
Mr NISC:
Multiparty Reusable Non-Interactive Secure Computation

Fabrice Benhamouda* Huijia Lin†

Abstract

Reducing interaction in Multiparty Computation (MPC) is a highly desirable goal in
cryptography. It is known that 2-round MPC can be based on the minimal assumption
of 2-round Oblivious Transfer (OT) [Benhamouda and Lin, Garg and Srinivasan, EC
2018], and 1-round MPC is impossible in general. In this work, we propose a natural
“hybrid” model, called multiparty reusable Non-Interactive Secure Computation (mrNISC).
In this model, parties publish encodings of their private inputs xi on a public bulletin
board, once and for all. Later, any subset I of them can compute on-the-fly a function f
on their inputs xI = {xi}i∈I by just sending a single message to a stateless evaluator,
conveying the result f(xI) and nothing else. Importantly, the input encodings can be
reused in any number of on-the-fly computations, and the same classical simulation
security guaranteed by multi-round MPC, is achieved. In short, mrNISC has a minimal
yet “tractable” interaction pattern.

We initiate the study of mrNISC on several fronts. First, we formalize the model of
mrNISC protocols, and present both a UC security definition and a game-based security
definition. Second, we construct mrNISC protocols in the plain model with semi-honest
and semi-malicious security based on pairing groups. Third, we demonstrate the power
of mrNISC by showing two applications: non-interactive MPC (NIMPC) with reusable
setup and a distributed version of program obfuscation.

At the core of our construction of mrNISC is a witness encryption scheme for a
special language that verifies Non-Interactive Zero-Knowledge (NIZK) proofs of the
validity of computations over committed values, which is of independent interest.

*fabrice.benhamouda@normalesup.org, Algorand Foundation, New York, US
†rachel@cs.washington.edu, University of Washington, Seattle, US

1

Contents

1 Introduction 3
1.1 Our Results in More Detail . 4

2 Technical Overview 9
2.1 Security Definition of mrNISC Schemes . 9
2.2 Overview of Our mrNISC Scheme . 10
2.3 Construction of WE for NIZK of Commitments . 12

3 Related Works 15

4 Preliminaries 17
4.1 Statistical and Computational Indistinguishability . 17
4.2 Garbled Circuit . 17
4.3 Collision-Resistant Hash Function Family . 18
4.4 Pseudorandom Functions . 18
4.5 Background on Universal Composability . 19
4.6 Network and Corruption Model Used, and Definition of UC-Security 20
4.7 Semi-Malicious Output-Delayed Simulatability . 21

5 WE for NIZK of Commitments: NC1 23
5.1 Definition of Witness Encryption for NIZK of Commitments 23
5.2 Bilinear Commitments with Proofs of Quadratic Relations 26
5.3 WE for NIZK of Commitments for NC1 . 31

6 WE for NIZK of Commitments: From NC1 to P 34
6.1 Preliminary: Computational Randomized Encodings. 35
6.2 From NC1 to P. 36

7 Definitions of mrNISC Schemes and Protocols 38
7.1 Definition of mrNISC Schemes . 38
7.2 The mrNISC Functionality . 40
7.3 UC-secure mrNISC Protocols from mrNISC Schemes 40

8 Construction of mrNISC Schemes 44

9 Applications of mrNISC 49
9.1 NIMPC: From Correlated Randomness to the PKI Setting 49
9.2 Secret-Sharing VBB . 58

2

P1 P2 P3 P4 P5

E

bulletin board
x̂1

x̂2

x̂3
x̂4

x̂5

(a) Parties Pi publish the encodings x̂i of their
inputs xi. (Step done a single time, usable for
multiple computations.)

P1 P4 P5

E

bulletin board
x̂1

x̂2

x̂3
x̂4

x̂5

α1 α4 α5

f(z, x1, x2, x3)

(b) Parties P1, P4, P5 want to let the evaluator E
compute f(z, x1, x4, x5) by each sending a single
message αi.

Figure 1: mrNISC (z is a public input to the function)

1 Introduction

Reducing interaction in Multiparty Computation (MPC) is a highly desirable goal in cryptography,
both because each round of communication is expensive and because the liveness of parties is hard
to guarantee, especially when the number of participants is large. Contrary to throughput, latency
is now essentially limited by physical constraints, and the time taken by a round of communication
cannot be significantly reduced anymore. Moreover, non-interactive primitives are more versatile
and more amenable to be used as powerful building blocks. Recent works [BL18,GS18] constructed
2-round MPC protocols from the minimal primitive of 2-round Oblivious Transfer (OT), where
in each round all participants simultaneously broadcast one message. Is it possible to further
reduce interaction? The answer is no in general as any non-interactive (i.e., one-round) protocol is
susceptible to the so-called residual attack, and cannot achieve the classical simulation security.

In this work, we introduce and study a natural “hybrid” model, between the 2-round and
the 1-round settings, which gets us close to having non-interactive protocols while still providing
classical security guarantees. We call this model multiparty reusable Non-Interactive Secure
Computation (mrNISC). In this model, parties publish encodings of their private inputs xi on a
public bulletin board, once and for all. Later, any subset I of them can compute on-the-fly a function
f on their inputs xI = {xi}i∈I by just sending a single public message to a stateless evaluator,
conveying the result f(xI) and nothing else. Importantly, the input encodings are reusable across
any number of computation sessions, and are generated independently of any information of later
computation sessions — each later computation can evaluate any polynomial-time function, among
any polynomial-size subset of participants. Figure 1 depicts the setting. The security guarantee
is that an adversary corrupting a subset of parties, chosen statically at the beginning, learns no
information about the private inputs of honest parties, beyond the outputs of the computations
they participated in. This holds for any polynomial number of computation sessions.

Our Contributions. We initiate the study of mrNISC at the following fronts:

Modeling: We introduce the mrNISC model and formalize both UC security through an ideal

3

mrNISC functionality, and a simpler game-based security notion that implies UC security.
Our model aims for maximal flexibility. Consider the simplest form of 2-round MPC with
reusable first messages, where the first messages could potentially depend on the number
of parties, complexity of the computations, and potentially all parties must participate in
all computations. mrNISC does not have such restriction. In addition, our model allows
adaptive choices of inputs and computations, uses weak communication channels, and allows
honest parties to individually opt out of computations.

Construction: We construct the first mrNISC protocols based on SXDH in asymmetric (prime-
order) pairing groups. Our protocols are in the plain-model (without any trusted setup), and
satisfies semi-honest, and semi-malicious security. For malicious security, reliance on some
trusted setups is inevitable. We use a CRS.

Techniques: At the core of our construction is a witness encryption (WE) scheme for a special
language that verifies non-interactive zero-knowledge (NIZK) proofs of the validity of com-
putations over committed values. We construct it from bilinear groups. This significantly
extends the range of languages for which we know how to construct WE from standard
assumptions, which is a result of independent interest.

Applications: We demonstrate the power of mrNISC protocols in two cryptographic applications.
First mrNISC allows to generically transform non-interactive MPC protocols [BGI+14] us-
ing correlated randomness into non-interactive MPC protocols in the PKI plus CRS model.
Second, mrNISC enables a secret-sharing analogue of Virtual Black-Box program obfusca-
tion [BGI+01] — called secret sharing VBB.

Comparing with previous models of MPC with minimal interaction, mrNISC naturally generalizes
the beautiful notion of reusable NISC by Ishai et al. [IKO+11] from two party to multiple parties.
It differs from the notions of non-interactive MPC (NIMPC) [BGI+14] and Private Simultaneous
Messages (PSM) [FKN94, IK97] which achieves weaker security or restricts the corruption pattern.
It also differs from the notion of on-the-fly MPC [LTV12] which leverages a powerful server to
reduce the communication and computation complexity of the parties to be independent of the
complexity of the functions computed, but allows the parties to interact in multiple rounds in the
computation phase.

It is very plausible that multi-key fully-homomorphic encryption (MKFHE) with threshold
decryption, which implies 2-round MPC [AJL+12,MW16,CM15], is sufficient for mrNISC. However,
proving it is not straightforward. For instance, the current definitions of threshold decryption
e.g., [MW16, BJMS18] are insufficient for constructing mrNISC, as simulatability only ensures
that a single partial decryption can be simulated (hence this definition does not allow to re-use
ciphertexts.) See detailed comparisons with more related works in Section 3.

1.1 Our Results in More Detail

Definition We start with defining a mrNISC scheme, consisting of an input encoding Com, com-
putation Encode, and output Eval algorithms. An mrNISC scheme immediately yields an MPC
protocol with minimal interaction pattern, called an mrNISC protocol. We formalize a game-based
security notion for mrNISC scheme, as well as UC-security for mrNISC protocols, and show that
the former implies the latter. We have both definitions since they each has its own advantage: UC

4

security is the strongest security notion for MPC protocols, and implies security under composition.
The ideal mrNISC functionality we define provides a simple interface for using our protocols in
bigger systems. On the other hand, the game-based security notion is more succinct and easier to
manipulate. By showing that game-based security implies UC security, we have the best of both
sides.
mrNISC Scheme. A mrNISC scheme is defined by:

• Input Encoding: A party Pi encodes its private input xi by invoking (x̂i, si) ← Com(1λ, xi). It
then publishes the encoding x̂i and keeps the secret state si.

• Computation: In order for a subset of parties {Pi}i∈I to compute the functionality f on their
private inputs xI and a public input z, each party in I generates a computation encoding
αi ← Encode(z, {x̂j}j∈I , si) and sends it to the evaluator. Here, z can be viewed as part of the
description of the function f(z, ⋆) that is computed.

• Output: The evaluator reconstructs the output y = Eval(z, {x̂i}i∈I , {αi}i∈I). (Note that recon-
struction is public as the evaluator has no secret state.) Correctness requires that y = f(z, {xi}i∈I)
when everything is honestly computed.

It is easy to see that an mrNISC scheme for f immediately gives an mrNISC protocol for f .
Simulation-security requires that the view of an adversary corrupting the evaluator and any subset
of parties, can be simulated using just the outputs of the computations that honest parties participate
in. We consider static corruption: The set of corrupted parties C are chosen at the beginning and
fixed; later, in a computation involving parties I , the corrupted and honest parties are respectively
I ∩ C and I ∩ C̄.

The same security intuition can be formalized with different degree of flexibility. In the simplest
selective setting, where the function f , parties’ inputs x1, . . . , xm, and (z1, I1), . . . , (zK , IK) for
different computations are all chosen selectively at the beginning, the view of corrupted parties in
C is simulatable by a universal simulator S as follows.

Selective Security:
{
{xi, ri}i∈C , {x̂i}i∈C̄ , {α1

i }i∈I1∩C̄ , . . . , {αK
i }i∈IK∩C̄

}
≈

{
S
(
{xi}i∈C ,

(
y1, z1, I1

)
, . . . ,

(
yK , zK , IK

))}
yk = f(zk, xIk), ∀k ∈ [K]

where {xi, ri}i∈C are the inputs and randomness of corrupted parties, x̂i is the input encoding of
an honest party Pi, and αk

i the computation encoding from an honest party Pi in session k. The
above definition captures semi-honest security. In the stronger semi-malicious security [AJL+12], the
corrupted parties still follow the protocol specification but are allowed to choose the randomness
arbitrarily.

Dynamics in the mrNISC. The simple selective setting has several drawbacks undesirable for
capturing a dynamic mrNISC setting we envision. Instead, in mrNISC, we have:

• Adaptive Choices: Each party’s input xi is chosen adaptively. Each computation specified by (z, I)
is chosen adaptively, before it starts. Different computation can use the same z and/or I , or
different ones. Parties outside I are not involved in and not even aware of computation (z, I).
f(z, ⋆) can be any polynomial time computable function, and I any polynomial size subset.

5

• Asynchronous P2P Communication: Parties have access to a common public bulletin board, but
otherwise should only use asynchronous point-to-point authenticated channels. We do not
assume any broadcast channel.

• Optional Participation: In a computation session (zk, Ik), honest parties in Ik may opt in or out of
any computation. We do not require all honest parties to participate. Furthermore, the output
of a computation is revealed only after all parties in Ik send their computation encoding. (This
means that, in any computation session, the simulation of all but the last honest computation
encoding must be done without knowing the output of the computation.)

Our mrNISC ideal functionality in the UC framework [Can00] captures all above features (see
Section 7.2). Clearly, selective security is insufficient for implementing the mrNISC ideal functional-
ity. We thus formalize a game-based adaptive-security of mrNISC schemes, Definition 2.1 in the
overview (Section 2.1) and we show that it implies UC-security. We emphasize that our adaptive
security does not mean security against adaptive corruptions.

Lemma 1.1 (Informal). An mrNISC scheme for a function f satisfying adaptive semi-malicious (or semi-
honest) privacy implies a protocol that UC-implements the mrNISC ideal functionality for f in the plain
model with semi-malicious (or semi-honest) security.

Following standard techniques [AJL+12], semi-malicious UC protocols in the plain model can
be transformed into malicious UC protocols in the CRS model using malicious UC-NIZK.

Plain-Model mrNISC from Bilinear Groups. We construct mrNISC schemes for polynomial time
computable functions in the plain model from bilinear maps.

Theorem 1.2 (Informal). Our construction in Section 8 gives an mrNISC scheme in the plain model for any
function in P, satisfying adaptive semi-malicious security, based on the SXDH assumption on asymmetric
bilinear groups.

Our construction builds upon the construction of 2-round MPC protocols using general pur-
pose WE and NIZK [GLS15], which in turn improves upon the protocols of [GGHR14] based on
indistinguishability obfuscation. (Unfortunately, follow-up works based on standard assump-
tions [GS17, BL18, GS18] do not have reusable first messages.)

So far, known WE schemes can be split into two categories. The first is WE for general NP
language from very strong obfuscation-like assumptions, e.g., [GGSW13]. The second is WE from
standard assumptions, but for very specific languages, such as, language of commitment (or hashes)
of a given message, like in [CS02, DG17], and languages of commitments that commit to value
satisfying up to quadratic equations, like in [GS17, GS18]. These functionality, however, is too weak
for constructing 2-round MPC.

WE for NIZK of Com. We observe that it suffices to have witness encryption for a language that
verifies NIZK proofs for the validity of computation over committed values. We then construct
a commitment scheme Com, a NIZK proof system NIZK, and a WE scheme for the language
LWE of statements of form XWE = (crs, c1, . . . , cm, G, y) (where crs is a CRS of NIZK, every ci is
a commitment of Com, and G is an arbitrary polynomial-sized circuit). The statement is true if
and only if there exists a NIZK proof π (i.e., the witness) proving w.r.t. crs that G evaluated on
the values v1, . . . , vm committed in c1, . . . , cm through Com outputs y, i.e., G(v1, . . . , vm) = y. More

6

bilinear maps
(SXDH)

WE for NIZK
of commitments

mrNISC
scheme

mrNISC
protocol

MPC⋆

§ 5 § 8 § 7.3

Figure 2: Construction of mrNISC schemes and protocols (mrNISC protocols implement the
mrNISC ideal functionality; MPC⋆ is an MPC with some special properties defined in Section 4.7)

mrNISC
scheme

mrNISC
protocol

secret-sharing
VBB

NIMPC
in PKI + CRS

NIMPC
w/ cor. rand.

§ 7.3 § 9.2 § 9.1

Figure 3: Applications of mrNISC schemes (mrNISC protocols implement the mrNISC ideal
functionality)

precisely, the witness relations for WE and NIZK proof are:

RWE(XWE = (crs, c1, . . . , cm, G, y), π) = 1 iff NIZKVer(crs, XNIZK, π) = 1 (1)
RNIZK(XNIZK = (c1, . . . , cm, G, y), ((v1, ρ1), . . . , (vm, ρm))) = 1

iff ∀i ∈ [m], (vi, ρi) is a valid opening of ci and G(v1, . . . , vm) = y (2)

We call such a triple (Com, NIZK, WE) as WE for NIZK of commitments and construct it from
bilinear pairing groups.

Theorem 1.3 (Informal). Our construction in Section 5 and Section 6 gives a WE for NIZK of commitments
(Com, NIZK, WE) based on SXDH over asymmetric bilinear pairing groups.

We remark that our construction co-designs (Com, NIZK, WE) together. It significantly extends
the range of statements that WE supports, and is based on standard assumptions, which is of
independent interest.

Applications. We show two applications of mrNISC. A summary of the applications is in Fig. 3.

NON-INTERACTIVE MPC WITH REUSABLE SETUP [BGI+14] proposed the model of non-interactive
MPC (NIMPC), where to jointly compute a function, each party sends a single message to an
evaluator, without initially committing to their inputs. In this setting, adversaries can always evaluate
the residual function f |H,{xi}i∈H

where the inputs of the honest parties are fixed, on all possible
inputs of the corrupted parties, a.k.a. the residual attack. Thus, NIMPC aims at achieving the best-
possible security that the only information of honest parties’ inputs revealed is the residual function
f |H,{xi}i∈H

. NIMPC is a powerful and flexible concept equivalent, under different corruption
models (i.e., what set C of parties can be corrupted), to garbled circuits, Private Simultaneous
Messages [FKN94, IK97] protocols, and program obfuscation. Almost all NIMPC protocols are
constructed in a model where parties receive correlated randomness sampled by a trusted third party
from some distribution. However, correlated randomness is not reusable, and must be re-sampled
independently for each computation session. So far, the only construction of NIMPC protocols

7

with reusable setups is by [HIJ+17], which makes use of a (reusable) PKI plus CRS, but is based
on the sub-exponential security of IO and DDH. Using mrNISC, we give a generic transformation
from any NIMPC protocols using correlated randomness to ones in the PKI plus CRS model.

Corollary 1.4. Applying our transformation to known NIMPC protocols [BGI+14, BKR17], gives the
following NIMPC protocols in the PKI plus CRS model assuming mrNISC for P and UC-NIZK for NP.

1. NIMPC for the iterated product function f(x1, . . . , xn) = x1 · · ·xn over a group, against any number
of corruption.

2. NIMPC for P from multi-input functional encryption, against any number of corruption.

3. NIMPC for P, against a constant nubmer of corruption (each holding a O(1)-bit input).

The first and third bullets are achieved for the first time, using only reusable setups. We weaken
the assumption needed for the second bullet from sub-exponentially secure IO in [HIJ+17] to
polynomially secure IO, equivalent to multi-input functional encryption [GGG+14], which is a
necessary assumption.

SECRET-SHARING VBB We propose a new primitive called secret-sharing VBB obfuscation. As
the name suggests, it enables the owner of a private program M to secret share M among N
servers, where the i’th server holds share Mi. Later, the servers can evaluate the program on
any input x, by sending one message, called the output shares, to an evaluator who learns the
output M(x) and nothing else; this holds even if the evaluator colludes with all but one server.
Analogous to VBB obfuscation, the secret shares of M are reusable and security is simulation-based.
While VBB is impossible in general, secret-sharing VBB can be implemented using mrNISC in
a simple way. Though the construction from mrNISC is simple, we found secret-sharing VBB
conceptually interesting and it can be readily used to turn applications of VBB into their secret-
sharing counterparts. For instance, for cryptographic primitives, such as, IBE, ABE, PE, and FE,
where a central trusted authority issues secret keys for identities, key policies, and functions
respectively, we can decentralize the trusted authority by creating a secret-sharing VBB obfuscation
of the key generation algorithm among multiple servers. Importantly, the servers do not need to
communicate with each other and only need to send a single message to the inquirer of a key.

The notion of secret-sharing VBB appears similar to the notions of Homomorphic Secret Sharing
and Function Secret Sharing (HSS/FSS) [BGI15,BGI16]. The main difference is that in secret-sharing
VBB the evaluator may collude with all but one servers, whereas in HSS/FSS the evaluator is
honest. Consequently, the security of secret-sharing VBB must hold even when all output shares are
made public, whereas HSS/FSS does not guarantee security in this setting. Another similar notion
is bit-fixing homomorphic sharing proposed in [LM18], which is tailor made for the construction
there. Secret sharing VBB is simpler and more natural.

See Section 9.1 for details of the application to NIMPC, and Section 9.2 for secret sharing VBB.

Organization of the Paper We start by giving a formal definition of mrNISC schemes, and an
overview of our construction of mrNISC from bilinear maps in Section 2; the technical bulk of the
construction is constructing WE for NIZK of commitments. Next we discuss more about related
works in Section 3. After some preliminaries in Section 4, we define witness encryption for NIZK
of commitments, and construct a scheme for NC1 in Section 5; and show bootstrapping from NC1

to a scheme for P in Section 6. The UC definition of mrNISC protocols is presented in Section 7.2,

8

the formal constructions of UC-secure mrNISC protocols from mrNISC schemes in Section 8, and
the applications of mrNISC in Section 9.

2 Technical Overview

2.1 Security Definition of mrNISC Schemes

We now present the game-based definition of adaptive security of mrNISC scheme. In Section 7.2,
we present the ideal mrNISC functionality and show that the definition below implies UC-security.

Definition 2.1 (Adaptive Security). An mrNISC scheme mrNISC for f is semi-honest (or semi-
malicious) private if there exists a PPT simulator S , such that, for all PPT adversary A, the views of
A in the following experiments ExpA,S(Real, λ, f) and ExpA,S(Ideal, λ, f) are indistinguishable.
Experiment ExpA,S(Real, λ, f): A chooses the number of parties M and the set of honest parties
H ⊆ [M]; the set of corrupted parties is H̄ . It interacts with a challenger in an arbitrary number of
iterations till it terminates. In every iteration k, it can submit one query of one of the following three
types.

CORRUPT INPUT ENCODING: Upon A sending a query (input, Pi, xi, ρi) for a corrupt party i ∈ H̄ ,
record x̂i generated by (x̂i, si) = Com(1λ, xi; ρi). In the semi-honest case, ρi is randomly
sampled, whereas in the semi-malicious case, it is chosen by A.

HONEST INPUT ENCODING: Upon A choosing the input (input, Pi, xi) of an honest party i ∈ H ,
generate (x̂i, si)← Com(1λ, xi) and send x̂i to A.

A is restricted to submit one input query for each party Pi.

HONEST COMPUTATION ENCODING: Upon A querying (compute, Pi, z, I) for an honest party
i ∈ H ∩ I , if the input encodings {x̂j}j∈I of all parties in H ∩ I have been generated, send
A the computation encoding αi ← Encode(z, {x̂j}j∈I , si). ((z, I) is the unique identifier of a
computation.)

Experiment ExpA,S(Ideal, λ, f): Same as the above experiment, except: Invoke S(1λ, f).

CORRUPT INPUT ENCODING: Additionally send query (input, Pi, xi, ρi) to S.

HONEST INPUT ENCODING: Upon A choosing (input, Pi, xi) for i ∈ H , send query (input, Pi) to S
who generates a simulated input encoding x̃i for Adv.

HONEST COMPUTATION ENCODING: UponA choosing (compute, Pi, z, I), if this is the last honest
computation encoding to be generated for computation (z, I) (i.e., ∀ j ̸= i ∈ I ∩ H , A
has queried (compute, Pj , z, I) before), send S the query (compute, Pi, z, I) and the output
y = f(z, {xt}t∈I); otherwise, send S the query (compute, Pi, z, I) without y. S generates a
simulated computation encoding α̃i for Adv.

We emphasize that the definition above captures all dynamic choices described in the intro-
duction. For instance, in the ideal world, for each computation session, simulation of all but the
last honest computation encoding do not use the output of that session, ensuring that the output
remains hidden until all honest computation encodings are sent.

9

2.2 Overview of Our mrNISC Scheme

Our construction of mrNISC scheme follows the round collapsing approach for constructing
2-round MPC protocols started in [GGHR14]; in particular, we build on the work of [GLS15].

The Round Collapsing Approach. The round-collapsing approach collapses a inner MPC protocol
with a polynomial L number of rounds into a 2-round outer MPC protocol as follows. Assume that
each party Pi in the inner MPC broadcast one message mℓ

i in each round ℓ. In the first round of
outer MPC, each party Pi commits ci ← COM(xi, ri) to its input xi and some random tape ri to
be used to execute the inner MPC protocol. In the second round, each party Pi sends one garbled
circuit F̂ℓ

i per round ℓ ∈ [L] of the inner MPC protocol corresponding to the next message function
Fℓ

i of Pi. This garbled circuit takes as input all the messages m<ℓ = {ml
j}l<ℓ,j∈[n] sent in previous

rounds, and outputs the next message mℓ
i of Pi of the inner MPC (or the output for the last round

ℓ = L).
To compute the output from all garbled circuits {F̂ℓ

i}ℓ∈[L],i∈[n], each Pi needs to provide a way

to compute the labels of its garbled circuits F̂ℓ
i that correspond to the correct messages of the inner

MPC, where a message ml
j is correct if it is computed from Pj ’s input and randomness (xj , rj)

committed to in the first round. For this, [GLS15] proposed the following mechanism using a
general purpose WE and NIZK. Let k0, k1 be two labels of Pi’s garbled circuit F̂ℓ

i for an input wire
that takes in the t’th bit y = ml

j,t of a message from Pj . Recall that ml
j is output by Pj ’s garbled

circuit F̂l
j . The goal is translating the valid bit y to the corresponding label ky — that is “let F̂l

j

communicate y to F̂ℓ
i”. [GLS15] modifies the garbled circuits as follows.

• To “receive” y, F̂ℓ−1
i for round ℓ− 1 additionally outputs cty ←WEnc(Xy, ky) for y ∈ {0, 1}, under

the statement Xy that there is a NIZK proof πy proving that y = ml
j,t is computed correctly from

Pj ’s input and randomness (xj , rj) committed in cj , according to the protocol specification and
the partial transcript of messages m<l before round l.

• To “send” y, F̂l
j additionally outputs a NIZK proof π that y = ml

j,t is computed correctly from
(xj , rj) committed in cj .

For correctness, decrypting cty using π as a witness reveals ky. For security, k1−y remains hidden,
thanks to the security of WE and soundness NIZK. Moreover, the ZK property of NIZK ensures
that Pj ’s committed input and randomness (xj , rj) remains hidden, protecting Pj ’s privacy.

Observe that the first messages of the [GLS15] protocol consist of a commitment to parties’ input
xi and randomness ri. We show (as a corollary of our mrNISC construction) that the first messages
can be made reusable if we replace ri with a PRF seed si which can generate pseudo-random tapes
for an unbounded number of computations.

Challenge and Our Method The problem is we do not have general purpose WE from standard
assumptions. Previous 2-round MPC constructions from standard assumptions circumvent this
problem using weaker tools, namely functional commitment with witness encryption from OT
in [BL18], or homomorphic proof commitment with encryption from bilinear pairing groups
in [GS17], or achieving its effect using OT in [GS18]. Unfortunately, as we explain shortly, using
these weaker tools kills the reusability of the first messages.

We restore the reusability of first messages using WE for NIZK of commitments, which
suffices for the purpose of [GLS15]. WE for NIZK of commitments is a triple (Com, NIZK, WE) of
commitment, NIZK, and WE schemes. It allows to commit to any values c1 ← Com(v1) . . . cm ←

10

Com(vm) and later reveal multiple NIZK proofs πk w.r.t. a crs that Gk(v1 . . . vm) = yk for multiple
polynomial-size circuits Gk and outputs yk. In addition, the proofs πk can be used to decrypt
ciphertexts ct←WEnc((crs, c1 . . . cm, Gk, yk), m) tied to a statement Xk = (crs, c1 . . . cm, Gk, yk), so
that, the message m is recovered if and only if πk is an accepting proof that Gk(v1 . . . vm) = yk w.r.t.
crs. The formal witness relation for WE is in Eq. (1) and that for NIZK in Eq. (2).

The two key properties of WE for NIZK of commitments are i) reusability of commitments – one
can generate an unbounded number of NIZK proofs and WE ciphertexts w.r.t. them while keeping
committed values hidden (only information in the statements is revealed), and ii) support for P
computation – the statements Xk = (c, G, y) are about the correctness of arbitrary polynomial-sized
circuits. These two properties are crucial for achieving the reusability of MPC first messages. Our
specific definition and construction of WE for NIZK of commitments has an additional bonus
feature that it is “dual-mode” in the sense that in a binding mode, binding of commitments,
soundness of NIZK, and semantic security of WE are all information theoretic and perfect, and in
a simulation mode, the commitments are perfectly equivocable, NIZK perfectly zero-knowledge.
These two modes are controlled by how the CRS is sampled and are indistinguishable. The “dual-
mode” feature is not necessary for mrNISC, but might be useful for other applications. We give an
overview of our WE for NIZK of commitments in Section 2.3, and formal construction in Section 5
and Section 6.

Combined with the round-collapsing approach of [GLS15], we obtain semi-honest, in fact semi-
malicious, mrNISC protocols in the CRS model from pairing groups. We can further remove the
CRS, by letting each party Pi sample a CRS in the binding mode for generating its own commitments
and NIZK proofs, while generating WE ciphertexts w.r.t. other parties’ CRS, yielding protocols in
the plain model. This does not hurt security because for every correctly generated binding CRS,
the binding of commitments and the soundness of NIZK hold information theoretically; hence
semi-malicious corrupted parties can’t cheat and the WE ciphertexts they receive are information
theoretically secure. The simulator on the other hand can sample honest parties’ CRS in the
simulation mode to simulate their commitments and NIZK proofs.

Implementing Additional Features in mrNISC Beyond making the first messages reusable, we
carefully implement features in mrNISC — namely, adaptive choices of inputs and computations,
asynchronous P2P communication, and optional participation of honest parties. Technically, this
means simulation of a message can only use information that is available to the simulator at
the moment, e.g., only the last delivered honest message in a session can be simulated using
the output of that session, all other honest messages are simulated with no information. We
show this can be achieved if the inner MPC satisfies output-delayed simulatability — all but the last
message from honest parties can be simulated without the output, which is the case w.r.t. the GMW
protocol [GMW87]. We then show that the resulting collapsed protocols achieves dynamics in
mrNISC.

Comparison with Homomorphic Proof Commitments with Encryption The homomorphic proof
commitment with encryption of [GS17, GS18] can be viewed as a WE for NIZK of the statement
that (a linear combination of) committed values is 0 or 1. This in turns gives WE for NIZK
of NAND, which verifies NIZK proofs that c1, c2, c3 commit to three values v1, v2, v3 such that
v3 = NAND(v1, v2). The acute reader may remark that being able to prove NAND relations
between committed values allow to prove any statement Xk = (c, Gk, yk), by including, in the NIZK
proof, commitments to intermediate values in the computation of Gk, and proofs of correctness of
every NAND gate computation w.r.t. them. This is the whole idea of GOS NIZK [GOS12], on which

11

[GS17] is based. However, we do not know how to construct WE for verifying such NIZK proofs,
because checking these proofs require verifying quadratic relations among (committed) elements in
the proof. The essence of the problem is that we do not how to construct WE verifying quadratic
relations in the witness (i.e., the NIZK proof here); if we knew, we would have obtained general
purpose WE. This should be distinguished from checking quadratic relations between (committed)
elements in the statement. The latter is the case in [GS17] and is easier, because the WE encryption
procedure knows the statement and can use it to create the ciphertext, but it cannot do the same
with the witness.

2.3 Construction of WE for NIZK of Commitments

Key Ideas. Our key idea is to design NIZK proofs π that can be verified by a linear equation, so that
we can construct WE for verifying the proofs using a WE for linear languages, which are essentially
hash proof systems (see, e.g., [ABP15]). More specifically, we want to turn verifying a NIZK proof π
of a statement X = (c, G, y) into verifying a system of linear equations θ = Γπ. Crucially, θ and Γ,
which describe the linear equations, must depend only on the statement X (independent of π). As
such, θ, π are known at WE encryption time, and we can use hash proof systems to generate a WE
ciphertext that reveals the message given a witness π satisfying the linear system, and information
theoretically hides the message if no such witness exists. More precisely, commitments and NIZKs
are pairing group elements, and the linear equations are on values in the exponent; at the moment,
we ignore this detail.

Unfortunately, verifying known NIZK proofs requires verifying quadratic relations between
elements in the proof — the proof contains intermediate computation values, and verification
checks the correctness of computation of each gate, which is quadratic. Designing WE for checking
quadratic relations between elements in the witness is a barrier, which would give general purpose
WE. Our next idea is leveraging that NC1 circuits can be represented as restricted multiplication
straight-line (RMS) programs, where multiplication occurs between intermediate values and input
elements; importantly, the latter are committed in c contained in the statement X . This asymmetry
in multiplication allows to design NIZK proofs π verified by a linear system θ, Γ defined by the
statement. Roughly speaking, the proof π contain (encodings of) intermediate values, while
θ, Γ contain (encodings of) inputs elements. Then, multiplication between Γ and π captures
multiplication between input elements and intermediate values in RMS programs. Hence, we
can use WE for linear language to obtain WE for NIZK of commitments for NC1. Finally, we
present a generic bootstrapping technique for lifting from a scheme for NC1, to a scheme for all
polynomial-size circuits P.

Our NIZK for NC1 with linear verification equations makes use of the homomorphic commit-
ment schemes developed in existing NIZK proofs and some of the ideas behind these proofs [GOS12,
GS12]. For simplicity, our description below uses GOS homomorphic proof commitments which
are based on composite-order bilinear groups. Our final solution in Section 5 uses the same ideas
but is based on the Groth and Sahai NIZK [GS12] which uses prime order bilinear groups.

WE for Linear Languages. We start with witness encryption for linear languages. A linear language
over Zp consists of tuples of a matrix Γ ∈ ZK×k

p and a vector θ ∈ ZK
p in the column span of Γ. A

witness for (θ, Γ) is a vector π s.t. θ = Γπ. There is an extremely simple WE scheme for linear
language: A ciphertext encrypting m ∈ Zp consists of αT Γ and αT θ + m for a random row vector
αT . When the statement is false, that is, θ is outside the column span of Γ, αT Γ contains no

12

information of αT θ, which hides m.

Linear WE LWEnc((θ, Γ), m) : α← ZK
p , ct = αT θ + m, αT Γ

Can we use linear WE to verify a complex computation G(v) = y over committed values v?
If we had a fully homomorphic commitment scheme for which verification of the opening (i.e.,
decommitment) is linear, we would solve the problem. Verifying that “c opens to v and G(v) = y”
is equivalent to that “c′ opens to y” w.r.t. c′ obtained from homomorphic evaluation of G on c. Now
a message m can be encrypted using linear WE w.r.t. c′, y (which decides θ, Γ) and a proof π is
simply an opening of c′ (ignoring ZK for now). Unfortunately, we do not know how to construct
such commitment scheme.

Linear Proof for One Multiplication. GOS [GOS12] constructed a commitment scheme with linear
opening that can do one homomorphic multiplication, using pairing groups.

Let (N,G1,G2,Gt, e, g1, g2) describe a bilinear group of order N . We use the bracket notation
[a]b := ga

b in Gb for a ∈ ZN – referred to as an encoding of a, and write a[a′]b = [aa′]b as applying
group exponentiation in Gb and [aa′]t = [a]1[a′]2 as applying the pairing operation. GOS uses a
composite order N = pq symmetric bilinear group, where the two source groups are the same
G = G1 = G2; we simply write [a] as a source group element.

The CRS of the commitment scheme contains [h] for a random element in ZN of order q. A
commitment to v in Zp is simply [c] = [rh + v] using a random scalar r ← ZN . Such a commitment
is perfectly binding, because h has order q, and v is in Zp. Given two commitments [c1] =
[r1h + v1] and [c2] = [r2h + v2], we can compute a commitment of the product in the target group.
Furthermore, we can prove that the product v1v2 is equal to some value v12, and the verification is
linear in the proof π:

One Multiplication [c1c2]t = [c1][c2] = [(r1r2h + r1v2 + r2v1) h + v1v2]t
Proof [π] := [t1 + t2h] for t1 = r1v2 + r2v1, t2 = r1r2

Verification 0 ?= [c1][c2] − [h][π] − [1][v12]

In other words, the last equation shows that [π] = [t1 + t2h] is a proof for the statement “[c1] and
[c2] commits to values v1 and v2 so that v1v2 = v12.”

Since the verification is linear, combined with WE for linear language, this immediately gives
a WE for NIZK of correctness of one multiplication. This approach was exploited in [GS17] for
obtaining WE for NIZK of correctness of one NAND.

Going beyond one Multiplication (Step 1) The main issue of the above construction is that a GOS
commitment only allows for the evaluation of a single multiplication gate (or equivalently a single
NAND), as [c1c2]t is now in the target group. To evaluate more complex functions G, we need to be
able to make further multiplications. The idea is that the prover can commit to v1v2 in the source
group: [c×] = [r×h + v1v2] and then prove that [c×] indeed commits to the same value as [c1c2]t:

Multiplication [c× − c1c2]t = [1][c×] − [c1][c2] = [(−r1r2h + r× − r1v2 − r2v1) h]t
Proof [π×] := [t1 + t2h] for t1 = r× − r1v2 − r2v1, t2 = −r1r2 (3)

Verification 0 ?= [1][c×] − [c1][c2] − [h][π×] (4)

Furthermore, by linearity of the GOS commitment, it is also possible to prove that a commitment
[c+] = [r+h + v+] commits to a value v+ that is a linear combination of values v1 and v2 committed

13

in [c1] and [c2]: v+ = µ1v1 + µ2v2 (for some public scalars µ1, µ2).

Linear [c+ − µ1c1 − µ2c2]t = [c+] − µ1[c1] − µ2[c2] = [(r+ − µ1r1 − µ2r2) h]t
Proof [π+] := r+ − µ1r1 − µ2r2 (5)

Verification 0 ?= [c+] − µ1[c1] − µ2[c2] − [h][π+] (6)

To extend to proving P computations, we can proceed as follows. To commit a bitstring v, we com-
mit each bit individually as a GOS commitment: [ci] = [rih + vi]. Then, to prove that G(v) = y, we
represent G as a sequence of linear operations and multiplications, and introduce an intermediate
commitment for each intermediate result. The proof consists of these intermediate commitments[
c′

j

]
, intermediate proofs that they were computed properly (using Eq. (3) or Eq. (5)) and the

opening r′
o of the commitment [c′

o] = [r′
oh + y] corresponding to the output of G. Verification

would consist of verifying the intermediate proofs (using Eqs. (4) and (6)) and the opening of the
output commitment.

The final proof would actually be a zero-knowledge proof and would in essence be a GOS
or a Groth-Sahai proof [GOS12, GS12]. The zero-knowledge property comes from the following
two facts: (1) if h is chosen to be of order N (instead of q), commitments are fully equivocable,
and (2) there is a single proof [π×] (resp., [π+] satisfying the verification equation 3 (resp., Eq. (5)).
Leveraging these two facts, a ZK simulator for a proof of, say one multiplication, can equivocate
c1, c2, c× to any values satisfying ṽ× = ṽ1ṽ2, the equivocation gives a fake witness for computing
the unique proof.

Unfortunately, the final proof verification is not linear: if two intermediate values v1, v2 need
to be multiplied, Eq. (4) would involve a product of the corresponding two commitments c1, c2,
which is quadratic in the final proof.

Restricted Multiplication Program (Step 2). To keep verification linear in the final proof, we remark
that we just need to ensure that every multiplication involves at least one input commitment, but
never two intermediate commitments (which are part of the final proof). In that case Eq. (4)
becomes linear in the intermediate commitment. Hence, we can use the above ideas to verify any
restricted multiplication straight-line (RMS) computation [Cle91, BGI16], which includes all NC1

computations. Indeed, in an RMS program, the only allowed operations are linear operations over
inputs or intermediate values, and multiplications of one intermediate value v′

j with one input vi

(but not of two intermediate values).

Improved NC1 Scheme Based on SXDH. The above construction of WE for NIZK of commitments
for NC1 uses composite group order with pairings which are notoriously inefficient. In Section 5,
we propose a construction solely based on the standard assumption SXDH over asymmetric prime
order pairing groups. The construction follows the same ideas described above, but is based on
the Groth-Sahai NIZK proofs, which use vector subspaces to implement features of the subgroup
structure. The scheme becomes more complex. That’s why we explain our ideas w.r.t. the simpler
GOS NIZK system.

Polynomial-Size Circuits. We now present a generic bootstrapping technique from a WE scheme
for NIZK of commitments for RMS to one for P. We can encode any polynomial-size computation
y = G(v) into a randomized encoding o = RE(G, v; PRF(k)) that reveals only y (with randomness
expanded from a seed k using a PRF). Since both RE and PRF are computable in NC1, our RMS-
scheme can verify whether o is correctly computed from v, k committed in some commitments c,

14

but cannot verify that o indeed decodes to y (which belongs to P). Instead, we use a garbled circuit
to verify the latter and use WE to ensure that only labels corresponding to the correct RE encoding
o are revealed. More precisely, a WE ciphertext of m w.r.t. (G, c, y) for a polynomial-size circuit G
contains 1) a garbled circuit F̂y,m of Fy,m that outputs m iff given an input o′ that decodes to y, and
2) WE encryption (using the RMS-scheme) of labels under statements that verify the computation
of o from (k, v) committed in c. Decryption requires NIZK proofs certifying the correctness of o,
which allows recovering labels for o, and then m.

Applications Due to the lack of space, we refer the reader to Section 9 for applications of mrNISC.
At a very high-level, in scenarios where a set of parties need many copies of freshly sampled
correlated randomness, we can use mrNISC to replace correlated randomness with reusable PKI
and CRS setup: Parties’ public key in the PKI is simply an encoding of their private PRF key, later
on, they can jointly run mrNISC to sample fresh correlated randomness using the pseudorandom
coins generated from all parties’ PRF keys. In NIMPC, sampling correlated randomness and
generating NIMPC message using this correlated randomness can be combined in one mrNISC
computation.

3 Related Works

RELATION WITH PRIOR 2-ROUND MPC PROTOCOLS. It is natural to ask whether prior 2-round
MPC protocols can be used to construct mrNISC protocols. Our construction builds upon that of
2-round MPC protocols of [GLS15] using general purpose WE and NIZK (which in turn builds
upon the protocols of [GGHR14] from indistinguishability obfuscation). As a corollary of this work,
these 2-round MPC protocols [GLS15, GGHR14] yield mrNISC protocols.

It is plausible that multi-key fully-homomorphic encryption (MKFHE) with threshold de-
cryption that is sufficient for 2-round MPC [AJL+12, MW16, CM15] is also sufficient for mrNISC.
However, modification and a new proof is required. For instance, the current definitions of
threshold decryption, such as, [MW16, BJMS18] are insufficient for constructing mrNISC.

We observe that the most recent 2-round MPC protocols based on pairing [GS17] or 2-round
oblivious transfer [BL18, GS18] (and follow-up works) cannot be adapted to the mrNISC setting, as
their first messages are not reusable. The work of [BL18] uses a tool called functional commitments
with witness encryption, which plays the role of WE for NIZK of commitments in our construction.
They constructed this tool from 2-round OT, but unfortunately, losing reusability – only a single
NIZK proof can be given w.r.t. their commitments, or else committed values are revealed.

As mentioned in technical overview, homomorphic proof commitments with encryption
of [GS17, GS18] essentially gives a WE for NIZK of NAND (instead of general P computation).
Nevertheless, [GS17] showed that this tool is sufficient for 2-round MPC, by first converting the
inner MPC protocols with general next step functions into one whose next step functions simply
computes NAND only. Such MPCs are conforming. More specifically, at each round, a single party
computes a NAND between two values in its state masked by some one-time pad, and broadcasts the
resulting value, and finally the other parties append this value to their states. The one-time pads
are important for the security of conforming protocols, but make the first messages non-reusable:
two executions of the MPC with the same first messages will use the same one-time pad.

WE for NIZK of commitments can be seen as having the features of both homomorphic commit-
ments with encryption (namely reusability) and of functional commitments with witness selector

15

(namely support for P computations). However, our construction of WE for NIZK of commitments
departs significantly from their constructions and introduces new ideas.

RELATION WITH SENDER-RECEIVER NISC. A reusable NISC protocol [IKO+11, CJS14, AMPR14,
BGI+17, BJOV18, CDI+18] for computing a function f is a sender-receiver MPC protocol where a
receiver can publish an encoding of its input x̂ in such a way that a sender holding an input z can
send a single message so that the receiver learns y = f(z, x) and nothing else. Clearly, reusable
NISC is closely related with our notion of mrNISC, especially when the number of parties is just 2.
However, these two notions are actually incomparable. The first difference is that in reusable NISC,
the receiver may reconstruct the output y using its secret state and hence the output reconstruction
is private, whereas in mrNISC the evaluator reconstructs the output without any secret state and
hence output reconstruction is public. The second difference is that in mrNISC, parties must commit
to their inputs before computation occurs, whereas in reusable NISC, the sender may choose its
input online. We note that these two differences are intertwined: to have public reconstruction, it is
necessary that parties commit to their inputs in the first round. Indeed, if a sender-receiver protocol
has public output reconstruction, an adversary given the encoding of receiver’s input can evaluate
f(z, x) for any function f and input z by generating the sender’s message for f, z and reconstruct
the output, violating security.

RELATION WITH NIMPC AND PSM. Proposed by [BGI+14], a NIMPC protocol for computing a
function f enables a set of parties with private inputs x1, . . . , xn to send a single message to an
evaluator conveying only f(x1, . . . , xn). As explained above, this setting is inherently susceptible to
the residual attack, in contrast to mrNISC in which inputs are committed. Furthermore, fully secure
NIMPC implies obfuscation, hence this object is in a much more powerful league than mrNISC.

The notion of Private Simultaneous Message (PSM) proposed by [FKN94] and named by [IK97]
precedes the notion of NIMPC and is a special case of NIMPC, where the adversaries can only
corrupt the evaluator (and not any other party), and correspondingly learns only the output of the
function and nothing else. Despite of the restriction, PSM protocols still cannot be realized in the
CRS model and known protocols rely on either PKI or common randomness shared by the parties
but unknown to the evaluator.

RELATION WITH ON-THE-FLY MPC. In [LTV12], Lopez-Alt, Tromer, and Vaikuntanathan proposed
a novel notion of MPC, called on-the-fly MPC. In their model, 1) users upload encryption of their
inputs to a server, unaware of other users’ identities or even the number of users in the system; 2)
the server later can dynamically choose a subset of inputs and a function to (homomorphically)
compute without the help of any users; 3) finally the subset of parties whose inputs are involved
engages in a decryption phase to reveal the final output. In this model, the clients are very efficient
— their communication and computation complexity in the first and third phases are independent
of the complexity of the function, whereas the server computation scales with the complexity of the
function. Lopez-Alt, Tromer, and Vaikuntanathan then introduced the notion of Multi-Key FHE
(MKFHE) and constructed the first MKFHE from NTRU. They showed that any MKFHE can be
used to realize on-the-fly MPC with an interactive decryption phase, where relevant parties jointly
decrypt the output ciphertext of MKFHE using a MPC protocol.

One-the-fly MPC and mrNISC share the feature that users commit/encrypt their inputs in an
initial phase oblivious of other uses, and later computations can be done on subsets of the inputs.
However, they differ on two important points:

• On-the-fly MPC requires the complexity of users to be independent of the run-time of the

16

function. The computation pattern is heavy computation by the server followed by efficient
computation by the users. MrNISC allows users to run as long as the run-time of the function,
and the computation pattern is heavy computation by the users (generating the computation
message), followed by heavy computation (reconstruction) by the server.

Because of the stringent efficiency requirement on users, so far we can only implement on-the-fly
MPC using MKFHE, whereas mrNISC can be realized from assumptions that are not known to
imply HE, namely bilinear maps in this work.

• On-the-fly MPC allows an interactive decryption phase, whereas mrNISC requires a non-interactive
computation phase. In the mrNISC setting where the users’ complexity can be as high as the
function complexity, if interactive computation phase is allowed, the notion collapses to standard
MPC. (Just let parties commit to their inputs, and later use standard MPC protocols to compute
functions on subsets of committed inputs.) In contrast, in on-the-fly MPC, because client
complexity must be low, even an interactive computation phase is non-trivial to achieve.

In summary, on-the-fly MPC extends standard MPC to the direction of having efficient client
computation by leveraging server computation power, whereas mrNISC extends to the direction of
having a non-interactive computation phase.

4 Preliminaries

4.1 Statistical and Computational Indistinguishability

A function negl : N→ N is negligible if for any polynomial p : N→ N, for any large enough λ ∈ N,
negl(λ) < 1/p(λ).

Definition 4.1 (Indistinguishability). Let S = {Sλ}λ∈N be an ensemble of subsets of {0, 1}∗, where
every element in set Sλ has length poly(λ). Then ensembles X = {Xλ,w}λ∈N,w∈Sλ

and Y =
{Yλ,w}λ∈N,w∈Sλ

are statistically (resp., computationally) indistinguishable, denoted as X ≈s Y (resp.,
X ≈ Y), if for any arbitrary-size (resp., polynomial-size) circuit family D = {Dλ}λ∈N and any
polynomial-size sequence of index {wλ ∈ S}λ∈N, there exists a negligible function negl such that,
for every λ ∈ N,

|Pr [Dλ(wλ, Xλ,wλ
) = 1]− Pr [Dλ(wλ, Yλ,wλ

) = 1]| ≤ negl(λ) .

Two statistically indistinguishable ensembles are also said to be statistically close.

4.2 Garbled Circuit

Definition 4.2 (Garbled Circuit). Let C = {Cλ}λ∈N be a poly-size circuit class with input and output
lengths n and l. A garbled circuit scheme GC for C is a tuple of four polynomial-time algorithms
GC = (GC.Gen, GC.Garble, GC.Eval, GC.Sim):

• Input Labels Generation: key ← GC.Gen(1λ) generates input labels key = {key[i, b]}i∈[n],b∈{0,1}
(with key[i, b] ∈ {0, 1}κ being the input label corresponding to the value b of the i-th input wire)
for the security parameter λ, input length n, and input label length κ;

• Circuit Garbling: Ĉ ← GC.Garble(key, C) garbles the circuit C ∈ Cλ into Ĉ;

17

• Evaluation: y = GC.Eval(Ĉ, key′) evaluates the garbled circuit GC.Garble using input labels
key′ = {key′[i]}i∈[n] (where key′[i] ∈ {0, 1}κ) and returns the output y ∈ {0, 1}l;

• Simulation: (key′, C̃) ← GC.Sim(1λ, y) simulates input labels key′ = {key′[i]}i∈[n] and a garbled

circuit C̃ for the security parameter λ and the output y ∈ {0, 1}l;
satisfying the following security properties:

Correctness. For any security parameter λ ∈ N, for any circuit C ∈ Cλ, for any input x ∈ {0, 1}n,
for any key in the image of GC.Gen(1λ) and any Ĉ in the image of GC.Garble(key, C):

GC.Eval(Ĉ, {key[i, xi]}i∈[n]) = C(x) .

Simulatability. The following two distributions are computationally indistinguishable:{
({key[i, xi]}i∈[n], Ĉ) : key← GC.Gen(1λ);

Ĉ ← GC.Garble(key, C)

}
λ,C∈Cλ,x∈{0,1}n

,

{
(key′, Ĉ) : (key′, C)← GC.Sim(1λ, C(x))

}
λ,C∈Cλ,x∈{0,1}n .

We recall that garbled circuit schemes can be constructed from one-way functions.

4.3 Collision-Resistant Hash Function Family

Definition 4.3 (Collision-Resistant Hash Function Family). A collision-resistant hash function
family is an ensemble {HFλ}λ of families of functions H from {0, 1}∗ to {0, 1}2λ, satisfying the
following property:

Collision Resistance. For any PPT adversary A, there exists a negligible function negl such that for
every λ ∈ N:

Pr
[
H ← HFλ, (m0, m1) ← A(H) : H(m0) = H(m1) and m0 ̸= m1

]
≤ negl(λ) .

4.4 Pseudorandom Functions

Definition 4.4 (Pseudorandom Functions). A pseudorandom function is a deterministic polynomial-
time algorithm PRF taking as input a key K ∈ {0, 1}λ and an input x ∈ {0, 1}poly(λ) and outputting
a bit y ∈ {0, 1}, satisfying the following property:

Pseudorandomness. For any PPT adversary A, there exists a negligible function negl such that for
every λ ∈ N:∣∣∣Pr

[
K ← {0, 1}λ : APRF(K,·)(1λ) = 1

]
− Pr

[
AR(·)(1λ) = 1

]∣∣∣ ≤ negl(λ) .

where R is a random oracle taking as input a bit string x ∈ {0, 1}poly(λ) and outputting a bit.

Remark 4.5. For simplicity of notation, we often write PRF(fk, z′∥{z1, . . . , zℓ}∥0) = r for z′ ∈
{0, 1}poly(λ) and zi ∈ {0, 1}poly(λ) to mean evaluating PRF on all inputs of form z′||zi padded with
zeros to the input length if necessary, and concatenating all output bits to a ℓ-bit string r. In
particular, we use PRF(fk, z′∥[ℓ]∥0) to generate a ℓ-bit pseudo-random string for z′. Integers zi ∈ [ℓ]
are supposed to be written in binary with the most significant bit on the left. In addition, for the
sake of simplicity, we often omit 0 in the above notation.

18

4.5 Background on Universal Composability

In this section we recall basics of the UC framework; for full details see [Can01]. A large part of this
introduction has been taken verbatim from [CLP10].

The basic model of execution. Following [GMR89,Gol01], a protocol is represented as an interactive
Turing machine (ITM), which represents the program to be run within each participant. Specifically,
an ITM has three tapes that can be written to by other ITMs: the input and subroutine output tapes
model the inputs from and the outputs to other programs running within the same “entity” (say,
the same physical computer), and the incoming communication tapes and outgoing communication
tapes model messages received from and to be sent to the network. It also has an identity tape that
cannot be written to by the ITM itself. The identity tape contains the program of the ITM (in some
standard encoding) plus additional identifying information specified below. Adversarial entities
are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of ITMs,
or ITIs, that represent interacting processes in a running system. Specifically, an ITI is an ITM along
with an identifier that distinguishes it from other ITIs in the same system. The identifier consists of
two parts: A session-identifier (SID) which identifies which protocol instance the ITM belongs to,
and a party identifier (PID) that distinguishes among the parties in a protocol instance. Typically
the PID is also used to associate ITIs with “parties” or clusters, that represent some administrative
domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes in
certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI in the
system.

We assume that all ITMs are probabilistic polynomial time (PPT). An ITM is PPT if there exists
a constant c > 0 such that, at any point during its run, the overall number of steps taken by M is at
most λc, where n is the overall number of bits written on the input tape of M in this run. execution
process is bounded by a polynomial, we define λ as the total number of bits written to the input
tape of M , minus the overall number of bits written by M to input tapes of other ITMs; see [Can01].)

Security of protocols. Protocols that securely carry out a given task (or protocol problem) are
defined in three steps, as follows. First, the process of executing a protocol in an adversarial
environment is formalized. Next, an “ideal process” for carrying out the task at hand is formalized.
In the ideal process the parties do not communicate with each other. Instead they have access to an
“ideal functionality,” which is essentially an incorruptible “trusted party” that is programmed to
capture the desired functionality of the task at hand. A protocol is said to securely realize an ideal
functionality if the process of running the protocol amounts to “emulating” the ideal process for
that ideal functionality. Below we overview the model of protocol execution (called the real-world
model), the ideal process, and the notion of protocol emulation.

Real-world execution. The model of computation consists of the parties running an instance of a
protocol Π, an adversary A that controls the communication among the parties, and an environment
Z that controls the inputs to the parties and sees their outputs. We assume that all parties have a
security parameter λ ∈ N. (We remark that this is done merely for convenience and is not essential
for the model to make sense). The execution consists of a sequence of activations, where in each
activation a single participant (either Z , A, or some other ITM) is activated, and may write on a
tape of at most one other participant, subject to the rules below. Once the activation of a participant
is complete (i.e., once it enters a special waiting state), the participant whose tape was written on is

19

activated next. (If no such party exists then the environment is activated next.)
The environment is given an external input z and is the first to be activated. In its first activation,

the environment invokes the adversary A, providing it with some arbitrary input. In the context of
UC security, the environment can from now on invoke (namely, provide input to) only ITMs that
consist of a single instance of protocol Π. That is, all the ITMs invoked by the environment must
have the same SID and the code of Π.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or report information to Z by writing this information on
the subroutine output tape of Z . For simplicity of exposition, in the rest of this paper we assume
authenticated communication; that is, the adversary may deliver only messages that were actually
sent. (This is however not essential as shown in [BCL+05].)

Once a protocol party (i.e., an ITI running Π) is activated, either due to an input given by the
environment or due to a message delivered by the adversary, it follows its code and possibly writes
a local output on the subroutine output tape of the environment, or an outgoing message on the
adversary’s incoming communication tape. Finally the adversary can decide to corrupt any honest
party. In this case the input and the random coins used by this party are revealed to the adversary.

The protocol execution ends when the environment halts. The output of the protocol execution
is the output of the environment. Without loss of generality we assume that this output consists of
only a single bit.

Let RealΠ,A,Z(λ, z, r) denote the output of the environment Z when interacting with parties
running protocol Π on security parameter λ, input z, and randomness r = rZ , rA, r1, r2, . . .
(where z and rZ for Z ; rA for A, ri for party Pi). Let RealΠ,A,Z(λ, z) be the random variable
describing RealΠ,A,Z(λ, z, r) where r is uniformly chosen. Let RealΠ,A,Z denote the ensemble
{RealΠ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined by comparing the
protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient in the
ideal protocol is the ideal functionality that captures the desired functionality, or the specification, of
that task. The ideal functionality is modeled as another ITM (representing a “trusted party”) that
interacts with the parties and the adversary. More specifically, in the ideal protocol for functionality
F all parties simply hand their inputs to an ITI running F . We will simply call this ITI F . The SID
of F is the same as the SID of the ITIs running the ideal protocol and the PID of F is null.

In addition, F can interact with the adversary according to its code. Whenever F outputs a
value to a party, the party immediately copies this value to its own output tape. We call the parties
in the ideal protocol dummy parties. Let Π(F) denote the ideal protocol for functionality F .

4.6 Network and Corruption Model Used, and Definition of UC-Security

Here, we specify the network and corruption model we use for mrNISC protocols and recall UC
security definition.

Network Model. We assume that parties have access to both a public bulletin board and point to
point channels and all channels are authenticated. Assuming authenticated channel is without loss
of generality, as in our mrNISC protocols, parties publish their first messages on the public bulletin
board, and hence each party can additionally publish a verification key of a signature scheme, and
use signatures to ensure the integrity of their messages sent later.

20

Corruption Models. We consider 1) static corruption, meaning that the adversary chooses the set of
corrupted parties H̄ at the beginning of the execution, and 2) security with aborts, meaning that the
adversary obtains the outputs first, and may prevent the honest parties from obtaining the outputs.

Three standard types of adversarial behaviors are considered: semi-honest, malicious, and
semi-malicious adversaries. We assume familiarity with the first two types, and briefly describe
the third type. Semi-malicious adversaries follow the protocol specification (like semi-honest
adversaries), but may choose arbitrary random tape to its advantage (like malicious adversaries).
In slight more detail, a semi-malicious adversary is model as follows: After sending each message
m as a corrupted party Pj to an honest party Pi, the adversary outputs on a special output tape, an
input xj and a random tape ρj , such that, m is the right next message generated by Pj according
to the protocol specification on input xj , random tape ρj , after receiving messages it has received
so far — the pair (xj , ρj) is called a witness of the message m. In the case that the adversary fails
to output a valid witness, the message m is overwritten to ⊥. See [AJL+12] for more detailed
formalization of semi-malicious adversaries.

UC Security. A protocol Π emulates protocol ϕ if for any adversary A there exists an adversary S
such that no environment Z , on any input, can tell whether it is interacting with A and parties
running Π, or it is interacting with S and parties running ϕ. This means that, from the point of
view of the environment, running protocol Π is “just as good” as interacting with ϕ. We say that Π
securely realizes an ideal functionality F if it emulates the ideal protocol Π(F), where participants
interacts with F instead of with each other.

Definition 4.6. Let Π and ϕ be protocols. We say that Π UC-emulates ϕ against (static) semi-honest /
semi-malicious / malicious adversaries if for every semi-honest / semi-malicious / malicious adver-
sary A (corrupting a set of parties statically) there exists an adversary S such that for any environ-
ment Z that obeys the rules of interaction for UC security we have {RealΠ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ ≈
{Idealϕ,S,Z(λ, z)}λ∈N,z∈{0,1}∗

Above Idealϕ,S,Z(λ, z) and RealΠ,A,Z(λ, z) are the random variables describing the outputs of
the environment in the respective experiments with security parameter λ and auxiliary input z to
the adversary. See definitions in Section 4.5.

Definition 4.7. Let F be an ideal functionality and let Π be a protocol (in the G-Hybrid model).
We say that Π UC-realizes F with (static) semi-honest / semi-malicious / malicious security (in
G-hybrid model) if Π UC-emulates the ideal process Π(F) against (static) semi-honest / semi-
malicious / malicious adversaries.

4.7 Semi-Malicious Output-Delayed Simulatability

Our mrNISC construction makes use of a special MPC protocol for which the transcript excluding
the last messages can be simulated for all-but-one honest parties before knowing the output. We
define it below.

Definition 4.8 (MPC Protocol). An L-rounds MPC scheme for a class of functions C and n parties
consists of two polynomial-time algorithms Π = (Next, Output):

• Next Message: mℓ
i := Nexti(1λ, 1n, z, xi, ri, m<ℓ) is the message broadcasted by party Pi for

i ∈ [n] in round ℓ ∈ [L], on input xi, on random tape ri ∈ {0, 1}νr , after receiving the messages
Msg<ℓ = {mℓ′

j }j∈[n],ℓ′<ℓ
, where mℓ′

j is the message broadcasted by party Pj on round ℓ′ ∈ [ℓ− 1].

21

• Output: y := Output(1λ, 1n, z, Msg) is the public output of the MPC protocol, for the public input
z, and the transcript Msg = {mℓ

j}j∈[n],ℓ∈[L].

satisfying the perfect correctness property (formally recalled in Definition 4.9).

We omit 1λ and 1n when clear from context. We remark that anybody seeing the transcript
Msg = {mℓ

j}j∈[n],ℓ∈[L] can compute the output y of the function.
Security properties are defined below.

Definition 4.9 (Perfect Correctness of MPC Protocol). An L-rounds MPC protocol Π = (Next, Output)
for C is perfectly secure if for any security parameter λ ∈ N, for any public input z, for any inputs
(x1, . . . , xn),

Pr
[
r̄ ← ({0, 1}νr)n : Output(1λ, 1n, z, Msg) = f(z, x1, . . . , xn)

]
= 1 ,

where mℓ
i = Nexti(1λ, 1n, z, xi, ri, Msg<ℓ) for i ∈ [n] and ℓ ∈ [L].

Definition 4.10 (Semi-Malicious Output-Delayed Simulatability). A L-rounds MPC scheme for
C is semi-malicious output-delayed simulatable, if there exists a PPT simulator S, such that, for
all PPT adversary A and f ∈ C, the view of A in the following experiments ExpA,S(Real, λ, f) and
ExpA,S(Ideal, λ, f) are indistinguishable: Experiment ExpA,Sim(Real, λ, f):

1. The adversary A chooses the number of parties M , the set of honest parties H ⊆ [M], the
public input z, the inputs {xi}i∈[n] of all the parties and the random tapes {ri}i∈H̄ of the
corrupt parties.

2. The challenger picks fresh random tapes {ri}i∈H for the honest parties. It runs the MPC
protocol with all the inputs and random tapes above, and sends the adversary the resulting
transcript without the last message of the honest parties: (Msg<L, {mL

i }i∈H̄).

3. The adversary A interacts with the challenger by sending queries (compute, Pi) for i ∈ H .
Upon receiving each query, the challenger sends the last message mL

i of Pi.

Upon receiving each query, the challenger sends the last message mL
i of Pi. Experiment ExpA,Sim(Ideal, λ, f):

1. The adversary A chooses the number of parties M , the set of honest parties H ⊆ [M], the
public input z, the inputs {xi}i∈[n] of all the parties and the random tapes {ri}i∈H̄ of the
corrupt parties.

2. The challenger sends the inputs and random tapes ({xi}i∈H̄ of the corrupt parties to the
simulator Sim. The simulator then outputs a transcript without the last message of the honest
parties: (Msg<L, {mL

i }i∈H̄), that the challenger sends back to A.

3. The adversary A interacts with the challenger by sending queries (compute, Pi) for i ∈
H . Upon receiving each query, if all the honest parties have not been queried yet (after
this query), the challenger sends (compute, Pi) to Sim which answers with mL

i that the
challenger forwards to A. If all the honest parties have been queried, the challenger sends
(compute, Pi, f(x1, . . . , xn)) to Sim, which answers with mL

i that the challenger forwards to
A.

22

We note that our notion of semi-malicious is weak as it forces the adversary to commit to its
random tape and input from the beginning. This definition is sufficient for our purpose.

We also remark that from any semi-malicious MPC, we can construct a semi-malicious output-
delayed simulatable MPC. Let f be the single-output function we consider. We define the following
function f ′:

f ′((x1, t1), . . . , (xn, tn)) := f(x1, . . . , xn)⊕ t1 ⊕ · · · ⊕ tn ,

where ti is a bit string of the same length as the output of f , and ⊕ is the XOR operation. Given a L-
round semi-malicious MPC Π′ for f ′, we construct a (L + 1)-round semi-malicious output-delayed
simulatable MPC for f as follows: each party Pi with input xi samples ti uniformly randomly and
runs Π′ with input (xi, ti). Then, each party Pi broadcasts in the last additional round the value ti.
The final output can be recovered using the output of Π′ and the values {ti}i∈[n].

Simulation of Π can be done just by simulating Π′ with a random output. Only when the last
party is corrupted, the simulator needs to know the actual output y, to program correctly the last
message ti to be revealed.

5 WE for NIZK of Commitments: NC1

In this section, we define and construct our new primitive: witness encryption (WE) for NIZK of
commitments (for the complexity class P), which is the main component for the construction of our
mrNISC scheme.

As explained in Section 2.3, from a high-level point of view, WE for NIZK of commitments
combines the properties of homomorphic proof commitments with encryption [GS17] and of
functional commitments with witness selector [BL18]. Compared with the former, it supports
general statements in P (instead of a single NAND gate evaluation). Compared with the latter, it
allows for zero-knowledge to hold when multiple NIZK proofs are generated.

5.1 Definition of Witness Encryption for NIZK of Commitments

We start by defining dual-mode commitment schemes (a.k.a., hybrid commitments [CV05]), where
the CRS can be generated in two computationally indistinguishable ways: one yielding perfectly
binding commitments and one yielding equivocal (a.k.a., simulatable or trapdoor) commitments.
The term “dual-mode commitment” comes from [Lin15].

We may not need dual-mode commitments to construct mrNISC, but just simulatable/equivocal
commitments (without a perfectly binding setup). However using dual-mode commitments
significantly simplifies definitions and proofs. Since our constructions achieve this stronger security
notion, we use it. More precisely, without a dual-mode commitment, we could not use the standard
definition of witness encryption: witness encryption indeed just ensures that ciphertexts related to
a false statement (about the committed value, in our setting) cannot be decrypted. Without the dual
mode, because of equivocality of the commitments, it would be possible to open any commitment
to any value. Hence any statement about a committed value would be always true or always false
(independently of the committed value).

Definition 5.1 (Dual-Mode Commitments). A (dual-mode) commitment scheme COM has a binding
mode and a simulation mode, each involves three polynomial-time algorithms.

23

• Binding Setup: crs← CSetupbind(1λ) on input the security parameter λ generates a binding CRS
crs.

• Commitment: (c, d) ← CCom(crs, v) on input the CRS crs and a message v in some implicitly
defined message set V ,1 generates a commitment c of v and an associated decommitment (a.k.a.,
opening) d.

• Verification: b := CVer(crs, c, v, d) on input the CRS crs, a commitment c, a message v ∈ V , and a
decommitment d, outputs 1 if c indeed commits to v, and 0 otherwise.

• Simulation Setup: (crs, τ)← CSetupsim(1λ) on input the security parameter λ generates a simu-
lation CRS crs and an associated trapdoor τ .

• Commitment Simulation: (c, aux)← CSimCom(τ) on input a simulation trapdoor τ , generates a
simulated commitment c and some auxiliary data aux.

• Opening Simulation: d← CSimOpen(τ, aux, v) on input an auxiliary data aux and a message v ∈
V , generates some decommitment d corresponding to an opening of the associated commitment
c to v.

satisfying the following properties:

Perfect Correctness. For every security parameter λ ∈ N, CRS crs ← CSetupbind(1λ) or (crs, τ) ←
CSetupsim(1λ), message v ∈ V , and commitment (c, d)← CCom(crs, v), we have: CVer(crs, c, v, d) =
1.

Setup Indistinguishability. The following two distributions are computationally indistinguishable:{
crs← CSetupbind(1λ) : crs

}
λ
≈
{

(crs, τ)← CSetupsim(1λ) : crs
}

λ
.

Perfect Binding in Binding Mode. For every security parameter λ ∈ N, binding CRS crs← CSetupbind(1λ),
message v ∈ V , commitment (c, d) ← CCom(crs, v), message v′ ∈ V , bitstring d′, if v′ ̸= v:
CVer(crs, c, v′, d′) = 0.

Perfect Equivocality in Simulation Mode. For every security parameter λ ∈ N, simulation CRS
(crs, τ)← CSetupsim(1λ), message v ∈ V , the following two distributions are identical:

{(c, d)← CCom(crs, v) : (c, d)} ,

{(c, aux)← CSimCom(τ), d← CSimOpen(τ, aux, v) : (c, d)} .

We are interested in proving statements “in zero-knowledge” of the form: “c commits to some
value v such that G(v) = y,” where G is a circuit in some circuit class G and y is the expected output
of the function. In our construction, the trapdoor of the NIZK will actually be the trapdoor of
the commitment. That is why we cannot easily rely on a generic definition of NIZK and instead
introduce the notion of dual-mode NIZK of commitments. The binding setup yields perfectly
sound NIZK proofs, while the simulation setup yields zero-knowledge proofs.

1The message set V may depend on the CRS crs. The only required constraints are that messages in V have polynomial
size in the security parameter λ and that testing membership to V can be done in polynomial-time given crs. The reason
to use messages spaces more complicated than {0, 1}poly(λ) is to allow messages to be elements of some finite field Zp

for the definition of bilinear commitments with proofs of quadratic relations.

24

Definition 5.2 (Dual-Mode NIZK of Commitments). Let COM be as in Definition 5.1, and G be a
class of polynomial-size circuits. A dual-mode NIZK NIZK associated with COM for G consists of
two polynomial-time algorithms:

• Proof: π ← CProve(crs, c, G, v, d) on input the CRS crs, a commitment c, a circuit G ∈ G,2 the
committed message v ∈ V , the decommitment d, as defined by COM, generates a proof π that
G on input the value v committed in c outputs y = G(v). Refer to (c, G, y) as the statement and
(v, d) the witness.

• Proof Verification: b := CPVer(crs, c, G, y, π) on input the CRS crs, a statement (c, G, y), and a
proof π, accepts or rejects the proof.

The algorithms satisfy the following properties:

Perfect Proof Correctness. For every security parameter λ ∈ N, CRS crs ← CSetupbind(1λ) or
(crs, τ) ← CSetupsim(1λ), message v ∈ V , circuit G ∈ G, commitment (c, d) ← CCom(crs, v)
and proof π ← CProve(crs, c, G, v, d), we have: CPVer(crs, c, G(v), π) = 1.

Perfect Soundness in Binding Mode. For every security parameter λ ∈ N, binding CRS crs ←
CSetupbind(1λ), message v ∈ V , commitment (c, d) ← CCom(crs, v), circuit G ∈ G, incorrect
output y′ ̸= G(v), and bitstring π, we have: CPVer(crs, c, y′, π) = 0.

Zero-Knowledge in Simulation Mode. There exists a PPT simulator algorithm CPSim, such that
for any PPT adversary A, the quantity is negligible in λ:∣∣∣∣∣Pr

[
(crs, τ)← CSetupsim(1λ), (st, v)← A(crs, τ),
(c, aux)← CSimCom(τ), d← CSimOpen(τ, aux, v) : AProve(st) = 1

]

− Pr
[

(crs, τ)← CSetupsim(1λ), (st, v)← A(crs, τ),
(c, aux)← CSimCom(τ) : ASim(st) = 1

] ∣∣∣∣∣ ,

where Prove(G) := CProve(crs, c, G, v, d) and Sim(G) := CPSim(τ, aux, G, G(v)).

We remark that our notion of zero-knowledge allows the adversary to see the trapdoor τ but not
the auxiliary data aux, that is why we let the adversary consider a single simulated commitment but
as many simulated proofs as it wants. The reason that aux is not given to the adversary is because
we need to store a PRF key in aux, to generate the randomness for simulation, to be sure to use the
same randomness if the simulation is called twice with the same circuit G in the construction for P.

Definition 5.3 (Witness Encryption for NIZK of Commitments). Let COM, NIZK, and G be as in
Definition 5.1 and 5.2. A Witness Encryption WE associated with COM, NIZK for G consists of two
polynomial-time algorithms:

• Witness Encryption: ct← CWEnc(crs, c, G, y, m) on input the CRS crs, a statement (c, G, y) where
G ∈ G, and a bitstring m, encrypts m into a ciphertext ct, under that statement.

• Witness Decryption: m := CWDec(crs, ct, c, G, y, π) on input the CRS crs, a ciphertext ct, a
statement (c, G, y), and a NIZK proof π, decrypts ct into the message m, or outputs ⊥.
2We implicitly systematically assume that G has input size corresponding to the size of messages in the message set

V .

25

The algorithms satisfy the following properties:

Perfect Encryption Correctness. For every λ ∈ N, CRS crs← CSetupbind(1λ) or (crs, τ)← CSetupsim(1λ),
message v ∈ V , circuit G ∈ G, commitment (c, d)← CCom(crs, v) and proof π ← CProve(crs, c, G, v, d),
bitstring m, and ciphertext ct ← CWEnc(crs, c, G, G(v), m), we have: CWDec(crs, ct, c, G,
G(v), π) = m.

Semantic Security. For any PPT adversary A, the following is negligible in λ:∣∣∣∣∣∣∣∣∣∣∣
2 · Pr


(st, ρ′)← A(1λ), crs← CSetupbind(1λ; ρ′),
(st, v, ρ, G, y, m0, m1)← A(st, crs),
(c, d) := CCom(crs, v; ρ),
b← {0, 1}; ct← CWEnc(crs, c, G, y, mb)
ct :=⊥ if G(v) = y

: A(st, ct) = b

− 1

∣∣∣∣∣∣∣∣∣∣∣
,

where ρ denotes the random tape used by CCom to generate the commitment c of the message
v (ρ is provided by the adversary).

We remark that semantic security of our WE holds even when the binding CRS is generated
semi-maliciously, i.e., the adversary chooses the random tape ρ′. This is important for our semi-
malicious construction of mrNISC schemes, as the adversary generates itself the binding CRS. We
also note that our construction for NC1 actually achieves perfect semantic security for binding CRS,
however, our transformation from NC1 to P only achieves computational semantic security.

5.2 Bilinear Commitments with Proofs of Quadratic Relations

As a tool to construct witness encryption for NIZK of commitments, we first introduce the notion
of bilinear commitments with proofs of quadratic relations. Such commitments essentially allow to
“prove linearly and in a strong form of zero-knowledge” that one commitment c× commits to the
product of the values committed by two commitments c1 and c2 (quadratic proofs), and that one
commitment c+ commits to some linear combination of the values committed by two commitments
c1 and c2 (linear proofs). These proofs are amenable to be verified by hash proof systems and can
be combined to construct WE for NIZK of commitments.

5.2.1 Bilinear Groups and Notations.

Denote by (p,G1,G2,Gt, e, g1, g2) a bilinear group where e : G1 × G2 → Gt is an efficiently com-
putable bilinear map (called a pairing) such that e(g1, g2) = gT generates Gt. We use the bracket
notation [a]ι to denote the element ga

ι in group Gι for a ∈ Zp and write a[a′]ι = [aa′]ι as applying
group exponentiation in Gι and [aa′]t = [a]1[a′]2 as applying the pairing operation. This notation
extends to vectors and matrices. We assume the Symmetric External Diffie-Hellman assumption
(SXDH) assumption over asymmetric bilinear pairing groups, which requires the Decisional Diffie-
Hellman (DDH) assumption to hold in each source group G1 and G2, namely, for any ι ∈ {1, 2},
{[r]ι, [s]ι, [rs]ι} ≈ {[r]ι, [s]ι, [t]ι}, where r, s, t are random scalars sampled from Zp. All vectors
are denoted by bold letters and all matrices are denoted by uppercase letters.

26

5.2.2 Bilinear Commitments.

Our construction starts from the SXDH-based commitment scheme used in Groth-Sahai NIZK [GS08].
This commitment scheme allows to commit values both in G1 and G2. The resulting commitments
are dual-mode and called type-1 and type-2 commitments respectively. More formally we define:

• Binding Setup: crs← QSetupbind(1λ) generates a bilinear group (p,G1,G2,Gt, e, g1, g2), and for
ι ∈ {1, 2}, generates a random matrix Aι ∈ Z2×2

p of rank 1 such that the vector 1 := (1, 1)T ∈ Z2
p is

not in the column span of Aι, and outputs crs = (p,G1,G2,Gt, e, g1, g2, [A1]1, [A2]2).

• Simulation Setup: (crs, τ) ← QSetupsim(1λ) is identical to binding setup except that A1 and A2
are chosen of rank 2. The trapdoor is τ = (A1, A2). Note that 1 is in the column spans of A1 and
A2.

• Commitment: (c, d)← QComι(crs, v) generates a type-ι commitment of a message v ∈ V := Zp

as follows:

d← Z2
p , c := [c̃]ι := [Aι · d + v · 1]ι ∈ G2

ι .

• Verification: b := QVerι(crs, c, v, d) checks whether c is a valid type-ι commitment of v as follows:
it returns 1 if and only if:

c ?= [Aι · d + v · 1]ι . (7)

• Commitment Simulation: (c, aux)← QSimComι(τ) simulates a type-ι commitment as follows:

aux← Z2
p , c := [aux]ι ∈ G2

ι . (8)

• Opening Simulation: d← QSimOpenι(τ = (A1, A2), aux, v) opens the type-ι commitment corre-
sponding to aux as follows:

d := A−1
ι · (aux− v · 1) ∈ Z2

p . (9)

We have the following lemma following directly from [GS08].

Lemma 5.4 (in [GS08]). The two commitment schemes (QSetupbind, QComι, QVerι, QSetupsim, QSimComι, QSimOpenι)
(for ι ∈ {1, 2}) described above are both dual-mode commitments.

Remark 5.5. Jumping ahead, for semi-malicious security of mrNISC in the plain model, we want the
binding of COM, soundness of NIZK, and semantic security of WE to hold against every CRS in the
support of QSetupbind. This boils down to ensuring that the bilinear group generated by QSetupbind
is always a valid one: p must be a prime number, g1, g2 generates the cyclic groups G1 and G2 of
order p, and it is possible to check in polynomial time whether an element is in G1 or G2. This can
be done, and we implicitly assume that this is the case.

5.2.3 Bilinear Commitments with Proofs of Linear Relations.

We now show how to prove that a type-2 commitment c+ commits to a given linear combination
of values committed in two type-2 commitments c1 and c2. Concretely, we want to prove that

27

c1, c2, c+ respectively commit to values v1, v2, v+ that satisfy the linear relation: v+ = µ1v1 + µ2v2,
where µ1, µ2 ∈ Zp are some public parameters.

Statement: (Linear, crs, {µi, ci}i∈{1,2}, c+), Witness: (v1, d1, v2, d2, d+)

The main idea of the construction is to remark that the commitments are linearly homomorphic
and the above statement is equivalent to proving that [c̃+ − µ1c̃1 − µ2c̃2]2 is a commitment of 0,
where for i ∈ {1, 2, +}, ci = [c̃i]2. Hence the proof π+ is the opening of this commitment to the
value v = 0:

[c̃+ − µ1c̃1 − µ2c̃2]2 = [A2 · π+ + 0 · 1]2 .

Zero-knowledge comes from the fact that this value π+ always exists and is unique in the simulation
mode, as the matrix A2 is full rank in that mode.

Formally, the construction is as follows:

• Linear Proof: QLinProve(crs, {µi, ci, vi, di}i∈[2], (c+, d+)), given information of both statement
and witness, outputs:

π+ := d+ − µ1d1 − µ2d2 ∈ Z2
p . (10)

• Linear Proof Verification: QLinVer(crs, {µi, ci}i∈[2], c+, π+) returns 1 iff:

[c̃+ − µ1c̃1 − µ2c̃2]2
?= [A2 · π+]2 , (11)

where ci = [c̃i]2 for i ∈ {1, 2, +}.

Lemma 5.6. For any security parameter λ ∈ N, for any CRS crs ← QSetupbind(1λ) or (crs, τ) ←
QSetupsim(1λ), messages v1, v2, v+ ∈ Zp, scalars µ1, µ2, µ+ ∈ Zp, bitstrings c1, d1, c2, d2, c+, d+ s.t.
∀i ∈ {1, 2, +}, QVer2(crs, ci, vi, di) = 1,

Perfect Correctness. If v+ = µ1v1+µ2v2, a proof π+ ← QLinProve(crs, {µi, ci, vi, di}i, (c+, d+)) passes
verification: QLinVer(crs, {µi, ci}i∈[2], c+, π+) = 1

Perfect Uniqueness. If v+ = µ1v1 + µ2v2 and the CRS is simulated, then there is a unique vector
π+ = (c̃+ − µ1c̃1 − µ2c̃2)A−1

2 ∈ Z2
p that passes verification.

Perfect Soundness. If v+ ̸= µ1v1 + µ2v2 and the CRS is binding, then no vector π+ ∈ Z2
p passes

verification: QLinVer(crs, {µi, ci}i∈[2], c+, π+) = 0 for all π+ ∈ Z2
p.

Proof. Perfect correctness is straightforward. Perfect uniqueness follows from Eq. (11) and the fact
that when the CRS is simulated, the matrix A2 is full rank. Perfect soundness comes from the fact
that:

[µ1c̃1 + µ2c̃2]2 = [A2 · (µ1d1 + µ2d2) + (µ1v1 + µ2v2) · 1]2 ∈ G2
2

is a (perfectly binding) commitment of µ1v1 + µ2v2 ̸= v+.

Remark 5.7 (Zero-knowledge of the linear proof π+ in simulation mode). Perfect uniqueness of
the proof π+ in simulation mode is a very strong form of witness indistinguishability: whatever
witness (v1, d1, v2, d2, d+) is used, the proof is exactly the same π+ = (c̃+ − µ1c̃1 − µ2c̃2)A−1

2 .
To show further that it is ZK, we need to argue that π+ is also efficiently computable. This the
case when the commitments ci = [c̃i]2 are simulated with QSimCom, as the simulator can then
equivocate c1, c2, c+ to any v′

1, v′
2, v′

+ satisfying v′
+ = µ1v′

1 + µ2v′
2 with decommitments d′

1, d′
2, d′

+
using QSimOpen. This gives a valid witness (v′

1, d′
1, v′

2, d′
2, d′

+) for the statement and a simulated
proof can be generated by running the honest prover algorithm QLinProve with this witness.

28

5.2.4 Bilinear Commitments with Proofs of Quadratic Relations.

We now show how to prove that a type-2 commitment c× commits to the product of values
committed in a type-1 commitment c1 and a type-2 commitment c2. Concretely, we want to prove
that c1, c2, c+ respectively commit to values v1, v2, v× that satisfy the quadratic relation v× = v1 · v2.

Statement: (Mult, crs, {ci}i∈{1,2,×}), Witness: (v1, d1, v2, d2, d×) (12)

The main idea of the construction is to construct from c1 = [c̃1]1 and c2 = [c̃2]2 a commitment of
v1 · v2. Remember that in the technical overview Section 2.3, we could multiply commitments c1
and c2 directly (by using a pairing operation) to get a commitment of v1 · v2, as commitments were
a single group element. Intuitively, the equivalent of this multiplication to vector of group elements
c1 and c2 is the tensor product operation ⊗. And we want to prove that [1⊗ c̃× − c̃1 ⊗ c̃2]t is a
“commitment” of 0 in Gt, where 1 is used as a type-1 commitment of 1.3 Similar to multiplication of
commitments in Section 2.3, computing these tensor products uses pairings.

The basic idea is then that the proof is a decommitment of this commitment [1⊗ c̃× − c̃1 ⊗ c̃2]t
to 0. Unfortunately, this would not be zero-knowledge since there are multiple possible decom-
mitments and choosing one may reveal information about the witness (v1, d1, v2, d2, d×). To tackle
this subtle issue (which does not happen with the commitments from the technical overview in Sec-
tion 2.3 nor with proof of linear relations), the prover needs to rerandomize this decommitment,
similarly to what is done in [GS08] to get perfect witness indistinguishability. This is the purpose of
the vector ρ in Eq. (14).

TENSOR PRODUCTS. We first need to briefly recall the notion of tensor products. The tensor product
of two matrices M ∈ Zk×m

p and M ′ ∈ Zk′×m′
p is the matrix T = M ⊗M ′ ∈ Zkk′×mm′

p defined as:

T =

M1,1 ·M ′ · · · M1,m ·M ′

...
...

Mk,1 ·M ′ · · · Mk,m ·M ′

 .

We extensively use the following identity: if M ∈ Zk×m
p , M ′ ∈ Zk′×m′

p , N ∈ Zm×n
p and N ′ ∈

Zm′×n′
p , then we have,

(M ⊗M ′) · (N ⊗N ′) = (M ·N)⊗ (M ′ ·N ′) . (13)

CONSTRUCTION. Recall that the construction essentially consists of proving that [1⊗ c̃× − c̃1 ⊗ c̃2]t
is a commitment of 0, which is what Eq. (15) below ensures. To better understand how this value is
computed (in term of group elements, pairings, and exponentiations), we explicitly write it down:

[1⊗ c̃× − c̃1 ⊗ c̃2]t =


e(g1, c×,1) · e(c1,1, c2,1)−1

e(g1, c×,1) · e(c1,1, c2,2)−1

e(g1, c×,2) · e(c1,2, c2,1)−1

e(g1, c×,2) · e(c1,2, c2,2)−1

 where ci =
(

ci,1
ci,2

)

The construction is as follows:
3[1 ⊗ c̃× − c̃1 ⊗ c̃2]t is not a type-1 commitment (using the matrix A1) nor a type-2 commitment (using the matrix

A2) but yet another type of commitment using another matrix B (formally defined in the proof in Eq. (17)). When the
CRS is binding, this matrix B is such that the commitment is also binding.

29

• Quadratic Proof: π× ← QQuadProve(crs, {ci, vi, di}i∈[2], c×, d×) picks ρ ∈ Z4
p and outputs:

π× :=

[π̃⊤
×

]
2[

π̃⊥
×

]
1

 =
(

[−v2 · d1 ⊗ 1 + (Id⊗A2) · ρ]2
[1⊗ d× − c̃1 ⊗ d2 − (A1 ⊗ Id) · ρ]1

)
, (14)

where Id ∈ Z2×2
p is the identity matrix. Recall that the vector ρ is used to randomize the

proof so that it is uniformly random among the valid proofs, and hence is perfectly witness
indistinguishable.

• Quadratic Proof Verification: b := QQuadVer(crs, c1, c2, c×, π×) returns 1 if and only if:

[1⊗ c̃× − c̃1 ⊗ c̃2]t =
(
[A1 ⊗ Id]1 [Id⊗A2]2

)
· π× , (15)

where Id ∈ Z2×2
p is the identity matrix. Note that computing [c̃1 ⊗ c̃2]t involves pairing operations

between elements of vectors c1 ∈ G2
1 and c2 ∈ G2

2. Computing the right hand side also involves
pairing operations.

Remark 5.8. Quadratic proof verification just consists of checking a linear equation in (c2, c×, π×).
Indeed, thanks to Eq. (13), Eq. (15) is equivalent to:

0 =
(
[1⊗ Id]1 [−c̃1 ⊗ Id]1 [A1 ⊗ Id]1 [Id⊗A2]2

)
·


[c̃×]2
[c̃2]2[
π̃⊤

×

]
2[

π̃⊥
×

]
1

 .

Lemma 5.9. For any security parameter λ ∈ N, for any CRS crs ← QSetupbind(1λ) or (crs, τ) ←
QSetupsim(1λ), messages v1, v2, v× ∈ Zp, bitstrings c1, d1, c2, d2, c×, d× such that ∀i ∈ {1, 2,×}, QVeri(crs, ci, vi, di) =
1, we have:

Perfect Correctness. If v× = v1v2, a proof QQuadProve(crs, {ci, vi, di}i∈[2], (c×, d×)) passes verifica-
tion: QQuadVer(crs, {µi, ci}i∈[2], c×, π×) = 1

Perfect Uniformity. If v× = v1v2 and the CRS is simulated, then the vector π× generated by QQuadProve
follows a uniform distribution among the solutions of Eq. (15).

Perfect Soundness. If v× ̸= v1v2 and the CRS is binding, then no π× ∈ Z8
p passes verification: QQuadVer(crs, c1, c2, c×, π×) =

0 for all π× ∈ Z8
p.

Proof. To prove perfect correctness, we use Eqs. (13) and (14) and remark:

1⊗ c̃× − c̃1 ⊗ c̃2 = 1⊗ (A2d× + v× · 1)− c̃1 ⊗ (A2d2 + v2 · 1)
= 1⊗ (A2d×) + v× · 1⊗ 1− c̃1 ⊗ (A2d2)− (A1d1 + v1 · 1)⊗ (v2 · 1)
= 1⊗ (A2d×)− c̃1 ⊗ (A2d2)− (A1d1)⊗ (v2 · 1) + (v× − v1v2) · (1⊗ 1)
= (Id⊗A2) · (1⊗ d×)− (Id⊗A2) · (c̃1 ⊗ d2)

− (A1 ⊗ Id) · (v2d1 ⊗ 1) + (v× − v1v2) · (1⊗ 1) . (16)

30

We conclude by remarking that v× = v1v2 and that:

(
A1 ⊗ Id Id⊗A2

)
·
(

(Id⊗A2) · ρ
−(A1 ⊗ Id) · ρ

)
= 0 .

Perfect soundness follows from Eq. (16) and the fact that 1⊗ 1 is not in the subspace generated
by the columns of the matrix

B :=
(
A1 ⊗ Id Id⊗A2

)
∈ Z4×8

p , (17)

when the CRS is binding, because if a1, a2 ∈ Z2
p are two vectors generating the column space of A1

and A2 respectively, then (a1 ⊗ a2, a1 ⊗ 1, 1⊗ a2, 1⊗ 1) is a basis of Z4
p.

Finally, perfect uniformity comes from the fact that the kernel of the matrix B (from Eq. (17))
consists of all the vectors: (

(Id⊗A2) · ρ
−(A1 ⊗ Id) · ρ

)
,

for ρ ∈ Z4
p, since these elements are clearly in the kernel and form a subspace of dimension 4,

and the kernel is of dimension 4 as B ∈ Z8×4
p is of rank 4 (because A1 is of full rank and hence

A1 ⊗ Id ∈ Z4×4
p is of full rank).

Remark 5.10 (Zero-knowledge of the quadratic proof π× in simulation mode). Perfect uniformity
in the simulation mode is a very strong form of witness indistinguishability: whatever witness
is used, the proof follows exactly the same uniform distribution over solutions of Equation 15.
To show that π× is zero-knowledge, it remains to argue that this distribution can be efficiently
sampled. This can be done similarly as in Remark 5.7: for simulated commitments ci, the simulator
can equivocate c1, c2, c× to any v′

1, v′
2, v′

× satisfying v′
× = v′

1v′
2 with decommitment d′

1, d′
2, d′

× using
QSimOpen. This gives a valid witness (v′

1, d′
1, v′

2, d′
2, d′

×) for the statement and a simulated proof
can be generated by running the honest prover algorithm QQuadProve with this witness.

5.3 WE for NIZK of Commitments for NC1

We now describe our construction of WE for NIZK of commitments for NC1. It follows the technical
overview Section 2.3. The idea is to represent the function by a Restricted Multiplication Straight-
line (RMS) Program [Cle91, BGI16], which only performs multiplications or quadratic operations
between an intermediate variable and an input. We start with defining a variant of RMS where
operations are done modulo some prime number p.

Definition 5.11 (RMS Programs). Let p be a prime. A Restricted Multiplication Straight-line (RMS)
program modulo p with input v = v1∥ · · · ∥vn ∈ {0, 1}n and output y = y1∥ · · · ∥ym ∈ {0, 1}m is a
sequence of the following instructions:

• Load a constant ω ∈ Zp into the memory value uj : (uj ← ω).

• Linearly combine memory values ui and uj into the memory value uk: (uk ← µui + µ′uj mod p),
with (µ, µ′) ∈ Z2

p \ {(0, 0)} a non-zero pair of constants.

• Multiply the input value vi by the memory value uj into the memory value uk: (uk ← vi ·
uj mod p).

31

where each memory value is written at most once and each memory value that is read was written
before. The program aborts if one memory value uk is not in {0, 1}. If it does not abort, it outputs
y = y1∥ · · · ∥ym = u1∥ . . . ∥um.

The size of an RMS is the number of instructions. Furthermore, any NC1 circuit G can be written
as an RMS program of polynomial size, because deterministic branching programs can be encoded
into RMS with constant overhead [BGI16, Claim A.2]. The resulting RMS program outputs the
correct value when evaluated modulo any prime number p, as when evaluated without modulo,
all the memory values are in {0, 1}.

5.3.1 Construction.

Let QC = (QSetupbind, QSetupsim, {QComi, QVeri, QSimComi, QSimOpeni}i∈{1,2}, QQuadProve, QQuadVer)
be the bilinear commitment scheme with proofs of quadratic relations from the previous section. We
construct a witness encryption WE for NIZK of commitments for NC1 below. To help differentiate
type-1 and type-2 commitments, all type-ι commitments have subscript starting with ι, such as,
cι,k.

• Commitment: (c, d)← CCom(crs, v) for v ∈ V := {0, 1}n, generates type-1 commitments for each
bit of v = v1∥ . . . ∥vn. More formally, c = (c1,1, . . . , c1,n and d = (d1,1, . . . , d1,n), where for i ∈ [n],
(c1,i, d1,i)← QCom1(crs, vi).

• Verification, Commitment Simulation and Opening: just consist in running the respective algo-
rithms QVer1, QSimCom1, QSimOpen1 in parallel for each commitment c1,i.

• Proof: π ← CProve(crs, c, G, v, d), for an NC1 circuit G represented as an RMS program with n-bit
input and m-bit output works as follows. Let Sω, S+, and S× be the sets of memory indexes writ-
ten by constant loading, linear, and multiplication instructions respectively. We suppose that the
used memory values are u1, . . . , uL. The proof π is a tuple ({c2,k}k∈[L], {d2,k}k∈[m]∪Sω

, {πk}k∈S+∪S×
)

where these values are generated as follows, for each instruction

– (uk ← ω): generate (c2,k, d2,k)← QCom2(crs, ω).

– (uk ← µui + µ′uj mod p): compute

(c2,k, d2,k)← QCom2(crs, µui + µ′uj) ,

πk := QLinProve(crs, (µ, c2,i, ui, d2,i), (µ′, c2,j , uj , d2,j), (c2,k, d2,k)) .

– (uk ← vi · uj mod p): compute

(c2,k, d2,k)← QCom2(crs, vi · uj) ,

πk := QQuadProve(crs, (c1,i, vi, d1,i), (c2,j , uj , d2,j), (c2,k, d2,k)) .

(Note that values vi and uj are known by the prover.)

• Proof Verification: just consists in verifying the provided openings and quadratic proofs. More
formally, CPVer(crs, c, G, y, π) where y = y1∥ · · · ∥ym returns 1 if and only if all the following tests
pass:

– For every i ∈ [m], check that QVer2(crs, c2,i, yi, d2,i) ?= 1.

32

– For every instruction:

* (uk ← ω): check QVer2(crs, c2,k, ω, d2,k) ?= 1.

* (uk ← µui + µ′uj mod p): check QLinVer(crs, (µ, c2,i), (µ′, c2,j), c2,k, πk) ?= 1.

* (uk ← vi · uj mod p): check QQuadVer(crs, c1,i, c2,j , c2,k, πk) ?= 1.

• Proof Simulation: π ← CPSim(τ, aux, c, G, y) where c = (c1,1, . . . , c1,n) are simulated with auxil-
iary data aux = (aux1,1, . . . , aux1,n), simulates a proof π = ({c2,k}k∈[L], {d2,k}k∈[m]∪Sω

, {πk}k∈S+∪S×
)

as follows: Run through the instructions in RMS in order and for each instruction do:

– (uk ← ω): generate

(c2,k, aux2,k)← QSimCom2(τ) , d2,k ← QSimOpen2(τ, aux2,k, ω) .

– (uk ← µui + µ′uj mod p): set u′
k := yk if k ∈ [m] or 0 otherwise, and let u′

i, u′
j ∈ Zp be arbitrary

scalars such that µu′
i + µ′u′

j = u′
k (which is possible as (µ, µ′) ̸= 0), and compute:

(c2,k, aux2,k)← QSimCom2(τ) ,

d′
2,ℓ ← QSimOpen2(τ, aux2,ℓ, u′

ℓ) for ℓ ∈ {i, j, k} , (18)

πk := QLinProve(crs, (µ, c2,i, u′
i, d′

2,i), (µ′, c2,j , u′
j , d′

2,j), (c2,k, d′
2,k)) .

Note: values u′
i, u′

j , u′
k are local and may be different for different instructions.

– (uk ← vi · uj mod p): set u′
k := yk is k ∈ [m] or 0 otherwise, as well as u′

i := 1 and u′
j := u′

k (so
that u′

k = u′
iu

′
j — again values u′

i, u′
j , u′

k are local) and compute:

(c2,k, aux2,k)← QSimCom2(τ) ,

d′
1,i ← QSimOpen1(τ, aux1,i, u′

i) (19)

d′
2,ℓ ← QSimOpen2(τ, aux2,ℓ, u′

ℓ) for ℓ ∈ {j, k} , (20)

πk := QQuadProve(crs, (c1,i, u′
i, d′

1,i), (c2,i, u′
j , d′

2,j), (c2,k, d′
2,k)) .

• Witness Encryption: Looking at Eqs. (7) and (11) and Remark 5.8, we remark that the proof veri-
fication CPVer(crs, c, G, y, π) is affine in the vector π. Concretely, there exists a matrix [Γcrs,c,G,y]⋆
and a vector [θcrs,c,G,y]⋆ (both only depend on crs, c, G, y and can be efficiently computed from
these three values — the star ⋆ denotes the fact that elements are not necessarily in the same
group), such that, seeing π as a vector of elements in Zp,G1,G2 of length β, and denoting by
π̃ ∈ Zβ

p the vector derived from π by replacing every Gι element with its discrete logarithm, we
have:

[θcrs,c,G,y]t = [Γcrs,c,G,y · π̃]t .

(Note: This is because: By Equation 7 and 11, verification of opening and verification of a linear proof are
both linear equations whose coefficients are either constants or elements in crs. By remark 5.8, verification
of a quadratic proof is a linear equation whose coefficients are constants, or elements in crs, or commitments
c1,i (as in Equation 19) to the first operand in the multiplication. Since in RMS the first operand of
multiplication is always an input bit, c1,i is contained in c.)

The witness encryption then just uses hash proof systems from [ABP15]. More formally, to
encrypt a bit message m ∈ {0, 1}, CWEnc(crs, c, G, y, m) picks a uniformly random row vector

33

α ∈ Z1×ν
p , where ν is the number of rows of Γcrs,c,G,y, and outputs the ciphertext ct = ([γ]⋆, [δ]t)

where:

[γ]⋆ := [α · Γcrs,c,G,y]⋆ , [δ]t := [α · θcrs,c,G,y + m]t .

• Witness Decryption: Using the notation from witness encryption, CWDec(crs, ct, c, G, y, π) out-
puts m ∈ {0, 1} satisfying

[m]t = [δ − γ · π̃]t .

EFFICIENCY: The algorithms CSetupbind, CCom, CVer (as well as the simulators CSetupsim, CSimCom,
CSimOpen) of the resulting WE for NIZK of commitments run in time polynomial in their inputs.
The algorithms CProve, CPVer, CWEnc, CWDec run in time polynomial in their inputs and exponen-
tial in the depth of the circuit G. This exponential blow up is due to the representation by a RMS
program and explains the restriction to NC1.

Theorem 5.12. Assuming SXDH over bilinear groups. The construction Π described above is a WE for
NIZK of commitments for NC1.

Proof. Perfect correctness of the commitment, setup indistinguishability, perfect binding, and per-
fect equivocality follow directly from the fact that (QSetupbind, QSetupsim, QCom1, QVer1, QSimCom1,
QSimOpen1) is a dual-mode commitment scheme. Perfect proof correctness follows from perfect
correctness of linear and quadratic proofs. Perfect soundness follows from perfect binding of
type-1 and type-2 commitments as well as perfect soundness of linear and quadratic proofs. Perfect
encryption correctness and perfect semantic security follow immediately from correctness and
smoothness of the hash proof systems in [ABP15]. It remains to prove the perfect zero-knowledge
property. This is where the uniqueness of linear proofs (Remark 5.7) and the perfect uniformity
(Remark 5.10) of the quadratic proofs are used. We give a proof by games:

• Game 0 corresponds to the zero-knowledge game where proofs are honestly generated.

• Game 1 is similar to Game 0 except that all the commitments are simulated but still opened to
the value a real prover would use. This game is perfectly indistinguishable from the previous
one by perfect equivocality of type-1 and type-2 commitments.

• Game 2 is similar to Game 1, except that the decommitments d2,k for k ∈ (S+ ∪ S×) \ [m] (i.e.,
the ones which are not published) and d′

⋆,⋆ used to generate the linear and quadratic proofs
(see Eqs. (18) to (20)) are generated as by CPSim. By perfect equivocality of type-1 and type-2
commitments, these values d2,k and d′

⋆,⋆ are valid decommitments. Hence by uniqueness of
linear proofs and perfect uniformity of quadratic proofs, the resulting proofs πk are perfectly
indistinguishable between Game 1 and Game 2.

As Game 2 corresponds to the zero-knowledge game where proofs are simulated, this conclude the
proof of perfect zero-knowledge.

6 WE for NIZK of Commitments: From NC1 to P

In Section 5, we constructed WE for NIZK of commitments for NC1. In this section, we show the
transformation from WE for NIZK of commitments for NC1 to a scheme for P and prove its security.
The construction follows the technical overview (Section 2.3). Below, we first quickly recall the
notions of computational randomized encodings, which is used in this transformation.

34

6.1 Preliminary: Computational Randomized Encodings.

We recall the definition of computational randomized encodings from [IK00, AIK06].

Definition 6.1 (Computational Randomized Encoding). Let G be a class of polynomial-size circuits.
A computational randomized encoding scheme for G is a tuple of three polynomial-time algorithms
(CRE.Enc, CRE.Dec, CRE.Sim) with the following syntax:

• Encoding: Ĝ := CRE.Enc(1λ, G) on input the security parameter, a circuit G ∈ G (G : {0, 1}n →
{0, 1}ℓ), outputs another circuit called a computational randomized encoding Ĝ : {0, 1}n×{0, 1}m →
{0, 1}s. CRE.Enc is deterministic.

• Decoding: y := CRE.Dec(1λ, G, ŷ) on input the security parameter, a circuit G ∈ G (G : {0, 1}n →
{0, 1}ℓ), and the output of ŷ of the randomized encoding Ĝ, outputs y the output of G. CRE.Dec
is deterministic.

• Simulation: Ĝ← CRE.Sim(1λ, G, y) on input the security parameter, a circuit G ∈ G (G : {0, 1}n →
{0, 1}ℓ), and an output y ∈ {0, 1}ℓ, outputs a simulated computational randomized encoding Ĝ.

and satisfying the following properties:

Perfect Correctness. For every security parameter λ ∈ N, for every circuit G ∈ G (G : {0, 1}n →
{0, 1}ℓ), for every input v ∈ {0, 1}n, for every bit string r ∈ {0, 1}m, if Ĝ = CRE.Enc(1λ, G),
then CRE.Dec(1λ, G, Ĝ(v, r)) = G(v).

Privacy. For every circuit G ∈ G (G : {0, 1}n → {0, 1}ℓ), for every input v ∈ {0, 1}ℓ, the following
two distributions are computationally indistinguishable:{

Ĝ := CRE.Enc(1λ, G), r ← {0, 1}m : Ĝ(v, r)
}

,{
CRE.Sim(1λ, G, G(v)

}
.

We focus on computational randomized encodings in NC1, namely where m, s are both polyno-
mial in n, λ, and the size of G; and where Ĝ is in NC1.

Our definition slightly diverges from [IK00, AIK06]: we introduce an explicit computational
randomized encoder, as to make explicit the fact that computational randomized encoding must be
efficiently computable.

Remark 6.2. We require a computational randomized encoding scheme to be perfectly correct.
Without this, perfect soundness (or even soundness) of the NIZK for commitments might not hold.
In the construction below, nothing would prevent the adversary from choosing a PRF fk inducing
some bad randomness for which correctness does not hold.

As NC1 contains NC0, and as the existence of a PRF in NC1 implies the Easy PRG assumption
from [AIK06], we have the following theorem

Theorem 6.3 (Corollary of [AIK06]). Assuming the existence of a PRF in NC1, there exists a computational
randomized encoding scheme (with computational randomized encodings in NC1) for P.

35

6.2 From NC1 to P.

Our construction uses the following building blocks:

• A WE for NIZK of commitments for NC1, Π = (CSetupbind, CSetupsim, CCom, CVer, CSimCom,
CSimOpen, CProve, CPVer, CPSim, CWEnc′, CWDec′), with message space V := {0, 1}n+λ.

• A PRF PRF : {0, 1}λ × {0, 1}poly(λ) → {0, 1}. We recall the notation defined in Remark 4.5.

• A collision-resistant family of hash functionsHF .

• A computational randomized encoding scheme (CRE.Enc, CRE.Dec, CRE.Sim) for P with compu-
tational randomized encodings in NC1.

We construct below Π′ = (CSetup′
bind, CSetup′

sim, CCom′, CVer′, CSimCom′, CSimOpen′, CProve′, CPVer′,
CPSim′, CWEnc, CWDec) a WE for NIZK of commitments for P with message space V := {0, 1}n:

• Setup: CSetup′
bind and CSetup′

sim are the same as CSetupbind and CSetupsim except that they also
sample a collision-resistant hash functionH ← HF

• Commitment: (c′, d′)← CCom′(crs, v) for v ∈ V := {0, 1}n, generates fk← {0, 1}λ, and generates

(c, d)← CCom(crs, v∥fk) ,

and outputs (c′, d′) := (c, (d, fk)).

• Verification: CVer′(crs, c′, v, d′ = (d, fk)) returns CVer(crs, c, v∥fk, d).

• Commitment Simulation: (c′, aux′)← CSimCom′(τ) computes

(c, aux)← CSimCom(τ) ,

picks fk′ ← {0, 1}λ, and outputs (c′, aux′) := (c, (aux, fk′)).

• Commitment Opening: d′ ← CSimOpen′(aux′ = (aux, fk′), v) generates fk ← {0, 1}λ, computes
d← CSimOpen(aux, v∥fk) and outputs d′ := (d, fk).

• Proof: π′ ← CProve′(crs, c′, G, v, d′ = (d, fk)) computes h := H(G) as well as the computational
randomized encoding Ĝ := CRE.Enc(1λ, G), where Ĝ : {0, 1}n × {0, 1}m → {0, 1}s, defines the
circuits {G′

i}i∈[s] and computes ŷ and {πi}i∈[s] as follows, for i ∈ [s]:

G′
i(v∥fk) := [Ĝ(v, PRF(fk, h∥[s])]i , (21)

ŷ := Ĝ(v, PRF(fk, h∥[s])) , (22)
πi ← CProve(crs, c′, G′

i, v∥fk, d) ,

where [x]i denotes the i’th bit of the bit string x. This is possible as G′ is in NC1, as both PRF and
Ĝ are. Then, CProve′ outputs π′ := (ŷ, {πi}i∈[s]).

• Proof Verification: CPVer(crs, c′, G, y, π′ = (ŷ, {πi}i∈[s])) defines {G′
i}i∈[s] as in Eq. (21) and out-

puts 1 is and only if CRE.Dec(1λ, G, ŷ) = y and CPVer(crs, c′, G′
i, ŷi, π) = 1 for i ∈ [s], where ŷi is

the i-bit of ŷ.

36

• Proof Simulation: π′ ← CPSim′(aux′ = (aux, fk′), G, y) computes:

ρ := PRF(fk′, G∥[ν]) , (23)

Ĝ := CRE.Sim(1λ, G, y; ρ) ,

with ν being the size of the randomness used by CRE.Sim. π′ then defines {G′
i}i∈[s] as in Eq. (21),

and computes for i ∈ [s]:
π′

i ← CPSim′(aux′, G′
i, ŷi) , (24)

and outputs π′ := (ŷ, {πi}i∈[s]). Deriving the randomness ρ from fk′ is important to ensure that
the same ŷ is used each time CPSim′ is called for the same circuit G.

• Witness Encryption: ct ← CWEnc′(crs, c′, G, y, m) defines {G′
i}i∈[s] as in Eq. (21), as well as the

following circuit C:

C(ŷ) =
{

m if CRE.Dec(1λ, G, ŷ) = y ,

⊥ otherwise.
(25)

It then garbles C:

key := {key[i, b]}i∈[s],b∈{0,1} ← GC.Gen(1λ) ,

Ĉ ← GC.Garble(key, C) ,

and generates the following ciphertexts for i ∈ [s] and b ∈ {0, 1}:

cti,b ← CWEnc(crs, c′, G′
i, b, key[i, b]) .

It then outputs ct′ := (Ĉ, {cti,b}i∈[s],b∈{0,1}).

• Witness Decryption: CWDec′(crs, ct′, c′, G, y, π) where π′ = (ŷ, {πi}i∈[s]) and ct′ = (Ĉ, {cti,b}i∈[s],b∈{0,1}),
decrypts the following ciphertexts for i ∈ [s]:

key′[i] := CWDec(crs, c′, G′
i, ŷi, π′

i) .

Finally, it outputs GC.Eval(Ĉ, key′).

Theorem 6.4. Assuming Π is a WE for NIZK of commitments for NC1, PRF is pseudorandom, HF is
collision-resistant, (CRE.Enc, CRE.Dec, CRE.Sim) is a computational randomized encodings, the construc-
tion Π′ described above is a WE for NIZK of commitments for P.

Proof. Perfect correctness of the commitment, setup indistinguishability, perfect binding, and
perfect equivocality are straightforward.

Perfect proof correctness follows from perfect correctness of the computational randomized
encoding.

Perfect soundness follows from perfect soundness of Π and perfect correctness of the computa-
tional randomized encoding. We remark that collisions in hash function does not break soundness
and that we do not need either to rely on the pseudorandomness property of the PRF, because the
computational randomized encoding is perfectly correct.

Let us prove the zero-knowledge property. We do a proof by games:

37

• Game 0 corresponds to the zero-knowledge game where proofs are honestly generated.

• Game 1 is similar to Game 0 except we abort if the adversary queries two distinct circuits G0 and
G1 with the same hash value: H(G0) = H(G1). This game is indistinguishable from the previous
one thanks to the collision resistance property of the hash function family. We can now suppose
that all the values h are different.

• Game 2 is similar to Game 1, except that the proofs π′
i are simulated as in Eq. (24). The randomized

encoding Ĝ and the circuits {G′
i}i∈[s] are still computed as before. This game is indistinguishable

from the previous one thanks to the zero-knowledge property of Π.

• Game 3 is similar to Game 2, except that ŷ is generated with fresh randomness r ← {0, 1}m (for
each distinct G, but the same r for the same G) instead of randomness derived from the PRF:

ŷ := Ĝ(v, r) .

This game is indistinguishable from the previous one thanks to the pseudorandomness property
of PRF (and the fact that all the values h queries for a given commitment c are distinct).

• Game 4 is similar to Game 3, except that the randomized encoding Ĝ is now computed as:

Ĝ← CRE.Sim(1λ, G, y; ρ) ,

where ρ is fresh randomness for each distinct G. This game is indistinguishable from the previous
one thanks to the privacy property of the computational randomized encoding.

• Game 5 is similar to Game 4, except that ρ is generated as by CPSim′ in Eq. (23). This game is
indistinguishable from the previous one thanks to the pseudorandomness property of PRF.

As Game 5 corresponds to the zero-knowledge game where proofs are simulated, this conclude the
proof of zero-knowledge.

Perfect encryption correctness follows from perfect correctness of the computational random-
ized encoding, perfect encryption correction of Π, and perfect correctness of the garbled circuit.

Let us now prove encryption semantic security. From the semantic security of Π, everything
can be simulated knowing only {key[i, ŷi]}i, where ŷi corresponds to the outputs of G′

i applied on
the committed value of c. By perfect correctness of the randomized encodings, ŷ = ŷ1∥ · · · ∥ŷm is
always decoded by CRE.Dec to G(v) ̸= y. We conclude using the security of the garbled circuit
scheme.

7 Definitions of mrNISC Schemes and Protocols

7.1 Definition of mrNISC Schemes

Definition of mrNISC schemes has appeared in the introduction and technical overview. We repeat
them here for convenient reference.

Definition 7.1 (mrNISC Schemes). An mrNISC scheme for a function f from
⋃∞

n=1 ({0, 1}∗)n+1 to
{0, 1}∗ (i.e., a function which can take any number ≥ 2 of inputs) consists of a tuple of polynomial-
time algorithms mrNISC = (Com, Encode, Eval) with the following syntax.

38

• Input: (x̂i, si)← Com(1λ, xi) on input the security parameter and an input xi ∈ {0, 1}ν , generates
an input encoding x̂i and a secret state si, where the input length ν is polynomial in the security
parameter ν.

• Computation of f(z, ⋆): αi ← Encode(z, {x̂j}j∈I , si), on input a public input z ∈ {0, 1}ν , a set of
input encodings {x̂j}j∈I , and the secret state si generated together with the i’th input encoding
x̂i, generates the i’th computation encoding αi of f(z, x1, · · · , xn).

• Output: y = Eval(z, {x̂i}i∈[n], {αi}i∈[n]), on input a public input z ∈ {0, 1}ν , a set of input
encodings {x̂i}i∈I and the corresponding set of computation encodings {x̂i}i∈I , produces an
output y ∈ {0, 1}∗ ∪ {⊥}.

Definition 7.2 (Correctness). An mrNISC scheme mrNISC for f is correct if: For every λ ∈ N, every
family of private inputs {xi}i∈I , every public input z,

Pr
[
∀i ∈ I, (x̂i, si)← Com(1λ, xi)
∀i ∈ I, αi ← Encode(z, {x̂j}j∈I , si)

: Eval(z, {x̂i}i∈I , {αi}i∈I) = f(z, {xi}i∈I)
]

= 1 .

Note that it suffices to define the correctness w.r.t. a single set of input and computation
encodings, which directly implies correctness w.r.t. an arbitrary number of input and computation
encodings as in the mrNISC setting. Furthermore, since correctness is perfect, it means correctness
holds even if the private and public inputs, the xi’s and z’s, and the random tapes used for
generating the input and computation encodings are chosen maliciously and adaptively — in short,
correctness holds against semi-malicious adversaries.

Definition 7.3 (Adaptive Security). An mrNISC scheme mrNISC for f is semi-malicious (or semi-
honest) private if there exists a PPT simulator S , such that, for all PPT adversary A, the views of A
in the following experiments ExpA,S(Real, λ, f) and ExpA,S(Ideal, λ, f) are indistinguishable.
Experiment ExpA,S(Real, λ, f): The adversary A chooses the number of parties M and the set of
honest parties H ⊆ [M]. It then interacts with a challenger in an arbitrary number of iterations
until it terminates. In every iteration k, it can submit one query of one of the following three types.

CORRUPT INPUT ENCODING: Upon A sending a query (input, Pi, xi, ρi) for a corrupt party i ∈ H̄ ,
record the input encoding x̂i generated as (x̂i, si) = Com(1λ, xi; ρi), using input xi and
randomness ρi. (In the semi-honest case, ρi must be randomly sampled, whereas in the
semi-malicious case, it can be arbitrary chosen by A.)

HONEST INPUT ENCODING: Upon A choosing the input (input, Pi, xi) of an honest party i ∈ H ,
generate (x̂i, si)← Com(1λ, xi) and send x̂i to A.

HONEST COMPUTATION ENCODING: Upon A querying (compute, Pi, z, I) for an honest party
i ∈ H ∩ I , if the input encodings {x̂j}j∈I of all participants have been generated, send A the
computation encoding αi ← Encode(z, {x̂j}j∈I , si).

Experiment ExpA,S(Ideal, λ, f): The ideal experiment proceeds identically as above, except for the
following differences: Invoke S(1λ, f).

CORRUPT INPUT ENCODING: Additionally send query (input, Pi, xi, ρi) to S.

39

HONEST INPUT ENCODING: Upon A choosing (input, Pi, xi) for i ∈ H , send query (input, Pi) to
the simulator S and forward to A the simulated input encoding x̃i generated by S.

HONEST COMPUTATION ENCODING: UponA choosing (compute, Pi, z, I), if this is the last honest
computation encoding to be generated for computation f(z, ⋆) with I (i.e., ∀ j ̸= i ∈ I ∩H , A
has queried (compute, Pj , z, I) before), send S the query (compute, Pi, z, I, y) with the output
y = f(z, {xt}t∈I); otherwise, send S the query (compute, Pi, z, I) without y. Forward to A
the simulated computation encoding α̃i generated by S.

Above, A is restricted to submit one input query for each party Pi.

We we say that a mrNISC protocol is private, we mean semi-maliciously private by default.

7.2 The mrNISC Functionality

In this section, we define the mrNISC functionality Ff for computing a general n-party single-
output function f . Here by n-party, we mean that the function f takes n private inputs (x1, · · · , xn)
from n input parties. In addition, the function takes an additional public input z, shared by the
n input parties. An example of such a function is a universal function f = U that interprets z as
the actual function g to be computed and outputs y = g(x1, · · · , xn). As we will see shortly, the
existence of the public input allows us to consider multiple computations f(z, ⋆) with different
public inputs on the same set of private inputs.

We define the mrNISC functionality Ff
mrNISC, which allows an arbitrary (polynomial) number

M of parties to register their inputs, and later any subset of n parties can compute f(z, ⋆) on their
private inputs using z of their choice, while enabling an evaluator to obtain the output. Importantly,
the computation can happen repeatedly between different subset of parties, and using different
public inputs.

The mrNISC Functionality. Let f be a family of n-party single-output functions. The functionality
Ff

mrNISC for computing f is defined in Figure 4. At a high-level, Ff
mrNISC interacts with M ≥ n input

parties P1, · · · , PM , an evaluator E, and an adversary S as follows. First, each party Pi can register
its private input xi with the functionality. Later in a compute phase, any subset I ⊆ [M] of |I| = n
parties can agree to compute f on their private inputs {xi}i∈I and a public input z, and enable the
evaluator E (and only E) to obtain the output y = f(z, {xi}i∈I). Importantly, the compute phase
can be invoked for an arbitrary number of times, where each computation is uniquely identified by
the public input used and the set of participants (z, I). Finally, since we achieve only security with
aborts, for each computation, the functionality always delivers the output to the adversary first,
who then decides whether the evaluator obtains the output or not.

7.3 UC-secure mrNISC Protocols from mrNISC Schemes

We show that given an mrNISC scheme for class C, for any f ∈ C, we construct an mrNISC protocol
Πf for computing f that UC-implements the mrNISC functionality Ff

mrNISC against semi-malicious
adversaries. The protocol Πf is described in Figure 5. Note in particular that the input parties do
not communicate with each other except for publishing the initial input encoding on the public
bulletin board.

40

Functionality Ff
mrNISC

Ff
mrNISC parameterized by a function f from

⋃∞
n=1 ({0, 1}∗)n+1 to {0, 1}∗, running with M

parties P = {P1, . . . PM} for any M ≥ n, an evaluator E, and an adversary S, proceeds as
follows. A subset of the input parties with indexes H̄ ⊆ [M] are corrupted while the rest
with indexes H are honest. (The functionality is agnostic of whether E is corrupted or not.)

Input: Upon receiving from Pi message (input, sid, Pi, xi) where xi ∈ X i, record the message,
send (input, sid, Pi) to the evaluator E and the adversary S, and ignore subsequent
messages of form (input, sid, Pi, ⋆).

Computation of f(z, ⋆) with Parties in I : Upon receiving from Pi message
(compute, sid, Pi, z, I), where z ∈ X0 is a public input, and I ⊆ P is a subset
of |I| = n parties, do: Ignore this message if there is no record (input, sid, Pi, xi).
Otherwise, forward the same message to the evaluator E and the adversary S, and
record the message.

Output: For any (z, I), upon collecting records (compute, sid, Pi, z, I) from all honest
input parties in I (i.e, H ∩ I), send (output, sid, y) to the adversary S, where y =
f(z, {xi}i∈I).

Upon collecting records (compute, sid, Pi, z, I) from all Pi ∈ I (honest or corrupted),
and receiving (deliver, sid, z, I, bz,I) from the adversary S where bz,I ∈ {0, 1}, send
(output, sid, y) to the evaluator, where y is overwritten to ⊥ if bz,I = 0. In the case
where no input party in I is corrupted (i.e., H̄ ∩ I = ∅), bz,I must be 1.

Computation can be invoked many times with different (z, I)’s.
In addition, messages belonging to the input and computation phases can arbitrarily interleave each
other.

Figure 4: General Functionality for mrNISC

41

mrNISC Protocol Πf

Πf parameterized by a function f , running with n input parties P = {P1, . . . PM} and an
evaluator E proceeds as follows:

Input: Every Pi upon receiving (input, sid, Pi, xi)a, generates (x̂i, si)← Com(1λ, xi), publish
the input encoding x̂i on the public bulletin board, and keeps the secret si.

Any party, Pj or E, upon receiving x̂i from Pi, ignores this message if x̂i = ⊥b.

Computation of f(z, ⋆) with parties in I : Every Pi upon receiving (compute, sid, Pi, z, I),
where i ∈ I ⊆ [M] and |I| = n, do: Ignore the message if Pi has not committed
to its input or has not received the input encodings from other parties in I . Otherwise,
it generates αi ← Encode(z, {x̂j}j∈I , si), and sends (z, I, αi) to E.

Output: For any (z, I), upon receiving x̂i and (z, I, αi) from all Pi with i ∈ I , the eval-
uator E outputs ⊥ if any αi = ⊥, and outputs y = Eval(z, {x̂i}i∈I , {αi}i∈I) otherwise.

aRecall that in the UC framework, the inputs to parties, namely, messages of form (input, sid, Pi, xi) and
(compute, sid, z, I) are issued by the environment.

bRecall that in the semi-malicious model, if the adversary sends any message m without a valid explanation,
the message m is overwritten to ⊥

Figure 5: A generic mrNISC protocol from an mrNISC scheme

Lemma 7.4 (Semi-malicious UC security). Let mrNISC be an mrNISC scheme for f satisfying correctness
and privacy. Then the protocol Πf described in Figure 5 UC-implements Ff

mrNISC against semi-malicious
adversaries.

Proof. To show that Πf satisfies semi-malicious UC-security, we need to show that for any adversary
A′, there is a simulator S ′, such that, for every environment Z , the output of the environment Z in
an execution of the protocol Πf with A′ and honest parties P = {P1, · · · , PM}, is indistinguishable
to its output in an execution of Ff

mrNISC with S ′ and P .
Let S be the simulator guaranteed by the privacy property of mrNISC as in Definition 7.3.

We construct the simulator S ′ using S. Externally, S ′ interacts with Ff
mrNISC and Z ; internally, it

simulates an execution of Πf with A, by corrupting the same set of parties as A does, invoking
S(f), and proceeding as follows:

• Communication with Z : Forward all communication between A and Z .

• Honest Input Encoding: Upon receiving (input, sid, Pi) for an honest party Pi from Ff
mrNISC, S ′

simulates the input encoding x̄i for A using S.

• Corrupted Input Encoding: Upon receiving x̄j for a corrupted party Pj from A. Check whether
A outputs a valid explanation (xj , ρj), such that, (x̄j , sj) = Com(1λ, xj ; ρj). If not, ignore the
message (recall that in the semi-malicious model, in the real world, when A fails to output a
valid explanation, its message x̄j is replaced with ⊥ and honest parties receiving ⊥would ignore
this input encoding, as S ′ does here). If yes, register this input (input, sid, Pj , xj) to Ff

mrNISC.

42

• Honest Computation Encoding: Upon receiving (compute, sid, Pi, z, I) for an honest party Pi from
Ff

mrNISC,

– if not all honest parties in I have sent such a message, simulate the computation encoding ᾱi

using S;

– if all honest parties in I have sent such a message, wait for message (output, sid, z, I, y) from
Ff

mrNISC, and then simulate the computation encoding ᾱi using S with input y.

• Corrupted Computation Encoding: Upon receiving (z, I, ᾱj) from a corrupted party Pj controlled
byA, send (compute, sid, Pj , z, I) to Ff

mrNISC. IfA fails to output a valid explanation of ᾱj — that
is, (xj , ρj,1, ρj,2), such that, (x̄j , sj) = Com(1λ, xj ; ρj,1) and ᾱj = Encode(f, z, {x̄t}t∈I , sj ; ρj,2) —
set bz,I , which is initialized to 1, to 0.

• Output: For any (z, I), upon A delivering all input encodings {x̄t}t∈I and all computation
encodings {αt}t∈I related to (z, I) to the evaluator E, send (deliver, sid, z, I, bz,I) to Ff

mrNISC.

To argue that the outputs of the environmentZ in the real and ideal worlds are indistinguishable,
it suffices to argue that the view of A and the outputs of the evaluator E if not corrupted in the
real world, is indistinguishable to the view of A in simulation by S ′ and the output of E in the
ideal world. This is because in the UC framework, the only information the environment Z
observes is the inputs/outputs of all parties and its communicates with A/S ′. It follows from the
privacy property of mrNISC that the real-world view of A is indistinguishable to its view simulated
by S, employed by S ′. Furthermore, by construction of the protocol Πf and the simulator S ′,
whenever A′ outputs an input encoding x̄j without a valid explanation, the input encoding is
ignore. Moreover, whenever A′ outputs a computation encoding ᾱj for computation (z, I) without
a valid explanation, it leads to the evaluator outputting ⊥ for that computation. Otherwise, if the
input and computation encodings {x̄j , αj}j∈I related to a computation (z, I) do not contain any
⊥, in the real world, evaluator would output the valid output y = f(z, {xj}j∈I) by the correctness

of mrNISC, while in the ideal world, S ′ sends the deliver message with flag bz,I = 1 to Ff
mrNISC,

who sends E the correct output y. In summary, we conclude that Πf satisfies semi-malicious UC
security.

Next, we observe that using ZK, our semi-malicious UC-secure protocols can be “lifted” to be
malicious UC-secure. If NIZK is used, the protocols remain non-interactive.

Lemma 7.5 (Malicious UC Security [AJL+12]). There is a generic transformation that turns Πf into Πf ′

that UC-implements Ff
mrNISC against malicious adversaries in the FZK-hybrid model, for any f ∈ C.

Proof Sketch. The work of [AJL+12] presents a transformation that compiles any semi-malicious
UC-secure protocol Π using the broadcast (authenticated) channel into a malicious UC-secure
protocol Π′ in the ideal zero-knowledge FZK hybrid model. The transformation is very simple:
Π′ is identical to Π except that each party after sending each message proves using FZK that the
message correctly generated with respect to a pair of input and random tape (x, ρ), and all the
messages this party has received so far. We observe that though our protocol uses both a public
bulletin boards and P2P channels, the same transformation still applies. This is because each party
Pi first publish its input encoding x̂i, in which case it can invoke FZK to prove the correctness of x̂i

as in [AJL+12]. Later, when party Pi sends an encoding αi for computation (z, I) to the evaluator

43

E, it can again invoke FZK and prove to E alone that the encoding is well-formed. Note that E can
verify this statement as it knows all messages Pi has received so far (in fact, E knows all messages
ever sent).

8 Construction of mrNISC Schemes

Let us now show our construction of mrNISC schemes. Our transformation uses the following
building blocks:

• A WE scheme for NIZK of commitments for P, Π = (CSetupbind, CSetupsim, CCom, CVer, CSimCom,
CSimOpen, CProve, CPVer, CPSim, CWEnc, CWDec). (Defined in Section 5 and constructed in Sec-
tion 5 and 6).

• A semi-malicious output-delayed simulatable L-round MPC protocol Π = (Next, Output) for f ,
as defined in Section 4.7. Output-delayed simulatability ensures that the transcript excluding the
last messages can be simulated for all-but-one honest parties before knowing the output. The
reason behind this requirement is that in an mrNISC protocol, only when all the honest parties
agreed to provide a computation encoding, the adversary (and so the simulator) should be able
to learn the output.

• A garbled circuit scheme GC = (GC.Gen, GC.Garble, GC.Eval, GC.Sim) for P.

Our mrNISC scheme is constructed as follows:

• Input: (x̂i, si)← Com(1λ, xi) samples a PRF key fki ← {0, 1}λ, generates a binding CRS crsi ←
CSetupbind(1λ), and uses it to commit to xi∥fki:

(ci, di)← CCom(crsi, xi∥fki) .

Finally, it sets x̂i := (crsi, ci) and si := (x̂i, xi, fki, di).

• Computation of f(z, ⋆): αi ← Encode(f, z, {x̂j}j∈[n], si) proceeds as follows:4

– For ℓ ∈ [L], generate input labels that will be used to garble the evaluation circuit Fℓ
i defined in

Fig. 6:
(stateKeyℓ

i , {msgKeyℓ
i,j}j)← GC.Gen(1λ) .

For ℓ = 1, all the input labels are empty, as F1
i does not take any input. We also define

stateKeyL+1
i and {msgKeyL+1

i,j }j to be empty strings.

– For ℓ ∈ [L], garble the evaluation circuit Fℓ
i :

F̂ℓ
i ← GC.Garble((stateKeyℓ

i , {msgKeyℓ
i,j}j∈[n]), Fℓ

i) .

– Set αi := {F̂ℓ
i}ℓ∈[L].

• Output: y = Eval(f, z, {x̂i}i∈[n], {αi}i∈[n]) proceeds as follows in L iterations, for ℓ = 1, . . . , L:

4For simplicity, we suppose that the set of parties participating in the computation is I = [n].

44

– Evaluate the garbled circuits for round ℓ, for i ∈ [n]:(
stateKey′ℓ+1

i , {ctℓ
i,j,k,b}j,k,b

, mℓ
i , {πℓ

i,k}k
)

:= GC.Eval(F̂i, (stateKey′ℓ
i , {msgKeyℓ

i,j [mℓ−1
j]}

j∈[n])) .

We recall that for round ℓ = 1, all the input labels are empty strings, so the evaluation can be
performed.

– If ℓ ̸= L, decrypt the input labels for the next round, for i, j ∈ [n] and k ∈ [νm], define Gℓ
j,k as

in Fig. 6 and compute:

msgKeyℓ+1
i,j [mℓ

j] :=
{

CWDec(crsj , ctℓ+1
i,j,k,mℓ

j,k

, cj , Gℓ
j,k, mℓ

j,k, πℓ
i,j,k)

}
k∈[νm]

.

At the end, Eval got the full transcript of the inner MPC Msg = {mℓ
j}j∈[n],ℓ∈[L] and set y :=

Output(z, Msg).

The correctness of the mrNISC scheme is straightforward: it follows from the perfect correctness
properties of the inner MPC protocol, of the WE for NIZK for commitments, and of the garbled
circuit scheme.

We now state the security of our mrNISC.

Theorem 8.1. Assume that the PRF scheme is pseudorandom, that the GC scheme is simulation-secure, that
the Π scheme is WE for NIZK of commitments for P, that the inner MPC is semi-maliciously delayed-output
simulatable, the mrNISC scheme described above is private.

Proof. The proof is similar to the security of the 2-round MPC protocol from [BL18]. We con-
struct a simulator S for the mrNISC. We develop the simulator S via a sequence of hybrids
H0, H1,1,1, H1,1,2, H1,2,1, . . . , H1,L,1, where H0 is the real experiment ExpA,S(Real, λ, f) and H3 is the
ideal experiment ExpA,S(Ideal, λ, f), which also contains the description of Sim.

Hybrid H0 is identical to the experiment ExpA,pSim(Real, λ, f).

Hybrid H1,ℓ⋆,1 (ℓ⋆ ∈ [L]) is identical to H0, except that for all queried honest computation encod-
ings (compute, Pi, z, I) (we assume for the sake of simplicity that I = [n] and recall that
Pi is honest), S computes the transcript Msg = {mℓ

j}j∈[n],ℓ∈[L] of the inner MPC protocol
between parties {Pj}j∈I with respective inputs {xj}j∈I and the respective random tapes
{rj := PRF(fkj , z∥[νr])}, where fkj can be derived from the randomness ρj used to commit to
inputs xj , (x̂j , sj) = Com(1λ, xj ; ρj).

1. The simulator S computes πℓ
i,k for ℓ ≤ ℓ⋆ and ctℓ+1

i,j,k,b for ℓ = ℓ⋆, j ∈ [n], k ∈ [νm],
b ∈ {0, 1}, as done by Fℓ

i described in Fig. 6 (see Eqs. (26) and (27)). It also computes
ctℓ+1

i,j,k,b similarly for ℓ < ℓ⋆ for j ∈ [n], k ∈ [νm], when b = Gℓ
j,k(xj , fkj) = mℓ

j,k, but when
b ̸= mj,k, it encrypts instead an arbitrary value 0:

ctℓ+1
i,j,k,b ← CWEnc(crsj , cj , Gℓ

j,k, b, 0) . (28)

45

Circuit Fℓ
i

Hardwired Values: 1λ, ℓ, i, z, {x̂j = (crsj , cj)}j∈[n], si = (x̂i, xi, fki, di), stateKeyℓ+1
i ,

{msgKeyℓ+1
i,j }j∈[n].

Inputs: (Msg<ℓ−1, mℓ−1) where for ℓ > 1:

• The input messages Msg<ℓ−1 are the messages of protocol Π of the first ℓ− 2 rounds.
Corresponding garble labels are denoted by stateKeyℓ

i .

• The input messages mℓ−1 := {mℓ−1
j }

j∈[n] are the ℓ− 1 round messages of protocol Π.

Corresponding garble labels are denoted by {msgKeyℓ
i,j}j∈[n].

Procedure: (for randomized algorithms, randomness is implicitly hardwired)

1. For j ∈ [n], define the circuit Gℓ
j by:

Gℓ
j(xj , fkj) = Nextj(z, xj , PRF(fkj , z∥[νr]), Msg<ℓ−1, mℓ−1) ,

and define the circuits Gℓ
j,k to output the k’th bit of Gℓ

j , for k ∈ [νm].

2. Compute the ℓ-th round message mℓ
i = mℓ

i,1∥ · · · ∥mℓ
i,νm

of Pi in the inner protocol
Π, and proofs πℓ

i,k that each bit has been computed correctly:

mℓ
i := Gℓ

i(xi, fki) ,

πℓ
i,k ← CProve(crsi, ci, Gℓ

i,k, xi∥fki, di) for k ∈ [νm] . (26)

3. For j ∈ [n] and k ∈ [νm], witness encrypt labels msgKeyℓ+1
i,j [k, b] so that

msgKeyℓ+1
i,j [mℓ

j] = {msgKeyℓ+1
i,j [k, mℓ

j,k]}
k∈[νm] can be decrypted for the valid mes-

sage mℓ
j :

ctℓ+1
i,j,k,b ← CWEnc(crsj , cj , Gℓ

j,k, b, msgKeyℓ+1
i,j [k, b]) for b ∈ {0, 1} . (27)

If ℓ = L, these ciphertexts are set to be empty strings.

4. Select the input labels stateKeyℓ+1
i [Msg<ℓ−1∥mℓ−1] for the next round (ℓ + 1),

corresponding to the messages Msg<ℓ−1∥mℓ−1. If ℓ = L, these values are set to be
empty strings.

Output: (stateKeyℓ+1
i [Msg<ℓ−1∥mℓ−1], {ctℓ+1

i,j,k,b}j,k,b
, mℓ

i , {πℓ
i,k}k).

Figure 6: Circuit Fℓ
i for the construction of mrNISC in Section 8

46

2. Instead of honestly garbling Fℓ⋆

i for ℓ ≤ ℓ⋆, the simulator S simulates the garbled circuits:

((stateKeyℓ
i [Msg≤ℓ−2], {msgKeyℓ

i,j [mℓ−1
j]}

j∈[n]), F̂ℓ
i)← GC.Sim(1λ, yℓ

i) ,

where
yℓ

i :=
(
stateKeyℓ+1

i [Msg≤ℓ−1], {ctℓ+1
i,j,k,b}j,k,b

, mℓ
i , {πℓ

i,k}k
)

.

For ℓ⋆ = 1, the only difference between H1,ℓ⋆,1 and H0 is the fact that the garbled circuit F̂ℓ⋆

i is
simulated. As Fℓ⋆

i has no inputs, these two hybrids are indistinguishable thanks to simulation
security of GC.

Hybrid H1,ℓ⋆,2 (ℓ⋆ ∈ [L − 1]) is identical to Hℓ⋆,1, except that for all queried honest computation
encodings (compute, Pi, z, I), ctℓ+1

i,j,k,b also encrypts an arbitrary value 0 (Eq. (28)) when ℓ = ℓ⋆

and b ̸= mj,k.

This hybrid is indistinguishable from H1,ℓ⋆,1 by semantic security of the witness encryption.

Furthermore, we remark that in H1,ℓ⋆,2, for j ∈ [n], k ∈ [νm], ℓ ≤ ℓ⋆, only the keys
stateKeyℓ+1

i [Msg≤ℓ−1], and {msgKeyℓ+1
i,j [mℓ

j]}
j∈[n] are used, but not the full keys stateKeyℓ+1

i

and {msgKeyℓ+1
i,j }j∈[n]. In addition, the only difference between H1,ℓ⋆+1,1 and H1,ℓ⋆,2 is the

fact that in the former F̂ℓ⋆+1
i is also simulated. These two hybrids are indistinguishable thanks

to simulation security of GC.

Hybrid H2 This hybrid is identical to H1,L,1 except that for all honest commitments x̂i = (crsi, ci),
crsi is a simulation CRS: (crsi, τi)← CSetupsim(1λ).

This hybrid is indistinguishable from the previous one (H1,L,1) under setup indistinguishabil-
ity of Π.

We remark that in this hybrid, for all queried honest computation encodings (compute, Pi, z, I),
the simulator S only uses di to compute the proofs {πℓ

i,k}ℓ∈[L],k∈[νm].

Hybrid H3 This hybrid is identical to H2, except that all the honest commitments ci and all the
proofs {πℓ

i,k}ℓ∈[L],k∈[νm] generated by the simulator are now simulated:

(ci, auxi)← CSimCom(τi) ,

πℓ
i,k ← CPSim(auxi, Gℓ

j,k, mℓ
i) .

Note we slightly abuse notation as there might be many different πi,k for different honest
computation encoding queries. The adversary may also query twice the same honest compu-
tation encoding query, in which case two fresh proofs are generated. This is not an issue, as
the zero-knowledge property we rely one can handle such cases.

This hybrid is indistinguishable from the previous one under zero-knowledge of Π.

We remark that in this hybrid, for all honest computation encodings (compute, Pi, z, I), the
simulator S only uses the input xi to compute the transcript Msg = {mℓ

j}j∈[n],ℓ∈[L] of the inner
MPC protocol. We recall that the randomness used by party Pi is ri := PRF(fkj , z∥[νr]), and
that fki is not used directly either (fki was committed in ci in the previous hybrid but now
commitments are simulated), but only ri is used.

47

Hybrid H4 This hybrid is identical to H3, except that the first time an honest computation encoding
is queried for some z and I , randomness ri of all the honest parties Pi from I (i.e., i ∈ H ∩ I)
is chosen uniformly randomly. The subsequent queries for the same z and I will use the same
randomness.

This hybrid is indistinguishable from the previous one under pseudorandomness of PRF.

Hybrid H5 This hybrid is identical to H4, except that for any honest computation encoding query
(compute, Pi, z, I):

• If it is the first one for some z and I , the transcript Msg<L without the last messages
{mL

j }j∈H
is computed.

• If after this query, all the honest Pj ’s have been queries for z and I , then mL
i is simulated

using the output y = f(x1, . . . , xn). Otherwise, mL
i is simulated without using the output

y.

This hybrid is well-defined and indistinguishable from the previous one thanks to the semi-
malicious output-delayed simulatability of the inner MPC.

In addition, this hybrid corresponds to ExpA,pSim(Ideal, λ, f), with the simulator S answering
queries as follows:

• Corrupt Input Encoding: On query (input, Pi, xi, ρi) for i ∈ H̄ for the first time, S records
(input, Pi, xi, ρi).

• Honest Input Encoding: On query (input, Pi) for i ∈ H for the first time, generates:

(crsi, τi)← CSetupsim(1λ) ,

(ci, auxi)← CSimCom(τi) .

And outputs x̂i := (crsi, ci).

• Honest Computation Encoding: On query (compute, Pi, z, I, y), simulate the transcript Msg<L

without the last messages {mL
j }j∈H

if it has not already been done, and simulate mL
i us-

ing y = f(x1, . . . , xn) if all Pj ’s have been queries, and without using y otherwise. Set
stateKeyL+1

i [Msg≤L] and ctL+1
i,j,k,b to be the empty strings. Then, for ℓ from L down to 1,

compute the following (for j ∈ [n] and k ∈ [νm]):

ctℓ+1
i,j,k,mℓ

i,k

← CWEnc(crsj , cj , Gℓ
j,k, mℓ

i,k, msgKeyℓ+1
i,j [k, mℓ

i,k]) ,

ctℓ+1
i,j,k,1−mℓ

i,k

← CWEnc(crsj , cj , Gℓ
j,k, 1−mℓ

i,k, 0) ,

πℓ
i,k ← CPSim(auxi, Gℓ

j,k, mℓ
i) ,

yℓ
i :=

(
stateKeyℓ+1

i [Msg≤ℓ−1], {ctℓ
i,j,k,b}j,k,b

, mℓ
i , {πℓ

i,k}k
)

,

((stateKeyℓ
i [Msg≤ℓ−2], {msgKeyℓ

i,j [mℓ−1
j]}

j
), F̂ℓ

i)← GC.Sim(1λ, yℓ
i) ,

and output αi = {F̂ℓ
i}ℓ∈[L]

This concludes the proof.

48

9 Applications of mrNISC

In this section, we formally describe two applications of mrNISC — transforming NIMPC protocols
with correlated randomness into NIMPC protocols in the PKI supplemented with a CRS model,
and constructing secret-sharing VBB obfuscation.

9.1 NIMPC: From Correlated Randomness to the PKI Setting

Non-interactive MPC (NIMPC) [BGI+14] is a very powerful notion equivalent, under different
corruption model, to garbled circuits, Private Simultaneous Messages protocols [IK97], and ob-
fuscation. It enables n parties P1, . . . , Pn to securely compute a function f on their private inputs
x1, . . . , xn by each party Pi sending just one message, mi,xi , to an evaluator E. The key difference
between NIMPC and mrNISC is that mrNISC requires parties to initially publish an encoding
x̂1, . . . , x̂n, of their inputs x1, . . . , xn, and later computation of f on x1, . . . , xn is enabled by sending
another message α1, . . . , αn to the evaluator. Therefore, if considering only a single computation,
each party in an mrNISC protocol sends in total two messages (x̂i, αi), whereas each party in an
NIMPC protocol sends only a single message. However, since mrNISC supports reusing the input
encodings, the amortized round complexity across many computations is just one. In addition,
mrNISC provides stronger security guarantees — adversaries corrupting up to n parties learn only
the outputs of the computation. In contrast, NIMPC, due to the lack of initial commitments to
parties’ inputs, inherently allows the adversaries to learn (in the sense of having black-box oracle
access to) the residual function f(xH , ⋆) with honest parties’ input xH hardcoded in. In other words,
mrNISC and NIMPC are the optimal solutions in two different settings.

As an application of mrNISC, we present a generic transformation from any NIMPC protocol
using correlated randomness into a protocol in the PKI model if the adversary is semi-malicious,
or a protocol in the PKI plus a CRS if the adversary is malicious. The key difference between the
PKI model and correlated randomness lies in that the PKI is reusable: once parties have published
their public keys via the PKI, they can compute many different functions fk on different private
inputs (xk

1, . . . , xk
n) by just sending one message to an evaluator. On the other hand, correlated

randomness cannot be reused and requires a trusted third party to sample them independently
for each computation and distribute them. Beyond this key difference, PKI can also be seen as a
minimal form of correlated randomness, in the sense that the key pair of each party can be sampled
independently and corrupted parties can control their public keys. Our transformation preserves
the efficiency of the underlying NIMPC protocol, as well as its simulation-security, admitting a
simulator that is slower by a multiplicative polynomial factor, compared to the simulator of the
underlying NIMPC. (Indistinguishability security can be viewed as simulation security with an
unbounded simulator, and hence is also preserved.) Applying our transformation to known NIMPC
protocols [BGI+14, BKR17, HIJ+17] yields their counterpart protocols in the PKI plus CRS model,
under the same assumption underlying the original protocols plus the existence of mrNISC for P
and UC-NIZK for NP, which in turn can be based on either a circular secure variant of LWE or the
SXDH assumption on bilinear maps.

Below, we start with describing the definitions of NIMPC with correlated randomness and in
the PKI model, and then the generic transformation from the former to the latter. Finally, we note
corollaries obtained by applying our transformation to known NIMPC protocols with correlated
randomness.

49

Definition of NIMPC with Correlated Randomness. We recall the definition of NIMPC protocols
from [BGI+14]. We will use the following notations: For a function f : X → Ω where X :=
X1 × · · · × Xn, we denote by f |H,xH

the function f with the inputs corresponding to positions H
fixed to the entries of vector xH .

Definition 9.1 (NIMPC Protocol). Let C = {Cn}n∈N>0
be a family of sets Cn of functions of the form:

f : X1 × · · · × Xn → Ω (functions in Cn have n inputs, but the input sets can be different for each
function). A non-interactive secure multiparty computation (NIMPC) protocol for C is a tuple of three
algorithms NIMPC = (Setup, Msg, Rec), where:

• Sample correlated randomness: (ρ0, ρ1, . . . , ρn)← Setup(1λ, 1n, f), on input the unary represen-
tations of number of inputs n and of the security parameter λ, and (a representation of) a function
f ∈ Cn, outputs a tuple (ρ0, ρ1, . . . , ρn);5

• Encode Input: mi,xi = Msg(ρi, xi) on input a value ρi and an input xi, outputs a message mi,xi ;

• Reconstruct Output: y = Rec(ρ0, (mi,xi)i=[n]) on input a value ρ0 and a tuple of n messages
(mi,xi)i=[n], outputs an element of Ω ∪ {⊥}.

satisfying the following property:

Correctness: For any values n ∈ N, security parameter λ ∈ N, f ∈ Cn, and x ∈ X , the following
holds

Pr
[

(ρ0, . . . , ρn)← Setup(1λ, 1n, f)
∀i ∈ [n], mi,xi ← Msg(ρi, xi)

: Rec(ρ0, mi,x1 , . . . , mn,xn) = f(x)
]

= 1 .

While the previous definition is abstract, in the sequel, we will often view NIMPC protocols
as protocols with n parties P1, . . . , Pn with respective inputs x1, . . . , xn, and an evaluator E. More
precisely, NIMPC = (Setup, Msg, Rec) yields a protocol in three phases as follows:

Offline preprocessing. For the security parameter λ and the function f ∈ Cn, a trusted party
generates (ρ0, ρ1, . . . , ρn)← Setup(1n, 1λ, f) and gives ρi to party Pi (for i ∈ [n]) and ρ0 to the
evaluator E.

Online messages. On input xi, party Pi computes mi,xi
:= Msg(ρi, xi) and outputs mi,xi to the

evaluator E.

Reconstruction. After receiving mi,xi from all the parties Pi (for i ∈ [n]), the evaluator E computes
and outputs Rec(ρ0, m1,x1 , . . . , mn,xn).

We now recall the notions of robustness for NIMPC protocols. Informally, H̄-robustness for a
set H̄ ⊆ [n] of colluding parties means that if xH represents the inputs of the honest parties, then
an evaluator colluding with the parties in set H̄ can compute the residual function f |H,xH

on any
input xH̄ but cannot learn anything else about the input of the honest parties. This describes the
best privacy guarantee attainable in this adversarial setting. The formal definition is stated in terms
of a simulator that can generate the view of the adversary (evaluator plus the colluding parties in
set H̄) with sole oracle access to the residual function f |H,xH

.

5One refers to the vector (ρ0, ρ1, . . . , ρn) as the correlated randomness of the parties, with ρ0 called public randomness.

50

Since our transformation is computational, and would always produce a NIMPC protocol with
computational security, even if the starting point protocol is statistically secure. Below, we only
recall computational security.

Definition 9.2 (NIMPC Robustness). Let n ∈ N be a positive integer, H ⊆ [n] be a subset. An
NIMPC protocol NIMPC is computationally H̄-robust if there exists a randomized algorithm Sim
(called a simulator) such that, the following distributions are computationally indistinguishable:

{Simf |H,xH (1n, 1λ, f, H̄)}λ,n,f∈Cn,xH∈XH

≈{View(1n, 1λ, f, H̄, xH)}λ,n,f∈Cn,xH∈XH
,

where View(1n, 1λ, f, H̄, xH) is the view of the evaluator E and of the colluding parties Pi (for i ∈ H̄)
from running NIMPC on inputs xH for the honest parties Pi (for i ∈ H): namely, ((mi,xH,i)i∈H

, ρ0,

(ρi)i∈H̄) where (ρ0, . . . , ρn)← Setup(1n, 1λ, f) and mi,xH,i ← Msg(ρi, xH,i) for i ∈ H .
Let t be an integer which is a function of n, then an NIMPC protocol Π is computationally

t-robust if for any n ∈ N and any subset H̄ ⊆ [n] of size at most t = t(n), Π is computationally
t-robust. It is computationally fully robust, if it is computationally n-robust.

Note that robustness does not necessarily imply that the simulator Sim is the same for any n and
H̄ nor that it runs in polynomial time in n, λ, and |f |. Our transformation preserves the efficiency
of the simulator.

Definition of NIMPC in the PKI model. We now recall the definition of NIMPC in the (reusable)
PKI model from [HIJ+17], by describing the difference in syntax and security requirements from
the definition of NIMPC with correlated randomness above. Since the PKI is reusable, the ro-
bustness property must guarantee simulation of multiple computation sessions sharing the same
PKI. In order to prevent adversaries from mixing-and-matching messages generated for different
computation sessions, each session is identified by a unique session id sid.

Definition 9.3 (NIMPC Protocol in the PKI model). A NIMPC protocol in the PKI model for C is a
tuple of three algorithms pNIMPC = (pKgen, pMsg, pRec) with the following syntax:

• Key Generation: (pk, sk)← pKgen(1λ) on input the unary representations of the security param-
eter samples a pair of public and secret key.

For n parties, where the i’th (i ∈ [n]) party holds keys (pki, ski), the correlated randomness is set
to ρ0 = pk = {pkj}j∈[n], and for every i ∈ [n], ρi = (pk, ski, i).

• Encode Input: mi,xi ← pMsg(ρi, xi, f , sid) on input a value ρi, an input xi, the description of a
function f ∈ Cn, and a session id sid ∈ {0, 1}λ, outputs a message mi,xi ;

• Reconstruct Output: y = pRec(ρ0, {mi,xi}i∈[n]) on input a value ρ0 and a tuple of n messages
{mi,xi}i∈[n], outputs an element of Ω ∪ {⊥}.

satisfying the following

51

Correctness: For any values n ∈ N, security parameter λ ∈ N, f ∈ Cn, x ∈ X , and sid ∈ {0, 1}λ, the
following holds

Pr


∀i ∈ [n], (pki, ski)← pKgen(1λ)
ρ0 = pk = {pkj}j∈[n]
∀i ∈ [n], ρi = (pk, ski, i)
∀i ∈ [n], mi,xi ← pMsg(ρi, xi, f, sid)

: pRec(ρ0, (mi,xi)i=[n]) = f(x)

 = 1 .

Next, we give simulation based security definition of robustness in the PKI model, against
semi-malicious or malicious adversaries. Semi-malicious adversaries choose their public and secret
keys using the pKgen algorithm with an arbitrarily chosen random tape, and malicious adver-
saries are not bound to follow the pKgen algorithm. Since the PKI is shared between different
computations sessions, we directly define simulation of multiple sessions. The work of [HIJ+17]
defined indistinguishability-based security in the PKI model, which can be obtained by allowing
the simulator in our definition to run in unbounded time.

Definition 9.4 (NIMPC Robustness in the PKI Model). Let n ∈ N be a positive integer, H ⊆ [n] be a
subset. An NIMPC protocol NIMPC in the PKI model is semi-maliciously (or maliciously) H̄-robust
if there exists a randomized algorithm Sim = (Sim1, Sim2) (called a simulator) such that, for every
PPT adversary A, its views in the following experiments are computationally indistinguishable:

Experiment pExpA,Sim(Real, 1λ, 1n) interacts with A(1λ, 1n) in following steps:

1. Send honestly generated pkH to A, where

∀i ∈ H, (pki, ski)← pKgen(1λ) .

2. Semi-malicious A outputs (pkH̄ , rH̄). Verify that ∀i ∈ H̄ , (pki, ski) = pKgen(1λ; ri), and
abort if not. (Malicious A does not send the explanation rH̄ .)

3. Interact with A in many iterations until it terminates. In iteration k, upon A choosing a
function fk ∈ Cn, a set of inputs for honest parties xk

H ∈ XH , and a session id sidk ∈ {0, 1}λ,
send Amessages mk

H,xH
generated honestly as

∀i ∈ H, mk
i,xi
← pMsg((pk, ski, i), xk

i , fk, sidk) ,

if sidk was never used before, or send ⊥ otherwise.

Experiment pExpA,Sim(Ideal, 1λ, 1n) interacts with A(1λ, 1n) in following steps:

1. Send simulated p̃kH to A, where

(p̃kH , st0)← Sim1(1λ, 1n, H) .

2. Semi-malicious A outputs (pkH̄ , rH̄). Verify that ∀i ∈ H̄ , (pki, ski) = pKgen(1λ; ri), and
abort if not. Update st0 = st0∥(pkH̄ , rH̄). (Malicious A does not send the explanation rH̄ .
Update st0 = st0∥pkH̄ .)

52

3. Interact with A in many iterations until it terminates. In iteration k, upon A choosing a
function fk ∈ Cn, a set of inputs for honest parties xk

H ∈ XH , and a session id sidk ∈ {0, 1}λ,
send Amessages m̃k

H simulated as

(m̃k
H , stk)← Sim

fk|
H,xk

H
2 (1λ, 1n, f, sidk, stk−1) ,

if sidk was never used before, or send ⊥ otherwise.

From Correlated Randomness to the PKI Model. We now describe our generic transformation
from a NIMPC protocol NIMPC = (Setup, Msg, Rec) for C with correlated randomness to a NIMPC
protocol pNIMPC = (pKgen, pMsg, pRec) in the PKI model for the same function class, and show
that for any n ∈ N and any H ⊆ [n] if NIMPC is H̄-robust with a simulator Sim, then pNIMPC is
semi-malicious H̄-robust with a simulator pSim with only additive polynomial slow-down.

Our transformation uses the following building blocks:

• An mrNISC scheme mrNISC = (Com, Encode, Eval) for the function Setup′ described in Figure 7
with simulator S.

• A PRF PRF : {0, 1}λ × {0, 1}poly(λ) → {0, 1}. We recall the notation defined in Remark 4.5.

• A garbled circuit scheme GC = (GC.Gen, GC.Garble, GC.Eval, GC.Sim) for P.

Our pNIMPC protocol in the PKI model proceeds as follows:

• Key Generation: pKgen(1λ) samples (pk, sk) as follows: Sample a random PRF key fk← {0, 1}λ,
encode it using the mrNISC scheme (f̂k, s)← Com(1λ, fk), and set pk = f̂k and sk = (fk, s).

For n parties, where the i’th party holds keys (pki = f̂ki, ski = (fki, si)), the correlated random-
ness is set to

ρ′
0 = pk = f̂k , ∀ i ∈ [n], ρ′

i = (pk, ski = (fki, si), i) .

• Encode Input: pMsg((pk, ski, i), xi, f, sid) generates the message mi,xi as follows:

– Generate an mrNISC computation encoding for the computation Setup′(z = (sid, λ, f), fk)
described in Figure 7.

αi ← Encode(Setup′, z = (sid, λ, f), f̂k, si)

– Sample garbled circuit labels exactly as done in Setup′ in Figure 7.

τi = PRF(fki, sid∥1∥[ℓτ]∥0) , keyi = GC.Gen(1λ, 1ℓρ ; τi) .

– Garble the circuit for computing the Msg algorithm of NIMPC, with the input xi hardcoded in. For
convenience, we write Msgxi

to represent this circuit, which satisfies Msgxi
(ρi) = Msg(ρi, xi).

M̂sgxi
← GC.Garble(keyi, Msgxi

)

53

Finally, set the message mi,xi to

mi,xi = (αi, M̂sgxi
, sid, n, λ) .

• Reconstruct Output: pRec(pk, (mi,xi)i=[n]) computes the output as follows:

– Invoke the mrNISC evaluation algorithm to compute

Eval(z = (sid, λ, f), f̂k, {αj}j∈[n])
= Setup′(z, fk) = (ρ0, {keyj [ρj]}

j∈[n])

– For every j ∈ [n], evaluate the garbled circuit M̂sgxj
with keys keyj [ρj],

GC.Eval(M̂sgxj
, keyj [ρj]) = Msgxj

(ρj) = imj,xj .

– Invoke the reconstruct algorithm of NIMPC to compute the output,

Rec(ρ0, {imj,xj}j∈[n]) = f(x) = y .

Output y. (If any of the Eval, GC.Eval, Rec outputs ⊥, output ⊥.)

The correctness of our pNIMPC protocol follows directly from that of the underlying mrNISC, GC,
NIMPC protocols, as illustrated already in the description of the reconstruction pRec algorithm.

The function Setup′(z = (sid, λ, f), fk1, . . . , fkn)

The function proceeds as follows:

• Sample correlated randomness of NIMPC

rj = PRF(fkj , sid∥0∥[ℓr]∥0) ,

(ρ0, ρ1, . . . , ρn) = Setup(1λ, 1n, f ; ⊕j∈[n]rj) ,

where the randomness ⊕j∈[n]rj has length ℓr = poly(λ, n, |f |).

• For every j ∈ [n], sample garbled circuit labels,

τj = PRF(fkj , sid∥1∥[ℓτ]∥0) ,

keyj = GC.Gen(1λ, 1ℓρ ; τj) ,

where ℓρ = maxj∈[n](|ρi|) = poly(λ, n, |f |) is the maximal length of ρi and the random
tape τj has length ℓτ = poly(λ, n, |f |).

Finally, output (ρ0, {keyj [ρj]}
j∈[n]).

Figure 7: The function Setup′ used in the construction of pNIMPC

Security of pNIMPC. We now show the security of our protocol.

54

Theorem 9.5. Assume that the PRF scheme is pseudorandom, the GC scheme is simulation-secure, the
mrNISC scheme mrNISC is private. Let n ∈ N be a positive integer, H ⊆ [n] be a subset. If NIMPC is
H̄-robust with simulator Sim, pNIMPC is semi-malicious H̄-robust with simulator pSim = (pSim1, pSim2),
who is a multiplicative polynomial (in λ) factor slower than Sim.

Assume additionally UC-secure NIZK (with simulation-extractability), pNIMPC can be turned into a
NIMPC protocol in the PKI plus CRS model that is malicious H̄-robust.

Proof. We construct the simulator pSim using the simulator Sim of NIMPC, the simulator S of
mrNISC, and the simulator GC.Sim of the garbled circuits GC scheme. We develop the simulator
pSim via a sequence of hybrids H0, . . . , H3, where H0 is the real experiment pExpA,pSim(Real, 1λ, 1n)
and H3 is the ideal experiment pExpA,pSim(Ideal, 1λ, 1n), which also contains the description of Sim.

Hybrid H0 is identical to the experiment pExpA,pSim(Real, 1λ, 1n). We describe the experiment
below with details of the protocol pNIMPC filled in. Interact withA(1λ, 1n) in following steps:

1. Send honestly generated pkH to A, where

∀i ∈ H, (pki = f̂ki, ski = (fki, si))← pKgen(1λ) ,

fki ← {0, 1}λ , and (f̂ki, si)← Com(1λ, fki) .

2. A outputs (pkH̄ , rH̄). Verify that ∀i ∈ H̄ , (pki, ski) = pKgen(1λ; ri), and abort if not.
3. Interact with A in many iterations until it terminates. In iteration k, upon A choosing

(fk, xk
H , sidk), and a session id sidk, send Amessages mk

H,xH
generated honestly as

∀i ∈ H, mk
i,xi

= (αk
i , M̃sgxk

i
, sidk, n, λ, fk)← Msg((pk, ski, i), xk

i , fk, sidk) ,

where αk
i ← Encode(z = (sidk, λ, fk), f̂k, si)

and M̂sgxk
i
← GC.Garble(keyi, Msgxk

i
) .

Hybrid H1 is identical to H0, except that all the input and computation encodings of mrNISC
related to the honest parties are simulated using the mrNISC simulator S. More precisely,
Interact with A(1λ, 1n) in following steps: Invoke S(1λ, Setup′

n).

1. For every i ∈ H , sample a random PRF key fki ← {0, 1}λ, and simulate the public key
pki = f̃ki, using S .

2. A outputs (pkH̄ , rH̄). Verify that ∀i ∈ H̄ , (pki, ski) = pKgen(1λ; νi), that is, νi = (fki, ν ′
i)

such that (pki = f̂ki, ski = si) = Com(1λ, fki; ν ′
i), and abort if not.

3. Interact with A in many iterations until it terminates. In iteration k, upon A choosing
(fk, xk

H , sidk), and a session id sidk, send Amessages mk
H,xH

generated as follows:

(a) For every i ∈ H , sample the garbled circuit labels keyk
i honestly as

τk
i = PRF(fki, sidk∥1∥[ℓτ]∥0) , M̂sgxk

i
← GC.Garble(keyi, Msgxk

i
) .

(b) For every i ∈ H , simulate the computation encoding α̃k
i using S . For the last one to

be simulated, send S the correct output of the computation

Setup′(z = (sidk, λ, fk), fk) = (ρk
0, keyk

i [ρk
i]) .

55

The only difference between H0 and H1 is whether the input and computation encodings
of the honest parties are simulated using the simulators S of the mrNISC scheme or not.
It thus follows directly from the privacy guarantee of mrNISC that these two hybrids are
indistinguishable.

Hybrid H2 is identical to H1 except that all the garbled circuits and keys belonging to the honest
parties are simulated using the simulator GC.Sim of GC. More precisely, H2 interacts with A
identically as H1 does in Step 1 and 2, but simulates Step 3 differently as follows:

3 Interact with A in many iterations until it terminates. In iteration k, upon A choosing
(fk, xk

H , sidk), and a session id sidk, send Amessages mk
H,xH

generated as follows:

(a) For every i ∈ H , simulate the garbled circuit and keys

(M̃sg
k

i , k̃ey
k

i)← GC.Sim(1λ, imk
i) , where imk

i = Msgxk
i
(ρk

i) .

(b) For every i ∈ H , simulate the computation encoding α̃k
i using S . For the last one to

be simulated, send S the partially simulated output (ρk
0, k̃ey

k

i).

It follows directly from the simulation security of the garbled circuits scheme GC that H2 is
indistinguishable to H1.

Hybrid H3 is identical to H2 except that all the NIMPC messages {imk
i }k,i∈H and the public ran-

domness {ρk
0}k are simulated using the simulator Sim of NIMPC. More precisely, H3 interacts

with A identically as H2 does in Step 1 and 2, but simulates Step 3 differently as follows:

3 In iteration k, upon A choosing (fk, xk
H , sidk), send A messages mk

H,xH
generated as

follows:

(a) Simulate the message and public randomness of NIMPC as

(ρ̃k
0, ĩm

k
)← Sim

fk|
H,xk

H (1λ, 1n, f, H̄) .

(b) For every i ∈ H , simulate the garbled circuit and keys using the simulated NIMPC
messages,

(M̃sg
k

i , k̃ey
k

i)← GC.Sim(1λ, ĩm
k
i) .

(c) For every i ∈ H , simulate the computation encoding α̃k
i using S . For the last one to

be simulated, send S the partially simulated output (ρ̃k
0, k̃ey

k

i).

It follows directly from the H̄-robustness of NIMPC that H3 is indistinguishable to H2.

Note that in H3, the view of the adversary A in Step 1 is simulated by S of mrNISC using no
information of the functions and honest parties’ inputs chosen later, and the view in each iteration
k in Step 3 is simulated with oracle access to the residual function fk

∣∣∣
H,xk

H

as required in the ideal

experiment pExpA,pSim(Real, 1λ, 1n) (with pSim implicitly defined). Therefore by a hybrid argument,
we conclude that the real and the ideal experiments are indistinguishable and pNIMPC is H̄-robust.

56

RUN TIME ANALYSIS OF pSim. The adversary A runs in time poly(λ), as a result, it engages in
at most poly(λ) iterations in the experiments and all messages (e.g., the description of functions
fk) it outputs in the experiments have poly(λ) length. The run time of pSim1 for simulating the
view of A in Step 1 is the same as the run time of S of mrNISC, which is poly(λ). The run time
of pSim2 for simulating the view of A in interaction k of Step 2 is the run time of the NIMPC
simulator Sim, T n,H̄

Sim (λ), plus other polynomial-time operations. Thus, the total run time of pSim2 is
poly(λ)T n,H̄

Sim (λ). In summary, the simulator pSim is a polynomial factor slower than the simulator
Sim of the underlying NIMPC.

SECURITY AGAINST MALICIOUS ADVERSARIES. Assume additionally UC-secure NIZK, pNIMPC
can be turned into a malicious H̄-robust NIMPC protocol in the PKI plus CRS model, by letting the
key generation algorithm additionally generate a NIZK proof π of the correctness of the public key
pk produced, and set the new public key pk′ to (pk, π). In the security proof, a malicious adversary
participating pExp experiments does not provide witnesses rH̄) of the correctness of the public
keys pkH̄ of corrupted parties in Step 2. Nevertheless, since pk′

H̄
contains NIZK proofs {πj}j∈H̄)

of the correctness of pkH̄ , the simulator can extract witnesses from the NIZK proofs. The rest of
simulation and security proof remain the same as in the semi-malicious case.

Application of Our Transformation. In the literature, the following NIMPC protocols with corre-
lated randomness has been presented.

1. Information theoretically fully robust NIMPC for any efficiently computable functions, with
communication complexity exponential in the total input length [BGI+14].

2. Information theoretically fully robust NIMPC for the iterated product function f(x1, . . . , xn) =
x1 · · ·xn over a group G [BGI+14].

3. Computationally fully robust NIMPC for any efficiently computable functions with indis-
tinguishability based security (implied by exponential-time simulation), from multi-input
functional encryption [GGG+14].

4. Information theoretically O(1)-robust NIMPC for NC1 with domains that are the Cartesian
products of constant-sized sets, i.e., X = X1 × · · · × Xn where |Xi| = O(1)6 [BKR17].

5. Computationally O(1)-robust NIMPC for P with domains that are the Cartesian products of
constant-sized sets from one-way functions [BKR17].

Applying our transformation to the above NIMPC protocols in bullets 2, 3, 5 yields their computa-
tionally secure counterparts in the PKI plus CRS model.

Corollary 9.6. Apply our transformation above to existing NIMPC protocols 2, 3, 5 gives the following
protocols in the PKI plus CRS model assuming mrNISC for P and UC-NIZK for NP (both of which can be
based on a circular variant of LWE or the SXDH assumption on bilinear maps).

1. Computationally fully robust NIMPC for the iterated product function f(x1, . . . , xn) = x1 · · ·xn

over a group G.

6If the domains the Cartesian products of exponential-sized alphabet, even 1-robust NIMPC implies IO.

57

2. Computationally fully robust NIMPC for any efficiently computable functions with indistinguishabil-
ity based security from multi-input functional encryption.

3. Computationally O(1)-robust NIMPC for P with domains the Cartesian products of constant-sized
sets.

The first and third bullets are achieved for the first time in the PKI plus CRS model, while the
second was previously achieved by [HIJ+17] using sub-exponentially secure IO and DDH. We now
achieve it using multi-input functional encryption, which in turn can be based on polynomially
secure IO and one-way functions, assuming additionally circular secure LWE or SXDH on bilinear
maps. We note that the use of polynomially secure IO is necessary, as fully robust NIMPC for P
implies IO for P.

9.2 Secret-Sharing VBB

In this section, we use mrNISC to construct a primitive called (N, t)-secret-sharing VBB. As the
name suggests, secret-sharing VBB allows to secret share a function f among N servers, each
holding a function share fi for i ∈ [N], and later to evaluate this function on any input x, by letting
each server generate an output share ŷi ← fi(x) independently using its own function share.
Output shares together reveal the actual output f(x). Analogous to VBB obfuscation, the secret
shares of f is reusable — one can use them to evaluate any number of inputs. Moreover, security
is simulation-based: for any sequence of inputs x1, x2, . . . , xK , observing all the output shares
{ŷ1i}, {ŷ2i}, . . . , {ŷKi}, and any subset S ⊂ [N] of up to t function shares {fi}i∈S reveals only the
actual outputs y1, y2, . . . , yK and nothing else.

Definition 9.7. A (N, t)-secret share VBB scheme ssVBB for a class C of functions consists of
polynomial-time algorithms (VShare, Eval, Recon) with the following syntax:

• Function Sharing: (f1, . . . , fN) ← VShare(1λ, f), on input the security parameter λ, and the
description of a function f , generates N function shares f1, . . . , fN .

• Output Sharing: ŷi ← VEncode(x, fi) on input an input x and a function share fi, generates an
output share ŷi.

• Evaluation: y = VEval({yi}i∈[N]) on input all output shares, reconstructs the actual output y.

and satisfying the following properties:

Correctness. For every λ ∈ N, every function f ∈ C, and every input x

Pr
[

(f1, . . . , fN)← VShare(1λ, f)
∀i ∈ [N], ŷi ← VEncode(x, fi)

: VEval(ŷ1, . . . , ŷN) = f(x)
]

= 1 .

(N, t)-Simulation Security. There exists a PPT simulator S, such that, for every PPT adversary A,
the view of A in the following two experiments are indistinguishable.

Experiment VExpA,S(Real, 1λ) : Interact with A in two steps:

1. Function Shares Query: Upon A choosing a function f ∈ C and a subset S ⊂ [N] of size
at most t, |S| ≤ t, secret share the function f to obtain (f1, . . . , fN)← VShare(1λ, f), and
reveal {fi}i∈S to A.

58

2. Honest Output Share Query: Interact with A until it terminates. In each iteration, upon
A choosing (x, i) for i ̸∈ S7, reply with the i’th output share ŷi ← VEncode(x, fi) for
evaluating x.

Experiment VExpA,S(Ideal, 1λ) : The ideal experiment simulates the view of A as follows:
Invoke S(1λ).

• Function Shares Query: Upon A choosing a function f ∈ C and a subset S ⊂ [N] of size at
most t, |S| ≤ t, send only S to S who generates simulated function shares {f̃i}i∈S , and
forward them to A.

• Honest Output Share Query: Interact with A until it terminates. In each iteration, upon A
choosing (x, i) for i ∈ S̄, send (x, i, y′) to S, where y′ = f(x) if all output shares in S̄
for evaluating input x have been queried (i.e., ∀j ∈ S̄, A has queried (x, j)), and y′ = ⊥
otherwise. S generates a simulated output share ŷi, which is forwarded to for A.

Related Notions. The primitive of secret-sharing VBB is very close to the primitive of bit-fixing
homomorphic sharing proposed in the recent work of [LM18], except that they considered an
indistinguishability based definition (analogous to IO) and requires the security to hold even when
the functions shares are sampled from a conditional distribution where a few bits in the shares
are fixed (i.e., (f1, · · · , fN) ← VShare(1λ, 1N , f) conditioned on a substring (f1∥ . . . ∥fN)J = u of
length |J | = o(λ) being fixed to an arbitrary string u). The latter strengthening is for their specific
application to constructing indistinguishability obfuscation from bilinear maps, LWE, and degree 2
pseudo flawed-smudging generator (a type of weak PRG). We observe that in the secret sharing
setting, even simulation-based security can be achieved, and remove the latter strengthening to
make the definition simpler and more natural. (The security of our construction of secede sharing
VBB from mrNISC nevertheless holds even in the strengthened setting. Hence, our construction
can also be used in their application.)

Another related notion is Homomorphic Secret Sharing (HSS) — the secret-sharing version of
homomorphic encryption — and Function Secret Sharing [BGI15, BGI16]. The key difference from
HSS / FSS is that they do not guarantee security when all output shares are revealed. (See Section
7.1 in [LM18] for more detail.) Analogous to obfuscation, secret sharing VBB considers the setting
where outputs and hence output shares are all public. This is useful in applications where we want
a third party to obtain the outputs of the computations, such as, enabling servers to perform spam
filtering on clients’ encrypted emails without involving the clients.

Construction from mrNISC. We now give a very simple construction of (N, N − 1)-secret sharing
VBB for a function class C from an mrNISC scheme mrNISC = (Com, Encode, Eval) for the following
universal function UC for class C: UC(x, v1, · · · , vN) interprets f = v1 ⊕ · · · ⊕ vN as the description
of a function f ∈ C and outputs f(x).

• VShare(1λ, f): On input the description of a function f , sample a random XOR secret sharing
v1, . . . , vN of f (i.e., vi’s are random strings subject to v1 ⊕ · · · ⊕ vN = f . For every i ∈ [N],
generate an input encoding of the i’th secret share (v̂i, si) ← Com(1λ, vi). Set the i’th function
share to fi = ({v̂j}j∈[N], si), and output (f1, . . . , fN).

7Note that A can already generate output shares {yi}i∈S itself using the function shares it obtain from the last stage.

59

• VEncode(x, fi): on input an input x and a function share fi, parse fi as ({v̂j}j∈[N], si), generate the
i’th computation encoding αi = Encode(x, {v̂j}j∈[N], si) for the computation UC(x, v1, . . . , vN),
and output yi = (x, v̂i, αi) as the i’th output share.

• VEval({yi}i∈[N]) on input all output shares, parse each yi = (x, v̂i, αi), and reconstruct the actual
output y = Eval(UC , x, {v̂i}N , {αi}N).

The correctness of the scheme follows directly from that of mrNISC: The latter guarantees that y
output by Eval equals to UC(x, v1, . . . , vN), which by definition equals to f(x).

Proof of Simulation Security. The security of our ssVBB scheme against revealing up to N − 1
function shares follows directly from the privacy guarantee of mrNISC. This is because an adversary
against ssVBB observing up to N − 1 function shares and an arbitrary number of output shares,
can be emulated by an semi-honest adversary against mrNISC corrupting up to N − 1 input parties.

Theorem 9.8. For any N ∈ N and any function class C, if mrNISC for {UC
N} is private, then ssVBB for C

described above is (N, N − 1)-simulation secure.

Proof. We show that the view of any adversaryA participating in the real experiment VExpA,S(Real, 1λ)
of ssVBB can be emulated by a wrapper adversaryA′ participating in the real experiment ExpA,S(Real, 1λ)
of mrNISC, who is semi-honest and corrupts up to N−1 input parties. Thus, we can use the mrNISC
simulator S ′ that simulates the view of A′ to construct the simulator S for A.

We now describe the wrapper adversaryA′ that runsA internally and participates in ExpA′,S′(Real, 1λ)
externally.

• Function Shares Query: Upon A choosing a function f ∈ C, and a subset S ⊂ [N] of size at most
N − 1 A′ generates the function shares in S as follows:

– corrupt input parties in set S.

– sample a random additive secret share v1, . . . , vN of f .

– for every corrupted input party i ∈ S, generate its input encoding of vi honestly, (v̂i, si) =
Com(1λ, vi; ρi) using randomly string ρi ← {0, 1}poly(λ), and announce this input encoding
externally by sending (input, Pi, vi, ρi).

– for every honest input party j ∈ S̄, send a query (input, Pj , vj) externally, and receive an
honest input encoding v̂j .

– Finally, set every function share fi for i ∈ S as ({v̂j}j∈[N], si), and send them to A.

• Honest Output Share Query: In each iteration, upon A choosing (x, i) for i ∈ S, A′ send a query
(compute, Pj , x, I = [N]) externally, and receive an honest computation encoding αj . It then
sends ŷi = (x, v̂i, αi) to A.

It is easy to see that A′ follows the rules in the experiment ExpA′,S′(Real, 1λ), in particular, it
corrupts a strict subset S of input parties statically, and it generates all corrupt input encodings semi-
maliciously, in fact, honestly. Therefore, by the privacy guarantee of mrNISC, there is a simulator
S ′ that can simulate the view of A′ (more specifically, S ′ can simulate the input and computation
encodings of honest parties in S̄). Thus, we can construct a simulator S for A that internally
emulates both S ′ and A′. Note that the only information that the mrNISC simulator S ′ needs to

60

receive is the correct output y = UC
N (x, v1, . . . , vN) = f(x), whenever A has queried all output

shares in S̄ for evaluating a specific input x. At this point, S in VExpA,S(Ideal, 1λ) indeed receives y
and hence can forward it to S ′ emulated internally. The construction of S is mechanic and we omit
details here.

Extension to Secret-sharing Multiparty VBB. A recent work [HIJ+17] proposed a generalization
of obfuscation called multiparty obfuscation. Here, multiple function (we use function instead
of program to be consistent in terminology) owners, each holding a function fi for i ∈ [J], can
individually obfuscate their functions into f̂i, such that, the collection of obfuscated functions {f̂i}J
acts as an obfuscated function of Combine(f1, . . . , fJ) according to some fixed public Combine
function. When J = 1, multiparty obfuscation degenerates to the classical notion of obfuscation.
One can similarly consider both VBB or indistinguishability security.

We can similarly have a secret-sharing multiparty VBB (ssMVBB), where each function owner
can secret share its function into shares fi,1, . . . , fi,N ← VShare(1λ, fi), and upload the j’th share
fi,j to the j’th server. To evaluate an input x, each server independently generates output
shares yj ← VEncode(x, {fi,j}i∈[J]), which together reveals the output y = VEval({yj}j∈[N]) =
Combine(f1, . . . , fJ)(x). Security guarantees that if up to some 0 ≤ t < N servers were corrupted,
given all the output shares for any number of evaluations with inputs x1, x2, . . . , xT , the only
information revealed are the actual outputs of Combine(f1, . . . , fJ) on these inputs.

It is easy to observe that essentially the same construction from mrNISC above gives a secret
sharing multiparty VBB ssMVBB scheme, with some slight modification:

• {fi,j}j ← VShare(1λ, fi) stays the same. Thus fi,j = ({v̂i,j}j , si,j) where v̂i,j is the mrNISC input
encoding for a XOR share of fi and si,j is the secret state associated with it.

• VEncode(x, {fi,j}i∈[J]) generates J mrNISC computation encodings {αi,j ← Encode(U, x, {v̂i,j}i,j , si,j)}i
where U(x, {vi,j}i,j) is the universal function that computes Combine(f1, . . . , fJ)(x) for fi =
⊕jvi,j . It sets the j’th output share to be yj = (x, {vi,j , αi,j}i).

• Finally, VEval({yj}j) simply runs Eval(x, {vi,j}i,j , {αi,j}i,j) to obtain the output.

Intuitively, this scheme simply XOR secret shares each function, and encode all J × N of them
using mrNISC, to evaluate an input x, the evaluator simply needs J ×N computation encodings,
one for each share of each function. The ssMVBB scheme puts the j’th input encodings related to
all function at the j’th server, such that, if one server remains uncorrupted, all functions remain
hidden.

Strengthening to Semi-Malicious Security. Above, we think of the use case of ssVBB as having
an honest function owner generate the function shares and upload them to the servers, and an
adversary may corrupt a subset of the servers and a subset of the function shares and many output
shares. One may also consider stronger security where the adversary can tamper a subset S of
function shares. This tampering may be semi-malicious in the sense that the function shares are
generated correctly using VShare where the randomness related to generating shares {fi}i∈S are
controlled by the adversary. More precisely, the adversaries chooses XOR shares {vi}i∈S and
random tapes {ρi}i∈S , such that, {(v̂i, si) = Com(1λ, vi; ρi)}i∈S . On the other hand, the rest of the
XOR shares and input encodings are generated randomly and honestly: {vj}j∈S̄ are random subject
to⊕kvk = f and {(v̂j , sj)← Com(1λ, vj)}j∈S̄ . Then the function shares are {(fi = {v̂i}i∈[N], si)}

i∈[N]
.

61

Since the privacy of mrNISC guarantees security against semi-malicious adversaries. Our ssVBB
constructed from it remains secure under such semi-malicious tampering of function shares.

This means our scheme satisfies the strengthened security requirement in [LM18] that considers
the function shares sampled honestly from (f1, . . . , fN) ← VShare(1λ, f) conditioned on some
substring (f1∥ . . . ∥fN)J of length |J | < N being fixed. This is because fixing a up to N − 1 bits in
the shares can be achieved by a semi-malicious adversary tampering the same number of shares.
Therefore, our ssVBB scheme is secure against such fixing attacks, and can be used in the application
of [LM18] for constructing IO from bilinear maps, LWE, and a special type of weak PRG.

Acknowledgments

The authors would like to thank Yuval Ishai and Stefano Tessaro for many helpful discussions.
Huijia Lin was supported by NSF grants CNS-1528178, CNS-1514526, CNS-1652849 (CAREER),

CNS-2026774, a Hellman Fellowship, a JP Morgan Research Award, the Defense Advanced Research
Projects Agency (DARPA) and Army Research Office (ARO) under Contract No. W911NF-15-C-
0236, and a subcontract No. 2017-002 through Galois. Part of the work was done while Huijia Lin
was visiting the Simons Institute for the Theory of Computing, Berkeley. The views expressed are
those of the authors and do not reflect the official policy or position of the Department of Defense,
the National Science Foundation, or the U.S. Government.

References

[ABP15] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Disjunctions for hash
proof systems: New constructions and applications. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 69–100.
Springer, Heidelberg, April 2015. (Pages 12, 33, and 34.)

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. computational complexity, 15(2):115–162,
Jun 2006. (Page 35.)

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan,
and Daniel Wichs. Multiparty computation with low communication, computation and
interaction via threshold FHE. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 483–501. Springer, Heidelberg, April
2012. (Pages 4, 5, 6, 15, 21, and 43.)

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure
computation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 387–404. Springer, Heidelberg,
May 2014. (Page 16.)

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure computa-
tion without authentication. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of
LNCS, pages 361–377. Springer, Heidelberg, August 2005. (Page 20.)

62

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg, August
2001. (Page 4.)

[BGI+14] Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, and
Anat Paskin-Cherniavsky. Non-interactive secure multiparty computation. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS,
pages 387–404. Springer, Heidelberg, August 2014. (Pages 4, 7, 8, 16, 49, 50, and 57.)

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
337–367. Springer, Heidelberg, April 2015. (Pages 8 and 59.)

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for se-
cure computation under DDH. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509–539. Springer, Heidelberg,
August 2016. (Pages 8, 14, 31, 32, and 59.)

[BGI+17] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wa-
dia. Two-message witness indistinguishability and secure computation in the plain
model from new assumptions. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part III, volume 10626 of LNCS, pages 275–303. Springer, Heidelberg,
December 2017. (Page 16.)

[BJMS18] Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Threshold
multi-key fhe and applications to round-optimal mpc. Cryptology ePrint Archive,
Report 2018/580, 2018. https://eprint.iacr.org/2018/580. (Pages 4 and 15.)

[BJOV18] Saikrishna Badrinarayanan, Abhishek Jain, Rafail Ostrovsky, and Ivan Visconti. Non-
interactive secure computation from one-way functions. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 118–138.
Springer, Heidelberg, December 2018. (Page 16.)

[BKR17] Fabrice Benhamouda, Hugo Krawczyk, and Tal Rabin. Robust non-interactive mul-
tiparty computation against constant-size collusion. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 391–419. Springer,
Heidelberg, August 2017. (Pages 8, 49, and 57.)

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 500–532.
Springer, Heidelberg, April / May 2018. (Pages 3, 6, 10, 15, 23, and 45.)

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, 13(1):143–202, January 2000. (Page 6.)

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.
(Page 19.)

63

https://eprint.iacr.org/2018/580

[CDI+18] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail
Ostrovsky, and Vinod Vaikuntanathan. Reusable non-interactive secure computation.
Cryptology ePrint Archive, Report 2018/940, 2018. https://eprint.iacr.org/
2018/940. (Page 16.)

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a
global random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM
CCS 14, pages 597–608. ACM Press, November 2014. (Page 16.)

[Cle91] Richard Cleve. Towards optimal simulations of formulas by bounded-width programs.
computational complexity, 1(1):91–105, Mar 1991. (Pages 14 and 31.)

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security
in the plain model from standard assumptions. In 51st FOCS, pages 541–550. IEEE
Computer Society Press, October 2010. (Page 19.)

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE
from learning with errors. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 630–656. Springer, Heidelberg,
August 2015. (Pages 4 and 15.)

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EURO-
CRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer, Heidelberg, April / May
2002. (Page 6.)

[CV05] Dario Catalano and Ivan Visconti. Hybrid trapdoor commitments and their applications.
In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti
Yung, editors, ICALP 2005, volume 3580 of LNCS, pages 298–310. Springer, Heidelberg,
July 2005. (Page 23.)

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman
assumption. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 537–569. Springer, Heidelberg, August 2017. (Page 6.)

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation
(extended abstract). In 26th ACM STOC, pages 554–563. ACM Press, May 1994. (Pages 4,
7, and 16.)

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao
Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 578–602. Springer, Heidelberg, May 2014. (Pages 8 and 57.)

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC
from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014, volume
8349 of LNCS, pages 74–94. Springer, Heidelberg, February 2014. (Pages 6, 10, and 15.)

64

https://eprint.iacr.org/2018/940
https://eprint.iacr.org/2018/940

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its
applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th
ACM STOC, pages 467–476. ACM Press, June 2013. (Page 6.)

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and
guarantee of output delivery. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 63–82. Springer, Heidelberg, August
2015. (Pages 6, 10, 11, and 15.)

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. (Page 19.)

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987. (Page 11.)

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge
University Press, Cambridge, UK, 2001. (Page 19.)

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive
zero-knowledge. Journal of the ACM (JACM), 59(3):11, 2012. (Pages 11, 12, 13, and 14.)

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432.
Springer, Heidelberg, April 2008. (Pages 27 and 29.)

[GS12] Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput., 41(5):1193–1232, 2012. (Pages 12 and 14.)

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC
from bilinear maps. In Chris Umans, editor, 58th FOCS, pages 588–599. IEEE Computer
Society Press, October 2017. (Pages 6, 10, 11, 12, 13, 15, and 23.)

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 468–499. Springer, Heidelberg,
April / May 2018. (Pages 3, 6, 10, 11, and 15.)

[HIJ+17] Shai Halevi, Yuval Ishai, Abhishek Jain, Ilan Komargodski, Amit Sahai, and Eylon
Yogev. Non-interactive multiparty computation without correlated randomness. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume 10626
of LNCS, pages 181–211. Springer, Heidelberg, December 2017. (Pages 8, 49, 51, 52, 58,
and 61.)

[IK97] Yuval Ishai and Eyal Kushilevitz. Private simultaneous message protocols with appli-
cations. In Proceedings of ISTCS, pages 174–184, 1997. (Pages 4, 7, 16, and 49.)

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st FOCS, pages 294–304.
IEEE Computer Society Press, November 2000. (Page 35.)

65

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai.
Efficient non-interactive secure computation. In Kenneth G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 406–425. Springer, Heidelberg, May 2011.
(Pages 4 and 16.)

[Lin15] Yehuda Lindell. An efficient transform from sigma protocols to NIZK with a CRS
and non-programmable random oracle. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015, Part I, volume 9014 of LNCS, pages 93–109. Springer, Heidelberg,
March 2015. (Page 23.)

[LM18] Huijia Lin and Christian Matt. Pseudo flawed-smudging generators and their applica-
tion to indistinguishability obfuscation. Cryptology ePrint Archive, Report 2018/646,
2018. https://eprint.iacr.org/2018/646. (Pages 8, 59, and 62.)

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In Howard J.
Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 1219–1234. ACM Press,
May 2012. (Pages 4 and 16.)

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 735–763. Springer, Heidelberg, May 2016. (Pages 4
and 15.)

66

https://eprint.iacr.org/2018/646

	Introduction
	Our Results in More Detail

	Technical Overview
	Security Definition of mrNISC Schemes
	Overview of Our mrNISC Scheme
	Construction of WE for NIZK of Commitments

	Related Works
	Preliminaries
	Statistical and Computational Indistinguishability
	Garbled Circuit
	Collision-Resistant Hash Function Family
	Pseudorandom Functions
	Background on Universal Composability
	Network and Corruption Model Used, and Definition of UC-Security
	Semi-Malicious Output-Delayed Simulatability

	WE for NIZK of Commitments: NC1
	Definition of Witness Encryption for NIZK of Commitments
	Bilinear Commitments with Proofs of Quadratic Relations
	WE for NIZK of Commitments for NC1

	WE for NIZK of Commitments: From NC1 to P
	Preliminary: Computational Randomized Encodings.
	From NC1 to P.

	Definitions of mrNISC Schemes and Protocols
	Definition of mrNISC Schemes
	The mrNISC Functionality
	UC-secure mrNISC Protocols from mrNISC Schemes

	Construction of mrNISC Schemes
	Applications of mrNISC
	NIMPC: From Correlated Randomness to the PKI Setting
	Secret-Sharing VBB

