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Abstract. In this work, we present:

- the first adaptively secure ABE for DFA from the k-Lin assumption in prime-order bilinear groups; this resolves
one of open problems posed by Waters [CRYPTO’12];

— the first ABE for NFA from the k-Lin assumption, provided the number of accepting paths is smaller than the
order of the underlying group; the scheme achieves selective security;

- the first compact adaptively secure ABE (supporting unbounded multi-use of attributes) for branching pro-
grams from the k-Lin assumption, which generalizes and simplifies the recent result of Kowalczyk and Wee for
boolean formula (NC1) [EUROCRYPT’19].

Our adaptively secure ABE for DFA relies on a new combinatorial mechanism avoiding the exponential security loss
in the number of states when naively combining two recent techniques from CRYPTO’19 and EUROCRYPT’19. This
requires us to design a selectively secure ABE for NFA; we give a construction which is sufficient for our purpose and
of independent interest. Our ABE for branching programs leverages insights from our ABE for DFA.
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1 Introduction

Attribute-based encryption (ABE) [19,12] is an advanced form of public-key encryption that supports fine-grained
access control for encrypted data. Here, ciphertexts are associated with an attribute x and keys with a policy I'; de-
cryption is possible only when I'(x) = 1. One important class of policies we would like to support are those specified
using deterministic finite automata (DFA). Such policies capture many real-world applications involving simple com-
putation on data of unbounded size such as network logging application, tax returns and virus scanners.

Since the seminal work of Waters [21] introducing ABE for DFA and providing the first instantiation from pairings,
substantial progress has been made in the design and analysis of ABE schemes for DFA [4,5,1,11,2,3], proving various
trade-offs between security assumptions and security guarantees. However, two central problems posed by Waters [21]
remain open. The first question pertains to security and assumptions:

Q1I: Can we build an ABE for DFA with adaptive security from static assumptions in bilinear groups,
notably the k-Lin assumption in prime-order bilinear groups?
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From both a practical and theoretical stand-point, we would like to base cryptography on weaker and better under-
stood assumptions, as is the case with the k-Lin assumption, while also capturing more realistic adversarial models,
as is the case with adaptive security. Prior ABE schemes for DFA achieve either adaptive security from less desirable
q-type assumptions [21,4,5,1], where the complexity of the assumption grows with the length of the string x, or very
recently, selective security from the k-Lin assumption [2,11]. Indeed, this open problem was reiterated again in the
latter work [11], emphasizing a security loss that is polynomial (and not exponential) in the size of the DFA.

The next question pertains to expressiveness:

Q2: Can we build an ABE for nondeterministic finite automata (NFA) with a polynomial dependency
on the NFA size?

The efficiency requirement rules out the naive approach of converting a NFA to a DFA, which incurs an exponential
blow-up in size. Here, we do not know any construction even if we only require selective security under g-type as-
sumptions. Partial progress was made very recently by Agrawal et al. [3] in the more limited secret-key setting, where
encryption requires access to the master secret key. Throughout the rest of this work, we refer only to the standard
public-key setting for ABE, and where the adversary can make an a-priori unbounded number of secret key queries.

1.1 Our Results

In this work, we address the afore-mentioned open problems:

— We present an adaptively secure ABE for DFA from the k-Lin assumption in prime-order bilinear groups, which
affirmatively answers the first open problem. Our scheme achieves ciphertext and key sizes with linear complexity,
as well as security loss that is polynomial in the size of the DFA and the number of key queries. Concretely, over
the binary alphabet and under the SXDH (=1-Lin) assumption, our ABE for DFA achieves ciphertext and key sizes
2-3 times that of Waters’ scheme (cf. Fig 4), while simultaneously improving on both the assumptions and security
guarantees.

- We present a selectively secure ABE for NFA also from the k-Lin assumption, provided the number of accepting
paths is smaller than p, where p is the order of the underlying group. We also present a simpler ABE for NFA with
the same restriction from the same g-type assumption used in Waters’ ABE for DFA. Both ABE schemes for NFA
achieve ciphertext and key sizes with linear complexity.

- Finally, we present the first compact adaptively secure ABE for branching programs from the k-Lin assumption,
which generalizes and simplifies the recent result of Kowalczyk and Wee [15] for boolean formula (NC1). Here,
“compact” is also referred to as “unbounded multi-use of attributes” in [5]; each attribute/input bit can appear
in the formula/program an unbounded number of times. Our construction leverages insights from our ABE for
DFA, and works directly with any layered branching program and avoids both the pre-processing step in the latter
work for transforming boolean formulas into balanced binary trees of logarithmic depth, as well as the delicate
recursive pebbling strategy for binary trees.

We summarize the state of the art of ABE for DFA, NFA and branching programs in Fig 1, 2, 3, respectively.

In the rest of this section, we focus on our three ABE schemes that rely on the k-Lin assumption, all of which follow
the high-level proof strategy in [11,15]. We design a series of hybrids that traces through the computation, and the
analysis carefully combines (i) a “nested, two-slot” dual system argument [20,16,17,18,13,8], (ii) a new combinatorial
mechanism for propagating entropy along the NFA computation path, and (iii) the piecewise guessing framework
[14,15] for achieving adaptive security. We proceed to outline and motivate several of our key ideas. From now on, we
use GWW to refer to the ABE for DFA by Gong et al. [11].

Adaptively secure ABE for DFA. Informally, the piecewise guessing framework [14,15] for ABE adaptive security says
that if we have a selectively secure ABE scheme where proving indistinguishability of every pair of adjacent hybrids



requires only knowing log L bits of information about the challenge attribute x, then the same scheme is adaptively
secure with a security loss of L. Moreover, when combined with the dual system argument, it suffices to consider
selective security when the adversary only gets a single key corresponding to a single DFA.

In the GWW security proof, proving indistinguishability of adjacent hybrids requires knowing the subset of DFA
states that are reachable from the accept states by “back-tracking” the computation. This corresponds to logL = Q —
we need Q bits to specify an arbitrary subset of [Q]— and a security loss of 29. Our key insight for achieving adaptive
security is that via a suitable transformation to the DFA, we can ensure that the subset of reachable states per input
are always singleton sets, which correponds to log L =1ogQ and a security loss of Q. The transformation is very simple:
run the DFA “in reverse”! That is, start from the accept states, read the input bits in reverse order and the transitions
also in reverse, and accept if we reach the start state. It is easy to see that this actually corresponds to an NFA compu-
tation, which means that we still need to design a selectively secure ABE for NFA. Also, back-tracking along this NFA
corresponds to normal computation in the original DFA, and therefore always reaches singleton sets of states during
any intermediate computation.

ABE for NFA. Next, we sketch our ABE for NFA, which uses an asymmetric bilinear group (G, G2, Gt, €) of prime order
p where e : G; x G, — Gr. As in Waters’ ABE for DFA [21], an encryption of x = (x1,..., x¢) € {0, 1}¢¥ contains random
scalars sp,...,S¢ < Zp in the exponent in G;. In the secret key, we pick a random scalar d,, — Z,, for each state u € [Q].
We can now describe the invariant used during decryption with g1, g» being respective generators of Gy, G»:

- In Waters’ ABE for DFA, if the computation reaches a state u; € [Q] upon reading x,..., x;, decryption computes
e(gl, gg)sid“i . In particular, the scheme allows the decryptor to compute the ratios

e(g1, g) 1% je 0], ueQl,v=>5ux;) €lQ] o))

where 6 : [Q] x {0,1} — [Q)] is the DFA transition function.
- The natural way to extend (1) to account for non-deterministic transitions in an NFA is to allow the decryptor to
compute

e(g1, g) 1% je 0], ueQl,vedux;) <(Q] )

where 6 : [Q] x {0,1} — 219l is the NFA transition function. As noted by Waters [21], such an ABE scheme for NFA is
broken via a so-called “back-tracking attack”, which we describe in Appendix A.
- In our ABE for NFA, we allow the decryptor to compute

e(gy, go)V Freotsp @Sy e () y e [Q) 3)

A crucial distinction between (3) and (2) is that the decryptor can only compute one quantity for each j, u in the
former (as is the case also in (1)), and up to Q quantities in the latter. The ability to compute multiple quantities
in (2) is exactly what enables the back-tracking attack.

We clarify that our ABE for NFA imposes an extra restriction on the NFA, namely that the total number of accepting
paths® be non-zero mod p for accepting inputs; we use NFA®» to denote such NFAs. In particular, this is satisfied
by standard NFA where the total number of accepting paths is less than p for all inputs. This is in general a non-
trivial restriction since the number of accepting paths for an arbitrary NFA can be as large as Q’. Fortunately, for NFAs
obtained by running a DFA “in reverse”, the number of accepting paths is always either 0 or 1.

Indeed, the above idea, along with a suitable modification of Waters’ proof strategy, already yields our selectively
secure ABE for NFA®» under g-type assumptions in asymmetric bilinear groups of prime order p. We defer the details
to Appendix B.

3 An accepting path on input x € {0, 13/ is described by a sequence of states uy,..., uy € [Q] where ug is the start state, u, is an
accept state and uj€ S(uj_l,xj) forall j € [£].



reference assumption security  [sk| |ct]

[21] g-type selective 0O(Q) O(¥)
[5,4,1] g-type + k-Lin adaptive vV O(Q) O(¥)
[11] k-Lin v/ selective O(Q) O(¢)
13] k-Linv  selective* 0(Q?%) 0O(?)
§5@8F) k-Lin v/ adaptive vV O(Q) O(¢)

Fig. 1. Summary of ABE schemes for DFA. In the table, Q is the number of states in the DFA associated with sk and ¢ is the length of
x associated with ct, and where |Z] = O(1).

reference assumption compact?

reference  |sk| lct|  type of NFA publickey? assumption 7] k-Lin v
(2] poly(Q) poly(¢) standard v’ IWE v (5] g-type + k-Lin v
$B 0(Q O()  NFA®» v g-type k-Lin v/
§4 0 0 NFA®» v k-Liny §6 k-Lin v/ v

Fig. 2. Summary of ABE schemes for NFA. In the table, Q is the number of states Fig.3. Summary of adaptively secure ABE

in the NFA associated with sk and ¢ is the length of x associated with ct. schemes for branching programs (BP). Here

“compact” is also referred to “unbounded
multi-use” in [5].

- To obtain a selectively secure scheme based on k-Lin, we apply the same modifications as in GWW [11]. For the
proof of security, entropy propagation is defined via back-tracking the NFA computation, in a way analogous to
that for back-tracking the DFA computation.

— To obtain an adaptively secure scheme based on k-Lin, we adapt the selectively secure scheme to the piecewise
guessing framework [15]. One naive approach is to introduce a new semi-functional space. In contrast, we intro-
duce one extra components into master public key, secret key and ciphertext, respectively. With the extra compo-
nents, we can avoid adding a new semi-functional subspace, by reusing an existing subspace as shown in previous
unbounded ABE in [8]. Under k-Lin assumption, our technique roughly saves k - ¢ elements in the ciphertext and
k- (2|Z] +2)Q elements in the secret key over the general apporach. This way, we obtain ciphertext and key sizes
that are almost the same as those in the GWW selectively secure scheme.

ABE for branching programs. We build our compact adaptively secure ABE for branching program (BP) in two steps
analogous to our adaptively secure ABE for DFA. In particular, we first show how to transform branching programs to
a subclass of nondeterministic branching programs (NBP) and construct adaptively secure ABE for such class of NBP.
Note that the latter is sufficient to capture a special BP with permutation transition function (without transforming BP
to NBP) and readily simplify the result of Kowalczyk and Wee [15] for boolean formula (NC1).

1.2 Technical Overview

We start by recalling the standard definitions of DFA and NFA using vector-matrix notation: that is, we describe the
start and accept states using the character vectors, and specify the transition function via a transition matrix. The use
of vector-matrix notation enables a more compact description of our ABE schemes, and also clarifies the connection
to branching programs.

NFA, DFA, NFA®r. An NFAT is specified using (Q, %, {My}ses, u, f) where X is the alphabet and

QeN; Mye{0,1}9C9vVoex; ufeio, 139



reference et sk assumption  security

[21] (24 +3)|Gq| BIZ]1Q +4)|Go| q-type selective
5] (2k+2)¢ +6k+6)|G1| (Bk+3)|Z|Q +5k +5)|Ga| g-type + k-Lin adaptive v/
(30+12)|Gq| 6IZ]1Q +10)|Ga| g-type + SXDH adaptive v/
[11] (Bk+1)l+4k+1)|G1l (Ak+2)|ZIQ+ Bk+1)Q+2k+1)|Go| k-Lin v/ selective
(4¢ +5)|Gq| 6IZ]Q+4Q+3)|Gy| SXDHV selective
§58F) (Bk+1l+6k+2)|G1l (4k+2)|Z|Q+ (Bk+2)Q+2k+1)|Ga| k-Lin v/ adaptive v/
(4¢+8)|G1] BIZIQ+7Q+3)IG2| SXDH v/ adaptive v/

Fig. 4. Concrete parameter sizes of pairing-based ABE schemes for DFA. Note that [21,11] are selectively secure whereas our scheme
is adaptively secure; [3] is omitted from the table since the ciphertext and key sizes are asymptotically larger, see Fig 1. In the table,
Q is the number of states in the DFA, X indicates the alphabet, ¢ is the length of input x. All the schemes work over bilinear groups
(G1,G2,Gr,e) of prime order p where e: G; x G2 — G7. We note that all the schemes shown in the table have mpk of O(|Z|) group
elements. In the |ct|-column, we omit one G7 element. In the assumption column, SXDH means 1-Lin.

The NFA T accepts an input x = (x1,...,X/) € >¢ denoted by I'(x) =1, if
fM,, -+ My, My u’ >0 @

and rejects the input otherwise, denoted by I'(x) = 0. We will also refer to the quantity fM,, - --M,, M, u’ as the number
of accepting paths for x. The above relation (4) is equivalent to

uM], M, - M, f >0

The unusual choice of notation is to simplify the description of our ABE scheme. Let € g be the collection of Q elemen-
tary row vectors of dimension Q.

- ADFAT is aspecial case of NFA where u € € g and each column in every matrix M, is an elementary column vector
(i.e., contains exactly one 1).
- An NFA®r, parameterized by a prime p, is the same as an NFA except we change the accept criterion in (4) to:

fM,, ---My, My, u' # 0 mod p

Note that this coincides with the standard NFA definition whenever the total number of accepting paths for all
inputs is less than p.

Throughout the rest of this work, when we refer to NFA, we mean NFA®r unless stated otherwise.

ABE for NFA®r, Following our overview in Section 1.1, an encryption of x = (x1,...,Xx¢) € >¢ contains random scalars
S0,...,S¢ in the exponent, where the plaintext is masked by e(g1, £2)%%. To generate a secret key for an NFA®» T', we
first pickd = (dj,...,dg) — ZS as before. We allow the decryptor to compute the following quantities in the exponent
over Gr:

@ selaf-d) %)
(i) sjdMy; —s;-1d, Vj € [£] (corresponds to (3))

({ii) sodu’

If we write u}x =My, "My, u' forall j € [¢] and ug x = u, then we have

) . (ii) (iii)
—N— —— —
Sga'fll;,x =sy(af-d) -u}yx + ( : l(sdexj -sj_1d) '“;‘—1,x) + spdug
]:



This means that whenever fu),  # 0 mod p, asis the case when I'(x) = 1, the decryptor will be able to recover e(g1, g2)*“.
Indeed, it is straight-forward to verify that the following ABE scheme satisfies the above requirements, where
[‘11, [-]2, []T denote component-wise exponentiations in respective groups Gy, G, Gr [10].

msk = (Wstart Wend> 2> {Wolges, @) (6)

mpk = ([Wstart]1, [Wenal1, (211, {{wo 1} 4es (@] T)

[Sol1, [SoWstart]1

cty = [{Isj11, [sj-12+sjwx; 1 }je[l]

[sel1, [S¢ Wendln, [Sea]T - m
[du’ + wsareru' 7, [ru’l;

skr = | {[-d + zrly, [dMg + werly, [rl2 }

[af—d + wenqgrl2, [r]2

1xQ
, dr—17,

[l

In Appendix B, we prove that this scheme is selectively secure under /-EBDHE assumption; this is the assumption
underlying Waters’ selectively secure ABE for DFA [21].

Selective security from k-Lin. Following the GWW proof strategy which in turn builds on the dual system argument,
we design a series of games Gy, ..., Gy such that in G;, the quantities s; and d have some extra entropy in the so-called
semi-functional space (which requires first modifying the above scheme). The entropy in d is propagated from Gy to
G, then Gy, and finally to G, via a combination of a computational and combinatorial arguments. In G, we will have
sufficient entropy to statistically mask « in the secret key, which allows us to argue that e(g;, g2)*** statistically masks
the plaintext. In this overview, we focus on the novel component, namely the combinatorial argument which exploits
specific properties of our scheme for NFA®»; the computational steps are completely analogous to those in GWW,

In more detail, we want to replace d with d + d’l. in G;, where d’i € Zg corresponds to the extra entropy we introduce
into the secret keys in the semi-functional space. Note that d’; will depend on both the challenge attribute x* as well as
the underlying NFA®». We have the following constraints on d;. s, arising from the fact that an adversarial distinguisher
for Gy, ..., Gy can always compute what a decryptor can compute in (5):

- to mask a in G, we set d, = Af where A — Z,, so that
af-(d+d)) = (a-Nf-d

perfectly hides a;
— (i) implies that
Gi*l Gi

S,‘de? - Si_l(d+dli_1) =g S,‘(d+dli)Mx;f —-s;1d

e ed!
= =siid;_; =5 s,diMx;«

to prevent a distinguishing attack* between G;_; and G; by computing s;dM X si—1d in both games;
— (iii) implies that so(d +dj)u’ = sodu’, and therefore, dyu” = 0 mod p. This is to prevent a distinguishing attack’
between the real keys and those in Gy.

In particular, we can satisfy the first two constraints by setting®

=AM, M, Vie[0,0]

i+1

i-1,i

4 Looking ahead to the proof of security in Section 4, this “simplified” attack corresponds roughly to using Ct

to distinguish
skf:l" and sk%; this comes up in the proof of G, ; » =¢ G, ; 3 in Lemma 17.
5 In Section 4, this roughly corresponds to distinguish skr and skg with ct?c* ; this comes up in the proof of G; =, G2.1.9 in Lemma 6.

6 We adopt the standard convention that the product of an empty sequence of matrices is the identity matrix. This means d’[ =A-f.



where =; holds over A — Z,, aslong as sy,..., s¢ # 0. Whenever I'(x*) =0, we have
M, +*My:u' =0 mod p

and therefore the third constraint is also satisfied.
Two clarifying remarks. First, the quantity

M. - M-

i+1
used in defining d; has a natural combinatorial interpretation: its «'th coordinate corresponds to the number of paths
from the accept states to u, while back-tracking along x,..., x;, . In the specific case of a DFA, this value is 1 if u is
reachable from an accept state, and 0 otherwise. It is then easy to see that our proof strategy generalizes that of GWW
for DFA: the latter adds A to d,, in G; whenever u is reachable from accept state while back-tracking along the last
¢ — i bits of the challenge attribute (cf. [11, Sec. 3.2]). Second, the “naive” (and insecure) ABE for NFA that captures
non-deterministic transitions as in (2) introduces more equations in (ii) in (5); this in turn yields more —and ultimately
unsatisfiable- constraints on the d;’s.

Finally, we remark that our ABE for NFA®» (and ABE for DFA from GWW as well) can be proved in the semi-adaptive

model [9], which is weaker than adaptive security but stronger than both selective and selective* model used in [3].

Adaptive security for restricted NFA®» and DFA. Fix a set 7 < Z?. We say that an NFA or an NFA®ris F-restricted if
VleN, xexl,ie[0,0]: My, My, €T

Note that fM X "My corresponding to the challenge attribute x* is exactly what is used to define d; in the previous
paragraph. Moreover, following GWW, knowing this quantity is sufficient to prove indistinguishability of G;_; and G;.
This means that to prove selective security for F-restricted NFAs, it suffices to know log|J]| bits about the challenge
attribute, and via the piecewise guessing framework, this yields adaptive security with a security loss of |J|. Unfortu-
nately, |F] is in general exponentially large for general NFAs and DFAs. In particular, DFAs are {0, 1}?-restricted, and
naively applying this argument would yield adaptively secure DFAs with a 29 security loss.

Instead, we show how to transform DFAs into €-restricted NFA®», where € < {0,1}9 is the collection of Q el-
ementary row vectors of dimension Q; this yields adaptively secure ABE for DFAs with a security loss of |Egl = Q.
Concretely, our adaptively secure ABE for DFA uses an adaptively secure ABE for € -restricted NFA®», and proceeds

- to encrypt x = (x1,..., Xz), use the ABE for NFA to encrypt x™ = (xy,..., x1);’
- togenerate a secretkey fora DFAT = (Q, £, {My},u, f), use the ABE for NFA to generate akey forI'" = (Q, X, {M },f, u).

Note that we reversed x during encryption, and transposed M, and switched u, f during key generation. Correctness
essentially follows from the equality

T'(x) r'xh

e e
My, ---Myu' = (fMy, --- My u)" =uM, ---M, f.
Furthermore I'" = (Q, %, {M[ },f,u) is indeed a € p-restricted NFA®». This follows from the fact that for any DFAT:
VleN, xexl, ie(0,0]: My, --Myu) €&p

which is implied by the property of DFA: u € £ and each column in every matrix M, contains exactly one 1. We give
an example of reversing DFA in Appendix C.

7 We acknowledge that writing x” constitutes an abuse of notation, but nonetheless convenient in analogy with M.



policy security decryption proof

direction information direction information

GWW [11] DFA selective forward reachability = backward reachability

§5 DFA adaptive backward reachability forward reachability
Naive,SA NFA  broken forward reachability - -
§4 NFA  selective forward # paths backward # paths

Fig. 5. Summary of tracing executions underlying GWW, our adaptively secure ABE for DFA, our selectively secure ABE for NFA®»
and naive extension of Waters’ ABE for DFA.

1.3 Discussion

Tracing executions. Recall that a DFA is specified using a transition function § : [Q] x £ — [Q]. A forward computation
upon reading o goes from a state u to v = § (4, o), whereas back-tracking upon reading o goes from v to uif v = §(u, 0).

- GWW selective ABE for DFA: Decryption follows normal “forward” computation keeping track of whether a state is
reachable from the start state, whereas the security proof introduces entropy based on whether a state is reachable
from the accept states via “back-tracking”.

- Our adaptive ABE for DFA and branching programs: Decryption uses back-tracking and keeps track of whether a
state is reachable from the accept states, whereas the security proof introduces entropy based on whether a state
isreachable from the start state via forward computation. To achieve polynomial security loss, we crucially rely on
the fact that when reading i input bits, exactly one state is reachable from the start state via forward computation.

- Naive and insecure ABE for NFA®»: Decryption follows normal forward computation keeping track of whether a
state is reachable from the start state.

- Our selective ABE for NFA®r: Decryption follows normal forward computation keeping track of the number of
paths from the start state, whereas the security proof introduces entropy scaled by the number of paths that are
reachable from the accept states via back-tracking.

We summarize the discussion in Fig 5.

ABE for DFA vs branching programs. Our work clarifies that the same obstacle (having to guess a large subset of
states that are reached upon back-tracking) arose in constructing adaptive ABE for DFA and compact adaptive ABE
for branching programs from k-Lin, and presents a new technique that solves both problems simultaneously in the
setting of KP-ABE. Furthermore, our results and techniques can carry over to the CP-ABE settings using more-or-
less standard (but admittedly non-black-box) arguments, following e.g. [4, Sec.8] and [6, Sec.4]. See Appendix I and
Appendix ] for adaptively secure CP-ABE for DFA and branching programs, respectively.

Interestingly, the very recent work of Agarwal et al. [3,2] shows a related connection: namely that compact and
unbounded adaptive KP and CP-ABE for branching programs® —for which they do not provide any instantiations-
yields compact adaptive KP-ABE (as well as CP-ABE) for DFA. In particular, just getting to KP-ABE for DFA already
requires both KP and CP-ABE for branching programs and also incurs a larger polynomial blow-up in the parameters
compared to our constructions; furthermore, simply getting to compact, unbounded, adaptive KP-ABE for branching
programs would also require most of the technical machinery used in this work, notably the “nested, two-slot” dual
system argument and the piecewise guessing framework. Nonetheless, there is significant conceptual appeal to having
a generic and modular transformation that also yields both KP-ABE and CP-ABE schemes. That said, at the core of
our constructions and analysis is a very simple combinatorial object sketched in Section 1.2. We leave the question
of properly formalizing this object and building a generic compiler to full-fledged KP-ABE and CP-ABE schemes to
further work; in particular, such a compiler should (i) match or improve upon the concrete efficiency of our schemes,

8 The statement in [3] refers to monotone span programs, which is a more powerful object, but we believe that branching program
suffices.



as with prior compilers such as [7,5], and (ii) properly decouple the combinatorial arguments that are specific to DFA,
NFA and branching programs from the computational arguments that are oblivious to the underlying computational
model.

Organization. The next section gives some background knowledge. Section 3 shows the transformation from DFA
to &-restricted NFA®». We show our selectively secure ABE for NFA®» in Section 4 and upgrade to adaptive security
for € g-restricted NFA®» in Section 5. The latter implies our adaptively secure ABE for DFA with concrete description
appeared in Appendix F. Our basic selectively secure ABE for NFA®» from g-type assumption can be found in Ap-
pendix B. Finally, in Section 6, we show how to get our compact adaptively secure ABE for branching programs. The
concrete scheme can be found in Appendix H.

2 Preliminaries

Notation. We denote by s — S the fact that s is picked uniformly at random from a finite set S; by U(S), we indicate
uniform distribution over finite set S. We use = to denote two distributions being statistically indistinguishable, and
=, to denote two distributions being computationally indistinguishable. We use (A, G) = 1 to denote that an adversary
A wins in an interactive game G. We use lower case boldface to denote row vectors and upper case boldcase to denote
matrices. We use e; to denote the i'th elementary (row) vector (with 1 at the i’th position and 0 elsewhere) and let £
denote the set of all elementary vectors of dimension Q. For matrix A, we use span(A) to denote the row span of A and
use basis(A) to denote a basis of column span of A. Throughout the paper, we use prime number p to denote the order
of underlying groups.

2.1 Attribute-based encryption
Syntax. An attribute-based encryption (ABE) scheme for some class € consists of four algorithms:

Setup(1*,@) — (mpk, msk). The setup algorithm gets as input the security parameter 1* and class description C. It
outputs the master public key mpk and the master secret key msk. We assume mpk defines the message space M.

Enc(mpk, x, m) — ct,. The encryption algorithm gets as input mpk, an input x and a message m € M. It outputs a
ciphertext cty. Note that x is public given ct,.

KeyGen(mpk, msk,T') — skr. The key generation algorithm gets as input mpk, msk and T € C. It outputs a secret key
skr. Note that I is public given skr.

Dec(mpk,skr,cty) — m. The decryption algorithm gets as input skr and ct, such that I'(x) = 1 along with mpk. It
outputs a message m.

Correctness. For all input x and I with T'(x) = 1 and all m € M, we require

(mpk, msk) — Setup(1%,€)
Pr | Dec(mpk,skr,cty) = m: skp — KeyGen(mpk,msk,I') | =1.

cty — Enc(mpk, x, m)

Security definition. For a stateful adversary A, we define the advantage function

(mpk, msk) — Setup(l’l,e)
A 1= pr | g g, O 0D < ARSCERMRRM mpl | 1
A ' ' B~ 1{0,1}; ctyr < Enc(mpk, x*, mp) 2
ﬁ/ (_AKeyGen(mpk,msk,-) (Cty+)



with the restriction that all queries ' that A sent to KeyGen(mpk, msk, -) satisfy I'(x*) = 0. An ABE scheme is adaptively
secureif for all PPT adversaries A, the advantage AdvAABE (1) is a negligible function in A. The selective security is defined
analogously except that the adversary A selects x* before seeing mpk. A notion between selective and adaptive is so-
called semi-adaptive security [9] where the adversary A is allowed to select x* after seeing mpk but before making any

queries.

2.2 Prime-order Groups

A generator § takes as input a security parameter 1* and outputs a description G := (p, G1, G2, GT, €), where p is a prime
of ®(A) bits, G, G2 and G7 are cyclic groups of order p, and e: G; x G, — Gr is a non-degenerate bilinear map. We re-
quire that the group operations in G, G, G and the bilinear map e are computable in deterministic polynomial time
inA.Let g1 € G1, g2 € Go and gt = e(g1, §2) € Gt be the respective generators. We employ the implicit representation of
group elements: for a matrix M over Z,, we define [M]; := gi“, M]; := gg'l, M]r:= gl}'l, where exponentiation is carried
out component-wise. Also, given [A];, [B]2, we let e([Al;, [B]2) = [AB] . We recall the matrix Diffie-Hellman (MDDH)
assumption on Gj [10]:

Assumption 1 (MDDHi i Assumption) Let k' >k=1andd=1. Wesay that the MDDH’,? o assumption holds if for all

PPT adversaries A, the following advantage function is negligible in A.

MDDH? ,
Adv, (1) := |PrA(G, M1, [[MS] ) = 1] - PrlA(G, M]y, [[0])) = 1]

whereG := (p, Gy, G2, Gr,e) — (11, M — Zl;’xk, S — Z’;)Xd andU — Z];,/Xd.
The MDDH assumption on G, can be defined in an analogous way. Escala et al. [10] showed that

. 1 d /
k-Lin = MDDH},,,, = MDDH{ ,, Vk' > k,d = 1

with a tight security reduction. We will use Advﬁ{ LIN (1) to denote the advantage function w.r.t. k-Lin assumption.

3 DFA, NFA, and their Relationships

Let p be a global parameter and £ = {ey,...,eq} be the set of all elementary row vectors of dimension Q. This section
describes various notions of DFA and NFA and studies their relationships.

Finite Automata. We use I' = (Q, Z, {My}yes,u,f) to describe deterministic finite automata (DFA for short), nonde-
terministic finite automata (NFA for short), p-bounded NFA (NFA<P for short) and mod-p NFA (NFA®» for short),
where Q € N is the number of states, vectors u, f € {0, 1}! *xQ describe the start and accept states, a collection of matrices
M, € {0, 1}9%Q describe the transition function. Let x = (x1,...,x¢) denote an input, then,

for DFAT, we have u € €, each column in every matrix M, is an elementary column vector (i.e., contains exactly
onel)andI'(x) =1 < My, ---Mu' =1;

for NFAT, we have I'(x) =1 < fM,,---Mu' >0;

for NFA<? T', we have fMy, ---Myu’ < pandI'(x) =1 < My, :--M,u’ >0;

- for NFA®» I', we have I'(x) =1 < fM,, ---Mu’ #0 mod p.

We immediately have: DFA ¢ NFA<P< NFA N NFA®»,

E-restricted NFA®». We introduce the notion of € p-restricted NFA®» which is an NFA®» T = (Q, Z, {Mg}gex, u, f) with
an additional property: for all £ € N and all x € =¢, it holds that
fix =M, ---My,, € Eq, Vi€ [0,]

Here My, ---My,,, for i = ¢ refers to I of size Q x Q.
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Transforming DFA to € ¢-restricted NFA®». In general, a DFA is not necessarily a €q-restricted NFA®». The next
lemma says that we can nonetheless transform any DFA into a & p-restricted NFA®»:

Lemmal (DFAto € q-restricted NFA®?). Foreach DFAT = (Q,Z,{Mg}ges, u,f), we have NFA®» T = (Q,Z, (M }gex, £ u)
such that

1. T7 is Eg-restricted;
2. foralll eNand x = (x1,...,X7) € ¢, it holds that

T=1<T"&")=1 wherex =xy,...,x1)€=’. (7)
Proof. Recall that the definition of DFA implies two properties:

fe {0,139 ®
and (M, ---Myu)' €&y, Vie[0,7]. 9)

Property (9) comes from the facts that u € £ and each column in every matrix M, is an elementary column vector.
We parse x" = (x7,..., x;) and prove the two parts of the lemma as below.

1. I'"is & -restricted since we have

uM;; ...MLZTH =My, -Myu) €€, Vie[0,]
where the equality is implied by the structure of I'", x" and we use property (9).
2. To prove (7), we rely on the fact

I(x)=1 < M,,---Myu' =1
> M, --Mgu’ #0mod p
— uM;;mM;IfT;éOmodp
= I'(x") =1

The second < follows from the fact that fM, ---My, u" € {0, 1} which is implied by property (8) and (9) while the
third < is implied by the structure of I'", x". i

4 Semi-adaptively Secure ABE for NFA®»

In this section, we present our ABE for NFA®? in prime-order groups. The scheme achieves semi-adaptive security
under the k-Lin assumption. Our construction is based on GWW ABE for DFA [11] along with an extension of the
key structure and decryption to NFA; the security proof follows that of GWW with our novel combinatorial arguments
regarding our NFA extension. (See Section 1.2 for an overview.) We remark that our scheme and proof work well for a
more general form of NFA®» where u, f, M, are over Z p instead of {0, 1}.

4.1 Basis

We will use the same basis as GWW [11]:
Al - ng(2k+l)r ay — Z}gx(zkﬂ)’ A3 - sz(zkﬂ) (10

and use (A] | a, | A}) to denote the dual basis so that AiA”i =1 (known as non-degeneracy) and Al-A”j =0ifi # j (known
G
A11HA1YA3

DDHgZQ assumption from [8] which are parameterized for basis (10) and tightly implied by k-Lin assumption. By

symmetry, we may permute the indices for A;, az,As.

as orthogonality). For notational convenience, we always consider a"2 as a column vector. We review SD and
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Lemma2 (MDDH; ;= SD&H ALAs [8]). Under the MDDHj. 5. assumption in Gy, there exists an efficient sampler out-
putting random ([A1]1, [az]1, [As]1) along with base basis(A"l), basis(ag), basis(A”l,A'g) (of arbitrary choice) such that the
following advantage function is negligible in A.

sD§!
AdVA Aj—A1 Az (/1) = |Pr[.A(D, [to]l) = 1] —Pr[‘A(D, [tl]l) — 1] |

where
D:=([A1]1, [az]1, [As]y, basis(A), basis(a),), basis(A} ,A}) ),

to —|[span(Aj)|, t; — span(Aj,As) .

. T . SDS . o MDDH
More concretely, we have, for all A, there exists B with Time(B) = Time(A) such that Adv , ™™™ (1) < Adv

" k2k (A) .

d G
Lemma 3 (MDDHkYker > DDHd,ZQ [8]). Letd, Q € N. Under the MDDHka

function is negligible in A.

assumption in G, the following advantage

DDH®
Adv,  “?(A) := | PrLA(IWBI;, [B2,[ [WRI2 |, [R]) = 1] — PrA(IWBI3, [Bl,, [WR+ Ul , [R]y) = 1] |
whereW «— ngk, B~ Z’;,Xk, R~ Z’;,XQ andU — ZZXQ. More concretely, we have, for all A, there exists B with Time(B) =

H4

) DDHg?Q MDDH{, ,
Time(A) such thatAdvA A1) =0@1) -AdvA A).

Lemma4 (statistical lemma [8]). With probability1—1/p overAl,ag,Ag,A”l, a"Z,A"3, the following two distributions are
statistically identical.

{AIW,AsW,[a,W|} and {A,W,AsW,w }

where W — ng““k andw — Z},Xk.

4.2 Scheme
Our ABE for NFA®? in prime-order groups is described as follows:
- Setup(1},2) : Run G = (p, Gy, G2, G, €) — G(11). Sample
Ay — Zp D k- 2D and - Wigare, Zo, Z1, Wo,0, W1, Weng — Z 50K, vo e 3.

Output
mpk = ([A1, A1 Witart, A1Zo, A1Z1, {A1 W40, A1Wg,1 }gex, AiWend 1, [A1K I T)
msk = (kv Wetart, Zo, Z1, {W(T,O) wa,l toez, wend)-

- Enc(mpk, x,m): Let x = (x1,..., x7) € = and m € Gr. Pick sg,S1,...,87 — Z}fk and output

[soA1]1, [S0A1Wstartl1
Cty = {[SjAl]l, [8j-1A1Z; mod 2 +SjA1ij,j mod 2]1}je[é]
[s¢A1l1, [S7A1Wengl1, [s¢Ark'IT-m

- KeyGen(mpk, msk,T): Let T = (Q, %, Mg} gez, u, ). Pick D — Z;,ZkH)XQ, R~ Zf,XQ and output

[Du' + WarcRu'], [Ru'],
SkF = {[_D +ZbR]2) [DMJ +WU,bR]2’ [R]Z}UEZ,bE{O,l} .
(k'f—D +WengRly, [R]2

12



— Dec(mpk,skr, cty) : Parse ciphertext for x = (x1,...,x,) and key for I' = (Q, %, Mylges, 0, f) as:

[€o,1]1, [€o,2]1 (kplz, [rpl2
cty = | {lcjil1,[cj2h }j and  skr = [ {[Kpl2, Ky pl2, [RI2},
[eg111,[Cendl1, C [Kendlz, [RI2
We define
u;’x:ij---MxluT mod p, Vj€[0,4] (11)

and proceed as follows:
1. Compute

By = e(lco111, [kyl2) - e([co2]1, [1‘6]2)71;

2. Forall j € [¢], compute

[bjlr = e(lcj-1,111, [Kj mod 212) - e([cj,1]1, [Ky;, j mod 2]2) - e([=¢€j 211, [R]2)  and sz[bju-]r'_l,x]T;

3. Compute
[bendlT = e(leg1]1, [Kendl2) - e([—Cendl1, [Rl2) and  Bend = [bendu;,x]T;

4. Compute
(fu] 7!

u
Bai =By - Hizl Bj:Beng and B= B, o

and output the message m' — C-B™1.

Correctness. For x = (x1,...,x7) and T = (Q, X, {My}ses,u,f) such that I'(x) = 1, we have:

By = [soA1Du' |1 = [soA1 Dug ] 7 (12)
bj = SjAlDij —-s;j-1A;D (13)
Bj = [sjA1Du; , —s; 1A;Du;_, I7 (14)
bend = S[Alka—S[AlD (15)
Bend = [s/A1K fuy,  —s,A1Du;, 17 (16)
Ban = [s¢Ark fuy, ] 7 a7
B = [seAiK'I7 (18)
Here (16) is trivial; (14) and (18) follow from
u; =Myguj_, modp, Vje[¢] and T(x)=1<=fu, #0modp (19)

by the definition in (11), the remaining equalities follow from:

(12) soA1Du’ = spA; - (DU’ +WiarRu") — sA; Wgare - Ru’

(13) SjAlDij - Sj—lAlD = Sj—lAl : (_D+Zj mod 2R) +SjA1 : (Dij ""wxj,j mod 2R) — (Sj—lAIZj mod 2 + SjAlwxj,j mod 2) 'R
(15) seATK f—s)A1D = spA;- (K'f—D +WepgR) —spA1Wepg-R

17 s[Alkau;,x = sOAlDuBYx + Zle (SjAlDll}x - Sj—1A1Dll;,Lx) + (s;Alkau;’x - s;AlDu;'x).

Security. We have the following theorem stating that our construction is selectively secure. We remark that our con-
struction achieves semi-adaptive security as is and the proof is almost the same.

Theorem 1 (Selectively secure ABE for NFA®?). The ABE scheme for NFA®r in prime-order bilinear groups described
above is selectively secure (cf. Section 2.1) under the k-Lin assumption with security loss O(¢ - |Z|). Here ¢ is the length of
the challenge input x*.
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4.3 Game Sequence

The proof is analogous to GWW'’s proof. We show the proof in the one-key setting where the adversary asks for at most
one secret key; this is sufficient to motivate the proof in the next section. As in [11], it is straightforward to handle
many keys, see Appendix D.2 for more details. Let x* € = denote the selective challenge and let £ = £ mod 2. Without
loss of generality, we assume ¢ > 1. We begin with some auxiliary distributions.

Auxiliary distributions. We describe the auxiliary ciphertext and key distributions that we use in the proof. Through-
out, the distributions are the same as the original distributions except for the so-called a;-components which is de-
fined as below.

ay-components. For a ciphertext in the following form, capturing real and all auxiliary ciphertexts (defined below):

[col1, [€oWstart]1
ctx = {lcjA1l1,[€j-1Zj mod 2 + €;Wy;,j mod 2]1}j with ¢; =s;A; +s;a2 +8;A3, V] (20)

[celr, [€¢Wendl1, [e K 17+ m

where s;,§; € z’; and s; € Zj,, we define its ap-components, denoted by cty[2], as follows:

[sol1, [Soa2Wstart]1
ctyl2] = {[Sj]l; [sj-122Zj mod 2 + SjaZij,j mod 2]1}]'

[se11, [sea2Wendl1, [seazk" 17+ m
For a key in the following form, capturing real and all auxiliary keys (defined below):
(kgl2, [rgl2

skr = { [Kpl2, Ky, pl2, [R]2 }a,b o
[Kendl2, [R]2

where kq € Z;,X @k Ky, Ky Kend € Z;,zkH)XQ and ry € Z}?Xk,R € Z];,XQ, we define its a;-components, denoted by
skr(2], as follows:
[azkg]2, [ryl2
skr(2] = | {[a2Kp]2, [a2Ky pl2, Rz},
[a2Kendl2, [Rl2

For notation simplicity of ct,[2] and skr[2] with k, D, Wstart, Wend, Zp, Wy, We write
a= aZkT» d = ayD, Wytare = a3 Wstart, Wend = @2Wend, Zp = a2Zp, Wop = a2Wy p, VO, b

and call them the ay-components of k™, D, Wyart, Wend, Zp, W, b, Tespectively. We also omit zeroes and adjust the order
of terms in ct[2]. Furthermore, for all A}, as, A3, mpk and various forms of ct, skr we will use in the proof, we have

cty[2], skr(2], {A;k",A;D,A;Wstar, AiWend, AiZp, AiWo b }ie(1,3},0€%, be(0,1)
=, cty[2], skr(2], {AiET’Aiﬁ’AiWstartyAiWend»Aizb’Aiwo,b}i€{1,3},0€2,be{0,1}

where K — Z}jx @k+D B ng“)XQ,Wstart,Wend,Zb,Wa,b - Z;,zk“)xk are fresh. This follows from Lemma 4 and the

fact that all matrices W € ng“) *K \yith k’ € N can be decomposed as
W=A] A W+a,-a,W+A} - AgW.

The property allows us to simulate mpk, cty,skr from cty[2],skr[2] and A;,az,As3 so that we can focus on the crucial
argument over ap-components in the proofs, e.g., those in Section 4.4, 4.5, 4.7 and 4.8.
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Ciphertext distributions. We sample sy, §1,...,S¢ < Zp and define:

- foriel0,/]: ct;* is the same as ct,+ except we replace s;A; with s;A; + s;ay;
- forie[d]: ct;“ is the same as cty+ except we replace s;_1A1,8;A; with s;_1A; + s;_j1ay,8;A] + s;a.

That is, we have: writing 7 = i mod 2,

[SoWstart]1, [Sol1, [SoZ1]1 ifi=0

Ctl * [2] = 4 [Siwx;,'r]l; [Si]lr [Sizl—‘[]l 1fl€ [4— l]
[Slwx;,é]lr [s¢l1, [SeWendl1, [sealT-mg  ifi=2¢

[SoWstart]1, [Sol1, [SoZ1 + 1wy 111, [s1]1, [S1Z0]1 ifi=1

ety 21 = { [simiWe 1l [sic1 ], [Sim122 + W 11, [sil1, [siza ) ifie(2,¢-1]

[Se-1We: 1711 [Se-1]1, [Se-12Zg + SeW e gl [Se]1, [SeWendlt, [sealr - mp ifi=¢
They are exactly the same as those used in GWW'’s proof [11].
Secret key distributions. Given x* € >¢andT = (Q,Z,{Myloes,u,f), we define
f; v =fo; --~Mx;¢+1 mod p, Yi€[0,4]. (22)
For all i € [¢], we sample A — Z,, and define:

skor is the same as skr except we replace D with D +a, - s, A+ fo o+ in the term [Du’ + WyarRu']5;
skp. is the same as skr except we replace D with D + ag . slTlA -f; v+ in the term [DMX; + Wx?,,- mod 2Rl2;

ské_l’i is the same as skr except we replace —D with —D + a"2 . sl.’_llA -fi_1 x~ in the term [-D +Z; 04 2R12;
skfﬁ‘* is the same as skr except we replace —D with D +4, - s,'A-f; .+ in the term [K'f— D + WengRla.

That is, we have: writing T = i mod 2,

[+ 55" A o, " + WigarRu ], [Ru']

skpl2] = | {{-d+z,Rlz, [dMy +Wo, pRl2, [Rl2} ) o5 ooy
[af—d+wengRl2, [R]2

[du’ + Wy Ru']z, [Ru'],
{I-d+2Rl;, [(d+]57 A fi - )My + Wy Rl [RI}
skp[2] = {l[dM, +w, Rl2} sxt
{l-d+21-;Rlz, [dM; + Wg,1-rRl2, [R2}
[af—d +WengRI2, [R]2

[

[du’ + wyarRu']2, [Ru']»

Skiil’i[Z] _ {[_d++ZTR]Zy [dM; +wg Rz, [R]Z}UGZ
r

- {[-d+2z1-;Rl2, [dM; + Wg,1-Rl2, [R2}
[af—d+wengRl2, [R]2

g€EX

[du’ +wWgarRu']2, [Ru'],

sk [2] = | {I-d+2yRls, [dMy + Wy yRI, [Rl2} oy oy

[af—d-+| 57 Ay, |+ WenaRla, [Rlo

They are analogous to those used in GWW’s proof [11] with a novel way to change a,-components’. Following the

notations in Section 1.2, we use d’l. = si’lA -f; »+ rather than d’l. = A-f; x~. We remark that they are essentially the same
but the former helps to simplify the exposition of the proof. Also, we note that s; is independent of the challenge input
x* which will be crucial for the adaptive security in the next section.

9 We also change the definition of sk%, i € [0, 4], with the goal of improving the exposition.
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Game sequence. As in GWW’s proof, we prove Theorem 1 via a series of games summarized in Fig 6:

- Go: Identical to the real game.

— Gj:Identical to Gy except that the challenge ciphertext is ct?c* .

- Ga.i0, I € [£]: In this game, the challenge ciphertext is cti:l and the secret key is skf_l.
- Gy.i1,1€[¢]:1dentical to G ; o except that the secret key is skf_l’i.

- Ga.i2, 1€ [¢]: 1dentical to G, ; ; except that the challenge ciphertext is ct
- Ga.i3, 1€ [¢]: 1dentical to G, ; » except that the secret key is skf.

- Gy.j4, 1€ [¢]: 1dentical to G ; 3 except that the challenge ciphertext is ctfc*.
— Gga: Identical to Gy s 4 except that secret key is skfﬁ’*.

i-1,i
x*

Note that G, ¢ is identical to G; except that the secret key is squ and we have Gy ;o = Gy j_14 for all i € [2,¢]. The

remaining of this section will be devoted to proving the indistinguishability of each pair of adjacent games described

above. The proofs will be analogous to those for GWW, however, crucially use the property of fo +,...,f7 .

Useful lemmas. Before proceed to the proof, we show the next lemma describing the property of fo +,...,f¢ .

Lemma5 (Property of {f; y+};c(0,¢). For any NEA®r T = (Q,Z, {My},u,f) and input x* € =¢, we have:

1. T(x*)=0 < fy,+u’ =0 mod p;
2. £ x :f,-'x*Mx; mod p forallie [¢];
3. fr =1

Proof. The lemma directly follows from the definitions of NFA®» in Section 3 and fy -+, ...,f7 ¢+ in (22).

4.4 Initializing
It is standard to prove Gy =, Gy, see Appendix D.1. We only show the proof sketch for G; =, G.1 9.

Lemma 6 (G; = Gy 1). Forall A, we have
Pri¢A,G;) =11 =Pr[{A, Ga.1.0) = 1].

Proof. Roughly, we will prove that

(mpk, ctl.,[skr|) = (mpk, ctS., sk )
where we have
[ + WstartRu' 12, [Ru' ],

skr(2] = {[_d+ zpR]z, [dM; + Wy ,R]2, [R]Z}O—Ez’be{o’l}
[af—d+ WengRly2, [R]2

[(d+ salA -fo, )" + WgiareRu' ]2, [Ru'],
squ (2] = [ {[-d+z,R]2, [AM; + W, ,R]2, [R]2}
[af—d+wengRl2, [R]2

oeX,be{0,1}

and
ctd. 121 = ([soWstart]1, [S0]1, [S0Z1]1)-
This follows from the statement:

skr[2] skp (2] ct?, 2]
N x*

-

—N
T T T = T Tl o
{+wstartRu Ru'} = { (d+5s5" Ao )u" +wsarRu',Ru' } given d, Wygare

which is implied by the fact I'(x*) =0 < fy ,~u’ =0 mod p (see Lemma 5). This is sufficient for the proof.
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L1

Game Ct,* skri2] Remark
2-u’ + wgartRu' 2 My +wye R 2+2zR My +Wyr R af+? +2zenqR
0 Ctyx skr d d —-d d -d real game
1 skp  d d -d d —d SD
2.1.0 ctg* d+m d -d d -d fo,x+u" =0 mod p (Lemma 5)
20 ottt skl d d+ ssLAf g -d d -d €20
2.0.1 cti:l d d —d+ d -d change of variables + DDH
2.i.2 cti}l’i skﬁ_l’i d d -d+ S;_11A~fi_1yx* d -d switching lemma
2.i.3 cti;l’i d d -d d + -d transition lemma, f;_; y+ =f; x+ Mxi* mod p (Lemma 5)
2.4 skll; d d -d d+ sl._lA-fl-yx* -d switching lemma
3 cti* d d -d d -d + change of variables + DDH

Fig. 6. Game sequence for our selectively secure ABE for NFA®” where i € [£]. In the table, we only show the ap-components of secret key. In the Remark column, “SD” and “DDH”

indicate SD A

G
1—Ay,a L,Q

and DDH assumption, respectively; switching lemma and transition lemma were given in GWW, cf. Lemma 16 and Lemma 13.



4.5 Switching secret keys I

In this section, we will show that G ; g = Go.; 1 foralli € [¢] and G; ¢4 =¢ G3. The proofs for them are similar. We begin
with the following lemma stating that Gy ; o =, G2.1.1 and sketch the proofs for the remaining statements.

Lemma7 (Gy10 =~ G1.1). Forall A, there exists B with Time(B) = Time(A) such that

DDH{?,
Pr[{A, Gz1.0) = 1] = Pr[{A, Go.1.1) = 1] = O(IZ)) - Adv, - (A).

Overview. Roughly, we will prove that

(mpk, ctg*,) = (mpk, ct?., sk' )

By Lemma 4, we focus on a;-components and prove:

[(d+ 55" Ao 1+ Ju” +WygarRu ], [Ru'T, (du” +WyareRu", [Ru'

sk0[2] = {[+ZIR]2»[dMa +Wa,1R]2,[R]2}U€z g {{[-d+ SalA-fO,x* +2z1Rly, [dM, +Wg,1R]2,[R]2}a€Z =sk%!(2]
g {{=d+2oRl2, [dM; + W, oRl2, [Rl2}, 5 ‘ {l=d +zyRl,, [dM, + W oRl2, [Rl2} .5 r
[af—d +WengRl2, [R]2 [af—d +WengR]2, [R]2
given

ct. (2] = ([soWstart)1, [S011, [S0Z1]1).-
Clearly, change of variablesd — d — s IA. fo,x+ is at the core of the above statement, which ensures that: for all s and

A, we have

0 0,1
Sk£[2] Skr,. [2] Ctg* 21

{()uT+wstartRuT,+z1R,R} ~s {du” +WerRU', —d+ 55 A fo x+ +Z )RR} given Wyar,z1 (23)

However this does not hold if d is also given out on the both sides which corresponds to d’s appeared at other positions,

as is our case. We address this issue by hiding other occurrences of d’s via DDHfZQ

assumption before the change of

variable and getting them back via DDH?%Q assumption again after that.

Auxiliary hybrids. Formally, we need two more auxiliary hybrids:

- Gy.1.0.q is the same as Gy 1 ¢ except that, for key query T, we return

[(d+s5 A fo v )u’ +WggarRu' ]2, [Ru' ],

{[=d+zRlz, [0]- My +Wo,1R]2, [Rlz},cx

{[0)+2oR12, [[0]- My +Wo,oRI2, [Rlz} ey |
[af —[0]+ WengRI2, [Rl2

- Gy.1.1.q is the same as Gy 11 except that, for key query T, we return

[du” + wgarcRu'], [Ru'],
{[-d+s;'A-fo,c +21Rl2, [0]- Mg + w1 Rl2, [R2}
{[[0]+zoR12, [[0]- My + Wq oR2, [Rl2} s
[af—[0]+WengRl2, [R]2

ogeX

Then we prove that:

DDH 23) DDH
G210 =¢ G21.04a =5 Go1.1.a =¢ G211 (24)

which is summarized in Fig 7.
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Game ?-u' +wgrtRu'  ?2+z;R ?2-Mg+wg, )R 2+zgR  ?2-Mg+wgoR  af-?+we,gR Remark

210 d+sytAfo -d d -d d d sk%[2]
2.1.0.a d+ sy A fo y- -d [0] [0] [0] [0] DDH

21lad —d+ 0 0 0 0 d—d-sylA-fo
211 d ~d+ 550 Mo+ [d] [d] [d] DDH, sk’ [2]

Fig. 7. Game sequence for G2 19 =¢ G2.1.1. In the table, we only show changes of secret key and focus on its ap-components; all
Go

secret key elements in the fourth and sixth column are quantified over o € X. In the Remark column, “DDH” indicates DDH; 0

assumption.
Lemmas. We describe and prove the following lemmas which imply Lemma 7 by (24).

Lemma8 (Gy10~;G21.0.q)- Forall A, there exists B with Time(B) ~ Time(A) such that

DDH{?,
Pr(A, Ga.1.0) = 11 - Prl{A, Ga1.0.0) = 11 = O(Z)) -Advy, " (A).
Proof. By Lemma 4, it suffices to prove the lemma over a,-components which roughly means:

[(d+ 55" Ao x+)u" +WyarRU ], [RU' [(d+ 55 A fo v )u’ + WggareRu' o, [Ru' ],

{[~d+zRl, [d]- My + Wy 1Rl2, [Rlo} ey | | {[~d+Z1Rl2, [0 -My + W, 1Rlz, [Rl2} s

{[—@+ZOR]2, [d]- My +wy oRl2, Rl2} sex o {[0 +2zyRl2, [0 -M, + Wy oRl2, [Rl2} 5
[af—[d]+WenaRl2, [R]2 [af -0 +WengRI2, [R]2

ski[2] =

in the presence of

Ctg* (2] = ([soWstardl1, [Sol1, [SoZ1]1 ).

One can sample basis A;,a;,A3,Al},a,,A} and trivially simulate mpk, ct). and secret key using terms given out above.
Furthermore, this follows from DDHIGIZQ assumption w.r.t g, Wy 0, Wy, 1, Wend With o € £ which implies:

(1zoRl2, {[Wo,0Rl2} yes, {Wo, 1Rz} csr WendRl2, [Rl2) =¢ U((Gy* 9?2 x GE*Q)

where zg, Wy 0, Wy, 1, Wend < Z},Xk forallo e X and R — ZZXQ. Here we use the fact that ct?, [2] does not leak zo, Wg,1,
Wg,0, Wend With o € Z. This completes the proof. |

Lemma?9. Forall A, we have
Pri(A,Gz1.0.0) =11 =Pr[{A, Gz 1.1.0) = 11.

Proof. This immediately follows from (23) implied by the change of variables: d — d — s i O

Lemma 10. Forall A, there exists B with Time(B) = Time(A) such that

DDH{?,
Pr[(A,Gz.1.1.a) = 11 = Prl{A, G2.1.1) = 11 = O(IZ]) - Adv; "~ (A).
Proof. The proofis analogous to that for Lemma 8. O

Via the same proof idea, we can prove the following two lemmas stating that G, ; o =. Gy;1 for all i € [2,¢] and
Go.¢.4 =¢ Gs, respectively. We only sketch the proof for each lemma.

Lemmall (Gy;o~;Gy;1). Forallie [2,¢] and all A, there exists B with Time(B) = Time(A) such that
DDH{%)
Pr[(A, Gzi0) =11 = Pr[(A, G2.1.1) =11 = O(Z) -Adv, (D).
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Proof (sketch). We will prove that

(mpk, Ct;:l,) = (mpk, Cti:l, Sk{;—l,i )

Recall that 7 = i mod 2, the proof is analogous to that for Lemma 7: roughly, we want to prove the following statement

Oover az -COIIlpOIleIltS:

[du' + WstartRuTJZJ [Ru'],
{l-d+2z1-Rly, [(‘d+ S A fiy e M,: +Wyr 1R, [R],}
skivl[2] = {[dM; +w,1-Rl2}, xr

{{=d]+ 2Rz, [AM, + W, Rl2, [Rl2} o5
[af—d+wengRlo, [R]2

[du’ +WsiariRu' 2, [Ru']p
{l~d+2z1_Rl,, [dM,: +w, 1 Rl R}
. {ldMy + W1t Rlof g
{{-d+s;  A-fi 1+ +2Rl5, [dM, + Wy (R, [Rl2} 5
[af —d + wengRl2, [Rl2

=skl 7 [2]

U

given
ety 121 = ([si-1Wa 1o, [Si-1l1, [Si-12e)1)-

This relies on:

- change of variablesd — d - sl.‘_llA -f;_1 x+; this ensures that, for all s;_; and A, we have

skiml(2] skimM 2]

A

~

{(‘d"‘ Sg_llA'fi—l,x* )Mxl,tl +Wx;‘71,l—TR’+ZTR’R} R { d Mx;{l +Wx;‘71,l—TR’ -d+ si__llA Lio1 e +ZTR’R}

in the presence of w,+ -2t leaked via cti:l [2].
i

- DDHlG'zQ assumption W.r.t Wstart, 211, {Wa,l—r}a,éx;‘_l ,{Wg,}oez, Weng; this implies that

(WstarRlz, [21—Rl2, {Wo1-rRlz}, cpe o {Wo,rRI2} ey, WendRl2, [RI2) =c U((Gy* 9752 x GHQ)
and will be used to hide all d’s irrelevant with the change of variables. O

Lemma 12 (G, ¢4 = G3). For all A, there exists B with Time(B) = Time(A) such that

Gy
Pr(4, Go.g.a) = 11~ Pri(A, Ga) = 11 < OZD) -Adv,, ().

(mpk, cti*,) = (mpk, ct’., ski2*)

Recall that # = £ mod 2, the proof is analogous to that for Lemma 7: roughly, we want to prove the following statement

over az-components:

Proof (sketch). We will prove that

[du’ + WstartRuT]Z; [Ru']»

{l=d+27R15,[(d+ 5, A-f,c )M +w,. 7RI, [Rlo}

ski[2] = {[dM; +w, Rz},
{[~d+z,_;Rlz, [dM; +w, | _;Rl2, [Rl2}, 5

[af[—d]+WenaR]2, [R]2

20



[du’ +Wsar(Ru'], [Ru'],
{(-d+2z;Rl>, [dM,; +W,. 7R, [R],}
R {[dm, +Wo,iR]2}g¢x;
{[~d+z,_;Rlz, [dM; + W, ,_;Rlz, [Rlz} .y
[af —d+ s;lA £7 v+ +WendRl2, [R]2

0,%
= skF [2]

given
Cti* [2]= ([Ssz;jh, [sel1, [SeWenal1, [SealT - mg).

This relies on:
- change of variablesd — d —- s;lA -f, »+; this ensures that, for all s, and A, we have
ské[2] ski* (2]

{(d 5, A fp e DMz 4w, R[Zd]+ WenaR R} = { M, +w,. R =d+ 5 A B0 + WenaR R}

in the presence of w . ;,Wenq leaked via cti* [2].
”,

_ DDHIGfQ assumption wW.r.t Wgart, 2o, Z1, {ng}zf#x; , {wa’l_l;}gez; this implies that

(WstartRl2, [Z0Rlz2, (21R12, {{Wy ;Rl2}y o0 { W, 1 7RI} 5y, [RI2) = U((Gy Y22 5 65*Q)

and will be used to hide all d’s irrelevant with the change of variables. O

4.6 Switching ciphertexts
In this section, we show that G, ;1 =, Go.;2 and Gy ;.3 = Go.; 4 for all i € [¢] using the switching lemma from GWW [11].
Lemma 13 ((s,W)-switchinglemma [11]). We have

aux, [sA1l1, [, - A+Wr'],, [r'],
¢ aux, [sA +[saz]l, [a)- A+ Wiy, [r'],

where aux = ([A1,a2,A]W,a, W], [WB,B],) and W — Z%kﬂ)Xk, B~ Z’;Xk, S, — Z;Xk, A,s— Z,. Concretely, the advan-
tage function Adviy" " (1) is bounded by O(1) -Adv’ngLIN (A) with Time(Bg) = Time(B).

We begin with the following lemma stating that G, ; ; =, Gy ;2 for all i € [¢] and sketch the proof of Gy ;3 =, Gy.;4 for
all i € [¢], which is analogous.

Lemma 14 (Gy ;1 ~.Gy;2). Forallie [¢] and all A, there exists B with Time(B) = Time(A) such that
Pr[{A, Go ;1) = 11 = Pr[{A, Go0) = 1] < AdVSng'l‘CH(M.
Overview. We will prove that

(mpk, [cti=" | ski) = (mpk, et ski=").

This roughly means that we will show that

i—1 i-1,i i-1,i
ct;* ctx* Skr

A

: Il -1
[siA1]1 = [s;A1 +s;a2]1  given [-D+a,-s; A-fi_1 +Z;R], [Rl2.

The occurrence of ag hinders a direct application of SDY! , assumption. We will use (s;,Z;)-switching lemma in

Al»—>A1,a _
the proof, which roughly states that [s;A;]; = [s;A] + s;a2]; given [a"2 -A+Z.1"], and [r"]; the auxiliary terms given

out in the lemma will be used to simulate the terms involving a”z.

21



Proof. Recall that 7 =i mod 2. We prove the lemma using (s;, Z;)-switching lemma. On input
aux, [c;l1, [y - A+Z.x'],, [F],
where aux = ([A1,a5,A1Zy, 80211, [ZB,Blp) and Z, — 3"V B — 78k y — 71k, A — 7, and
ci=[siA1]| or ¢c; = 8jA| +5;85, s;— Z}fk,si —2Z,
the reduction works as follows:

(Simulating mpk) We sample k — Z,lgX (2k+1),Wstart,Zl_T,Wa,o,Wg,l,Wend — Zg,zk“)xk for all o € X, and then we can
trivially simulate mpk from [A;,A1Z;];.

(Simulating challenge ciphertext) On input (71, m;), we want to create a challenge ciphertext in the following form,
which is either ct’;! or ct’; " depending on c;:

[col1, [€oWstart]1

,,,,,, C; € {, S;A; + s;ay }
—————— where { ¢;_1 =s;_1A; +s;_1a2
{lejl,lej-1Zy <11 - [cij;f,l—r]l}j#modZ l l . l- .
. cj=sjA; Vje¢l{i—1,i}
[ce]1, [€oWengl1, [eck™] 7 - mp

Observe that,

- when ¢; =(s;A; ], the distribution is identical to ;

— when ¢; = 8;A; + s;ay , the distribution is identical to et

x*

We proceed to create the challenge ciphertext as follows:

- We sample s;_1 < Zp, sj < Z}f’“ for all j # i and simulate {[c;]1};%; using [A;,a.]1; note that [c;]; is given out in
the lemma as the challenge term.
— We rewrite terms in the dashed box as:

[s;A1Z;]1 ifj#i—1 and j #i mod 2

[c;Z:]1 = e .
[8i—1A1Z;]1 - [si—1@2Z+]; ifj=i—1(and j #i mod 2)

which can be simulated using {s;} £ mod 2, Si-1 and [A1Z;,a,Z;];; here we use the fact that we do not have any
terms involving [c¢;Z;]; in the challenge ciphertext.
- We simulate all remaining terms using {[c;]1} je[o,¢) and k, Wytart, Z1-7, (W5 0, Wo,1}oex, Wend.

(Simulating secret key) On input I', we want to return a secret key for I in the form

[Du” + WyarRu'l2, [Ru']2

r-=-"-"-"- -~ -/ - - - -T-TTTT-T7—7 A
-1 {[-D+a,-5;|A-fiy o +ZRlz, [DMg +Wo,Rl, [Rlo} s
e e e e .
{[=D +Z;_;Rl3, [DM; + W;,1-Rl2, [R]2}

[ka_ D +WendR]2; [R]Z

o€eX

Z;Zk“)XQ andR — Z’;XQ and implicitly set

We sample D —
A=s; ;A and R=r"-f;_;~+B-R

We proceed to simulate sk?‘l'i as follows:

— We simulate [R], from [r"],, [B] and f;_ -+, R.
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— We can rewrite the term in the dashed box as:
[-D+ (@, -A+Zx")-fi_1 x» +Z;B-R],

which can be simulated using [a), - A + Z;r'],, [Z;B], and D, f;_1 x+,R.
- We simulate all remaining terms using [R]; and k, D, Wart, Z; 7, Wy 7, Wg 1-7, Weng.

Observe that, when ¢; = , the challenge ciphertext is and the simulation is identical to G, ; 1; when ¢; =

i-1,i

S;A; + s;ap , the challenge ciphertext is |ct - and the simulation is identical to G ; ». This completes the proof. O

Via the same idea, we can prove the following lemmas stating that Gy ; 3 =, G2 ; 4 for all i € [¢]. We only sketch the
proof by highlighting the difference.

Lemma 15 (Gy ;3 ~; Gy ;4). Forallie [¢] and all A, there exists B with Time(B) = Time(A) such that
Pr[(A, Gz.i3) = 1] = Prl{A, Ga.i.4) = 1] < Advig "“" (A).

Proof (sketch). We will prove that
(mpk, , ski) ~¢ (mpk, cti, , ski.)

which roughly means that we need to prove that

i-1,i i ski
ctx* ctx* KT

: I, 1
[si-1A1 + Si1@2]1 ~c [8;i-1A1]1  given [DMy: +a,-s; A-fj x+ + Wy -Rl, [R]2.

The proof is analogous to that of Lemma 14 except that we use (s;_1, W+ ;)-switching lemma instead of (s;,Z;)-
switching lemma so that we can simulate the challenge ciphertext from the challenge term in the lemma and simulate
secret key using the auxiliary terms given out in the lemma. O

4.7 Switching secret keys II
This section proves Gy ;2 =¢ Gg.; 3 for all i € [¢] using the the transition lemma from GWW [11].

Lemma 16 ((z, w)-transition lemma [11]). Forall s;_1,s; #0 and A € Zp, we have

aux, Si_1Z+ S;w, [+er]2, [wr'ly, [7]2
~ . . T -17 T T
R aux, Sl*1Z+Slw) [Zr ]2) [Si +wr ]2) [l' ]2

where aux = ([zB,wB,Bl,) and z,w — Z}fk, B — Zf,xk, r— Z}fk. Concretely, the advantage function Advy*™() is
bounded by O(1) - Advi;"™ (1) with Time(Bo) ~ Time(B).

Lemma 17 (G, ;> ~; Gy ;3). Foralli€ [¢] and all A, there exists B with Time(B) = Time(A) such that

Pr[(A, Gy.i2) = 1] = Pri{A, Go.i.3) = 1] < Advg " ().

Overview. This roughly means

(mpk, ctiil‘i,) ~c (mpk, ctiil'i, skf- );

more concretely, we want to prove the following statement over ay-components:

[_d+ si__llA'fi—l,x* +Z‘[R‘]2; [del* +]2, [R]Z //Sk{;_l’i[Z]
=, [-d+ z;R >, [de; + si—lA.f,-’x*Mx;« +wx;,TR]2, [Rl, //sk{;[z]

i-1,i
x*
fact thatf;_; x» =f; x*M,» mod p (see Lemma 5).

1

givend, A, s;_1,s;, Si—1Z; + §;Wyx ; revealed by ct . This can be handled by the (z;, w,+ ;)-transition lemma and the
1 1
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Proof. Recall that 7 =i mod 2. By Lemma 4, it suffices to prove the lemma over a;-components which roughly means:

[du’ + Wgea(Ru']o, [Ru'],
(=478 fio1c0 + 2R ]2 [AM; +[Wor Rz, IRl
skp 121 = {[AMy + Wo, Rl2}g 40
{l-d+z,_Rl2, [dM, +wWg,1_-Rl2, [R]2}
[af - d + WengRlz, [Rl2

og€eX

[du’ + W (Ru']z, [Ru'],
[~d+ZeR]z, [dM,: + 857 A-fj s My + Wy R 2, [R]2

= {[ M +Wo, Rlo}g syt =skp[2]
{(-d+2z1_;Rlz, [dM; + W, 1_Rl2, [Rl2}, .5
[af—d+WengRl2, [R]2
in the presence of
[SoWstart]1, [Sol1, [S0Z1 + $1Wyr 111, [S1]1, [$1Z0]1 ifi=1
ctiil‘i[Z] =9 [sicaWer 1-7]1 [Sicaln [Sic1Z0 + $iWoe 711, i1, [siZ1-c )y ifie[2,0-1]

[Se-1Wye 1-g11 [Se-1]1, [S0-127 + SeW s 11, [Sel, [SeWenalt, [Seal T - mp ifi=¢

i-1,i
x*
Furthermore, we prove this using (z;, wy+ ;)-transition lemma. On input

L

One can sample basis A, ag,Ag,A"l, a”z,A”3 and trivially simulate mpk, ct and secret key using terms given out above.

A T A T T
aux, [Ag +Z; ]2, [A1 + Wy 7T o, [1 ]2

where (3, 41) € {5, 3,0)}[0,57"8) } and

aux = (A, $i-1, i) Si-1Z7 + SiWx? 1, [2:B, Wy+ B, Bl2)

with z;, Wy — Z},Xk, B— Z,’gxk, r— Z}?Xk and A — Z,,, we sample @ — Z ), Wstart, Z1—1, Wo, 17, Wend — Z;,Xk foralloeX
and wy ; — Z;,Xk for all o # x;.* and proceed as follows:

i-1,i

(Simulating challenge ciphertext) On input (g, m;), we trivially simulate ct

[2] using s;_1, Si, Si—1Z; + SiWy* ; In
13
aux and @, Wsart, Wg,1-7, Z1—7, Wend as well.

(Simulating secret key) On inputI', we want to return a secret key for I' in the form:

[du’ + warRu' ]2, [Ru' ],

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
Iy

([=d+Ag-fi-1,x +2:Rla, [AM+ + A1 -£i1, 1+ + Wy Rl ), (Rl

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .l
{[dMy +Wo Rl where (A, A1) € {[(s7,4,0)} ©,57') }.

{[-d+2z1_;Rl2, [dM; + W1 Rl2, [R]2}
[af—d+wengRl2, [R]2

ogeX

Observe that

— when (Ag, A7) = (sl.__llA,O) , the distribution is identical to sk;_l”'[Z] ;

— when (Ag, A7) = (0, sl.'lA) , the distribution is identical to skf- [2] sincef;_) x = f,-,x*Mx? mod p (see Lemma 5).
W 1xQ = kxQ . ..
esampled — Z,, ~ and R— Z,,  and implicitly set
A=A, (Ag,A)=(Ag,Ay) and R=r'-fi_j,«+B-R.

We then generate the key for I' as follows:
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- We simulate [R] from [r"],, [B]; and f;_ »+,R.
— We rewrite the terms in the dashed box as follows:

[~d+ (B0 +21") fim1,x+ +2:B-Rlz, [dMyr + (A +Wye o17) - fim1 oo +Wye ;B-R]

and simulate them using [Ag +z;1" 2, [A] + W+ T2, [z, Bl, [Wy+ ;B2 and d, f;_1 ¢+, R.
- We simulate all remaining terms using [R]» and &, d, Wstart, Z1—7, (Wo r}o2x*» (Wo,1-7} ez, Wend.
1

Observe that, when (Ag, A1) = (s;_IIA,O) , we have (Ag, A1) = (si__llA,O) , then the secret key is sk?l'i [2]|and the sim-

ulation is identical to Gz, 2; when (Ag, A1) = (0,57 'A) , we have (Ag, A1) = (0,57 'A), then the secret key is ski[2] and
the simulation is identical to G, ; 3. This completes the proof. O

4.8 Finalize
We finally prove that the adversary wins Gz with probability 1/2.
Lemma 18. Pr[{A,G3)=1]~1/2.

Proof. First, we argue that the secret key skl{'* in this game perfectly hides the a-component of k', i.e., a = ayk". Recall
the ay-components of the secret key:

[du’ +wsarRu' 2, [Ru']»
skp* (2] = | {I-d +2z,Rla, [AMy + W, pR12, Rz} 55 peon |-

(@[50 Ty + WenaRl, IR,

By the property f, .+ = f (see Lemma 5), we can see that skﬁ'* [2] can be simulated using a + SZIA, which means the
secret key perfectly hides a = a;k". Therefore, the unique term involving k in cti*, i.e., [sgA K" + spa k"] 7, is indepen-
dently and uniformly distributed and thus statistically hides message mg. O

5 Adaptively Secure ABE for £ o-restricted NFA®» and DFA

In this section, we present our adaptively secure ABE for €-restricted NFA®». By our transformation from DFA to
&g-restricted NFA®» (cf. Lemma 1), this readily gives us an adaptively secure ABE for DFA. We defer the concrete
construction to Appendix F.

Overview. Our starting point is the selectively secure ABE scheme in Section 4. To achieve adaptive security, we handle
key queries one by one following standard dual system method [20]; for each key, we carry out the one-key selective
proof in Section 4 with piecewise guessing framework [15].'° However this does not work immediately, we will make
some changes to the scheme and proof in Section 4.

Recall that, in the one-key setting, the (selective) proof in Section 4 roughly tells us

). (25)

(mpk, skr, cty) =¢ (mpk, skl{'* ,‘cti*

The two-key setting, for example, is expected to be handled by hybrid arguments:

(mpk,skr,,skr,, Cty) =¢ (mpk, skl{‘l* ,skr,, cti* ) =, (mpk,skfﬁ’l*, skfi‘z* ,cti*)

10 Handling all key queries simultaneously as in the selective model will cause a security loss exponential in the number of queries.
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The first step seems to be feasible with some natural extension but the second one is problematic. Since we can not
switch the challenge ciphertext back to ct,+ due to the presence of Ské* , the argument (25) can not be applied to the
second key skr, literally. In more detail, recall that

ety (2] = (IseW,e 711, [e]1, [5¢Wenal1) (26)

leaks information of W g and weq while we need them to be hidden in some steps of the one-key proof; for example,
Lemma 4.7 for Gy ;2 = Gy.;.3. We quickly argue that the natural solution of adding an extra subspace for fresh copies
of W g and wepq blows up the ciphertext and key sizes (see Section 1.1 for discussion).

Our approach reuses the existing a;-components as in [8]. Recall that, our one-key proof (25) uses a series of
hybrids with random coins sy, s1,... and finally stops at a hybrid with s, (cf. (25) and (26)). Roughly, we change the
scheme by adding an extra random coin s into the ciphertext and move one more step in the proof so that we finally
stop at a new hybrid with the new s only. This allows us to release s, and reuse Wy 5 Wend for the next key. More

Qk+1)xk
1

concretely, starting with the scheme in Section 4.2, we introduce a new component [W]; € G into mpk:

— during encryption, we pick one more random coin s — Z;,Xk and replace the last three components in ct, with
[sA1]1, [8¢A1Wend +sA1 W]y, [sA1K |7 m;

this connects the last random coin s, with the newly introduced s; and s corresponds to s in the proof;
- during key generation, we replace the last two components in skr with

[~D +WengRI2, [k'f+WRIy, [Rl2;

the decryption will recover [sA; k' f—s,A; D] instead of [s;A k' f—syA; D] r;
- during the proof, we extend the proof in Section 4.3 by one more step (see the dashed box):

so that ct;* [2] is in the following form:
cty. [2] = ([swly, [s]1, [saly - mg)

which leaks w = a, W instead of w . 7, Weng; by this, we can carry out the one-key proof (25) for the next key (with
!
some natural extensions).

Conceptually, we can interpret this as letting the NFA move to a specific dummy state whenever it accepts the input.
Such a modification has been mentioned in [4] for simplifying the description rather than improving security and
efficiency. In our formal description below, we will rename Wepq, W, 8, s as Zend, Wend, Send Send» Tespectively.

5.1 Scheme

Our adaptively secure ABE for €-restricted NFA®» in prime-order groups use the same basis as described in Sec-
tion 4.1 and is described as follows:

- Setup(l’l,Z) :Run G = (p,Gy,Go,Gr,e) — gah). Sample
Ay —Z5CED k- 2D and Wigart, Z0,Z1, Wo,0, Wo 1, Zend, Wend — Z3F 0%, Vo e 5.

Output
mpk = ([A1, A1 Wstart, A1Zo, A1Z1, {A1 W40, A1We, 1 }gex, A1Zend, A1Wend 1, [A1K'] 1)
msk = (kv Witart, Zo, Z3, {Wa,Oy Wa,l toess Zends wend)-

26



- Enc(mpk, x, m) : Let x = (x1,...,X¢) € sland me Gr. Pick sg,s1,...,8/,8end — Z}?Xk and output

[SoA1]1, [S0A1 Wstart]1
Cty = {[SjAl]l, [8j-1A1Z; mod 2 +sjAlwxj,j mod 2]1}je[l]
[SendA1l1, [$¢A1Zend + SendA1Wendl 1, [SendA1K 17+ m

~ KeyGen(mpk,msk,I: Let I = (Q, %, Mgloex, u, ). Pick D — 251 R 759 and output

[Du’ + WgarRu'l2, [Ru']»
skr = [ {[-D+ZRlz, DMy + Wy, 1R1z, [R12}c5 peio |-
[-D+ZenaRlo, [ka"‘ WendRl2, [R]2

— Dec(mpk,skr, cty) : Parse ciphertext for x = (x1,...,x/) and key for I' = (Q, %, Mgylges, u, f) as

[co1]1, [€o2]1 (kplz, [rpl2
cte=| {lejalulcjeli}; | and skr=[{[Kplz, Ky pl2, Rz}, ,
[Cend,l] 1» [Cend,z] 1,C [Kend,l]z; [Kend,Z]ZJ [R]>

We define u;.'x forall j € 10,#] as (11) in Section 4.2 and proceed as follows:
1. Compute
By = e([co,111, [kyl2) - e(lco 2], [rpl2) 5

2. Forall j € [¢], compute
(bjlr = e(lcj-1,111, [Kj mod 2]2) - (€111, Ky, j mod 212) - e([—€j2]1, [Rl2) and  Bj=[bju;_, Ir;

3. Compute

[bengl T = e(lce1]1, [Kend,112) - e([€Cend,1]1, [Kend,212) - €([—Cend,2]1, [R]2) and Bepg = [bendu;,x] T

4. Compute
¢ (fuj 7!
Bai=Bo-Ilj_, Bj-Bena and B=B,;"

and output the message m’' — C-B~ L.

It is direct to verify the correctness as in Section 4.2. See Appendix E.1 for more details.

Security. We prove the following theorem stating the adaptive security of the above ABE for € ;-restricted NFA®». This
readily implies our adaptively secure ABE for DFA thanks to Lemma 1.

Theorem 2 (Adaptively seucre ABE for € -restricted NFA®?). The ABE scheme for € o -restricted NFA®? in prime-order
bilinear groups described above is adaptively secure (cf. Section 2.1) under the k-Lin assumption with security loss O(q -
01213 Q?). Here ¢ is the length of the challenge input x* and q is the number of key queries.

5.2 Proof of Main Theorem

From a high level, we employ the standard dual system proof switching the challenge ciphertext and keys into semi-
functional forms in a one-by-one manner. To switch a secret key, we employ the proof technique for one-key selective
setting in Section 4 in the piecewise guessing framework [15,14]. We will capture this by a core lemma. Let x* € ¢
denote the adaptive challenge. We begin with auxiliary distributions and use the notation for a,-components in Sec-
tion 4.3.
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Auxiliary distributions. We sample Senq < Z)p, A — Z,, and define semi-functional ciphertext and key:

- ct}. is the same as cty~ except we replace sengA; with sengAy + Sendaz;

— skj. is the same as skp except we replace k" with k' +a, - sgnl 4A in the term [K"f+WengR]».

That is, we have:
Ct;* [2] = ( [Sendwend]ly [Send]I; [senda] T* mﬁ)

[du” + WsarRu']2, [Ru']»
ski[2] = | {[=d+2Rl2, [dMg + W, pR12, [Rl2} g5 pejo 1y

[~d-+ ZenaRlz, [af + | gy £] + WenaRl, [R]2

Game sequence and core lemma. We prove Theorem 2 via a series of games following standard dual system method [20]:

Go: Identical to the real game.

G;: Identical to Gy except that the challenge ciphertext is semi-functional, i.e., ct;* .

Gy« for x € [0, g]: Identical to G; except that the first x secret keys are semi-functional, i.e., sk?.

G3: Identical to G2 4 except that the challenge ciphertext is an encryption of a random message.

Here we have Gy = G;. It is standard to prove Gg =, G1, G 4 =5 G3 and show that adversary in Gz has no advantage.
We sketch the proofs in Appendix E.2. To prove Gy x_1 =, G2 for all x € [g], we use core lemma:

Lemma 19 (Corelemma). For all A, there exists B with Time(B) = Time(A) and
AdvP™ (1) = Pri(A, Ho) = 1] - Pri¢A, Hy) = 11 < O(¢ - [P - Q%) - Advi; "™ (1)
where, for all b € {0, 1}, we define:
(A, Hpy:={b <—AOE”C(')‘OKey(')(mpk,auxl,auxz)}
where

mpk = ([A1, A1Wzar, A1Zo, A1Zy, {A1 W40, A1Wg 1 }oes, A1Zena, A1Wenal1, [A1K ] 7)
auxy = ( [ky B! WsmrtBy ZOB, ZIB) {WU,OBIWU,IB}UEZY ZendBy wendB]Z)

_ T T T T T T T 4l 1 T
auxy = ([r", Wegarr', Zor", Zix", {Wq or ", Wy 11" boes, Zenar |, @) - S, A+ Wepar'12)

with Wart, Zo,Z1, W40, Wo 1, Zend, Weng — Z;,Zk“)xk, B — Z’;Xk, r— Z;,Xk, Sends A — Z, and the two oracles work as
follows:

- OEnc(x*, m): output ct}. using Senq inauxy;
- OKey(I): output ifb =0; output ski using A and seq inauxy ifb=1;

with the restrictions that (1) A makes only one query to each oracle; (2) queriesT and x* satisfy T(x*) = 0.
It is direct to see that the core lemma implies G, x—1 =, Ga.x; here aux; and aux; are sufficient to simulate other g — 1

keys which are either skr or sky, see Appendix E.2 for more details. The remaining of this section will be devoted to the
proof of the core lemma, which completes the proof of Theorem 2.
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5.3 Piecewise guessing framework

We briefly review the piecewise guessing framework [15] we will use in the proof of core lemma. Suppose we have
two adaptive games Hy and H; which we would like to show to be indistinguishable. In both games, an adversary A
makes some adaptive choice z* € {0, 1}%. Informally, the piecewise guessing framework tells us that if we can show
that Hy, H; are e-indistinguishable in the selective setting where (1) all choices z* are committed to in advance via a
series of L+ 1 hybrids and (2) each hybrid depends only on at most R’ <« R bits of information about z*, then Hg, H;
are 228 . L. e-indistinguishable in the adaptive setting. More formally, we define

- afamily of games {H"} 10,y Where the messages sent to the adversary depend on u;

— afamily of h-functions hy,..., hy : {0,1}% — {0,1}% which describes the hybrids;
the piecewise guessing framework ensures that Ho = Hy if {H"}, or and ho,..., hy satisfy
- end-point equivalence, which means:
Ho = H™E) Hy = HIE) vz* e 0,115,
— neighbor indistinguishability, which means:
Hio (o, un) ~c Fi 1 (uo, 1) Vi€ (L, g, un € 0,117
where Ifl,;b(uo, uy) is the same as H"» except we output 0 whenever (h;_1(z*), h;(z*)) # (uo, U1).

This is captured by the adaptive security lemmain [15]:

Lemma 20 (adaptive security lemma [15]). Fix Ho, H along with ho, hy, ..., hy : {0,138 — {0, 1% and {H*}
that

uefo, R Such

V2" e {0, 3 HED =y, Wi = 1,
Suppose there exists an adversary A such that
Pr(A,Hp) =11 -Pr[¢A,H;) =1] =€
then there exists i € [L] and ugy, u; € {0, I}R' such that

Pri(A, Hio(uo, 1)) = 11 = Pri¢A, Hiy (uo, 1)) = 1 2 ZfTL

5.4 Proof of Core Lemma

Observe that the core lemma roughly captures the one-key adaptive setting with mpk, key and ciphertext similar to
our selectively secure ABE in 4.2. We prove the core lemma, Lemma 19, by combining the proof for one-key selective
security in Section 4.3 with the piecewise guessing framework reviewed above. In particular, we will use a family of

hybrids, defined by H* and h-functions, analogous to those in Section 4.3. Let 7 = ¢ mod 2 and assume ¢ > 1, we
begin with more auxiliary distributions.

More auxiliary distributions. The auxiliary distributions we use here are motivated by those in Section 4.3.
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Ciphertext distributions. We sample sy, §1,...,S¢ < Zp and define:

- foriel0,/]: cti* is the same as wrcitiﬂ except we replace s;A; with s;A; + s;ay;
L "2 4

. i—1,i r o7 .
- forie[/]: ct;*l" is the same as. ct;* rexcept we replace s;_1A1,s;A; with s;_1A; + s;_1a2,8;A1 + S;ap.
L -4

That is, we have: writing 7 = i mod 2,

cthe [2] = § [siWe o1, [sil1, [siza- ! [sendwendh,[sendh,[sendaJT mj ifiel-1]

[SoWstart]1, [Sol1, [S0Z1 + S1Wyr 111, [s1]1, [$120]1, [sendwend]l; [Sendl1, [Sena@]T - mw ifi=1

Jhi) =4 [si-1Wyr 171 [Si-1]1, [Si-120 + 8iWyr o]0, [Sil1, [SiZz1—7]1, ! [SendWend]l, [Sendl1) [Send@] T - m‘ ifie2,¢-1]

[Se-1wx;71,1_,zh,[Se-lh,[Se_1Z,z+Sz « 711, [Se11, [S¢Zend + SendWend 11, [sendh,[senda]T mw ifi=2¢

The auxiliary ciphertext distributions here are analogous to those in Section 4.3 except that they have extra terms
[SendWendl 1, [Sendl1, [Send@] 7 - m inherited from ct}... We highlighted the differences by dashed boxes.

Secret key distributions. Recall that a query to OKey is € -restricted NFA®». For all i € [¢], y € £ and p € €, we define:

sk0 is the same as skr except we replace D with D + a2 s0 IA-pin the term [Du’ + Wy, Ru']5;

i
serp

k’ L7 is the same as skr except we replace —D with D + a2 s;- A -pinthe term [-D +Z; 04 2R12;

is the same as skr except we replace D with D + a ‘IA . p in the term [DMy + Wy, ; mod 2Rl2;

kfﬁ . is the same as skr except we replace —D with -D +a, - s, 1A fin the term [-D + Z¢qRl>.

That is, we have: writing 7 = i mod 2,

[(@d+] 55" A-p)u’ +WearRu'l, [Ru']

Sk%l’ [2] = {[_d +sz]2’ [dMU +w0',bR]2; [R]Z}JGZ,bE{O,l}
[=d +ZengRl2, [af + WengRl2, [R]2

[du’ + Wy (Ru']o, [Ru'],
{I-d+2Rl, [(d+]s57'Ap )M, +w, ,Rla, [Rl,}
[2] = {ldMy +wo rRl2}

{[—d +21-7Rl2, [dMg +Wg1-7R]2, [R]Z}
[—d + ZengRl2, [af + WepgRl2, [R2

Fxp

[

[du” + wsgarRu']2, [Ru']»

-ty = | {14 #[5i 8P|+ 2eRlz, (M + o, Rl [Rlz}y s
T,p -

{[-d+2z1-;Rlz, [dM; + Wg,1-rRl2, [R]2}
[—d + ZengRlo2, [af + WengRI2, [R]2

geX

[du’ + wiariRu' ]2, [Ru'],
sk (2] = | {[~d+zpRlz, [AM, + W 5 R, [Rl2} 55 peo.r)

[~d+|57' A £+ ZenaRlz, [af + WenaRlz, [Rl

The auxiliary secret key distributions here are analogous to those in Section 4.3 except that we use general y and p in

the place of x} and f; »+. Note that these correspond to the piecewise information we need to guess in the proof.

Hybrids {H"},, and h-functions. We are ready to define {H“},, and h-functions in the adaptive security lemma (Lemma 20).
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Defining u and H*. For our setting, we require u to determine the forms of ciphertext (output by OEnc) and key
(output by OKey) in a hybrid, this includes the superscripts of key and ciphertext and piecewise information y and p.
For this purpose, we define

uelxIxZx&q

where
I= {0)1)---)£y*}U{(O,l)y(]-)z)---,(é_1r€)y(£r*)}

is the set of superscripts of auxiliary keys and ciphertexts, X and € includes all possibilities of y and p, respectively.
We allow a special symbol “L” at any positions indicating an empty output. Then, forall u = (c,s, y,p) e Ix Ix Zx €,
we define hybrid H®S*P to be identical to Hy (or H;) except that

— oracle OEnc(x*, m) returns ctfc*;
S

- oracle OKey(I) returns sky. .

with yyy depending on S or skr when s = L.

Here we always assume that € and s indicate well-defined auxiliary ciphertext and key distributions and yyy is always
provided in u (i.e., not “L”).

Defining h-functions. In both Hy and Hj, the adversary A adaptively chooses I' and x*, therefore we employ a family
of functions
hyxx : NFA®? x % - I x IxZx &g

with the first input being € p-restricted. Recall that, for an input x* of length ¢ and a €-restricted NFA®r T, we can
define fo y+,...,f7 x+ € Eg as (22) in Section 4.3. We define h-functions as below which describes a series of hybrids
analogous to those for selective security in Section 4.3. We show the corresponding selective game for each function

as a remark.
ho :(@,x%) — ({*}, 4, 4, 1L ); 11 Gg
h o (T,x%)— ({0}, 1, 1, 1 ); 11 Gy
hoio: (T, x*) — ({0}, {0}, L, fox ) 11 Ga1.0

hojo: (Cx")— ({i-1}, {i—-1}, x; ficix sVi€l2,0l; /1Gaio
hojp:@x")— ({i-1}, {i—-1,i}, L, fio1x ) Vield]; 11 Goia
h2.i.2 . (F)x*) —_ ({l_ ]-)i}) {l_ ]-)i}) J—) fi—l,x* ), VlE [[]) // G2.i.2

hais: (T,x*)— ({i—1,1}, {i}, xi, R N ViE[]; 111Gy
hoja: (T,x™) — ({7}, {i}, xi, L ) ViE[L]; 11 Gp.ia
hs (T, x*) — ({¢}, {0, *}, 1, 1 ); /1 Gs
hy (T,x")— ({6}, {*}, 4, 1 )

hs (T, x%) — ({*}, {*}, 4, 1 )

Note that we have hy ;o= hy.j_14 forall i € [2,¢] and ct;* ,skfi are shown in Section 5.2. Fix I" and x*, we summarize all
h-functions by showing hybrids H"T'*") in Fig 8 (which is analogous to Fig 6 in Section 4.3).

Outline of the proof. Roughly, the adaptive security lemma [15] (see Lemma 20) says that we only need to check (1)
end-point equivalence and (2) neighbor indistinguishability.

End-point equivalence. 1t is clear that our hybrids {H%},, and h-functions satisfy the end-point equivalence. This fol-
lows from the fact that /g and hs are constant functions which indicate the same types of ciphertext and key as in Hg
and H,, respectively. Formally, we give the following lemma.

Lemma 21 (End-point equivalence). For all (T, x*) € {0, 1}%, we have

HRT) = Hy  and HBSTE) = H;.
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[AS

P ct)cc* sk; p 2] Remark
2.u” +wsarcRu" TMyr +wer g R 2+zR T My +wyr (R 24 ZengR 2-f+wepgR
0 ctl. skr d d -d d -d a real game
1 skr d d -d d -d a switching lemma
Squ‘f(),x* d+ salAAfO’x* d —-d d —-d a fo,x+u’ =0 mod p (Lemma 5)
skiL, - d+ 57 Af - —d d -d a ie2,0
N
sk;_fl’i d d —-d+ m d —-d a change of variables, DDH
Ai-1,x* )
skimbi d d switching lemma
Iﬂ’fi—l,x*
ski; * d d transition lemma, f;_; ,+ =M+ f; ,x mod p (Lemma 5)
X 'fi,x* ’ b
: i i o3
2.4 |cti. Skl"yx;k'fi,x* d d switching lemma
3 ct)l; " skfﬁ’* d d change of variables, DDH, f(, »+ =f(Lemma5)
4 ct)l; " d d —-d d -d a+ transition lemma
-1 . .
5 sk{. d d -d d -d a+ s_4A  switching lemma

Fig. 8. Definition of h-functions with i € [¢]. In the table, we show both ciphertext and key in HPboo 02 g5 in Fig 6, we only describe the ap-components of the key. In the Remark

column, “DDH” indicates DDH

G
L,Q

assumption.



Neighbor indistinguishability. We first define several pairs of hybrids with b € {0, 1}:

- ﬁg (ug, up) is the same as H*> except that we output 0 whenever
(ho(T,x™), hy (T, x™)) # (ug, u1).
- Iflf (ug, up) is the same as H*> except that we output 0 whenever
(h1 (T, x"), h210(T, x%)) # (g, uy).
- Hé’.i_i,(uo, up), for i € [¢] and i’ € [4], is the same as H¥» except that we output 0 whenever
(hg.ii—1 (T, x%), ho i i (T, X)) # (g, uy).
- H g (ug, up) is the same as H*? except that we output 0 whenever
(ho.0.4(T,x7), h3(T,x™)) # (g, uy).
- H ff (ug, up) is the same as H*> except that we output 0 whenever
(h3(T,x"), ha(T, x™)) # (g, u1).
- Hé’(uo, uy) is the same as H"? except that we output 0 whenever
(ha(T,x*), hs(T, x™)) # (uo, u1).

We will prove that each pair of hybrids are indistinguishable for all 1, u; € I x I x X x €. Straightforward extensions of
the proofs in Section 4 are sufficient for the proof, we formally describe the lemma and defer all details to Appendix E.3.

Lemma 22 (Neighbor indistinguishability). For allxxx € {0,1,3,4,5}U{2.i.i" : i € [€],i' € [4]}, up, u1 € Ix I xZx Eq and
all A, there exists B with Time(B) = Time(A) such that

Pr((A, HY (g, u1)) = 1] — Pri(A, Hiy (ug, u1)) = 1] < O(Z]) - Advi; "™ (A).

Summary. By the adaptive security lemma (Lemma 20), Lemma 21 and Lemma 22 imply the core lemma, Lemma 19,
with the following two facts:

- all our h-functions have range of size at most O(|Z|Q) since the first two outputs are constant and |€q| = Q; that
is, we have R’ = O(log|Z|) + O(log Q);
— our proof employs O(¢) h-functions; that is we have L = O(¢).

6 Compact Adaptively Secure ABE for Branching Programs

In this section, we present our compact adaptively secure ABE for branching programs. We follow the same technical
line as that for our adaptively secure ABE for DFA from Section 3 to Section 5. In particular, we construct a semi-
adaptively secure ABE for NBP®», which is an analogue of NFA®»; then prove that the same scheme is adaptively secure
for a subclass of NBP®» in the piecewise guessing framework. This is sufficient to derive our scheme for branching
program. Before that, we begin with various notions of branching programs and their relationship.

6.1 (Layered) Branching Programs: Notions and Relationship

Recall that p is a global parameter and £ = {ey,...,eq} is the set of all elementary row vectors of dimension Q. In this
section, we focus on layered branching programs.
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Branching Programs. As in Section 3, we use vector-matrix notation I' = (Q, #gp, ¢, %, M 5} jeleppl,oez, O W, f) to de-
scribe branching program (BP for short), nondeterministic branching program (NBP for short), p-bounded NBP (NBP<”
for short) and mod-p NBP (NBP®» for short) where width Q € N corresponds to the number states in NFA, #gp, £ € N
describe program and input length, X is the alphabet, u,f € {0,1} correspond to the start and accept states in NFA;
M; ;€ {0, 1}9%Q and o : [£Bp] — [¢] describe the transition function and index-to-input map. Let x = (x3, ..., X7) denote
an input, then,

- for BPT, we have u € £, each column in every matrix M ; is an elementary column vector (i.e., contains exactly
onel)andI'(x) =1 <= My, ) My, U =1

for NBPT,wehave'(x) =1 < fM[BP,xprp) ~-M1,xpmuT >1;

for NBP<? T, we have M50 Mg, <pandT(x) =1 < My,
for NBP®» T, we have I'(x) =1 < fMy,,,,

.
e > 1
Mg 21

--Ml,xpmuT # 0 mod p.

Xo(epp)

As various notions of DFA and NFA, we have: BP € NBP<Pc NBP n NBP®».

E-restricted NBP®». We introduce the notion of €-restricted NBP®» which is analogous to that of €¢-restricted
NFA®? in Section 3. An NBP®» I = (Q, /gp, £, Z, {M 5} je(¢gp), 05, 0,0, f) is € g-restricted if for all x € >¢ it holds that

fl"xlz fM[BP' )"'Mi+1vxp(i+1) €(€Q,Vi€ [0, 4].

Xp(¢gp

Here My, "Mi+1,xp(i+1) for i = ¢gp refers to I of size Q x Q.

Xp(tgp) )

Transforming BP to € ¢-restricted NBP®». In general, a BP is not necessarily a € -restricted NBP®7. The next lemma
says that we can nonetheless transform any BP into a € -restricted NBP®»:

Lemma 23 (BP to & -restricted NBP®?). For each branching program T’ = (Q,pp, €,Z,{M; o} je(¢pp),0cz, P W, ), we

have NBP®» T" = (Q, (p, ¢, %, {M"

T(j)'g}je[éBP],GEer or,f,uw) witht(j) = €pp+1—j forall j € [¢pp] such that

1. T7 is Eg-restricted;
2. forall x € ¢, it holds that
I'(x)=T"(x). 27

Proof. Recall that the definition of BP implies two properties:

fe {0,139 (28)
and (M, My, u) €Eq, Vi€l0,lppl. (29)

Property (29) comes from the facts that u € € and each column in every matrix M, is an elementary column vector.
We prove the two parts of the lemma as below.

- T is Eq-restricted since we have

T T

= s e T :
“Mrpr),xm,wBP) Mz 1) xporiany = Meep—ixp0gp- " Mx, ) € €q, Viel0,¢pp]

where the equality is implied by the structure of I'" and we use property (29).
- To prove (27), we rely on the fact

I['(x)=1 < My, My, 0 =1

Xp(egp)
.
= fMIBp,xprp) -My,x,u #0mod p
T T T
UMT([BP)rxpoT([BP) MT(I)vxpo‘[(l)f #0mod p

=TI"x)=1.

The second <= follows from the fact that foBP,xprp) ---MlyxpmuT € {0,1} which is implied by property (28)
and (29) while the third < is implied by the structure of T". ]
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6.2 Our ABE scheme for NBP®»

In this section, we describe our ABE scheme for NBP®» in the prime-order group which is motivated by our ABE
scheme for NFA®» in Section 4. We will prove that this scheme is semi-adaptively secure under k-Lin assumption
(see Section 6.3) and adaptively secure if the policy is € -restricted under the same assumption (see Section 6.4). We
remark that our scheme and proofs work for a more general form of NBP®» where u, f, M j,o are over Z,, instead of {0, 1}.

Overview. Thanks to the similarity between NFA®r and NBP®» (cf. Section 3 and Section 6.1), we build our ABE for
NBP®» following the same paradigm as the ABE for NFA®” in Section 4. In particular, we pick Wy, for each ) € £ and
o € Z and pick D; for each j € [0, £p].

- During the key generation, we encode each M, as follows, which follows the spirit of our ABE for NFA®»:
(DjMj s —Dj_1 +Wp(j),oRjl2, [Rjl2;
- During the encryption of x = (xy,..., x,) € Z¢, we have the following terms in the ciphertext as common ABESs:
[sA1l1, {[SAlwn,xn]l}ne[[]y [sA1 k'] - m.
In contrast to ABE for NFA®», we use fresh random coin R; for each j in secret keys. This is crucial to handle non-
injective p, see Appendix G.1 for an attack in the case of sharing random coins.
Basis. We will use the following basis used in [7,15] (which is distinct from that in Section 4 and 5):

A — Zl;lx(k+1), ap — Z;}x(k+l)

Gy

A A; g, and DDH®  can be defined as in Section 4.1.
1—A1,a2 d

and use (A | a,)" to denote its dual basis. The assumption SD o

Scheme. Our ABE for NBP®» in prime-order groups is described as follows:
- Setup(1*,4,%) : Run G = (p, G1, G, G, e) — G(11). Sample
A — Z”;X(k“), K — z}j‘k“) and  Wigar,, Wy o, Wend — Z;"H)Xk forallne [¢],0 € X.

Output
mpk = ( [A1, AiWotart, {AIWT],LT }ne[Z],aez’ Alwendh, [AlkT] T)
msk = (k; Witart, {Wn,o }nee),0ex) Wend )

- Enc(mpk, x,m): Let x = (x1,...,x7) € = and m € Gr. Pick s — Z}JX’C and output
cte = (1A, (581 Wegard1, {I5A1Wy, 5, 11} ), 1881 Wengl1, [8A1 KTl ).
- KeyGen(mpk, msk,I') : Let I' = (Q, £gp, ¢, 2, IM 5} je[¢gp),0ex, 0, W, B). Pick
Do,D1,....Dpy, — Z5 Ry, Ry Rena — 20, 1 = 2K

and output
[Dou’ + Witarer' ]2, [17]2
skr = | {[D;M;o = Dj-1+Wp(joR)l2, [R)]2 }je[éBp],aez :
[K"'f—Dyy, + WengRendl2, [Rendl2
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— Dec(mpk,skr, cty) : Parse ciphertext for x = (x1,...,x,) and key for I = (Q, #pp, ¥, Z, {Mj,g}je[eBP],oez,p,u,f) as:

[kltart]z’ [rT]Z
cty = ([el, [estarcl1, {[epl1 }p [Cenal1, €)  and  skr = [ {[K; o2, [Rjl2};
[Kend]Z, [Rend]Z

We define
u;  =Mjy,; My, u mod p, ¥j €0, lpp] (30)

which are analogous to (11) for NFA®? in Section 4.2 and proceed as follows:
1. Compute

Bstart = e([cl1, [Klap)2) - €([Cstardl1, [F12) 7Y

2. Forall j=1,...,¢gp, compute
[bjlr = e(lcl, [Kjx,;]2) - e([=Cp(jp]1, [Rj]2) and Bj= [bju-]r'_l,x]T;

3. Compute
[bend] T= e([c] 1 [KendJZ) . e([_cend]b [Rend]Z) and Bend = [bendu;BP’x] T
4. Compute
Cp (f“;BP,X)_l
Bai = Bstart * Hj:1 Bj -Bend and B= Ball

and output the message m’ — C-B~1.

Correctness. For x = (x1,...,Xxy) and I = (Q, ¢gp, 4,2, M o} jeregpl,oes o,u,f) such that I'(x) = 1, we have:

Bstart = [sA;Dou’] 7 = [sA;Doug 17 (31)
bj = SAlDfijxp(j) —SAID]',1 (32)
Bj = [sAiDju; , —sA|D;_ju}_; IT (33)

bend = SAlka_SAlD[Bp (34)

Bend = [sA1K'fu, —sAiDyguy 17 (35)

B = [sAik'fuy 17 (36)
B = [sAik']y 37)

Here (35) is trivial; (33) and (37) follow from facts

u}x = Mj,xp(j)“;q,x mod p, Vje[fgp] and T(x)=1< fu;BP'x #0mod p (38)

by the definition in (30), the remaining equalities follow from:

(31) sA1Dou’ = sA; - (Dou' + Wgart") — A Wggare - 17
32) SAleMj,xp(j) - SA1D1;1 = SsA;- (Dijvxp(j) _Djfl +wp(j)vxp(j) Rj) - SAle(j),xp(j) -Rj
(34) sA1k'f—sA; DéBP = sA;-(kK'f- D[BP + WendRend) —SA1Wend - Rend
15
(36) sAik'fu) = sAiDouy  + 3% (SAID;u; —sADj_ju_, )+ (SAIK fuy  —sAIDegup ).

Correctness follows readily.
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6.3 Semi-adaptive Security Security

We have the following theorem stating that the scheme in Section 6.2 is selectively secure. We remark that the proof
described in this subsection can be naturally extended to prove semi-adaptive security.

Theorem 3 (Selectively secure ABE for NBP®?). The ABE scheme for NBP®r in prime-order bilinear groups described
above is selectively secure (cf. Section 2.1) under the k-Lin assumption with security loss O(q - ¢gp-|X|). Here ¢gp are
maximal length of all NBPs in adversary'’s key queries and q is the number of key queries.

We will give the proof in the one-key setting which is sufficient to motivate adaptive proof in Section 6.4 where we will
handle multiple key queries. Due to the similarity between NBP®» and NFA®», our proof technique for NBP®» in this
section is borrowed from that for NFA®» in Section 4. We begin with auxiliary distributions.

Auxiliary distributions. Let x* € £’ denote the selective challenge and assume £gp > 1. We describe the auxiliary
ciphertext and key distributions that we use in the proof of security. Throughout, the distributions are the same as the
original distributions except for the a,-components which are defined analogous to Section 4.3; we will use the same
notation for them.

Ciphertext distribution. We sample s — Z,, and define:
- ct;* is the same as ct,+ except we replace sA; with sA; + say.

That is, we have:
Ct;* 2] = ([5]1, [SWstart]1, {[Swn,xn]l}ne[g]r [$Wendl1, [salr- mﬁ)-
Secret key distributions. For anyI' = (Q, ¢pp,¢,Z, M o} jeregpl,oes) Pr 1, f), we define

fi xx =My, » "Mi+1,x;(i+1) mod p, Vi € [0, pp] (39)

X .
p(¢gp)

analogous to (22) for NFA®? in Section 4.3. For all i € [/gp], we sample A — Z p and define:

sk{ is the same as skr except we replace Do with Do +a), - A - f x+ in the term [Dou” + Wgart"]2;

skL. is the same as skr except we replace D; with D; +ay,-A-fj o in the term [D;M; o —Dj_1 + W) o Ri]z forallo € Z;
sk{__l” is the same as skr except we replace —D;_; with —-D;_; +ag ‘A-f;_1 x+ in the term [D;M; s —D;_1 +Wy(;) o R;]2

forallo € Z;

sk is the same as skr except we replace —Dy,, with —Dy,, +a, - A-fto the term [k'f— Dy, + WengRendl2.

That is, we have:

[(do +[A-four Pu” + Wsgaret 2, 1]
Skg (2] = {[dejﬂ —d;j_1 +Wy(j),oRjl2, [Rj]Z}je[éBp],aez
[af—dyp, + WendRendl2, [Rendl2
[dou” +Wigarct 12, [1']2
{ld; + )Mi,a —di—1 +Wy(i),oRil2, Ril2}, s
{1d;M; 0 —dj-1 +Wp(joRjl2, [Rjl2} 4 gex
laf—dgg, + WendRendl2, [Rendl2
[dou” +Wisgarct" 12, [1']2
sk?‘l'i 2] = {l[diM; o —d;_y + +Wy(i)oRil2, Ril2} s
{1d;M; o —dj-1+Wp(),0oR12, [R)]2 }j¢i,U€Z
[af—dgy, + WendRendl2, [Rend]2
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[dou” + Wsgarcr' 12, [17]2
Sk;: 2] = {[dej'o' - dj—l +Wy(j),oRjl2, [Rj]2 }jE[[Bp],Uei .
[af+_ dyyp + WendRendl2, [Rendl2

The definition for keys for NBP®» follows the spirit of those for NFA®» in Section 4.3.

Game sequence. We prove Theorem 3 via a series of games summarized in Fig 9:

Go: Identical to the real game.

Gi: Identical to Go except that the challenge ciphertext is ct}..

- Ga.i0, i € [¢ppl: In this game, the challenge ciphertext is ct;* and the secret key is sk%‘l.
- Gy.;1, i€ [¢ppl: Identical to G ; ¢ except that the secret key is sk?l‘i.

- Gy.i2, i € [¢pp]: Identical to G ; ; except that the secret key is sk%.

G3: Identical to G, ¢, » except that the secret key is sky..

Here we have G190 = G; and Gy ;o = G.j—1.2 for i € [2, /gp]. We note that the game sequence is quite similar to that in
Section 4.3: the games listed above roughly correspond to Gy, Gy, G2.;.0, G2.i.1, G2.;.3 and G3 there, respectively, and we
only change the ciphertext distribution once for all. Furthermore, we will borrow the proof technique from Section 4
to show the indistinguishability of each pair of adjacent games. The distinction is that we crucially use the property of
fo,x*, ..., fryp x+ defined in (39), which will be captured by the following lemma.

Useful Lemma. We describe the lemma which is analogous to Lemma 5.
Lemma 24 (Property of {f; ,+};c(0,¢5p1)- FOr anyl = (Q,¥pp, ¢, Z, M o} jereppl,oes o,uf) and x* € Z[, we have:

1. T(x*) =0 < fy,~u" =0 mod p;
2. fi_1 = f,-'x*Miyx;m mod p forallie [{pp];
3. fppp - =1

Proof. The lemma directly follows from the definitions of NBP®? in Section 6.1 and fo, -+, ..., frpp,x+ in (39). m]

Initializing & Finalizing. It is standard to prove that Gy =, G; and Pr[(A, G3) = 1] = 1/2. (See Appendix G.2 for details.)
We prove the following lemma stating that G; =, Gz 1.9, which is analogous to Lemma 6.

Lemma 25. For all A, we have
Pri¢A,G1) =11 =Pr[{A, Ga.1.0) = 1]

Proof. Roughly, we will prove that

(mpk,ct?.,[skr]) = (mpk,ct?., sk}
where we have
[ + Wetarc 12, [1T]2

skp(2] = [{[djM;o —dj_1 +Wp(j)oR;jl2, [Rj]2 }je[ng],UEz
[af —dgy, + WendRendl2, [Rendl2

[ (do +A-fp 5+ Ju' + W o, [17 ]2

0
skr(2] = | {[d;Mjo —dj1 +Wo(j),oR;l2, [Rjl2} jciop oes
[af- d[Bp +WendRendl2, [Rendl2

and

ctye (21 = ([sh, [sWstard]1, {[sWay,x, 11} p(g)) [SWend1, [s@lT - mgp).
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6€

Game ct« skrl2] Remark
2-u +Wstartt” 2-Mj_1 o+ ? +Wp(i1),0Ri_1 7 Mo+ 2+ Wy oR;  af+? + WepgRend
0 dy d;_;,-d;_» d;,—d;_; —dgg, Real game
do di_1,-d;— d;,—d;_; —dgg, SD
2.1.0 d;_q1,-d;_» d;,-d;_; -dg,, fo,xu" =0 mod p (Lemma 24)
2.i.0 do , -d;_,  d;,-d;_; ~dyy, i€[2,0pp]
2.i.1 dp d;_1,-d;_» di,‘ —dj_1+Afq | —dpy, change of variables
2.0.2 do d;_;,—-d;_, di+A-f; 0 | =dis1| —dgy, DDH, f;_ x+ = fj x*M; 5, mod p (Lemma 24)
3 ct}. El do d;_1,-d;_» d;,—-d;_; change of variables, fy,, .+ = f (Lemma 24)

Fig. 9. Game sequence for selectively secure ABE for NBP®» with i € [¢gp]. We focus on the a,-components of skr and all terms in the fifth and sixth columns are quantified over
o € 2. In the Remark column, “SD” and “DDH” indicate sDY! and DDH2 assumption, respectively.

Aj—Ap,az 1,Q



This follows from the statement:

sk (2] skp(2] ct*, 2]
A x*

—~N
T T T TT .
{"‘Wstartr T }:{ (do +A-fox)u" +Wsearer', ¥ } given  do, Wtart

which is implied by the fact T'(x*) = 0 < f ,u" =0 mod p, see Lemma 24. |

Key switching I. We will prove that Gy ; o =5 G2.;1 for all i € [¢gp] and Gy ¢, 2 =5 G3.The proofs of them are similar. We
begin with the following lemma stating that G, ; o =5 G2.1.1, which is analogous to Lemma 7, and sketch the proofs for
remaining statements.

Lemma 26. For all A, we have

Pr{(A,G2.1.0) = 11 = Prl[{A, G2.1.1) = 11.

Proof. Roughly, we will prove that
(mpk,ct;*,) ~s (mpk,ct?., sk )
By Lemma 4, this means that
[ (do+A-fox) U’ +Wetarer 12, ]2 [dou’ +Wsar" 12, [x7]2
skIQ[Z] _ {[d1M1,a+Wp(1J,aR1]2, [R1]2}g€z _ {[diM; 5 —do + A -, +wWp),0R1l2, [Rllz}gez _ sk(r)'l[z]

Rs
{1djM; o —dj1 +Wp(joRjl2, [Rjla} i pes {1d;Mj —dj 1 +Wp(j)oRjl2, Rjl2} 1) pes
[af- dfgp + WendRendl2, [Rendl2 [af—dg,, + WendRendl2, [Rendl2

given
ctye (2] = (11, [sWstartl1, {[sWn,x, 11},c 0 [SWenalt, [s@l7 - mp).

This immediately follows from change of variables dy — do — A - fo,x+. Here we use the fact that dy does not appear
elsewhere. |

Via the same proof idea, we can prove the following two lemmas stating that G, ; ¢ =, Go; 1 for all i € [2,¢pp] and
Go.¢pp2 =c G3, respectively. The first lemma relies on change of variable d;_; — d;_; — A -f;_; »»; while the second
lemma relies on change of variable dg,, — dg,, — A-fg,, ,+ and the fact that fy,, ,+ = f, see Lemma 24. We give the
lemmas and omit the proofs.

Lemma 27. Foralli€ [2,¢pp] and all A, we have
Pri{A, Gz.i0) =11 = Pri{A, G ;1) = 11.
Lemma 28. For all A, we have

Pr(A, Ga.rpp2) = 11 ® Pri{A, G3) = 1].

Key switching II. We prove the following lemma stating that G, ; ; =, Gy.;» for all i € [¢gp], which is analogous to
Lemma 17 and relies on the property of fo y, ..., £, v+, see Lemma 24,

Lemma 29. Foralli€ [¢gp] and all A, there exists B with Time(B) = Time(A) such that
DDH{%)
Pr[¢A, Ga.;1) =11 =Pr[{A, Goi2) =11 = O(|Z)) -Ade ().
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Overview. Roughly, we are proving

(mpk, ct;*,) ~¢ (mpk, ct?., skk)

More concretely, we want to prove the following statement over a,-components:

skimM 2] ski[2]

A

{[diMig —diy +A-[fioy 0 [+ WpiioRilz, Ril2} ey ~c {[diMy g —dimy +A- B0 Mg +Wo),0Rilo, [Ril2} ey

given wy;), . leaked by ct}. [2] and d;,d;-; appeared in other subkeys. Then,

using DDH assumption w.r.t. Wy(;) s; this relies on the fact that wy(;) , with

— we handle terms with o # x* 10

o)
o# x;m are not leaked;

— we handle the remaining term, i.e., one with o = x

.
03’

note that we cannot use DDH?ZQ assumption for this case since w(;),,» - is leaked via cti.[2].
’ pl

Proof. By Lemma 4, it suffices to prove the lemma over a,-components which roughly means:

by the fact that f;_; ,+ = fl-,x*M,',x;(A) mod p, see Lemma 24;

[dou” + Wegart 12, [1']2
oki-li[g] = {l[diM; o —d;_y + +Wp(i)oRil2, Ril2} ex
- =
{1d;Mj,s —dj1 +Wp()oR;l2, [Rjl2} 4 pex
laf—d gy, + WendRendl2, [Rendl2
[dou” + Wtaret 12, [1]2
{[diM; s —d;iy + A-f; Mo +Wp(i)oRil2, [Ril2 }
{1d;Mj,o —dj1 +Wp(joRjl2, [Rjl2} 4 pex
[af—dg,, + WendRendl2, [Rendl2

TEX | = skl 2]

in the presence of
Ct;* (2] = ([5]1; [$Wstart]1, {[Swn,xq]l}ne[[]’ [$Wendl1, [salT- mﬁ)-
One can sample basis Al,az,A”l,a”2 and trivially simulate mpk, ct}. and secret key using terms given out above. Fur-

G

thermore, we prove this using the following statement implied by DDH; 0

assumption: forall A € Z,,, we have

.oBl2, [Bla, [A-|fi_1 = |+ .oRil2, [R; . = .oBl2, [Bl2, [A- £ +M; o + n.oRil2, [R; X
{[Wp(z),a 12, [Bl2, [ Wo(i),oRil2, [ z]2}U¢pr_) c{[wp(z),a 12, Bl2, [ ix*Mi g +Wpi)oRilz2, [ l]2}0—¢xp(l_)

x x kx .
where wy () o — Z’lg kB Z,’; kand R; — z, ? on input { [wy(j),¢Bl2, [Blz, [ts]2, [Ril2 } where

TEX )
ty =A- +Wp(i),oR; or tg =A- £+ Mjs +Wp(i)oR;,
we sample a — Zp,wstart,wp(,-),x;m ,Wend — Z},Xk and wy ; — Z;,Xk for all n # p(i), 0 € X and proceed as follows:

(Simulating the ciphertext) On input (m, m;), we sample s — Z, and simulate ct;* [2] using the knowledge of
Wo,x% and {w;, x; In#pti)- Here we use the fact that the ciphertext does not involve {wy (i) o155 X

(Simulating the secret key) On inputI’, we want to simulate secret key for I' in the following form:

[dou” + Witar" 12, [1]2
{ [diMi,x;m —dj_ 1 +Af gy +Woii,xt R;l2, [Ril2}
{[diM; o —di—1 + ]2, Rila} gy
p(@)
{1d;Mj,o —dj1 +Wp(joRjl2, [Rl2} 4 ex
laf—dgg, + WendRendl2, [Rendl2

Observe that,
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- whent, =A- + W, (i),0R;, the distribution is identical to skf_l'i [2]}

- when t; = A- f; x*M; 5 + W) oR;, the distribution is identical to skf [2] since f;_1 x = f,-'x*Mi,x*(,) mod p, see
p(i
Lemma 24.

We sample d, ...,dg,, — Z;XQ and simulate the key as follows:

- We simulate the terms in the second row using [R;]> and w;), X
p(i
- We simulate the terms in the third row using [t;], and [R;]2;

- All remaining terms can be simulated using {Wy, 5}yp(i),0ex, { [Wp(i),0Bl2}gx X Wo(i), G Wgtart, Wend and [B]o.

Observe that, when t; = A- +wp(i),oR;, the secret key is ské_l'i[Z] and the simulation is identical to G, ; 1;

when t; = A- fj x*Mj s +Wp(i) oR;, the secret key is sk% [2] and the simulation is identical to G, ; 2. This completes the
proof. O

6.4 Adaptive Security for £ o-restricted NBP®»

In this subsection, we prove that the scheme in Section 6.2 is adaptively secure for € o-restricted NBP®». By Lemma 23,
this immediately gives us our compact adaptively secure ABE for branching program. We prove the following theorem
for €-restricted NBP®» and defer the resultant concrete construction of ABE for branching programs to Appendix H.

Theorem 4 (Adaptively secure ABE for -restricted NBP®?). The ABE scheme for £q-restricted NBP®r in prime-
order bilinear groups described in Section 6.2 is adaptively secure (cf. Section 2.1) under the k-Lin assumption with
security loss O(q - €gp-|Z|? - Q). Here ¢ gp are maximal length of all NBPs in adversary’s key queries and q is the number
of key queries.

We will prove the theorem using the proof technique for the one-key selective security in Section 6.3 and the piece-
wise guessing framework [15]. This is analogous to the proof in Section 5. Let x* € £/ denote the adaptive challenge.
Without loss of generality, we assume ¢gp > 1.

Game sequence. We prove Theorem 4 via a series of games following the standard dual system method [20]:

Go: Identical to the real game.

Gi: Identical to Go except that the challenge ciphertext is ct}..

G« for x € [0, g]: Identical to G; except that the first x secret keys are ski’i.

G3: Identical to Gy 4 except that the challenge ciphertext is an encryption of a random message.

Here we have Gy = G;. It is standard to prove Gg = Gy, Gz.4 =¢ G3 and show that adversary in G3 has no advantage.
To prove Gy x—1 = Go« for all x € [g], we use the following core lemma.

Lemma 30 (Corelemma). For all A, there exists B with Time(B) = Time(A) and
AdvEPRE(A) = Pr((A, Ho) = 1] = Prl(A, Hy) = 11 < O(¢ - [Z* - Q%) - AdvE; N (1)

where, for all b € {0, 1}, we define:
(A,Hp) := {b' — AOCENC0)OKey0) (3591

where

aux = ( (B, {Wj,aB}je[l],JGZ]Z» a, A,Wsmrtvwend)

With Wtart, Wend, Wj,o < Z}OX", B— Z’;Xk, A — Z,, and the two oracles work as follows:

— OEnc(x™): output{wnyx;,}ne[[];
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- OKey(I): output ifb=0; output ski[2] usingA inaux ifb=1;

with the restrictions that (1) A makes only one query to each oracle; (2) queriesT and x* satisfy T (x*) = 0.

It is direct to see that the core lemma implies Gz -1 = G2«; here aux are used to simulate other g — 1 keys. (See
Appendix G.3 for details.) In the remaining of this section, we will focus on proving the core lemma, which completes
the proof of Theorem 4. For this purpose, we employ the piecewise guessing framework along with a series of hybrids,
defined by H* and h-functions, analogous to Section 6.3. We begin with more auxiliary distributions.

More auxiliary distributions. Recall that the query to OKey is £g-restricted. For all i € [¢gp] and p € £, we define:

- sk%p [2] is the same as skr[2] except we replace dg with dg + A - p in the term [dou" + Wggarer' 12;

- sk%)p [2] is the same as skr[2] except we replace d; with d; + A-p in the term [d;M; s —d; 1 + Wy () oR;]2 forall o € Z;

- skél_pl’i [2] is the same as skr[2] except we replace —d;_; with —d; 1 +A-pin the term [d;M; o —d; 1 +W(;) o R;]2 for
alloeZ;

That is, we have:

[(do +[A-p)u’ +Wstaret 2, 1]
rpl2l = { [d;Mj s —dj-1 +Wp(j),oRjl2, [Rj]2 }je[ngLgez
laf- déBp + WendRendl2, [Rendl2

[dou” +Wigarct" 12, [1']2

{ld; + )Mi,a —d; 1+ W) oRil2, Ril2}es
e {1djMj o —dj1+Wp(joRi12, [Rjl2} 1 pex
[af—d/gy, + WendRendl2, [Rendl2

[dou’ + Wegarer' 12, [r']2
i) = {{d;M; 5 —d;—1 +[A-p|+ Wy oRilz, [Ril2} ey '

P {[djM; 5 —dj1 +Wp(joR; L2, [Rj]Z}j¢i,UEZ
[af—dgy, + WendRendl2, [Rendl2

The auxiliary distributions here are analogous to those in Section 6.3 except that we use general p in the place of f; ,«.
Note that this corresponds to the piecewise information we need to guess in the proof.

Hybrids {H"},, and h-functions. We are ready to define {H"}, and h-functions in the adaptive security lemma (Lemma 20).

Defining u and H". For our setting, we require u to determine the forms of key (output by OKey) in a hybrid, this
includes the superscript of key and piecewise information p. For this purpose, we define

uelx€&q

where
I={0,1,...,¢pp, *}U{(0,1),(1,2)...,(¢gp — 1,¢BpP)}

is the set of superscripts of auxiliary keys and € g includes all possibilities of p. Again, we allow a special symbol “L” at
any positions indicating an empty output. Then, for all u = (S,p) € I x ¢, we define hybrid H*P to be identical to H
(or Hy) except that

S

Tyyy 2] with yyy depending on S or skr[2] when § = L.

- oracle OKey(T') returns sk
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Defining h-functions. In both Hy and H;, the adversary A adaptively chooses I' and x*, therefore we employ a family
of functions
hyxx :NBP®? x 2" — I x Eq

with the first input being & o-restricted. Recall that, for x* and a € p-restricted NBP®» T of length ¢gp, we can define
fo,x» ..., frgp x € Eg as (39) as in Section 6.3. We define h-functions as below which describes a series of hybrids anal-
ogous to that for selective security. We show the corresponding selective game for each function as a remark.

hy (@, x*)— (L, 1 ); /1 Gy
hijo:@x")— ({i-1}, £ 1 s Viellspl; 1/Goio
hijp:@x")— ({i—1,i} i1 s Vielppl; 1/ Goia
hyio (@, x*) — ({i}, fix- )Viellppl; 1/ Goin
hy (@,x") — ({#}, 1 ) /1 Gs

Note that we have h; ;o= hy.;-12 forall i € [2,/gp] and skl’i is shown in Section 6.3.

Proving the corelemma. As in Section 5.4, we check (1) end-point equivalence and (2) neighbor indistinguishability.

End-point equivalence. 1t is clear that our hybrids {H*},, and h-functions satisfy the end-point equivalence. This fol-
lows from the fact that kg and h; are constant functions which indicate the same types of keys as in H? and H!, respec-
tively. Formally, we give the following lemma.

Lemma 31 (End-point equivalence). For all (T, x*) € I x g, we have
H®) —Hy and H2TXD = H;.
Neighbor indistinguishability. We first define several pairs of hybrids with b € {0,1}:
- ﬁg (ug, up) is the same as H*? except that we output 0 whenever
(ho(T, x*), h1.1.0(T, x)) # (ug, ur).
- Ifli’.l.‘i,(uo, uy), for i € [¢gp] and i’ € [2], is the same as H¥» except that we output 0 whenever
(hyi.i—1 (T, x%), hy i (T, X)) # (g, ur).
- H g (ug, up) is the same as H*? except that we output 0 whenever
(h1.0gp2 (T, X7), B (T, x*)) # (0, U1).

and claim that each pair of hybrids are indistinguishable for all g, u; € I x €. Formally, we have the following lemma.
The proof essentially follows those in Section 6.3. (See Appendix G.4 for more details.)

Lemma 32 (Neighbor indistinguishability). For all xxx € {0,2} U{1.i.i" : i € [¢ppl,i’ € (2]}, up,u1 € I x Eq and all A,
there exists B with Time(B) = Time(A) such that

Pr(A, HO, (o, u1)) = 11 = Pri¢A, Hig, (ug, 1)) = 11 < O(Z%) - Adv "™ (1),

Summary. By the adaptive security lemma (Lemma 20), we have that Lemma 31 and Lemma 32 imply the core lemma,
Lemma 30, with the following two facts:

- all our h-functions have range of size at most O(Q) since the first output is constant and |€ | = Q; that is, we have
R'=0(ogQ);
— our proof employs O(¢pp) h-functions; that is we have L = O(¢pp).
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Appendix

A An Example for Back-tracking Attack

We assume an (asymmetric) bilinear group G = (p, G1, G2, G, e) of prime order p and use [‘]1, [']2, [-] 7 to denote component-
wise exponentiations in respective groups Gy, G2, Gt [10]. The natural NFA extension of Waters’ ABE for DFA [21] men-
tioned in Section 1.1 can be formally described as follows:

msk = ( Wstart, Wend» 2 {Wgloes, @) (40)
mpk = ([wstardl1, [Wendl1, 211, {{wo 1} ey, (@] T)
[Sol1, [SoWstart]1
cte = | {Isj11, [sj-12+ sjwx; 1 } e
[selh, [S¢ Wendh1, [sealT-m
{ldu + Wstart Tstart,ul 2> [Tstart,ul2 }ues
skr = | {[~du+2Tuo,0l2, [dv+ WoTuo,wl2, [Tuo,012} e (0105, ve8 (1009

{[a —dy+ Wendend,ul2, [rend,u]Z}ugF

where X is the alphabet, S, F < [Q] are the sets of start states and accept states, respectively, and § : [Q] x Z — 219 i the
NFA transition function. Clearly, as (2) in Section 1.1, ct, and skr allow us to compute quantities:

[sjdy—sj1dylr, Vj €, uelQl,ved(u x;) <[Ql. (41)

We illustrate the back-tracking attack against (40) by an example. Consider a concrete NFA T defined by Q =4,% =
{0}, S = {1}, F = {4} and ¢ describing two nondeterministic transitions: 1 2 {1,2} and 3 2 {2,4}, whose key will be

[d1 + WstarcTol2, [T0l2
dy +zrilp, ldy + wri]o, [11]2

- 2, [do + wrsla, [12

d, +zry 2

( ] ]
skp = ( ] ]
[—ds + z13]2, [do + Wr3]2, [13]2
( ] ]

—d3 + z14]2, lda + wrylo, [14]2

@ —dy+ wenarlz, [r]2

and input x being a single 0, whose ciphertext will be

[Sol1, [So Wstartl1
Cty = [s1]1, [soz+ s1wl

[s1]1, [$1Wendl1, [s1a]lT-M

Clearly, since the NFA T" does not accept x = 0, the key skr is not supposed to decrypt the ciphertext ct,. However this
is not the case for (40). Following (41), we can recover the following quantities:

Do = [sodi]T, D1 = [s1do — Sodi]T, D2 = [s1do — Sod3] T, D3 = [s1ds — Sod3] T, Dy = [s1a— s1d4l T

and compute the masking value:
[sialy = Dg-Dy-D;' D3~ Dy.

Intuitively, this corresponds to running the NFA normally with transition 1 Rt 2, and back-tracking along the transition
3.2 2, which allows us to restart from state 3 and finally reaching the accept state 4 by transition 3 2 g,
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B Basic ABE for NFA®? from ¢-EBDHE assumption

In this section, we describe our basic ABE scheme for NFA®» from (asymmetric) bilinear group G = (p, G1, Go, Gr, €) of
prime order p. We assume that respective generators for every groups are described in G and use [-]1, [-]2, [-] T to denote
component-wise exponentiations in the prime-order groups Gy, G2, Gt [10]. The scheme is selectively secure under
/-EBDHE assumption (in the asymmetric prime-order bilinear groups). The proof is an extension of Waters’ proof for
the ABE for DFA in [21] based on the same assumption. We review the /-EBDHE assumption [21] in the asymmetric
bilinear group of prime order.

Assumption 2 (/-EBDHE assumption) We say that the ¢-EBDHE assumption holds if for all PPT adversaries A, the
following advantage function is negligible in A.

Adv’ FBPHE () := | Pr[A(G, (D], [Dl2, [to]7) = 11 - Pr[A(G, [DI4, [Dl2, [t1]7) = 11|

whereG = (p,G1, Gy, Gr,e) — G(11) and

a, b, abld, bld
a's, a'bslc; Vie[0,20+1]\{€+1},j€[0,£+1]
D=\ a'bic;, c;, a'd, abe;ld, be;ld  Vie[0,0+1] and ty=a""'bs, t, — 2,
a'bdlc; Vie[0,20+1],j€[0,£+1]
a'bejlc Vi,j€[0,0+1],i# ]

with a, b, co,...,cp,d, s — Zp.

Scheme. Our basic ABE for NFA®? in the asymmetric bilinear groups is as follows:

Setup(11,%) : Run G = (p,G1,Ga,,Gr,€) — G(1*). Sample
Qa, Wstarty Wend, %) Wg — Zpr VYo e 2.

Output
mpk = ([Wstart]1, [Wendl 1, (211, {[Wo 1} yes, @] T)

msk = ( Wstarty Wend) %, {Wqloes, a)-

Enc(mpk, x, m) : Let x = (x1,...,X¢) € slandme Gr. Pick s, s1,...,$¢ — Z, and output

[sol1, [So Wstart
cty = | {Isj]1, [Sj—12+8ijj]1}j€[g]

[sel1, [S¢Wendl1, [sealT-m

KeyGen(mpk,msk,T') : Let T = (Q, X, {Mg}gex, u,f). Pick d — Z}JXQ, Tstart = Zp, Yo ¥end < ZLXQ for all o € X and
output

[du’ + Wstart Tstart]2, [Tstart)2
skr = {[_d+ zrgl2, [dMg + Wetsl2, (X512 }UGZ .

[af—d + wengTendl2, [Fenal2

Dec(mpk, skr, cty) : Parse ciphertext for x = (x,...,x¢) and key forI' = (Q, Z, {My}ges,u, ) as

[sol1,[col1 [Kstartl2, [Tstart]2
cte=| {lsjln,lejli}; | and skr=|{[ko1]2, (Kool [rol2},
[selh, [Cenal1, C [Kendl2, [Tendl2

We define
“},x =M,;---My,u’ mod p, Vj € [/]

as (11) and proceed as follows:
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1. Compute
Bo = e([sol1, [Kstart]2) - e([col1, [Tstart]2) ™

2. Forall j € [¢], compute
[bjlr = e([sj-1]1, [ky;112) - e([sjl1, [Kx; 2]2) - e([=¢jl1, [ry;]2) and B = [bju;_lyx]T

3. Compute
[bendl T = e([s¢]1, [Kendl2) - e(I=Cendl1, [Fendl2) and  Beng = [bendu;yx] T
4. Compute

T \—
(fuy )7

Ball = BO ° H§=l B] ° Bend and B= Bau

and output the message m' — C-B~1.

The correctness is direct.

Selective security. We prove the following theorem.

Theorem 5. The above ABE scheme for NFA®r in the asymmetric bilinear groups of prime order p is selectively secure
under the ¢ -EBDHE assumption (cf. Assumption 2). Here ¢ is the length of the challenge input x*.

Proof. Let x* be the selective challenge input of length ¢, we use /-EBDHE assumption. For convenience, we artifi-
cially set x(’)‘ = x;ﬂ =1 ¢ X. On input (G, [D]y, D]z, [t]T) where either ¢ = a’*bsor ¢ — Zp, the reduction works as
follows:

(Simulating mpk) We sample wstart, Wend, 2, Wo — Zp for all o € Z and implicitly set

- (+1-i ~ O+1-i
a=ab, Wsart = Wstart — Z a "DIcri1-iy Wend = Wend — Z a "blcoir-i
i€[f) i€[0,0-1]
_ 5 _ l+1-i
z=Z+abld, ws;=1ws—-bld- Z a blcpi1_;, VOoEZ
i€[0,€+1],a¢x;

Then terms in mpk can be simulated using [a, b, ab/d, b/ d, {aib/Cl’}jg[O,[+1]]1 provided in [D];.

(Simulating challenge ciphertext) On input (g, m1), we sample 3y, ...,8, < Z,  — {0, 1} and implicitly set
si=S§,+a's, Viel0,0]
and want to simulate a challenge ciphertext in the following form:

[sol1, [So Wstart]1
{lsil1, [sic12+ sjwy 1y }iem

[s¢]1, [S¢ Wenal1, [£]7 - e([al1, [bl2)* - mg

Observe that, when r = a’*1bs, the ciphertext is identical to the real one; when ¢ — Z,,, the ciphertext perfectly hides
B. We proceed to simulate each term in the challenge ciphertext as below:

— We can simulate [s;]; = [§;]1 - [a@!s]; for all i € [0, ] using {[aisll},-e[o,g] from [D];.
— We can simulate [sg Wstart]1 Where

~ ~ O+1-i
S0 Wstart = (50+5)'(wstart_ Z a lb/céJrl—i),
i€ll]

using [s,{aib/ci, a"bs/ci}iemh in [D];.
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— We can simulate [sy wenql1 where

Sgwend=(§+aés)-(li/end— > a[“_’b/cﬁl,i)
ie[0,0-1]

using [a’s,{a'b/c;,a’* ' bs/ci}iez,e+1]1 in (D).
- Forall j € [/], we can simulate [s;_12+s; wx}‘]l where

sj1ztsjwe = G +al ') Grabld)+ G+ al ) (We—bld- Y a™blee )
! i€(0,0+1],x £x;

using lai~Ys,als,bld,{a'blc;,a'*/ bs/citieo,e+11,i+ j2e+111 from [D]y. This follows from al~ls-abld—als-bid=0.
(Simulating secret key) On input I', we compute {f; »+};c[0,¢] as in Section 1.2 (also see (22) in Section 4.3) and artifi-
cially set f_j y» =f,,; x« = 0. We sample d, ¥y, Fend — Z;,XQ, Fstart — Zp for all o € Z and implicitly set

d=d+ Y a""Vipf;,e

i€[0,4]
= T
Tstart = Tstart + Z Cov1-i-fixeu
i€ll]
- r—i
g =Ig+ Z a ld-fl',x*+ Z C[+1_i-(fi,x*Mg—fi_l,x*),VO'EZ
i€[0,] i€[0,0+1]
Tend = Fend + Z Coy1—i-fi x+
i€[0,/-1

We proceed to simulate each term in the secret key as below:

— We can simulate [rgtartl2, [¥ol2, [Yendl2 from [{ci}ic(o,0+1), {aid}ie[o,g]]g provided in [D]5.
— We can simulate [du’ + weart 'starc]2 Where

T 3 l+1-i T ~ O+1-i = T
du’ + WseartFstart = (d+ Z a lb'fi,x*u ) + (wstart - Z a lb/cf+l—i) : (rstart + Z coy1-i-fixu )
i€[0,4] i€[l] ie[l]

using [{ci}iee), {aib/ci}ig[/], {aiij/Ci}i,je[g],#j]g from [D],. This follows from

l+1-i T l+1-i T
Y, a g pa’ = ) a™ T blcpaic Y copimifieu

i€[0,] i€[l] i€[l]
=) a1 ip f; peu’ - > a” " bicesri- Y corifieu
iclf) ic?) iclf)
O+1-i T
=— Y a ' bepajlep-ifjeu
i,jelll,i#]

in which all terms of the form a’b are canceled out. Here the first equality uses the fact that fo ,+u’ =0 mod p.
— We can simulate [af — d + Wendrenql2 Where

af —d + WepdFend = ab-f— [d+ Z a[+1_ib-f,~,x*)+(u~/end— Z a€+1_ib/cé+1—i)‘(fend+ Z Cé+l—i'fi,x*)
i€l0,0] i€l0,0-1] i€[0,0-1]

using [{Ci}ie[2,0+1] {aib/ci}ie[Z'@.H, {aibcj/Ci}i,je[z,[+1],i7£j]2 from [D],. This follows form

ab-f- Y ™' g - Y a™ M blcpis Y, conicfie

i€[0,0] i€[0,0~1] i€l0,0-1]
l+1-i l+1-i
=— Y a™TbhAgie— Y a" ' T blcpasic Y, coa-ifix
i€[0,0-1] i€[0,0~1] i€[0,0~1]
O+1-i
=- > a " 'begii-jleori-fix
i,jel0,6-11,i#]

in which all terms of the form a’ b are canceled out. Here the first equality utilizes the definition fr o =1
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— For all o, we can simulate [—d + zr;], where

4uw%:—@+ Y M“4bﬁmq+@+awm(n+ Y oald e+ Y wﬂ4wnﬁMm4pmq)
i€[0,0] i€[0,4] i€[0,0+1]

using [ab/d,{a' d}ico,0), (Ci}icio.041), 1abcil d}icpo,e+1)]2 from [D,]. This follows from

- Y a"Vipgievabid- Y amldfie=— Y @V ibfie+ Y a™ b £ =0
i€[0,4) i€[0,] i€[0,4] i€[0,4]

— For all o, we can simulate [dM, + w,rs]> where

dM, + wyrs
=(d+ ) a[+17ib'fi,x*MU)
i€[0,4]
Hao—bid= Y a T bicp ) B+ X @A fe+ Y conie (B Mo —fine0)]
iE[O,Z+1],U#x;‘ i€(0,4] i€[0,0+1]

using [b/d, {a'd}ic(o,0), {Ci}icto,0+1), (bCil Y iero,. 0411, {a’ A bd  cidi jero+1))2 and {a' bejl cidi jego,e+1),i2 12 from [Dlo.
This follows from

1-i —i 1-i
Y, a™M g oMy —bld- Y, ad g - Y a™ M blepais Y cnmi (B Mo —fimy )
i€(0,4] i€[0,4] i€[0,2+1],a;ﬁx;‘ i€[0,0+1]
l+1-i C+1-i l+1-i
= Z a lb'fi,x*MU_ Z a lb‘fi—l,x*_ Z a "blceii-i- Z Cop1-i (B x» Mg —£i-1 x+)
i€[0,0] i€[1,0+1] i€[0,0+1],0#x} i€[0,0+1]
C+1-i l+1-i
= a” " 7'h (£ o Mg — i1 ) - Y a"™'blcpsic Y, coprmi (B My —fimy 1)
i€[0,6+1],0#x i€[0,0+1],0#x} i€[0,0+1]
O+1-i
=- > a" " thep—jlcppi—i (Mg — £y 1)

i,j€l0,0+1],i#],0#x}

in which all terms of the form a’b are canceled out. Here the second equality utilizes the fact that f; ,+My» =
4
f;_1 »+ mod p, see Lemma 5.

Observe that, when ¢ = a’*1bs, the simulation is identical to the real game; when ¢ — Z,,, the simulation hides §
perfectly and adversary’s advantage is 0. This readily proves the lemma. O

C An Example for Reversing DFA

In this section, we give an example showing the idea of reversing DFA. Consider the regular language 01{0, 1}* recog-
nized by DFAT with Q = 3,Z = {0, 1}, F = {3} and 6 describing transitions:

122, 243 3%z

On input x = 0100, the sets U; of states reachable from start state after reading the first i bits and the sets F; of states
reachable by back-tracking from accept states after reading the last i bits are as follows:

Uo =11}, U1 =12}, U = {3}, Us = {3}, Uy = {3}

F0:{3}rFl:{3})F2:{3})F3:{2’3},F4:{1)3}

Clearly, T is not £s-restricted; since |F3| > 1 and | F4| > 1, we cannot use elementary row vectors in £3 to express them.
The reversed DFAI” is defined by the same Q and X but with set of start states U = {3}, set of accept states F = {1}

and 4 describing transitions:
33}, 3123} 21
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Here we have a transition u -~ v whenever there is a transition v > u in the original DFA. For correctness, we also
reverse the input as x" = 0010; note that the original x = 0100 will be rejected by I'". Then we have

Up=1{3}, U1 =1{3}, U2 =13}, Us = {2,3}, Uy = {1, 3}

Fo={l}, h ={2}, ,={3}, 3 =13}, 4 = {3}

One can see that I'" is an NFA due to the nondeterministic transition on input bit 1, but now we indeed have |F;| = 1
forall i =0,1,2,3,4 that is desirable for the proof. In fact this holds for all inputs and I'" is 3-restricted (see Section 3
for formal proof). Roughly, by reversing DFA, we exchange the role of U; and F; and the E3-restriction of the reversed
DFA immediately comes from the determinism of the original DFA which ensures that |U;| = 1 (for DFA).

D Missing Material from Section 4
D.1 Initializing
In this section, we sketch the proof of Gy =, G;.

Lemma 33 (Gg = Gy). For all A, there exists B with Time(B) = Time(A) such that

Gy

Pri{A,Go) =11 - Pr[¢A,Gy) = 1] < AdeBDAl“"I'“Z ).

Proof (sketch). Roughly, we will prove that

(mpk, [ctyr ] skr) =¢ (mpk, etl. |, skr).
Recall that, we have in ct,- while [[spA; + Spa@z]; in ct?,. This relies on SDI(;‘H Aya, aSSUMption which implies
(1A111, [ [s0A111]) =¢ ([A1]1, [S0A1 + Soazl; )
where sp — szk and s) — Zp,. Let x* be the selective challenge, the reduction algorithm is sketched as follows:

- we sample k, Wgar, Zo, Z1, Wg,0, Wy, 1, Wepg for all o € X and create (mpk, msk) honestly using [A;];.

- on input key query T, we honestly run skp — KeyGen(mpk, msk, T') using mpk and msk;

- on input challenge query (myg, m;), we sample 3,81,82,...,8¢ and create the challenge ciphertext for x* using the
term given out in the statement above. |

D.2 Selective Security in Many-key Setting

Our proof for selective security in Section 4 can be extended to the many-key setting in a straight-forward way as
in [11]. Without loss of generality, we assume that all key queries I'y, ..., I'; share the same state space [Q] and alphabet
%, and extend notations d, R, f; - for I', with an additional subscript x. Then we sketch the changes that are needed to
handle the many-key setting:

Game sequence. We employ the game sequence described in Section 4.3 except that

- secret keysin Gy j o, G2.;.1, G2.7.3 and Gg are skf;l, skgl‘i, skék and skfi‘:, respectively, for all k € [g];

- in each game, all q secret keys share the same A — Z,,.
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Lemmas and Proofs. Lemma 33,6,7,11,12,14,15,17,18 hold in the many-key setting:

The proof for Lemma 33,6 can be trivially extended to the many-key setting.
The proofs for Lemma 7,11,12 can work in the many-key setting due to the fact that
o dy are fresh for each « € [g]; this ensures that all changes of variables still hold with multiple keys;
o Ry are fresh for each « € [g]; this ensures that all DDH-based arguments still hold with multiple keys.
The proofs for Lemma 14,15 and Lemma 17 can be extended to the many-key setting using (s, W)-switching lemma

and (z, w)-transition lemma, respectively.
To prove Lemma 18 with many keys, we argue that all g secret keys skll:’l .. .,skfﬁ’q * only leak a + s;lA; here we use
the fact that fi =f, .« , forall x € [g].

E Missing Material from Section 5

E.1 Correctness of Adaptively Secure ABE for € o-restricted NFA®» in Section 5.1

For x = (x1,...,xp) and I' = (Q, Z, {My}gex,u,f) such that I'(x) = 1, we have:

By = [soA1Du'] 1 = [soA1Duy I 7 (42)
bj = s;A;DM,; —s;_1A;D 43)
Bj = [sjAlDu;’x —sj_lAlDu;_l’x]T (44)
beng = sendAlka_ s¢A1D (45)
Bend = [SenaA1k' fu, . —s,A;Duy |7 (46)
Ban = [sendAlkau;'x]T (47)
B = [SengAik' ] 7 (48)

Here (46) is trivial; (44) and (48) follow from facts (19); the remaining equalities follow from:

(42) soA1Du’ = spA; - (Du' + Wy iRu') — s9A; Wygart - Ru’

(43) sjA1DMy; —s;1A1D = 8;_1A; - (=D +Zj mod 2R) + A1 - (DMy; + Wy, j mod 2R) = (Sj-1A1Z;j mod 2 + 8 jA1 Wy, j mod 2) * R
(45)  sengA1k'f—s7A1D = 8/A; - (=D +ZengR) + SendAs - (K'f+WengR) = (8¢A1Zend + SendA1Wend) - R

47 sendAlkau},x = §pA; Duax + Z§=1 (sjA Du}x —-8j 1A Du}_l,x) + (sendAlkau;yx —spAy Du;]x).

Correctness follows readily.

E.2 Missing Proofs in Section 5.2

In this section, we prove Gg = Gy, Gox—1 =¢ G2« (from the core lemma, Lemma 19), Gy 4 =5 Gz and show that adver-
sary in G3 has no advantage. All games are defined in Section 5.2.

Lemma 34 (Gg = Gy). For all A, there exists B with Time(B) = Time(A) such that

Gy
Pr[(A,Go) = 1] - Pr[¢A4,G) = 1] < AdeBDA‘HA"“Z ).

Gy
A1—A1,ay

Proof (sketch). This relies on SD assumption which implies

([Al]l, [SendA1l1 ) Rc ([Al]l» [SendA1 + Send@2]1 )
where Seng — Z},Xk and Seng — Zp. The reduction algorithm is sketched as follows:

- we sample k, Wgtart, Zo, Z1, Wg,0, W51, Zend, Wend for all o € £ and create (mpk, msk) honestly using [A;];.
- on key query T', we honestly run skp — KeyGen(mpk, msk, T') using mpk and msk;
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- on input challenge query (x*, mgy, m;), we sample f3,s¢,81,82,...,8¢ and create the challenge ciphertext using the
term given out in the statement above. O

Lemma35 (Lemma 19 = Gy x_1 =¢ Gox). For allx € [q] and all A, there exists B with Time(B) = Time(A) and
Pr((A, Gax—1) = 1] = Pr[{A, G = 1] < Advi " (1)
where AdV%ORE()L) is defined in Lemma 19.

Proof (sketch). On input (mpk, aux;,auxy), we sketch the reduction B as follows:

- Forward mpk to A.

— OninputT, proceed as follows:
o for the first x — 1 queries I', output skl’i which can be created from aux; and auxy;
o for the x’th query T, forward the result of OKey(T') to A;
o for the remaining query I', output skr which can be created from aux;;

- Oninput (x*, mg, my), pick  — {0,1} and forward the result of OEnc(x*, mp) to A.

Observe that, if OKey(T') outputs skr, the simulation is identical to Gy x—_1; if OKey(T') outputs sk, the simulation is
identical to G x. This completes the proof. m|

Lemma 36 (G, 4 =; G3). For all A, we have
Pr[{A, Go.4) = 11 = Pr[{A, G3) = 1].

Proof. First, we argue that all g secret keys perfectly hide the a,-component of k', i.e.,, « = apk’. Recall that a,-
components of all g secret keys are in the following form:

[du” +wsarRu']2, [Ru']»
sk (2] = | {[=d+2zpRl, [dMy + W, 5Rl2, Rl2} se 5 peionn)

[~d+ ZenaRlz, [af + | sghy - £] + WenaRla, [R]2

we can simulate all of them using a +s_, nl 4A which means all secret keys perfectly hides a = a;k’. Therefore, the unique
term involving k in ct;* ,1.e., [SendA1K" + Senqas k'] 7, is independently and uniformly distributed and thus statistically
hides message myg. O

Lemma 37 (Advantage in G3). For all A, we have
Pr[(A,G3)=1]=1/2.

Proof (sketch). This follows from the fact that the challenge ciphertext is independent of § in Gs. O

E.3 Detailed Proofs of Neighbor Indistinguishability in Section 5.4
This section provides the detailed for proving Lemma 22 (in Section 5.4) restated below.

Lemma 38 (Neighbor indistinguishability). For allxxx € {0,1,3,4,5}U{2.i.i' : i € [£],i" € [4]}, up, u1 € Ix I xZx Eq and
all A, there exists B with Time(B) = Time(A) such that

Pr((A, H (g, u1)) = 1] — Pri(A, Hiy, (g, u1)) = 1] < O(Z]) - Advi; M (A).

All proofs essentially follows those for the selective security of our ABE for NFA®? in Section 4. We will also employ the
notation of ay-components described in Section 4.3; in particular, the a;-components of aux; and aux, are defined
analogously to skr and denoted by aux; [2] and auxz[2], respectively.
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Initializing & Finalizing. We show that H)(ug, u1) =¢ H} (o, u1), H2(ug, u1) = Hl (o, ur) and H(ug, ur) = H (g, uy)
for all ug, u;. The proofs for the former two are similar. We begin with the following lemma stating that Hg(uo, u) =
ﬁ(l,(uo, uy) for all ug, u; and sketch the proof for the other one.

Lemma 39. Forall up, u; € I x I xZx Eq and all A, there exists B with Time(B) = Time(A) such that

Pr((A, H) (o, 1)) = 11 = Pri¢A, Hy (o, u1)) = 1] < Adviy ™ ().

Overview. Fix I and x*, we will prove that

(mpk, aux;, auxy, , skr) =¢ (mpk, auxj, auxy, ctg* , skr)
which roughly means that

ct* ct? aux;
o o uX;

~

. Il -1 T T
[SoA1l1 = [SoA1 + soaz]1  given (&, -s_ A+ Wepgr I2,[r [2.

This is similar to Lemma 14 stating that Gy ; 1 = Gy ; 2; therefore we prove the lemma analogously but using (sg, Wenq)-
switching lemma instead of (s;,Z;)-switching lemma so that we can simulate the challenge ciphertext from the chal-
lenge term in the lemma and simulate aux, using the auxiliary terms given out in the lemma.

Proof. We prove the lemma for the case
up= ()L, L, 1), w =0}, L,1,1)

with allT and x* adaptively chosen by A; the lemma trivially holds in all other cases. Recall that the difference between
the two games lies in OEnc(x™, m): the former returns ct}. and the latter returns ctg*; oracle OKey(I') always returns
skr. We prove the lemma using (sg, Wepq)-switching lemma (see Lemma 13). On input

aux, [col1, [@ - A+Wengr'la, [r'],
where aux = ([A1,82,A1Wend, 2Wendl1, [WenaB, Bl2) and Weng — 23 V%8, B — 764k r — 712k A — 7, and
Co = or co = SpAj +Spa2, So <—Z§,so —Zp

the reduction works as follows:

(Simulating mpk and aux;) We sample k — Z},X CEY) Wit Z0, Z1, W0, Wo 1, Zend — ng“)Xk for all o € =. Then we
can trivially simulate mpk with [A;,A;Wepq]l1 and simulate aux; with [B, WepgBl».

(Simulating aux,) We sample senq < Zp and implicitly set
A = SengA.
Then we can rewrite aux; as
[r')2, Wstart 12, [Zor" 2, (Z11']2, { (Wo,0t" 12, [(Wo 11 12 } ey, [Zendr ]2, (@) - A+ Wepnar' ]2

which can be trivially simulated with [a”2 A +Wepgr'la, [r']; given out in the lemma and Wiy, Z0,Z,,W4,0,Wq.1,Zeng.
(Answering OKey) On input I', we return skr which can be generated using aux;.
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(Answering OEnc) On input (x*, m), we want to create a ciphertext in the following form, which is either ct;“c* or ctg’c*
depending on cy:

[col1, [CoWsstarth co € {[soA1 |, 'SoA; + Spa }
{lcj]1,[¢j-1Z} mod 211 - [€; Wy, j mod 211} jege) | where { ¢; =s;A, forall j € [£]

7777777 A

.
,,,,,,, v [Cenak'IT-m Cend = SendA1 + Send@2

Observe that,

— whency = , the distribution is identical to ;

— when ¢y = sgA; + Spay , the distribution is identical to ct?c* .
We proceed to create the ciphertext as follows:

— We sample sy, ...,8¢,8end — Z},Xk, Send — Zp and simulate {[c}]1} jejs) and [€engl1 using [A1,az]1; note that [col; is
given out in the lemma as the challenge term.
— We rewrite the term in the dashed box as:

[CendWendl1 = [SendA1Wendl1 - [Send@2Wendl1

which can be simulated using Send, Send and [A;Wend, a2Wengl1; here we use the fact that we do not have any terms
involving [spA;Wengl1 in the ciphertext.
- We simulate all remaining terms using {[c;]1} jel0,e1» [Cendl1 and k, Wgtart, Zo,Z1, Wg,0, Wo,1, Zend.

Observe that, when ¢ = [soA, |, oracle OEnc(x*, m) returns and the simulation is identical to ﬁg(uo, u1); when

Co = SpA; + Spay , oracle OEnc(x*, m) returns ctg* and the simulation is identical to ﬁ(l](uo, u1). This completes the
proof. O

Via the same proof idea, we can prove the following lemma stating that ﬁg(ug, uy) = H é(uo, uy) for all ug, u;. We
only sketch the proof.

Lemma40. Forall up, u; € I x I xZ x Eq and all A, there exists B with Time(B) = Time(A) such that
Pri(A, HS (o, 1)) = 1] = Prl(A, Hi (ug, u1)) = 11 < Adv ™M ().
Proof (sketch). We prove the lemma for the case
up = ({01} 1+, L, 1), w=({},{xh L, 1)
with all T and x* adaptively chosen by A; the lemma trivially holds in all other cases. Namely, we will prove that

(mpk, aux;, auxz, , ski) =¢ (mpk, aux), auxy, ctr. , sk )

which roughly means that

*
ctfc* ct;* auxy,skp
~

—_—— ! T T
[s¢A; + spazly =¢ [S¢A1]1  given [a2 . SendA"'wendr o, [r' 2.

Then the proof is analogous to that for Lemma 39 except that we use (sy, Wepq) - instead of (sg, Wepg)-switching lemma
and we need aux; to answer OKey query; in particular,

- we simulate mpk, auxy, aux; as in the proof of Lemma 39;
- we answer OKey(I') by generating sk;. using both aux; and aux.
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- we answer OEnc(x*, m) using the challenge term in the lemma analogously; but we rely on the fact that there is
no term with [syA;Wepgli- |

We finally prove the lemma stating that Ifl(l)(uo, Uy =¢ H { (ug, uy) for all ug, u;, which is analogous to Lemma 6.
Lemma41. Forall up,u; € I x I xZx Eq and all A, we have

Pri(A, H (uo, 1)) = 11 = Pri¢A, Hi (uo, u)) = 1]
Proof (sketch). We consider the case that the adversary adaptively chooses I and x* in the hybrids parameterized by

up = ({0},[ L, L, L)), w2 = ({0}, {0}, L, fo. o+ );

the lemma trivially holds in all other cases. This roughly means that

0 0 0
(mpk, aux;, auxa, ctx*,) ~c (mpk, auxj, auxy, ct>., Skr,f(,x* )

where
[+WstartRuT]2y [RUT]Z
skr(2] = [ {[~d+z,Rl2, [dMg +Wo, b R12, Rl2} yex peioy |
[_d + ZendR]Zy [af+ wendR]Z; [R]Z
[d+ salA -fo, )" + WgiareRu' ]2, [Ru'l,
0
Skr,fo'x* (2] = {[—d+ZbR]2, [dMU +WU,bR]2) [R]Z}UEZ,bE{O,l}
[—d + ZengRl2, [af +WengRl2, [R]2
with
Ctg* [2]= ([SOWstart]h [Sol1, [S0Z1]1, [SendWend]1, [Sendl1, [Send@]T - m)
and
aux;[2] = ([, B, WytartB, ZoB, 21B, {W5,0B,W5,1Blges, Zend B, WendBl2 )
auxz[2] = ([r', Wstartt", Zor", 211", {Wo 0, Wo 11 Joes, Zend s Sgng +Wend!' 12).-
This immediately follows from the fact I'(x*) =0 < f; ,»u" =0 mod p (see Lemma 5). |

Switching secret keys I. We show that ﬁg.i‘l(uo,ul) = ﬁéi_l(uo,ul), ﬁg(uo, n) =¢ ﬁé(uo,ul) for all i € [¢] and all
uy, U1 . The proofs for them are similar. We begin with the following lemma stating that Hg_l_l (ug, 1) =¢ Hé.l.l(uo’ uy)
for all uy, u;, which is analogous to Lemma 7, and sketch the proofs for remaining statements.

Lemma 42. Forall up,u € I x I x Z x €, there exists B with Time(B) = Time(A) such that

~0 “1 DDH{?,
Pr{A,Hy 1 (uo, u1)) = 11 = Pr[{A, Hy (1o, u1)) =11 < O(I1Z)) 'Advﬁ ().

Overview. Fix T and x*, we will prove that

0 0 0 0,1
(mpk, aux;, auxy, cty., SkF:fOX* ) =c (mpk, auxq, auxy, cty., Skl",f()x* ).

By Lemma 4, we focus on the a,-components and prove:

[()uT +WtartRu' ]2, [Ru'], [du" +wsgrRu]o, [Ru'],
k0, [2]= {[=d]+zRl2, [dM, +w, 1Rl Rl2} sex - {{=d+sy'A-fo o+ +21Rl2, [dM, + W, 1Rz, [R]2} s _ skg’i
o {l=d+2oRI2, [dM, + W, oRI2, [Rl2}, 5 {{-d+2oR]2, [dM; + W oRl2, [Rl2}, 5 Tox*
[—d + ZengRl2, [af +WengRlI2, [R]2 [—=d + ZengRl2, [af + WengRl2, [R]2

(2]
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given
ct%. 121 = ([SoWstart]1, [Sol1, [S0Z1]1, [SendWend]1, [Send]1, [Send@]T - m)

and

auxp[2] = ( [a, B, WtartB, ZoB, 1B, {wg; 0B, W4, 1Bles, ZengB, WendBJZ)

-1

.
ond + Wenar'12).

T T T T T T T
auxz[2] = ([r", Wstarct', Zor', Z1 ¥, {Wq of , Wy 1 Jgex, Zendl |, S,

Clearly, change of variablesd — d — s, YA -fy .+ is at the core of the above statement, which ensures that, for all sy and

A, we have
skl 2] skt 2
) T.f, .x
, bl 0 ct?, 2]
-1 T T T T - . —
{(d+sy A-fox Du’ +WsarRu ,+z1R,R} ~s{/du’ +wgrRU', —d+sOIA-fg,x* +z1R R}  given Wear, 21

Gz
LQ
of variable via DDHIGfQ assumption. Note that, besides Wstar¢ and z;, ct?c* [2] also leaks wep 4, which means we cannot

As in the proof of Lemma 7, we need to hide all irrelevant d’s via DDH %, assumption before and after the change

apply DDHIGZQ assumption w.r.t. Wepq; however the term [af + wepgR]2 does not contain d either and will not interfere
in the change of variable with respect to d.

Auxiliary hybrids. Formally, fix uy = ({0}, {0}, L, p) and u; = ({0}, {0, 1}, L, p), we define two more auxiliary hybrids:
- H(Z).l.l.a(uo’ u;) is the same as H(Z).l.l (up, uy) except that OKey(I') outputs

[(d+s5'A-p)u’ + WeiarRu']2, [Ru']2
{l-d+zRl5, [0]- My + W 1Rl2, [Rl2} 5
{[[0]+zoR12, [[0]- My + Wq oRl2, [Rl2} s

[[0]+ ZengR12, [af + WenaRl2, [R]>

- Héu'a(uo, u;) is the same as ﬁé_l_l (1o, uy) except that OKey(I') outputs

[du” + wgarRu' ], [Ru'],
{[~d+sy'A-p+2z1Rl, [0]- My +Wo 1R, [R]2}
{l[0]+2oR12, [0]- My +wo oRl2, [Rla} s
[[0]+ ZengR12, [af + WenaRl2, [R]>

[

Then we prove that:

0 00 0l Ol
Hg,l,l(UO, up) =¢ Hz_l.l,u(UOy up) =g Hz.l.l.a(uﬂ’ U =¢ H2_1.1(u0y uy). (49)

which is summarized in Fig 10 with fixed I and x*.
Lemmas. We describe and prove the following lemmas which imply Lemma 42 by (49).
Lemma 43. For all A, there exists B with Time(B) = Time(A) such that

0o 0o DDHY,
Pr(A,Hy 1 1 (uo, u1)) = 11 = Pr[{A, Hy 1 4 (uo, u1)) =11 < O(IZ]) - Advg .
Proof. We consider the case that the adversary adaptively chooses I and x* in the hybrids parameterized by

up = ({03,{03}, L, fo,x+), w1 = ({0}, {0, 1}, L, fo,x+*);
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Game ?-u' +WwggrtRu' 2 +2z;R ?2-Mg+wg 1R 2+zgR  ?2-Mg+wgoR  ?+2z,,qR Remark

Qo -1 0
AS,y desglap —d d 4 d -4 sk i)
H) 10 d+sgta-p -d [0] [o] o] [0] DDH

0l -1 -1
Hai1a d _d+ 0 0 0 0 d—d-sy'A-p

Al

1, d -d+ sy'a-p [d] [d] DDH, sy’ [2]

Fig. 10. Game sequence for ﬁg.m(uo, uy) =¢ ﬁél.l (ug, u1). In the table, we only show changes of secret key and focus on its ap-
components; all secret key elements in the fourth and sixth column are quantified over o € X. In the Remark column, “DDH”

Lo G .
indicates DDHL Q assumption.

the lemma trivially holds in all other cases. By Lemma 4, it suffices to prove the lemma over a;-components which
roughly means:

[+ 5572 fox)u” + WytareRu, [Ru']z [(d+ 55" Ao, )u" +WytarRu2, [Ru']

S, [2]= {{~d+2z Ry, [d]- My + W 1Rl2, [Rl2}, 5 - {[=d+2z1R]2, (0] - M, +Wo 1 Rly, [Rl2}, .5

Ao, {[_@"'ZOR]Z’[@'MU"'WU,OR]Z[R]Z}UQZ {[0 +2zoR],, [0 'M‘7+WU’0R]2’[R]2}UEZ
[_@+ ZendR12, [af + WengR]2, [R]2 [0 +ZengRl2, [af +WengRl2, [R]2

in the presence of

Ct?c* [2] = ([SOWstart]h [Sol1, [SoZ1]1, [SendWendl1, [Sendl1, [Send@]T - m)

and

aux[2] = ( [a, B, WgtartB, 29B, 1B, {w; 0B, Wy 1Blges, ZengB, WendB]Z)

-1

.
endQ + Wendl' |2 )

T T T T T T T
auxz[2] = ([1' » WstartI' , ZoI, Z1T, {Wg oF ,Wg 1T }ges, Zend!  §,

One can sample basis Ay, ag,Ag,A"l, a”z,A”3 and trivially simulate mpk, auxy, auxy, ct?c* and secret key using terms given

out above. Furthermore, this follows from DDHIGZQ assumption w.r.t Zyg, Wg 0, Wg,1,Zend With o € X which implies:

(1zoRl2, {[Wo,0RI2},cxr {Wo, 1R}, cs) [ZenaRl2, [RI2) =c U((Gy 9EH2 x G3*Q)

given aux = [B,zyB, {(Wy 0B, Wy, 1B}ges, ZenaBl2 Where 2o, Wo 0, Wo, 1, Zend — Z}fk forallo e ZandR Z’;XQ- Here we use
the fact that ct?c* [2] does not leak zy, Wg,1, Wg,0, Zeng With o € Z. This completes the proof. m]

Lemma 44. For all A, we have
Pri¢A,HY ) ) (o, ) = 11 = Pri¢A HY | (o, 1)) = 11
Proof. This immediately follows from the change of variables: d — d - s; YA £y pe. O

Lemma 45. For all A, there exists B with Time(B) = Time(A) such that

~1 ~1 DDH{?)
Pr[<~Ar Hg.l,l'a(UOv ul)) =1]- Pr[<~Ar H2.1.1 (M(), u1)> =1]= O(|Z|) 'AdV-B Y (/1)

Proof. The proofis analogous to that for Lemma 43. O

0
2..1

[2,¢] and ﬁg(uo, u) =¢ H é(uo, u1), respectively. We only sketch the proof for each lemma.

Via the same proof idea, we can prove the following lemmas stating that H (ug, u1) =¢ Hii_l(uo, u) foralli e

Lemma46. Forallie€ [2,0], up,u; € I x I x X xEqg and all A, there exists B with Time(B) = Time(A) such that
“0 a1 DDH{%)
Pr[{A,H; ; (1o, u1)) = 11 = Pr[{A, H; ; { (o, u1)) =11 = O(|Z]) -Ade “A).
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Proof (sketch). We consider the case that the adversary adaptively chooses I and x* in the hybrids parameterized by
Up = ({l - 1}; {l - l})x;‘k_l )fifl,x*)r uy = ({l - 1}) {l - ly l}rJ— vfl'*l,x*);

the lemma trivially holds in other cases. Namely, we need to prove that

- i-1 | pi-Li
) = (mpk, auxi, auxp, cty, skpe™ )

i-1,x*

(mpk, aux;, auxy, ct;ll, sklr_xlf N

i—1ti=1,x*

Recall that 7 = i mod 2, this roughly means that

[du” + warRu']2, [Ru']»
{l=d+z)_Rlp, [(d+ 57 A fi 1 e )My | +Wye 1Rl [RIz}
skppr ¢ 121 = {[dM; +w, 1 _Rl2} -

i—1ti-1,x*
{([(=d]+zRlz, [dM, + W, rRl5, [Rl2} .5
[—d +ZengRl2, [af +WengRl2, [R]2

[du’ + Wy (Ru']2, [Ru'l,
{I-d+2_Riz, (M, +w,: | Rl [Rl2}
{[dM(T +W0,1—TR]2}U¢X;71 T ) e
{[ —-d+ Si__llA 'fi—l,x* + ZTR]Zy [dMO' +WU,TR]2) [R]Z}UGZ

[=d+ZengRl2, [af + WengRl]2, [R]2

given
i—1
ctie (2] = ([si-1Way 171, [Si-11, [Sic1Zc]1, [SendWend )1, [Send] 1, [Sena@] 7+ )

and

auxp[2] = ( [a, B, WgtartB, 29B, 1B, {w, 0B, Wy 1Blges, ZengB, WendB]Z)

T T T T T T T o1 T
auxz[2] = ([r", Wsgarct', 2or', Z1 ', {Wq oF , Wo 1" Jgex, ZendX s SgpgA + Wendl' 12)

This relies on:

- change of variablesd — d - S;}1A -f;_1 x+; this ensures that, for all s;_; and A, we have

skl 2] sk 12
T,x £ r'fi—l,x* 2]

Hiopti-1,x*
N

~

{ (\ d+ s A fio e DMy +wee 1 R[-d]+z R R} = {dM,: +w,e 1R —d+s; A fi e +2RR}

in the presence of w, -2t leaked via cti:l [2].
.

G . .. .
- DDH,{, assumption W.r.t Wstart, 211, {Wo,1-t}o#x: | » (Wo,r}oes, Zend; this implies that

((WstariRl2, [1-+Rlz, {Wo, 1Rz} g e {(Wo rRl2fges, [ZenaRlz, [R12) e U((GY* 9?2 5 65*Q)
and will be used to hide all d’s irrelevant with the change of variables. O

Lemma 47. Forall up,uy € I x I x Z x Eqg and all A, there exists B with Time(B) = Time(A) such that

~0 “1 DDH{%)
Pr(A,H3(uo, u1)) = 11 = Pri{A, H3 (1o, u1)) =11 <= O(IZ)) - Adv,; = ().

Proof (sketch). We consider the case that the adversary adaptively chooses I and x* in the hybrids parameterized by
ug = ({0}, |10}, xp £r 0 ), wa = ({6}, {6, %}, L,£);
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the lemma trivially holds in other cases. By the fact that f, ,« = f (see Lemma 5), we need to prove that

(mpk, aux;, auxa, cti*, skﬁ o £) = (mpk, auxy, auxs, ctﬁ*, skfi’;‘ );
s L

this roughly means:

[du' + WgartRu']o, [Ru']»
{I=d+27Rl,[(d+5;'A-F)My; +w,. Rl [Rlo}
{[dM, +w, ;Rl2} s
{[=d+z,_;Rl, [dMy +w, ,_;Rl2, [R]2}
[=d]+ ZenaRl2, [af + WenaRl2, [R]
[du’ + WyearRu']o, [Ru']»
{[=d+z;Rl, [ dM,. +w,. ;Rlz, [R],}
e {[dM, +w, ;Rla} sxt
{I-d+2z,_;Rl2,[dM; +W, ;_;Rl2, [Rl2o}, .y
[-d+ SZIA -f +zengRl2, [af+ WengRl2, [R]2

0
Skl",x; B

(2]

ogex

)%
= skr [2]

given

l
ctl.[2] = ([Sewx;jh, (5711, [S¢Zend + SendWendl 1> [Sendl1, [Send@] T - )

and

auxi[2] = ( [a, B, WgtartB, ZoB, 1B, {w; 0B, W5, 1B}ses, ZendB, WendB]Z)

-1
auxz[2] = ([r", Wstartt', 2or', Z1 ', {Wo oF , Wy 11" Jge5, ZendX s SgpgA + Wendl' 12)
This relies on:
- change of variablesd — d - s;lA -f; this ensures that, for all s, and A, we have

s
Skr,x2 £[2] sk?* 2]

A

{()Mx; +wx;jR,+zendR,R} s {dM,; +w,. R =d+ 55 Af +2enaR R}

in the presence of W+ ;,Zenq leaked via cti* [21.
’,

- DDH%Q assumption w.r.t Wtart, 2o, Z1, {Wa, oz x5 {Wa,1— 7loes; this implies that

((WstartRlz, (20Rl3, (21 Rla, {Wp, /RI2}, e {(W, 1 7Rlo}gex) [RI2) = U((Gy* D22 5 65<Q)

and will be used to hide all d’s irrelevant with the change of variables. O

Switching ciphertexts. We show that ﬁg'i.z(uo, ) =¢ ﬁ;'i_z(uo, 1) and Iflg.M(uo, ) =¢ Iflé.l.A(uo, up) for all i € [¢] and
all ug, uy. The proofs for them are similar. We begin with the following lemma for the former one and sketch the proof
for the latter.

Lemmad48. Foralli=1,...,¢, up,u; €I x I x X x Eg and A, there exists B with Time(B) = Time(A) such that

Pr((A, HY , , (g, u1)) = 11 = Pri¢A, HY ;5 (ug, ur)) = 1] < AdvEXTSWITCH (1),
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Overview. Fix T and x*. We will prove that

com o ot ieli - it i1,
(mpk, auxj, fauxy’, , sk”i_l‘x* ) =¢ (mpk, aux;, fauxy, cti. ’Skrrfi—l,x* )
which roughly means that

i-1,i
i-1,i F= - - - -==-==- hl sk

ctiy! ct’ i1,

- |
[aII2 ' s(;nldA +‘NendrT]Z L [-D+ a\lz . Si_—llA fi 10+ +Z;R];.

|
—_— —N— . I
[s;jA1]l1 =¢ [s;A; +s;ax]  given | !

This is similar to Lemma 14 stating that G ;.1 =, G2.; » except that we need to simulate an extra term involving a"2 from
auxy (highlighted by dashed box). Therefore, we use an extension of (s;,Z;)-switching lemma (Lemma 49) so that we

can simulate the challenge ciphertext and secret key as in the proof of Lemma 14 and also handle aux,.

Lemma 49 ((s,Z, W)-switching lemma). We have

aux, [sA;]q, [@,-A+Zt'],, Wt'],, [t'],
(Zr'],, (@, - A+ WrT]y, [1'],

~c aux, [sA) +[saz]l1, [a) - A+Zt']y, Wt'2, [t]2
(Zr'], [, - A+ Wr'],, [1'];

where aux = ([A1,a2,A1Z,a,Z,A\W,a, W11, [ZB,WB,Bly) and Z,W — Z{**1"K, B — 7Kk g vt — 71k, 5 A — 7,,. Con-
cretely, the advantage function Adviy™ V""" (1) is bounded by O(1) -Adv%’é‘IN (A) with Time(Bg) = Time(B).

The proof for Lemma 49 is similar to that for the original (s, W)-switching lemma, cf. [11]. We omit the proof here.

Proof (of Lemma 48). We consider the case that the adversary adaptively chooses I and x* in the hybrids parameter-
ized by

up=({i-B}ti-1iL L), w= (=10, 1i— 1} Lfiyx);

the lemma trivially holds in other cases. Recall that T = i mod 2. We prove the lemma using (s;,Z;, Wenq)-switching
lemma. On input

aux, [y, [, -A+Z '], (Wendt'l2, [t']2
(Zx"]2, [a- A+ Wengr'la, [r']2

where aux = ([Al)aZ»AIZT)aZZTrAlwend’aZWend]1; [ZTBrwendB»B]Z) and ZT) Wend - Zglﬁ-l))(kv B— ny)(k; rt— Z;Xky
A—2Z,and
1xk
ci=[siA1| or ¢; =s;A1 + 583, s; 72,5512,

the reduction works as follows:

(Simulating mpk and aux;) We sample k — Z,lgX CE D Wtarts Z1- 1, We.0, Wo 1, Zend — Z;,Zk“)xk for all o € ¥, and then
we can trivially simulate mpk from [A},A;Z;,A;Wen4]1 and simulate aux; from [Z; B, WengB, Bl».

(Simulating aux,) We sample seng — Z,, and implicitly set A = sepgA; then we can rewrite aux; as

All terms in the dashed boxes are provided in the lemma; all remaining terms can be simulated using [r"]2 and Wy,
Zl—r, Wa,Oy Wa,ly Zend-
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(Answering OEnc) On input (x*, m), we want to create a ciphertext in the following form, which is either cti:l or
ct;:“ depending on c;:

[col1, [CoWstart] ci € {[siA1 ] [siA) + 5,2 }
r= =" 5 4 l
flejhlejaZahirleWayrhbjimoas | oo ) Gt =SimAr+si2e
{lejh, lej-1Z1—<]1 - [Cijj,l—rh}j#l- mod 2 Cend = SendA1 + Send@2
™" “xar 1 A
[Cendl1, [€¢Zendl1 'L[(EenggrldllJ‘; [Cenak']7-m cj=8jA; ifjel{i—1,i}
Observe that,
— when ¢; =[s;A;}, the distribution is identical to ;

=1Ly

- when ¢; = 8;A; + s;az , the distribution is identical to ct .

We proceed as follows:

- We sample s; — Z},Xk forall j #1i, si-1 < Z, and simulate {[cj]1}#; and [cenql1 using [Aj,az];; note that [c;]; is
given out in the lemma as the challenge term.
— We rewrite terms in the first dashed box as:

[s;A1Z:]; ifj#i—1 and j #i mod 2

lejZ)y = P .
[si—1A1Z;]1 - [si—1@a2Z;]; ifj=i—1(and j # i mod 2)

which can be simulated using {s;} j#imod 2 Si-1 and [A1Z;,a,Z;];; here we use the fact that we do not have any
terms involving [c¢;Z;]; in the ciphertext.
— We write term in the second dashed box as:

[CendWendl1 = [SendA1Wendl1 - [Send@2Wendl1

which can be simulated using Seng, Send and [A;Wend, a2Wengl1; here we use the fact that we do not have any terms
involving [s;A;Wengl1 in the ciphertext.
- We simulate all remaining terms using {[¢;]1} je[0,¢], [Cend]1 and k, Wstart, Z1 -7, (W50, W 1}0ex) Zend-

(Answering OKey) On input I', we want to return a secret key for I in the form

[Du’ + WgiarRu' 2, [Ru'],

— o€X

i-1,i
F,fl-,lyx* -

777777777 ', [Rl,

,,,,,,,,, '
We sample D — Z;ZIH D*Q and R — Z];XQ and implicitly set

R=t"-5;", Send fi-1x +B-R.

i-1,i

as follows:
Tf 1 *

We proceed to simulate sk

— We simulate [R], from [t ], [B]» and f;_1 x+, R, $;_1, Send.
— Recall that we set A = sepgA, we can rewrite terms in the dashed boxes as:

[-D+ (aHZ A+Z,t7)- S,'__ll Send *fi-1,x* +Z:B- Rl; and [K'f+ Wengqt' - S,‘__ll Send *fi-1,x* + WengB- R,

which can be simulated using [a), - A + Z; ]2, [Wendt']2, [Z; Bl2, WengBl2 and D, k, fi_1 s+, R, $i1, Send.
- We simulate all remaining terms using [Rl, and D, W1, Z1 -7, Wy 7, Wy 1-7, Zeng-
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Observe that, when ¢; = , oracle OEnc(x*, m) returns and the simulation is identical to ﬂg_ ;o (Uo, u1); when
i-1,i
x*

the proof. O

c; = 8;A + s;ap , oracle OEnc(x*, m) returns ct and the simulation is identical to H%j.z(uo, u1). This completes

Via the same proof idea, we can prove the following lemmas stating that ﬁg.i' 4o, 1) =¢ H;. ; 4o, uy) forall i € [£]
and all ug, up. We only sketch the proof.

Lemma 50. Forallie [€], up,ui €I xIxXxEq and all A, there exists B with Time(B) = Time(A) such that
Pri(A, H , , (o, u1)) = 11 = Pri¢A, HY ; , (uo, ur)) = 1] < AdvEXTSWITCH (1),
Proof (sketch). We consider the case that the adversary adaptively chooses I and x* in the hybrids parameterized by

uo = ({i =L, i3}, (i}, %7, £ x0), wn = (@}, 43}, X7, 6 )5

the lemma trivially holds in other cases. Namely, we will prove that

i—Li| i - ; i
(mpk, aux;, auxy, , SkF,x;‘,fi,x* ) =c (mpk, aux;, auxa, ctl., SkF,x;‘,fi,x* )
which roughly means that

i

i-1,i i SKp o g,

ct, Ct;* auxy Toxy g o
e

x A

’ NP Vi I, -1 T I -1
[si-1A1 + Si—1a2]1 =¢ [s;-1A1]1  given [a&,- S A+ Wengr 2, [DMx;f +ay s, A-fjy +Wx;JR]2.

The proof is analogous to that of Lemma 48 except that we use (s;—1, Wy* 7, Weng)- instead of (s;,Z;, Wepq)-switching
1

lemma so that we can simulate the challenge ciphertext from the challenge term in the lemma and simulate both

secret key and aux, using the auxiliary terms given out in the lemma. O

Switching secret keys II. We show that H(Z).I.B(uo, u) ~¢ Héi_s(uo, uy) and Hg(uo, Uy ~¢ H}l(uo, uy) for all i € [¢] and
U, u1. The proofs for them are similar. We begin with the following lemma stating that ﬁg. i 3o, U1) =¢ ﬁé. i 3(Uo, u1),
which is analogous to Lemma 17, and sketch the proof for the latter one.

Lemma51. Forallie [£], up,u1 €I x I xXxEq and all A, there exists B with Time(B) = Time(A) such that
Pr((A, HY ; 5 (o, un)) = 1] = Pr{¢A, HY ; 5 (ug, un)) = 1] < AdvENS ().

Proof. We consider the case that the adversary adaptively chooses I' and x* in the hybrids parameterized by

Uy = ({l_ ]-)i}) {l_ 1y i}»J-;fi—l,x* ); uy = ({l_ ]-vi}r {i};x;,fi,x* )r

the lemma trivially holds in other cases. Recall that T = i mod 2. By Lemma 4, it suffices to prove the lemma over
a,-components which roughly means:

[du’ + WsiareRu', [Ru']p
(=d+[sH A B +20R ], (M +[Wor Rz, [RI:
Skrg, . 12 = {[dMy + Wo R}
{[-d+2,_;Rlz, [dM, + W, 1 Rl2, [R]2}
[=d +ZendRl2, [af + WengRl2, [R]2

og€eX

[du’ + W Ru']2, [Ru'],
[—d+[ZR12, M, + 57" A-fi e Myr +Wye ;R 2, [R]
=g {[dMy +Wo, Rl2}g . = skgx?,f[yx* 2]
{l=d+z1_;Rl2, [dM; + W, 1Rz, [Rl2}
[—d + ZendRl2, [af + WendRl2, [R]2

ogeX
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in the presence of

[SoWstart]1, [Sol1, [S0Z1 + $1Wyr 111, [$1]1, [$120]1, [SendWendl1, [Sendl1, [Sena@]T - m ifi=1
i-1,i .
Cty 21 =4 [sicaWir 1], [Si-1]1, [Si-127 + $iWyer 711, [Sil1, [SiZ1-7]1, [SendWend]1) [Sendl1, [Send@l7 - m ifiel2,¢-1]

[Se-1Wy: 1-gl1 [Se-111, [Se-1Z7 + SeW s 11, [Sel1, [SeZend + SendWendl1, [Sendl1s [Sena@] T - 1 ifi=2¢

and

auxi[2] = ( [a, B, WgtartB, 29B, 1B, {w; 0B, Wy 1Blges, ZengB, WendB]Z)
T T T T T T T o1 T
auxz[2] = ([1' y Wetartl' , ZoX' , 1T, {Wg oF ,Wo 1T }ge3, Zendl ) SendA"'Wendr ]2)

One can sample basis A, a,As, A}, a,, A and trivially simulate mpk, cti?l'i and secret key using terms given out above.

Furthermore, we prove this using (z;,w,= ;)-transition lemma. On input
13

A T A T T
aux, [Ag +Z; ]2, [A1 + Wy 7T I, [1 ]2

where (AOy A1) € { (S:_IIA,O) ) (Oy Sl._lA) } and aux = (A» $i—1,8i) Si-1Z7 + siwx?,‘[» [ZTBer;,TBrB]Z) with ZT!Wx;f‘,T - Z;Xky

B— Z’;Xk, r— Z}JX’C and A — 7, we sample @ — 7, Wstart, Z1 -1, Wo,1-1> Zend> Wend “— Z}JX’C forallo € Zand wy ; — Z;,Xk
forall o # x; and proceed as follows:

(Simulating aux; and aux;) We sample seng — Z,, and implicitly set A = A. Then we can simulate aux; [2], aux,[2] from
[zTB,wx;sJB, Bl, and A given out in aux along with Seng, @, Wstart, Z1-7, (W, 1-1}oes, {wU_T}(,#xi*, Zends Wend-

i-1,i

(Answering OEnc) On input (x*, m), we trivially simulate ct -

[2] using s;_1, Si, Si—1Z; + S;Wy* ; in aux and Sepd, @,
1
Wgtarty Wo,1-75 Z1-1) Zend» Wend-

(Answering OKey) On input I', we want to return a key for I' in the form:

[du’ + wyarRu' ]2, [Ru']2

T aMy rwo Rl where (8, A1) € {{ (57,0} (0,5714) }.

{[-d +2z1-;Rl2, [dMy + W51 Rl2, [R]2}
[-d +ZepqRly, [af +wepgRl2, [R]2

r

o€EX

Observe that
— when (Ag, A7) = (si__llA,O) , the distribution is identical to skf;_fl."'l 1215
— when (A, A1) = (0, sl.‘lA) , the distribution is identical to sk% < g, 12] since fiq 5 :f,-,x*Mx;f mod p, see Lemma 5.

Recall that we set A = A which means we also implicitly set
(D0, A1) = (Ao, Ay).
1xQ 5 kxQ . o .
We sampled — Z,," * and R — Z,,~ and implicitly set
R=r"-f;_1,+B-R.
We then generate the key for I' as follows:

— We simulate [R], from [r"],, [B] and f;_ »+,R.
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— We rewrite the terms in the dashed box as follows:
[~d+ (Ao +271") -fi-1,x+ +2:B-Rlz, [AMye + (Ap +wye 1) fi_1,0+ + Wy B Rl

and simulate them using [Ag +z;1" 12, [A1 + W+ '], [t ]2, [Z;Blz, [Wy ;Blo and d, f;_ +, R.
- We simulate all remaining terms using [R], and d, Wstart, Z1—1, {(Wo,r}g2x*» {Wo,1-7}0e3) Zend) Wend-

Observe that, when (Ag,A;) = (sl-__IIA,O) , we have (Ag,A1) = (sl-__llA,O) , then oracle OKey(I') returns sk?ff}‘j 12

and the simulation is identical to Hg.i.s(uo’ u1); when (Ag,A;) = (0, si_lﬁ) , we have (Ag,A;) = (0, si‘lA) , then oracle

OKey(T') returns sk% «* £ . [2] and the simulation is identical to ﬁ%.i.g(uo’ u1). This completes the proof. O

Via the same proof idea, we can prove the following lemmas stating that ﬁg(uo, u) =¢ ﬁ}l(uo, uy) for all ug, u,. We
only sketch the proof.

Lemma 52. Forall ug, u € I x I x X x Eq and all A, there exists B with Time(B) = Time(A) such that
Pri(A, HY (o, 1)) = 11— Pri(A, Hj (uo, up)) = 11 < AdvE*™S ().
Proof (sketch). We consider the case that the adversary adaptively chooses I and x* in the hybrids parameterized by

uo = ({0L[1€, %}, L, L), uy = ({0}, [}, L, L);

the lemma trivially holds in other cases. Namely, we will prove that

(mpk,auxl,auxz,cti*, skfﬁ’* ) =e (mpk,auxl,auxz,cti*, sk );

which roughly means that we need to show:

a5 P4 znaRle laf+wendR ] Rl s

=c [-d+|ZengR 12, [af+ Sgr}dA‘f"'wendR]Z; Rl //SkiE

givend, &, A, S¢, Send> S¢Zend + SendWend- This can be handled using (zenq, Wend)-transition lemma. |

F Concrete ABE for DFA with Adaptive Security

In this section, we show our concrete ABE for DFA with adaptive security. This is derived from our adaptively secure
ABE for € p-restricted NFA®» in Section 5.1 and the transformation from DFA to € o-restricted NFA®” in Section 3, see
Lemma 1.

- Setup(l’l,Z) :RunG=(p,G1,G2,Gr,e) — sah. Sample
A — ng(2k+l), K Z}jx @D and  Watart, Zo, Z1, W0, Wy 1, Zend Wend — Z;)zkﬂ)xk, Voes.

Output
mpk = ([A1, A1 Witart, A1Zo, A1Z1, {A1 W40, A1We,1 }gex, A1Zend, A1Wend 1, [A1K'] 1)
msk = (kv Witart, Zo, Z3, {Wa,Oy Wa,l toess Zends wend)-

— Enc(m k,x,m):Letx:(xl,...,Xg)EZZ.Pickso,sl,...,Sg,send<—lekandout ut
p p p

[SoA1]1, [80A1 Wstart]1
Cty = {[SjAl] 1, [Sj—lAIZj mod 2+ sjAlwxg“,j,j mod Z]I}je[g]
[SendA1]1, [$¢A1Zend + SendA1Wendl 1, [SendA1K ] 7+ m.

65



- KeyGen(mpk, msk,T) : Pick D — kaH)XQ, R— ZI;,XQ and output

[Df" + WgarRE 12, [Rf' ]2
SkF = {[_D +ZbR]2) [DM—{)- +WO',bR]2’ [R]Z}UEZ,bE{O,l} .
[-D + ZendRl2, [K'u+WengRl2, [R]2

— Dec(mpk,skr, cty) : Parse ciphertext for string x = (x1,..., x7) andkey for I' = (Q, Z, {My}gex, u, ) as

[co,111,[€0,2]1 (kplz, [rpl2
cte=| {lcjalnlejeli}; | and skp=|{[Kpl, Ky pl2, Rz}, |-
[Cend, 111, [Cend,2]1, C (Kend, 112, [Keng,2]2, [Rl2

We define f; . for all j € [0, £] as (22) and proceed as follows:
1. Compute

By = e(lco ], [kla) - e(lco 211, rpl2) ™'
2. Forall j=1,...,¢, compute
[bjlr = e(lcj-1,111, [Kj mod 212) - e([€j1]1, [Ky,,,_;,jmod2]2) - e([=¢;j2]1,[R]2) and Bj= [bjf;_,_l_j’x]T;
3. Compute

[bendl 7 = e([cy,1]1, [Kend,112) - e([€end, 111, [Kend,2]2) - ([—Cend,2]1, [R]2) and Bepg = [bendf(T),x]T;

4. Compute
(ufy )7!

B =By H§:1 Bj-Beng and B= B,

and output the message m’' — C-B~ L.

G Missing Material from Section 6

G.1 An Attack for Non-injective p with Shared Random Coins

We consider the following ABE scheme, which is the ABE scheme for NBP®? in Section 6.2 but with R =R« Z’;XQ for
all j € ¢pp, as is the case mentioned in the Overview paragraph at the beginning of Section 6.2.

mpk = ([A1, A1 Wstart, {A1Wy,6 tneo),0ex) A1Wend 11, A k']7);

[Dou’ +Wiarr'I2, [r']2
{(DjM;,;—Dj_1 +Wy(j) sRl2, [R]2 }je[gBP]ﬂez ;
[ka_ Dpr + WendRend]Zy [Rend]z

Skr

Cty = ([SAI]I» (sA1 Wistart]1, {[SAlwn,xn]l}ne[g]y [sA1Wengl1, [SA1K'] 7 m) .

We will show a concrete attack when p is non-injective.
Let us consider an NBP®» T = (Q, £gp, £, X, M o} jepp) ez, 0o, f) where Q =2, gp =2, £ =1, X = {a, b},

01
M =M; =M, =1, Mz,a=(10)=P, u=f=e;, p)=p@2)=1

and an input x = a. Then we have mpk, key for I" and ciphertext for x as follows:

mpk = ([A1, A1 Wgart, A1W4, A{Wp, AiWend 11, [A1K 17 );
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[Doe] +Witarct" 12, [1']2
[Ky,ql2 = [D1 —Do + WR]2, [R]2
(Ky,pl2 = [D1—Do+W,RI2, [Rl2 |

[K,q]2 = [D2P —D; +W,Rl, [Rl, |
(K, pl2 = [D2 — D1 + WyR]2, [R]2
[k"e; — D2 +WenqRendl2, [Rendl2

Skr =

cte = ([5A11, [8A Watart)1, [8A1 W1, (51 Wengl1, [sA1K 7+

One can check that I'(x) = 0 since fM ;M qu = e; ({ {)Ie] =0 mod p, which means the secret key skr is not supposed
to recover message m from ct,. However we show that this is not the case. Normal decryption computes

Dy = [sAiDge] ], D1 = [sA;1 (D1 —Do)l7, D2 = [sA; (D2P — D)l 7, D3 = [sA; (k' e; —D2)]7.
Besides that the shared R allows us to compute more; in particular, we compute:
(K2 = [(Kz,p —Ky,p) — K2,a —K1,0)]2 = [D2 —D2P]; and K =e([sA1]1, [Kl2) = [sA; (D2 —D,2P)]1

This allows us to compute
X Dz
D}, = [sA (D2 — DP) +$A; (D2P —D1)] 7 = [sA; (D2 — Dy)] 7

and recover [sA; k'] from Dy, Dy, D), D3:

D() D1 Dé D3

——— A —_—
Ty T el _ T Tl _ T

[SAlk It = [SAlDoel +sA; (D, Do)el +sA;1(Dy Dl)el +8A; (k e; —Dy) el]T.

G.2 Missing Proof in Section 6.3
In this section, we prove that Gy =, G; and the advantage of adversary in G3 is 0. All games are defined in Section 6.3.

Lemma 53 (Gg = Gy). For all A, there exists B with Time(B) = Time(A) such that

Gy
Pr((A,Go) =11 - Pr[¢4,Gy) = 1] < Adv‘;DAl“*‘lvaz .

Gy

Proof (sketch). This relies on SD Al—A; 2

, assumption which implies

(A1, [[sA1]1]) =c (A1, [[sAy + sazly )
where s — Z},X kands—z p- Let x* be the selective challenge, the reduction algorithm is sketched as follows:

- we sample k, Wtart, Wy, 5, Weng for all n € [£], 0 € = and create (mpk, msk) honestly using [A;];.

- on key query I, we honestly run skp — KeyGen(mpk, msk,T') using mpk and msk;

- on input challenge query (mg, m;), we sample  and create the challenge ciphertext using the term given out in
the statement above. O

Lemma 54 (Advantage in G3). For all A, we have
Pri(A,G3)=1]1=1/2.

Proof (sketch). First, we argue that the secret key sky. perfectly hides the a,-component of k', i.e., a = a;k". Recall the
ay-components of the key
[dou" + Wtarct"]2, [1']2
skr(2] = | {1d;M; 5 —dj1 +Wp(j oRj12, Rjl2} je gy oes
laf + - d[gp +WendRendl2, [Rendl2

We observe that it only leaks a + A which means that the key perfectly hides a. Therefore, the unique term involving k
in ct;* ,i.e., [sA1K" + sayk"] 1, is independently and uniformly distributed and thus statistically hides message mg. O
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G.3 Missing Proof in Section 6.4

We show that the core lemma, Lemma 30, implies G, x—1 = G« for all x € [g].

Lemma 55 (Lemma 30 = Gy, =, Gyx). Forallx € [q] and all A, there exists B with Time(B) =~ Time(A) and
Pr{(A, Ga.x-1) = 1] = Prl{A, Go) = 1] < Adviz™* (1)

where Advy " (1) is defined in Lemma 30.

Proof (sketch). By Lemma 4, we only focus on a,-components. On input aux, reduction B works as follows:

- OninputT, it proceeds as follows:
o for the x’th query, return the result of oracle query OKey (I');
o for the remaining queries, output skr[2] or sk;.[2] which can be created from aux;
- Oninput (x*, my, m;), make an oracle query OEnc(x*) and create the challenge ciphertext with the help of aux.

Observe that, if OKey(T') outputs skr[2], the simulation is identical to Gy x—1; if OKey(I') outputs sk;.[2], the simulation
isidentical to G x. This completes the proof. m|

G.4 Detailed Proofs of Neighbor Indistinguishability

This section provides the detailed for proving Lemma 32 restated below. The proofs are similar to those for selective
security in Section 6.3.

Lemma 56 (Neighbor indistinguishability). For all xxx € {0,2} U {1.i.i’ : i € [¢gpl,i’ € [2]}, ugp, uy € I x Eog and all A,
there exists B with Time(B) = Time(A) such that

Pr((A, HS, (o, u1)) = 1] — Pr¢A, Hige, (ug, u1)) = 1] < O(Z%) - Advi; M (1),

XXX
Initializing. We prove the following lemma stating that HY (ug, u1) =¢ H§(uo, u1) for all uo, uy. This is analogous to
Lemma 25.
Lemma 57. Forall up, u; € I x Eg and all A, we have

Pr{(A, Hy (o, 1)) = 11 = Pri¢A, Hy (uo, u)) = 1]
Proof (sketch). We consider the case that the adversary adaptively chooses I' and x* in the hybrids parameterized by

up = ([L, L)), ur = ({0}, Ko, );

the lemma trivially holds in all other cases. Roughly, in this case, we prove

(aux,OEnc(x*),) = (aux, OEnc(x™), Squrfo,x* [2])
where we have

[ dou” |+ Wetart 12, 1712
skrl2] = [ {1d;M; o —dj1+Wp(j),oR;l2, Rjl2} re iy pex
laf—dgg, + WendRendl2, [Rendl2

[(do+A-for)u" +Wsearr']o, [r']2
0 —
skrg, - (21 = [{1djM; o —dj 1 +Wp(jy oRjl2, [Rjl2} jcioy) ges

laf—dgy, + WendRendl2, [Rendl2

and
aux OEnc(x*)
(B, {Wn,JB}ne[[],Uezlb a, A, Wstar;, Wend  and {Wn,x; }qe[ﬁ] .
The lemma immediately follows from the fact I'(x*) = 0 < fy ,+u" = 0 mod p, see Lemma 24. O
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1;1 (o, uy) and Hg(uo,ul) ~ ﬁé(uo,ul) for all i € [¢pp] and all

Uy, u1. The proofs for them are similar. We begin with the following lemma stating that ﬁ?'l.l (ug, 1) =g Hi_m(uo, uy)

Key switching I. We will prove that ﬁ(l’_ i1 (Uo, 1) =5 H
for all ug, u;, which is analogous to Lemma 26, and sketch the proof for remaining statements.
Lemma 58. Forall up, uy € I x Eg and all A, we have
Pri(A, HY | 1 (o, un)) = 11 = Pri¢A, Hi 1 (g, 1)) = 11
Proof. We consider the case that the adversary adaptively chooses I' and x* in the hybrids parameterized by

uo = ({0} fo,x+), w1 = (10,1}, fo,»+);

the lemma trivially holds in all other cases. Roughly, in this case, we prove that

(aux, OEnc(x™),|sky. ¢, ., [21)) = (aux, OEnc(x"), sk(r)’}o,x* 21).

More concretely, this means that

(| (do+A-fo ) u" + Wsgarct' 2, [r'12 [do u" +Wiarr" 12, [x7]2

K0 21— { [dlMl,U+Wp(1),aR1]27 Rilo},ex - {[diMy,; —do +A-fo x +Wy1)0R1]2, [Ril2}cx 0!
IR ~s M. . ) ) ) B
o {[d;Mjo —dj1 +Wp(joRjl2, Rjl2} 4 pes {[d;Mjo —dj1+Wp(joRjl2, Rjl2} ) pex
laf- dep + WendRendl2, [Rendl2 [af- d[Bp + WendRendl2, [Rendl2
given
aux OEnc(x*)
[B, {Wn,oB}ne[l],aez]Zy a, A\, Wstar, Wenqg  and {Wn,x; }176[[] .
This immediately follows from change of variables dg — dg — A - fo = |

0
1.i.1

[2,¢gp] and Hg(uo, u) ~¢ H%(uo, uy), respectively. The first lemma relies on change of variabled;_; — d;—1 — A -f;_; x+;

Via the same proofidea, we can prove the following two lemmas stating that H (ug, u1) =, ﬁ}'i_l (ug, up) foralli e

while the second lemma relies on change of variable dg,, — dg,, — A-fy,, +. We give the lemmas but omit the proofs.
Lemma59. Forallie€ [2,¢pp], up, u1 € I x Eg and all A, we have
Pri¢A, HY | | (uo, un)) = 1] = Pri¢A, AL (ug, up)) = 11
Lemma 60. Forall ug, uy € I x Eg and all A, we have
Pri(A, H)(uo, 1)) = 1] = Pri¢A, Hj (ug, un)) = 11.
Key switching II. We prove the following lemma stating that ﬁ?.i'z(uo, Uy =¢ ﬁii.z(ug, uy) forall i € [¢gp] and all uy, u;.
This is analogous to Lemma 29.

Lemma61. Forallie€ [{ppl, up,u; € I x Eq and all A, there exists B with Time(B) = Time(A) such that

aly a1 o] _ 2y a4 PPHG
Pr{(A, A2, , (g, un)) = 1]~ Pr{CA, AL, (g, 1)) = 1] < OUZP) - Advyy "2,

Proof. We consider the case that the adversary adaptively chooses I' and x* in the hybrids parameterized by

o= ({i =1, i}, fim1 0 ), wr = (il B );

the lemma trivially holds in other cases. Roughly, we prove that

(aux, OEnc(x™), ské_fl’i _[21)) =¢ (aux, OEnc(x™), Sk%,f,- " [2])

Hi-1,x
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which means:

[dou" + Wigarr" 12, [17]2
ki~ o] = {l[d;iM; ; —d;_y ++Wp(i),aRi]z, Ril2}es
Iﬂ'fi— x* N . - I . . .
b {[djMjo —dj1+Wp(joRjl2 Rjl2} 1 pex
[af—dgy, + WendRendl2, [Rendl2
[dou” + Wygarer' 12, [1']2
{[diM; 5 —di—1 + A-f; *M; s +Wy()0Ril2, [Ril2}
{[d;Mjo —dj-1+Wp(joR)l2, Rjl2} 1 ex
laf- dfgp + WendRendl2, [Rendl2

geX | _ i .
= Skr’fi,x* [2];

in the presence of
aux OEnc(x*)

——
[B, {WU,UB}TIEM],UGZ]ZI a, A\, Wgtar, Wend  and {Wn,x; }ne[[] .

We randomly guess x* . — X, which causes a multiplicative security loss of |X|, and prove this using the following

(i)
statement implied by DDHf’}2 assumption: for all A € Z,, we have

{Wp(i),oBl2, [Bl2, [A- +W(i),oRil2, [Ri]2 }m;m ~c { [Wp(i),0Bl2, [Blz, [A- i xsMjg +Wp(i),oRil2, [Ri]2 }m;m

X X kx .
where wy() o — Z,l” kB— leg kandR; — z, Q On input { (W, (j),¢Bl2, [Blz, [ts]2, [Ril2 } )where

o#x;(i
ts =A '+Wp(,'),gRi or ts =A- fi,x*Mi'g +WP(i)’0‘Ri

we sample a — Zp,wstart,wp(,-),x;m ,Wend — Z},Xk and wy ; — Z}]Xk for all n # p(i), 0 € X and proceed as follows:

(Simulating aux) We can trivially simulate aux using A, { [Wy(i),0Bl2, [Bl2 } : given in the lemma and &, Wstart, Weng,

T#X" .
pl
wp(i)'x;m, {Wi,otn#p(i),0ex sampled by ourselves.

(Answering OEnc) On input x*, we can answer OEnc(x*) using the knowledge of w,;), = and {wy s }nzp(i). Here we
use the fact that the oracle does not involve {wp(l-)yg}(,#x*(.).
p(i

(Answering OKey) On input I', we want to simulate secret key in the form:

[dou’ + Wsgarr' 12, [1']2
{ [diM e —dicy +A-fimgxe +Wpiiy 2 Rilz, Rl2}
{ldiM; 5 —di—1 + o2, [Ri]2 }#x;m
{1djM; o —dj1+Wp()oRi12, [Rjl2} 1 pex
[af—dg,, +WendRendl2, [Rendl2

Observe that,

- whent, =A - + Wy (i),0R;, the distribution is identical to Sk;,_fll-iil - 21}

- whenty; = A-f; x*M; 5 +W (i) sR;, the distribution is identical to skf_ g . 2] sincef;_y x+ =F o+ M o~
i, x

mod p, see
() P

Lemma 24.
We sample dy, ..., dg,, — leng and simulate the key as follows:
— We simulate the terms in the second row using [R;], and Wo(i), x;(i);

— We simulate the terms in the third row using [t;]» and [R;]2;
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- All remaining terms can be simulated using aux.

Observe that, when t; = A - +Wy(j),oR;, oracle OKey(I') returns sk;}ljil . [2]|and the simulation is identical to
i-1,x

ﬁ(l) i (U, u1); when ty = A+ f; x«M; 5 +Wy(;) oR;, oracle OKey(T') returns sk% ¢ . [2] and the simulation is identical to
W1 LY

H ii_z(uo, u1). This completes the proof. a

H Concrete ABE for Branching Program with Adaptive Security

In this section, we show our compact adaptively secure ABE for branching program (BP). This is derived from our
adaptively secure ABE for € o-restricted NBP®7 in Section 6.2 and the transformation from BP to € -restricted NBP®»
in Section 6.1, see Lemma 23.

- Setup(1},4,%) : Run G = (p,G1,G2,Gr,e) — 5. Sample
A1 - Z];:Jx (k+1)' k — Z})X(k+l) and Wstartrwn,a»wend — ch+l)><k, VT] € [[],0_ ey,

Output
mpk = ( [A1, A1 Wtart, {AIWT],LT }ne[«?],aez’ Alwendh, [AlkT] T)

msk = (k; Witart, {Wh,o }nee),0ex) Wend )

- Enc(mpk, x, m) : Let x = (x1,...,X¢) € slandme Gr.Picks — Z},"k and output

Cty = ([SAI]I» [sA1Wgtart1, {[SAlwﬂvxn]l}ne[é]' [sA1Wengl1, [sA1K'] 7 m) .
- KeyGen(mpk, msk,I') : Let I' = (Q, £gp, ¢, 2, IM 5} je[¢gp),0ex, 0, B). Pick
(k+1)xQ kxQ 1xk
Do,Dy,..., Dy, — Z1) R, Ry Rend — 23,9, 1 — Z),
output

[Dof™ + Wartt' 12, [£7]2

ske=[{D;M}_ ., i, ~Dj-1+Wpgpe1-j.oRil2 Rjl2} e pes |-
K'u-— Dyyp + WendRendl2, [Rendl2

— Dec(mpk,skr, cty) : Parse ciphertext for x = (x1,..., x¢) and key for I = (Q, #pp, ¢, Z, {Mj,g}je[gBP],gez,p,u,f) as
[k-srtart]Zy [rT]Z

cty = ([ely, [Cstard]1, { [eph }nE[lJ’ [Cendl1,C) and sk =|{[Kjql2, [lez}j'g .
[Kendl2, [Rendl2

We define f; , for all j € [0, £pp] as (39) and proceed as follows:
1. Compute
Bgtare = e([c]1, (Klar)2) - e([Csard1, [F]2) 7

2. For all j € [¢Bp], compute
(bjlr = e(lelr, [Kjx, i1 5]2) - e(=Cpegpr1-l1, [Rj]2) and  Bj = [bjf;BP+1,j,x]T;

3. Compute
[benal T = e(lcl1, [Kendl2) - €([=€endl1, [Rl2) and  Bepg = [bendfT[),x]T;
4. Compute

(uf) )7!

l
Baj = Bstart Hif} Bj “Beng and B= Ball

and output the message m’' — C-B~1.
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I Adaptively Secure CP-ABE for £ (-restricted NFA®» and DFA

In this section, we construct adaptively secure CP-ABE for € p-restricted NFA®» from k-Lin assumption. The scheme is
based on our adaptively secure KP-ABE for the same class in Section 5 and dual conversion in [4,6]. This readily gives
us an adaptively secure CP-ABE for DFA by Lemma 1.

I.1 Basis

We will use the following two sets of bases for ciphertexts and keys, respectively:
A Ap — Zikxk and (B1,B) — Z’;X(3k+1) x ka“)x(Sk“).

We use A7 ,Ay € Z,’;xz" to denote the dual basis of (A;,A;) such that A+A; =1 for i € {1,2} and A7A; = 0 for i # j.
Analogously, we use (Bi,B;) € ka“)xk x ka“)x(zk“) to denote the dual basis of (B;,By). In the proof, we will use

Go Gy . .
SDAl —Ap A and SDBI’—’BlyBZ assumption, cf. Section 4.1.

1.2 Scheme

For notational convenience, especially reusing NFA notations in Section 5, we will generate ciphertexts over G, and
keys over Gi. Our CP-ABE for € -restricted NFA®» in prime-order groups is described as follows:

Setup(1},Z) : Run G = (p, G1, G2, Gr, €) — G(11). Sample
Ay — 22K, By — 2GR D Kk — 2%% and Wagare, Zo, Z1, Wo, W0, W1, Zend, Wena — Z5° V"2, Vo e 3.

Output
mpk = ([A1, WstartA1, ZoA1, Z1A1, WoA1, {Wg0A1, Wg 1A }oes, ZendAl, WendAt l2, (kA1 T)
msk = (k, B1, Wstart, Zo, Z1, Wo, {Ws 0, Wo 1 toess Zend, wend)-

Enc(mpk,T',m): LetT'= (Q, Z, {Mg}ses,u,f) and m € Gr. Pick D — Z;,SIHUXQ, S — Z,];XQ, s — Z;Xk and output

[Du’ + WsarcA1Su']2, [A1Su' ],
{[=D +ZA;Sl2, (DM + W, 5A18l2, [A1S]2} oo s peror)
[D +ZendA1Sl2, [(WoA1 S )f+ WengA1Sla, [A1S]2 |
[A1s']2, [KA;s"] - m

ctr =

KeyGen(mpk, msk, x) : Let x = (x1,..., x¢) € Z¢. Pick 1, T1,...,¥p, Fend — Z},Xk and output

(roBi1l1, [roB1Wstarth:
{irjB1l1,[rj-1B1Z; mod 2 +1jB1Wy; j mod 211} je )
[YendBil1, [F/B1Zend + YenaB1Wendl1
[renaB1Wo +kly

sky =

Dec(mpk, sky, ctr) : Parse key for x = (x1,..., x7) and ciphertext for I' = (Q, Z, {My}ges,u, ) as

(ko 111, (ko211 [ 1)2, [€h 512
ok, = {kj1l1, [kj2h }j and ctp = {[Cpl2, [Cq,pl2, [Cl2 }U,b .
[kend,lhr [kend,z]l [Cend,l]z, [Cend,2]2» [Cl2
(Kenal1 [CT]Z»C

We define
“;,x =M,;---My,u" mod p, Vj €0,/]

as (11) in Section 4.2 and proceed as follows:
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1. Compute
By =e(lko1]1, [€h1]2) - e(lko 211, [€ ]2) 5

2. Forall j € [¢], compute
[bjl7 = e(lkj-1,111,[Cj mod 212) - e([kj1]1, [Cx;, j mod 212) - e([=k;211,[Cl2) and Bj=[bju}_; Ir;

3. Compute

[bendlT = e(lkg,111, [Cend,112) - €([Kend 111, [Cend 212) - €([~kend 21, [Cl2)  and  Beng = [benatty 17

4. Compute
(fuj )7

Bai=Byp- H§:1 Bj-Beng and B= B,

5. Compute
D = e(lkenal1, [c]2) - B!

and output the message m’ — C-D™!.

Correctness. For x = (x1,...,x,) and T = (Q, X, {My}sex,u,f) such that I'(x) = 1, we have:

By = [roB;Du'] 1 = [roB; Duy ] 7 (50)
bj = r;BDM,; -r;_;B;D 51)
Bj = [erlDu;’x_l'j—lBlDu;_l’x]T (52)
bend = FenaB1(WoA s )f—r/BD (53)
Bend = [TenaB1(WoA;s')fu, . —r/BiDuy |7 (54)
Ba = [FengB1(WoAis)fuy, 17 (55)
B = [FendB1(WoAs")] 7 (56)

D = [KA;s'] 1 (57)

Here (54) is trivial; (52) and (56) follow from facts (19); the remaining equalities follow from:

(50) roBiDu’ = roB; - (Du’ + WyartA1Su') — roB; Wegare - A Su’
(51)  1;BiDMy, —1j_1BiD = rj_1B1- (=D +Z; mod 2A1S) + 1By - DMy, + Wy, j mod 2A1S)

—(rj-1B1Zjmod 2 +1jB1Wy; jmod 2) -A1S
(53) rengB1(WoA1s )f—1/B1D = 1/B - (=D +ZengA1S) +rendB1 - (WoA;s' £+ WengA1S) — (ryB1Zend + FendB1 Wena) - A1S
(55) YendB1 (WOAlsT)fu;,x = roBlDuax + Z§:1 (erlDu;,x - rj,lBlDu}_Lx) + (FengB1 (WoAlsT)fu;,x - I‘[BlDll;,x)
(57) kA;s" = (rengB1Wo + k) -A1s™ —rengBiWoA;s'

Correctness follows readily.

1.3 Adaptive Security
We prove the following theorem.

Theorem 6 (Adaptively Secure CP-ABE for € -restricted NFA®?). The ABE scheme for £ o -restricted NFA®? in prime-
order bilinear groups described in Section 1.2 is adaptively secure (cf. Section 2.1) under the k-Lin assumption with
security loss O(q - € -|Z|® - Q?). Here ¢ is the maximum length of the q key queries.

The proof employs standard dual system argument where we handle key queries one by one; for each key, we rely on
the core lemma, Lemma 19, for our adaptively secure KP-ABE for € q-restricted NFA®? (in Section 5). We only show
the game sequence and sketch the proof.
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Auxiliary distributions. We use I'* = (Q, %, {My}se3x, u,f) to denote the adaptive challenge NFA and x = (x1,...,X7) a
key query. We describe the auxiliary ciphertext and key distributions that we use in the proof.

Ciphertext distributions. We sample § — Z];,XQ, §— Z},Xk and define:

- N: the real ciphertext in the scheme;
- SF:identical to an N ciphertext except that we replace A;S and A;s" with A; S +A,SandA;s" +A,8T, respectively.

That is, we write

(DU + Wytare (A1S +| A28 )uT ], [(A1S +| A28 '
SF {[—D+Zb(Als+)]2,[DMU+Wg'b(AIS+)]2,[A1S+lz}gezyhe{o,li ‘
U 1-D + Zena (A1 +[ A0S 1o, [(Wo (Ar™ +[Ag8T D)+ Weng (A1S +|A08 )12, [A1S +[ A8l
[A1s" +|A8" [lo, (k(A;s™ +|Ao8" )17 mp

Secret key distributions. We sample A — Z,lgxk, £j,fend — Z;,X @D for all j € [0, ¢] and define

N: the real key in the scheme;

SF:identical to an N key except that we replace k with AArj +k;
— P-N:identical to an N key except that we replace r;B1, rengB1 with rjB1 +£;By, rengB1 + fendB2;

P-SF: identical to an SF key except that we replace r By, rengB; with rjBy + By, rendB1 + fengBa.
That is, we write

(roB1]1, [roB1Wstartl1
GSF = {[r;B1l1, [rj-1B1Zj mod 2 + ¥ B1Wy, j modZ]I}jem )
* [FenaBil1, [r/B1Zend + YendB1Wendl1,

[FenaB1Wo + +klq

[roB; +]1, [(roBy +)Wstart]1
PN {[rjB1+|2;B2 |1, [(rj-1B1 +[#j-1B2)Zj moa 2 + (¢jB1 +|#;B2 )W j mod 211} jery
[FenaB1 +[fenaB2 11, [(t/B1 +[£/B2 ) Zend + (FenaB1 +|[fenaB2 ) Wendl1,
[(renaB1 +|FenaB2 )Wo + ki

[roBy +[£0Ba |I1, [(XoB) +[£0B2 ) Wtart]1

okP-SF _ {[r;B, +]1, [(xj—1B1+ )Zj mod 2 + (B + )ij,j mod 2]1}]-5[/]
[FenaB1 +[FenaB2 [I1, [(r/B1 +[£¢B2 ) Zend + (fenaB1 +[EenaB2 )Wendl1,
[(renaB1 +[FenaB2 )Wo + AAS + kI

Game sequences. We prove Theorem 6 via a series of games following the standard dual system method [20,22,4]:

Go: Identical to the real game where all keys and challenge ciphertext are sk)'zl and ctp'*, respectively.

G;: Identical to Gy except that the challenge ciphertext is ct?f .

- Gaxp for x € [g]: Identical to G; except that the first x — 1 secret keys are sng.
kPN,
kP-SF,

— Gy for x € [g]: Identical to G « ¢ except that the k-th secret key is s
- Gy for x € [g]: Identical to G, «.; except that the k-th secret key is s
— Gy i3 for x € [g]: Identical to G, « » except that the x-th secret key skiF.

G3: Identical to Gy 4.3 except that the challenge ciphertext is an encryption of a random message.

Note that we have G, 19 = Gy and Gy 49 = Gax-13 for g € [2, g].
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Proof sketch. Most proofs are standard: Gy =, G; follows from SDgle ALAs assumption; both Gy = Gox.1 and

1

Gox.2 =¢ Gox.3 with x € [g] follow from SDngl

B, assumption and Gy 4.3 =5 G is straightforward by a standard statis-
tical argument involving k and A. We focus on Gy .1 = G2 for all € [g].

Lemma 62 (Gy 1 =c Gox.2). Forallk € [q] and all A, there exists B with Time(B) = Time(A) and
Pr[(A, Gox1) = 1 = Pr[(A, Gox2) = 11 = O(¢- |2 - Q%) - Advi N (1)

Proof (sketch). We use the core lemma, Lemma 19, to prove the lemma. By the core lemma, it is sufficient to prove that
for all x and all A, there exists B with Time(B) = Time(A) such that

Pr((A, Gax.1) = 1] = Pri{A, Gox2) = 1] < Advi " (A).
For this, we define two auxiliary games Gox1 and Go by the following change of variables in both G x 1 and Gp « »:
Wistart — Wstart + Bé_wstartAé_;
Zy — Zp+ByZyAy, Vbhel0,1},

W, — W, 5 +ByW, ,Ay, Vo eZ, bel{0,1}

Zend e Zend + Bé_ ZendAi_ y

Wend = Wend + B%WendAL’

D— D+B;D

and

. A 1A 0 in Gz. 1
Wy — Wy — By (B(Eendby) ' -by A)AS, where f= )
1 in GZ.K.Z

where Weare, Z, Wo. b, Zend, Wend — Z(,,ZHUX’C forallo€X,be{0,1}, D — Z;,ZIHDXQ and by — Zf,k“. Looking ahead, by
is a part of dual basis of (59) defined later. It is clear that we have
Pri(A, Gox1) = 1] = Pri¢A, Gox 1) =11 and  Pri(A, Gaxe2) = 11 = Prl(A4, Gaxe2) = 1]
since the change of variables does not change the two games. Now it is sufficient to prove that
Prl(A, Goxc1) = 11 - Prl¢A, Gox2) = 11 = Adv ™ (). (58)

Observe that, in the new games, we have mpk, skzl and sk§F unchanged due to the fact that AzlAl =0and B1B2L =0;
the challenge ciphertext is in the form of

[Bé‘f)uT + Bi_wstartsu-r]z, [0]2
1D Rply & 1A L & .
Ct?f . {[_BZ D+ Bg ZbS]ZJ [BZ DMU:" B2 W?',bs]ZJ [0]2}0'62,176{011} Where ﬂ _ 0 mn GZ.K.I
[~B; D+ By ZenaSlz, =By - BlFenaby) ™" -by AST -+ By WenaSl2, [0]2 1 inGoxo
[0]2, [0]7

while the x-th key in the two games are in the form of

(011, [FoWstareA 1
{1011, [£j-1Z; mod 2A5 + W) j mod 2A2L]1}j€[[]
(011, [/ ZendAs + EendWendAy 11
(0]

sk)F;'N-

It is clear that the two games are identical except that boxed parts, so it is sufficient to prove the indistinguishability

between the boxed parts in games. Formally, we capture this by the following claim. Note that we neglect BZL and
A2l which are unrelated to the argument and give out S and i»Fend in order to simulate ct?,ﬁF
kP-N

-part of the challenge

ciphertext and s -part of the x-th key.
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Claim. For all A, there exists B with Time(B) = Time(A) and
Pr[(A,Ho) = 1] = Pr[(A, Hyp) = 1] < Adviy " (1)

where we define:
(A, Hﬁ) - {,3/ - AOEnc(‘),OKey(J}
and the two oracles work as follows:
— OEnc(T): output
[Du’ + WyiarSu'lo, [Su'],
{[-D+Z,S5, DM, + Wy 1812, 1812} 45 peioy
(=D + ZengSl2, [BEenaby) ™! -by AT - £+ WenaSly, Sl
- OKey(x): output
[i'O]l; [f'OWstart]l
{[f'j]ly [f'j—lzj mod 2 +i'ijj,j mod 2]1}j€[g]
[f'end] 1, [f[Zend + i'end‘ivend] 1

with the restrictions that (1) A makes only one query to each oracle; (2) queries I' and x satisfy I'(x) = 0.

It is direct to verify that the terms given out in the claim are sufficient to simulate both games and readily implies (58).
This leaves us with the proof for the claim which is sketched as follows.

Proof of Claim (sketch). The claim relies on the core lemma, Lemma 19, for adaptively secure KP-ABE for € -restricted
NFA®» in Section 5. Consider another set of basis which is motivated by that used for our KP-ABE for £-NFA®», i.e.,

]:)'1 - lex(zkﬂ)’ b2 - Z;,X(Zkﬂ), ﬁg - ZI;X(ZIC+1) (59)

and use (ﬁl,f)é-,ﬁé-) € Z;,Zk“)xk x Z%k“ x Z;,Zk“))(k to denote this dual as in Section 4.1. Note that b, has appeared in
the reply of OEnc(I'). Then we define two auxiliary games as follows:

- H’ﬁ is identical to Hg except that we sample &; — span(B;) forall j € [0, ¢] and teng — span(B;,by).

It is direct to prove that

Gy
g " B1—Bj,b2,B;3 R
- Hy=¢H] by SDB;HBI B, assumption and (-, Wepg)-switching lemma (for £;) due to the presence of bs;

- Hj{ =¢ H] by the core lemma, Lemma 19.

- Ho =¢ H{ by SD]CS":_,BI'B3 assumption (for fenq) and SD assumption (for #;);

This readily proves the claim and the lemma. O

J Adaptively Secure CP-ABE for € ;-restricted NBP®» and BP

In this section, we construct a compact adaptively secure CP-ABE for &-restricted NBP®». The scheme is based on
our KP-ABE for the same class in Section 6 and dual conversion in [4,6]. This readily gives us a compact adaptively
secure CP-ABE for BP by Lemma 23 where the key size grows linearly with the length of input and independent of the
program size.

J.1 Basis
We will use the following two sets of bases for ciphertexts and keys, respectively:
ALAy —Z5% and By, by) — Z Y <z KD,

We use All,Aj- € Z’;XZI‘ to denote the dual basis of (A;,A») such that Af-Al- =Iforie{l,2}and AfAj =0fori#j.Anal-

Go

ogously, we use (B{,by) € Z;,kﬂ)xk X Zg,k“)“ to denote the dual basis of (By,b,). In the proof, we will use SD,?_,

G . .
and SDB]HB],bz assumption, cf. Section 4.1.
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J.2 Scheme

For notational convenience, especially reusing the branching program notations in Section 6, we will generate cipher-
texts over G, and keys over G;. Our CP-ABE for € o-restricted NBP®» in prime-order groups is described as follows:

- Setup(1*,4,%) : Run G = (p, Gy, G2, Gr, e) — G(11). Sample
A= 230K By 25D k202 and Watar, Wy, Wend, Wo — Z %K, Ve (4], 0 € 2.

Output
mpk = ([Al, WitartAl, {wn,aAl }ne[[],UEZv WendgA1, WoAj 12, [kA;] T)
msk = (k» B1, Wetart, {Wn,a }ne[l],aei, Wend, WO)-

— Enc(mpk,T’,m):LetT = (Q,¢pp,?,%, {Mj,g}jg[ng],gez,p,u,f) and m € Gr. Pick
k x ke x x
DOley---»DprhZ(p-Fl) Q! Slw--»SZBp»Send‘_Zp Q! Sstartvs‘_zi; k

and output
[Dou" + WitarcA1 Sgiarc)2) [A1ST )2
ctr = {IDjMjo =Dj1+ Wp(,oA1S 2, [A1S12} jeiryp ez |
[(WoA;8")f— Dy, +WendAiSendlz, [A1Sendl2
(A1s']2, (kA18']T-m

— KeyGen(mpk, msk, x) : Let x = (x1,...,X/) € ¢, Pickr — Z}axk and output

sky = ([I‘Blh, (rByWo + k1, [rB1Wstardl1, {[rB1Wn,x, 11}, ) [rBlwend]l)-

— Dec(mpk,sky, ctr) : Parse key for x = (xy,..., x¢) and ciphertext for I' = (Q, £gp, £, Z, M 5} je[pp],0¢3, P, W, f) as

T T
[cstart,l]z' [cstart,Z]Z

{ICj o2, [lez}j'g
[Cend,l]Zr [Cend,2]2
[c']2,C

sky = ([rol1, ko1, Kkstarel1, { [yl },7, (Kenal1) and ctr =

We define

u.. =M

jix 730" Mi,x,q, 0" mod p, Vj € [0, £pp]

as (30) in Section 6.2 and proceed as follows:
1. Compute

Bstart = e([rol1, [Clare 112) - €(Kstard]1, [Cliare 212) 75

2. Forall j € [¢pp], compute

[bjlT = e(lrol1, [Cjx,;]2) - e([-kp(]1, [Cj]2) and Bj:[bju;_l,x]T;

3. Compute
[bendl T = e([rol1, [Cend,1]2) - €([—Kendl1, [Cend,2]2) and  Bend = [bendu;Bp,x]T;
4. Compute
lpp (f“;Bp,xrl
Ban = Bstart * Hj=1 Bj “Beng and B= Ball
5. Compute

D= e([koly,[c']2)- B!

and output the message m' — C-D™!.
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Correctness. For x = (x1,...,xy) and I = (Q, ¢gp,¥¢,Z, M 5} jelepp),oes p,u,f) such that I'(x) = 1, we have:

Bstart = [rBiDou’] 7 = [rB;Douy 17 (60)
bj = rBleMj,xp(j) —l‘Ble_l (61)
Bj = [rBleu;’x—rBle_lu;_l,x]T (62)

bend = rB1 (WA s )f—rB; Dy, (63)

Bend = [rB1(WoAis)fu, —rBiDyuy 17 (64)

Ban = [rB1(WoA1s)fuy 17 (65)
B = [rB;(WoA;8)]r (66)
D = [kA;s"]7. (67)

Here (64) is trivial; (62) and (66) follow from facts (38), the remaining equalities follow from:

(60) rB;Dou’ = rB; - (Dou’ +WiariAy Sltart) — 1B Witart - Ay S-srtart
(61) rBiD;M v, ;) —rBiDj1 = 1By~ (DjMjx,;, =Dj-1+Wp(j),x,;,A1S)) —tB1Wp(jy x, - A1S;
(63) rB;(WoA;sN)f-rBDy,, = rB; - (WoA;s)f— Dy, + WendAiSend) — B1Wend - A1Send
¢
(65) B (WoAisNfuy = rBiDoug, + ¥ 2 rBiDju} —rBiDj qu}_ )+ (@B (WoAis)fu, =~ —rBiDgyu; ).

j-1,x
(67) kAlsT = BiWy +k) -AlsT —-rB; (W()AlST).

Correctness follows readily.

J.3 Adaptive Security
We prove the following theorem.

Theorem 7 (Adaptively Secure CP-ABE for -restricted NBP®?). The ABE scheme for € o -restricted NBP®» in prime-
order bilinear groups described in Section ].2 is adaptively secure (cf. Section 2.1) under the k-Lin assumption with
security loss O(q - € gp-|Z|? - Q®). Here £ gp are program length in adversary’s challenge query and q is the number of key
queries.

The proof employs standard dual system argument where we handle key queries one by one; for each key, we rely on
the core lemma, Lemma 30, for our adaptively secure KP-ABE for € g-restricted NBP®? (in Section 6). We only show
the game sequence and sketch the proof.

Auxiliary distributions. We use I'* = (Q, £p, ¢, %, {M; 5} je[¢yp),0ez, 0, W, f) to denote the adaptive challenge NBP and
x = (x1,...,x¢) akey query. We describe the auxiliary ciphertext and key distributions that we use in the proof.

Ciphertext distributions. We sample Sy, ..., 855, Send — Z,’;XQ, Sstart, § — Z;Xk and define:

— N: the real ciphertext in the scheme;

— SF:identical to an N ciphertext except that we replace A, A1S;, A1Send, A1s’ With A1 8], +A28l ., A1S;+A2S;,

A1Send +A2Send, Ais” +Az8", respectively.

That is, we write
[Dout” + Wtare (A1 Tiar, +| A28l are D2, [A18Tare +| A28l ]l2
s_ | {DMjo=Dj 1 +Wy(j)o(A:S;+|A28; Iz, [A1S; + A28l } je sy oex
SF — - - . .
[(Wo(Ass™ +[A28" ))f~Dyy, + Wend (A1 Send +|A28end )12, [A1Send +|A2Send |12

[Ars™ +[Ao8" [lo, (k(ArsT +|A28" 17 mp
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Secret key distributions. We sample A — Z}?Xk , F — Zp and define:

N: the real key in the scheme;
SF: identical to an N key except that we replace k with AAZl +k;
- P-N:identical to an N key except that we replace rB; with rB; + 7'by;

- P-SF:identical to an SF key except that we replace rB; with rB; + b,.

That is, we write
F
skSF = (IrByly, (B Wo +|AAZ |+ Kl1, (1B Watardl1, {FB1Wo 11 b i), (FB1 Wenal1 )3

kPN = ((rBy +[7by 1, (1B, +[7p JWo +KIy, (1B +[7bp JWitart)1, {10y +[7bo /Wy .11} ), (1B +[7p ) Wengl1 )
okP-SF _ ([rBl +[7ba 11, [(rBy +[7b2 )Wo + AAZ + K1, [(4B1 +[ b \Wotarel1, {{(0B1 +[7b2 )Wy 11}, , By +)wendh) :

Game sequences. We prove Theorem 7 via a series of games following the standard dual system method [20,22,4]:

N
T*

Go: Identical to the real game where all keys and challenge ciphertext are sk)'>I and ct

Gi: Identical to Gy except that the challenge ciphertext is ct?f .

respectively.

- Gy for x € [g]: Identical to G; except that the first x — 1 secret keys are sng.

— Gy for x € [g]: Identical to G, x ¢ except that the x-th secret key is skf:'N.
— G2 for x € [g]: Identical to G, «.; except that the x-th secret key is skE'SF.

— Gyx3 forx € [g]: Identical to Gy« 2 except that the k-th secret key sk)SCF.

Gs: Identical to Gy 4.3 except that the challenge ciphertext is an encryption of a random message.

Note that we have G, 19 = G; and Gy, 0 = Gox-13 for g€ [2,q].

Proof sketch. Most proofs are standard: Gy =, G; follows from SDgle

Gox2 =¢ Gox3 with x € [g] follow from SDS:HBI by assumption and G, 43 =5 Gs is straightforward by a standard statis-

tical argument involving k and A. We focus on G x 1 =, Ga 2 for all € [g].

e assumption; both Gy = Gox.1 and

Lemma 63 (Gy 1 =; Gox.2). Forallx € [g] and all A, there exists B with Time(B) = Time(A) and
Prl(A, Gox.1) = 11 = Prl(A, Gox2) = 11 < O(Upp- |21 Q%) - Adv; ™ (1)

Proof (sketch). We use the core lemma, Lemma 30, to prove the lemma. By the lemma, it is sufficient to prove that for
all x and all A, there exists B with Time(B) = Time(A) such that

Pr((A, Gax.1) = 1] = Pri(A, Gox2) = 1] < Advi " (A).
For this, we define two auxiliary games Gg,m and Gg.K‘z by the following change of variables in both G, x 1 and Gp «.2:

Wistart — Wstart + bé_wstartA_zL;
W0 — Wyo+bywy oAy, Vnelll,oeX
Wend — Weng + bé_ WendAé_»
D; — D;+byd;, Vje[lpp]

and

0 inG
Wo— Wy —bl (B 'A)AY, where f= 2xd
1 inGpko

where Wtart, Wn,-, Wend — Z},Xk forallne [¢],c €Zanddy,...,dsy, — Z},XQ. It is clear that we have

Pr((A, Gox1) =11 =Pri{A, Gox 1) =11 and Pr((A, Gox2) = 1] = Pri¢A, Gox0) = 1]
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since the change of variables do not change the two games. Now it is sufficient to prove that
Pr(A, Goxc1) = 11 = Prl(A, Gox2) = 1] = Adv ™ (). (68)

Observe that, in the new games, we have mpk, skﬂ?I and skiF unchanged due to the fact that AZLAI =0and B1b2L =0;
the challenge ciphertext is in the form of

[b'zLdOuT + b'gLWstartégtart]Z» [0]2

oSF || {02/ Mj0 —bydj—1 + by Wy (0812, (012}
r*’

0 in Cg_K.l
[_bi_ ' ﬁf_lAng_ bi-dfgp + bé_wendsend]Z, [0]2
[0]2, [0]T

Jj€llppl,o0€X where f= N
1 inGyko

while the k-th key in the two games are in the form of

skEN. ([Oh, (011, [PWstareAy 11, {[PWn,x, A3 T} e [fwendAgh) .

It is clear that the two games are identical except that boxed part, so it is sufficient to prove the indistinguishability
between the boxed parts in games. Formally, we capture this by the following claim. Note that we neglect sz and
A2l which are unrelated to the argument and give out Sgart, S j,Send for the simulation of skls-’f -part of the challenge
ciphertext.

Claim. For all A, there exists B with Time(B) =~ Time(A) and
Pr[(A,Ho) = 1] = Pr[(A, H1) = 1] < Advi ™" (A)

where we define:
(A, Hﬁ) = {ﬁ/ - AOEnc(-),OKey(-)}

and the two oracles work as follows:
- OEnc(I'): output
[dOUT + Wstarté-srtan]Z) [é-srtart]z

{ldjMj s —dj_1 +Wy(j),6Sjl2, [Sjl2 }je[[Bp],Uez
(=57~ ASTE~ dey, + WenaSenal2, [Sendl2

- OKey(x): output

(Wstartr {Wn,x,7 }TIE[[]’ Wend)-

with the restrictions that (1) A makes only one query to each oracle; (2) queries I and x satisfy I'(x) = 0.

It is direct to verify that the terms given out in the claim are sufficient to simulate both games and readily implies (68).
Furthermore, the claim itself is straightforward by the core lemma, Lemma 30, for adaptively secure KP-ABE for &-
restricted NBP®» in Section 6. This proves the lemma. |
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