
(Public) Verifiability For Composable Protocols
Without Adaptivity Or Zero-Knowledge

Carsten Baum1?, Bernardo David2??, and Rafael Dowsley3

1 Aarhus University, Denmark
cbaum@cs.au.dk

2 IT University Copenhagen, Denmark
bernardo@bmdavid.com

3 Monash University, Australia
rafael.dowsley@monash.edu

Abstract. The Universal Composability (UC) framework (FOCS ’01)
is the current standard for proving security of cryptographic protocols
under composition. It allows to reason about complex protocol structures
in a bottom-up fashion: any building block that is UC-secure can be com-
posed arbitrarily with any other UC-secure construction while retaining
their security guarantees. Unfortunately, some protocol properties such
as the verifiability of outputs require excessively strong tools to achieve
in UC. In particular, “obviously secure” constructions cannot directly
be shown to be UC-secure, and verifiability of building blocks does not
easily carry over to verifiability of the composed construction.
In this work, we study Non-Interactive (Public) Verifiability of UC pro-
tocols, i.e. under which conditions a verifier can ascertain that a party
obtained a specific output from the protocol. The verifier may have been
part of the protocol execution or not, as in the case of public verifiabil-
ity. We consider a setting used in a number of applications where it is ok
to reveal the input of the party whose output gets verified and analyze
under which conditions such verifiability can generically be achieved us-
ing “cheap” cryptographic primitives. That is, we avoid having to rely on
adaptively secure primitives or heavy computational tools such as NIZKs.
As Non-Interactive Public Verifiability is crucial when composing proto-
cols with a public ledger, our approach can be beneficial when designing
these with provably composable security and efficiency in mind.

1 Introduction

Universal Composability (UC) [14] is currently the most popular framework for
designing and proving security of cryptographic protocols under arbitrary com-
position. It allows one to prove that a protocol remains secure even in complex

? Funded by the European Research Council (ERC) under the European Unions’ Hori-
zon 2020 program under grant agreement No 669255 (MPCPRO).

?? Supported by the Concordium Foundation and by the Independent Research Fund
Denmark grants number 9040-00399B (TrA2C) and number 9131-00075B (PUMA).

scenarios consisting of multiple nested protocol executions. The benefit of UC
is that, as a formal framework, it allows to discuss the different aspects of an
interactive protocol with mathematical precision. But in practice, one often sees
that protocol security is argued on a very high level only. This is partially due
to the complexity of fully expressing (and then proving) a protocol in UC, but
also because achieving provable (UC) security sometimes requires additional,
seemingly unnecessary protocol steps or assumptions.

One such case is that of (public) verifiability, which is the focus of this work.
A verifiable protocol allows each party to check if another party in the end of
the protocol obtained a certain output (or that it aborted). A publicly verifiable
protocol has this property even for external verifiers that did not take part in the
protocol itself. Public verifiability is particularly important in the setting of de-
centralized systems and public ledgers (e.g. blockchains [40,32,37,30,26]), where
new parties can join an ongoing protocol execution on-the-fly after verifying
that their view of the protocol is valid. Public verifiability also plays a central
role in a recent line of research [2,10,38,5] on secure multiparty computation
(MPC) protocols that rely on a public ledger to achieve fairness (i.e. ensuring
either all parties obtain the protocol output or nobody does, including the ad-
versary) by penalizing cheating parties, circumventing fundamental impossibility
results [27]. Protocol verifiability also finds applications in MPC protocols that
have identifiable abort such as [35,7,8], where all parties in the protocol either
agree on the output or agree on the set of cheaters. Furthermore, public verifia-
bility is an intrinsic property of randomness beacons [24,25], a central component
of provably secure Proof-of-Stake blockchain protocols [38,5,26]. However, most
of these works achieve (public) verifiability by relying on heavy tools such as
non-interactive zero knowledge proof systems and strong assumptions such as
adaptive security of the underlying protocols.

1.1 The Problems of Achieving (Public) Verifiability in UC

On a very high level, UC formalizes cryptographic tasks as ideal functionalities
F with which parties Pi can interact. A protocol Π is said to UC-realize a
functionality F if any execution of a protocol Π by possibly corrupted parties can
be simulated by a simulator S, which may only interact with F for this task. The
functionality, the parties, the adversary A that controls corrupted parties, the
simulator S and the external distinguisher (“the environment” Z) that formalize
the actual security experiment are modeled as probabilistic polynomial time
interactive Turing machines (PPT iTMs).

Consider a UC functionality F which has one round of inputs by the parties
P = {P1, . . . ,Pn}, computes outputs based on the inputs and in the end sends
these outputs to each Pi. In this work, we are interested in adding verifiability
to F to obtain an extended functionality FV. This functionality FV performs the
same operations as F , but it additionally allows verifiers to confirm that certain
inputs were provided by a party Pi to FV to perform these operations and that
certain outputs of these operations were given to Pi from FV. Moreover, we want
to obtain a protocol ΠV realizing FV from an existing protocol Π that realized

2

F . More concretely, we are interested in compiling a UC-secure protocol Π into
a UC-secure counterpart ΠV that has (public) verifiability.

The (intuitive) first step in a solution is to construct ΠV such that each party
commits to its inputs and randomness. The parties then run Π based on these
committed input and randomness values and exchange authenticated messages.
Let us assume that we are okay with revealing the inputs after Π is completed
but an error could have occurred (we will discuss this assumption below in more
detail). Intuitively, this yields a simple verification procedure: each involved party
can inspect the committed inputs and randomness of all other parties, re-run
these parties in its head and compare its simulated messages to the authenti-
cated protocol transcript. Any external verifier could do the same based on the
commitments and an authenticated transcript of Π. Unfortunately, using this
simple approach leads to adaptivity problems when trying to prove ΠV secure:
in the security proof, the simulation must have been performed without know-
ing the actual inputs to the functionality. But afterwards, these inputs become
known to the verifier so the simulator must be able to explain the transcript in
terms of the previously unknown inputs, which exactly requires adaptive secu-
rity of Π to begin with. Similar issues have been observed before (e.g. [35]). This
means that any such ΠV would be quite inefficient, since adaptive protocols Π
are often significantly less efficient than their counterparts with static security.

Consider, as an example, a two-party secure computation protocol (2PC)
Π2PC with active security based on Garbled Circuits (GCs) such as [39,18].
Protocol Π2PC is executed by a sender P1 and a receiver P2 (where only P2

obtains output) as follows:

1. P1 generates multiple GCs together with input keys for each circuit. P1

commits to the GCs and their input keys. It inputs the input keys belonging
to P2 into an Oblivious Transfer (OT) functionality FOT .

2. P2 uses FOT to obtain its input keys.

3. P1 decommits the GCs and its own input keys.

4. P2 evaluates the GCs. Both parties run a consistency check showing that
most GCs were correctly generated and that their input keys are consistent.

The security proof of Π2PC (for static security) usually consists of simulators
for a corrupted sender (S1) and receiver (S2). S1 sends random inputs to FOT ,
extracts the inputs of P1 and then checks that the GCs were generated correctly
by the malicious P1. For S2 the standard strategy is to first extract the input x2
of the malicious P2 using FOT , then to obtain the output y from the functionality
F2PC , to choose a random input x̃1 and finally to simulate GCs such that they
output y for the input keys of x̃1, x2. In order to make Π2PC verifiable (with
respect to revealing inputs and outputs), let FV

2PC release the real input x1 of P1

after the computation finished. But in S2 we generated the GCs such that for the
dummy input x̃1 it outputs y, so the garbling may not even be a correct garbling
of the given circuit. There might not exist randomness to explain the output of
S2 consistently with x1, unless Π2PC was an adaptively secure protocol.

3

This seems counter-intuitive: beyond the technical reason to allow (UC) simu-
lation of verifiability, we see no explanation why only adaptively secure protocols
should be verifiable when following the aforementioned compilation steps.

1.2 Our Contributions

In this work, we show how to compile a large class of statically UC-secure pro-
tocols into publicly verifiable versions that allow a party to non-interactively
prove that it obtained a certain output by revealing its input. While revealing
an input is a caveat, this flavor of (public) verifiability is sufficient for a number
of applications (e.g. [5,25,6]) and allows us to circumvent the need for expensive
generic zero knowledge proofs and adaptive security (as needed in [35,38]). We
introduce a compiler relying only on commitment and “joint authentication”
functionalities that can be realized with cheap public-key primitives.

Our approach is compatible with protocols realizing non-reactive functional-
ities such as Oblivious Transfer, Commitments or Secure Function Evaluation.
We describe a standard wrapper for any such functionality to equip it with the
interfaces necessary for non-interactive verification, allowing external verifiers to
register and to perform verification. This wrapper is designed to amalgamate the
reactive nature of UC with non-interactivity and might be of independent in-
terest. Extending our approach to reactive functionalities is an interesting open
problem.
When is revealing inputs for verification justifiable? Although our focus on re-
vealing inputs might seem very restrictive, there is a quite substantial set of
protocols where it can be applied.

As a starting point, our techniques can be used to instantiate preprocessing
for UC-secure MPC with Identifiable Abort without adaptive assumptions [35,8].
Our approach also applies when one wants to publicly and randomly sample from
a distribution and identify cheaters who disturbed the process. For example, our
results have already been used as an essential tool in follow-up work constructing
UC randomness beacons [25].

A third application is to bootstrap MPC without output verifiability to MPC
with output verifiability without revealing of inputs. Here, each physical party
Pi in the protocol ΠMPC runs two virtual parties PCi ,PVi . It will give PCi the
actual input x (while PVi has no input), and both parties obtain the same output
y from ΠMPC . Now, in order to convince a verifier that Pi had y as output, it
can “sacrifice” PVi and reveal its randomness for verification. Observe that this
requires ΠMPC to be secure against a dishonest majority of parties.

A fourth application lies in achieving cheater identification in the output
phase of MPC protocols, which is a prequisite for obtaining MPC with mone-
tary fairness such as [2,10,38,5]. For example, using our techniques, it would be
possible to construct the publicly verifiable building blocks of the output phase
of Insured MPC [5] and related applications [6] since the inputs of the output
phase with cheater identification are supposed to be revealed anyway. In [5] the
authors had to individually redefine each functionality with respect to verifia-
bility and reprove the security of each protocol involved. Using our techniques,

4

we show in Appendix E that this tedious task can be avoided and that the same
result can be obtained by inspecting the primitives used in their protocol and
verifying that the protocols fulfill the requirements of our compiler.

Shortcomings of other approaches. As was already mentioned above, verifiability
can also be obtained in other ways. We now consider these in more detail and
outline their shortcomings.

First, it is clear that any construction departing from a statically secure
protocol needs more than equivocable commitments to inputs and randomness.
Once the real inputs are known for verification, randomness that is consistent
with the existing transcript of Π must be created. The simulator S of a statically
secure UC-protocol Π usually does not perform such a task, and such random-
ness may not even exist – it only exists (and is efficiently computable) if the
protocol is adaptively secure. Hence, using equivocable commitments for inputs
and randomness is necessary but not sufficient.

For adaptive protocols, it is well-known that they usually have larger com-
putation or communication overheads (or stronger assumptions) than their stat-
ically secure counterparts. For example, Yao’s Garbling Scheme (and optimiza-
tions thereof) are highly efficient with static security (e.g [45]) but achieve similar
performance with adaptive security only for NC1-circuits [36] (unless one relies
on Random Oracles [9]). When implementing Π2PC , one would also additionally
have to realize an adaptively UC-secure FOT , which is also cheaper with static
instead of adaptive security. This is also true when OT-extension is used [22,21].

Previous works such as [38] obtain public verifiability, even without reveal-
ing inputs and without adaptive protocols, is by using generic UC-NIZKs. They
follow the GMW paradigm [34] where each party would prove in every protocol
step of Π that it created all messages correctly, given all previous messages as
well as commitments to inputs and randomness. To the best of our knowledge, no
work that uses UC-NIZKs to achieve verifiability estimated concrete parameters
for their constructions. This is due to the fact that the UC-NIZKs, in addition to
proving the protocol steps, also have to use the code of the cryptographic prim-
itives in a white-box way. That also means that UC-NIZKs cannot be applied if
the compiled protocol Π uses Random Oracles for efficiency.

Another solution, which works in the case that Π is an MPC protocol is
to let Π compute commitments to the outputs of each party inside the secure
computation before revealing the outputs. Obviously, this does not generalize to
arbitrary protocols Π, whereas our approach does. Additionally, in this approach
one needs to evaluate the commitment algorithm white-box in MPC. Evaluating
cryptographic primitives inside MPC can be costly, in particular if the MPC
protocol is defined over a ring where the commitment algorithm has a large
circuit. This also would rule out cheap Random Oracle-based commitments.

1.3 Our Techniques

Our black-box route to verifiability: We construct a compiler that generi-
cally achieves public verifiability for protocols with one round of input followed

5

by multiple computation and output rounds as formalized in Section 2. For this,
we start with an observation similar to [35], namely that by fixing the inputs,
randomness and messages in a protocol Π we can get guarantees about the
outputs. This is because fixing the inputs, randomness and received messages
essentially fixes the view of a party, as the messages generated and sent by a
party are deterministic given all of these other values. Therefore, our main idea
is to have a compiler which creates a protocol ΠV that fixes parties’ input and
randomness pairs by having parties commit to these pairs and authenticate the
messages exchanged between parties in such a way that an external party can
verify such committed/authenticated items after the fact. On the other hand, fix-
ing all messages that are exchanged in the original protocol Π is costly and might
be overkill for some protocols. We explore this concept in the notion of transcript
non-malleability as defined in Section 3.1. There, we formalize the intuition that
we might not need that all exchanged messages are fixed in some protocols: e.g.
an adversary that is allowed to replace messages exchanged between dishonest
parties possibly does not have enough leverage to forge a consistent transcript
for a different output.

Proving security in UC: It might seem obvious that ΠV, i.e. a version of
Π with all of its inputs and messages fixed, is publicly verifiable and implements
FV. Unfortunately, as we outlined above, a construction of a simulator SV in
the proof of security needs to assume that Π is adaptively secure. In Section
3.2 we address this by using input-aware simulators (or über simulators) SU.
These are special simulators which can be parameterized with the inputs for the
simulated honest parties, generating transcripts consistent with these inputs but
indistinguishable from the transcripts of S. We then embed an über simulator
of a protocol Π into the publicly verifiable functionality FV. This delegates the
simulation of Π to FVs internal über simulator – whereas in our naive approach,
SV had to simulate Π itself. Since we let FV only release the transcripts that
SU generates, this does not leak any additional information to the adversary.
Moreover, SU now also extracts the inputs of the dishonest parties.

Getting Über Simulators (almost) for free: Following our example with
Π2PC from Section 1.1, S1 for a corrupted sender uses a random input to FOT
and otherwise follows Π2PC . Towards constructing SU1 , observe that as FOT
by its own UC-security hides the input of P2, running S1 inside FV

2PC using
real inputs of P2 is indistinguishable and we can use such a modified S1 as
SV1 . Conversely, we can also construct SU2 , which runs Π2PC based on the input
x1 that it obtains. By the UC-security of Π2PC , the distribution of SU2 will be
indistinguishable from S2.

As can be seen from this example, an efficient über simulator must not be
artificial or strong, but could be quite simply obtained from either the existing
protocol or existing S. Its requirement also differs from requiring adaptivity of
Π2PC : SU2 still only requires Π2PC to be statically secure. In fact, this strategy
for constructing an über simulator works for any protocols that simulate their
online phase in the security proof using “artificial” fixed inputs and otherwise run
the protocol honestly while they are able to extract inputs (e.g. MPC protocols

6

such as [41,29]). Hence, we can directly make a large class of protocols verifiable.
This is discussed further in Section 3.3.

How to realize transcript non-malleability. Besides fixing inputs and
randomness, in order to construct compilers from Π to ΠV we need to fix the
transcript of Π. For this, we have parties in ΠV use what we call “joint authen-
tication” (defined in Section 4). Joint Authentication works for both public and
private messages. In the public case, joint authentication is achieved by having
all parties sign a message sent by one of them. In the private case, we essentially
allow parties to authenticate commitments to private messages that are only
opened to the rightful receivers. Later on, any party who received that private
message (i.e. the opening of the commitment to the message) can publicly prove
that it obtained a certain message that was jointly authenticated by all parties
involved in ΠV. More importantly, joint authentication does not perform any
communication itself but provides authentication tokens that can be verified in
a non-interactive manner. These functionalities force dishonest parties to commit
to their transcript without revealing private messages ahead of time or implying
communication (parties have to send the actual messages and authentication
tokens through regular channels). In our example with Π2PC , this means that
both P1,P2 initially commit to their inputs and randomness and then sign all
exchanged messages (checking that each message is signed by its sender).

Putting things together. We use the techniques described above to com-
pile any protocol Π that fits one of our transcript non-malleability definitions
and UC-realizes a functionality F in the F1, . . . ,Fn-hybrid model into a protocol
ΠV that UC-realizes a publicly verifiable FV in the FV

1 , . . . ,FV
n-hybrid model (i.e.

assuming that the setup functionalities can also be made publicly verifiable).

Our compilation technique has two main components: 1. use a special in-
stance of secret joint authentication to commit to and authenticate each party’s
input and randomness pairs of Π; 2. execute Π and use public/secret joint au-
thentication to jointly authenticate each exchanged protocol message. The first
step fixes the input and randomness pairs and the second step fixes the tran-
script of Π in such a way that each party can publicly and non-interactively
show that it used a certain input/randomness pair at and that a given tran-
script was generated. Notice that using these guarantees we have brought Π to
a very strong level of transcript non-malleability, since the adversary can neither
lie about its input and randomness pairs nor its view of the transcript. In order
to realize the public verifiability interface of FV, we have a party open its input
and randomness pair as well as its view of the transcript, which could not have
been forged, allowing the verifier to execute an honest party’s steps as in Π to
verify that a given output is obtained. When proving security of this compiler,
we delegate the simulation of the original steps of Π to an über simulator SU
for Π embedded in FV. This guarantees that the transcript of S’s simulated
execution of ΠV is consistent with honest parties’ inputs if they activate public
verification and reveal their input. To compile our example protocol from this
section, we now combine all of the aforementioned steps and additionally assume

7

that FOT as well as the commitment-functionality are already verifiable. By the
compiler theorem, the resulting protocol is verifiable according to our definition.

In Appendix E we give a more detailed example by showing how to more
easily achieve verifiability in [5].

1.4 Related Work

Despite being very general, UC has seen many extensions such as e.g. UC with
joint state [20] or Global UC [16], aiming at capturing protocols that use global
ideal setups. Verifiability for several kinds of protocols has been approached
from different perspectives, such as cheater identification [35,7], verifiability of
MPC [4,44], incoercible secure computation [1], secure computation on public
ledgers [2,10,38], and improved definitions for widely used primitives [13,12].
Another solution to solve the adaptivity requirement was recently presented
in [8], but their approach only works for functionalities without input. A different
notion of verifiability was put forward in publicly verificable covert 2PC protocols
such as [3] and its follow-up works, where parties can show that the other party
has cheated. To the best of our knowledge, no previous work has considered
a generic definition of non-interactive public verifiability in the UC framework
nor a black-box compiler for achieving such a notion without requiring adaptive
security of the underlying protocol or zero knowledge proof systems.

2 Preliminaries
We denote the security parameter by κ and the concatenation of two strings a

and b by a ‖ b. Let y
$← F (x) denote running the randomized algorithm F with

input x and random coins, and obtaining the output y. When the coins r are
specified we use y ← F (x; r). y ← F (x) is used for a deterministic algorithm.

For a set X , let x
$← X denote x chosen uniformly at random from X ; and

for a distribution Y, let y
$← Y denote y sampled according to the distribution

Y. We denote by negl(κ) the set of negligible functions of κ and abbreviate
probabilistic polynomial time as PPT. We write {0, 1}poly(κ) to denote a set of
bit-strings of polynomial length in κ. Two ensembles X = {Xκ,z}κ∈N,z∈{0,1}∗
and Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random variables are said to be statistically
indistinguishable, denoted by X ≈s Y , if for all z it holds that | Pr[D(Xκ,z) =
1] − Pr[D(Yκ,z) = 1] | is negligible in κ for every probabilistic distinguisher D.
In case this only holds for non-uniform PPT distinguishers we say that X and
Y are computationally indistinguishable, denoted by X ≈c Y .

2.1 Secure Protocols
A protocol Π consists of the algorithms nmes, out and additional parameters:
the number of parties n, the setup resources F1, . . . ,Fr, the number of output
rounds G, the number of rounds Hτ to obtain each output τ ∈ [G] as well as the
communication and output model. We assume that external system parameters
s ∈ {0, 1}poly(κ) are fixed for the protocol. In an MPC scheme, these parameters
e.g. could consist of the circuit. Each party Pi uses their respective input xi ∈
X as well as randomness ri ∈ {0, 1}poly(κ) for the actual protocol, where X

8

is the set of possible protocol inputs. Here they perform Hτ calls to a next-
message function with a subsequent message exchange with both the parties and
the resources, finalized by the computation of the τ -th output of the protocol.
Formally, the algorithms which comprise Π are as follows:

nmes is a deterministic polynomial-time (DPT) algorithm which on input the
party number i, protocol input xi ∈ X , randomness ri ∈ {0, 1}poly(κ), aux-
iliary input s ∈ {0, 1}poly(κ), output round τ ∈ [G], round number ρ ∈ [Hτ]
and previous messages M·,i from parties and N·,i from resources outputs

{m(τ,ρ)i,j }j∈[n]\{i}, {mres
(τ,ρ)
i,q }q∈[r].

out is a DPT algorithm which on input the party number i, the protocol input
xi ∈ X , randomness ri ∈ {0, 1}poly(κ), auxiliary input s ∈ {0, 1}poly(κ) as well
as output round τ ∈ [G], a set of messages M·,i from parties and N·,i from

resources outputs y
(τ)
i which is either an output value or ⊥. The values xi, ri

might not be necessary in every protocol and we allow use of out without it
as well.

nmes generates two different types of messages, namely m- and mres-messages.
As we shall see later, the m-messages are used for communication among par-
ties whereas mres-messages are exchanged between a party and a functionality.
Therefore, each mres-message consists of an interface (Inputi,Compute(τ),

Output
(τ)
i) with whom the party wants to communicate as well as the actual

payload. Each message that is an output of nmes may either be an actual string
or a symbol ⊥, meaning that no message is sent to a certain party/functionality
whatsoever in a certain round. For notational consistency, whenever we write
mi,j we mean that a message was sent from party Pi to Pj . Similarly, we write
mresi,q when the message was sent from Pi to Fq and mresq,i when sent from Fq
to Pi. We will denote messages received by party Pi from another party asM·,i
and those sent by Pi to another party as Mi,·. Similarly, we will write N·,i for
all messages that Pi received from resources while Ni,· denotes messages which
Pi sent to resources. In Figure 1 we describe the general pattern according to
which the above algorithms are used in the protocol Π.

Communication Model. Generally, we do not make any restriction on the mes-
sages that are exchanged (except that their length is polynomial in the security
parameter κ). If these will be sent through point-to-point secure channels, then
we call this setting private communication. If the parties instead send the same
message to all other parties, then we consider this as broadcast communication.
Parties may arbitrarily mix private and broadcast communication.

Output Model. We do not restrict the output y
(τ)
i which each party obtains in the

end of the computation and which should be verifiable. This permits the general

setting where all the y
(τ)
i might be completely different. This is the standard for

many interesting functions that one can compute, e.g. Oblivious Transfer.

2.2 Universal Composition of Secure Protocols
In this work we use the (Global) Universal Composability or (G)UC model [14,16]
for analyzing security and refer interested readers to the original works for more

9

Protocol Π

Each Pi has input xi ∈ X as well as common public input s ∈ {0, 1}poly(κ).

Inputi: Party Pi samples ri
$← {0, 1}poly(κ) uniformly at random. LetM·,i,N·,i ← ∅.

Compute(τ): Let τ ∈ [G]. Then each party Pi for ρ ∈ [Hτ] does the following:

1. Locally compute(
{m(τ,ρ)i,j }j∈[n]\{i}, {mres

(τ,ρ)
i,q }q∈[r]

)
← nmes(i, xi, ri, s, τ, ρ,M·,i,N·,i).

2. For each j ∈ [n] \ {i} send m
(τ,ρ)
i,j to Pj . For each q ∈ [r] send mres

(τ,ρ)
i,q to Fq.

3. For each j ∈ [n] \ {i} wait for m
(τ,ρ)
j,i from each Pj as well as mres

(τ,ρ)
q,i from each

Fq for q ∈ [r].

4. Set M·,i ←M·,i ∪ {m(τ,ρ)j,i }j∈[n]\{i} and N·,i ← N·,i ∪ {mres(τ,ρ)q,i }q∈[r].

Output
(τ)
i : Party Pi computes and outputs y

(τ)
i ← out(i, xi, ri, s, τ,M·,i,N·,i).

Fig. 1. The generic protocol Π.

details. Naturally, we only discuss the dishonest-majority setting in this work as
honest-majority protocols can simply output a vote of all parties if the result is
correct or not (if broadcast is available).

Protocols are run by interactive Turing Machines (iTMs) which we call par-
ties. A protocol Π will have n parties which we denote as P = {P1, . . . ,Pn}.
We assume that each party runs in probabilistic polynomial time (PPT) in some
implicit security parameter κ. The adversary A, which also is a PPT iTM, will
be able to corrupt parties, but we only allow him to corrupt up to a threshold
of k < n of them, though non-threshold adversary structures may also be sup-
ported. We opt for the static corruption model where the parties are corrupted
from the beginning, as this is what most efficient protocols currently are devel-
oped for. The set of corrupted parties is denoted as I ⊂ P. Parties can exchange
messages with each other and also with resources, which we call ideal function-
alities (which themselves are PPT iTMs). To simplify notation we assume that
the messages between parties are sent over secure channels.

We start out with protocols that are themselves already secure, but not
verifiable. For this, we assume that the ideal functionality F of a protocol Π
follows the pattern as described in Figure 2. In there, we consider protocols
where parties give input initially, but obtain possibly G rounds of output. Having
multiple rounds of outputs can be seen as a trade-off: on one hand, it allows us
to model e.g. commitment schemes which would not be possible having only one
round of output. At the same time, it is not general enough to permit reactive
computations which inherently make the notation a lot more complex.

It is not necessary that all of the interfaces which F provides are used for an
application. For example in the case of coin tossing, no party Pi ever has to call

Inputi. While Inputi,Output
(τ)
i are fixed in their semantics, the application

may freely vary how Compute(τ) may act upon the inputs or generate out-

10

Functionality F
Functionality F has common public input s ∈ {0, 1}poly(κ) and interacts with a set
P of n parties and an ideal adversary S. Upon initialization, S is allowed to corrupt
a set I ⊂ P of parties where |I| ≤ k and k < n. Each of F ’s interfaces falls into one
of 3 different categories for providing inputs as well as running the G evaluation and
output steps.

Inputi: On input (Input, sid, xi) by Pi and (Input, sid) by all other parties store
xi ∈ X locally and send (Input, sid, i) to all parties. Every further message to this
interface is discarded and once set, xi may not be altered anymore.

Compute(τ): On input (Compute, sid, τ) by a set of parties Jτ ⊆ P as well as S
perform a computation based on s as well as the current state of the functionality.
The computation is to be specified in concrete implementations of this functionality.
The last two steps of this interface are fixed and as follows:
1. Set some values y

(τ)
1 , · · · , y(τ)n . Only this interface is allowed to alter these.

2. Send (Compute, sid, τ) to every party in Jτ .
Every further call to Compute(τ) is ignored. Every call to this interface before all
Inputi are finished is ignored, as well as when Compute(τ−1) has not finished yet.

Output
(τ)
i : On input (Output, sid, τ) by Pi where τ ∈ [G] and if y

(τ)
i was set send

(Output, sid, τ, y
(τ)
i) to Pi.

Fig. 2. The generic functionality F .

puts. The only constraint that we make is that for each of the τ ∈ [G] rounds,

Compute(τ) sets output values (y
(τ)
1 , . . . , y

(τ)
n).

As usual, we define security with respect to a PPT iTM Z called environment.
The environment provides inputs to and receives outputs from the parties P.
Furthermore, the adversary A will corrupt parties I ⊂ P in the name of Z
and thus gain control over these parties, i.e. will see and be able to generate
the protocol messages. To define security, let Π ◦ A be the distribution of the
output of an arbitrary Z when interacting with A in a real protocol instance Π.
Furthermore, let S denote an ideal world adversary and F ◦S be the distribution
of the output of Z when interacting with parties which run with F instead of Π
and where S takes care of adversarial behavior.

Definition 1 (Secure Protocol). We say that F securely implements Π if for
every PPT iTM A there exists a PPT iTM S (with black-box access to A) such
that no PPT environment Z can distinguish Π ◦A from F ◦S with non-negligible
probability in κ.

In our protocols we use the standard digital signature functionality FSig from
[15], the key registration functionality FReg from [17] and an authenticated bul-
letin board functionality FBB, which are described in Supplementary Material A.
We also use constructions of IND-CCA public key encryption schemes that UC-
realize the standard public key encryption functionality that are described in
Supplementary Material B.

11

Functionality Wrapper FV[F]

The functionality wrapper FV[F] adds the interfaces below to a generic functionality
F defined as in Figure 2, still allowing direct access to F . FV is parameterized by
an über simulator SU executed internally (as discussed in Section 3.4) and maintains
binary variables verification-active, verify-1, . . . , verify-n that are initially 0 and used
to keep track of the verifiable outputs. Apart from the set of parties P and ideal
adversary S defined in F , FV interacts with verifiers Vi ∈ V.

Register Verifier (private): Upon receiving (Register, sid) from Vi:
– If verification-active = 1 send (Register, sid,Vi) to S. If S answers with

(Register, sid,Vi, ok), set V ← V ∪ Vi and return (Registered, sid) to Vi.
– If verification-active = 0 return (Verification-Inactive, sid) to Vi.

Register Verifier (public): Upon receiving (Register, sid) from Vi:
– If verification-active = 1 set V ← V ∪ Vi and return (Registered, sid) to Vi.
– If verification-active = 0 return (Verification-Inactive, sid) to Vi.

Activate Verification: Upon receiving (Activate-Verification, sid, open-i,
open-input-i) from each Pi and if Compute(1), . . . ,Compute(G) succeeded:
1. Let Y ← {j ∈ [n] | open-j = 1 ∧ verify-j = 0}. If Y = ∅ then return.

2. Set verification-active ← 1 (if it is not set already) and deactivate the interfaces
Compute(τ) for all τ ∈ [G].

3. If open-input-i = 1, then set zi = xi; otherwise zi = ⊥.

4. Send (Activating-Verification, sid, Y, {zj , y(τ)j }j∈Y,τ∈[G]) to S. If Pi is hon-

est, append its randomness Ri (obtained from SU) to this message.

5. Upon receiving (Activating-Verification, sid, ok) from S set verify-j ← 1 for

each j ∈ Y . Then return (Verification-Activated, sid, Y, {zj , y(τ)j }j∈Y,τ∈[G])
to all parties in P.

Verifyj: Upon receiving (Verify, sid, j, a, b(1), . . . , b(G)) from Vi where Vi ∈ V and
Pj ∈ P do the following:

– if verify-j = 1 then compute the set B ← {τ ∈ [G] | b(τ) 6= y
(τ)
j }. If a = zj , then

set f ← a; otherwise f ← ⊥. Return (Verify, sid, j, f, B) to Vi.
– If verify-j = 0 then send (Cannot-Verify, sid, j) to Vi.

Inputi: On input (Input, sid, xi) by Pi and (Input, sid) by all other parties, for-
ward (Input, sid, xi) to F and also forward responses from F to Pi. Finally, after
receiving (Input, sid, xi) from all Pi, i ∈ I (i.e. all honest parties), initialize SU pa-
rameterizing it with F ’s randomness tape and with xi for all honest Pi.
NMFSU : Upon input (NextMsgP, sid, j, τ, ρ, {mi,j}i∈I) where j ∈ I or
(NextMsgF, sid, q, τ, ρ, mresi,q) where i ∈ I and q ∈ [r] by S, send the respec-
tive message to SU. Forward all messages between SU and F , so that SU mediates
interaction between F and S, also delivering extracted adversarial inputs. Finally,
after SU outputs a response (NextMsgP, sid, j, τ, ρ + 1, {mj,i}i∈I) or (NextMsgF,
sid, q, τ, ρ+ 1, mresq,i), forward it to S.

Fig. 3. The Functionality wrapper FV[F]. The modifications to interface Inputi and
the new interface NMFSU are discussed in Section 3.4.

12

2.3 Verifiable Functionalities

We extend the functionality F from Section 2.2 to provide a notion of non-
interactive verification using a functionality wrapper FV described in Figure 3.
For this, we assume that there are additional parties Vi which can partake in the
verification. These, as well as regular protocol parties, can register at runtime to
be verifiers of the computation using a special interface Register Verifier. Once
they are registered, these verifiers are allowed to check the validity of outputs
for parties that have initiated verification at any point. We keep track of this
using the set of verifiers V (which is initially empty) inside the functionality. For

values whose output has been provided using the interface Output
(τ)
i (that we

inherit from the definition of F of Section 2.2) we allow the parties P to use an
interface called Activate Verification to enable everyone in V to check their
outputs via the interface Verifyi. The modifications to Inputi and the new
interface NMFSU are related to the über simulators discussed in Section 3.4.

Notice that, in our constructions, a verifier Vi ∈ V can perform verification
with help from data obtained in mainly two different ways: 1. receiving verifica-
tion data from another verifier Vj ∈ V or a party Pi ∈ P; 2. retrieving verification
data directly from publicly available resource such as a Bulletin Board (repre-
sented as a setup functionality). In case Vi attempts to obtain verification data
from another party in V ∪ P, that party might be corrupted, allowing the ideal
adversary S to interfere (i.e. providing corrupted verification data or not an-
swering at all). On the other hand, when Vi obtains such verification data from
a resource available as setup (i.e. a resource guaranteed to be untamperable by
the adversary), S has no control over the verification process. In order to model
the situation where verification data is obtained reliably and that where it is
obtained unreliably, FV might implement only Register Verifier (public) or
only Register Verifier (private), respectively. We do not require FV to im-
plement both of these interfaces, and thus define the properties of FV according
to which of them is implemented, according to Definitions 2 and 3.

Definition 2 (Verifier Registration). Let F be a functionality which imple-
ments the interface Register Verifier (public), then F is said to have Pub-
lic Verifier Registration. If F instead implements Register Verifier (private)
then we say that it has Private Verifier Registration.

Definition 3 (Non-Interactively Verifiable (NIV)). Let F be a functional-
ity which implements the above interfaces Activate Verification and Verifyj
and which has Verifier Registration according to Definition 2, then we call F
NIV. If F has Public Verifier Registration then F is Publicly Verifiable whereas
we call it Privately Verifiable if F has Private Verifier Registration.

3 Verifiability

We now present our approach for making protocols non-interactively verifiable.
For this, we will first introduce a classification for the robustness of a protocol
to attacks on its “inherent” verifiability. Then, we describe properties that are
necessary to achieve simulation-based security for our approach to verifiability.

13

3.1 Transcript Malleability of Protocols

Informally, our approach to verification (as outlined in Section 1.3) is to leverage
properties for verifiability that are potentially already built into the protocol.
This is because we only want to rely on the protocol itself in a black-box fashion.
As the verifier can then only rely on the protocol transcript, let us consider how
such a transcript comes into existence.

In practice, we would first run a protocol instance of Π with an adversary
A. Afterwards, the adversary may have the possibility to change parts of the
protocol transcript in order to trigger faulty behavior in the outputs of parties.
If the adversary cannot trigger erroneous behavior, then this means that we can
establish correctness of an output of such a protocol by using the messages of
its transcript, some opened inputs and randomness as well as some additional
properties of Π = (nmes, out).

If our verification therefore relies on the transcript of a protocol, then a first
sign of incorrectness is if messages that a party Pi claims to have sent were not
received by another party Pj , if messages to and from a NIV functionality FV

were not actually sent or received by Pi or if, in case a party Pi reveals both its
inputs xi and randomness ri, the messages Pi claims to have sent are inconsistent
with xi, ri when considering nmes and previously obtained messages.

Towards formalizing this, we denote the set of input-revealing parties as RIR.
For Mi,·,M·,i,Ni,·,N·,i we use the same syntax as in Section 2.1.

Definition 4 (Transcript Validity). Let Π be a protocol with n parties and
RIR ⊆ [n]. For i ∈ RIR let xi ∈ X be the input and ri ∈ {0, 1}poly(κ) be a random-
ness string. Let furthermore s ∈ {0, 1}poly(κ) be an auxiliary input, FV

1 , . . . ,FV
r

be a set of NIV resources and M·,i,Mi,·,N·,i,Ni,· be those sets of messages that
were defined before.

We say that the transcript of Π is valid if and only if

1. For each i, j ∈ [n] the sets Mi,·,M·,j are consistent, meaning that each
message in Mi,· sent by Pi was received by Pj in M·,j and vice versa.

2. For each q ∈ [r], i ∈ [n] N·,i are consistent with the messages that Pi should
have obtained from FV

q via the verification interface. If FV
q allows the verifi-

cation of inputs from Pi, Ni,· is consistent with FV
q as well.

3. For each i ∈ RIR, τ ∈ [G] and ρ ∈ [Hτ] the sets Mi,·,Ni,· are consistent with
the output of nmes(i, xi, ri, s, τ, ρ,M·,i,N·,i).

In a formal sense, tampering of an adversary with the transcript would be ok

unless it leads to two self-consistent protocol transcripts with outputs ŷ
(τ)
i 6= y

(τ)
i

for some Pi such that both ŷ
(τ)
i , y

(τ)
i 6= ⊥. To achieve this, transcript validity is

a necessary, but not a sufficient condition. For example, if no messages or inputs
or randomness of any party are fixed, then A could easily generate two correctly
distributed transcripts for different outputs that fulfill this definition using the
standard UC simulator of Π.

We now define the security game that allows us to further constrain A beyond
transcript validity. In it, we rely on fixing certain parts while the transcript

14

is generated: an adversary A will first run the protocol with a challenger C
that simulates honest parties whose inputs and randomness A does not know
(initially). Upon completion of this protocol, the adversary will first obtain some
additional potentially secret information of the honest parties, upon which it
outputs two valid protocol transcripts. A will win if the transcripts coincide in
some parts with the interactive protocol that A ran with C, while the outputs
of some party are different and not ⊥.

We want to cover a diverse range of protocols which might come with different
levels of guarantees. We consider scenarios regarding: (1) whether the dishonest
parties can change their inputs and randomness after the execution (parameter
ν); (2) what is the set of parties RIR that will reveal their input and random-
ness later; and (3) which protocol messages the adversary can replace when he
attempts to break the verifiability by presenting a fake transcript (parameter µ).

The parameters ν,RIR have the following impact: if ν = ncir then the dis-
honest parties are not committed to the input and randomness in the beginning
of the execution. Anything that is revealed from parties in I ∩ RIR might be
altered by the adversary. If instead ν = cir then all parties are committed to the
input and randomness in the beginning of the execution. That means that the
adversary cannot alter inputs or randomness of honest or dishonest parties from
RIR, i.e. of those parties whose xi, ri are revealed for verification.

For µ we give the adversary the following choices:

µ = ncmes: A can replace all messages by all parties.
µ = chsmes: A can replace messages from corrupted senders.
µ = chmes: A can replace messages exchanged between corrupted parties.
µ = cmes: A cannot replace any message.

Based on this, we formalize transcript non-malleability as follows:

Definition 5. Let Π be a protocol that is secure against a static adversary
corrupting up to k < n parties using r NIV resources. For ν ∈ {cir, ncir},
µ ∈ {ncmes, chsmes, chmes, cmes} and RIR ⊆ [n], we define the following game
between a challenger C and an adversary A:

1. Both A, C obtain s. C sets up instances FV
1 , . . . ,FV

r .

2. A chooses I ⊂ [n], |I| ≤ k and sends I to C. Let I = [n] \ I.

3. C for each i ∈ I chooses xi
$← X and ri

$← {0, 1}poly(κ). If ν = cir, A sends
{xj , rj}j∈I to C.

4. C runs an instance of the protocol Π with A. In each round of Π C first
computes the messages of all honest parties Pi ∈ I using nmes and sends these
to both A as well as FV

q . Then A interacts with all instances of FV
q and sends

messages of dishonest parties addressed to the honest parties to C. If µ = cmes
then A must also send messages exchanged between dishonest parties. Finally,
C stores all those messages sent to as well as messages received from A in
M·,i,Mi,· (if µ = cmes also those sent between dishonest parties). It stores
all messages that an honest Pi ∈ I received from FV

q in N·,i and those that it
sent to input-verifiable FV

q in Ni,·.

15

5. C sends {xi, ri,N·,i}i∈I∩RIR to A. For Pi ∈ I\RIR it sendsMi,·,M·,i,Ni,·,N·,i.
6. A sends two protocol transcripts Π0, Π1 including inputs xbi , r

b
i for i ∈ RIR

and messages Mb
i,·,Mb

·,i for all parties i ∈ [n] and b ∈ {0, 1}. C checks that
(a) Both transcripts Π0, Π1 are consistent according to Definition 4.

(b) If ν = cir then rbi = ri and xbi = xi for i ∈ RIR. If instead ν = ncir then
rbi = ri and xbi = xi for i ∈ I ∩ RIR.

(c) N b
·,i for i ∈ [n] is consistent with FV

q . Moreover, for each Pi where FV
q

reveals inputs of Pi check if N b
i,· is consistent with FV

q .

(d) If µ = cmes, Mb
i,j =Mi,j for all i, j ∈ [n].

(e) If µ = chmes, Mb
i,j =Mi,j for all i, j ∈ [n] where either i ∈ I or j ∈ I.

(f) If µ = chsmes, Mb
i,j =Mi,j for all j ∈ [n], i ∈ I.

If not, then C outputs 0.

7. C outputs 1 if either there exists i ∈ RIR, τ ∈ [G] such that

out(i, x0i , r
0
i , s, τ,M0

·,i,N 0
·,i) 6= out(i, x1i , r

1
i , s, τ,M1

·,i,N 1
·,i)

and both are not ⊥. Otherwise C outputs 0.

We call a protocol (ν,RIR, µ)-transcript non-malleable if any PPT algorithm
A for any s, I and choice of xi by C can make C output 1 in the above game only
with probability negligible in κ.

As mentioned in Section 2.1 we do not necessarily require that out depends
solely on xi, ri. Thus in practice we use a slightly more general definition where
also outputs of parties that are not in RIR are considered.

3.2 Simulating Verifiable Protocols: Input-Aware Simulation

Most standard simulators S for UC secure protocols Π work by executing an
internal copy of the adversary A towards which they simulate interactions with
simulated honest parties and ideal functionalities in the hybrid model where Π is
defined. In general, such a simulator S receives no external advice and generates
random inputs for simulated honest parties and simulated ideal functionality re-
sponses with the aid of a random input tape, from which it samples all necessary
values. However, a crucial point for our approach is being able to parameterize
the operation of simulators for protocols being compiled, as well as giving them
external input on how queries to simulated functionalities should be answered.

We need simulators with such properties in order to obtain publicly verifiable
versions of existing protocols without requiring them to be adaptively secure as
explained in Section 1.1. Basically, in the publicly verifiable version of a protocol,
we wish to embed a special simulator in the publicly verifiable functionality that
it realizes. This will allow us to “delegate” the simulation of the original proto-
col, while the simulator for the publicly verifiable version handles only the extra
machinery needed to obtain public verifiability. The advantage of this technique
is twofold: (1) It allows us to construct publicly verifiable versions of statically
secure protocols; (2) It simplifies the security analysis of publicly verifiable ver-
sions of existing UC-secure protocols, since only the added machinery for public

16

verifiability must be analysed.

Über Simulator SU: We will now start defining the notion of an über simula-
tor for a UC-secure protocol Π realizing a functionality F , which we formally
establish in Definition 8. We denote über simulators as SU, while we denote by
S the original simulator used in the UC proof that Π realizes a (non-verifiable)
functionality F . Basically, an über simulator SU takes the inputs to be used by
simulated honest parties (as well as the randomness of the functionality) in in-
teractions with a copy of the adversary as an external parameter and outputs
(through a special tape) the randomness used by these simulated parties. Instead
of interacting with an internal copy of the adversary, an über simulator interacts
with an external copy of the adversary. Moreover, an über simulator allows for
responses to queries to simulated functionalities to be given externally. Other-
wise SU will perform similar actions as a regular simulator, such as extracting
inputs of dishonest parties to be sent to F .

In the case of a probabilistic functionality F , the über simulator SU also
receives the randomness tape used by F . SU uses this tape to determine the
random values that will be sampled by F , simulating an execution compatible
with such values as well as with the inputs from honest parties. In case F is
also input-less (e.g. coin tossing), the honest parties’ inputs given to SU are
empty and it samples randomness for the honest parties matching the values
determined by the randomness tape given to F .

We remark that most existing simulators for protocols realizing the vast ma-
jority of natural UC functionalities can be trivially modified to obtain an über
simulator (as we will explain in Section 3.3). Notice that most simulators basi-
cally execute the protocol as an honest party would, except that they use random
inputs and take advantage of their power over setup functionalities to equivo-
cate the output of the simulated protocol to equal the actual output obtained by
executing with certain inputs (held by honest parties). Departing from such a
simulator, an über simulator can be constructed by allowing the simulated hon-
est party inputs to be obtained externally, rather than being generated internally.

Syntax of Über Simulator SU: Let SU be a PPT iTM with the same input
and output tapes as a regular simulator S plus additional ones as defined below:

– Input tapes: a tape for the input from the environment Z, a tape for
messages from an ideal functionality F , a tape for inputs for the simulated
honest parties, a tape for messages from an external adversary A and a tape
for messages from the global setup ideal functionalities in the hybrid model
where Π is defined. If F is probabilistic, SU also receives F ’s random tape4.

– Output tapes: tapes for output to Z, tapes for messages to F ,A, tapes for
messages to the ideal functionalities in the hybrid model where Π is defined
as well as a special “control output tape” that outputs the randomness used
by simulated honest parties.

4 This is necessary so that SU can simulate honest parties’ messages that are consistent
with random choices to be made by F independently from parties’ inputs.

17

We furthermore define the following two properties of simulation- and execution-
consistency. Simulation consistency is straightforward and says that any regu-
larly simulated execution is indistinguishable from an execution with SU when
operating as S does (i.e. with direct access to a copy of the adversary A, func-
tionality F and a global setup), using uniform randomness as well as sampling
responses to queries to simulated setup functionalities and simulated party in-
puts as S would (without taking external advice).

Definition 6 (Simulation Consistency). Let Π be a protocol UC-realizing
functionality F using global ideal setup functionalities F1, . . . ,Fr and let S be
the simulator of F ’s proof. We say that the PPT iTM SU is Simulation-consistent
for (Π,F ,S) if these distributions are indistinguishable for all PPT iTM Z:

1. F ◦ S: The distribution of outputs of Z in an ideal execution of F and S
executing an internal copy of adversary A with F1, . . . ,Fr.

2. F ◦ SU: The distribution of outputs of Z in an ideal execution of F with SU
directly accessing a copy of A and F1, . . . ,Fr, where SU operates as S does:
it has direct access to F1, . . . ,Fr and to a copy A, and it takes as input
a uniform randomness tape and a tape for simulated honest party inputs
sampled in such a way that these inputs are distributed as in S.

Z gives inputs to all parties as in the standard UC simulation experiment but
only has access to the same input/output tapes of SU that it can access for S.

We now also define what we mean by execution consistency. Intuitively, we
want the randomness for simulated honest parties output by an über simulator
SU parameterized with the same inputs as the real honest parties to be consistent
with the transcripts of a real protocol execution.

Definition 7 (Execution Consistency). Let Π be a UC-secure implementa-
tion of the functionality F using global ideal setup functionalities F1, . . . ,Fr and
let S be the simulator of the proof. We say that the PPT iTM SU is Execution-
consistent for (Π,F ,S) if for all PPT iTM Z and PPT iTM A the following
distributions are indistinguishable:

1. F ◦SU, (Rh1 , . . . , Rhk
)

$← SU: The distribution of outputs of Z in an ideal ex-
ecution F with SU where SU is parameterized with simulated honest party in-
puts (xh1

, . . . , xhk
), interacts with A and with F1, . . . ,Fr, outputting (Rh1

, . . . , Rhk
)

on its special “control output tape”;
2. The distribution of outputs of Z in a real execution of Π with adversary
A and honest parties P1, . . . ,Pk whose input and randomness pairs are
(xh1 , Rh1), . . . , (xhk

, Rhk
) with F1, . . . ,Fr (i.e. the honest parties use the

randomness output by SU after the ideal execution).

Z gives inputs to all parties in both the ideal and real executions as in the
standard UC simulation experiment but, in the real execution, it must execute
honest parties using the randomness output by SU.

18

For any PPT iTM SU with the input and output tapes defined above, we say
that SU is an über simulator if it is simulation- and execution-consistent.

Definition 8 (Über Simulator). Let Π be a UC-secure implementation of
the functionality F and let S be the simulator of the proof. We say that the
PPT iTM SU is an über simulator for (Π,F ,S) if there exist input tapes for
randomness, simulated honest party inputs such that SU is both simulation- and
execution-consistent for (Π,F ,S) according to Definitions 6 and 7 for any PPT
environment Z and adversary A.

3.3 Input-aware simulation for existing protocols.

As outlined in Section 1.3 it is not necessary for each UC-secure protocol to ad-
ditionally define an über simulator. We now define a restricted class of protocols
for which SU can be obtained trivially. In order to do that, we assume that, for
a protocol Π that UC-realizes F in the F1, . . . ,Fr-hybrid model (all are global
functionalities) with a simulator S, there exists a randomness tape generation
function GenRand (that generates the randomness input tape for S) as follows:

Function GenRand(1κ, Rh1
, . . . , Rhk

, xh1
, ..., xhk

): this PPT function has as in-
puts the security parameter κ, honest party randomnessRh1

, . . . , Rhk
, honest

party inputs xh1
, . . . , xhk

and outputs a randomness input tape T for S such
that the following properties hold for any PPT iTM Z:
1. F ◦ S (An ideal execution of F with S taking as input an uniformly

random randomness tape) is indistinguishable from F ◦ S(T) (An ideal
execution of F with S taking as input tape T); and

2. An execution of Π with A and honest parties Ph1
, . . . ,Phk

taking in-
put/randomness (xh1 , Rh1), . . . , (xhk

, Rhk
) is indistinguishable from F ◦

S(T) (An ideal execution of F with S taking as input tape T).

It turns out it is possible to easily adapt most existing simulators S in order
to obtain a function GenRand with the above property. Most simulators basically
run simulated honest parties that execute the protocol with random inputs and
randomness, making it easy to parameterize these simulators through their ran-
domness tapes in order to make them use specific randomness and inputs (fed
externally) for simulated honest parties. In the case of simulators that run with
hard-coded inputs for simulated honest parties, a similar idea can be achieved by
modifying them to obtain these inputs from their randomness tapes. Moreover,
notice that since an execution of S without honest party inputs is already known
to be indistinguishable from a real world simulation, it follows in most cases that
parameterizing S with simulated honest party inputs that are possibly identi-
cal to those in the real world is indistinguishable from the usual execution with S.

Obtaining SU from a simulator S with GenRand: We now construct SU
for a protocol Π that UC-realizes F with an original simulator S as follows:
Given the simulator S and corresponding function GenRand, SU takes the inputs

19

xh1 , . . . , xhk
for the simulated honest parties on its input tapes, samples uni-

form randomness Rh1
, . . . , Rhk

and runs GenRand(1κ, Rh1
, . . . , Rhk

, xh1
, ..., xhk

)
to obtain T . Then SU runs a copy of S with randomness input T . SU then for-
wards all queries between F , Z, a copy of the adversary A, global setup ideal
functionalities F1, . . . ,Fr and S. In the end, SU outputs Rh1 , . . . , Rhk

on the
special output tape. In order to do this, we also assume that instead of running
an internal copy of A it receives all queries from A (including messages to simu-
lated honest parties and setup ideal functionalities) externally, as well as sending
answers to those queries out through the same interface.

Proposition 1. Given a PPT simulator S for a protocol Π that UC-realizes F
in the F1, . . . ,Fr-hybrid model where all F1, . . . ,Fr are global functionalities for
which a poly-time computable function GenRand as defined above exists, then the
aforementioned SU is an über simulator for Π.

Proof. In order for this construction of SU to be a über simulator according to
Definition 8, it must both simulation and execution-consistent.

First, we will show that SU is simulation-consistent according Definition 6,
which amounts to showing that its internal copy of S has the same view of S
operating with an uniformly random randomness input tape, an environment
Z, an ideal functionality F and its own copy of A. Notice that all commu-
nication to/from Z (as well as F1, . . . ,Fr and A) and S is simply forwarded
by SU to/from S. Notice that, since all F1, . . . ,Fr are global functionalities,
S does not internally simulate local version of these ideal functionalities, in-
stead forwarding requests to them and deciding what to forward back to A.
By the properties of GenRand, simulating honest parties with tape T produced
by GenRand(1κ, Rh1

, . . . , Rhk
, xh1

, ..., xhk
) is equivalent to using a uniformly ran-

dom randomness input tape. Hence, SU is simulation-consistent, since its internal
copy of S has the same view as in its normal operation, being able to simulate
an ideal execution with F that is indistinguishable from the real world execution
with Π and A (because S has this property).

In order to see why SU is also execution-consistent, notice that GenRand

by definition guarantees that an execution of S with randomness tape T ob-
tained from executing GenRand(1κ, Rh1

, . . . , Rhk
, xh1

, ..., xhk
) is indistinguish-

able from an execution of Π with A and honest parties Ph1 , . . . ,Phk
taking

input/randomness (xh1 , Rh1), . . . , (xhk
, Rhk

). Hence, since we already know that
the SU’s internal copy of S has an identical view as in its original operation as
shown above, it follows that an execution of SU taking as input randomness
and input pairs (xh1

, Rh1
), . . . , (xhk

, Rhk
) for simulated honest parties is indis-

tinguishable from an execution of Π with A and honest parties Ph1
, . . . ,Phk

taking the same randomness and input pairs (xh1 , Rh1), . . . , (xhk
, Rhk

). Hence,
SU is execution-consistent, which completes the proof. ut

3.4 Functionalities FV with embedded Über Simulator SU

We now outline how an über simulator SU for the protocol Π as defined in
Definition 8 will be used with a functionality FV. Note that SU is internally

20

executed by the functionality wrapper FV presented in Figure 3, which can be
accessed by an ideal adversary (i.e. FV’s Simulator) interacting with FV through
interfaces Inputi and NMFSU . Moreover, FV allows SU to query global setup
functionalities F1, . . . ,Fn on behalf of honest parties.

The internal SU executed by FV takes care of simulating the original proto-
col Π that realizes F being compiled into a publicly verifiable protocol ΠV that
realizes FV[F], while the external SV interacting with FV will take care of simu-
lating the additional protocol steps and building blocks used in obtaining public
verifiability in ΠV. In order to do so, FV will parameterize SU with the inputs of
all honest parties Pi, which are received through interface Inputi, as well as the
randomness of F if the functionality is probabilistic. As the execution progresses,
SV executes the compiled protocol ΠV (presented in Figures 6 and 7) with an in-
ternal copy A of the adversary and extracts the messages of the original protocol
Π being compiled from this execution, forwarding these messages to SU through
the interface NMFSU . Moreover, SV will provide answers to queries to setup
functionalities from A as instructed by SU also through interface NMFSU . All
the while, queries from honest parties simulated by SU to setup functionalities
are directly forwarded back and forth by FV. If verification is ever activated by
an honest party Pi (and Pi ∈ RIR), FV not only leaks that party’s input to SV
but also leaks that party’s randomness Rhi in the simulated execution with SU
(provided by SU). As we discuss in Section 5, this will allow SV to simulate verifi-
cation, since it now has both a valid transcript of an execution of ΠV with A and
a matching input and randomness pair that matches that transcript (provided
by FV with the help of SU).

We remark that this strategy does not give the simulator SV any extra power
in simulating an execution of the compiled protocol ΠV towards A other than
the power the simulator Svfor the original protocol Π already has. Notice that
the access to SU given by FV to SV does not allow it to obtain any information
about the inputs of honest parties, since an execution with SU parameterized by
these inputs is indistinguishable from an execution with SU (as is the case with
the original simulator) according to Definition 8.

4 Joint Authentication Functionalities

In this section, we define authentication functionalities that will serve as building
blocks for our compiler. Our functionalities allow for a set of parties to jointly
authenticate messages but do not deliver these messages themselves. Later on, a
verifier can check that a given message has indeed been authenticated by a given
set of parties, meaning that they have received this message through a channel
and agree on it. More interestingly, we introduce a functionality that allows for
a set of parties to jointly authenticate private messages that they do not know
(except in encrypted form) as well as inputs and randomness (which they also
only know in encrypted form). Later on, if a message is revealed (e.g. by the
sender) or an input is opened, a verifier can check that it corresponds to a given
secret value previously authenticated by a given set of parties.

21

As opposed to classical point-to-point or broadcast authenticated channels,
our functionalities do not deliver messages to the set of receiving parties and
consequently do not ensure consensus. These functionalities come into play in
our compiler later as they allow for verifiers to check that all parties who executed
a protocol agree on certain parts of the transcript (that might contain private
messages) regardless of how the messages in the transcript have been obtained.
Having the parties agree on which messages have been sent limits the adversary’s
power to generate an alternative transcript aiming at forging a proof that the
protocol reached a different outcome, which itself is highly related to Definition
5 from the previous section. Decoupling message authentication from delivery
allows for a cleaner model of non-interactive verification, where a verifier may
obtain a proof containing an authenticated protocol transcript at any point after
protocol execution itself (i.e. after messages are exchanged).

Functionality FPJAuth (with tokens)

FPJAuth interacts with a set of authenticating parties P = {P1, . . . ,Pn}, a set of
public verifiers V and an ideal adversary S, who is allowed to corrupt a set I ⊂ [n]
of parties where |I| ≤ k for a fixed k < n. FPJAuth has an initially empty list L.

Message Input: Upon receiving a message (Input, sid, ssid,Pi,m) from a party
Pi ∈ P, send (Input, sid, ssid,Pi,m) to S. Upon receiving (Auth-Token, sid, ssid,
Pi,m, σi) from S, check that no such message was received previously, otherwise
output an error message and halt. Send (Auth-Token, sid, ssid,Pi,m, σi) to Pi
and ignore further Input messages with the same ssid.

Joint Authentication: Upon receiving a message (Auth, sid, ssid,Pi,m)
from a party Pj ∈ P, send (Auth, sid, ssid,Pi,m) to S. Upon receiv-
ing (Auth-Token, sid, ssid,Pi,m, σj) from S, check that no such message
was received previously, otherwise output an error message and halt. Send
(Auth-Token, sid, ssid,Pi,m, σj) to Pj . If a message (Input, sid, ssid,Pi,m) has
been received from Pi ∈ P and (Auth, sid, ssid,Pi,m) has been received from all
parties Pj ∈ P for j 6= i, add (sid, ssid,Pi,m, σ1, . . . , σn) to L.

Public Verification: Upon receiving (Verify, sid, ssid,Pi,m, σ1, . . . , σn) from a
party Vi ∈ V, if (sid, ssid,Pi,m, σ1, . . . , σn) ∈ L, set v = 1, else set v = 0. Send
(Verify, sid, ssid,Pi,m, v) to Vi.

Fig. 4. Public Joint Authentication Functionality FPJAuth (with tokens).

Public Joint Authentication. First, we focus on the simpler case of authen-
ticating public messages, which can be known by all parties participating in the
joint authentication procedure. In this case, the sender starts by providing a
message and ssid pair to the functionality and joint authentication is achieved
after each of the other parties sends the same pair back to the functionality.
This can be achieved by a simple protocol where all parties sign each message
received from each other party in each round, sending the resulting signatures

22

to all other parties. A message is considered authenticated if it is signed by all
parties. Notice that this protocol does not ensure consensus and can easily fail if
a single party does not provide a valid signature on a single message, which an
adversary corrupting any party (or the network) can always cause. However, this
failure is captured in the functionality and follows the idea of decoupling message
delivery from authentication. Functionality FPJAuth is described in Figure 4.

Functionality FSJAuth (with tokens)

FSJAuth interacts with a special party Psnd, a set of authenticating parties P =
{P1, . . . ,Pn}, a set of bureaucrats B = {B1, . . . ,Bb}, a set of public verifiers V (s.t.
B ⊂ V) and an ideal adversary S, who is allowed to corrupt a set I ⊂ {P ∪B} where
|I| ≤ k for a fixed k < n+ b. FSJAuth maintains an initially empty list L.

Message Input: Upon receiving a message (Input, sid, ssid,Psnd,m) from Psnd

ignore further Input messages with the same ssid. Send (Auth-Token, sid, ssid,
Psnd,m, σsnd) to Psnd and forward (Input, sid, ssid,Psnd) to S.

Joint Authentication: Upon receiving a message (Auth, sid, ssid,Psnd,m)
from a party Pi ∈ P (resp. (Blind-Auth, sid, ssid,Psnd) from a bu-
reaucrat Bj ∈ B), if a message (Input, sid, ssid,Psnd,m) has been re-
ceived from Psnd, forward the AUTH (resp. Blind− Auth) to S. Upon receiv-
ing (Auth-Token, sid, ssid,Psnd,m, σi) (resp. (Auth-Token, sid, ssid,Psnd, σ̂j))
from S, check that no such message was received previously, otherwise
output an error message and halt. Send (Auth-Token, sid, ssid,Psnd,m, σi)
to Pi (resp. (Auth-Token, sid, ssid,Psnd, σ̂j) to Bj). Additionally, forward
(Auth, sid, ssid,Psnd) (resp. (Blind-Auth, sid, ssid,Psnd)) to S. If messages
(Auth, sid, ssid,Psnd,m) has been received from all parties Pi ∈ P and messages
(Blind-Auth, sid, ssid,Psnd) has been received from all bureaucrats Bj ∈ B, add
(sid, ssid,Psnd,m, σsnd, σ1, . . . , σn, σ̂1, . . . , σ̂b,⊥) to L.

Public Verification: Upon receiving (Verify, sid, ssid,Psnd,m, σsnd, σ1, . . . ,
σn, σ̂1, . . . , σ̂b) from a party Vi ∈ V, if (sid, ssid,Psnd,m, σsnd, σ1, . . . , σn, σ̂1, . . . ,
σ̂b,) ∈ L, set v = 1, else set v = 0. Send (Verify, sid, ssid,Psnd,m, v) to Vi.

Fig. 5. Secret Joint Authentication Functionality FSJAuth (with tokens).

Secret Joint Authentication Departing from functionality FPJAuth capturing
the case of public communication, we will define a functionality FSJAuth (de-
scribed in Figure 5), which will capture the case of communication through
private channels. This functionality works similarly to FPJAuth, allowing parties
to jointly authenticate messages received through private channels to which they
have access. However, it also allows for bureaucrat parties who observe the en-
crypted communication (but do not see plaintext messages) over the private
channel to jointly authenticate a committed version of such plaintext messages.
If a private message is revealed by its sender (or one of its receivers) at a later
point, FSJAuth allows for third parties (including the bureaucrats that did not
see the plaintext message before) to verify that this message is indeed the one
that was jointly authenticated. As in the case of FPJAuth, FSJAuth does not aid
in communicating messages or authentication information in any way, reflecting

23

its nature as a pure joint authentication functionality where all communication
duties are left to the parties (or another protocol using FSJAuth).

In order to capture the different actions of each party it interacts with, FSJAuth

is parameterized by the following (sets of) parties: a party Psnd that is allowed to
input messages to be jointly authenticated; a set of parties P who can read input
messages given by Psnd and jointly authenticate them; a set of bureaucrats B who
do not see the message but jointly authenticate that Psnd has sent a certain (still
unknown) committed message to the parties P. Notice that FSJAuth does not aid
in delivering the message input by Psnd either to parties Pi ∈ P in plaintext
message form nor to bureaucrats in committed form. Moreover, FSJAuth does
not aid in sending notifications about sent messages nor joint authentication
information to any party. The responsibility for sending messages (in plaintext
or committed form) lies with Psnd, while the responsibility for notifying any other
party that plaintext verification is possible lies with Psnd or parties Pi ∈ P, i.e.
the only parties who can retrieve the message that was jointly authenticated.

The basic idea for realizing FSJAuth is using a signature scheme (captured
by FSig) and a certified encryption scheme with plaintext verification (captured
by FCPKEPV), i.e. an encryption scheme with two crucial properties: (1) An en-
crypting party is guaranteed to encrypt a message that can only be opened by
the intended receiver (i.e. it is possible to make sure the public-key used belongs
to the intended receiver of the encrypted messages); (2) Both encrypting and
decrypting parties can generate publicly verifiable proofs that a certain message
was contained in a given ciphertext. The private channel itself is realized by
encrypting messages under the encryption scheme, while joint authentication is
achieved by having all parties in P (including the sender) and bureaucrats in B
sign the resulting ciphertext. In order to obtain efficiency, a joint public/secret
key pair is generated for each set of receivers, in such a way that the same ci-
phertext can be decrypted by all the receivers holding the corresponding joint
secret key. Later on, if any party in P (including the sender) wishes to start the
verification procedure to prove that a certain message was indeed contained in
the ciphertext associated with a given ssid, it recovers the plaintext message
and a proof of plaintext validity from the ciphertext and sends those to one or
more verifiers. With these values, any party can first verify that the ciphertext
that was sent indeed corresponds to that message due to the plaintext verifica-
tion property of the encryption scheme and then verify that it has been jointly
authenticated by checking that there exist valid signatures on that ciphertext by
all parties in P and bureaucrats in B. The details of the construction (including
a realization of FCPKEPV) are described in Supplementary Material C.

Authenticating Inputs and Randomness To provide an authentication of
inputs and randomness we adapt the functionality FSJAuth, as the desired ca-
pabilities are like a message authentication without a receiver. Alternatively,
one could express it also in the context of non-interactive multi-receiver com-
mitments. In Supplementary Material D we present functionality FIRAuth that
implements this. The functionality works in the sense of cir of Definition 5, as
it allows each party to commit to a unique string (for input and randomness

24

of the protocol) towards all parties. We refer readers who are interested in an
implementation of FIRAuth to Section 4, as any realization of FSJAuth can easily be
adapted to FIRAuth. Notice that FIRAuth can be instantiated from n instances of
FSJAuth such that, for each Pi ∈ P interacting with FIRAuth, there is an instance
F iSJAuth where Pi acts as Psnd, the set of bureaucrats Bi of F iSJAuth is equal to
the set P of FIRAuth and the set P of F iSJAuth only contains Pi.

5 Compilation for Input-Revealing Protocols

We now show how to compile the protocols from Section 2.1 into non-interactively
verifiable counterparts. To achieve this we will in some cases only have to rely on
a signature functionality, whereas a compiler for the weakest protocols according
to Definition 5 needs rather strong additional tools such as the authentication
functionalities from the previous section. In this work we focus on protocols
according to Definition 5 and as such there are 8 different combinations of pa-
rameters (ν, µ) for (ν,RIR, µ)-transcript non-malleable protocols which we might
consider. Furthermore, according to Definition 2 we might either have public or
private verifier registration, which in total yields 16 different definitions. To
avoid redundancy we now outline how to achieve the respective verifiability in
each setting and a thorough analysis of a general technique that works for any
(ν,RIR, µ)-transcript non-malleable protocols. We simplify notation by just as-
suming the existence of a single verifier V.

5.1 How to make Protocols Verifiable

We now describe how to combine all the introduced building blocks and notation
from the previous sections to make a protocol verifiable. More specifically, we
take a (ν,RIR, µ)-transcript non-malleable protocol Π that UC realizes an ideal
functionality F in the (global) F1, . . . ,Fr-hybrid model with über simulator SU
for (Π,F ,S) and do the following:

1. We describe how to construct a protocol ΠV by modifying Π with access
to a signature functionality FSig, a key registration functionality FReg and
authentication functionalities FPJAuth,FSJAuth,FIRAuth. We will furthermore
require that we can replace the hybrid functionalities F1, . . . ,Fr used in Π
with verifiable counterparts FV

1 , . . . ,FV
r .

2. We then show that ΠV UC-realizes FV[F] as described in Section 3.4 in the
(global) FV

1 , . . . ,FV
r -hybrid by constructing an explicit simulator SV.

For each of the different choices of ν and µ there is a different way how Π
must be compiled to ΠV and we will not formalize all 8 different possibilities
(and prove them secure) for the sake of conciseness. We will instead now explain
on a high level which transformations are necessary, and will then explain the
proof technique for the general case of making a (cir,RIR, cmes)-transcript non-
malleable version of any protocol that is (ν,RIR, µ)-transcript non-malleable.
This is the main step in obtaining a publicly verifiable version of an originally
(ν,RIR, µ)-transcript non-malleable protocol.

25

Protocol Compilation - The Big Picture. In order to verify we let the
verifier V simulate each such party whose output shall be checked and which
participated in an instance of Π. This check is done locally, based on the inputs,
randomness and messages related to such a party (and/or other parties) which
V obtains for this process. In case of public verifier registration we assume that
a bulletin board is available which holds the protocol transcript, whereas in case
of private registration the verifier contacts one of the protocol parties to obtain
a transcript which it can then verify non-interactively. We want to stress that
the Bulletin Board which may contain the protocol transcript does not have to
be used to exchange messages during the actual protocol run.

In Π we assume that messages can either be exchanged secretly between
two parties or via a broadcast channel. Furthermore, parties may send messages
to hybrid functionalities or receive them from these. An adversary may now be
able to replace certain parts of the protocol transcript. As long as we assume
that a protocol is (ν,RIR, µ)-transcript non-malleable and constrain his ability
to maul the protocol transcript to those parts permitted by the definition, the
overall construction achieves verifiability. We now explain, on a high level, the
modifications to Π for the different values of µ, ν:

µ = ncmes: Here the adversary is allowed to replace all messages by any party
at his will, and messages are just exchanged as in Π.

µ = chsmes: Before the protocol begins, each Pi first generates a signing key
with FSig and registers its signing key with FReg. Whenever a party Pi sends

a message m
(τ,ρ)
i,j to Pj it then uses FSig to authenticate m

(τ,ρ)
i,j with a signature

σ
(τ,ρ)
i,j . In such a case, V will later be able to correctly verify exactly those

messages of the transcript that were sent by honest parties, as A might fake
messages and signatures sent by dishonest parties after the fact.

µ = chmes: In this setting, each message that is either sent or received by an
honest party must remain unaltered. Each party will do the same as in the
case where µ = chsmes, but we additionally require that whenever a party

Pi receives a message m
(τ,ρ)
j,i from Pj then it then uses FSig to authenticate

m
(τ,ρ)
j,i with a signature σ

(τ,ρ)
j,i . Now V can establish for each message of the

protocol if both sender and receiver signed the same message, which will
allow A to only alter those messages that were both sent and received by
dishonest parties.

µ = cmes: We now also require that the dishonest parties cannot replace their
messages before verification. To achieve this, we use FSJAuth,FPJAuth as de-
fined in Section 4 which the parties must now use in order to register their
private message exchange. These functionalities FSJAuth,FPJAuth can then be
used by V in order to validate an obtained transcript.

ν = ncir: Based on each Pi setting up a key with FSig and registering it with FReg

let each party sign both its input xi and its randomness ri using FSig before
sending it in Activate Verification, which means that V only accepts such
signed values which it can verify via FSig. A can later replace the pairs
(xj , rj) of dishonest parties Pj by generating different signatures.

26

ν = cir: The parties will use the available functionality FIRAuth to authenticate
their inputs and randomness initially. Later, V can use FIRAuth to check
validity of the revealed xi, ri which it obtained for verification.

Hybrid Functionalities: As mentioned above we replace the auxiliary func-
tionalities F1, . . . ,Fr with NIV counterparts, i.e. with functionalities FV

1 , . . . ,FV
r

that have the same interfaces as defined in Definition 3. If we intend to
achieve public verifiability then each such FV

q must also be publicly verifi-
able, whereas in the case of private verifiability either type of functionality
is fine. For any such FV

q we can then establish if a certain message mresq,i
was indeed sent to Pi or not. If FV

q does also reveal inputs, then we can
furthermore test if mresi,q as claimed to be sent by Pi was indeed received
by the respective party.

5.2 Public Verifiability Compiler

We now show how to formally embed the aforementioned transformations into
a protocol in order to achieve non-interactive UC verifiability. The basic idea
of this construction is to turn any (cir,RIR, µ)-transcript non-malleable protocol
into a (cir,RIR, cmes)-transcript non-malleable protocol by forcing the adversary
to commit to all the corrupted parties’ randomness, inputs and messages. While
this might be overkill for some protocols, we focus on the worst case scenario
of compiling (cir,RIR, ncmes)-transcript non-malleable protocols, since it is the
most challenging. Note that, after making a protocol (cir,RIR, cmes)-transcript
non-malleable, the protocol execution becomes deterministic and can be verified
upon the revealing of the randomness, input and transcript of any party that
activates the verification. All the verifier has to do is to execute the protocol’s
next message function on these randomness and input taking received messages
from the transcript. If a corrupted party who activates verification attempts to
cheat by revealing fake values for randomness, input and transcript, it is caught
because those values were committed to.

Apart from having all parties commit to jointly authenticated versions of
their randomness, inputs and transcripts, the protocol we present requires an
authenticated bulletin board where this information is posted in the clear if a
party activates verification revealing its input and randomness. We remark that
the bulletin board is not necessary for employing our techniques, since the values
revealed for verification can simply be (unreliably) been sent among parties.
We use a trusted bulletin board in order to focus on the important aspects of
applying our techniques to existing protocols without the distraction of analyzing
all corner cases that arise from operating on unreliable verification data. We
stress that in these cases no adversary can force verification to succeed for a
cheating party or produce a fake proof showing an honest party cheated.

Moreover, the overhead of FSJAuth and FPJAuth can be avoided if instead of
a (cir,RIR, µ)-transcript non-malleable protocol we use as the starting point a
(cir,RIR, cmes)-transcript non-malleable protocol or at least reduced if we depart
from another protocol where some of the messages are naturally fixed (e.g. a
(cir,RIR, chmes)-transcript non-malleable protocol).

27

Given a (ν,RIR, µ)-transcript non-malleable protocol Π = (nmes, out) that
UC realizes an ideal functionality F in the (global) F1, . . . ,Fr-hybrid model with
über simulator SU, we construct a protocol ΠV that UC-realizes the publicly ver-
ifiable ideal functionality FV[F] in the FSJAuth,FPJAuth,FIRAuth,FBB,FV

1 , . . . ,FV
r -

hybrid model. Notice that if the protocol being compiled relies on non-verifiable
setup resources F1, . . . ,Fr, those functionalities can be first compiled using the
same techniques. Protocol ΠV is described in Figures 6 and 7.

Protocol ΠV

ΠV is parameterized by a protocol Π with next message function nmes and out-
put function out as defined in Section 2.1. ΠV uses functionalities FBB,FSJAuth,
FPJAuth,FIRAuth as well as global hybrid functionalities FV

1 , . . . ,FV
r where Π has used

possibly non-verifiable versions thereof. All of these functionalities are available to the
verifiers V. Set up one copy F (i,j)

SJAuth for any private communication where Pi is Psnd,
Pj acts as authenticating party and all other parties P \ {Pi,Pj} are bureaucrats.
Initially, the parties will run any necessary Initialization of the functionalities in-
volved such as to e.g. register keys. They then do the following:

Inputi: On input xi ∈ X party Pi samples ri
$← {0, 1}poly(κ) and sends (Input,

sid,Pi, (xi, ri)) to FIRAuth, while each Pj ∈ P \{Pi} sends (Blind-Auth, sid,Pi,Pj).
Afterwards, Pi runs Π.Inputi.

Compute(τ): Each Pi does the following:
1. For every ρ ∈ [Hτ], first run the 4 steps of Π.Compute(τ).

2. If Pi sent a broadcast message m in round ρ, then Pi sends (Input, sid, ssid,
Pi,m) to FPJAuth while each Pj ∈ P \ {Pi} sends (Auth, sid, ssid,Pi,m).

3. If Pi sent private messages, then for the receiver Pj of message m
(τ,ρ)
i,j Pi sends

(Input, sid, ssid,Pi,m) to F (i,j)
SJAuth while Pj sends (Auth, sid, ssid,Pi,m) and

each bureaucrat sends (Blind-Auth, sid, ssid,Pi).

Output
(τ)
i : Pi does the same as in Π.Output

(τ)
i .

Register Verifier: V sends (Register, sid) to each FV
q for q ∈ [r].

Activate Verification: On input (Activate-Verification, sid, open-i,
open-input-i), Pi does the following:
1. Send (Activate-Verification, sid, 1) to each FV

q for q ∈ [r].

2. If open-input-i = 1, then post xi, ri,N·,i,M·,j on FBB.

Fig. 6. The protocol ΠV which makes the (cir,RIR, µ)-transcript non-malleable proto-
col Π publicly verifiable.

Theorem 1. Let Π be a (cir,RIR, µ)-transcript non-malleable protocol that UC-
realizes an ideal functionality F in the (global) FV

1 , . . . ,FV
r -hybrid model using

the Simulator S. Furthermore, let the PPT iTM SU be an über simulator for
(Π,F ,S). Then ΠV UC-realizes the publicly verifiable ideal functionality FV[F]
in the FSJAuth,FPJAuth,FIRAuth,FBB,FV

1 , . . . ,FV
r -hybrid model.

28

Protocol ΠV (Continuation)

Verifyk: V on input k, a, b(1), . . . , b(G) does the following:
1. For party Pj check that xj , rj ,N·,j ,M·,j are on FBB. Otherwise output

(Cannot-Verify, sid, j).
For each functionality FV

q verify that N·,i is valid by doing the following:

– If FV
q is Input-Private then send (Verify, sid, j, b

(1)
j,q , . . . , b

(G)
j,q) for each

j ∈ [n], where b
(1)
j,q , . . . , b

(G)
j,q are taken from N·,j . If either FV

q returns
(Verify, sid, j, B) with B 6= ∅ or (Cannot-Verify, sid, j) then output
(Cannot-Verify, sid, j).

– If FV
q is Input-Revealing then instead send (Verify, sid, j, xj,q, b

(1)
j,q , . . . , b

(G)
j,q)

where xj,q is derived from the protocol execution. If either FV
q returns

(Verify, sid, j, f, B) with B 6= ∅, f = 0 or if it returns (Cannot-Verify,
sid, j) then output (Cannot-Verify, sid, j).

2. Run the protocol Π by simulating Pj using the next message function nmes

using N·,j ,M·,j with input xj and randomness rj until an output a can
be obtained by the output function out. Check for each broadcast message
generated for Pj by nmes (resp. contained in M·,j) that this message was sent
(resp. received) via FPJAuth and similarly verify private messages generated for
Pj by nmes (resp. contained in M·,j) from (resp. to) Pj to (resp. from) Pi via

F (i,j)
SJAuth. In case of any inconsistency, output (Cannot-Verify, sid, k).

Then define f = 1 if a = xj and f = 0 otherwise as well as B = {τ ∈ [G] | y(τ) 6=
out(k, xk, rk, s, ρ,M·,k,N·,k)} and return (Verify, sid, k, f, B).

Fig. 7. A protocol ΠV that makes the (cir,RIR, cmes)-transcript non-malleable protocol
Π publicly verifiable (continuation).

Proof. In order to prove Theorem 1 we construct a simulator S that interacts
with environment Z, functionality FV[F], global functionalities FV

1 , . . . ,FV
r and

a internal copy of an adversary A who may corrupt a subset I ⊂ P of size
at most k while S will simulate the remaining parties I = P \ I as well as
the resources used in ΠV. S forwards all communication between A and Z. S
simulates setup functionalities FSJAuth,FPJAuth,FIRAuth,FBB,FV

1 , . . . ,FV
r exactly

as they are described, except for when alternative behavior is described

The rationale in our construction of S is straightforward: it takes care of
simulating the extra interfaces added to F by FV[F] (along with the extra setup
functionalities FSJAuth,FPJAuth,FIRAuth,FBB), while delegating simulation of the
original Π to its über simulator SU incorporated into FV[F]. In the Input phase
of ΠV, S sends a message the NMFSU interface of FV[F] with any messages re-
ceived from A. S forwards to A any messages returned by SU through NMFSU

(i.e. the messages of simulated honest parties) by simulating messages being
sent from honest parties directly to A and, if necessary, simulating messages
sent through FSJAuth,FPJAuth,FBB. This allows SU to extract A’s inputs and
forward them to F inside the wrapper FV[F]. For the Compute and Output
phases of ΠV, S forwards all requests from A to the über simulator SU for the

29

original protocol Π through the NMFSU interface of FV[F]. Upon receiving
a response from SU, it forwards it back to A. Apart from forwarding direct
communication between A and simulated honest parties to SU, it also simulates
FSJAuth,FPJAuth,FIRAuth,FBB, verifying messages to simulated honest parties that
should also be forwarded to SU are properly authenticated and later simulating
SU’s response being authenticated by the right functionality as coming from the
right simulated honest party. If verification is initiated by A, S checks that A has
provided correct authentication data according to ΠV, in which case it activates
verification through the Activate Verification interface of FV[F] (otherwise it
does not). If verification is initiated by an honest party, S obtains from FV[F] the
randomness and input (ri, xi) used by the honest party Pi who initiated verifica-
tion and simulates that honest party initiating verification with (ri, xi,N·,i,M·,i)
towards A by simulating these values being posted to FBB and simulating FIRAuth

authenticating the opening to (ri, xi), where N·,i,M·,i are generated according
to the simulated execution towards A. Finally, S simulates verification by act-
ing exactly as in ΠV and forwarding queries to the Verifyj interface of FV[F].
Also, if A produced incorrect verification data for some of the corrupted parties,
S instructs FV[F] to make verification activation queries for the corresponding
parties to fail.

In order to see why the simulation with S is indistinguishable from a real
execution of ΠV, we will first analyze the simulation of the Input, Compute and
Output phases. S follows the exact steps of ΠV and delegates the simulation
of the underlying protocol Π to its über simulator SU incorporated into FV[F].
Notice that SU is parameterized with the randomness and input from honest
parties by definition of FV[F]. Since S also forwards all communication between
SU, this part of the simulation is indistinguishable from a real execution by SU’s
properties according to Definition 8. It remains to be shown that a simulation of
the Activate Verification and Verifyk phases with S is also indistinguishable
from a real execution of these phases with A. First, notice again that, since SU is
an über simulator parameterized as discussed before, according to Definition 8
all the transcript N·,i,M·,i forwarded between SU and A is consistent with the
inputs and randomness (ri, xi) obtained from FV[F]. Next, notice that, since
the randomness and inputs of all parties are committed to using FIRAuth and all
messages between corrupted parties controlled by A and honest parties simu-
lated by S (with the help of SU) are authenticated using FPJAuth,FSJAuth, the
execution of Π during the Input, Compute and Output phases is equivalent the
execution of a (cir,RIR, cmes)-transcript non-malleable protocol in the game of
Definition 5 (where the parties are not allowed to alter their randomness, input
and transcript after the protocol is executed). Notice also that executing the
verification procedure of ΠV is equivalent to performing the procedures of the
challenger in the game of Definition 5. Hence, when S executes the verification
phase by following the steps of ΠV, it is guaranteed by Definition 5 to arrive at
the correct result about the presence of cheating parties (or lack thereof). Since
S either allows verification to succeed or makes it fail according to the checks
it performs following the instructions of ΠV and those checks detect cheating

30

correctly with all but negligible probability (by Definition 5), that proves the
remaining case and concludes our proof. ut

In Appendix E we show an application of Theorem 1 where it will be recursively
applied to make a complex protocol verifiable.

References

1. Joël Alwen, Rafail Ostrovsky, Hong-Sheng Zhou, and Vassilis Zikas. Incoercible
multi-party computation and universally composable receipt-free voting. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 763–780. Springer, Heidelberg, August 2015.

2. Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure multiparty computations on bitcoin. In 2014 IEEE Symposium
on Security and Privacy, pages 443–458. IEEE Computer Society Press, May 2014.

3. Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with
public verifiability. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012,
volume 7658 of LNCS, pages 681–698. Springer, Heidelberg, December 2012.

4. Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly auditable secure
multi-party computation. In Michel Abdalla and Roberto De Prisco, editors, SCN
14, volume 8642 of LNCS, pages 175–196. Springer, Heidelberg, September 2014.

5. Carsten Baum, Bernardo David, and Rafael Dowsley. Insured MPC: Efficient se-
cure computation with financial penalties. In Joseph Bonneau and Nadia Heninger,
editors, FC 2020, volume 12059 of LNCS, pages 404–420. Springer, Heidelberg,
February 2020.

6. Carsten Baum, Bernardo David, and Tore Frederiksen. P2dex: Privacy-preserving
decentralized cryptocurrency exchange. Cryptology ePrint Archive, Report
2021/283, 2021. https://eprint.iacr.org/2021/283 (To appear at ACNS 2021).

7. Carsten Baum, Emmanuela Orsini, and Peter Scholl. Efficient secure multiparty
computation with identifiable abort. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part I, volume 9985 of LNCS, pages 461–490. Springer, Heidelberg,
October / November 2016.

8. Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. Ef-
ficient constant-round MPC with identifiable abort and public verifiability. In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, vol-
ume 12171 of LNCS, pages 562–592. Springer, Heidelberg, August 2020.

9. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling
with applications to one-time programs and secure outsourcing. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 134–
153. Springer, Heidelberg, December 2012.

10. Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume
8617 of LNCS, pages 421–439. Springer, Heidelberg, August 2014.

11. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gre-
gory Neven. The wonderful world of global random oracles. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS,
pages 280–312. Springer, Heidelberg, April / May 2018.

12. Jan Camenisch, Maria Dubovitskaya, and Alfredo Rial. UC commitments for
modular protocol design and applications to revocation and attribute tokens. In

31

https://eprint.iacr.org/2021/283

Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume
9816 of LNCS, pages 208–239. Springer, Heidelberg, August 2016.

13. Jan Camenisch, Anja Lehmann, Gregory Neven, and Kai Samelin. Uc-secure non-
interactive public-key encryption. In 30th IEEE Computer Security Foundations
Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017, pages 217–
233. IEEE Computer Society, 2017.

14. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

15. Ran Canetti. Universally composable signature, certification, and authentication.
In 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30
June 2004, Pacific Grove, CA, USA, page 219. IEEE Computer Society, 2004.

16. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Salil P. Vadhan, editor, TCC 2007, volume
4392 of LNCS, pages 61–85. Springer, Heidelberg, February 2007.

17. Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
mutual authentication and key-exchange protocols. In Shai Halevi and Tal Rabin,
editors, TCC 2006, volume 3876 of LNCS, pages 380–403. Springer, Heidelberg,
March 2006.

18. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with
a global random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors,
ACM CCS 2014, pages 597–608. ACM Press, November 2014.

19. Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-
ciphertext security. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 565–582. Springer, Heidelberg, August 2003.

20. Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, Heidelberg,
August 2003.

21. Ran Canetti, Pratik Sarkar, and Xiao Wang. Blazing fast OT for three-round
UC OT extension. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages 299–327.
Springer, Heidelberg, May 2020.

22. Ran Canetti, Pratik Sarkar, and Xiao Wang. Efficient and round-optimal oblivious
transfer and commitment with adaptive security. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 277–
308. Springer, Heidelberg, December 2020.

23. Ignacio Cascudo, Ivan Damg̊ard, Bernardo David, Nico Döttling, and Jesper Buus
Nielsen. Rate-1, linear time and additively homomorphic UC commitments. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume
9816 of LNCS, pages 179–207. Springer, Heidelberg, August 2016.

24. Ignacio Cascudo and Bernardo David. SCRAPE: Scalable randomness attested by
public entities. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors,
ACNS 17, volume 10355 of LNCS, pages 537–556. Springer, Heidelberg, July 2017.

25. Ignacio Cascudo and Bernardo David. ALBATROSS: Publicly AttestabLe
BATched Randomness based On Secret Sharing. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 311–
341. Springer, Heidelberg, December 2020.

26. Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger.
Theor. Comput. Sci., 777:155–183, 2019.

32

27. Richard Cleve. Limits on the security of coin flips when half the processors are
faulty (extended abstract). In 18th ACM STOC, pages 364–369. ACM Press, May
1986.

28. Ronald Cramer and Victor Shoup. A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 13–25. Springer, Heidelberg, August
1998.

29. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662.
Springer, Heidelberg, August 2012.

30. Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, vol-
ume 10821 of LNCS, pages 66–98. Springer, Heidelberg, April / May 2018.

31. Tore K. Frederiksen, Benny Pinkas, and Avishay Yanai. Committed MPC - mali-
ciously secure multiparty computation from homomorphic commitments. In Michel
Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS,
pages 587–619. Springer, Heidelberg, March 2018.

32. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Elisabeth Oswald and Marc Fischlin, edi-
tors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 281–310. Springer,
Heidelberg, April 2015.

33. Juan A. Garay, Daniel Wichs, and Hong-Sheng Zhou. Somewhat non-committing
encryption and efficient adaptively secure oblivious transfer. In Shai Halevi, edi-
tor, CRYPTO 2009, volume 5677 of LNCS, pages 505–523. Springer, Heidelberg,
August 2009.

34. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

35. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computa-
tion with identifiable abort. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 369–386. Springer, Heidel-
berg, August 2014.

36. Zahra Jafargholi and Sabine Oechsner. Adaptive security of practical garbling
schemes. In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran,
editors, INDOCRYPT 2020, volume 12578 of LNCS, pages 741–762. Springer, Hei-
delberg, December 2020.

37. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 357–388. Springer, Heidelberg, August 2017.

38. Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 705–734.
Springer, Heidelberg, May 2016.

39. Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-
choose oblivious transfer. Journal of Cryptology, 25(4):680–722, October 2012.

40. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

33

41. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 681–700. Springer, Heidelberg, August 2012.

42. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for effi-
cient and composable oblivious transfer. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 554–571. Springer, Heidelberg, August 2008.

43. David Pointcheval. Chosen-ciphertext security for any one-way cryptosystem. In
Hideki Imai and Yuliang Zheng, editors, PKC 2000, volume 1751 of LNCS, pages
129–146. Springer, Heidelberg, January 2000.

44. Berry Schoenmakers and Meilof Veeningen. Universally verifiable multiparty com-
putation from threshold homomorphic cryptosystems. In Tal Malkin, Vladimir
Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis, editors, ACNS 15,
volume 9092 of LNCS, pages 3–22. Springer, Heidelberg, June 2015.

45. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–
250. Springer, Heidelberg, April 2015.

Supplementary Material

A Auxiliary Functionalities

Digital Signatures Ideal Functionality FSig. The standard digital signature func-
tionality FSig from [15] is presented in Figure 8. It is also shown in [15] that any
EUF-CMA signature scheme UC realizes this functionality.

Key Registration Ideal Functionality FReg. The key registration functionality
FReg from [17] is presented in Figure 9. This ideal functionality allows parties to
register public-keys in such a way that other parties can retrieve such keys with
the guarantee that they belong to the party who originally registered them. This
functionality will be used as setup for the constructions of certified public-key
encryption with plaintext verification and secret joint authentication of Section 4.

Bulletin Board Ideal Functionality FBB. In Figure 10 we describe an authenti-
cated bulletin board functionality which is used throughout this work. Authen-
ticated Bulletin Boards can be constructed from regular bulletin boards using
FSig,FReg and standard techniques.

B UC Secure Public-Key Encryption and Constructions

It is well-known that the standard public-key encryption functionality FPKE

from [14,17] can be UC-realized by any IND-CCA secure public-key encryp-
tion scheme. One of the main building blocks we use is a UC-secure public-
key encryption with a plaintext verification property formalized as functionality
FPKEPV that is presented in Section 4. In order to realize FPKEPV, we will show

34

Functionality FSig

Given an ideal adversary S, verifiers V and a signer Ps, FSig performs:

Key Generation: Upon receiving a message (keygen, sid) from Ps, verify that
sid = (Ps, sid′) for some sid′. If not, ignore the request. Else, hand (keygen, sid)
to the adversary S. Upon receiving (verification key, sid, SIG.vk) from S, output
(verification key, sid, SIG.vk) to Ps, and record the pair (Ps, SIG.vk).

Signature Generation: Upon receiving a message (sign, sid,m) from Ps, verify
that sid = (Ps, sid′) for some sid′ . If not, then ignore the request. Else, send (sign,
sid,m) to S. Upon receiving (signature, sid,m, σ) from S, verify that no entry
(m,σ, SIG.vk, 0) is recorded. If it is, then output an error message to Ps and halt.
Else, output (signature, sid,m, σ) to Ps, and record the entry (m,σ,SIG.vk, 1).

Signature Verification: Upon receiving a message (verify, sid,m, σ,SIG.vk′)
from some party Vi ∈ V, hand (verify, sid,m, σ,SIG.vk′) to S. Upon receiving
(verified, sid,m, φ) from S do:

1. If SIG.vk′ = SIG.vk and the entry (m,σ,SIG.vk, 1) is recorded, then set f =
1. (This condition guarantees completeness: If the verification key SIG.vk′ is
the registered one and σ is a legitimately generated signature for m, then the
verification succeeds.)

2. Else, if SIG.vk′ = SIG.vk, the signer Ps is not corrupted, and no entry
(m,σ′, SIG.vk, 1) for any σ′ is recorded, then set f = 0 and record the entry
(m,σ,SIG.vk, 0). (This condition guarantees unforgeability: If SIG.vk′ is the reg-
istered one, the signer is not corrupted, and never signed m, then the verification
fails.)

3. Else, if there is an entry (m,σ, SIG.vk′, f ′) recorded, then let f = f ′. (This con-
dition guarantees consistency: All verification requests with identical parameters
will result in the same answer.)

4. Else, let f = φ and record the entry (m,σ,SIG.vk′, φ).

Output (verified, sid,m, f) to Vi.

Fig. 8. Functionality FSig for Digital Signatures.

Functionality FReg

FReg interacts with a set of parties P and an ideal adversary S, proceeding as follows:

Key Registration: Upon receiving a message (register, sid, pk) from a party Pi ∈
P, send (Registering, sid, pk) to S. Upon receiving (sid, ok) from S, and if this is
the first message from Pi, then record the pair (Pi, pk).

Key Retrieval: Upon receiving a message (Retrieve, sid,Pj) from a party Pi ∈ P,
send message (Retrieve, sid,Pj) to S and wait for it to return a message (Retrieve,
sid, ok). Then, if there is a recorded pair (Pj , pk) output (Retrieve, sid,Pj , pk) to
Pi. Otherwise, if there is no recorded tuple, return (Retrieve, sid,Pj ,⊥).

Fig. 9. Functionality FReg for Key Registration.

35

Functionality FBB

FBB interacts with a set of parties P and an ideal adversary S, proceeding as follows:

Register: Upon receiving (Init, sid,P) by all parties in a set P = {P1, . . . ,Pn}
where sid was not used before, store P locally.

Write: Upon receiving (Write, sid, ssid,P,m) from a party Pi ∈ P, where ssid
was not used before for this sid, store the message m as (sid, ssid, i,m).

Read: Upon receiving (Read, sid) from any party (possibly outside P), the func-
tionality returns all (sid, ssid, i,m) that were stored.

Fig. 10. Functionality FBB for an authenticated Bulletin Board.

that it is possible to generate proofs that a given plaintext message was contained
in a given ciphertext for the random oracle-based IND-CCA secure public-key
encryption schemes of [43,28].

Semantics of a public-key encryption scheme. We consider public-key encryption
schemes PKE that have public-key PK, secret key SK, messageM, randomness
R and ciphertext C spaces that are functions of the security parameter κ, and
consist of a PPT key generation algorithm KG, a PPT encryption algorithm

Enc and a deterministic decryption algorithm Dec. For (pk, sk)
$← KG(1κ), any

m ∈ M, and ct
$← Enc(pk,m), it should hold that Dec(sk, ct) = m with over-

whelming probability over the used randomness. Moreover, we consider public-
key encryption schemes that are IND-CCA secure according to the definition
considered in [14,17].

The Pointcheval [43] IND-CCA secure Cryptosystem. This cryptosystem can
be constructed from any Partially Trapdoor One-Way Injective Function in the
random oracle model. First we recall the definition of Partially Trapdoor One-
Way Functions. As observed in [43], the classical El Gamal cryptosystem is a
partially trapdoor one-way injective function under the Computational Diffie
Hellman (CDH) assumption, implying an instantiation of this cryptosystem un-
der CDH.

Definition 9 (Partially Trapdoor One-Way Function [43]). The function
f : X × Y → Z is said to be partially trapdoor one-way if:

– For any given z = f(x, y), it is computationally impossible to get back a
compatible x. Such an x is called a partial preimage of z. More formally, for
any polynomial time adversary A, its success, defined by SuccA = Prx,y[∃y′,
f(x′, y′) = f(x, y)|x′ = A(f(x, y))], is negligible. It is one-way even for just
finding partial-preimage, thus partial one-wayness.

– Using some extra information (the trapdoor), for any given z ∈ f(X ×Y), it
is easily possible to get back an x, such that there exists a y which satisfies
f(x, y) = z. The trapdoor does not allow a total inversion, but just a partial
one and it is thus called a partial trapdoor.

36

Let’s now recall the construction of [43], which is presented in Definition 10.

Definition 10 (Pointcheval [43] IND-CCA secure Cryptosystem). Let
T D be a family of partially trapdoor one-way injective functions and let H :
{0, 1}|m|+κ → Y and G : X → {0, 1}|m|+κ be random oracles, where |m| is
message length. This cryptosystem consists of a triple of algorithms PKE =
(KG,Enc,Dec) that work as follows:

– KG(1κ): Sample a random partially trapdoor one-way injective function f :
X ×Y → Z from T D and denote its inverse parameterized by the trapdoor by
f−1 : Z → X . The public-key is pk = f and the secret key is sk = (f, f−1).

– Enc(pk,m): Sample r
$← X and s

$← {0, 1}κ. Compute a ← f(r,H(m ‖ s))
and b = (m ‖ s)⊕G(r), outputting ct = (a, b) as the ciphertext.

– Dec (sk, ct): Given a ciphertext ct = (a, b) and secret key sk = f−1, compute
r ← f−1(a) and M ← b⊕G(r). If a = f(r,H(M)), parse M = (m ‖ s) and
output m. Otherwise, output ⊥.

Properties of the Pointcheval [43] IND-CCA secure Cryptosystem. First, no-
tice that this construction can be instantiated in the restricted observable and
programmable global random oracle model of [11]. Next, we observe that this
construction is witness recovering, meaning that it allows for the decrypting
party to recover all of the randomness used in generating a ciphertext (i.e. r
and s). Moreover, this construction is committing, meaning that it is infeasible
for an adversary to obtain two pairs of messages and randomness that result
in the same ciphertext. We now recall the definitions of witness recovering and
committing encryption schemes.

Definition 11 (Witness-Recovering Public-Key Encryption). A public-
key encryption scheme is witness-recovering if its decryption algorithm Dec takes
as input a secret key sk ∈ SK and a ciphertext ct ∈ C and outputs either a pair

(m, r) for m ∈ M and r ∈ R or an error symbol ⊥. For any (pk, sk)
$← KG(1κ),

any m ∈ M, any r
$← R and c← Enc(pk,m; r), it holds that Dec(sk, ct) = (m, r)

with overwhelming probability over the randomness used by the algorithms.

Definition 12 (Committing Encryption). Let PKE be a public-key encryp-
tion scheme and κ a security parameter. For every PPT adversary A, it holds
that:

Pr

Enc(pk,m0; r0) = Enc(pk,m1; r1)

∣∣∣∣∣∣∣∣
pk

$← PK,
(r0, r1,m0,m1)

$← A(pk),
r0, r1 ∈ R,m0,m1 ∈M,

m0 6= m1

 ∈ negl(κ)

The Pointcheval [43] IND-CCA secure Cryptosystem is trivially witness-
recovering since a decrypting party always recovers the randomness (r, s) used
for generating a ciphertext. In order to see why it is also committing, notice that

37

an adversary can only make a polynomial number of queries to H(·), so it can
only find a pair (m′, s′) such that (m′, s′) 6= (m, s) and H(m ‖ s) = H(m′ ‖ s′)
with negligible probability. Analogously, the adversary can only find an r′ such
that r′ 6= r and G(r) = G(r′) with negligible probability. Hence, since f is injec-
tive, the adversary can only find (m′, s′, r′) such that (m′, s′, r′) 6= (m, s, r) and
f(r′, H(m′ ‖ s′)) = f(r,H(m ‖ s)) with negligible probability.

Plaintext Verification for the Pointcheval [43] IND-CCA secure Cryptosystem.
We first extend the semantics of public-key encryption by adding a plaintext
verification algorithm {0, 1} ← V(ct,m, π) that outputs 1 if m is the plain-
text message contained in ciphertext ct given a valid proof π that also con-
tains the public-key pk used to generate the ciphertext. Furthermore, we modify

the encryption and decryption algorithms as follows: (ct, π)
$← Enc(pk,m) and

(m, π) ← Dec(sk, ct) now output a valid proof π that m is contained in ct. The
security guarantees provided by the verification algorithm are laid out in Def-
inition 13. Notice that this definition only considers cryptosystems where the
proof π consists of the randomness used by the encryption algorithm, which is
enough for our version of the Pointcheval [43] IND-CCA secure cryptosystem
with plaintext verification. A generalization of this definition follows by defining
the space of plaintext validity proofs and requiring that π, π′ are in that space,
as well as that the adversary provides ct, since it might not be computable from
(m,π).

Definition 13 (Plaintext Verification). Let PKE = (KG,Enc,Dec,V) be a
public-key encryption scheme and κ be a security parameter. For every PPT
adversary A, it holds that:

Pr

V(ct,m′, π′) = 1

∣∣∣∣∣∣∣∣
pk

$← PK,
(m, π,m′, π′)

$← A(pk),
π = (pk, r), π′ = (pk, r′) ∈ PK ∪R,

m,m′ ∈M, (ct, π)← Enc(pk,m; r),m′ 6= m

 ∈ negl(κ)

We can extended the Pointcheval [43] IND-CCA secure cryptosystem to add
plaintext verification as follows:

Definition 14 (Pointcheval [43] IND-CCA Secure Cryptosystem with
Plaintext Verification). Let T D be a family of partially trapdoor one-way
injective functions and let H : {0, 1}|m|+κ → Y and G : X → {0, 1}|m|+κ be
random oracles, where |m| is message length. This cryptosystem consists of the
algorithms PKE = (KG,Enc,DecV) that work as follows:

– KG(1κ): Same as in Definition 10.
– Enc(pk,m): Same as in Definition 10 but also output a proof π = (pk, r, s)

(i.e. the encryption randomness) besides the ciphertext ct = (a, b).
– Dec(sk, ct): Same as in Definition 10 but also output a proof π = (pk, r, s)

(i.e. the retrieved encryption randomness) besides the plaintext message m.

38

– V(ct,m, π): Parse π = (pk, r, s), compute ct′ ← Enc(pk,m, (r, s)) and output
1 if and only if ct = ct′.

Using the facts that this cryptosystem is witness-recovering and committing,
both the encrypting and decrypting parties can generate a proof π = (pk, r, s)
that a message m was encrypted under public-key pk with randomness (r, s) re-
sulting in ciphertext ct. Notice that the witness-recovering property ensures that
a decrypting party is able to recover the randomness (r, s) too. Any third party
verifier with input (ct,m, π) can execute the verification algorithm V(ct,m, π)
and obtain 1 if and only if π is a valid proof that m is contained in ct. Notice
that an adversary cannot present two different triples (m, s, r) and (m′, s′, r′)
that pass this test with the same public-key pk except with negligible proba-
bility, since the cryptosystem is committing as discussed above. Assuming by
contradiction that such an adversary A exists, we can construct an adversary A′
that wins the game of Definition 12 with non-negligible probability. Adversary
A′ receives pk from the challenger in the game of Definition 12 and then acts
as the challenger in the game of Definition 13, relaying pk to A. Upon receiving
(m, π,m′, π′) from A, it relays (m, π,m′, π′) to the the challenger in the game
of Definition 12 as (r0, r1,m0,m1). Notice that, for the extended cryptosystem
above, 1← V(ct,m, π) occurs if and only if ct = ct′, where ct′ ← Enc(pk,m; (r, s))
and π = (pk, r, s). This implies that, if adversary A wins the game of Defini-
tion 13 with non-negligible probability, it is able to produce two messages m,m′

and corresponding proofs π = (pk, r, s), π′ = (pk′, r′, s′) for which m 6= m′ and
Enc(pk,m;π = (r, s)) = Enc(pk,m′;π′ = (r′, s′)) with non-negligible probability.
Hence, adversary A′ wins the game of Definition 12 with non-negligible proba-
bility.

C Realizing the Secret Joint Authentication Functionality

C.1 Realizing FSJAuth

The basic idea for realizing FSJAuth is using a signature scheme (captured by
FSig) and a certified encryption scheme with plaintext verification (captured by
FCPKEPV), i.e. an encryption scheme with two crucial properties: 1. An encrypt-
ing party is guaranteed to encrypt a message that can only be opened by the
intended receiver (i.e. it is possible to make sure the public-key used belongs to
the intended receiver of the encrypted messages); 2. Both encrypting and de-
crypting parties can generate publicly verifiable proofs that a certain message
was contained in a given ciphertext. The private channel itself is realized by
encrypting messages under the encryption scheme, while joint authentication is
achieved by having all parties in P (including the sender) and bureaucrats in B
sign the resulting ciphertext. In order to obtain efficiency, a joint public/secret
key pair is generated for each set of receivers, in such a way that the same ci-
phertext can be decrypted by all the receivers holding the corresponding joint
secret key. Later on, if any party in P (including the sender) wishes to start the
verification procedure to prove that a certain message was indeed contained in

39

the ciphertext associated with a given ssid, it recovers the plaintext message
and a proof of plaintext validity from the ciphertext and sends those to one or
more verifiers. With these values, any party can first verify that the ciphertext
that was sent indeed corresponds to that message due to the plaintext verifica-
tion property of the encryption scheme and then verify that it has been jointly
authenticated by checking that there exist valid signatures on that ciphertext
by all parties in P and bureaucrats in B.

In order to obtain FCPKEPV, we first define and realize an ideal functionality
for public-key encryption with plaintext verification FPKEPV. This functionality
and the protocol that realizes it are extensions of the results of [14,19], which
show that IND-CCA secure encryption schemes UC realize the standard public-
key encryption functionality. In our definition and construction, we show that
IND-CCA encryption scheme with an additional plaintext verification property
(e.g. as the scheme discussed in Section B) UC realize FPKEPV. Building on
FPKEPV and a key registration functionality FReg, we define and realize FCPKEPV.
We again extend a functionality and protocol from [17], which shows that certi-
fied public-key encryption can be realized from the standard public-key encryp-
tion functionality and FReg. Following a similar approach, we show a protocol
based on FPKEPV and FReg that UC realizes FCPKEPV.

Public-Key Encryption with Plaintext Verification FPKEPV We will use
a public-key encryption scheme that allows for both the party generating a ci-
phertext and the party decrypting it to obtain a publicly verifiable proof that
a given message was contained in such ciphertext. Notice that this is not a
zero-knowledge proof, but a proof whose verification requires the message to be
revealed. We model such an encryption scheme by functionality FPKEPV, which
is an extension of the standard public-key encryption functionality FPKE from
[14,19] with a new plaintext verification interface for verifying that a given plain-
text was contained in a given ciphertext. This plaintext verification interface is
incorporated into the functionality following the same approach as in [14,19]: the
functionality first looks up the corresponding ciphertext and message pair on an
internal list (i.e. where it should be in case the ciphertext was generated by the
functionality), returning 1 is such a pair exists; otherwise, if the ciphertext is
not contained in this internal list (i.e. it has been generated by an adversary
in a potentially incorrect way), the functionality performs the verification pro-
cedure internally, by attempting to decrypt the ciphertext and then executing
the verification algorithm taking as input the ciphertext along with the result-
ing plaintext message and proof, returning the output of this algorithm to the
verifier. It is well-known that IND-CCA secure public-key encryption schemes
can be used to realize FPKE as defined in [14,19], but we will show that there
exist IND-CCA secure public-key encryption schemes [43,28] that also realize
our extended functionality FPKEPV.

Realizing FPKEPV It is known [14,19] that an IND-CCA secure public encryp-
tion scheme realizes the key generation, encryption and decryption interfaces of

40

FPKEPV (without generating proofs), which correspond to the standard public-
key encryption functionality FPKE from [14,19]. The missing pieces in realizing
our formulation of FPKEPV are algorithms for generating and verifying proofs
that a given plaintext is contained in a given ciphertext produced by a IND-
CCA secure public encryption scheme. Notice that these proofs need not to be
zero-knowledge, as they can be verified given the plaintext message and the
corresponding ciphertext. We use the version of Pointcheval’s IND-CCA secure
cryptosystem [43] with plaintext verification from Section B to realize FPKEPV

following the same approach as in [14,19]. This generic construction works in the
restricted programmable and observable random oracle model [11] and can be
instantiated from the CDH assumption.

We realize FPKEPV by extending the encryption protocol ΠPKE of [14,19],
which is constructed from any IND-CCA secure cryptosystem PKE = (KG,Enc,Dec).
We obtain a protocol ΠPKEPV that realizes FPKEPV based on an IND-CCA public-
key encryption scheme with plaintext verification PKE = (KG,Enc,Dec,V) as de-
fined in Section B. Protocol ΠPKEPV works as follows: Upon receiving (KeyGen,

sid,Pown), Pown executes (sk, pk)
$← KG(1κ), records sk and returns pk. Upon re-

ceiving a message (Encrypt, sid,Pown, e′,m), any party Pi ∈ P outputs ct where

(ct, π)
$← Enc(e′,m) if m ∈ M (otherwise it outputs an error message). Upon

receiving (Decrypt, sid,Pown, c), Pown outputs m where (m,π) ← Dec(sk, c).
Upon receiving a message (Verify, sid,Pown, c,m, π), a verifier Vi ∈ V outputs
b where b← V(c,m, π).

We will prove that the public-key encryption scheme with plaintext verifica-
tion of Definition 14 can be used to instantiate ΠPKEPV in such a way that it
realizes FPKEPV. We leave a more general proof as a future work.

Theorem 2. Let PKE = {KG,Enc,Dec,V} be the public-key encryption scheme
with plaintext verification of Definition 14. Protocol ΠPKEPV instantiated with
PKE UC realizes FPKEPV in the restricted programmable and observable random
oracle model [11].

Proof. In order to prove this construction securely realizes FPKEPV, we con-
struct a simulator such that no environment can distinguish an ideal execu-
tion with this simulator and FPKEPV from a real execution of ΠPKEPV with
any adversary A and dummy parties. Notice that the steps of ΠPKEPV dealing
with messages (KeyGen, sid,Pown), (Encrypt, sid,Pown, e′,m) and (Decrypt,
sid,Pown, c) correspond exactly to the protocol of [14,19] realizing the standard
public-key encryption, and our simulator can function exactly as the simulator
of [14,19]. In fact, all the simulator does is executing KG(1κ) and setting pk.
It is proven in [14,19] that such a simulator results in an execution indeed in-
distinguishable from the real protocol execution with an adversary A and the
same argument can be used in our case. As for the remaining message (Verify,
sid,Pown, c,m, π), any party in the simulation will output exactly the same as
in the real protocol, since the output will either come from the simulator if it
indeed simulated a ciphertext generation for m that resulted in (c,m, π) (mean-
ing the ciphertext was correctly/honestly generated) or whatever the output of

41

Functionality FPKEPV

FPKEPV interacts with a special decrypting party Pown, a set of parties P, a set of
public verifiers V and an ideal adversary S. FPKEPV is parameterized by a message
domain ensemble M = {Mk}k∈N , a family of formal encryption algorithms {Ee}e,
a family of formal decryption algorithms {Dd}d for unregistered ciphertexts and a
family of formal plaintext verification algorithms {Vv}v. FPKEPV proceeds as follows:

Key Generation: Upon receiving a message (KeyGen, sid,Pown) from a party
Pown ∈ P (or S), proceed as follows:

1. Send (KeyGen, sid,Pown) to S.
2. Receive a value e from S.
3. Record e and output e to Pown.

Encryption: Upon receiving a message (Encrypt, sid,Pown, e
′,m) from a party

Pi ∈ P, proceed as follows:

1. If m /∈M , then return an error message to Pi.
2. If m ∈M , then:

– If Pown is corrupted, or e′ 6= e, then compute (c, π)← Ek(m).
– Otherwise, let (c, π)← Ek(1|m|).

Record the pair (m, c, π) and return (c, π) to Pi.
Decryption: Upon receiving a message (Decrypt, sid,Pown, c) from Pown, proceed

as follows (if the input is from another party then ignore):

1. If there is a recorded tuple (c,m, π), then hand (m,π) to Pown. (If there is
more than one value m that corresponds to c then unique decryption is not
possible. In that case, output an error message to Pown).

2. Otherwise, compute (m,π)← D(c) and hand (m,π) to Pown.

Plaintext Verification: Upon receiving a message (Verify, sid,Pown, c,m, π) from
a verifier Vi ∈ V, proceed as follows:

1. If there is a recorded tuple (c,m, π), then output 1 to Vi.
2. Otherwise, compute b← V (c,m, π), outputting b to Vi.

Fig. 11. Public-Key Encryption Functionality with Plaintext Verification FPKEPV.

V(c,m, π) is (in case the ciphertext was not generated by the simulated func-
tionality). Special care needs to be taken when simulating the verification of
a ciphertext simulated for an honest party, which is computed as Enc(pk, 1; r)
(for a random r) instead of using the actual message given by the honest party.
In this case, when π is revealed, it is incompatible with the message 1 in the
ciphertext. However, upon receiving the actual message m the simulator shows
the adversary answers to queries H(m‖s) and G(r) that match m and ct.

Certified Encryption With Plaintext Verification FCPKEPV We are now
ready to define and construct a version of certified public-key encryption with
plaintext verification following the approach of [17]. Essentially, certified public-
key encryption captures a notion where public-keys are not explicitly available
but are linked to specific parties, guaranteeing that an encrypted message will

42

Functionality FCPKEPV

FCPKEPV interacts with a special decrypting party Pown, a set of parties P, a set of
public verifiers V and an ideal adversary S. FPKEPV is parameterized by a message
domain ensemble M = {Mk}k∈N , a family of formal encryption algorithms {Ee}e, a
family of formal decryption algorithms {Dd}d for unregistered ciphertexts a family
of formal plaintext verification algorithms {Vv}v. FCPKEPV proceeds as follows:

Encryption: Upon receiving a message (Encrypt, sid,Pown,m) from a party Pi ∈
P, proceed as follows:

1. if this is the first encryption request made by Pi then notify S that π made an
encryption request.

2. If m /∈M , then return an error message to P1.

3. If m ∈M , then:

– If Pown is corrupted, then compute (c, π)← Ek(m).

– Otherwise, let (c, π)← Ek(1|m|).

Record the pair (m, c, π) and return (c, π) to Pi.
Decryption: Upon receiving a message (Decrypt, sid,Pown, c) from Pown, proceed
as follows (if the input is from another party then ignore):

1. If this is the first decryption request made by Pown then notify S that a decryption
request was made.

2. If there is a recorded tuple (c,m, π), then hand m,π to Pown. (If there is more
than one value m that corresponds to c then unique decryption is not possible.
In that case, output an error message to Pown).

3. Otherwise, compute (m,π)← D(c) and hand (m,π) to Pown.

Plaintext Verification: Upon receiving a message (Verify, sid,Pown, c,m, π) from
a verifier Vi ∈ V output 1 to Vi if there is a recorded tuple (c,m, π). Otherwise, output
0.

Fig. 12. Certified Public-Key Encryption Functionality with Plaintext Verification
FCPKEPV.

be received by an specific party. In order to realize such a functionality, a key
registration ideal functionality FReg that allows parties to register their public-
keys is required. It was shown in [17] that certified public-key encryption can
be realized from a standard public encryption functionality and FReg. We will
extend both the original functionality and protocol from [17] to incorporate
plaintext verification, showing that FCPKEPV can be realized from FPKEPV and
FReg. The notion of certified public-key encryption with plaintext verification
is captured by functionality FCPKEPV introduced in Figure 12. Notice that the
Plaintext Verification interface of FCPKEPV only outputs 1 if it receives a query
with a tuple (c,m, π) that is registered in the functionality’s internal list. This
captures the fact that only ciphertexts generated by the functionality with a
party’s legitimate public-key (as encoded in the encryption algorithm Ek(·) are
considered valid, while arbitrary ciphertexts or ciphertexts generated from other
public-keys are automatically considered invalid.

43

Protocol ΠCPKEPV

ΠCPKEPV is parameterized by the families {Ee}e, {Dd}d and {Vv}v of algorithms of
the functionality it is to realize. A special decrypting party Pown, a set of parties P,
a set of public verifiers V execute ΠCPKEPV as follows:

Initialization: At the first activation an instance of FPKEPV is instantiated with the
families {Ee}e, {Dd}d and {Vv}v. Party Pown sends message (KeyGen, sid,Pown) to
FPKEPV, receiving pk. Next, Pown sends (register, sid, pk) to FReg.

Encryption: Upon receiving a message (Encrypt, sid,Pown, e
′,m), party Pi ∈ P

proceed as follows:

1. Check whether it has a recorded public-key e. If not, send (Retrieve, sid,Pown)
to FReg, receiving (Retrieve, sid,Pown, pk) as response. If pk 6=⊥, record e = pk.
Otherwise, return ⊥.

2. If e 6=⊥, send (Encrypt, sid,Pown, e
′,m) to FPKEPV, receiving (c, π) as response.

Output c and record the tuple (m, c, π).

Decryption: Upon receiving a message (Decrypt, sid,Pown, c), Pown sends a mes-
sage (Decrypt, sid,Pown, c) to FPKEPV, receiving and outputting (m,π).

Plaintext Verification: Upon receiving a message (Verify, sid,Pown, c,m, π), a
verifier Vi ∈ V proceeds as follows:

1. Check whether it has a recorded public-key e. If not, send (Retrieve, sid,Pown)
to FReg, receiving (Retrieve, sid,Pown, pk) as response. If pk 6=⊥, record e = pk.
Otherwise, return 0.

2. Obtain pk from π. If pk = e, compute b← V (c,m, π) and outputs b. Otherwise,
output 0.

Fig. 13. Protocol ΠCPKEPV realizing FCPKEPV.

Realizing FCPKEPV We follow the approach of [17] to realize FCPKEPV from a
public-key encryption scheme with plaintext verification FPKEPV and a key reg-
istration functionality FReg. Our protocol implements Initialization, Encryption
and Decryption interfaces exactly as in [17] and follows the same approach for
implementing the Plaintext Verification interface. Protocol ΠCPKEPV realizing
FCPKEPV is presented in Figure 13.

Theorem 3. Protocol ΠCPKEPV UC realizes FPKEPV in the (FPKEPV,FReg)-hybrid
model.

Proof. In order to see why Protocol ΠCPKEPV is secure, notice that a simulator
S can be constructed exactly as in [17]: S runs with an internal copy of the
adversary A towards which it simulates FPKEPV and FReg exactly as described,
simulating the process of registration by Pown when FCPKEPV informs S that either
encryption or decryption requests happened, as well as simulating the process of
key retrieval when notified by the functionality. Notice that the ideal execution
with the simulator and FCPKEPV is exactly the same as the real execution of
Protocol ΠCPKEPV with an adversary A, as in the case of the protocol proposed

44

in [17]. Hence, no environment can distinguish the ideal world simulation from
the real world execution.

Secret Joint Authentication Protocol We can now construct a protocol
ΠSJAuth that realizes FSJAuth from FCPKEPV, FSig and FReg. This protocols starts
by initializing an instance of FCPKEPV that is jointly used by all parties Pi ∈ P
(i.e. all parties in P act as Pown) and initializing an instance of FSig for Psnd,
each party Pi ∈ P and each bureaucrat Bi ∈ B. Next, Psnd, parties in P and
bureaucrats generate a signature verification key from their instances of FSig and
register it with FReg. When Psnd wants to send a message, it encrypts it using
FCPKEPV, signs the resulting ciphertext using FSig and sends the resulting signa-
ture along with the ciphertext to all other parties and bureaucrats. All parties
in P and all bureaucrats retrieve Psnd’s key from FReg and issue a verification
query to FSig to check that the signature on the ciphertext is valid. If this is the
case, each bureaucrat uses its instance of FSig to compute a signature on the
ciphertext, which it sends to all other parties. Additionally, each party Pi ∈ P
decrypts the ciphertext using FCPKEPV, obtaining a plaintext message and proof
of plaintext validity (which it verifies using FCPKEPV). In case both decryption
and signature checks succeed, each party Pi computes a signature on the cipher-
text using FSig and sends it to all other parties and bureaucrats. In case either
Psnd or a party Pi ∈ P want to prove a certain message was sent by Psnd and
jointly authenticated, it reveals the ciphertext, the message and proof of plain-
text validity obtained by decrypting the ciphertext along with all signatures on
that ciphertext (by Psnd, all parties Pi ∈ P and all bureaucrats) to a verifier,
who can retrieve all signature verification keys from FReg, verify all signatures
using FSig and finally use the ciphertext, message and proof of plaintext validity
to verify the plaintext with FCPKEPV. Protocol ΠSJAuth is described in Figures 14,
15.

Theorem 4. Protocol ΠSJAuth UC realizes FSJAuth in the (FCPKEPV,FSig,FReg)-
hybrid model.

Proof. We construct a simulator S following the approach of the simulator for
ΠCPKEPV. Basically, S runs with an internal copy of the adversaryA and forwards
all communication between the environment Z and A. Additionally, S simulates
functionalities FReg, FCPKEPV and FSig towards its internal adversary, acting
exactly as in the descriptions of these functionalities, except for when explicitly
mentioned. Basically, S simulates honest parties towards A by acting exactly
as those honest parties would in ΠSJAuth. When it is notified by FSJAuth that
an input message query or a joint authentication query has been received, it
simulates the registering and retrieval of signature keys towards A, respectively.
If A corrupts at least one party Pi ∈ P and/or Psnd, acting this way allows S to
perfectly simulate an execution of ΠSJAuth towards corrupted bureaucrats. Notice
that since S learns the messages that should be sent to corrupted bureaucrats
from A’s interactions with simulated FCPKEPV, it can simulate ΠCPKEPV in this
case in such a way that later revealing the proofs of plaintext validity π will

45

Protocol ΠSJAuth

ΠSJAuth is parameterized by a special party Psnd, a set of authenticating parties P =
{P1, . . . ,Pn}, a set of bureaucrats B = {B1, . . . ,Bb} and a set of public verifiers V
(s.t. B ⊂ V). ΠSJAuth proceeds as follows:

Initialization: At the first activation, an instance of FCPKEPV is instantiated with
the families {Ee}e, {Dd}d and {Vv}v and all parties Pi ∈ π acting as Pown (e.g.
Pown = Pa. For each party in P, bureaucrat in B and party Psnd, an instance of
FSig is initialized with that party acting as Ps. All parties in P, bureaucrats in B
and party Psnd, send message (KeyGen, sid) to their corresponding instance of FSig,
receiving pk. Next, all parties in P, bureaucrats in B and party Psnd register their
signing keys by sending (register, sid, pk) to FReg.

Message Input: Upon receiving a message (Input, sid, ssid,Psnd,m), Psnd sends
(Encrypt, sid,P,m) to FCPKEPV, receiving (c, π) as response. Next, Psnd sends (sign,
sid, c) to its instance of FSig, receiving (signature, sid,m, σsnd) as response. Finally,
Psnd outputs σsnd = (m, c, π, σsnd).

Joint Authentication: Upon receiving a message (Auth, sid, ssid,Psnd,m), a
party Pi ∈ P checks if it has received (sid, ssid, c, σsnd) such that c is a cipher-
text that can be correctly decrypted by FCPKEPV yielding a valid proof of plaintext
knowledge and that σsnd is a valid signature on c under Psnd’s public-key (retrieved)
from FReg according to Psnd’s instance of FSig. Formally, Pi proceeds as follows:
1. Send (Decrypt, sid,P, c) to FCPKEPV, wait for (m,π) as response, send (Verify,

sid,Pown, c,m, π) to FCPKEPV and check that 1 is received as response.

2. Send (Retrieve, sid,Psnd) to FReg, wait for (Retrieve, sid,Psnd, pk), send
(verify, sid,m, σsnd, pk) to FSig and check that (verified, sid,m, 1) is received
as response.

If all checks succeed, Pi sends (sign, sid, c) to its instance of FSig, receiving
(signature, sid,m, σi) as response. Pi outputs σi = (m, c, π, σi). Analogously, upon
receiving (Blind-Auth, sid, ssid,Psnd), bureaucrat Bj ∈ B proceeds the same way
as Pi except for not checking that c is a valid ciphertext with respect to FCPKEPV

(i.e. skipping Step 1 of Pi’s checks). If all checks succeed, Bj outputs σ̂j = (c, σj).

a We abuse notation and let Pown denote a set of parties instead of single party in
FCPKEPV

Fig. 14. Protocol ΠSJAuth realizing FSJAuth.

result in a view consistent with these messages. However, an important corner
case is that when A corrupts all bureaucrats but not Psnd or one party Pi ∈ π,
since in this case S must simulate interactions between corrupted bureaucrats
and FCPKEPV without knowing the committed message. In order to deal with
this case, S deviates from the perfect simulation of FCPKEPV honest execution of
protocol ΠSJAuth and simulates interactions between corrupted bureaucrats and
FCPKEPV using dummy ciphertexts (e.g. with random messages). Later on, after
it learns the actual messages, S simulates the verification interface of FCPKEPV in
such a way that verification queries sent to verify the dummy ciphertexts with
respect to the actual messages and accompanying proofs of plaintext validity are

46

Protocol ΠSJAuth (Public Verification)

Public Verification: Upon receiving (Verify, sid, ssid,Psnd,m, σsnd, σ1, . . . ,
σn, σ̂1, . . . , σ̂b), a party Vi ∈ V first parses all tokens σsnd, σ1, . . . , σn as (m, c, π, σi)
and check that (m, c, π) is the same in all tokens. It then parses all tokens σ̂1, . . . , σ̂b
as (c, σj) and checks that all c also have the same value. Vi then sends (Verify,
sid,P, c,m, π) to FCPKEPV and checks that the response is 1. It then retrieves the
public-keys for Psnd, all parties in P and all bureaucrats in B from FReg. For all
signatures σ retrieved in Step 1, Vi queries the FSig instance corresponding to the
party who generated the token with (verify, sid,m, σ, pk) where pk is the public-key
retrieved for that part and checks that (verified, sid,m, 1) is received as response.
If all of these checks succeed, Vi sets v = 1 (otherwise, it sets v = 0) and afterwards
outputs (Verify, sid, ssid,Psnd,m, v).

Fig. 15. Protocol ΠSJAuth realizing FSJAuth (continued).

answered positively (i,e simulated FCPKEPV answers with 1 when queried with
(Verify, sid,P, c′,m, π) where c′ is the dummy ciphertext and (m,π) are the
actual jointly authenticated message along with its proof of plaintext validity).

D Functionality FIRAuth

Functionality FIRAuth is described in Figure 16

Functionality FIRAuth

FIRAuth interacts with a set of n parties P, a set of public verifiers V and an ideal
adversary S who is allowed to corrupt a set I ⊂ P where |I| ≤ k for a fixed k < n.
FIRAuth maintains an initially empty list L, proceeding as follows:

Message Input: Upon receiving a message (Input, sid,Pi,m) from a party Pi ∈ P
ignore further Input messages from Pi.
Joint Authentication: Upon receiving a message (Blind-Auth, sid,Pi,Pj) from
a party Pj ∈ P, j 6= i, if a message (Input, sid,Pi,m) has been received from Pi and
a message (Blind-Auth, sid,Pi,Pj) has been received from all parties Pj ∈ P\{Pi},
add (sid,Pi,m,⊥) to L.

Start Verification: Upon receiving a message (Start-Verify, sid,Pi,m) from Pi,
if there exists an entry (sid,Pi,m,⊥) in L, update it to (sid,Pi,m,verify).

Public Verification: Upon receiving (Verify, sid,Pi,m) from a party Vi ∈ V, if (
sid,Pi,m,verify) ∈ L, set v = 1, else set v = 0. Send (Verify, sid,Pi,m) to S and,
if S answers with (Proceed, sid, ssid,m), send (Verify, sid,m, v) to Vi. Otherwise,
send (Verify, sid,m, 0) to Vi.

Fig. 16. Input and Randomness Authentication Functionality FIRAuth.

47

E A Simplified Proof of the “Insured MPC” Protocol

The core building block of the “Insured MPC” [5] protocol is a multiparty addi-
tively homomorphic commitment scheme with delayed public verifiability. In this
primitive, the receiver can prove that he received a (potentially) invalid opening
to a given commitment after it has been opened. This primitive is then used
during the output reconstruction phase of an MPC protocol in such a way that
cheating during the reconstruction can be identified and punished financially.

The work of [5] extended the multiparty homomorphic commitment scheme
of [31] to obtain this “delayed public verifiability”, which coincides with the
notion of verifiability used in this work. For this, a functionality FHCom with
delayed public verifiability is defined, which extends the commitment function-
ality of [31]. FHCom is in turn realized using a protocol based on a two-party
homomorphic commitment functionality, an equality testing functionality and
a coin tossing functionality. In order to augment the construction of [31] with
delayed public verifiability, the authors augmented all the functionalities of all
the subprotocols it is based on with verifiability properties, modified all proto-
cols involved in the construction and re-proved security of [31] with respect to
verifiability.

To this end, the authors of [5] present a two-party homomorphic commitment
with delayed public verifiability functionality F2HCom, a publicly verifiable coin
tossing functionality FCT and a publicly verifiable equality testing functional-
ity FEQ. They then realize F2HCom with a construction based on an instantia-
tion of the commitment scheme of [23] with an oblivious transfer with delayed
public verifiability FpOT and show that FpOT can be realized in the restricted
programmable and observable random oracle model of [11] by the construction
of [42] plus a publicly verifiable (non-homomorphic) commitment functionality
FCom. This publicly verifiable FCom is also used to realize FEQ and FCT.

We now use the compiler from Section 5 to show that this process can be done
much more easily by analyzing the transcript non-malleability of the underlying
protocols and constructing the necessary über simulators. In comparison to [5]
we will use the bulletin board functionality FBB (Figure 10) instead of a smart
contract functionality FSC to authenticate the transcripts, but this makes no
difference as FSC is only used as a bulletin board in the construction of FHCom

anyway.
In the following, we describe how verifiability is achieved and will therefore

recap the aforementioned functionalities and protocols from [5] almost verbatim.
We will not describe how the individual protocols work explicitly and refer to
[5] for more intuition and details.

E.1 Publicly Verifiable Commitments

The functionality for Publicly Verifiable Commitments FCom is described in Fig-
ure 17 and its realizing protocol ΠCom in Figure 18. The commitment is realized
in the restricted programmable and observable random oracle model of [11]. This
canonical random oracle-based commitment scheme is proven UC-secure in [11].

48

Functionality FCom

FCom keeps an internal (initially empty) list C and interacts with a set of parties
P = {P1, . . . ,Pn}, and an adversary S through the following interfaces:

Commit: Upon receiving (Commit, sid,Pi, cid,x) from Pi ∈ P (where x ∈ Fτ)
check if (cid, ·, ·) ∈ C. If yes, ignore the message, else add (cid,Pi,x) to C and send
a public delayed output (Committed, sid,Pi, cid) to all remaining parties in P.

Open: Upon receiving (Open, sid,Pi, cid) from Pi ∈ P, if (cid,Pi,x) ∈ C, send a
delayed output (Open, sid,Pi, cid,x) to all Pj ∈ P for j 6= i.

Fig. 17. Functionality FCom for Multiparty Commitments.

Protocol ΠCom

Parties P = {P1, . . . ,Pn} interact with each other and with GrpoRO as follows:

Commit: On input (Commit, sid,Pi, cid,xi), a party Pi ∈ P uniformly sam-

ples r
$← {0, 1}κ and queries GrpoRO on (sid, cid, r,xi) to obtain c. Pi broadcasts

(Committed, sid,Pi, cid, c). All parties Pj ∈ P for j 6= i output (Committed,
sid,Pi, cid) upon receiving this message.

Open: On input (Open, sid,Pi, cid), Pi broadcasts (Open, sid,Pi, cid, r′,x′i). Upon
receiving (Open, sid,Pi, cid, r′,x′i), each party Pj queries GrpoRO on (sid, cid, r′,x′i)
and checks that the answer is equal to c and that (sid, r′,x′i) is not programmed
by sending (IsProgrammed, sid, cid, r′,x′i) to GrpoRO, aborting if the answer is
(IsProgrammed, sid, 0). Output (Open, sid,Pi, cid,x′i).

Fig. 18. Protocol ΠCom for Multiparty Commitments.

In the following Theorem 5 we prove transcript non-malleability and the
existence of an über simulator for ΠCom. From this, and from the implicit as-
sumption that the random oracle functionality GrpoRO is publicly verifiable, we
get a provably secure verifiable commitment via Theorem 1.

Theorem 5. The protocol ΠCom is (cir, [n], ncmes)-transcript non-malleable and
has an über simulator SU for (ΠCom,FCom,S) where S is defined in [11].

Proof (Sketch). All parties in the protocol open their inputs and randomness in
the end and no random choices are actually made, once the randomness string
is fixed. Moreover, for the same input GrpoRO always gives the same output.
Therefore, the protocol ΠCom trivially fulfills Definition 5.

The simulator S as defined in [11] calls GrpoRO on a random point to create
c and later equivocates the commitment by programming GrpoRO. We can define
SU by simply creating the commitment c honestly given xi. Therefore c has
the same distribution in both cases and SU is simulation-consistent according
to Definition 6. As the randomness used is uniformly random in both cases,
SU is also execution-consistent according to Definition 7 and therefore an über
simulator. ut

49

E.2 Verifiable Equality Testing

The functionality for Equality Testing as defined in [31] is presented in Figure 19.
Notice the functionality for Equality Testing FEQ leaks the inputs of all parties
to the adversary after it provides its inputs, which is also how our verifiability is
defined. The functionality FEQ can be UC-realized using FCom. We describe pro-
tocol ΠEQ implementing FEQ in Figure 20. We prove transcript non-malleability
and the existence of an über simulator for ΠCom in Theorem 6. Since we have
shown in Theorem 5 that we can realize a verifiable version of FCom, we obtain
a verifiable version of FEQ by Theorem 1.

Functionality FEQ

FEQ interacts with a set of parties P = {P1, . . . ,Pn}, and an adversary S through
the following interfaces:

Equality: Upon receiving (Equal, sid,Pi,xi), where xi ∈ Fm, from each party
Pi ∈ P (or from S in case Pi is corrupted), if x1 = . . . = xn, send (Equal, sid) to
S. Otherwise, send (Not-Equal, sid,x1, . . . ,xn) to S. Proceed as follows according
to the answer of S:

– If S answers with (Deliver, sid), send (Equal, sid) to all parties in P if x1 =
. . . = xn and otherwise send (Not-Equal, sid,x1, . . . ,xn) to them.

– If S answers with (Abort, sid), then send (Abort, sid) to all parties.

Fig. 19. Functionality FEQ for Publicly Verifiable Equality Testing.

Protocol ΠEQ

Parties P = {P1, . . . ,Pn} interact with each other and with FCom as follows:

Equality: On input (Equal, sid,Pi,xi), each party Pi proceeds as follows:

1. Samples a fresh unused cidi and send (Commit, sid,Pi, cidi,xi) to FCom.
2. After receiving (Committed, sid,Pj , cidj) from FCom for all j ∈ [n] with j 6= i,

send (Open, sid,Pi, cidi) to FCom.
3. Upon receiving (Open, sid,Pj , cidj ,xj) from FCom for all j ∈ [n] with j 6= i,

output (Equal, sid) if x1 = . . . = xn, otherwise, (Not-Equal, sid,x1, . . . ,xn).
If (Open, sid,Pa, cida,xa) is not received for some a ∈ [n], output (Abort, sid).

Fig. 20. Protocol ΠEQ for Equality Testing.

Theorem 6. The protocol ΠEQ is (cir, [n], ncmes)-transcript non-malleable and
has an über simulator SU for (ΠEQ,FEQ,S) where S is defined in [31].

Proof (Sketch). The only action in ΠEQ is for parties to commit and open inputs
using FCom. The adversary is therefore committed to his protocol messages and
ΠEQ trivially fulfills Definition 5.

50

The simulator S as defined in [31] commits to a random input instead of
using xi and later uses equivocation of FCom. SU now simply uses the correct
input xi. No further randomness is involved in either S or SU and the latter is
therefore trivially an über simulator. ut

E.3 Verifiable Coin Tossing

The functionality for Coin Tossing FCT (described in Figure 21) can be imple-
mented using FCom. It uses a standard commit-and-open approach, where each
party commits to random elements which are then opened and all contributions
added up.

Functionality FCT

FCT interacts with a set of parties P = {P1, . . . ,Pn}, and an adversary S through
the following interfaces:

Toss: Upon receiving (Toss, sid,m,F) from all parties in P where m ∈ N and F is

a description of a field, uniformly sample m random elements x1, . . . , xm
$← F and

send (Tossed, sid,m,F, x1, . . . , xm) to S. Proceed as follows according to the answer
of S:

– If S answers with (Deliver, sid), send (Tossed, sid,m,F, x1, . . . , xm) to all par-
ties in P.

– If S answers with (Abort, sid), then send (Abort, sid) to all parties.

Fig. 21. Functionality FCT for Coin Tossing.

Protocol ΠCT

Parties P = {P1, . . . ,Pn} interact with each other and with FCom as follows:

Toss: On input (Toss, sid,m,F) where m ∈ N and F is a description of a field, each
party Pi proceeds as follows:

1. Uniformly sample m random elements xi,1, . . . , xi,m
$← F, and for all k ∈ [m],

sample fresh unused identifiers cidi,k and send (Commit, sid,Pi, cidi,k, xi,k) to
FCom.

2. After receiving (Committed, sid,Pj , cidj,k) from FCom for all k ∈ [m] and all
j ∈ [n] with i 6= j, send (Open, sid,Pi, cidi,k) to FCom for all k ∈ [m].

3. Upon receiving (Open, sid,Pj , cidj,k, xj,k) from FCom for all k ∈ [m] and all
j ∈ [n] with i 6= j, output (Tossed, sid,m,F, x1, . . . , xm) where xk =

∑n
j=1 xj,k.

If a message (Open, sid,Pj , cidj,k, xj,k) is not received for any value of j or k,
outputs (Abort, sid).

Fig. 22. Protocol ΠCT For Coin Tossing.

51

Theorem 7. The protocol ΠCT is (cir, [n], ncmes)-transcript non-malleable and
has an über simulator SU for (ΠCT,FCT,S) where S is defined in [31].

Proof (Sketch). In ΠCT no party has an actual input, but it commits to some
randomness using FCom. As the randomness itself is committed to by definition,
ΠCT fulfills Definition 5.

The simulator S commits to random values xi,k and later uses equivocation
of FCom to open these to the randomness whose sum yields the output of FCT.
By UC-security of S, this is perfectly indistinguishable because FCom is hiding.
Unfortunately, SU cannot do exactly the same as S since it has to provide inputs
to the hybrid FCom instances that are consistent with the output of FCT.

Luckily, by definition FCT’s randomness tape is provided to SU by definition
so SU can commit to random strings that add up to a consistent output, and
thereby set up randomness for honest parties that is consistent.
SU acts identically to an actual simulator for FCT and is therefore simulation-

consistent. The randomness ri has the right distribution as in the real protocol
by assumption, and we therefore also have execuction-consistency. SU is therefore
an über simulator. ut

E.4 Verifiable Oblivious Transfer

The protocol realizing F2HCom additionally requires an oblivious transfer func-
tionality with public verifiability. We will show that the DDH based version of
the protocol of [42] (shown in Figure 24) realizing the basic 1-out-of-2 string OT
functionality FpOT (shown in Figure 23) can be compiled using our techniques
in order to obtain a protocol Πv

pOT realizing publicly verifiable functionality

FV[FpOT]. Notice that a minor difference between the protocol ΠpOT of Fig-
ure 24 and the original DDH based protocol of [42] is that instead of a Common
Reference String, this protocol uses a coin tossing functionality FCT in order to
obtain parameters used by the DDH based dual-mode cryptosystem that is at
the core of that construction.

Functionality FpOT

FpOT is parameterized by λ ∈ N, which is publicly known. FpOT interacts with a
sender Pi, a receiver Pj , and an adversary S, proceeding as follows:

Transfer: Upon receiving a message (Send, sid,x0,x1) from Pi, where x0,x1 ∈
Fλ, store the tuple (sid,x0,x1) and send (Send, sid) to Pi and Pj . Ignore further
messages from Pi with the same sid.

Choose: Upon receiving a message (Receive, sid, c) from Pj , where c ∈ {0, 1},
check if a tuple (sid,x0,x1) was recorded. If yes, send (sid,xc) to Pj and (Received,
sid) to S, and ignore further messages form Pj with the same sid. Otherwise, send
nothing, but continue running.

Fig. 23. Functionality FpOT For Oblivious Transfer.

52

Protocol ΠpOT

Parties Pi,Pj interact with each other, with FCom and with FCT as follows:

1. Generate CRS: When first activated, both Pi and Pj send (Toss, sid, 4,G)
to FCT. If FCT answers with (Tossed, sid,m,G, g0, g1, h0, h1), both Pi and Pj set
crs = (g0, g1, h0, h1). If FCT answers with (Abort, sid), both Pi and Pj output
(Abort, sid) and halt.

2. Choose: On input (Receive, sid, c), Pj uniformly samples a fresh identifier cidj

and r
$← Zp, computes pk = (grc , h

r
c), sk = r and broadcasts (sid, pk).

3. Transfer: On input (Send, sid, x0, x1), upon receiving (sid, pk) from Pj , Pi
parses pk = (g, h) and, for c ∈ {0, 1}, samples s, t

$← Zp, computes u = gsch
t
c,

v = gsht and ctc = (u, xc · v). Pi broadcasts (sid, ct0, ct1).

4. Finalize Transfer: Upon receiving (sid, ct0, ct1) from Pi, Pj parses ctc =

(c̃t0, c̃t1) and computes xc = c̃t1
c̃tsk0

. Pj outputs (Received, sid).

Fig. 24. Protocol ΠpOT for Oblivious Transfer.

Protocol Πv
pOT

Parties Pi,Pj interact with each other, with FV[FCom] and with FV[FCT] as follows:

1. Generate CRS: When first activated, both Pi and Pj send (Toss, sid, 4,G)
to FV[FCT]. If FV[FCT] answers with (Tossed, sid,m,G, g0, g1, h0, h1), both Pi and
Pj set crs = (g0, g1, h0, h1). If FV[FCT] answers with (Abort, sid), both Pi and Pj
output (Abort, sid) and halt.

2. Choose: On input (Receive, sid, c), Pj uniformly samples a fresh identifier cidj

and r
$← Zp, and sends (Commit, sid,Pj , cidj , c||r) to FV[FCom]. Pj computes pk =

(grc , h
r
c), sk = r and obtains a signature σj on pk from FjSig (i.e. an instance of FSig

where Pj is the signer). Pj broadcasts (sid, pk, σj).

3. Transfer: On input (Send, sid, x0, x1), upon receiving (sid, pk, σj) from Pj , Pi
outputs (Abort, sid) and halts if it has not received (Committed, sid,Pj , cidj) from
FV[FCom] or if σj is not a valid signature on pk according to FjSig. Otherwise, Pi parses

pk = (g, h) and, for c ∈ {0, 1}, samples s, t
$← Zp, computes u = gsch

t
c, v = gsht and

ctc = (u, xc · v). Pi obtains a signature σi on ct0, ct1 from F iSig (i.e. an instance of
FSig where Pi is the signer). Pi broadcasts (sid, ct0, ct1, σi).

4. Finalize Transfer: Upon receiving (sid, ct0, ct1, σi) from Pi, Pj outputs
(Abort, sid) and halts if σi is not a valid signature on ct0, ct1 according to F iSig.
Else, Pj parses ctc = (c̃t0, c̃t1) and computes xc = c̃t1

c̃tsk0
. Pj outputs (Received, sid).

Fig. 25. Protocol Πv
pOT for Publicly Verifiable Oblivious Transfer.

In order to showcase the power of our fine grained notion of transcript non-
malleability, we present in Figure 25 a tailor-made protocol Πv

pOT that is a
(cir, [n], ncmes)-transcript non-malleable version of ΠpOT. Instead of applying
the näıve compiler presented in Section 5 that uses heavier tools in order to
construct (cir, [n], ncmes)-transcript non-malleable versions of any (cir,RIR, µ)-

53

transcript non-malleable protocol, we take advantage of the intrinsic transcript
non-malleability of ΠpOT in to obtain such a version using only a simple signa-
ture scheme and a simple commitment scheme. The main observation that allows
us to obtain this simpler construction is that the DDH based dual-mode cryp-
tosystem used in ΠpOT is naturally committing, informally meaning that the an
adversary cannot produce two pairs of message and randomness (m, r), (m′, r′)
with m 6= m′ such that they both yield the same ciphertext. In fact, it has
already been observed that this very property is an obstacle for proving ΠpOT

adaptively secure [33].
As for the setup resources used for this protocol, we have shown that a canon-

ical random oracle based commitment protocol realizing FCom can be compiled
into a publicly verifiable protocol realizing FV[FCom] and that a simple commit-
then-open coin tossing protocol based on FCom realizing FCT can be compiled
into a publicly verifiable protocol realizing FV[FCT].

We are now ready to show thatΠv
pOT is (cir, [n], ncmes)-transcript non-malleable

and that the simulator of [42] for ΠpOT can be easily turned into an über simu-
lator for Πv

pOT. Theorem 8 formally captures these properties and implies that

Πv
pOT realizes FV[FpOT] via our compiler (as defined in Theorem 1).

Theorem 8. The protocol Πv
pOT is (cir, [n], ncmes)-transcript non-malleable and

has an über simulator SU for (Πv
pOT,FpOT,S) where S is defined as in [42].

Proof (Sketch). First, we argue that Πv
pOT is (cir, [n], ncmes)-transcript non-

malleable. Notice that the DDH dual-mode cryptosystem is committing as ob-
served in [33]. This means that an adversary corrupting the sender Pi given
a public key pk = (g, h) cannot produce two pairs (m, (s, t)), (m′, (s′, t′)) with
m 6= m′ such that computing u = gsch

t
c, v = gsht, ct = (u,m · v) and u′ = gs

′

c h
t′

c ,
v′ = gs

′
ht
′
, ct′ = (u′,m′ · v′) yields ciphertexts ct, ct′ such that ct = ct′. More-

over, in case there is no abort, the message (sid, ct0, ct1, σi) sent by Pi contains
a valid signature σi by Pi on (ct0, ct1), making it possible for a verifier to check
this message came from Pi. On the other hand, a corrupted receiver Pj who
generates a public key pk = (grc , h

r
c), sk = r and commits to c||r is clearly bound

to its input c. Notice that such a corrupted pj obviously cannot produce r such
that (gr0, h

r
0) = (gr1, h

r
1) due to the fact that g0 6= g1 and h0 6= h1. Given these

facts, a corrupted sender pi cannot claim that it received a different message
from an honest receiver Pi (due to the signature) and becomes bound to x0, x1
once it sends its own message. Conversely, a corrupted Pj cannot claim it re-
ceived a different message from an honest Pi (due to the signature) and cannot
claim that it had generated pk differently so that the ciphertexts received from
Pi decrypt to a message different than Pi’s input. Hence, the adversary is not
able to change any messages in the transcript nor its own inputs undetected, no
matter what party it corrupts.

In order to see why Πv
pOT has an über simulator SU for (Πv

pOT,FpOT,S) where
S is defined as in [42], first notice thatΠv

pOT is essentially the DDH based protocol
from [42] but that it derives parameters for the dual-mode cryptosystem from
FV[FCT] instead of a common reference string (CRS). However, FV[FCT] can be

54

manipulated by SU to output parameters in a similar way as S’s programs the
CRS, allowing SU to proceed exactly as S after setting the output of FV[FCT]
to the same value that S would set the CRS. By simple inspection of S, it is
clear that it picks a random choice bit c′, in case Pj is corrupted, or a random
message xc−1, in case Pi is corrupted. Hence, in order to turn this simulator into
an über simulator SU, all the remains is to parameterize x0, x1 and c with the
inputs received externally instead of generating random dummy inputs.

E.5 Verifiable Random OT from Verifiable OT

The functionality FpOT can easily be used to implement a functionality FROT

(Figure 26) which generates random oblivious transfers of arbitrary length. This
is done by a protocol ΠROT (Figure 27) that transfers random seeds. The seeds
are generated by the sender Pi and chosen from by receiver Pj . Assuming that
PRG is a programmable random oracle such as GrpoRO, one can easily prove that
ΠROT UC-securely implements FROT.

Functionality FROT

FROT interacts with a sender Pi, a receiver Pj , and an adversary S, proceeding as
follows:

Both parties are honest: FROT waits for messages (Sender, sid) and (Receiver,

sid) from Pi and Pj , respectively. Then FROT samples random bits (b1, . . . , bn)
$←

{0, 1}n and two random matrices R0,R1
$← {0, 1}n×m with n rows and m columns.

It computes a matrix S such that for i ∈ [n]: S[i, ·] = Rbi [i, ·].
a It sends (sid,R0,R1)

to Pi and (sid, b1, . . . , bn,S) to Pj . That is, for each row-position, Pj learns a row
of R0 or of R1, but Pi does not know the selection. Record tuples (sid,R0,R1) and
(sid, b1, . . . , bn,S).

Pi is corrupted: FROT waits for messages (Receiver, sid) from Pj and

(adversary, sid,R0,R1) from S. FROT samples (b1, . . . , bn)
$← {0, 1}n, sets S[i, ·] =

Rbi [i, ·] for i ∈ [n] and sends (sid, b1, . . . , bn,S) to Pj . Record tuples (sid,R0,R1)
and (sid, b1, . . . , bn,S).

Pj is corrupted: FROT waits for messages (Sender, sid) from Pi and (Adversary,

sid, b1, . . . , bn,S) from S. FROT samples random matrices R0,R1
$← {0, 1}n×m ,

subject to S[i, ·] = Rbi [i, ·], for i ∈ [n]. FROT sends (sid,R0,R1) to Pi. Record
tuples (sid,R0,R1) and (sid, b1, . . . , bn,S).

a Notice that S can equivalently be specified as S = ∆R1 + (I−∆)R0, where I is
the identity matrix and ∆ is the diagonal matrix with b1, . . . , bn on the diagonal.

Fig. 26. Functionality FROT for Random Oblivious Transfer.

We again show transcript non-malleability as well as the existence of an über
simulator. Since FpOT is verifiable for both the sender and the receiver, FROT

can then be made verifiable as well.

55

Protocol ΠROT

We assume that all parties have access to a pseudorandom number generator PRG.
A sender Pi and a receiver Pj interact with each other and with FpOT as follows:

1. OT Phase: For i ∈ [n], Pi samples random r0,i, r1,i
$← {0, 1}κ and

sends (Send, sidi, r0,i, r1,i) to FpOT, while Pj samples bi
$← {0, 1} and sends

(Receive, sidi, bi) to FpOT.

2. Seed Expansion Phase: For i ∈ [n], Pi sets R0[i, ·] = PRG(r0,i) and R1[i, ·] =
PRG(r1,i), while Pj sets S[i, ·] = PRG(rbi,i). Pi outputs (R0,R1) and Pj outputs
(b1, . . . , bn,S).

Fig. 27. Protocol ΠROT for Random Oblivious Transfer.

Theorem 9. The protocol ΠROT is (cir, [2], ncmes)-transcript non-malleable and
has an über simulator SU for (ΠROT,FROT,S).

Proof (Sketch). In ΠROT as in ΠCT no party has an actual input, they only trans-
fer random values using FpOT. If FpOT is committing to inputs and randomness
of Pj , then ΠROT fulfills Definition 5 directly.

We define SU similar to FCT by letting it access the randomness tape of FROT,
since the functionality is probabilistic. If the sender is corrupted, then SU can
extract inputs of the sender like S from FpOT and forward them to FROT. SU also
simulates consistent choices bi to all FpOT that are generated by FROT and places
them on the simulated randomness tape of the verifier. If instead the receiver is
corrupted, it will extract the inputs of the receiver into FpOT and forward them to
FROT. Furthermore, it creates random seeds r0,i, r1,k, programs PRG (which we
assume is a RO) to give the FROT outputs on the respective inputs r0,i, r1,k and
then provides the seeds as inputs to FpOT . Finally, it places the seeds r0,i, r1,k
on the randomness tape of the sender. This yields consistent inputs into FpOT

as in ΠROT and has the same distribution as in the real protocol, which means
that SU is execution-consistent. Furthermore, the outputs are identical to those
generated by S, and so we also obtain simulation-consistency. SU is therefore an
über simulator. ut

E.6 Verifiable Homomorphic Two-Party Commitments

The homomorphic two-party commitment functionality F2HCom is described in
Figure 28, whereas the protocol Π2HCom is defined in Figure 29 & Figure 30. The
functionality performs the usual actions of a two-party homomorphic commit-
ment, and the protocol is the same as the construction of [23]. In comparison
to [5] we only permit one round of commitments, but this is sufficient for our
application. Also, we do not support “free” commitments to random values as
these are not really necessary for the application. Π2HCom uses FROT as a building
block, which we have shown to be verifiable in the previous subsection.

56

Functionality F2HCom

F2HCom is parameterized by k ∈ N. F2HCom interacts with parties Pi,Pj , and an
adversary S (who may abort at any time) through the following interfaces:

Init: Upon receiving (Init, sid) from parties Pi,Pj , initialize empty lists raw and
actual.

Commit: Upon receiving (Commit, sid, I) from Pi where I is a set of unused iden-
tifiers and if Open was not used yet, send (Commit, sid, I) to S and proceed as
follows:
1. If S sends (Corrupt, sid, {(cid,xcid)}cid∈I) and Pi is corrupted, ignore the next

step and proceed to Step 3.

2. If S answers (No-Corrupt, sid, I), for every cid ∈ I, sample xcid
$← Fk.

3. Set raw[cid] = xcid, send (Commit-Recorded, sid, I, {(cid,xcid)}cid∈I) to Pi
and send (Commit-Recorded, sid, I) to Pj and S.

Input: Upon receiving a message (Input, sid,Pi, cid,y) from Pi, if Open was not
used yet, and if raw[cid] = xcid 6=⊥, set actual[cid] = y, set raw[cid] =⊥, and send
(Input-Recorded, sid,Pi, cid) to Pj and S. Otherwise broadcast (Abort, sid) and
halt.

Linear Combination: Upon receiving (Linear, sid, {(cid, αcid)}cid∈I , β, cid′)
where all αcid ∈ F and β ∈ Fk from Pi, if actual[cid] = xcid 6=⊥ for all cid ∈ I
and raw[cid′] = actual[cid′] =⊥, set actual[cid′] = β +

∑
cid∈I αcid · xcid and send

(Linear-Recorded, sid, {(cid, αcid)}cid∈I , β, cid′) to Pj and S. Otherwise broad-
cast (Abort, sid) and halt.

Open: Upon receiving (Open, sid, cid) from Pi, if actual[cid] = xcid 6=⊥, send
(Open, sid, cid,xcid) to S. If S does not abort, send (Open, sid, cid,xcid) to Pj .

Fig. 28. Functionality F2HCom For Homomorphic Two-party Commitments.

Theorem 10. The protocol Π2HCom is (cir, [2], cmes)-transcript non-malleable
and has an über simulator SU for (Π2HCom,F2HCom,S) for the simulator from
[23].

Proof (Sketch). Π2HCom clearly achieves the weakest form of transcript non-
malleability where the adversary can neither replace inputs & randomness tapes
nor any messages.

As we only have one round of inputs from the sender before outputs are
given to the receiver, Π2HCom fits our schema from Section 2.1. For a corrupted
sender, SU will just act like S does during the protocol make a consistent ran-
domness tape of the simulated receiver. For a corrupted receiver, it will act like
S throughout the protocol except for two places: during Input it creates w as in
Π2HCom since it knows the input xcid. Then, during Open it can simply follow
the protocol.
SU is simulation-consistent as it acts like S except that it does not need to

cheat during the opening, but instead creates the commitment honestly. But the
distribution of w is then still uniformly random to A. Execution consistency also
follows because the random tape of the sender and the verifier are identical with

57

its actions in the protocol and they are uniformly random in Π2HCom as well.
ut

E.7 Verifiable Homomorphic Multiparty Commitments

In Figure 31, we present a functionality for multiparty commitments based on
the functionality of [31]. The implementing protocol ΠHCom is then described in
Figure 32. As in [31] we use versions of F2HCom, FEQ and FCT. As shown above,
for all of these we can create verifiable versions.

As in the case of F2HCom we do not accept any more Commit or Input
commands after the first call to Open. As can be seen in ΠHCom we also use
F2HCom in this way, which means that we can assume a verifiable version of
F2HCom.

Theorem 11. The protocol ΠHCom is (cir, [n], cmes)-transcript non-malleable and
has an über simulator SU for (ΠHCom,FHCom,S) for the simulator from [31].

Proof (Sketch). ΠHCom clearly achieves the weakest form of transcript non-malleability
where the adversary can neither replace inputs & randomness tapes nor any mes-
sages.

For each corrupted sender, SU will just act like S does during the protocol and
make a consistent randomness tape of the simulated receivers. For a corrupted
receiver, it will act like S throughout the protocol except for two places: during
Input it creates wcid as in ΠHCom since it knows the input y. Then, during
Open it can simply follow the protocol.
SU is simulation-consistent as it acts like S except that it does not need to

cheat during the opening, but instead creates the commitment honestly. But the
distribution of wcid is then still uniformly random to A. Execution consistency
also follows because the random tape of simulated senders and or verifiers are
identical with its actions in the protocol and they are uniformly random in
ΠHCom. ut

58

Protocol Π2HCom (Commitment Phase)

Let C be a systematic binary linear [n, k, s] code, where s is the statistical security
parameter. Let H be a family of linear almost universal hash functions H : {0, 1}m →
{0, 1}`. A sender Pi and a receiver Pj interact with each other and FROT as follows:

Init: On input (Init, sid), Pi initializes empty lists raw = actual = ∅.
Commit: On input (Commit, sid, I), where I = {cid1, . . . , cidm−`} and if Open
has not been used, Pi and Pj proceed as follows:

1. Pi and Pj send (Sender, sid) and (Receiver, sid) to FROT, respectively. Pi
receives (sid,R0,R1) from FROT and sets R = R0 + R1. Pj receives (
sid, b1, . . . , bn,S) from FROT and sets the diagonal matrix ∆ such that it con-
tains b1, . . . , bn on the diagonal. R will contain in the top k rows the data to
commit to. Note that R0,R1 form an additive secret sharing of R, and in each
row Pj knows shares from either R0 or R1.

2. Pi now adjusts the bottom n− k rows of R so that all columns are codewords in
C, and Pj will adjust his shares accordingly, as follows: Pi constructs a matrix
W with dimensions as R and 0s in the top k rows, such that A := R+W ∈ C�m

(recall that C is systematic). Pi sends (sid,W).

3. Pi sets A0 = R0,A1 = R1 + W and Pj sets B = ∆W + S. We now have

A = A0 + A1, B = ∆A1 + (I−∆)A0, A ∈ C�m ,

i.e., A is additively shared and for each row index, Pj knows either a row from
A0 or from A1.

4. Pj chooses a seed H ′ for a random function H ∈ H and sends (sid,H ′), we
identify the function with its matrix.

5. Pi computes T0 = A0H,T1 = A1H and sends (sid,T0,T1). Note that AH =
A0H + A1H = T0 + T1, and AH ∈ C�`. So we can think of T0,T1 as an
additive sharing of AH, where again Pj knows some of the shares, namely the
rows of BH.

6. Pj checks that ∆T0 + (I−∆)T1 = BH and that T0 + T1 ∈ C�`. If any check
fails, he aborts.

7. We sacrifice some of the columns in A to protect Pi’s privacy: Note that each
column j in AH is a linear combination of some of the columns in A, we let A(j)
denote the index set for these columns. Now for each j the parties choose an index
a(j) ∈ A(j) such that all a(j)’s are distinct. Pi and Pj now discard all columns
in A,A0,A1 and B indexed by some a(j). For simplicity in the following, we
renumber the remaining columns from 1.

8. Pi saves A,A0 and A1, and Pj saves B and ∆ (all of which now have m − `
columns). Pi stores the k top rows of each column A[·, ı] in rawi[cidı] and Pj sets
rawj [cidı] = > and actualj [cidı] =⊥, for ı ∈ [m− `].

Fig. 29. Protocol Π2HCom (Commitment Phase).

59

Protocol Π2HCom (Linear Combination and Opening)

Input: On input (Input, sid,Pi, cid,xcid), if raw[cid] 6=⊥, and if Open has not
been used, Pi computes w = xcid − rawi[cid], sets actuali[cid] = rawi[cid], sets
rawi[cid] =⊥, and sends (Input, sid, cid,w). Upon receiving (Input, sid, cid,w) from
Pi, Pj sets rawj [cid] =⊥ and actualj [cid] = w.
Linear Combination:
1. On input (Linear, sid, {(cidı, αcidı)}ı∈[m′], β, cid′) where m′ is the current num-

ber of columns in A,A0,A1 and all αcid ∈ F and β ∈ Fk, if actuali[cidı] =
xcidı 6=⊥ for ı ∈ [m′] and cid′ is unused, Pi appends column C(β)+

∑
ı∈[m′] αcidı ·

A[·, ı] to A where C(β) is an encoding of β under C, likewise appending
to A0 and A1 the sends linear combination of columns. Pi sends (Linear,
sid, {(cidı, αcidı)}ı∈[m′], β, cid′).

2. Upon receiving (Linear, sid, {(cidı, αcidı)}ı∈[m′], β, cid′) from Pi, if
actualj [cidı] = xcidı 6=⊥ for ı ∈ [m′] and cid′ is unused, Pj computes
actualj [cid′] = β+

∑
ı∈[m′] αcidı ·actualj [cidı] appends C(β)+

∑
ı∈[m′] αcidı ·B[·, ı] to

B. Note that this maintains the properties A = A0+A1, B = ∆A1+(I−∆)A0,

and A ∈ C�m′ , where m′ is the new current number of columns.
Opening Phase:
1. To open the commitment identified by cidı, Pi sends (sid,A0[·, ı],A1[·, ı]).
2. Pj checks that A0[·, ı] + A1[·, ı] ∈ C and that for  ∈ [n], it holds that B[, ı] =

Ab [, ı] (recall that b is the ’th entry on the diagonal of ∆). If this check fails,
Pj aborts outputting (sid,⊥). Otherwise, Pj computes xcid, the first k entries in
A0[·, ı] + A1[·, ı] + actualj [cid] ‖0n−k, and outputs (Open, sid, cid,xcid).

Fig. 30. Protocol Π2HCom (Linear Combination and Opening).

60

Functionality FHCom

FHCom is parameterized by k ∈ N. FHCom interacts with a set of parties P =
{P1, . . . ,Pn}, and an adversary S (who may abort at any time) through the fol-
lowing interfaces:

Init: Upon receiving (Init, sid) from parties P, initialize empty lists raw and actual.

Commit: Upon receiving (Commit, sid, I) from Pi ∈ P where I is a set of unused

identifiers, for every cid ∈ I, sample a random xcid
$← Fk, set raw[cid] = xcid and

send (Commit-Recorded, sid, I) to all parties P and S.

Input: Upon receiving a message (Input, sid,Pi, cid,y) with y ∈ Fk from Pi ∈ P
and messages (Input, sid,Pi, cid) from every party in P other than Pi, if a mes-
sage (Commit, sid, I) was previously received from Pi and raw[cid] = xcid 6=⊥, set
raw[cid] =⊥, set actual[cid] = y and send (Input-Recorded, sid,Pi, cid) to all par-
ties in P and S. Otherwise broadcast (Abort, sid) and halt.

Linear Combination: Upon receiving (Linear, sid, {(cid, αcid)}cid∈I , β, cid′)
where all αcid ∈ F and β ∈ Fk from all parties P, if actual[cid] = xcid 6=⊥ for
all cid ∈ I and raw[cid′] = actual[cid′] =⊥, set actual[cid′] = β +

∑
cid∈I αcid · xcid

and send (Linear-Recorded, sid, {(cid, αcid)}cid∈I , β, cid′) to all parties P and S.
Otherwise broadcast (Abort, sid) and halt.

Open: Upon receiving (Open, sid, cid) from all parties P, if actual[cid] = xcid 6=⊥,
send (Open, sid, cid,xcid) to S. If S does not abort, send (Open, sid, cid,xcid) to all
parties P.

Fig. 31. Functionality FHCom For Homomorphic Multiparty Commitments.

61

Protocol ΠHCom

Parties P = {P1, . . . ,Pn} interact with each other and F2HCom, FEQ and FCT, pro-
ceeding as follows:

Init: On input (Init, sid), each pair of parties Pi and Pj invokes the command
(Init, sid) of functionality F2HCom to initialize an instance denoted by F i,j2HCom.

Commit: On input (Commit, sid, I) where I = {cid1, . . . , cidγ} and if Open has
not been used, parties P proceed as follows:
1. All parties P agree on a set of γ + κ unused identifiers I′ using broadcast.

2. For all j 6= i, Pi sends (Commit, sid, I′) to F i,j2HCom, receiving
(Commit-Recorded, sid, I′, {(cid,xcid)}cid∈I′) in response and proceeding af-
ter receiving (Commit-Recorded, sid, I′) from Fj,i2HCom for every j 6= i.

3. For all cid ∈ I′ and every j ∈ [n], j 6= i, party Pi samples xi
$← Fk, sends

(Input, sid,Pi, cid,xi) to F i,j2HCom and waits for (Input-Recorded, sid,Pj , cid)
from Fj,i2HCom.

4. All parties P agree on sets I and K using broadcast such that |I| = γ, |K| = κ,
I ∩ K = ∅ and I ∪ K = I′.

5. All parties P send (Toss, sid, κ · γ,F) to FCT. They continue to the next step
upon receiving (Tossed, sid, κ · γ,R) where R ∈ Fκ×γ from FCT.

6. Identifying each column of R with a unique cid ∈ I, for every q ∈ K, every party
Pi samples a fresh identifier cid′q and, for every j ∈ [n], j 6= i, sends (Linear,
sid, {{(cid,R[q, cid])}cid∈I},0k, cid′q) to F i,j2HCom, waits for (Linear-Recorded,
sid, {{(cid,R[q, cid])}cid∈I},0k, cid′) from Fj,i2HCom, sends (Open, sid, cid′q) to
F i,j2HCom and waits for (Open, sid, cid′q, s

j
q) from Fj,i2HCom.

7. For every q ∈ K, each party Pi computes ciq =
∑
j∈[n] s

j
q and sends (Equal,

sid,Pi, ciq) to FEQ. Upon receiving (Abort, sid) or (Not-Equal, sid, c1
q, . . . , c

n
q)

from FEQ, Pi aborts. Otherwise Pi outputs (Committed, sid, I), sets rawi[cid] =
> and actuali[cid] =⊥ for cid ∈ I.

Input: On input (Input, sid, cid,y) for Pi and input (Input, sid,Pj , cid) for every
Pj for j 6= i and if Open has not been used, parties P proceed as follows:

1. For every j ∈ [n], j 6= i, Pj aborts if rawj [cid] 6= >. Otherwise, Pj sends (Open,
sid, cid) to Fj,i2HCom.

2. Upon receiving (Open, sid, cid,xj) from Fj,i2HCom for every j ∈ [n], j 6= i, Pi
computes xcid =

∑
j∈[n] x

j
cid, wcid = y−xcid and broadcasts (sid,Pi, cid,wcid).

3. Every party Pi sets rawj [cid] =⊥ and actualj [cid] = wcid.

Linear Combination: On input (Linear, sid, {(cid, αcid)}cid∈I , β, cid′) where all
αcid ∈ F and β ∈ Fk, if actuali[cid] 6=⊥ for all cid ∈ I and cid′ is unused, each party
Pi ∈ P computes actuali[cid′] = β +

∑
cid∈I αcid · actuali[cid] and sends (Linear,

sid, {(cid, αcid)}cid∈I , β, cid′) to F i,j2HCom . Otherwise broadcast (Abort, sid) and halt.

Open: On input (Open, sid, cid), each party Pi sends (Open, sid, cid) to F i,j2HCom for
j ∈ [n], j 6= i. Upon receiving (Open, sid, cid,xj) from Fj,i2HCom for every j ∈ [n], j 6= i,
Pi computes y =

∑
j∈[n] x

j
cid + actuali[cid] and outputs (Open, sid, cid,y).

Fig. 32. Protocol ΠHCom for Multiparty Homomorphic Commitments.

62

	(Public) Verifiability For Composable Protocols Without Adaptivity Or Zero-Knowledge

