=x∗

i−1
,
{
[wσ,τR]2

}
σ∈Σ, [zendR]2, [R]2

)≈c U
(

(G1×Q
2 )2|Σ|+2 ×Gk×Q

2

)
and will be used to hide all d’s irrelevant with the change of variables. ut

Lemma 47. For all u0,u1 ∈ I × I ×Σ×EQ and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
3(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

3(u0,u1)〉 = 1] ≤O(|Σ|) ·AdvDDHG2
1,Q

B
(λ).

Proof (sketch). We consider the case that the adversary adaptively chooses Γ and x∗ in the hybrids parameterized by

u0 = ({`}, {`}, x∗
` , f`,x∗ ), u1 = ({`}, {`,∗},⊥, f );
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the lemma trivially holds in other cases. By the fact that f`,x∗ = f (see Lemma 5), we need to prove that

(
mpk, aux1, aux2, ct`x∗ , sk`Γ,x∗

`
,f

)≈c
(
mpk, aux1, aux2, ct`x∗ , sk`,∗

Γ,f

)
;

this roughly means:

sk`Γ,x∗
`

,f[2] =



[du>+wstartRu>]2, [Ru>]2{
[−d+z ¯̀R]2, [( d+ s−1

` ∆ · f )Mx∗
`
+wx∗

`
, ¯̀R]2, [R]2

}{
[dMσ+wσ, ¯̀R]2

}
σ6=x∗

`{
[−d+z1− ¯̀R]2, [dMσ+wσ,1− ¯̀R]2, [R]2

}
σ∈Σ

[ −d +zendR]2, [αf+wendR]2, [R]2



≈c



[du>+wstartRu>]2, [Ru>]2{
[−d+z ¯̀R]2, [ d Mx∗

`
+wx∗

`
, ¯̀R]2, [R]2

}{
[dMσ+wσ, ¯̀R]2

}
σ6=x∗

`{
[−d+z1− ¯̀R]2, [dMσ+wσ,1− ¯̀R]2, [R]2

}
σ∈Σ

[ −d+ s−1
`
∆ · f +zendR]2, [αf+wendR]2, [R]2


= sk`,∗

Γ
[2]

given

ct`x∗ [2] = (
[s`wx∗

`
, ¯̀]1, [s`]1, [s`zend + sendwend]1, [send]1, [sendα]T ·m

)
and

aux1[2] = (
[α, B, wstartB, z0B, z1B, {wσ,0B,wσ,1B }σ∈Σ, zendB, wendB]2

)
aux2[2] = (

[r>, wstartr>, z0r>, z1r>, {wσ,0r>,wσ,1r> }σ∈Σ, zendr>, s−1
end∆+wendr>]2

)
This relies on:

– change of variables d 7→ d− s−1
`
∆ · f; this ensures that, for all s` and ∆, we have

sk`
Γ,x∗

`
,f

[2]︷ ︸︸ ︷{
( d+ s−1

` ∆ · f )Mx∗
`
+wx∗

`
, ¯̀R, −d +zendR,R

}≈s

sk`,∗
Γ

[2]︷ ︸︸ ︷{
d Mx∗

`
+wx∗

`
, ¯̀R, −d+ s−1

`
∆ · f +zendR,R

}
in the presence of wx∗

`
, ¯̀,zend leaked via ct`x∗ [2].

– DDHG2
1,Q assumption w.r.t wstart,z0,z1, {wσ, ¯̀}σ6=x∗

`
, {wσ,1− ¯̀}σ∈Σ; this implies that

(
[wstartR]2, [z0R]2, [z1R]2,

{
[wσ, ¯̀R]2

}
σ6=x∗

`
,
{
[wσ,1− ¯̀R]2

}
σ∈Σ, [R]2

)≈c U
(

(G1×Q
2 )2|Σ|+2 ×Gk×Q

2

)
and will be used to hide all d’s irrelevant with the change of variables. ut

Switching ciphertexts. We show that Ĥ0
2.i .2(u0,u1) ≈c Ĥ

1
2.i .2(u0,u1) and Ĥ0

2.i .4(u0,u1) ≈c Ĥ
1
2.i .4(u0,u1) for all i ∈ [`] and

all u0,u1. The proofs for them are similar. We begin with the following lemma for the former one and sketch the proof

for the latter.

Lemma 48. For all i = 1, . . . ,`, u0,u1 ∈ I × I ×Σ×EQ and A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
2.i .2(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

2.i .2(u0,u1)〉 = 1] ≤AdvEXT-SWITCH
B (λ).
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Overview. Fix Γ and x∗. We will prove that

(
mpk, aux1, aux2 , cti−1

x∗ , ski−1,i
Γ,fi−1,x∗

)≈c
(
mpk, aux1, aux2 , cti−1,i

x∗ , ski−1,i
Γ,fi−1,x∗

)
which roughly means that

cti−1
x∗︷ ︸︸ ︷

[si A1]1 ≈c

cti−1,i
x∗︷ ︸︸ ︷

[si A1 + si a2] given

aux2︷ ︸︸ ︷
[a‖

2 · s−1
end∆+Wendr>]2 ,

ski−1,i
Γ,fi−1,x∗︷ ︸︸ ︷

[−D+a‖
2 · s−1

i−1∆ · fi−1,x∗ +ZτR]2 .

This is similar to Lemma 14 stating that G2.i .1 ≈c G2.i .2 except that we need to simulate an extra term involving a‖
2 from

aux2 (highlighted by dashed box). Therefore, we use an extension of (si ,Zτ)-switching lemma (Lemma 49) so that we

can simulate the challenge ciphertext and secret key as in the proof of Lemma 14 and also handle aux2.

Lemma 49 ((s,Z,W)-switching lemma). We have

aux, [sA1]1, [a‖
2 · ∆̄+Zt>]2, [Wt>]2, [t>]2

[Zr>]2, [a‖
2 · ∆̄+Wr>]2, [r>]2

≈c aux, [sA1 + sa2 ]1, [a‖
2 · ∆̄+Zt>]2, [Wt>]2, [t>]2

[Zr>]2, [a‖
2 · ∆̄+Wr>]2, [r>]2

where aux= ([A1,a2,A1Z,a2Z,A1W,a2W]1, [ZB,WB,B]2) and Z,W ←Z
(2k+1)×k
p , B ←Zk×k

p , s,r,t ←Z1×k
p , s,∆̄←Zp . Con-

cretely, the advantage function AdvEXT-SWITCH
B (λ) is bounded by O(1) ·Advk-LIN

B0
(λ) with Time(B0) ≈Time(B).

The proof for Lemma 49 is similar to that for the original (s,W)-switching lemma, cf. [11]. We omit the proof here.

Proof (of Lemma 48). We consider the case that the adversary adaptively chooses Γ and x∗ in the hybrids parameter-

ized by

u0 = ( {i −1} , {i −1, i },⊥, fi−1,x∗ ), u1 = ( {i −1, i } , {i −1, i },⊥, fi−1,x∗ );

the lemma trivially holds in other cases. Recall that τ = i mod 2. We prove the lemma using (si ,Zτ,Wend)-switching

lemma. On input

aux, [ci ]1, [a‖
2 · ∆̄+Zτt>]2, [Wendt>]2, [t>]2

[Zτr>]2, [a‖
2 · ∆̄+Wendr>]2, [r>]2

where aux = ([A1,a2,A1Zτ,a2Zτ,A1Wend,a2Wend]1, [ZτB,WendB,B]2) and Zτ, Wend ← Z
(2k+1)×k
p , B ← Zk×k

p , r,t ← Z1×k
p ,

∆̄←Zp and

ci = si A1 or ci = si A1 + si a2 , si ←Z1×k
p , si ←Zp

the reduction works as follows:

(Simulating mpk and aux1) We sample k ← Z
1×(2k+1)
p ,Wstart,Z1−τ,Wσ,0,Wσ,1,Zend ← Z

(2k+1)×k
p for all σ ∈ Σ, and then

we can trivially simulate mpk from [A1,A1Zτ,A1Wend]1 and simulate aux1 from [ZτB,WendB,B]2.

(Simulating aux2) We sample send ←Zp and implicitly set ∆= send∆̄; then we can rewrite aux2 as

[r>]2 , [Wstartr>]2, [Zτr>]2 , [Z1−τr>]2, { [Wσ,0r>]2, [Wσ,1r>]2 }σ∈Σ, [Zendr>]2, [a‖
2 · ∆̄+Wendr>]2 .

All terms in the dashed boxes are provided in the lemma; all remaining terms can be simulated using [r>]2 and Wstart,

Z1−τ, Wσ,0, Wσ,1, Zend.
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(Answering OEnc) On input (x∗,m), we want to create a ciphertext in the following form, which is either cti−1
x∗ or

cti−1,i
x∗ depending on ci :


[c0]1, [c0Wstart]1{

[c j ]1, [c j−1Zτ]1 · [c j Wx j ,τ]1
}

j=i mod 2{
[c j ]1, [c j−1Z1−τ]1 · [c j Wx j ,1−τ]1

}
j 6=i mod 2

[cend]1, [c`Zend]1 · [cendWend]1 , [cendk>]T ·m

 where



ci ∈ { si A1 , si A1 + si a2 }

ci−1 = si−1A1 + si−1a2

cend = sendA1 + senda2

c j = s j A1 if j ∉ {i −1, i }

Observe that,

– when ci = si A1 , the distribution is identical to cti−1
x∗ ;

– when ci = si A1 + si a2 , the distribution is identical to cti−1,i
x∗ .

We proceed as follows:

– We sample s j ← Z1×k
p for all j 6= i , si−1 ← Zp and simulate {[c j ]1} j 6=i and [cend]1 using [A1,a2]1; note that [ci ]1 is

given out in the lemma as the challenge term.

– We rewrite terms in the first dashed box as:

[c j Zτ]1 =
[s j A1Zτ]1 if j 6= i −1 and j 6= i mod 2

[si−1A1Zτ]1 · [si−1a2Zτ]1 if j = i −1(and j 6= i mod 2)

which can be simulated using {s j } j 6=i mod 2, si−1 and [A1Zτ,a2Zτ]1; here we use the fact that we do not have any

terms involving [ci Zτ]1 in the ciphertext.

– We write term in the second dashed box as:

[cendWend]1 = [sendA1Wend]1 · [senda2Wend]1

which can be simulated using send, send and [A1Wend,a2Wend]1; here we use the fact that we do not have any terms

involving [si A1Wend]1 in the ciphertext.

– We simulate all remaining terms using {[c j ]1} j∈[0,`], [cend]1 and k,Wstart,Z1−τ, {Wσ,0,Wσ,1}σ∈Σ,Zend.

(Answering OKey) On input Γ, we want to return a secret key for Γ in the form

ski−1,i
Γ,fi−1,x∗

=


[Du>+WstartRu>]2, [Ru>]2{

[−D+a‖
2 · s−1

i−1∆ · fi−1,x∗ +ZτR]2 , [DMσ+Wσ,τR]2, [R]2
}
σ∈Σ{

[−D+Z1−τR]2, [DMσ+Wσ,1−τR]2, [R]2
}
σ∈Σ

[−D+ZendR]2, [k>f+WendR]2 , [R]2

 .

We sample D ←Z
(2k+1)×Q
p and R̃ ←Z

k×Q
p and implicitly set

R = t> · s−1
i−1send · fi−1,x∗ +B · R̃.

We proceed to simulate ski−1,i
Γ,fi−1,x∗

as follows:

– We simulate [R]2 from [t>]2, [B]2 and fi−1,x∗ , R̃, si−1, send.

– Recall that we set ∆= send∆̄, we can rewrite terms in the dashed boxes as:

[−D+ (a‖
2 · ∆̄+Zτt>) · s−1

i−1send · fi−1,x∗ +ZτB · R̃]2 and [k>f+Wendt> · s−1
i−1send · fi−1,x∗ +WendB · R̃]2

which can be simulated using [a‖
2 · ∆̄+Zτt>]2, [Wendt>]2, [ZτB]2, [WendB]2 and D,k, fi−1,x∗ , R̃, si−1, send.

– We simulate all remaining terms using [R]2 and D,Wstart,Z1−τ,Wσ,τ,Wσ,1−τ,Zend.
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Observe that, when ci = si A1 , oracle OEnc(x∗,m) returns cti−1
x∗ and the simulation is identical to Ĥ0

2.i .2(u0,u1); when

ci = si A1 + si a2 , oracle OEnc(x∗,m) returns cti−1,i
x∗ and the simulation is identical to Ĥ1

2.i .2(u0,u1). This completes

the proof. ut
Via the same proof idea, we can prove the following lemmas stating that Ĥ0

2.i .4(u0,u1) ≈c H
1
2.i .4(u0,u1) for all i ∈ [`]

and all u0,u2. We only sketch the proof.

Lemma 50. For all i ∈ [`], u0,u1 ∈ I × I ×Σ×EQ and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
2.i .4(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

2.i .4(u0,u1)〉 = 1] ≤AdvEXT-SWITCH
B (λ).

Proof (sketch). We consider the case that the adversary adaptively chooses Γ and x∗ in the hybrids parameterized by

u0 = ( {i −1, i } , {i }, x∗
i , fi ,x∗ ), u1 = ( {i } , {i }, x∗

i , fi ,x∗ );

the lemma trivially holds in other cases. Namely, we will prove that(
mpk, aux1, aux2, cti−1,i

x∗ , ski
Γ,x∗

i ,fi ,x∗
)≈c

(
mpk, aux1, aux2, cti

x∗ , ski
Γ,x∗

i ,fi ,x∗
)

which roughly means that

cti−1,i
x∗︷ ︸︸ ︷

[si−1A1 + si−1a2]1 ≈c

cti
x∗︷ ︸︸ ︷

[si−1A1]1 given

aux2︷ ︸︸ ︷
[a‖

2 · s−1
end∆+Wendr>]2,

ski
Γ,x∗

i
,fi ,x∗︷ ︸︸ ︷

[DMx∗
i
+a‖

2 · s−1
i ∆ · fi ,x∗ +Wx∗

i ,τR]2 .

The proof is analogous to that of Lemma 48 except that we use (si−1,Wx∗
i ,τ,Wend)- instead of (si ,Zτ,Wend)-switching

lemma so that we can simulate the challenge ciphertext from the challenge term in the lemma and simulate both

secret key and aux2 using the auxiliary terms given out in the lemma. ut

Switching secret keys II. We show that Ĥ0
2.i .3(u0,u1) ≈c Ĥ

1
2.i .3(u0,u1) and Ĥ0

4(u0,u1) ≈c Ĥ
1
4(u0,u1) for all i ∈ [`] and

u0,u1. The proofs for them are similar. We begin with the following lemma stating that Ĥ0
2.i .3(u0,u1) ≈c Ĥ

1
2.i .3(u0,u1),

which is analogous to Lemma 17, and sketch the proof for the latter one.

Lemma 51. For all i ∈ [`], u0,u1 ∈ I × I ×Σ×EQ and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
2.i .3(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

2.i .3(u0,u1)〉 = 1] ≤AdvTRANS
B (λ).

Proof. We consider the case that the adversary adaptively chooses Γ and x∗ in the hybrids parameterized by

u0 = ( {i −1, i }, {i −1, i },⊥, fi−1,x∗ ), u1 = ( {i −1, i }, {i }, x∗
i , fi ,x∗ );

the lemma trivially holds in other cases. Recall that τ = i mod 2. By Lemma 4, it suffices to prove the lemma over

a2-components which roughly means:

ski−1,i
Γ,fi−1,x∗

[2] =



[du>+wstartRu>]2, [Ru>]2

[−d+ s−1
i−1∆ · fi−1,x∗ +zτR ]2, [dMx∗

i
+ wx∗

i ,τR ]2, [R]2{
[dMσ+wσ,τR]2}σ6=x∗

i{
[−d+z1−τR]2, [dMσ+wσ,1−τR]2, [R]2

}
σ∈Σ

[−d+zendR]2, [αf+wendR]2, [R]2



≈c



[du>+wstartRu>]2, [Ru>]2

[−d+ zτR ]2, [dMx∗
i
+ s−1

i ∆ · fi ,x∗Mx∗
i
+wx∗

i ,τR ]2, [R]2{
[dMσ+wσ,τR]2}σ6=x∗

i{
[−d+z1−τR]2, [dMσ+wσ,1−τR]2, [R]2

}
σ∈Σ

[−d+zendR]2, [αf+wendR]2, [R]2


= ski

Γ,x∗
i ,fi ,x∗

[2]
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in the presence of

cti−1,i
x∗ [2] =


[s0wstart]1, [s0]1, [s0z1 + s1wx∗

1 ,1]1, [s1]1, [s1z0]1, [sendwend]1, [send]1, [sendα]T ·m if i = 1

[si−1wx∗
i−1,1−τ]1, [si−1]1, [si−1zτ+ si wx∗

i ,τ]1, [si ]1, [si z1−τ]1, [sendwend]1, [send]1, [sendα]T ·m if i ∈ [2,`−1]

[s`−1wx∗
`−1,1− ¯̀]1, [s`−1]1, [s`−1z ¯̀+ s`wx∗

`
, ¯̀]1, [s`]1, [s`zend + sendwend]1, [send]1, [sendα]T ·m if i = `

and

aux1[2] = (
[α, B, wstartB, z0B, z1B, {wσ,0B,wσ,1B }σ∈Σ, zendB, wendB]2

)
aux2[2] = (

[r>, wstartr>, z0r>, z1r>, {wσ,0r>,wσ,1r> }σ∈Σ, zendr>, s−1
end∆+wendr>]2

)
One can sample basis A1,a2,A3,A‖

1,a‖
2,A‖

3 and trivially simulate mpk, cti−1,i
x∗ and secret key using terms given out above.

Furthermore, we prove this using (zτ,wx∗
i ,τ)-transition lemma. On input

aux, [∆̄0 +zτr>]2, [∆̄1 +wx∗
i ,τr>]2, [r>]2

where (∆̄0,∆̄1) ∈ {
(s−1

i−1∆̄,0) , (0, s−1
i ∆̄)

}
and aux = (∆̄, si−1, si , si−1zτ+ si wx∗

i ,τ, [zτB,wx∗
i ,τB,B]2) with zτ,wx∗

i ,τ ← Z1×k
p ,

B ←Zk×k
p , r ←Z1×k

p and∆←Zp , we sampleα←Zp ,wstart,z1−τ, wσ,1−τ,zend,wend ←Z1×k
p for allσ ∈Σ and wσ,τ←Z1×k

p

for all σ 6= x∗
i and proceed as follows:

(Simulating aux1 and aux2) We sample send ←Zp and implicitly set∆= ∆̄. Then we can simulate aux1[2],aux2[2] from

[zτB,wx∗
i ,τB,B]2 and ∆̄ given out in aux along with send, α, wstart, z1−τ, {wσ,1−τ}σ∈Σ, {wσ,τ}σ6=x∗

i
, zend, wend.

(Answering OEnc) On input (x∗,m), we trivially simulate cti−1,i
x∗ [2] using si−1, si , si−1zτ+ si wx∗

i ,τ in aux and send, α,

wstart, wσ,1−τ, z1−τ, zend, wend.

(Answering OKey) On input Γ, we want to return a key for Γ in the form:

[du>+wstartRu>]2, [Ru>]2

[−d+∆0 · fi−1,x∗ +zτR]2, [dMx∗
i
+∆1 · fi−1,x∗ +wx∗

i ,τR]2 , [R]2{
[dMσ+wσ,τR]2}σ6=x∗

i{
[−d+z1−τR]2, [dMσ+wσ,1−τR]2, [R]2

}
σ∈Σ

[−d+zendR]2, [αf+wendR]2, [R]2


where (∆0,∆1) ∈ {

(s−1
i−1∆,0) , (0, s−1

i ∆)
}
.

Observe that

– when (∆0,∆1) = (s−1
i−1∆,0) , the distribution is identical to ski−1,i

Γ,fi−1,x∗
[2] ;

– when (∆0,∆1) = (0, s−1
i ∆) , the distribution is identical to ski

Γ,x∗
i ,fi ,x∗

[2] since fi−1,x∗ = fi ,x∗Mx∗
i

mod p, see Lemma 5.

Recall that we set ∆= ∆̄ which means we also implicitly set

(∆0,∆1) = (∆̄0,∆̄1).

We sample d ←Z
1×Q
p and R̃ ←Z

k×Q
p and implicitly set

R = r> · fi−1,x∗ +B · R̃.

We then generate the key for Γ as follows:

– We simulate [R]2 from [r>]2, [B]2 and fi−1,x∗ , R̃.
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– We rewrite the terms in the dashed box as follows:

[−d+ (∆̄0 +zτr>) · fi−1,x∗ +zτB · R̃]2, [dMx∗
i
+ (∆̄1 +wx∗

i ,τr>) · fi−1,x∗ +wx∗
i ,τB · R̃]2

and simulate them using [∆̄0 +zτr>]2, [∆̄1 +wx∗
i ,τr>]2, [r>]2, [zτB]2, [wx∗

i ,τB]2 and d, fi−1,x∗ , R̃.

– We simulate all remaining terms using [R]2 and d, wstart, z1−τ, {wσ,τ}σ6=x∗
i

, {wσ,1−τ}σ∈Σ, zend, wend.

Observe that, when (∆̄0,∆̄1) = (s−1
i−1∆̄,0) , we have (∆0,∆1) = (s−1

i−1∆,0) , then oracle OKey(Γ) returns ski−1,i
Γ,fi−1,x∗

[2]

and the simulation is identical to Ĥ0
2.i .3(u0,u1); when (∆̄0,∆̄1) = (0, s−1

i ∆̄) , we have (∆0,∆1) = (0, s−1
i ∆) , then oracle

OKey(Γ) returns ski
Γ,x∗

i ,fi ,x∗
[2] and the simulation is identical to Ĥ1

2.i .3(u0,u1). This completes the proof. ut

Via the same proof idea, we can prove the following lemmas stating that Ĥ0
4(u0,u1) ≈c Ĥ

1
4(u0,u1) for all u0,u2. We

only sketch the proof.

Lemma 52. For all u0,u1 ∈ I × I ×Σ×EQ and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
4(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

4(u0,u1)〉 = 1] ≤AdvTRANS
B (λ).

Proof (sketch). We consider the case that the adversary adaptively chooses Γ and x∗ in the hybrids parameterized by

u0 = ( {`}, {`,∗} ,⊥,⊥ ), u1 = ( {`}, {∗} ,⊥,⊥ );

the lemma trivially holds in other cases. Namely, we will prove that

(
mpk, aux1, aux2, ct`x∗ , sk`,∗

Γ

)≈c
(
mpk, aux1, aux2, ct`x∗ , sk∗Γ

)
;

which roughly means that we need to show:

[−d+ s−1
` ∆ · f+zendR ]2, [αf+ wendR ]2, [R]2 //sk`,∗

Γ

≈c [−d+ zendR ]2, [αf+ s−1
end∆ · f+wendR ]2, [R]2 //sk∗Γ

given d,α,∆, s`, send, s`zend + sendwend. This can be handled using (zend,wend)-transition lemma. ut

F Concrete ABE for DFA with Adaptive Security

In this section, we show our concrete ABE for DFA with adaptive security. This is derived from our adaptively secure

ABE for EQ -restricted NFA⊕p in Section 5.1 and the transformation from DFA to EQ -restricted NFA⊕p in Section 3, see

Lemma 1.

– Setup(1λ,Σ) : Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A1 ←Zk×(2k+1)
p , k ←Z1×(2k+1)

p and Wstart,Z0,Z1,Wσ,0,Wσ,1,Zend,Wend ←Z(2k+1)×k
p , ∀σ ∈Σ.

Output

mpk= (
[A1, A1Wstart, A1Z0, A1Z1, {A1Wσ,0, A1Wσ,1 }σ∈Σ, A1Zend, A1Wend ]1, [A1k>]T

)
msk= (

k, Wstart, Z0, Z1, {Wσ,0, Wσ,1 }σ∈Σ, Zend, Wend
)
.

– Enc(mpk, x,m) : Let x = (x1, . . . , x`) ∈Σ`. Pick s0,s1, . . . ,s`,send ←Z1×k
p and output

ctx =


[s0A1]1, [s0A1Wstart]1{

[s j A1]1, [s j−1A1Z j mod 2 +s j A1Wx`+1− j , j mod 2]1
}

j∈[`]

[sendA1]1, [s`A1Zend +sendA1Wend]1, [sendA1k>]T ·m.

 .
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– KeyGen(mpk,msk,Γ) : Pick D ←Z
(2k+1)×Q
p , R ←Z

k×Q
p and output

skΓ =


[Df>+WstartRf>]2, [Rf>]2{

[−D+Zb R]2, [DM>
σ+Wσ,b R]2, [R]2

}
σ∈Σ,b∈{0,1}

[−D+ZendR]2, [k>u+WendR]2, [R]2

 .

– Dec(mpk,skΓ,ctx ) : Parse ciphertext for string x = (x1, . . . , x`) andkey for Γ= (Q,Σ, {Mσ}σ∈Σ,u, f) as

ctx =


[c0,1]1, [c0,2]1{

[c j ,1]1, [c j ,2]1
}

j

[cend,1]1, [cend,2]1,C

 and skΓ =


[k>

0]2, [r>0]2{
[Kb]2, [Kσ,b]2, [R]2

}
σ,b

[Kend,1]2, [Kend,2]2, [R]2

 .

We define f j ,x for all j ∈ [0,`] as (22) and proceed as follows:

1. Compute

B0 = e([c0,1]1, [k>
0]2) ·e([c0,2]1, [r>0]2)−1;

2. For all j = 1, . . . ,`, compute

[b j ]T = e([c j−1,1]1, [K j mod 2]2) ·e([c j ,1]1, [Kx`+1− j , j mod 2]2) ·e([−c j ,2]1, [R]2) and B j = [b j f>`+1− j ,x ]T ;

3. Compute

[bend]T = e([c`,1]1, [Kend,1]2) ·e([cend,1]1, [Kend,2]2) ·e([−cend,2]1, [R]2) and Bend = [bendf>0,x ]T ;

4. Compute

Ball = B0 ·∏`
j=1 B j ·Bend and B = B

(uf>0,x )−1

all

and output the message m′ ←C ·B−1.

G Missing Material from Section 6

G.1 An Attack for Non-injective ρ with Shared Random Coins

We consider the following ABE scheme, which is the ABE scheme for NBP⊕p in Section 6.2 but with R j = R ←Z
k×Q
p for

all j ∈ `BP, as is the case mentioned in the Overview paragraph at the beginning of Section 6.2.

mpk = (
[A1, A1Wstart, {A1Wη,σ }η∈[`],σ∈Σ, A1Wend ]1, [A1k>]T

)
;

skΓ =


[D0u>+Wstartr>]2, [r>]2{

[D j M j ,σ−D j−1 +Wρ( j ),σR]2, [R]2
}

j∈[`BP],σ∈Σ
[k>f−D`BP +WendRend]2, [Rend]2

 ;

ctx =
(
[sA1]1, [sA1Wstart]1,

{
[sA1Wη,xη ]1

}
η∈[`], [sA1Wend]1, [sA1k>]T ·m

)
.

We will show a concrete attack when ρ is non-injective.

Let us consider an NBP⊕p Γ= (Q,`BP,`,Σ, {M j ,σ} j∈[`BP],σ∈Σ,ρ,u, f ) where Q = 2, `BP = 2, `= 1, Σ= {a,b},

M1,a = M1,b = M2,b = I, M2,a =
(

0 1

1 0

)
= P, u = f = e1, ρ(1) = ρ(2) = 1

and an input x = a. Then we have mpk, key for Γ and ciphertext for x as follows:

mpk = (
[A1, A1Wstart, A1Wa ,A1Wb , A1Wend ]1, [A1k>]T

)
;
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skΓ =



[D0e>
1 +Wstartr>]2, [r>]2

[K1,a]2 = [D1 −D0 +Wa R]2, [R]2

[K1,b]2 = [D1 −D0 +Wb R]2, [R]2

[K2,a]2 = [D2P−D1 +Wa R]2, [R]2

[K2,b]2 = [D2 −D1 +Wb R]2, [R]2

[k>e1 −D2 +WendRend]2, [Rend]2


;

ctx =
(
[sA1]1, [sA1Wstart]1, [sA1Wa]1, [sA1Wend]1, [sA1k>]T ·m

)
.

One can check that Γ(x) = 0 since fM2,a M1,a u = e1
(

0 1
1 0

)
Ie>

1 = 0 mod p, which means the secret key skΓ is not supposed

to recover message m from ctx . However we show that this is not the case. Normal decryption computes

D0 = [sA1D0e>
1]T , D1 = [sA1(D1 −D0)]T , D2 = [sA1(D2P−D1)]T , D3 = [sA1(k>e1 −D2)]T .

Besides that the shared R allows us to compute more; in particular, we compute:

[K]2 = [(K2,b −K1,b)− (K2,a −K1,a)]2 = [D2 −D2P]2 and K = e([sA1]1, [K]2) = [sA1(D2 −D2P)]T

This allows us to compute

D ′
2 = [

K︷ ︸︸ ︷
sA1(D2 −D2P)+

D2︷ ︸︸ ︷
sA1(D2P−D1)]T = [sA1(D2 −D1)]T

and recover [sA1k>]T from D0,D1,D ′
2,D3:

[sA1k>]T = [

D0︷ ︸︸ ︷
sA1D0e>

1+
D1︷ ︸︸ ︷

sA1(D1 −D0)e>
1 +

D ′
2︷ ︸︸ ︷

sA1(D2 −D1)e>
1 +

D3︷ ︸︸ ︷
sA1(k>e1 −D2)e>

1]T .

G.2 Missing Proof in Section 6.3

In this section, we prove that G0 ≈c G1 and the advantage of adversary in G3 is 0. All games are defined in Section 6.3.

Lemma 53 (G0 ≈c G1). For all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,G0〉 = 1]−Pr[〈A,G1〉 = 1] ≤Adv
SDG1

A1 7→A1 ,a2

B
(λ).

Proof (sketch). This relies on SDG1
A1 7→A1,a2

assumption which implies(
[A1]1, [sA1]1

)≈c
(

[A1]1, [sA1 + sa2]1
)

where s ←Z1×k
p and s ←Zp . Let x∗ be the selective challenge, the reduction algorithm is sketched as follows:

– we sample k,Wstart,Wη,σ,Wend for all η ∈ [`],σ ∈Σ and create (mpk,msk) honestly using [A1]1.
– on key query Γ, we honestly run skΓ←KeyGen(mpk,msk,Γ) using mpk and msk;
– on input challenge query (m0,m1), we sample β and create the challenge ciphertext using the term given out in

the statement above. ut
Lemma 54 (Advantage in G3). For all A, we have

Pr[〈A,G3〉 = 1] = 1/2.

Proof (sketch). First, we argue that the secret key sk∗Γ perfectly hides the a2-component of k>, i.e., α= a2k>. Recall the

a2-components of the key

sk∗Γ[2] =


[d0u>+wstartr>]2, [r>]2{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j∈[`BP],σ∈Σ
[αf+ ∆ · f −d`BP +wendRend]2, [Rend]2


We observe that it only leaks α+∆which means that the key perfectly hides α. Therefore, the unique term involving k

in ct∗x∗ , i.e., [sA1k>+ sa2k>]T , is independently and uniformly distributed and thus statistically hides message mβ. ut
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G.3 Missing Proof in Section 6.4

We show that the core lemma, Lemma 30, implies G2.κ−1 ≈c G2.κ for all κ ∈ [q].

Lemma 55 (Lemma 30 ⇒ G2.κ−1 ≈c G2.κ). For all κ ∈ [q] and all A, there exists B with Time(B) ≈Time(A) and

Pr[〈A,G2.κ−1〉 = 1]−Pr[〈A,G2.κ〉 = 1] ≤AdvCORE
B (λ)

where AdvCORE
B (λ) is defined in Lemma 30.

Proof (sketch). By Lemma 4, we only focus on a2-components. On input aux, reduction B works as follows:

– On input Γ, it proceeds as follows:
◦ for the κ’th query, return the result of oracle query OKey(Γ);

◦ for the remaining queries, output skΓ[2] or sk∗Γ[2] which can be created from aux;
– On input (x∗,m0,m1), make an oracle query OEnc(x∗) and create the challenge ciphertext with the help of aux.

Observe that, if OKey(Γ) outputs skΓ[2], the simulation is identical to G2.κ−1; if OKey(Γ) outputs sk∗Γ[2], the simulation

is identical to G2.κ. This completes the proof. ut

G.4 Detailed Proofs of Neighbor Indistinguishability

This section provides the detailed for proving Lemma 32 restated below. The proofs are similar to those for selective

security in Section 6.3.

Lemma 56 (Neighbor indistinguishability). For all xxx ∈ {0,2}∪ {1.i .i ′ : i ∈ [`BP], i ′ ∈ [2]}, u0,u1 ∈ I ×EQ and all A,

there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
xxx(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

xxx(u0,u1)〉 = 1] ≤O(|Σ|2) ·Advk-LIN
B (λ).

Initializing. We prove the following lemma stating that Ĥ0
0(u0,u1) ≈c Ĥ1

0(u0,u1) for all u0,u1. This is analogous to

Lemma 25.

Lemma 57. For all u0,u1 ∈ I ×EQ and all A, we have

Pr[〈A,Ĥ0
0(u0,u1)〉 = 1] = Pr[〈A,Ĥ1

0(u0,u1)〉 = 1]

Proof (sketch). We consider the case that the adversary adaptively chooses Γ and x∗ in the hybrids parameterized by

u0 = ( ⊥,⊥ ), u1 = ( {0}, f0,x∗ );

the lemma trivially holds in all other cases. Roughly, in this case, we prove(
aux,OEnc(x∗), skΓ[2]

)= (
aux,OEnc(x∗), sk0

Γ,f0,x∗
[2]

)
where we have

skΓ[2] =


[ d0u> +wstartr>]2, [r>]2{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j∈[`BP],σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2

 ,

sk0
Γ,f0,x∗

[2] =


[ (d0 +∆ · f0,x∗ )u> +wstartr>]2, [r>]2{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j∈[`BP],σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2


and

aux︷ ︸︸ ︷
[B, {wη,σB }η∈[`],σ∈Σ]2,α,∆,wstart,wend and

OEnc(x∗)︷ ︸︸ ︷
{wη,x∗

η
}η∈[`] .

The lemma immediately follows from the fact Γ(x∗) = 0 ⇐⇒ f0,x∗u> = 0 mod p, see Lemma 24. ut
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Key switching I. We will prove that Ĥ0
1.i .1(u0,u1) ≈s Ĥ

1
1.i .1(u0,u1) and Ĥ0

2(u0,u1) ≈s Ĥ
1
2(u0,u1) for all i ∈ [`BP] and all

u0,u1. The proofs for them are similar. We begin with the following lemma stating that Ĥ0
1.1.1(u0,u1) ≈s Ĥ

1
1.1.1(u0,u1)

for all u0,u1, which is analogous to Lemma 26, and sketch the proof for remaining statements.

Lemma 58. For all u0,u1 ∈ I ×EQ and all A, we have

Pr[〈A,Ĥ0
1.1.1(u0,u1)〉 = 1] ≈ Pr[〈A,Ĥ1

1.1.1(u0,u1)〉 = 1].

Proof. We consider the case that the adversary adaptively chooses Γ and x∗ in the hybrids parameterized by

u0 = ( {0} , f0,x∗ ), u1 = ( {0,1} , f0,x∗ );

the lemma trivially holds in all other cases. Roughly, in this case, we prove that(
aux,OEnc(x∗), sk0

Γ,f0,x∗
[2]

)= (
aux,OEnc(x∗), sk0,1

Γ,f0,x∗
[2]

)
.

More concretely, this means that

sk0
Γ,f0,x∗

[2] =


[ (d0 +∆ · f0,x∗ ) u>+wstartr>]2, [r>]2{

[d1M1,σ −d0 +wρ(1),σR1]2, [R1]2
}
σ∈Σ{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j 6=1,σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2

 ≈s


[ d0 u>+wstartr>]2, [r>]2{

[d1M1,σ −d0 +∆ · f0,x∗ +wρ(1),σR1]2, [R1]2
}
σ∈Σ{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j 6=1,σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2

= sk0,1
Γ,f0,x∗

[2]

given
aux︷ ︸︸ ︷

[B, {wη,σB }η∈[`],σ∈Σ]2,α,∆,wstart,wend and

OEnc(x∗)︷ ︸︸ ︷
{wη,x∗

η
}η∈[`] .

This immediately follows from change of variables d0 7→ d0 −∆ · f0,x∗ . ut

Via the same proof idea, we can prove the following two lemmas stating that Ĥ0
1.i .1(u0,u1) ≈c Ĥ

1
1.i .1(u0,u1) for all i ∈

[2,`BP] and Ĥ0
2(u0,u1) ≈c Ĥ

1
2(u0,u1), respectively. The first lemma relies on change of variable di−1 7→ di−1 −∆ · fi−1,x∗ ;

while the second lemma relies on change of variable d`BP 7→ d`BP −∆ · f`BP,x∗ . We give the lemmas but omit the proofs.

Lemma 59. For all i ∈ [2,`BP], u0,u1 ∈ I ×EQ and all A, we have

Pr[〈A,Ĥ0
1.i .1(u0,u1)〉 = 1] ≈ Pr[〈A,Ĥ1

1.i .1(u0,u1)〉 = 1].

Lemma 60. For all u0,u1 ∈ I ×EQ and all A, we have

Pr[〈A,Ĥ0
2(u0,u1)〉 = 1] ≈ Pr[〈A,Ĥ1

2(u0,u1)〉 = 1].

Key switching II. We prove the following lemma stating that Ĥ0
1.i .2(u0,u1) ≈c Ĥ

1
1.i .2(u0,u1) for all i ∈ [`BP] and all u0,u1.

This is analogous to Lemma 29.

Lemma 61. For all i ∈ [`BP], u0,u1 ∈ I ×EQ and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,Ĥ0
1.i .2(u0,u1)〉 = 1]−Pr[〈A,Ĥ1

1.i .2(u0,u1)〉 = 1] ≤O(|Σ|2) ·AdvDDHG2
1,Q

B
(λ).

Proof. We consider the case that the adversary adaptively chooses Γ and x∗ in the hybrids parameterized by

u0 = ( {i −1, i }, fi−1,x∗ ), u1 = ( {i }, fi ,x∗ );

the lemma trivially holds in other cases. Roughly, we prove that(
aux,OEnc(x∗), ski−1,i

Γ,fi−1,x∗
[2]

)≈c
(
aux,OEnc(x∗), ski

Γ,fi ,x∗
[2]

)
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which means:

ski−1,i
Γ,fi−1,x∗

[2] =


[d0u>+wstartr>]2, [r>]2{

[di Mi ,σ−di−1 + ∆ · fi−1,x∗ +wρ(i ),σRi ]2, [Ri ]2
}
σ∈Σ{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j 6=i ,σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2



≈c


[d0u>+wstartr>]2, [r>]2{

[di Mi ,σ−di−1 + ∆ · fi ,x∗Mi ,σ +wρ(i ),σRi ]2, [Ri ]2
}
σ∈Σ{

[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2
}

j 6=i ,σ∈Σ
[αf−d`BP +wendRend]2, [Rend]2

= ski
Γ,fi ,x∗

[2];

in the presence of
aux︷ ︸︸ ︷

[B, {wη,σB }η∈[`],σ∈Σ]2,α,∆,wstart,wend and

OEnc(x∗)︷ ︸︸ ︷
{wη,x∗

η
}η∈[`] .

We randomly guess x∗
ρ(i ) ← Σ, which causes a multiplicative security loss of |Σ|, and prove this using the following

statement implied by DDHG2
1,Q assumption: for all ∆ ∈Zp , we have

{
[wρ(i ),σB]2, [B]2, [∆ · fi−1,x∗ +wρ(i ),σRi ]2, [Ri ]2

}
σ6=x∗

ρ(i )
≈c

{
[wρ(i ),σB]2, [B]2, [∆ · fi ,x∗Mi ,σ +wρ(i ),σRi ]2, [Ri ]2

}
σ6=x∗

ρ(i )

where wρ(i ),σ←Z1×k
p , B ←Zk×k

p and Ri ←Z
k×Q
p . On input

{
[wρ(i ),σB]2, [B]2, [tσ]2, [Ri ]2

}
σ6=x∗

ρ(i )
where

tσ =∆ · fi−1,x∗ +wρ(i ),σRi or tσ =∆ · fi ,x∗Mi ,σ +wρ(i ),σRi

we sample α←Zp ,wstart,wρ(i ),x∗
ρ(i )

,wend ←Z1×k
p and wη,σ←Z1×k

p for all η 6= ρ(i ),σ ∈Σ and proceed as follows:

(Simulating aux) We can trivially simulate aux using∆,
{

[wρ(i ),σB]2, [B]2
}
σ6=x∗

ρ(i )
given in the lemma andα, wstart, wend,

wρ(i ),x∗
ρ(i )

, {wη,σ}η 6=ρ(i ),σ∈Σ sampled by ourselves.

(Answering OEnc) On input x∗, we can answer OEnc(x∗) using the knowledge of wρ(i ),x∗
ρ(i )

and {wη,x∗
η

}η 6=ρ(i ). Here we

use the fact that the oracle does not involve {wρ(i ),σ}σ6=x∗
ρ(i )

.

(Answering OKey) On input Γ, we want to simulate secret key in the form:

[d0u>+wstartr>]2, [r>]2{
[di Mi ,x∗

ρ(i )
−di−1 +∆ · fi−1,x∗ +wρ(i ),x∗

ρ(i )
Ri ]2, [Ri ]2

}{
[di Mi ,σ−di−1 + tσ]2, [Ri ]2

}
σ6=x∗

ρ(i ){
[d j M j ,σ−d j−1 +wρ( j ),σR j ]2, [R j ]2

}
j 6=i ,σ∈Σ

[αf−d`BP +wendRend]2, [Rend]2


Observe that,

– when tσ =∆ · fi−1,x∗ +wρ(i ),σRi , the distribution is identical to ski−1,i
Γ,fi−1,x∗

[2] ;

– when tσ =∆ · fi ,x∗Mi ,σ +wρ(i ),σRi , the distribution is identical to ski
Γ,fi ,x∗

[2] since fi−1,x∗ = fi ,x∗Mi ,x∗
ρ(i )

mod p, see

Lemma 24.

We sample d0, . . . ,d`BP ←Z
1×Q
p and simulate the key as follows:

– We simulate the terms in the second row using [Ri ]2 and wρ(i ),x∗
ρ(i )

;

– We simulate the terms in the third row using [tσ]2 and [Ri ]2;
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– All remaining terms can be simulated using aux.

Observe that, when tσ =∆ · fi−1,x∗ +wρ(i ),σRi , oracle OKey(Γ) returns ski−1,i
Γ,fi−1,x∗

[2] and the simulation is identical to

Ĥ0
1.i .2(u0,u1); when tσ =∆ · fi ,x∗Mi ,σ +wρ(i ),σRi , oracle OKey(Γ) returns ski

Γ,fi ,x∗
[2] and the simulation is identical to

Ĥ1
1.i .2(u0,u1). This completes the proof. ut

H Concrete ABE for Branching Program with Adaptive Security

In this section, we show our compact adaptively secure ABE for branching program (BP). This is derived from our

adaptively secure ABE for EQ -restricted NBP⊕p in Section 6.2 and the transformation from BP to EQ -restricted NBP⊕p

in Section 6.1, see Lemma 23.

– Setup(1λ,`,Σ) : Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A1 ←Zk×(k+1)
p , k ←Z1×(k+1)

p and Wstart,Wη,σ,Wend ←Z(k+1)×k
p , ∀η ∈ [`],σ ∈Σ.

Output

mpk= (
[A1, A1Wstart, {A1Wη,σ }η∈[`],σ∈Σ, A1Wend ]1, [A1k>]T

)
msk= (

k, Wstart, {Wη,σ }η∈[`],σ∈Σ, Wend
)
.

– Enc(mpk, x,m) : Let x = (x1, . . . , x`) ∈Σ` and m ∈GT . Pick s ←Z1×k
p and output

ctx =
(
[sA1]1, [sA1Wstart]1,

{
[sA1Wη,xη ]1

}
η∈[`], [sA1Wend]1, [sA1k>]T ·m

)
.

– KeyGen(mpk,msk,Γ) : Let Γ= (Q,`BP,`,Σ, {M j ,σ} j∈[`BP],σ∈Σ,ρ,u, f). Pick

D0,D1, . . . ,D`BP ←Z
(k+1)×Q
p , R1, . . . ,R`BP ,Rend ←Z

k×Q
p , r ←Z1×k

p

output

skΓ =


[D0f>+Wstartr>]2, [r>]2{

[D j M>
`BP+1− j ,σ−D j−1 +Wρ(`BP+1− j ),σR j ]2, [R j ]2

}
j∈[`BP],σ∈Σ

[k>u−D`BP +WendRend]2, [Rend]2

 .

– Dec(mpk,skΓ,ctx ) : Parse ciphertext for x = (x1, . . . , x`) and key for Γ= (Q,`BP,`,Σ, {M j ,σ} j∈[`BP],σ∈Σ,ρ,u, f) as

ctx = (
[c]1, [cstart]1,

{
[cη]1

}
η∈[`], [cend]1,C

)
and skΓ =


[k>

start]2, [r>]2{
[K j ,σ]2, [R j ]2

}
j ,σ

[Kend]2, [Rend]2

 .

We define f j ,x for all j ∈ [0,`BP] as (39) and proceed as follows:

1. Compute

Bstart = e([c]1, [k>
start]2) ·e([cstart]1, [r>]2)−1;

2. For all j ∈ [`BP], compute

[b j ]T = e([c]1, [K j ,xρ(`BP+1− j ) ]2) ·e([−cρ(`BP+1− j )]1, [R j ]2) and B j = [b j f>`BP+1− j ,x ]T ;

3. Compute

[bend]T = e([c]1, [Kend]2) ·e([−cend]1, [R]2) and Bend = [bendf>0,x ]T ;

4. Compute

Ball = Bstart ·∏`BP
i= j B j ·Bend and B = B

(uf>0,x )−1

all

and output the message m′ ←C ·B−1.
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I Adaptively Secure CP-ABE for EQ -restricted NFA⊕p and DFA

In this section, we construct adaptively secure CP-ABE for EQ -restricted NFA⊕p from k-Lin assumption. The scheme is

based on our adaptively secure KP-ABE for the same class in Section 5 and dual conversion in [4,6]. This readily gives

us an adaptively secure CP-ABE for DFA by Lemma 1.

I.1 Basis

We will use the following two sets of bases for ciphertexts and keys, respectively:

A1,A2 ←Z2k×k
p and (B1,B2) ←Zk×(3k+1)

p ×Z(2k+1)×(3k+1)
p .

We use A⊥
1 ,A⊥

2 ∈ Zk×2k
p to denote the dual basis of (A1,A2) such that A⊥

i Ai = I for i ∈ {1,2} and A⊥
i A j = 0 for i 6= j .

Analogously, we use (B⊥
1 ,B⊥

2 ) ∈ Z(3k+1)×k
p ×Z(3k+1)×(2k+1)

p to denote the dual basis of (B1,B2). In the proof, we will use

SDG2
A1 7→A1,A2

and SDG1
B1 7→B1,B2

assumption, cf. Section 4.1.

I.2 Scheme

For notational convenience, especially reusing NFA notations in Section 5, we will generate ciphertexts over G2 and

keys over G1. Our CP-ABE for EQ -restricted NFA⊕p in prime-order groups is described as follows:

– Setup(1λ,Σ) : Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A1 ←Z2k×k
p , B1 ←Zk×(3k+1)

p , k ←Z1×2k
p and Wstart,Z0,Z1,W0,Wσ,0,Wσ,1,Zend,Wend ←Z(3k+1)×2k

p , ∀σ ∈Σ.

Output

mpk= (
[A1, WstartA1, Z0A1, Z1A1, W0A1, {Wσ,0A1, Wσ,1A1 }σ∈Σ, ZendA1, WendA1 ]2, [kA1]T

)
msk= (

k, B1, Wstart, Z0, Z1, W0, {Wσ,0, Wσ,1 }σ∈Σ, Zend, Wend
)
.

– Enc(mpk,Γ,m) : Let Γ= (Q,Σ, {Mσ}σ∈Σ,u, f ) and m ∈GT . Pick D ←Z
(3k+1)×Q
p , S ←Z

k×Q
p , s ←Z1×k

p and output

ctΓ =


[Du>+WstartA1Su>]2, [A1Su>]2{

[−D+Zb A1S]2, [DMσ+Wσ,b A1S]2, [A1S]2
}
σ∈Σ,b∈{0,1}

[−D+ZendA1S]2, [(W0A1s>)f+WendA1S]2, [A1S]2

[A1s>]2, [kA1s>]T ·m

 .

– KeyGen(mpk,msk, x) : Let x = (x1, . . . , x`) ∈Σ`. Pick r0,r1, . . . ,r`,rend ←Z1×k
p and output

skx =


[r0B1]1, [r0B1Wstart]1{

[r j B1]1, [r j−1B1Z j mod 2 + r j B1Wx j , j mod 2]1
}

j∈[`]

[rendB1]1, [r`B1Zend + rendB1Wend]1

[rendB1W0 +k]1

 .

– Dec(mpk,skx ,ctΓ) : Parse key for x = (x1, . . . , x`) and ciphertext for Γ= (Q,Σ, {Mσ}σ∈Σ,u, f ) as

skx =


[k0,1]1, [k0,2]1{

[k j ,1]1, [k j ,2]1
}

j

[kend,1]1, [kend,2]1

[kend]1

 and ctΓ =


[c>0,1]2, [c>0,2]2{

[Cb]2, [Cσ,b]2, [C]2
}
σ,b

[Cend,1]2, [Cend,2]2, [C]2

[c>]2,C

 .

We define

u>
j ,x = Mx j · · ·Mx1 u> mod p, ∀ j ∈ [0,`]

as (11) in Section 4.2 and proceed as follows:
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1. Compute

B0 = e([k0,1]1, [c>0,1]2) ·e([k0,2]1, [c>0,2]2)−1;

2. For all j ∈ [`], compute

[b j ]T = e([k j−1,1]1, [C j mod 2]2) ·e([k j ,1]1, [Cx j , j mod 2]2) ·e([−k j ,2]1, [C]2) and B j = [b j u>
j−1,x ]T ;

3. Compute

[bend]T = e([k`,1]1, [Cend,1]2) ·e([kend,1]1, [Cend,2]2) ·e([−kend,2]1, [C]2) and Bend = [bendu>
`,x ]T ;

4. Compute

Ball = B0 ·∏`
j=1 B j ·Bend and B = B

(fu>
`,x )−1

all

5. Compute

D = e([kend]1, [c>]2) ·B−1

and output the message m′ ←C ·D−1.

Correctness. For x = (x1, . . . , x`) and Γ= (Q,Σ, {Mσ}σ∈Σ,u, f ) such that Γ(x) = 1, we have:

B0 = [r0B1Du>]T = [r0B1Du>
0,x ]T (50)

b j = r j B1DMx j − r j−1B1D (51)

B j = [r j B1Du>
j ,x − r j−1B1Du>

j−1,x ]T (52)

bend = rendB1(W0A1s>)f− r`B1D (53)

Bend = [rendB1(W0A1s>)fu>
`,x − r`B1Du>

`,x ]T (54)

Ball = [rendB1(W0A1s>)fu>
`,x ]T (55)

B = [rendB1(W0A1s>)]T (56)

D = [kA1s>]T (57)

Here (54) is trivial; (52) and (56) follow from facts (19); the remaining equalities follow from:

(50) r0B1Du> = r0B1 · (Du>+WstartA1Su>)− r0B1Wstart ·A1Su>

(51) r j B1DMx j − r j−1B1D = r j−1B1 · (−D+Z j mod 2A1S)+ r j B1 · (DMx j +Wx j , j mod 2A1S)

−(r j−1B1Z j mod 2 + r j B1Wx j , j mod 2) ·A1S

(53) rendB1(W0A1s>)f− r`B1D = r`B1 · (−D+ZendA1S)+ rendB1 · (W0A1s>f+WendA1S)− (r`B1Zend + rendB1Wend) ·A1S

(55) rendB1(W0A1s>)fu>
`,x = r0B1Du>

0,x +
∑`

j=1(r j B1Du>
j ,x − r j−1B1Du>

j−1,x )+ (rendB1(W0A1s>)fu>
`,x − r`B1Du>

`,x )

(57) kA1s> = (rendB1W0 +k) ·A1s>− rendB1W0A1s>

Correctness follows readily.

I.3 Adaptive Security

We prove the following theorem.

Theorem 6 (Adaptively Secure CP-ABE for EQ -restricted NFA⊕p ). The ABE scheme for EQ -restricted NFA⊕p in prime-

order bilinear groups described in Section I.2 is adaptively secure (cf. Section 2.1) under the k-Lin assumption with

security loss O(q ·` · |Σ|3 ·Q2). Here ` is the maximum length of the q key queries.

The proof employs standard dual system argument where we handle key queries one by one; for each key, we rely on

the core lemma, Lemma 19, for our adaptively secure KP-ABE for EQ -restricted NFA⊕p (in Section 5). We only show

the game sequence and sketch the proof.
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Auxiliary distributions. We use Γ∗ = (Q,Σ, {Mσ}σ∈Σ,u, f ) to denote the adaptive challenge NFA and x = (x1, . . . , x`) a

key query. We describe the auxiliary ciphertext and key distributions that we use in the proof.

Ciphertext distributions. We sample Ŝ ←Z
k×Q
p , ŝ ←Z1×k

p and define:

– N: the real ciphertext in the scheme;

– SF: identical to an N ciphertext except that we replace A1S and A1s> with A1S+A2Ŝ and A1s>+A2ŝ>, respectively.

That is, we write

ctSF
Γ∗ =


[Du>+Wstart(A1S+ A2Ŝ )u>]2, [(A1S+ A2Ŝ )u>]2{

[−D+Zb(A1S+ A2Ŝ )]2, [DMσ+Wσ,b(A1S+ A2Ŝ )]2, [A1S+ A2Ŝ ]2
}
σ∈Σ,b∈{0,1}

[−D+Zend(A1S+ A2Ŝ )]2, [(W0(A1s>+ A2ŝ> ))f+Wend(A1S+ A2Ŝ )]2, [A1S+ A2Ŝ ]2

[A1s>+ A2ŝ> ]2, [k(A1s>+ A2ŝ> )]T ·mβ

 .

Secret key distributions. We sample∆←Z1×k
p , r̂ j , r̂end ←Z

1×(2k+1)
p for all j ∈ [0,`] and define

– N: the real key in the scheme;

– SF: identical to an N key except that we replace k with∆A⊥
2 +k;

– P-N: identical to an N key except that we replace r j B1, rendB1 with r j B1 + r̂ j B2, rendB1 + r̂endB2;

– P-SF: identical to an SF key except that we replace r j B1, rendB1 with r j B1 + r̂ j B2, rendB1 + r̂endB2.

That is, we write

skSF
x =


[r0B1]1, [r0B1Wstart]1{

[r j B1]1, [r j−1B1Z j mod 2 + r j B1Wx j , j mod 2]1
}

j∈[`]

[rendB1]1, [r`B1Zend + rendB1Wend]1,

[rendB1W0 + ∆A⊥
2 +k]1

 ;

skP-N
x =


[r0B1 + r̂0B2 ]1, [(r0B1 + r̂0B2 )Wstart]1{

[r j B1 + r̂ j B2 ]1, [(r j−1B1 + r̂ j−1B2 )Z j mod 2 + (r j B1 + r̂ j B2 )Wx j , j mod 2]1
}

j∈[`]

[rendB1 + r̂endB2 ]1, [(r`B1 + r̂`B2 )Zend + (rendB1 + r̂endB2 )Wend]1,

[(rendB1 + r̂endB2 )W0 +k]1

 ;

skP-SF
x =


[r0B1 + r̂0B2 ]1, [(r0B1 + r̂0B2 )Wstart]1{

[r j B1 + r̂ j B2 ]1, [(r j−1B1 + r̂ j−1B2 )Z j mod 2 + (r j B1 + r̂ j B2 )Wx j , j mod 2]1
}

j∈[`]

[rendB1 + r̂endB2 ]1, [(r`B1 + r̂`B2 )Zend + (rendB1 + r̂endB2 )Wend]1,

[(rendB1 + r̂endB2 )W0 +∆A⊥
2 +k]1

 .

Game sequences. We prove Theorem 6 via a series of games following the standard dual system method [20,22,4]:

– G0: Identical to the real game where all keys and challenge ciphertext are skN
x and ctNΓ∗ , respectively.

– G1: Identical to G0 except that the challenge ciphertext is ctSF
Γ∗ .

– G2.κ.0 for κ ∈ [q]: Identical to G1 except that the first κ−1 secret keys are skSF
x .

– G2.κ.1 for κ ∈ [q]: Identical to G2.κ.0 except that the κ-th secret key is skP-N
x .

– G2.κ.2 for κ ∈ [q]: Identical to G2.κ.1 except that the κ-th secret key is skP-SF
x .

– G2.κ.3 for κ ∈ [q]: Identical to G2.κ.2 except that the κ-th secret key skSF
x .

– G3: Identical to G2.q.3 except that the challenge ciphertext is an encryption of a random message.

Note that we have G2.1.0 =G1 and G2.κ.0 =G2.κ−1.3 for q ∈ [2, q].
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Proof sketch. Most proofs are standard: G0 ≈c G1 follows from SDG2
A1 7→A1,A2

assumption; both G2.κ.0 ≈c G2.κ.1 and

G2.κ.2 ≈c G2.κ.3 with κ ∈ [q] follow from SDG1
B1 7→B1,B2

assumption and G2.q.3 ≈s G3 is straightforward by a standard statis-

tical argument involving k and∆. We focus on G2.κ.1 ≈c G2.κ.2 for all κ ∈ [q].

Lemma 62 (G2.κ.1 ≈c G2.κ.2). For all κ ∈ [q] and all A, there exists B with Time(B) ≈Time(A) and

Pr[〈A,G2.κ.1〉 = 1]−Pr[〈A,G2.κ.2〉 = 1] ≤O(` · |Σ|3 ·Q2) ·Advk-LIN
B (λ)

Proof (sketch). We use the core lemma, Lemma 19, to prove the lemma. By the core lemma, it is sufficient to prove that

for all κ and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,G2.κ.1〉 = 1]−Pr[〈A,G2.κ.2〉 = 1] ≤AdvCORE
B (λ).

For this, we define two auxiliary games Ĝ2.κ.1 and Ĝ2.κ.2 by the following change of variables in both G2.κ,1 and G2.κ.2:

Wstart 7→ Wstart +B⊥
2 ŴstartA⊥

2 ,

Zb 7→ Zb +B⊥
2 Ẑb A⊥

2 , ∀b ∈ {0,1},

Wσ,b 7→ Wσ,b +B⊥
2 Ŵσ,b A⊥

2 , ∀σ ∈Σ,b ∈ {0,1}

Zend 7→ Zend +B⊥
2 ẐendA⊥

2 ,

Wend 7→ Wend +B⊥
2 ŴendA⊥

2 ,

D 7→ D+B⊥
2 D̂

and

W0 7→ W0 −B⊥
2

(
β(r̂endb̂⊥

2 )−1 · b̂⊥
2 ∆

)
A⊥

2 , where β=
0 in G2.κ.1

1 in G2.κ.2

where Ŵstart, Ẑb ,Ŵσ,b , Ẑend,Ŵend ←Z
(2k+1)×k
p for all σ ∈Σ,b ∈ {0,1}, D̂ ←Z

(2k+1)×Q
p and b̂⊥

2 ←Z2k+1
p . Looking ahead, b̂⊥

2

is a part of dual basis of (59) defined later. It is clear that we have

Pr[〈A,G2.κ.1〉 = 1] = Pr[〈A,Ĝ2.κ.1〉 = 1] and Pr[〈A,G2.κ.2〉 = 1] = Pr[〈A,Ĝ2.κ.2〉 = 1]

since the change of variables does not change the two games. Now it is sufficient to prove that

Pr[〈A,Ĝ2.κ.1〉 = 1]−Pr[〈A,Ĝ2.κ.2〉 = 1] ≤AdvCORE
B (λ). (58)

Observe that, in the new games, we have mpk, skN
x and skSF

x unchanged due to the fact that A⊥
2 A1 = 0 and B1B⊥

2 = 0;

the challenge ciphertext is in the form of

ctSF
Γ∗ ·


[B⊥

2 D̂u>+B⊥
2 ŴstartŜu>]2, [0]2{

[−B⊥
2 D̂+B⊥

2 Ẑb Ŝ]2, [B⊥
2 D̂Mσ+B⊥

2 Ŵσ,b Ŝ]2, [0]2
}
σ∈Σ,b∈{0,1}

[−B⊥
2 D̂+B⊥

2 ẐendŜ]2, [−B⊥
2 ·β(r̂endb̂⊥

2 )−1 · b̂⊥
2 ∆ŝ> · f+B⊥

2 ŴendŜ]2, [0]2

[0]2, [0]T

 where β=
0 in Ĝ2.κ.1

1 in Ĝ2.κ.2

while the κ-th key in the two games are in the form of

skP-N
x ·


[0]1, [r̂0ŴstartA⊥

2 ]1{
[0]1, [r̂ j−1Ẑ j mod 2A⊥

2 + r̂ j Ŵx j , j mod 2A⊥
2 ]1

}
j∈[`]

[0]1, [r̂`ẐendA⊥
2 + r̂endŴendA⊥

2 ]1

[0]1

 .

It is clear that the two games are identical except that boxed parts, so it is sufficient to prove the indistinguishability

between the boxed parts in games. Formally, we capture this by the following claim. Note that we neglect B⊥
2 and

A⊥
2 which are unrelated to the argument and give out Ŝ and r̂ j , r̂end in order to simulate ctSF

Γ∗ -part of the challenge

ciphertext and skP-N
x -part of the κ-th key.
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Claim. For all A, there exists B with Time(B) ≈Time(A) and

Pr[〈A,H0〉 = 1]−Pr[〈A,H1〉 = 1] ≤AdvCORE
B (λ)

where we define:

〈A,Hβ〉 := {
β′ ←AOEnc(·),OKey(·)}

and the two oracles work as follows:

– OEnc(Γ): output 
[D̂u>+ŴstartŜu>]2, [Ŝu>]2{

[−D̂+ Ẑb Ŝ]2, [D̂Mσ+Ŵσ,b Ŝ]2, [Ŝ]2
}
σ∈Σ,b∈{0,1}

[−D̂+ ẐendŜ]2, [β(r̂endb̂⊥
2 )−1 · b̂⊥

2 ∆ŝ> · f+ŴendŜ]2, [Ŝ]2


– OKey(x): output 

[r̂0]1, [r̂0Ŵstart]1{
[r̂ j ]1, [r̂ j−1Ẑ j mod 2 + r̂ j Ŵx j , j mod 2]1

}
j∈[`]

[r̂end]1, [r̂`Ẑend + r̂endŴend]1


with the restrictions that (1) A makes only one query to each oracle; (2) queries Γ and x satisfy Γ(x) = 0.

It is direct to verify that the terms given out in the claim are sufficient to simulate both games and readily implies (58).

This leaves us with the proof for the claim which is sketched as follows.

Proof of Claim (sketch). The claim relies on the core lemma, Lemma 19, for adaptively secure KP-ABE for EQ -restricted

NFA⊕p in Section 5. Consider another set of basis which is motivated by that used for our KP-ABE for EQ -NFA⊕p , i.e.,

B̂1 ←Zk×(2k+1)
p , b̂2 ←Z1×(2k+1)

p , B̂3 ←Zk×(2k+1)
p (59)

and use (B̂⊥
1 , b̂⊥

2 , B̂⊥
2 ) ∈Z(2k+1)×k

p ×Z2k+1
p ×Z(2k+1)×k

p to denote this dual as in Section 4.1. Note that b̂2 has appeared in

the reply of OEnc(Γ). Then we define two auxiliary games as follows:

– H′
β

is identical to Hβ except that we sample r̂ j ← span(B̂1) for all j ∈ [0,`] and r̂end ← span(B̂1, b̂2).

It is direct to prove that

– H0 ≈c H
′
0 by SDG1

B1 7→B1,B3
assumption (for r̂end) and SDG1

B1 7→B1,b2,B3
assumption (for r̂ j );

– H1 ≈c H
′
1 by SDG1

B1 7→B1,B3
assumption and ( · ,Ŵend)-switching lemma (for r̂ j ) due to the presence of b̂⊥

2 ;
– H′

0 ≈c H
′
1 by the core lemma, Lemma 19.

This readily proves the claim and the lemma. ut

J Adaptively Secure CP-ABE for EQ -restricted NBP⊕p and BP

In this section, we construct a compact adaptively secure CP-ABE for EQ -restricted NBP⊕p . The scheme is based on

our KP-ABE for the same class in Section 6 and dual conversion in [4,6]. This readily gives us a compact adaptively

secure CP-ABE for BP by Lemma 23 where the key size grows linearly with the length of input and independent of the

program size.

J.1 Basis

We will use the following two sets of bases for ciphertexts and keys, respectively:

A1,A2 ←Z2k×k
p and (B1,b2) ←Zk×(k+1)

p ×Z1×(k+1)
p .

We use A⊥
1 ,A⊥

2 ∈Zk×2k
p to denote the dual basis of (A1,A2) such that A⊥

i Ai = I for i ∈ {1,2} and A⊥
i A j = 0 for i 6= j . Anal-

ogously, we use (B⊥
1 ,b⊥

2 ) ∈ Z(k+1)×k
p ×Z(k+1)×1

p to denote the dual basis of (B1,b2). In the proof, we will use SDG2
A1 7→A1,A2

and SDG1
B1 7→B1,b2

assumption, cf. Section 4.1.
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J.2 Scheme

For notational convenience, especially reusing the branching program notations in Section 6, we will generate cipher-

texts over G2 and keys over G1. Our CP-ABE for EQ -restricted NBP⊕p in prime-order groups is described as follows:

– Setup(1λ,`,Σ) : Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A1 ←Z2k×k
p , B1 ←Zk×(k+1)

p , k ←Z1×2k
p and Wstart,Wη,σ,Wend,W0 ←Z(k+1)×2k

p , ∀η ∈ [`],σ ∈Σ.

Output

mpk= (
[A1, WstartA1, {Wη,σA1 }η∈[`],σ∈Σ, WendA1, W0A1 ]2, [kA1]T

)
msk= (

k, B1, Wstart, {Wη,σ }η∈[`],σ∈Σ, Wend, W0
)
.

– Enc(mpk,Γ,m) : Let Γ= (Q,`BP,`,Σ, {M j ,σ} j∈[`BP],σ∈Σ,ρ,u, f) and m ∈GT . Pick

D0,D1, . . . ,D`BP ←Z
(k+1)×Q
p , S1, . . . ,S`BP ,Send ←Z

k×Q
p , sstart,s ←Z1×k

p

and output

ctΓ =


[D0u>+WstartA1s>start]2, [A1s>start]2{

[D j M j ,σ−D j−1 +Wρ( j ),σA1S j ]2, [A1S j ]2
}

j∈[`BP],σ∈Σ
[(W0A1s>)f−D`BP +WendA1Send]2, [A1Send]2

[A1s>]2, [kA1s>]T ·m

 .

– KeyGen(mpk,msk, x) : Let x = (x1, . . . , x`) ∈Σ`. Pick r ←Z1×k
p and output

skx =
(
[rB1]1, [rB1W0 +k]1, [rB1Wstart]1,

{
[rB1Wη,xη ]1

}
η∈[`], [rB1Wend]1

)
.

– Dec(mpk,skx ,ctΓ) : Parse key for x = (x1, . . . , x`) and ciphertext for Γ= (Q,`BP,`,Σ, {M j ,σ} j∈[`BP],σ∈Σ,ρ,u, f) as

skx = (
[r0]1, [k0]1, [kstart]1,

{
[kη]1

}
η, [kend]1

)
and ctΓ =


[c>start,1]2, [c>start,2]2{

[C j ,σ]2, [C j ]2
}

j ,σ

[Cend,1]2, [Cend,2]2

[c>]2,C

 .

We define

u>
j ,x = M j ,xρ( j ) · · ·M1,xρ(1) u> mod p, ∀ j ∈ [0,`BP]

as (30) in Section 6.2 and proceed as follows:

1. Compute

Bstart = e([r0]1, [c>start,1]2) ·e([kstart]1, [c>start,2]2)−1;

2. For all j ∈ [`BP], compute

[b j ]T = e([r0]1, [C j ,xρ( j ) ]2) ·e([−kρ( j )]1, [C j ]2) and B j = [b j u>
j−1,x ]T ;

3. Compute

[bend]T = e([r0]1, [Cend,1]2) ·e([−kend]1, [Cend,2]2) and Bend = [bendu>
`BP,x ]T ;

4. Compute

Ball = Bstart ·∏`BP
j=1 B j ·Bend and B = B

(fu>
`BP,x )−1

all

5. Compute

D = e([k0]1, [c>]2) ·B−1

and output the message m′ ←C ·D−1.
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Correctness. For x = (x1, . . . , x`) and Γ= (Q,`BP,`,Σ, {M j ,σ} j∈[`BP],σ∈Σ,ρ,u, f) such that Γ(x) = 1, we have:

Bstart = [rB1D0u>]T = [rB1D0u>
0,x ]T (60)

b j = rB1D j M j ,xρ( j ) − rB1D j−1 (61)

B j = [rB1D j u>
j ,x − rB1D j−1u>

j−1,x ]T (62)

bend = rB1(W0A1s>)f− rB1D`BP (63)

Bend = [rB1(W0A1s>)fu>
`BP,x − rB1D`BP u>

`BP,x ]T (64)

Ball = [rB1(W0A1s>)fu>
`BP,x ]T (65)

B = [rB1(W0A1s>)]T (66)

D = [kA1s>]T . (67)

Here (64) is trivial; (62) and (66) follow from facts (38), the remaining equalities follow from:

(60) rB1D0u> = rB1 · (D0u>+WstartA1s>start)− rB1Wstart ·A1s>start

(61) rB1D j M j ,xρ( j ) − rB1D j−1 = rB1 · (D j M j ,xρ( j ) −D j−1 +Wρ( j ),xρ( j ) A1S j )− rB1Wρ( j ),xρ( j ) ·A1S j

(63) rB1(W0A1s>)f− rB1D`BP = rB1 · ((W0A1s>)f−D`BP +WendA1Send)− rB1Wend ·A1Send

(65) rB1(W0A1s>)fu>
`BP,x = rB1D0u>

0,x +
∑`BP

j=1(rB1D j u>
j ,x − rB1D j−1u>

j−1,x )+ (rB1(W0A1s>)fu>
`BP,x − rB1D`BP u>

`BP,x ).

(67) kA1s> = (rB1W0 +k) ·A1s>− rB1(W0A1s>).

Correctness follows readily.

J.3 Adaptive Security

We prove the following theorem.

Theorem 7 (Adaptively Secure CP-ABE for EQ -restricted NBP⊕p ). The ABE scheme for EQ -restricted NBP⊕p in prime-

order bilinear groups described in Section J.2 is adaptively secure (cf. Section 2.1) under the k-Lin assumption with

security loss O(q ·`BP · |Σ|2 ·Q2). Here `BP are program length in adversary’s challenge query and q is the number of key

queries.

The proof employs standard dual system argument where we handle key queries one by one; for each key, we rely on

the core lemma, Lemma 30, for our adaptively secure KP-ABE for EQ -restricted NBP⊕p (in Section 6). We only show

the game sequence and sketch the proof.

Auxiliary distributions. We use Γ∗ = (Q,`BP,`,Σ, {M j ,σ} j∈[`BP],σ∈Σ,ρ,u, f) to denote the adaptive challenge NBP and

x = (x1, . . . , x`) a key query. We describe the auxiliary ciphertext and key distributions that we use in the proof.

Ciphertext distributions. We sample Ŝ1, . . . , Ŝ`BP , Ŝend ←Z
k×Q
p , ŝstart, ŝ ←Z1×k

p and define:

– N: the real ciphertext in the scheme;

– SF: identical to an N ciphertext except that we replace A1s>start, A1S j , A1Send, A1s> with A1s>start+A2ŝ>start, A1S j +A2Ŝ j ,

A1Send +A2Ŝend, A1s>+A2ŝ>, respectively.

That is, we write

ctSF
Γ =


[D0u>+Wstart(A1s>start + A2ŝ>start )]2, [A1s>start + A2ŝ>start ]2{

[D j M j ,σ−D j−1 +Wρ( j ),σ(A1S j + A2Ŝ j )]2, [A1S j + A2Ŝ j ]2
}

j∈[`BP],σ∈Σ
[(W0(A1s>+ A2ŝ> ))f−D`BP +Wend(A1Send + A2Ŝend )]2, [A1Send + A2Ŝend ]2

[A1s>+ A2ŝ> ]2, [k(A1s>+ A2ŝ> )]T ·mβ

 .
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Secret key distributions. We sample∆←Z1×k
p , r̂ ←Zp and define:

– N: the real key in the scheme;

– SF: identical to an N key except that we replace k with∆A⊥
2 +k;

– P-N: identical to an N key except that we replace rB1 with rB1 + r̂ b2;

– P-SF: identical to an SF key except that we replace rB1 with rB1 + r̂ b2.

That is, we write

skSF
x =

(
[rB1]1, [rB1W0 + ∆A⊥

2 +k]1, [rB1Wstart]1,
{
[rB1Wη,xη ]1

}
η∈[`], [rB1Wend]1

)
;

skP-N
x =

(
[rB1 + r̂ b2 ]1, [(rB1 + r̂ b2 )W0 +k]1, [(rB1 + r̂ b2 )Wstart]1,

{
[(rB1 + r̂ b2 )Wη,xη ]1

}
η∈[`], [(rB1 + r̂ b2 )Wend]1

)
;

skP-SF
x =

(
[rB1 + r̂ b2 ]1, [(rB1 + r̂ b2 )W0 +∆A⊥

2 +k]1, [(rB1 + r̂ b2 )Wstart]1,
{
[(rB1 + r̂ b2 )Wη,xη ]1

}
η∈[`], [(rB1 + r̂ b2 )Wend]1

)
.

Game sequences. We prove Theorem 7 via a series of games following the standard dual system method [20,22,4]:

– G0: Identical to the real game where all keys and challenge ciphertext are skN
x and ctNΓ∗ , respectively.

– G1: Identical to G0 except that the challenge ciphertext is ctSF
Γ∗ .

– G2.κ.0 for κ ∈ [q]: Identical to G1 except that the first κ−1 secret keys are skSF
x .

– G2.κ.1 for κ ∈ [q]: Identical to G2.κ.0 except that the κ-th secret key is skP-N
x .

– G2.κ.2 for κ ∈ [q]: Identical to G2.κ.1 except that the κ-th secret key is skP-SF
x .

– G2.κ.3 for κ ∈ [q]: Identical to G2.κ.2 except that the κ-th secret key skSF
x .

– G3: Identical to G2.q.3 except that the challenge ciphertext is an encryption of a random message.

Note that we have G2.1.0 =G1 and G2.κ.0 =G2.κ−1.3 for q ∈ [2, q].

Proof sketch. Most proofs are standard: G0 ≈c G1 follows from SDG2
A1 7→A1,A2

assumption; both G2.κ.0 ≈c G2.κ.1 and

G2.κ.2 ≈c G2.κ.3 with κ ∈ [q] follow from SDG1
B1 7→B1,b2

assumption and G2.q.3 ≈s G3 is straightforward by a standard statis-

tical argument involving k and∆. We focus on G2.κ.1 ≈c G2.κ.2 for all κ ∈ [q].

Lemma 63 (G2.κ.1 ≈c G2.κ.2). For all κ ∈ [q] and all A, there exists B with Time(B) ≈Time(A) and

Pr[〈A,G2.κ.1〉 = 1]−Pr[〈A,G2.κ.2〉 = 1] ≤O(`BP · |Σ|2 ·Q2) ·Advk-LIN
B (λ)

Proof (sketch). We use the core lemma, Lemma 30, to prove the lemma. By the lemma, it is sufficient to prove that for

all κ and all A, there exists B with Time(B) ≈Time(A) such that

Pr[〈A,G2.κ.1〉 = 1]−Pr[〈A,G2.κ.2〉 = 1] ≤AdvCORE
B (λ).

For this, we define two auxiliary games Ĝ2.κ.1 and Ĝ2.κ.2 by the following change of variables in both G2.κ,1 and G2.κ.2:

Wstart 7→ Wstart +b⊥
2 wstartA⊥

2 ,

Wη,σ 7→ Wη,σ+b⊥
2 wη,σA⊥

2 , ∀η ∈ [`],σ ∈Σ
Wend 7→ Wend +b⊥

2 wendA⊥
2 ,

D j 7→ D j +b⊥
2 d j , ∀ j ∈ [`BP]

and

W0 7→ W0 −b⊥
2 (βr̂−1∆)A⊥

2 , where β=
0 in G2.κ.1

1 in G2.κ.2

where wstart,wη,σ,wend ←Z1×k
p for all η ∈ [`],σ ∈Σ and d0, . . . ,d`BP ←Z

1×Q
p . It is clear that we have

Pr[〈A,G2.κ.1〉 = 1] = Pr[〈A,Ĝ2.κ.1〉 = 1] and Pr[〈A,G2.κ.2〉 = 1] = Pr[〈A,Ĝ2.κ.2〉 = 1]
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since the change of variables do not change the two games. Now it is sufficient to prove that

Pr[〈A,Ĝ2.κ.1〉 = 1]−Pr[〈A,Ĝ2.κ.2〉 = 1] ≤AdvCORE
B (λ). (68)

Observe that, in the new games, we have mpk, skN
x and skSF

x unchanged due to the fact that A⊥
2 A1 = 0 and B1b⊥

2 = 0;

the challenge ciphertext is in the form of

ctSF
Γ∗ ·


[b⊥

2 d0u>+b⊥
2 wstartŝ>start]2, [0]2{

[b⊥
2 d j M j ,σ−b⊥

2 d j−1 +b⊥
2 wρ( j ),σŜ j ]2, [0]2

}
j∈[`BP],σ∈Σ

[−b⊥
2 ·βr̂−1∆ŝ>f−b⊥

2 d`BP +b⊥
2 wendŜend]2, [0]2

[0]2, [0]T

 where β=
0 in Ĝ2.κ.1

1 in Ĝ2.κ.2

while the κ-th key in the two games are in the form of

skP-N
x ·

(
[0]1, [0]1, [r̂ wstartA⊥

2 ]1,
{
[r̂ wη,xηA⊥

2 ]1
}
η∈[`], [r̂ wendA⊥

2 ]1

)
.

It is clear that the two games are identical except that boxed part, so it is sufficient to prove the indistinguishability

between the boxed parts in games. Formally, we capture this by the following claim. Note that we neglect b⊥
2 and

A⊥
2 which are unrelated to the argument and give out ŝstart, Ŝ j , Ŝend for the simulation of skSF

Γ∗ -part of the challenge

ciphertext.

Claim. For all A, there exists B with Time(B) ≈Time(A) and

Pr[〈A,H0〉 = 1]−Pr[〈A,H1〉 = 1] ≤AdvCORE
B (λ)

where we define:

〈A,Hβ〉 := {
β′ ←AOEnc(·),OKey(·)}

and the two oracles work as follows:

– OEnc(Γ): output 
[d0u>+wstartŝ>start]2, [ŝ>start]2{

[d j M j ,σ−d j−1 +wρ( j ),σŜ j ]2, [Ŝ j ]2
}

j∈[`BP],σ∈Σ
[−βr̂−1∆ŝ>f−d`BP +wendŜend]2, [Ŝend]2


– OKey(x): output (

wstart,
{

wη,xη

}
η∈[`], wend

)
.

with the restrictions that (1) A makes only one query to each oracle; (2) queries Γ and x satisfy Γ(x) = 0.

It is direct to verify that the terms given out in the claim are sufficient to simulate both games and readily implies (68).

Furthermore, the claim itself is straightforward by the core lemma, Lemma 30, for adaptively secure KP-ABE for EQ -

restricted NBP⊕p in Section 6. This proves the lemma. ut
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