
Unbounded Dynamic Predicate Compositions in ABE from
Standard Assumptions

Nuttapong Attrapadung1 and Junichi Tomida2

1 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan. n.attrapadung@aist.go.jp

2 NTT Corporation, Tokyo, Japan. junichi.tomida.vw@hco.ntt.co.jp

Abstract. At Eurocrypt’19, Attrapadung presented several transformations that dynamically
compose a set of attribute-based encryption (ABE) schemes for simpler predicates into a new
ABE scheme for more expressive predicates. Due to the powerful unbounded and modular nature
of his compositions, many new ABE schemes can be obtained in a systematic manner. However,
his approach heavily relies on q-type assumptions, which are not standard. Devising such powerful
compositions from standard assumptions was left as an important open problem. In this paper,
we present a new framework for constructing ABE schemes that allow unbounded and dynamic
predicate compositions among them, and show that the adaptive security of these composed ABE
will be preserved by relying only on the standard matrix Diffie-Hellman (MDDH) assumption.
This thus resolves the open problem posed by Attrapadung.

As for applications, we obtain various ABEs that are the first such instantiations of their kinds
from standard assumptions. These include the following adaptively secure large-universe ABEs
for Boolean formulae under MDDH:
– The first completely unbounded monotone key-policy (KP)/ciphertext-policy (CP) ABE. Such

ABE was recently proposed, but only for the KP and small-universe flavor (Kowalczyk and
Wee, Eurocrypt’19).

– The first completely unbounded non-monotone KP/CP-ABE. Especially, our ABEs support a
new type of non-monotonicity that subsumes previous two types of non-monotonicity, namely,
by Ostrovsky et al. (CCS’07) and by Okamoto and Takashima (CRYPTO’10).

– The first (non-monotone) KP and CP-ABE with constant-size ciphertexts and secret keys,
respectively.

– The first KP and CP-ABE with constant-size secret keys and ciphertexts, respectively.

At the core of our framework lies a new partially symmetric design of the core 1-key 1-ciphertext
oracle component called Key Encoding Indistinguishability, which exploits the symmetry so as
to obtain compositions.

Keywords: Attribute-based encryption, predicate compositions, k-Lin, completely unbounded ABE,
non-monotone ABE, succinct ABE, Boolean formula

Table of Contents

1 Introduction . 3
1.1 Our Contributions . 4
1.2 Technical Overview of Our Framework . 7
1.3 Technical Comparisons to Previous Unbounded ABE and More . 11

2 Preliminaries . 12
2.1 Basic Definitions and Tools . 12
2.2 Attribute-Based Encryption . 14
2.3 Piecewise Guessing Framework . 14
2.4 Pebbling Strategy for Boolean Formulae . 15
2.5 Embedding Lemma . 16

3 Pair Encoding Schemes . 16
3.1 Pair Encoding Scheme Definition . 16
3.2 Security Properties of PESs . 17

4 Predicate Transformations . 20
4.1 Direct Sum of Predicate Families . 20
4.2 Dual Predicates . 22
4.3 Key-Policy Augmentation . 24
4.4 Conforming PES for ABE . 30

5 ABE from PES . 30
6 Extensions, Instantiations, and Applications . 33

6.1 Overview . 33
6.2 Augmentation over Predicate Sets . 34
6.3 Basic Predicates . 35
6.4 Completely Unbounded ABE for Monotone Formulae . 36
6.5 Completely Unbounded ABE for Non-Monotone Formulae . 36
6.6 Unified Definition for Bounded ABE for Boolean Formulae . 37
6.7 KP-ABE with Constant-Size Ciphertexts . 38
6.8 CP-ABE with Constant-Size Ciphertexts . 40
6.9 KP-ABE, CP-ABE with Constant-Size Keys . 43

References . 43
A More Related Works . 45
B Concrete Descriptions of Our Instantiations . 46

B.1 Completely Unbounded KP-ABE for Monotone Formulae . 46
B.2 Completely Unbounded CP-ABE for Monotone Formulae . 47
B.3 KP-ABE with Constant-Size Ciphertexts for Monotone Formulae 48

1 Introduction

Attribute-based encryption (ABE) is a generalized form of public-key encryption that allows fine-
grained access control over encrypted data [26, 36]. In a broader sense of ABE, each scheme specifies
a predicate P : X × Y → {0, 1}, where X and Y are ciphertext and secret-key attribute universes,
respectively. All users can encrypt a message with an arbitrary attribute x ∈ X. An owner of a master
secret key can generate a secret key for an arbitrary attribute y ∈ Y. A ciphertext for attribute x
is decryptable with a secret key for attribute y if and only if x and y satisfy the predicate P, i.e.,
P(x, y) = 1. This is in contrast to the traditional public-key encryption, in which only one legitimate
user can decrypt a ciphertext.

One of central research topics in ABE is to explore what kind of predicates for which ABE can be
realized. This is important in practice since if one attempts to realize an access control system based
on ABE, the underlying predicate must be able to express all decryption conditions that appear in
the system. A line of works has shown that we can realize ABE for various predicates: ABE for span
programs, (non-)deterministic finite automata, polynomial-sized circuits, and so on [4,13,24,26,28,34,
36,40]. These works directly construct ABE schemes for targeting predicates. In contrast, there is also
another approach to construct ABE schemes for more expressive new predicates by transformations
and combinations of known predicates [6,7,9,12]. The state of the art on this approach is the work by
Attrapadung [9], who proposed a framework for dynamic predicate compositions and introduced new
ABE schemes such as ABE for key-policy (KP)/ciphertext-policy (CP) augmentation over predicate
sets, nested-policy ABE, and mixed-policy ABE. The salient feature of these ABE schemes is that they
allow unbounded and dynamic predicate compositions, that is, they do not impose any restriction on
the size and structure of composition policy. This is in contrast to previous works [6,7,12], which allow
only static (i.e., a-priori fixed) compositions. He also showed that his framework captures predicates
that are known but whose adaptively secure ABE instance was still open such as the predicate for
completely unbounded non-monotone ABE.

The framework of [9] modularly constructs new predicates with corresponding pair encoding schemes
(PES), which are encoding systems that yield concise expressions of ABE schemes [7]. It is shown in [9]
that a nested application of three transformations of predicates, namely, direct sum, dual transforma-
tion, and KP augmentation over a single predicate (we call it just KP augmentation in what follows),
is sufficiently powerful to obtain expressive predicates, such as the predicates for KP/CP augmen-
tation over predicate sets, nested-policy ABE, and completely unbounded non-monotone ABE. He
also demonstrates the transformations of PESs that correspond to the three transformations of the
predicates. Hence, starting from known predicates and corresponding PESs, one can obtain a new
transformed predicate along with its PES. Additionally, all PESs obtained in his framework can be
used to instantiate a secure ABE scheme.

A crucial fact that his framework relies on is that the transformations of PESs preserve the symbolic
property, introduced by Agrawal and Chase [3]. That is, he proved that all transformed PESs in his
framework satisfy the symbolic property if the starting PESs satisfy the symbolic property. Agrawal
and Chase showed that an ABE scheme induced by a PES with the symbolic property is adaptively
secure under the q-ratio assumption [3]. Thus, we can use known predicates that have a PES with the
symbolic property to construct a new expressive predicate and the corresponding PES, which results
in a secure ABE scheme.

One drawback of his framework is the necessity of the q-ratio assumption, which is one of so-called q-
type assumptions. The q-ratio assumption is parame-trized with two parameters d1 and d2 and becomes
stronger as they grow. We require that the q-ratio assumption holds with respect to sufficiently large
d1 and d2 to assure the security of most ABE schemes because these parameters depend on adversary’s
behavior. However, the q-ratio assumption is a new complex assumption and thus not well-understood.
Hence, it is desirable if we can transform PESs and instantiate an ABE scheme from a transformed
PES under well-understood standard assumptions like the matrix Diffie-Hellman assumption (which
includes k-Lin as a special case), instead of q-type assumptions. The realization of such a framework

3

Table 1. Comparison among frameworks that compose multiple predicates over ABE.

Framework Composition type Comp. class Input primitive Assumption

ABS17 [6] Static Boolean formulae Predicate encodings (info.-theoretic) MDDH
Att19 [9] Unbounded, Dynamic SP, BP, DFA Pair encodings with symbolic security q-ratio
This work Unbounded, Dynamic Boolean formulae Pair encodings with info.-theoretic security MDDH

or with Key-Encoding Indistinguishability

Note: SP, BP, DFA stand for span programs, branching programs, deterministic finite automata, respectively.

yields many important new ABEs from standard assumptions but has been left as an open problem
by Attrapadung [9].

1.1 Our Contributions

New Framework. We give an affirmative answer to the problem and present a new framework for
transforming predicates and constructing ABE schemes on prime-order bilinear groups, which relies
on only the standard matrix Diffie-Hellman (MDDH) assumption. Following [9], our framework also
composes a new predicate by combining three essential transformations, namely, the direct sum, dual
transformation, and KP augmentation. Nested applications of these transformations yield various
expressive predicates and ABE schemes. Our framework introduces a new property on PESs that
satisfies the two requirements under the MDDH assumption: the preservation of the property in the
transformations and the induction of the adaptive security of the resulting ABE scheme.

Note that there are two differences between our framework and that by Attrapadung [9] (we provide
a comparison among composition frameworks in Table 1). First, our KP augmentation is done with
Boolean formulae, whereas that by Attrapadung is augmentation with span programs, branching pro-
grams, and deterministic finite automata (realizing them from standard assumptions is an interesting
open problem). Second, starting predicates need to have a PES with a certain information-theoretic
property, whereas those in his framework only require a PES with the symbolic property. Note that
the latter may be attainable by larger classes of predicates (but the symbolic property would require
q-type assumptions). Nevertheless, our framework is still sufficiently powerful to realize many ABE
schemes of which instantiations under the standard assumptions have remained open before our work.

New Instantiations. Via our new framework, we obtain the following ABE instantiations for im-
portant specific predicates. We emphasize that all the instantiations are large-universe constructions,
which have a super-poly size attribute domain. Their comparisons to previous schemes are given in Ta-
bles 2 to 5.

1. The first adaptively secure completely unbounded KP/CP-ABE for monotone Boolean formulae
under MDDH.3 Previously, such an adaptively secure KP/CP-ABE relies on either q-type assump-
tions [3, 8, 9] or the one-use restriction (each attribute is usable at most once in a policy) [16, 33].
Note that the recent unbounded KP-ABE with multi-use by Kowalczyk and Wee [29, §A] is a
small-universe construction, i.e., the attribute domain size is (a priori unbounded) polynomial.

2. The first adaptively secure completely unbounded KP/CP-ABE for non-monotone Boolean formu-
lae under MDDH. Furthermore, our ABE schemes support a new type of non-monotonicity that
conflates the two types of existing non-monotonicity by Ostrovsky, Sahai, and Waters (OSW) [34]
and by Okamoto and Takashima (OT) [32]. In other words, both OSW-non-monotone ABE and
OT-non-monotone ABE can be captured as a special case of our non-monotone ABE. Previously, an

3 To be more precise, we describe some terms. Unbounded ABE [30] refers to schemes that have no bounds on
the sizes of attribute sets (inputs to a Boolean formula) and policies (Boolean formulae). Multi-use refers
to the property that any attribute can be used arbitrarily many times in one policy. Completely unbounded
ABE refers to unbounded large-universe ABE with multi-use (see e.g., [9]).

4

Table 2. Comparison among unbounded ABE schemes.

References
Large

universe
Adaptive
security

Multi-
use

Static
assumption

Without
RO

Non-
monotonicity

Prime-
order

KP/CP

LW11 [30] X X X X KP
OT12 [33] X X X X X(OT) X KP, CP
RW13 [35] X X X X KP, CP
YAHK14 [42] X X X X(OSW) X KP, CP
Att14 [7] X X X X KP
AY15 [12] X X X X CP
Att16 [8] X X X X X KP, CP
AC17a [3] X X X X X KP, CP
AC17b [2] X X X X KP, CP
CGKW18 [16] X X X X KP, CP
KW19 [29] X X X X X KP
Att19 [9] X X X X X(OSW) X KP, CP
TKN19 [38] X X X X X(OT) X KP, CP

Ours 1 X X X X X X KP, CP
Ours 2 X X X X X X(OSWOT) X KP, CP

Note: KP, CP is for key-policy, ciphertext-policy. RO is for random oracles. We consider three
types of non-monotone ABE: OT-type (Okamoto-Takashima [33]), OSW-type (Ostrovsky-Sahai-
Waters [34]), and a new unified type (OSWOT) (see §6).

adaptively secure unbounded ABE for non-monotone formulae is either the OSW-type and based
on q-type assumption [9] or the OT-type with the one-use restriction [33].

3. The first adaptively secure KP/CP-ABE with constant-size ciphertexts/secret keys under MDDH
for (OSW-non-)monotone Boolean formulae, respectively.

4. The first (adaptively secure) KP/CP-ABE with constant-size secret keys/ciphertexts under MDDH
for monotone Boolean formulae, respectively.

Note that almost all previous ABE with constant-size ciphertexts or keys rely on q-type assump-
tions [1, 3, 7–10, 12], even when considering only selective security. There are only two exceptions:
KP-ABE with constant-size ciphertexts of [17,37], but these only achieves semi-adaptive security.

Discussions. We clarify that our framework allows us to construct ABEs that are hard to obtain
even if given the recent groundbreaking work by Kowalczyk and Wee (KW), who solved the multi-
use problem in the adaptive setting and also presented an unbounded KP-ABE scheme with multi-
use [29]. Most notably, we can construct completely unbounded OSW-non-monotone KP/CP-ABEs
via our framework in a systematic manner (our newly defined non-monotone ABE subsumes OSW-
non-monotone ABE). Prior to our work, there are no unbounded OSW-non-monotone ABE schemes
based on static assumptions even with the one-use restriction (Table 2). This means that the KW
technique, which is useful for the multi-use problem, does not directly help to realize unbounded
OSW-non-monotone ABE.

We next highlight that our ABE for the newly defined non-monotonicity is practically meaningful,
besides providing a theoretical interest. Intuitively, it allows a ciphertext to be assigned with multiple
attribute sets each with a “tag”. This, in turns, allows flexible blacklisting access controls in dynamic
systems where new attributes can be added on into the system after deployment. We will describe
it with more details in §6. We remark that, in small universe ABE, we can use monotone ABE as
non-monotone ABE by preparing both positive and negative attributes [34]. However, this is not the
case in large-universe ABE since we cannot attach an exponentially large number of negative attributes
to ciphertexts or secret keys. Hence, for large-universe ABE, non-monotone variant is essentially more
difficult to obtain.

5

Table 3. Closer comparison among adaptively secure unbounded ABE with multi-use in the standard model.

References KP/CP
Large
univ.

Static
assump.

Non-
monoton.

|pk| |ct| |sk|

Att14 [7], Att16 [8], AC17a [3] KP X O(1) O(t) O(n)
KW19 [29] KP X O(1) O(t) O(n)
Att19 [9] KP X X(OSW) O(1) O(t) O(n)

Ours 1 KP X X O(1) O(t) O(n)
Ours 2 KP X X X(OSWOT) O(1) O(t) O(n)

AY15 [12], Att16 [8], AC17a [3] CP X O(1) O(n) O(t)
Att19 [9] CP X X(OSW) O(1) O(n) O(t)

Ours 1 CP X X O(1) O(n) O(t)
Ours 2 CP X X X(OSWOT) O(1) O(n) O(t)

Table 4. Comparison among ABE with constant-size ciphertexts (|ct| = O(1)).

References
KP
/CP

Large
univ.

Adapt.
security

Static
assumptn.

Non-
monoton.

Prime-
order

|pk| |sk|

ALP11 [11] KP X X(OSW) X O(T) O(Tn)
Att14 [7] KP X X O(T) O(Tn)
CW14 [17] KP X O(T) O(Tn)
Tak14 [37] KP X X X(OSW) X O(T) O(Tn)
Att16 [8] KP X X X O(T) O(Tn)
AC17a [3] KP X X X O(T) O(Tn)
Att19 [9] KP X X X(OSW) X O(T 2) O(T 3n)

Ours 3 KP X X X X(OSW) X O(T) O(Tn)

AHY15 [10] CP X X X(OSW) X O((TN)2λ) O((TN)4λ2)
AC16 [1] CP X X O(N(T +M)) O(N2T +NM)
Att19 [9] CP X X X(OSW) X O(N2 +NM) O(t(N3 +N2M))

Ours 5 CP X X X X Õ((M + Tλ)2) Õ((M + Tλ)4)

Table 5. Comparison among ABE with constant-size keys (|sk| = O(1)).

References
KP
/CP

Large
univ.

Adapt.
security

Static
assumptn.

Non-
monoton.

Prime-
order

|pk| |ct|

AY15 [12] CP X X O(T) O(Tn)
Att16 [8] CP X X X O(T) O(Tn)
AC17a [3] CP X X X O(T) O(Tn)
Att19 [9] CP X X X(OSW) X O(T 2) O(T 3n)

Ours 4 CP X X X X(OSW) X O(T) O(Tn)

AHY15 [10] KP X X X(OSW) X O((TN)2λ) O((TN)4λ2)
Att19 [9] KP X X X(OSW) X O(N2 +NM) O(t(N3 +N2M))

Ours 6 KP X X X X Õ((M + Tλ)2) Õ((M + Tλ)4)

Notes for Table 3 to 5: we denote t = |attribute set|, n is the input length of a Boolean formula,
while T,N are the maximum bound for t, n, respectively (if required). M is the maximum bound
for the size of Boolean formulae (if required). λ is the security parameter, i.e., λ = dlog pe.

6

From these, we believe that it is challenging and important to devise a modular framework that
allows us to construct such ABEs from standard assumptions.

1.2 Technical Overview of Our Framework

We first recall the three main basic predicate transformations/compositions similarly to [9], namely,
the Dual, the KP augmentation, and the Direct sum. For a predicate P : X×Y→ {0, 1}, we define the
first two, Dual[P], KP1[P], as4

Dual[P] (y, x) = P(x, y)

KP1[P]
(
x, Y =

(
(y1, . . . , yn), f

))
= f

(
P(x, y1), . . . ,P(x, yn)

)
.

We remark two things: a composition policy f : {0, 1}n → {0, 1} is a part of the key attribute Y ;
the “1” in KP1 refers to the single predicate P and a single ciphertext attribute x. Next, for a set
of predicates P = {P1, . . . ,Pk}, we define its direct sum DS[P] as follows. Here i, j specifies predicate
Pi,Pj , respectively.

DS[P]
(

(i, x), (j, y)
)

= 1 iff i = j ∧ Pi(x, y) = 1.

It is shown in [9] that the three transforms imply the “full” KP augmentation over predicate sets,
denoted KP[P] (notice the absent of “1”), defined as follows. For a set X = {(i1, x1), . . . , (it, xt)} and
vector Y = ((j1, y1), . . . , (jn, yn), f), let

KP[P]
(
X, Y

)
= f(b1, . . . , bn) where bv = 1 iff ∃iu=jv : Pjv (xu, yv) = 1

It is this full composition that we quantify the static vs dynamic, bounded vs unbounded features: it
is static if f is fixed (and hence so does n), otherwise it is dynamic over the class of f ; it is unbounded
when n is unbounded.

We briefly explain its direct applications. Setting P′ = {E}, where E is the equality predicate (IBE),
we obtain the completely unbounded KP-ABE for monotone policies, that is, ABE for KP[P′] implies
Ours 1 in Table 2. Similarly, setting P′′ = {E, Ē}, where Ē is the negation of E, basically yields that
for non-monotone policies (see other precise ways to define its variants in §6.5).

As motivated in [9], the seemingly unrelated Dual indeed plays a crucial role in bootstrapping KP1 to
KP (i.e., even when considering bootstrapping over sole key-policy flavors, and not considering across
dual flavors, namely ciphertext-policy). Intuitively, this is since the full KP “intrinsically” contains a
ciphertext-policy predicate as given by Dual[KP1[P]]

(
X ′ =

(
(x1, . . . , xt), fOR

)
, y
)
, where X ′ with the

OR policy here is another way to express the set X in KP. “Nesting” KP1 and Dual ◦ KP1 together
then yields KP (see §6.2 or [9]). Note also that the direct sum is used to “glue” predicates in P to single
predicate; it is not needed for the case of a singleton P (such as P′ above). Now that KP is reduced to
the much simpler KP1, Dual (and DS), we will deal with these basic transforms.

Background on PES. We now briefly recall PES [7], as refined in [3]. Informally, a PES for P :
X × Y → {0, 1} is represented by a variable α, five vectors of variables (w, s, ŝ, r, r̂), and two sets of
polynomials (called ciphertext and key encodings, resp.) on these variables (cx(s, ŝ,w),ky(α, r, r̂,w))
that depend on x ∈ X and y ∈ Y, respectively. We require that s contains a variable s0. Let N = p1p2

for primes p1, p2, and e : G ×H → GT be bilinear groups of order N . Let gi, hi be generators of the
subgroups Gi, Hi of order pi for i ∈ {1, 2}, respectively, and g = g1g2, h = h1h2. Then, an ABE scheme
in composite-order groups based on PES can be described as follows: pk = (gw

1 , e(g1, h)α) and

ctx = (gs
1, g

cx(s,ŝ,w)
1 , e(g1, h)s0αm), sky = (hr

1, h
ky(α,r,r̂,w)
1 h

ky(α,0,r̂,0)
2),

4 For simplicity, we omit writing their domains here. See formal treatments in §4,§6.2.

7

where (α,w, s, ŝ, r, r̂)← ZtN (t is the total number of the variables). We require that each polynomial
of cx is a linear combination of monomials siwj and ŝk (where si ∈ s, ŝk ∈ ŝ, wj ∈ w). This yields the
linearity of cx over s, ŝ, when fixing w. Analogous properties go for key encodings. As an example, a
PES for IBE [7] has the form cx = s0(w1x+w2), ky = α+ r1(w1y+w2), where w = (w1, w2), s = s0,
r = r1 (and no ŝ, r̂). In what follows in this section, we write cx(s, ŝ,w) and ky(α, r, r̂,w) to implicitly
include s and r, respectively.

Our Goal: Three Main Implications. Since the symbolic property works only with the q-ratio
assumption, we need a completely different new notion on PES that is preserved via the transfor-
mations, and that, at the same time, implies the adaptive security of the induced ABE scheme under
standard assumptions. To this end, in this work, we introduce a new central notion called Key-Encoding
Indistinguishability for PES, denoted KE-ind. Our goal is to design KE-ind in such a way that the fol-
lowing theorems (stated informally below) hold. The first states the preservation of KE-ind under the
transformation. The second states that KE-ind implies adaptively secure ABE under MDDH.

Informal Theorem 1. For a composition C ∈ {Dual,DS,KP1}, if there exists a PES for P that
satisfies KE-ind, then there exists a PES for C[P] that satisfies KE-ind under MDDH. (Note that for
DS, its input is a predicate set P.)

Informal Theorem 2. If there exists a PES for P that satisfies KE-ind, then there exists an adaptively
secure ABE scheme for P under MDDH.

The third theorem finally tells us how to achieve KE-ind via the existing information-theoretic
notion of PES called perfect master-key hiding (PMH) of PES as defined in [7]. PMH requires that
the following two distributions are identical with respect to (α,w, s, ŝ, r, r̂)← ZtN :

{cx(s, ŝ,w),ky(α, r, r̂,w)} and {cx(s, ŝ,w),ky(0, r, r̂,w)}. (1)

Informal Theorem 3. If a PES satisfies the PMH property, then the same PES also satisfies KE-ind
under MDDH.

From these theorems, we have the following corollary.

Informal Corollary 1. If there exists a PES for P satisfying the PMH, then there exists an adaptively
secure ABE for the composed predicate C1 ◦ · · · ◦ Cn[P] under MDDH, where Ci ∈ {Dual,DS,KP1}.
(For DS inputs are sets.)

We can start from such information-theoretic PESs for basic predicates in [6, 7], such as IBE, and
obtain adaptively secure ABE for composed predicates.

To obtain these theorems, it remains to properly design KE-ind.

Designing Key-Encoding Indistinguishability. For simplicity, we explain our framework in
composite-order bilinear groups in this overview since we can basically convert ABE constructions in
composite-order groups into those in prime-order groups via the framework by Chen et al. [15,16,21].
Note that the MDDH assumption in prime-order groups corresponds to the subgroup (SG) assumptions
in composite-order groups (see e.g., [16]).

Our starting point is to define KE-ind to be exactly the computationally master-key hiding (CMH)
property [7], which is a relaxed notion of PMH (and we would obtain Theorem 3 above). We say that
a PES Γ specified by (α,w, s, ŝ, r, r̂, cx,ky) for P satisfies CMH if the following advantage of A is
negligible:

AdvCMH
A,Γ (λ) =

∣∣∣∣Pr [β = β′
β ← {0, 1}
β′ ← AcO(·),kOβ(·)(g1, g2, h1, h2)

]
− 1

2

∣∣∣∣ ,
where the ciphertext encoding oracle cO takes x ∈ X and outputs g

cx(s,ŝ,w)
2 , while the key encoding

oracle kOβ takes y ∈ Y and outputs h
ky(βα,r,r̂,w)
2 , where α,w, s, ŝ, r, r̂ are random. Here A can query

8

each oracle once with R(x, y) = 0. Attrapadung showed that if we have a PES for P with CMH, then
we can obtain an adaptively secure ABE scheme for P assuming the SG assumption [7] (this implies
Theorem 2). Thus, if we could show that CMH is preserved via the transformations (this would imply
Theorem 1), we would achieve the goal.

Unfortunately, we quickly found out that this approach fails; in particular, we do not know how
to preserve CMH via the KP1 transformation. Assume that we use the same KP1 transformation as
in [9], which transforms a PES Γ for P to a PES Γ ′ for KP1[P] to be exactly the same as Γ except
that

k′Y (α, r′, r̂′,w) = {kyi(σi, ri, r̂i,w)}i∈[n]

and r′ = {ri}i∈[n], r̂′ = {r̂i}i∈[n], where {σi}i∈[n] are secret shares of α with respect to f . (Here, primed
variables are for Γ ′.) Our goal here is to construct a reduction that breaks CMH of Γ internally using an
adversary that breaks CMH of Γ ′. One hopeful strategy is to limit f to Boolean formulae and consider
a series of hybrids as the KW framework [29]. However, this idea does not work as the reduction cannot

simulate {hkyi (σi,ri,r̂i,w)
2 }i 6=j when randomizing h

kyj (σj ,rj ,r̂j ,w)

2 due to the absence of hw
2 . Including hw

2

in the input of the CMH adversary does not solve the problem since this makes PMH not imply CMH,
and Theorem 3 does not hold in such a definition (observe that in Eq. (1), w is not given out). Our
next observation here is that we will need a property on indistinguishability of H2 elements where the
output of kOβ is simulatable without hw

2 .

First Step: Subgroups vs Entire Groups. Our first idea is to make the outputs of cO and kOβ
use entire groups G,H instead of only subgroups G2, H2, which can be seen as an extension of the
technique by Tomida et al. [38]. A new candidate property (say, Cand1) for Γ is then defined as follows:

AdvCand1A,Γ (λ) =

∣∣∣∣Pr [β = β′
β ← {0, 1}, w← ZωN
β′ ← AcO(·),kOβ(·)(g1, h1, h2, g

w
1 , h

w
1)

]
− 1

2

∣∣∣∣ ,
where gcx(s,ŝ,w) ← cO(x) and h

ky(0,r,r̂,w)
1 h

ky(βα,0,r̂,0)
2 ← kOβ(y) where α, s, ŝ, r, r̂ are random. Crucially,

now, g2 is not given out to A.
Cand1 implies an adaptive security of the ABE scheme from Γ (and we obtain Theorem 2). Intu-

itively, the indistinguishability of the H2 elements in the output of kOβ implies the indistinguishability
between normal and semi-functional keys, which then implies the adaptive security of the ABE scheme
via the dual system technique [39]. Next, Cand1 can be shown to be implied by PMH and the SG
assumption (and we obtain Theorem 3) as follows (also recall linearity of ky):

h
ky(0,r,r̂,w)
1 h

ky(0,0,r̂,0)
2 ≈c

SG
− · hky(0,r,r̂,w)

2 ≈s
PMH

− · hky(α,r,r̂,w)
2 ≈c

SG
− · hky(α,0,r̂,0)

2 .

Note that “−” is the same element in H1, and ≈c,≈s are computational and statistical indistin-
guishability, respectively. The purpose for making g2 absent in A’s input is to use the SG assumption
that claims hr

1 ≈c hr. In this way, we can prove that Cand1 is preserved in KP1 for Boolean for-
mulae by extending the KW framework. Intuitively, the reduction goes through as it can simulate

Ki = h
kyi (0,ri,r̂i,w)
1 h

kyi (σi,0,r̂i,0)
2 without hw

2 (observe that there is no w in the exponent to h2 in Ki).
However, it turns out that Cand1 is not preserved in Dual. Assume that we use the same Dual

transformation as in [3], which transforms a PES Γ for P to a PES Γ for Dual[P] as follows: first let
the variables for Γ be w′ = (w0,w), s′ = (snew, r), ŝ′ = r̂, r′ = s, r̂′ = ŝ and define the two encodings
for Γ as

c′y(s′, ŝ′,w′) = ky(sneww0, r, r̂,w), k′x(α, r′, r̂′,w′) = (cx(s, ŝ,w), α− s0w0),

where w0, snew are new variables, and snew takes a role of s0 in Γ . To prove the preservation of Cand1
in Dual, we need to construct a reduction R that breaks Cand1 of Γ internally using an adversary A

against (Cand1 of) Γ . A crucial fact here is that the roles of G and H are “switched”, that is, R uses

9

its input G and H as H and G for the input of A, respectively. This is since R needs the reply of cOR

to answer A’s query to kOA (and analogously for kOR to cOA). Now the problem arises as R does not
possess g2, but this very term will be needed to supply to A’s input as h2 (recall the “switching” of G
and H). Also recall that h2 was necessary to prove Theorem 2 (to simulate semi-functional keys).

Second Step: Parametrized vs Same-at-once. To solve the above problem, instead of preserving
the same property from Γ to Γ , we will establish an implication over slightly different properties on
Γ and Γ . Namely, we use more subgroups by letting N = p1 · · · pz and parametrize the candidate
property as (z, `)-Cand2, where z, ` ∈ N s.t. z ≥ `. Defining bilinear groups e : G ×H → GT of order

N and its subgroups naturally, we then define Adv
(z,`)-Cand2
A,Γ (λ) as∣∣∣∣Pr[β=β′

β ← {0, 1}, w← ZωN
β′←AcO(·),kOβ(·)(g1, h1, g`+1, . . . , gz, h`, . . . , hz, g

w
1 , h

w
1)

]
−1

2

∣∣∣∣ (2)

where gcx(s,ŝ,w) ← cO(x) and h
ky(0,r,r̂,w)
1 h

ky(βα,0,r̂,0)
` ← kOβ(y). In this way, we have that g` is absent

(generalizing the absence of g2, so as to establish Theorem 3 as in the first step), but now, at the same
time, we can also potentially establish the implication over Dual that (z, ` − 1)-Cand2 of Γ implies
(z, `)-Cand2 of Γ for ` ≥ 2 in the sense that the reduction R possesses g`, . . . , gz (as per the former
notion) which can be used to exactly simulate h`, . . . , hz (giving to the adversary A against the latter
notion), where we recall the switching of G and H.

Final Step: Wrapping up (Partial) Symmetries in Two Oracles. In the above, we generalize
the functionality of the subgroups G2, H2 directly to G`, H` and hence obtain the above design of the
oracle kO. However, this design fails when we try to use the reply of cOR to answer A’s query to kOA

(as presumably required in the reduction). This is since the former is an element of the entire group,
while the latter is in the subgroup with generators h1, h`; however, A possesses g`+1 and thus can
simply distinguish the two. A similar failure occurs analogously when relating kOR to cOA. To solve
this, we need to re-design also the two oracles carefully (satisfying not only this particular preservation
of Dual that we are discussing but also all the required 3 theorems). To this end, our solution is to
define them in partially (and not fully) symmetrical manner:

g
cx(s,0,w)
1 g

cx((s0,0),0,w)
[2,`] gcx(0,ŝ,0) ← cO(x),

h
ky(0,r,0,w)
1 h

ky(βα,0,0,0)
` hky(0,0,r̂,0) ← kOβ(y),

and also additionally give out T = (g[1,`], . . . , g[1,z], h[1,`+1], . . . , h[1,z]) (as inputs to A in Eq. (2)),

where we denote g[a,b] = ga · · · gb for a ≤ b. Intuitively, the forms of cOR and kOA are now somewhat
symmetric, except the difference lying in the subgroups with indexes 2, . . . , ` − 1, and we observe
that the adversary does not possess an element from these subgroups so as to distinguish the two;
therefore, we can use the former to simulate the latter, under the SG assumption. The additional
input T is essential for the other oracle simulation (from kOR to cOA). Crucially, giving out individual
generators such as g2, . . . , g` would destroy the “absence” requirement (essential for Theorem 3); while,
on the other hand, giving out the elements like g[1,i] do work.

This completes our design rational of (z, `)-KE-ind (in the composite-order-groups flavor). Note
that ` is incremented by 1 after applying one Dual conversion. Starting from (z, 1)-KE-ind, we have
that z−1 is the maximum number of Dual applications. Thus, by choosing z depending on the number
of dual applications to obtain a target predicate P, we can instantiate a secure ABE scheme for P.
Also note that (z, `)-KE-ind will require s to consist of only s0 so that it is implied by PMH. We call it
single-variable PMH. Note that PESs with single-variable PMH are still more general encodings than
predicate encodings [6, 41].

All in all, our conceptually new insight is the partially symmetric design of the core 1-key 1-
ciphertext component (our KE-ind) so as to incorporate Dual (crucial in bootstrapping KP1 to KP).
This differs to other similar core components in the literature, notably, the “1-ABE” in [29]. We
discuss more in the next subsection.

10

Table 6. Comparison with unbounded KP-ABE from Dk-MDDH by KW19 [29].

References Security loss |pk| |ct| |sk|

KW19 [29] O(Uqsk)2
O(B) (5k2 + k)|G1| ((3k + 1)t+ 2k + 1)|G1| ((5k + 2)n+ (2k + 1)m)|G2|

+k|GT| +|GT|
Ours 1 (§B.1) O(qsk)2

O(B) (4k2 + 8k)|G1| ((2k + 4)t+ k + 2)|G1| (3k + 6)n|G2|
+k|GT| +|GT|

Note: U is the attribute domain size, qsk is the maximum number of secret key queries, B is the
maximum depth of formulae, t = |attribute set|, m and n are the number of gates and the input length
of a formula, respectively.

1.3 Technical Comparisons to Previous Unbounded ABE and More

Comparisons on Resulting Unbounded ABEs. Our framework allows us to modularly construct
unbounded ABE schemes. Thus, one may wonder how our framework compares to previous unbounded
ABE schemes from static assumptions [16, 29, 30, 33]. Basically, these ABE schemes rely on so-called
“nested dual system technique”, in which entropy in secret keys is increased via entropy propagation
between a secret key and ciphertext. All these works uses the IBE predicate as a source of entropy.

Intuitively, when instantiating our framework to completely unbounded monotone ABE, such an
entropy propagation can be viewed as being decomposed into modular parts, namely, the PMH (of a
PES for IBE), the KP1 transform, and the Dual transform (recall that we apply KP1 and Dual◦KP1 to
IBE in a nested manner to achieve such an ABE instance [9]). This predicate transformations implicitly
trace a similar hybrid sequence to that by Lewko and Waters (LW) [30], borrowing the power of the
KW framework (the piecewise guessing framework) to do it in the adaptive setting. An important
fact here is that our framework uses the KW framework in a “nested” manner. Intuitively, this is
the reason why our ABE schemes can be constructed as large-universe constructions similarly to the
LW unbounded scheme. On the other hand, the KW unbounded scheme [29] is obtained by directly
applying the KW framework (not in a nested manner) to the unbounded small-universe ABE scheme
in [16]. This, in turn, inherently poses a linear cost of the universe size U in the security loss (and
hence U cannot be super-polynomially large) for the KW scheme (see Table 6).

Another advantage of our framework over the KW scheme is that we do not use the subgroup DDH
assumption [16], which requires a k-dimensional semi-functional space for the k-Lin assumption. In
contrast, 1-dimensional semi-functional spaces suffice for our framework. This yields asymptotically
smaller ciphertexts and keys than the KW scheme (asymptotic in k, see Table 6).

On Conceptually New Insight of Our Framework. Some avid reader may wonder whether
our modular approach based on KE-ind already “resembles” other existing somewhat modular designs,
notably, the approach based on the so-called “1-ABE” in the KW framework [29, §5.2, Def 4], and thus
might criticize our work to be only conceptually marginal. A possibility of resemblance is in the sense
that, intuitively, they both can be considered essentially as adaptively secure private-key 1-ciphertext,
1-key ABE, which we can then roughly “compile” into full-fledged public-key 1-ciphertext, many-key
ABE using the dual system framework.

To this end, we have at least two important viewpoints against this criticism. First, we can say that
they are already not the same even in a syntactic sense; that is, the “1-ABE” of [29] is defined for a
fixed ABE scheme for a fixed predicate (defined in §5 of [29]), while our KE-ind security is for any ABE
scheme for any predicate with pair encoding structure. Second, even when looking into somewhat more
semantic sense, they are also different. More precisely, the dual-system mechanisms that bootstrap 1-
key to many-key ABE may be well understood; however, we also have to solve more hurdles in order to
obtain compilers for predicate tranformations/compositions, and not only the bootstrapping. We have
explained our solutions in three steps in §1.2. One difference that we can reassure is as follows. Before
that, we first recall that, as discussed in the beginning of §1.2, the Dual transformation is crucial

11

for our modular framework even when considering bootstrapping over sole key-policy flavors (namely,
KP1 to KP). Note that we mentioned this in the first place since Dual seems to be useful only in the
context of transforming across dual flavors, e.g., KP to its dual, CP (but we say that it is not only
so). Now we can reassure one difference: in order to attain the Dual transformation, we have to exploit
the (partial) symmetry so as to dually “switch” the roles of the two oracles in the KE-ind notion,
namely, the 1-ciphertext oracle and the 1-key oracle, cO and kO; however, the similar two oracles in
the “1-ABE” case of [29] are not required to switch and thus need no symmetry, since the duality is
not used in their approach.

Techniques in exploiting the symmetry in 1-ciphertext/1-key components are rooted back to the
first dual transformation by Attrapadung and Yamada [12], which converts between the Selective and
Co-selective Computational Hiding (SMH and CMH, resp.) of PESs for dual predicates. However, in
our case, we need to make our component simultaneously compatible also with other transformations
(notably, the KP augmentation and the direct sum) this time.

More Related Works. There are also some other related works such as [4,5,22,23,31], but they are
somewhat not directly relevant to our main thesis; therefore, we defer the discussion to §A.

2 Preliminaries

Notation. For a natural number m,n ∈ N, [m] denotes a set {1, . . . ,m}, [m]+ denotes a set {0, . . . ,m},
and [m,n] denotes a set {m, . . . , n}. For a set S, s ← S denotes that s is uniformly chosen from S.
We treat vectors as column vectors unless specified otherwise. For a generator gi of a cyclic group Gi
of order p and a ∈ Zp, [a]i denotes gai . Furthermore, for a matrix A = (aj,`)j,` over Zp, [A]i denotes
a matrix over Gi whose (j, `)-th entry is g

aj,`
i . For vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈

Znp , let e([x]1, [y]2) = e(g1, g2)〈x,y〉 be a function that computes the inner product on the exponent

by
∏
i∈[n] e([xi]1, [yi]2). A function f : N → R is called negligible if f(λ) = λ−ω(1) and denotes

f(λ) ≤ negl(λ). For families of distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we denote X ≈c Y
(resp. X ≈s Y) as computational indistinguishability (resp. statistical indistinguishability). For an
interactive game G, 〈A,G〉 denotes the output of A in G.

Matrix notation. Throughout the paper, we use the following matrix notation. For a regular matrix
M ∈ GLk+ζ(Zp), we define M, mi, M∗, and m∗i as follows. M and mi denote a matrix and a vector
consist of the first k columns and the (k+i)-th column of M, respectively. Similarly, M∗ and m∗i denote

a matrix and vector consist of the first k columns and the (k + i)-th column of (M
>

)−1, respectively.
We have the relations, M>m∗i = 0 and m>i m∗i = 1 for i ∈ [ζ]. We also uses the following notations:

span(M,m1, . . . ,mn) = {v | ∃u ∈ Zk+n
p ,v = (M||m1|| . . . ||mn)u},

Ker(M,m1, . . . ,mn) = {v | (M||m1|| . . . ||mn)>v = 0}.

2.1 Basic Definitions and Tools

Boolean Formula and NC1. A monotone Boolean formula can be represented by a Boolean circuit of
which all gates have fan-in 2 and fan-out 1. More precisely, we specify a monotone Boolean formula by a
tuple f = (n,w,m,G) where n,w,m ∈ N represents the number of input wires, the number of all wires
(including the input wires), and the number of gates, respectively, while G : [m]→ {AND, OR}× [w]3

is a function that specifies the gate type, the two incoming wires, and the outgoing wire of each gate.
To specify G, we first let all the wires and gates to be numbered. The wire numbers range from 1 to
w; while those of gates range from 1 to m. For each gate i ∈ [m], the information G(i) = (T, a, b, c)
tells us that T is the type of the gate i, while a and b specify its incoming wires, and c specifies its
outgoing wire. By convention, we always number the wires so that a < b < c. The computation of
Boolean formula f on an input in {0, 1}n is defined naturally; we often abuse the notation and treat
f as a function f : {0, 1}n → {0, 1}.

12

A non-monotone Boolean formula additionally contains NOT gates, which have fan-in 1 and fan-
out 1. It is well-known that, via De Morgan’s law, we can express any non-monotone Boolean formula
by one in which all the NOT gates are placed on the input wires (and the number of gates of the latter
formula is two times of that of the former). Hence, we can specify a non-monotone Boolean formula as
a tuple f = (n,w,m,G,Σ), where Σ : [n] → {Positive,Negative} naturally specifies if the input wire
i ∈ [n] is a negative one or not.

Standard complexity theory tells us that circuit complexity class NC1 and Boolean formulae are
equivalent. It is known also that NC1 is equivalent to the class captured by log-depth Boolean formulae
(see e.g., [29]). Thus, the circuit complexity class captured by Boolean formulae is equivalent to the
class captured by log-depth Boolean formulae.

Definition 1 (Linear Secret Sharing Scheme). A linear secret sharing scheme (LSSS) for a func-
tion class F consists of two algorithms Share and Rec.

Share(f,h): It takes a function f ∈ F where f : {0, 1}n → {0, 1} and a vector h ∈ Zγp . Then, outputs
shares h1, . . . ,hn ∈ Zγp .

Rec(f, x, {hi}xi=1): It takes f : {0, 1}n → {0, 1}, a bit string x = (x1, . . . , xn) ∈ {0, 1}n and shares
{hi}xi=1. Then, outputs a vector h′ or ⊥.

In particular, Rec computes a linear function on shares to reconstruct a secret; h =
∑
xi=1 aihi where

each ai is determined by f . A LSSS has two properties.

Correctness: For any f ∈ F , x ∈ {0, 1}n such that f(x) = 1,

Pr[Rec(f, x, {hi}xi=1) = h | h1, . . . ,hn ← Share(f,h)] = 1.

Security: For any f ∈ F , x ∈ {0, 1}n such that f(x) = 0, and h1, . . . ,hn ← Share(f,h), shares
{hi}xi=1 have no information about h.

Definition 2 (Bilinear Groups). A description of bilinear groups G=(p,G1, G2, GT, g1, g2, e) consist
of a prime p, cyclic groups G1, G2, GT of order p, generators g1 and g2 of G1 and G2 respectively, and
a bilinear map e : G1 ×G2 → GT, which has two properties.

– (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(ha1 , hb2) = e(h1, h2)ab.
– (Non-degeneracy): For generators g1, g2; gT = e(g1, g2) is a generator of GT.

A bilinear group generator GBG(1λ) takes a security parameter 1λ and outputs a description of bilinear
groups G with a Ω(λ)-bit prime p.

Definition 3 (Dj,k-MDDH Assumption [20]). For j > k, let Dj,k be a matrix distribution over
matrices in Zj×kp , which outputs a full-rank matrix with overwhelming probability. Denote Dk+1,k =
Dk. We can assume that, wlog, the first k rows of a matrix chosen from Dj,k form an invertible matrix.
We consider the following distribution: G← GBG(1λ), A← Dj,k, v← Zkp, t0 = Av, t1 ← Zjp, Pi,β =
(G, [A]i, [tβ]i). We say that the Dj,k-MDDH assumption holds with respect to GBG if, for any PPT
adversary A,

Adv
Dj ,k -MDDH
A (λ) = max

i∈{1,2}
|Pr[1← A(Pi,0)]− Pr[1← A(Pi,1)]| ≤ negl(λ).

Uniform distribution Let Uj,k be a uniform distribution over Zj×kp . Then, the following hold with
tight reductions: Dk-MDDH⇒ Uk-MDDH⇒ Uj,k-MDDH.

Random self-reducibility We can obtain arbitrarily many instances of the Dk-MDDH problem with-
out additional security loss. For any n ∈ N, we define the following distribution: G ← GBG(1λ), A ←
Dk, V ← Zk×np , T0 = AV, T1 ← Z(k+1)×n

p , Pi,β = (G, [A]i, [Tβ]i). The n-fold Dk-MDDH assump-
tion is similarly defined to the Dk-MDDH assumption. Then, n-fold Dk-MDDH is tightly reduced to
Dk-MDDH. That is, Dk-MDDH⇒ n-Dk-MDDH.

13

2.2 Attribute-Based Encryption

Predicate Family. Let P = {Pκ : Xκ × Yκ → {0, 1} |κ ∈ K} be a predicate family where Xκ and Yκ
denote “ciphertext attribute” and “key attribute” spaces. The index κ denotes a list of some parameters
such as bounds on some quantities (hence K depends on that predicate). We often omit κ if the context
is clear.

Definition 4 (Attribute-Based Encryption). An attribute-based encryption (ABE) scheme for a
predicate family P consists of four algorithms:

Setup(1λ, κ): It takes a security parameter 1λ, and an index κ as inputs, and outputs a public key pk
and a master secret key msk.

Enc(pk, x,M): It takes pk, an attribute x ∈ X and a message M ∈ M as inputs, and outputs a
ciphertext ctx. (Note that we let M be specified in pk.)

KeyGen(pk,msk, y): It takes pk,msk, and an attribute y ∈ Y as inputs, and outputs a secret key sky.
Dec(pk, ctx, sky): It takes pk, ctx and sky as inputs, and outputs a message M ′ or a symbol ⊥.

Correctness An ABE scheme is correct if it satisfies the following condition. For all λ ∈ N, x ∈ X,
y ∈ Y such that P(x, y) = 1, and M ∈M, we have

Pr

M = M ′

(pk,msk)← Setup(1λ, κ)
ctx ← Enc(pk, x,M)
sky ← KeyGen(pk,msk, y)
M ′ = Dec(pk, ctx, sky)

 = 1.

Security An ABE scheme is adaptively secure if it satisfies the following condition. That is, the
advantage of A defined as follows is negligible in λ for all stateful PPT adversary A:

AdvABEA (λ) =

∣∣∣∣∣∣∣∣∣∣
Pr

β = β′

β ← {0, 1}
(pk,msk)← Setup(1λ, κ)
(x∗,M0,M1)← AKeyGen(pk,msk,·)(pk)
ctx∗ ← Enc(pk, x∗,Mβ)
β′ ← AKeyGen(pk,msk,·)(ctx∗)

− 1

2

∣∣∣∣∣∣∣∣∣∣
,

where all {yi}i∈[qsk] on which A queries KeyGen must satisfy P(x∗, yi) = 0.

2.3 Piecewise Guessing Framework

We briefly recall the piecewise guessing framework by Kowalczyk and Wee [29], which is based on the
framework by Jafargholi et al. [27]. The framework helps us to prove adaptive security of cryptographic
schemes that are selectively secure.

Definition 5 (Interactive Game). An interactive game G is a game between an adversary A and a
challenger C. In the game, A and C send messages interactively, and the messages sent by C depend on
the game G. After the interaction, A outputs β ∈ {0, 1}. We denotes the output of A in G by 〈A,G〉.
Let z ∈ {0, 1}R be a part of messages supposed to be sent by A in the game. In the adaptive game
G, A can send z at arbitrary points as long as it follows a rule of the game. We define the selective
variant of G, denoted by Ĝ, to be the same as G except that A has to declare z that will be sent in the
game, at the beginning of the interaction.

Suppose we want to show that adaptive games G0 and G1 are computationally indistinguishable,
i.e.,

|Pr[〈A,G0〉 = 1]− Pr[〈A,G1〉 = 1]| ≤ negl(λ).

14

Then, we consider a series of selective hybrids Ĥh0 , . . . , ĤhL such that

Ĝ0 = Ĥh0 ≈c Ĥh1 ≈c, . . . ,≈c ĤhL = Ĝ1,

where h0, . . . , hL : {0, 1}R → {0, 1}R′ for some R′ � R, and Ĥhι is an interactive game in which C’s
messages depend on u = hι(z). Additionally, h0 and hL need to be constant functions. Note that C can
generate messages depending on u because z is declared at the beginning of the interaction. Next, we
define variants of Ĥhι , namely, Ĥhι0 and Ĥhι1 as follows. In Ĥhιβ for β ∈ {0, 1}, A has to declare hι−1+β(z)
and hι+β(z) instead of z at the beginning of the game. Then, C interacts with A setting u = hι(z) in

both Ĥhι0 and Ĥhι1 . In other words, Ĥhιβ is the same as Ĥhι except that only partial information of z is
declared. Now we are ready to state the adaptive security lemma.

Lemma 1 (Adaptive Security Lemma [29]). Let G0 and G1 be adaptive interactive games and

{Ĥhi}0≤i≤L be selective hybrids defined above. Suppose they satisfy the two properties:

– G0 = Hh0 and G1 = HhL , where Hh0 and HhL are the same as Ĥh0 and ĤhL , respectively, except
that A does not declare z at the beginning. Note that C’s messages can be correctly defined because
h0 and hL are constant functions.

– For all PPT adversaries A and all ι ∈ L, we have

|Pr[〈A, Ĥhι−1

1 〉 = 1]− Pr[〈A, Ĥhι0 〉 = 1]| ≤ ε.

Then, we have
|Pr[〈A,G0〉 = 1]− Pr[〈A,G1〉 = 1]| ≤ 22R′Lε.

2.4 Pebbling Strategy for Boolean Formulae

A pebbling strategy for Boolean Formula is a guide of how to construct a series of hybrids in the
piecewise guessing framework to prove a sort of adaptive security on a computational secret sharing
scheme for Boolean Formulae.

Definition 6 (Pebbling Game). A player of the pebbling game is given a monotone Boolean formula
f : {0, 1}n → {0, 1} and input b = (b1, . . . , bn) ∈ {0, 1}n such that f(b) = 0. The goal of the game is
to reach the state where a pebble is placed on only the output gate, starting from the state with no
pebbles on the Boolean formula f , following a pebbling rule. The rule is defined as follows.

1. We can place or remove a pebble on an AND gate if at least one of its incoming wires comes from
a gate or input wire with a pebble on it.

2. We can place or remove a pebble on an OR gate if both of its incoming wires come from a gate or
input wire with a pebble on it, respectively.

3. We can place or remove a pebble on input wire i whose input corresponds to 0, i.e., bi = 0.
4. We can pass the turn, which allows us to increase the total number of steps in the game without

changing the pebbling strategy.

Definition 7 (Pebbling Record). A pebbling record R = (r0, . . . , rL) ∈ ({0, 1}R′)L is a list of all
pebbling configuration that a player took from the start to the goal in the game. The R′-bit string rι
specifies the configuration at the ι-th step in the play. Thus, r0 specifies the state with no pebbles and
rL specifies the state with one pebble on the output gate. It also means that the player takes L steps
to reach the goal. Furthermore, all pebbling configurations that the player took can be specified by an
R′-bit string.

The following lemma says that, for any monotone Boolean formula and input, there exists a pebbling
strategy where all pebbling configurations can be specified with a “short” bit string.

Lemma 2 (Pebbling Lemma [29]). Let f : {0, 1}n → {0, 1} be any monotone Boolean formula with
a depth d ≤ B, and b ∈ {0, 1}n be any bit string such that f(b) = 0. Then, there exists a deterministic
algorithm PebRec(f, b) that takes f and b and outputs a record R consisting of 8B strings whose lengths
are 3B bits.

15

2.5 Embedding Lemma

For arguing implications among PESs, we use the embedding lemma. Such a lemma is already known
and applied for arguing implications among ABE schemes [10, 14] and PES [9]. Here we capture that
the embedding also preserves our new security notion for PES, namely, (ζ, `)-KE-ind, as well, in the
lemma below.

Definition 8 ([9]). Let Pκ : Xκ×Yκ → {0, 1}, and P′κ′ : X′κ′×Y′κ′ → {0, 1} be two predicate families,
indexed by κ = (N, par) ∈ K and κ′ = (N, par′) ∈ K′, respectively. We say that P′ can be embedded
into P if there exists three efficient mappings fp, fe, fk where fp : K′ → K maps κ′ = (N, par′) 7→ κ =
(N, par) and fe : X′κ′ → Xκ, fk : Y′κ′ → Yκ such that for all x′ ∈ X′κ′ , y

′ ∈ Y′κ′ , we have:

P′κ′(x
′, y′) = 1 ⇐⇒ Pκ(fe(x

′), fk(y
′)) = 1. (3)

Lemma 3. If P′ can be embedded into P, then any PES for P secure in the sense of (ζ, `)-KE-ind
implies a PES for P′ secure in the same sense.

Proof sketch. Let Γ be a PES for P. We construct a PES Γ ′ for P′ by simply defining Param′(par′) =
Param(fp(par

′)), EncCt′(y′, N) = EncCt(fe(y
′), N), and EncKey′(x′, N) = EncCt(fk(x

′), N). Also define
Pair′(x′, y′, N) = Pair(fk(x

′), fe(y
′), N). The correctness and security is guaranteed by the forward and

backward direction of Eq. (3), respectively.

3 Pair Encoding Schemes

A pair encoding scheme (PES), introduced by Attrapadung [7], is an encoding system used in a general
framework to construct ABE. Structures of a ciphertext and secret keys of an ABE scheme can be
concisely captured by polynomials, and its decryption procedure can be represented by matrices. A PES
is defined as a set of algorithms that output these polynomials or matrices. Intuitively, the polynomials
specify the structures of exponent of group elements in a ciphertext and secret key, and the matrices
specify coefficients used in the decryption.

3.1 Pair Encoding Scheme Definition

Definition 9 (Pair Encoding Schemes). Let Pκ : Xκ×Yκ → {0, 1} be a predicate family, indexed
by κ = (N, par), where par specifies some parameters. A PES for Pκ is given by four deterministic
polynomial-time algorithms:

– Param(par) → ω. When given par as input, Param outputs ω ∈ N that specifies the number of
common variables, which we denote by w = (w1, . . . , wω).

– EncCt(x,N)→ (n1, n2, c(s, ŝ,w)). On input N ∈ N, x ∈ X(N,par), EncCt outputs a vector of polyno-
mial c = (c1, . . . , cn3

) in non-lone variables s = (s0, s1, . . . , sn1
) and lone variables ŝ = (ŝ1, . . . , ŝn2

)
as follows, where θi,z, θi,t,j ∈ ZN :

c(s, ŝ,w) = {
∑
z∈[n2]

θi,z ŝz +
∑

t∈[n1]+,j∈[ω]

θi,t,jwjst}i∈[n3].

– EncKey(y,N) → (m1,m2,k(r, r̂,w)). On input N ∈ N and y ∈ Y(N,par), EncKey outputs a vector
of polynomial k = (k1, . . . , km3

) in non-lone variables r = (r1, . . . , rm1
) and lone variables r̂ =

(α, r̂1, . . . , r̂m2) as follows, where φi, φi,u, φi,v,j ∈ ZN :

k(r, r̂,w) = {φiα+
∑

u∈[m2]

φi,ur̂u +
∑

v∈[m1],j∈[ω]

φi,v,jwjrv}i∈[m3].

16

– Pair(x, y,N) → (E,E). On input N , and both x, and y, Pair outputs two matrices E,E of sizes
(n1 + 1)×m3 and n3 ×m1, respectively.

Correctness A PES is said to be correct if for every κ = (N, par), x ∈ Xκ and y ∈ Yκ such that
Pκ(x, y) = 1, then sEk> + cEr> = αs0 holds symbolically. The left-hand side is indeed a linear
combination of stkp and cqrv, for t ∈ [n1]+, p ∈ [m3], q ∈ [n3], v ∈ [m1]. Hence, an equivalent way to
describe Pair and correctness together at once is to show such a linear combination that evaluates to
αs0.

Terminology We denote (r̂1, . . . , r̂m2
) by r̂−α. Following [3], a variable is called lone as it is not

multiplied with any wj (otherwise called non-lone). Furthermore, since α, s0 are treated distinguishably
in defining correctness, we also often call them the special lone and non-lone variable, respectively.
Throughout the paper, we fix N in index κ as prime p, which is an order of bilinear groups used to
construct an ABE scheme. For notational conciseness, we consider that κ only specifies par, and p is
hard-coded in EncCt, EncKey, and Pair.

Evaluating PES with Vectors/Matrices We can evaluate ciphertext encoding c(s, ŝ,w) with
the following substitution from scalar variables to vectors/matrices as follows. Let d ∈ N. Each st is
substituted by a vector st ∈ ZdN . Each ŝz is substituted by a vector ŝz ∈ ZdN . Each wj is substituted

by a matrix Wj ∈ Zd×dN . Let S = (s0, . . . , sn1) ∈ Zd×(n1+1)
N , Ŝ = (ŝ1, . . . , ŝn2) ∈ Zd×n2

N , and W =
(W1, . . . ,Wω), we then define

c(S, Ŝ,W) = {
∑
z∈[n2]

θi,z ŝz +
∑

t∈[n1]+,j∈[ω]

θi,t,jW
>
j st}i∈[n3],

k(R, R̂,W) = {φih +
∑

u∈[m2]

φi,ur̂u +
∑

v∈[m1],j∈[ω]

φi,v,jWjrv}i∈[m3].

3.2 Security Properties of PESs

Definition 10 (Perfect Master-Key Hiding (PMH) [7]). Let Γ = (Param,EncCt,EncKey,Pair)
be a PES for a predicate faimily Pκ : Xκ × Yκ → {0, 1}. We say that Γ satisfies perfect master-
key hiding (PMH) if the following holds. Let ω ← Param(par), (n1, n2, c(s, ŝ,w)) ← EncCt(x), and
(m1,m2,k(r, r̂,w))← EncKey(y). Then, for all κ and (x, y) ∈ Xκ×Yκ such that Pκ(x, y) = 0, the two
distributions are identical, where the probability is taken over s← Zn1+1

p , ŝ← Zn2
p , r← Zm1

p , α← Zp,
r̂−α ← Zm2

p , and w← Zωp .

{s, r, c(s, ŝ,w),k(r, (0, r̂−α),w)} and {s, r, c(s, ŝ,w),k(r, (α, r̂−α),w)}.

Definition 11 (Single-Variable PMH). We say that Γ satisfies single-variable PMH if Γ is PMH
and n1 = 0 for all x ∈ Xκ, where (n1, n2, c(s, ŝ,w)) ← EncCt(x). In other words, EncCt uses only s0

for non-lone variable.

Note that Ambrona et al. showed that all predicate encodings [41] can be seen as a PES with
single-variable PMH [6].

We next introduce the (ζ, `)-key-encoding indistinguishability ((ζ, `)-KE-ind), which is a central
security property in our framework, where we consider several transformations of PESs. The crucial
feature on (ζ, `)-KE-ind is two-fold: it is preserved after transformations, and it leads to the adaptive
security of the resulting ABE scheme.

Definition 12 ((ζ, `)-KE-ind). Let Γ = (Param,EncCt,EncKey,Pair) be a PES for a predicate family
Pκ : Xκ×Yκ → {0, 1}. Let ζ, ` ∈ N such that ` ≤ ζ. We say that Γ satisfies (ζ, `)-KE-ind if the following

holds. Consider a game G
(ζ,`)-KE-ind
β defined in Fig 1, in which an adversary A can adaptively query OX

and OY with x ∈ Xκ and y ∈ Yκ such that Pκ(x, y) = 0, respectively. A is allowed to query each oracle

at most once. Then, for all η ∈ {1, 2}, we have G
(ζ,`)-KE-ind
0 ≈c G(ζ,`)-KE-ind

1 .

17

G
(ζ,`)-KE-ind
β

ω ← Param(par), G← GBG(1λ)

A,B← Z(k+ζ)×(k+ζ)
p , W = (W1, . . . ,Wω)← (Z(k+ζ)×(k+ζ)

p)ω

P = (G, [A]η, [B]3−η, {a∗i }i∈[`,ζ], {b∗i }i∈[`+1,ζ], {[W>
i A]η, [WiB]3−η}i∈[ω])

β′ ← AOX(·),OY(·,·)(P)

OX(·)
Input: x ∈ Xκ
(n1, n2, c(s, ŝ,w))← EncCt(x)

c0 ← span(A,a1, . . . ,a`), s1, . . . , sn1 ← Zkp, ŝ1, . . . , ŝn2 ← Zk+ζ
p

S = (c0,As1, . . . ,Asn1), Ŝ = (ŝ1, . . . , ŝn2)

Output: ([S]η, [c(S, Ŝ,W)]η)

OY(·, ·)
Input: y ∈ Yκ and h ∈ Zk+ζ

p

(m1,m2,k(r, r̂,w))← EncKey(y), µ← Zp, r1, . . . , rm1 ← Zkp, r̂1, . . . , r̂m2 ← Zk+ζ
p

R = (Br1, . . . ,Brm1), R̂ = (h + βµa∗` , r̂1, . . . , r̂m2)

Output: ([R]3−η, [k(R, R̂,W)]3−η)

Fig 1. (ζ, `)-KE-ind game.

Note that we can omit the terms that correspond to g[1,i], h[1,i] of the composite-order variant in
the introduction by giving a∗i ,b

∗
i as Zp elements to A.

The following theorem says that all PESs with single-variable PMH satisfy (ζ, `)-KE-ind for all
ζ, ` ∈ N.

Theorem 4 ((ζ, `)-KE-ind of PES with Single-Variable PMH). Let Γ be a PES with single-
variable PMH. Then, for all constants ζ, ` ∈ N, Γ satisfies (ζ, `)-KE-ind under the Dk -MDDH assump-
tion. More precisely, for all PPT adversaries A, there exists a PPT adversary B such that

Adv
(ζ,`)-KE-ind
A,Γ (λ) ≤ 2AdvDk -MDDH

B (λ) + 2−Ω(λ).

Proof. The proof of Theorem 4 is similar to the procedure that changes a normal secret key to a
semi-functional one in the dual system methodology in prime-order groups [1, 8, 15]. Here, we follow
the terminology by Chen et al. [15]. In the procedure, a normal key is first changed to a pseudo-
normal one by a computational assumption. Then, it is changed to pseudo-semi-functional one by the
information-theoretical security property of the encoding. Finally, it is changed to semi-functional one
by a computational assumption.

We consider two hybrids H1 and H2 to prove the theorem. They are defined as follows:

H1: Same as G
(ζ,`)-KE-ind
0 except that R = (d1, . . . ,dm1

) where di ← span(B,b1) in OY.

H2: Same as G
(ζ,`)-KE-ind
1 except that R = (d1, . . . ,dm1

) where di ← span(B,b1) in OY.

We prove that G
(ζ,`)-KE-ind
0 ≈c H1 ≈s H2 ≈c G

(ζ,`)-KE-ind
1 . Intuitively, the output of OY in G

(ζ,`)-KE-ind
0 ,

H1, H2, and G
(ζ,`)-KE-ind
1 corresponds to a normal, pseudo-normal, pseudo-semi-functional, and semi-

functional secret key, respectively. Thanks to Lemmata 4 to 6, Theorem 4 holds.

Lemma 4. For all PPT adversaries A, there exists a PPT adversary B such that

|Pr[〈A,G(ζ,`)-KE-ind
0 〉 = 1]− Pr[〈A,H1〉 = 1]| ≤ AdvDk -MDDH

B (λ).

Proof. We describe the reduction algorithm B. B is given an instance of m1-Dk -MDDH problem.

(G, [M]3−η, [Tβ]3−η) where T0 = MU and T1 = V, where U ← Zk×m1
p and V ← Z(k+1)×m1

p . Then,

18

B chooses X← GLk+ζ(Zp) and sets

B = X

M̂
M 1

Iζ−1

 ,

(B
>

)−1 = (X>)−1

(M̂
>

)−1 −(M̂
>

)−1M>

1
Iζ−1

 ,

where M̂ is the matrix consisting of the first k rows of M, and M is that consisting of the last row of
M. Then, B can compute

[B]3−η =

[
X

(
M
O

)]
3−η

, (b∗2|| . . . ||b
∗
ζ) = (X>)−1

(
O

Iζ−1

)
.

B generates A and W by itself and computes the input P for A from them. When A queries OX, B
replies honestly as shown in Fig 1. Note that S = c0 because EncCt uses only one non-lone variable.
When A queries OY, B replies honestly except that it sets

[di]3−η =

[
X

(
tβ,i
0

)]
3−η

, [R]3−η = [(d1, . . . ,dm1)]3−η,

where tβ,i denotes the i-th column of Tβ . Because we can write

tβ,i =

(
M̂
M

)
ui + βui

(
0
1

)
,

where ui ← Zkp and ui ← Zp, di is uniformly distributed in span(B) if β = 0, and in span(B,b1)

otherwise. Thus, the view of A corresponds to G
(ζ,`)-KE-ind
0 if β = 0, and H1 otherwise. This concludes

the proof.

Lemma 5. For all PPT adversaries A, we have

|Pr[〈A,H1〉 = 1]− Pr[〈A,H2〉 = 1]| ≤ 2−Ω(λ).

Proof. We redefine Wi = W̃i + tia
∗
`b
∗>
1 for i ∈ [ω], ŝi = ŝ′i + uib

∗
1 for i ∈ [n2], and r̂i = r̂′i + via

∗
` for

i ∈ [m2], where W̃i ← Z(k+ζ)×(k+ζ)
p , ŝ′i, r̂

′
i ← Zk+ζ

p , and ti, ui, vi ← Zp. This change clearly does not
affect the distributions of Wi, ŝi and r̂i. This affects A’s view as follows:

P : W>
i A = W̃>

i A, WiB = W̃iB.

OX: c(c0, Ŝ,W) = c(c0, Ŝ, W̃) + c(a∗
>

` c0,u, t) ⊗ b∗1, where W̃ = (W̃1, . . . ,W̃ω), u = (u1, . . . , un2),

and t = (t1, . . . , tω). Note that c(a∗
>

` c0,u, t)⊗b∗1 denotes (c1b
∗
1, . . . , cn3b

∗
1), where (c1, . . . , cn3) =

c(a∗
>

` c0,u, t).

OY: k(R, R̂,W) = k(R, R̂, W̃)+k(r,v, t)⊗a∗` , where r = (b∗
>

1 d1, . . . ,b
∗>
1 dm1) and v = (0, v1, . . . , vm2).

Thanks to the PMH of Γ , the following distributions are almost identical:

{A,B, c0,R, c(a∗
>

` c0,u, t),k(r,v, t)} and

{A,B, c0,R, c(a∗
>

` c0,u, t),k(r,v + (µ,0), t)},

where µ← Zp. This is because a∗
>

` c0 and b∗
>

1 di are distributed statistically close to being uniform in
Zp. Thus, A’s view is not changed even if we change the first element of v from 0 to µ except negligible

probability. In other words, k(R, R̂,W) and k(R, R̂,W)+k(0, (µ,0),0)⊗a∗` are identically distributed
except negligible probability. The latter exactly corresponds to A’s view in H2. This concludes the
proof.

19

Lemma 6. For all PPT adversaries A, there exists a PPT adversary B such that

|Pr[〈A,H2〉 = 1]− Pr[〈A,G(ζ,`)-KE-ind
1 〉 = 1]| ≤ AdvDk -MDDH

B (λ).

This lemma can be proven similarly to Lemma 4.

4 Predicate Transformations

In this section, we present several transformations for predicates, which enable us to construct a more
expressive predicate from simple predicates. As shown later in §6, these transformations are suffi-
ciently powerful to construct ABE schemes whose constructions from standard assumptions are still
unknown. Concretely, we introduce four transformations called the direct sum, dual transformation,
KP augmentation, and CP augmentation. Because the CP augmentation is obtained from the dual
transformation and KP augmentation, the former three transformations are sufficient for our frame-
work. We also present the corresponding transformations of PESs for each predicate transformation
and prove that these PES transformations preserve the (ζ, `)-KE-ind property. Starting from PESs
with the single-variable PMH, which already satisfy (ζ, `)-KE-ind, we can obtain a PES for a expres-
sive predicate that satisfies (ζ ′, ζ ′)-KE-ind for some constant ζ ′. Finally, we show that we can use the
PES with (ζ ′, ζ ′)-KE-ind to construct an adaptively secure ABE scheme in §5.

4.1 Direct Sum of Predicate Families

Definition 13 (Direct Sum [9]). Let P
(i)
κi : X

(i)
κi × Y

(i)
κi → {0, 1} be a predicate family. Let κ =

(κ1, . . . , κd). A predicate family for the direct sum of a predicate family set Pκ = (P
(1)
κ1 , . . . ,P

(d)
κd),

denoted by DS[Pκ] : X̄κ × Ȳκ → {0, 1}, is defined as follows: let X̄κ =
⋃
i∈[d]({i} × X

(i)
κi), Ȳκ =⋃

i∈[d]({i} × Y
(i)
κi), and define

DS[Pκ]((ix, x), (iy, y))⇔ (ix = iy) ∧ (P(iy)
κiy

(x, y) = 1).

We sometimes use another notation, P
(1)
κ1 � · · · � P

(d)
κd , to denotes DS[Pκ].

PES for DS[Pκ]. Let Γi = (Parami,EncCti,EncKeyi,Pairi) be a PES for P
(i)
κi . We construct a PES for

DS[Pκ], denoted by DS-Trans(Γ) = (Param′,EncCt′,EncKey′,Pair′), where Γ = (Γ1, . . . , Γd).

– Param′(par) → ω′: Run ωi ← Parami(par) and output
∑
i∈[d] ωi. This specifies common variables

w′ = (w(1), . . . ,w(d)), where w(i) = (w
(i)
1 , . . . , w

(i)
ωi).

– EncCt′((ix, x))→ (n′1, n
′
2, c
′(s′, ŝ′,w′)):

• Output (n1, n2, c(s, ŝ,w(ix)))← EncCtix(x).

• Define n′1 = n1, n′2 = n2, s′ = s, and ŝ′ = ŝ.

– EncKey′((iy, y))→ (m′1,m
′
2,k
′(r′, r̂′,w′)):

• Output (m1,m2,k(r, r̂,w(iy)))← EncKeyiy (y).

• Define m′1 = m1, m′2 = m2, r′ = r, and r̂′ = r̂.

– Pair′((ix, x), (iy, y))→ (E′,E
′
) and correctness:

• Output (E,E)← Pairiy (x, y).

• Correctness of Pair′ directly follows from that of Pairiy .

Theorem 5 ((ζ, `)-KE-ind of DS-Trans(Γ)). If Γi satisfies (ζ, `)-KE-ind for all i ∈ [d], then DS-Trans(Γ)
satisfies (ζ, `)-KE-ind. More precisely, for all PPT adversaries A, there exist PPT adversary B such
that

Adv
(ζ,`)-KE-ind
A,DS-Trans(Γ)(λ) ≤ dmax

i∈[d]
Adv

(ζ,`)-KE-ind
B,Γi

(λ).

20

G
(ζ,`)-KE-ind
β

ωi ← Parami(par), G← GBG(1λ)

A,B← Z(k+ζ)×(k+ζ)
p , Wi = (Wi,1, . . . ,Wi,ωi)← (Z(k+ζ)×(k+ζ)

p)ωi

P = (G, [A]η, [B]3−η, {a∗i }i∈[`,ζ], {b∗i }i∈[`+1,ζ], {[W>
i,jA]η, [Wi,jB]3−η}i∈[d],j∈[ωi])

β′ ← AOX̄(·),OȲ(·,·)(P)

OX̄(·)
Input: (ix, x) ∈ X̄κ

(n1, n2, c(s, ŝ,w(ix)))← EncCtix(x)

c0 ← span(A,a1, . . . ,a`), s1, . . . , sn1 ← Zkp, ŝ1, . . . , ŝn2 ← Zk+ζ
p

S = (c0,As1, . . . ,Asn1), Ŝ = (ŝ1, . . . , ŝn2)

Output: ([S]η, [c(S, Ŝ,Wix)]η)

OȲ(·, ·)
Input: (iy, y) ∈ Ȳκ and h ∈ Zk+ζ

p

(m1,m2,k(r, r̂,w(iy)))← EncKeyiy (y)

µ← Zp, r1, . . . , rm1 ← Zkp, r̂1, . . . , r̂m2 ← Zk+ζ
p

R = (Br1, . . . ,Brm1), R̂ = (h + βµa∗` , r̂1, . . . , r̂m2)

Output: ([R]3−η, [k(R, R̂,Wiy)]3−η)

Fig 2. (ζ, `)-KE-ind game for DS-Trans(Γ).

Proof. For β ∈ {0, 1}, we can describe the (ζ, `)-KE-ind game G
(ζ,`)-KE-ind
β for DS-Trans(Γ) as shown in

Fig 2. To prove the theorem, we consider an adversary B, which samples t ← [d] and interacts with
OX(t) and OY(t) of the (ζ, `)-KE-ind game for Γt. B internally runs an adversary A against (ζ, `)-KE-ind
of DS-Trans(Γ) and interacts with it as follows:

1. Let ωi ← Parami(par). B is given (G, [A]η, [B]3−η, {a∗i }i∈[`,ζ], {b∗i }i∈[`+1,ζ], {[W>
t,jA]η, [Wt,jB]3−η}j∈[ωt]).

It then samples Wi = (Wi,1, . . . ,Wi,ωi)← (Z(k+ζ)×(k+ζ)
p)ωi for i ∈ [d]\t.

2. B gives to A the following elements: G, [A]η, [B]3−η, {a∗i }i∈[`,ζ], {b∗i }i∈[`+1,ζ], together with {[W>
i,jA]η,

[Wi,jB]3−η}i∈[d],j∈[ωi]

3. For A’s query to OX̄ on (ix, x), B replies as follows:
– If ix = t, B queries its own oracle OX(t) on x and gives the reply, which is ([S]η, [c(S, Ŝ,Wt)]η),

to A.
– If ix 6= t, B computes c(s, ŝ,w(ix)),S, and Ŝ as show below, and gives ([S]η, [c(S, Ŝ,Wix)]η) to

A:

(n1, n2, c(s, ŝ,w(ix)))← EncCtix(x), c0 ← Ker(a∗`+1, . . . ,a
∗
ζ),

s1, . . . , sn1 ← Zkp, ŝ1, . . . , ŝn2 ← Zk+ζ
p

S = (c0,As1, . . . ,Asn1
), Ŝ = (ŝ1, . . . , ŝn2

).

Note that span(A,a1, . . . ,a`) = Ker(a∗`+1, . . . ,a
∗
ζ).

4. For A’s query to OȲ on (iy, y), B replies as follows:
– If iy = t, B queries its own oracle OY(t) on y and gives the reply, which is ([R]3−η, [k(R, R̂,Wt)]3−η),

to A. Note that the first element of R̂ is h (if β = 0) or h + µa∗` (if β = 1).
– If iy 6= t, B aborts the interaction with A and outputs a random bit β′

5. B outputs A’s output as it is.

In the above experiment, B correctly simulates OX̄. Since B aborts the experiment if iy 6= t, we focus
on the case of iy = t, which occurs with probability 1/d. Note that since ix = t⇒ P(t)(x, y) = 0 from
the game condition for DS-Trans(Γ), B follow the game condition for Γt. If β = 0 in the KE-ind game

for Γt, A’s view corresponds to that in G
(ζ,`)-KE-ind
0 , and it corresponds to G

(ζ,`)-KE-ind
1 otherwise. Thus,

we have Pr[iy = t] · Adv(ζ,`)-KE-ind
A,DS-Trans(Γ)(λ) + Pr[iy 6= t] · 0 ≤ Adv

(ζ,`)-KE-ind
B,Γt

(λ) ≤ maxi∈[d] Adv
(ζ,`)-KE-ind
B,Γi

(λ).

This concludes the proof.

21

4.2 Dual Predicates

Recall that the dual of Pκ : Xκ × Yκ → {0, 1} is Dual[Pκ] : X̄κ × Ȳκ → {0, 1} where X̄κ = Yκ and
Ȳκ = Xκ, and Dual[Pκ](x, y) = Pκ(y, x).

PES for Dual[Pκ]. Let Γ = (Param,EncCt,EncKey,Pair) be a PES for Pκ. We construct a PES for
Dual[Pκ], denoted by Dual-Trans(Γ) as follows.

– Param′(par) → ω′: Run ω ← Param(par) and output ω + 1. This specifies common variables w′ =
(w0, w1, . . . , wω), where w0 is a new common variable.

– EncCt′(x)→ (n′1, n
′
2, c
′(s′, ŝ′,w′)):

• Run (m1,m2,k(r, r̂,w))← EncKey(x). Let snew be a new special non-lone variable. Polynomials
c′(s′, ŝ′,w′) are defined the same as k(r, r̂,w) except that α is replaced with sneww0.

• Define n′1 = m1, n′2 = m2, s′ = (snew, r), and ŝ′ = r̂−α.
– EncKey′(y)→ (m′1,m

′
2,k
′(r′, r̂′,w)):

• Run (n1, n2, c(s, ŝ,w)) ← EncCt(y). Let αnew be a new special lone variable. Polynomials
k′(r′, r̂′,w′) are defined the same as c(s, ŝ,w) except that a polynomial αnew− s0w0 is added as
the first element of k′(r′, r̂′,w′).

• Define m′1 = n1 + 1, m′2 = n2, r′ = s, and r̂′ = (αnew, ŝ).

– Pair′(x, y)→ (E′,E
′
) and correctness:

• Run (E,E)← Pair(y, x). Define E′ =
(

1

E
>

)
and E

′
= E>.

• For correctness, we have

s′E′k′> + c′E
′
r′> =(snew, r)

(
1

E
>

)
(αnew − s0w0, c)> + k|α 7→sneww0

E>s>

=snewαnew − snews0w0 + snews0w0 = snewαnew.

Theorem 6 ((ζ, `)-KE-ind of Dual-Trans(Γ)). Let 2 ≤ ` ≤ ζ. If Γ satisfies (ζ, ` − 1)-KE-ind, then
Dual-Trans(Γ) satisfies (ζ, `)-KE-ind under the Dk -MDDH assumption. More precisely, for all PPT
adversaries A, there exist PPT adversaries B1 and B2 such that

Adv
(ζ,`)-KE-ind
A,Dual-Trans(Γ)(λ) ≤ Adv

(ζ,`−1)-KE-ind
B1,Γ

(λ) + 2AdvDk -MDDH
B2

(λ) + 2−Ω(λ).

Proof. For β ∈ {0, 1}, we can describe the (ζ, `)-KE-ind game G
(ζ,`)-KE-ind
β for Dual-Trans(Γ) as shown in

Fig 3. To show this theorem, we consider two intermediate hybrids H1 and H2, which are also described

in Fig 3. That is, H1 (resp. H2) is defined the same as G
(ζ,`)-KE-ind
0 (resp. G

(ζ,`)-KE-ind
1) except that d0,

the first elements of R generated in OȲ, is set as d0 ← span(B,b1, . . . ,b`−1) instead of Br0 where

r0 ← Zkp. From Lemma 7,8,9 below, we have G
(ζ,`)-KE-ind
0 ≈c H1 ≈c H2 ≈c G(ζ,`)-KE-ind

1 . This concludes
the proof.

Lemma 7. For all PPT adversaries A, there exists a PPT adversary B such that |Pr[〈A,G(ζ,`)-KE-ind
0 〉 =

1]− Pr[〈A,H1〉 = 1]| ≤ AdvDk -MDDH
B (λ).

Proof. We describe the reduction algorithm B. B is given an instance of Uk+`−1,k problem, (G, [M]3−η,
[tβ]3−η) where t0 = Mu and t1 = v, where u← Zkp and v← Zk+`−1

p . Then, B chooses X← GLk+ζ(Zp)
and sets

B = X

(
M̂
M I`−1

Iζ−`+1

)
, (B

>
)−1 = (X>)−1

(
(M̂
>

)−1 −(M̂
>

)−1M>

I`−1

Iζ−`+1

)
,

where M̂ is the matrix consisting of the first k rows of M, and M is that consisting of the last ` − 1
rows of M. Then, B can compute

[B]3−η =

[
X

(
M
O

)]
3−η

, (b∗`+1|| . . . ||b
∗
ζ) = (X>)−1

(
O

Iζ−`

)
.

22

G ∈
{
G

(ζ,`)-KE-ind
0 , H1 , H2 ,G

(ζ,`)-KE-ind
1

}
G
ω ← Param(par), G← GBG(1λ)

A,B← Z(k+ζ)×(k+ζ)
p , W = (W>

0 ,W
>
1 , . . . ,W

>
ω)← (Z(k+ζ)×(k+ζ)

p)ω+1

P = (G, [A]η, [B]3−η, {a∗i }i∈[`,ζ], {b∗i }i∈[`+1,ζ], {[W>
i A]η, [WiB]3−η}i∈[ω]+)

β′ ← AOX̄(·),OȲ(·,·)(P)

OX̄(·)
Input: x ∈ X̄κ
(m1,m2,k(r, r̂,w))← EncKey(x)

c0 ← span(A,a1, . . . ,a`), s1, . . . , sm1 ← Zkp, ŝ1, . . . , ŝm2 ← Zk+ζ
p

S = (As1, . . . ,Asm1), Ŝ = (W>
0 c0, ŝ1, . . . , ŝm2)

Output: ([c0]η, [S]η, [k(S, Ŝ,W)]η)

OȲ(·, ·)
Input: y ∈ Ȳκ and h ∈ Zk+ζ

p

(n1, n2, c(s, ŝ,w))← EncCt(y), µ← Zp, r0, r1, . . . , rn1 ← Zkp, r̂1, . . . , r̂n2 ← Zk+ζ
p

d0 = Br0, d0 ← span(B,b1, . . . ,b`−1)

R = (d0,Br1, . . . ,Brn1), R̂ = (r̂1, . . . , r̂n2)

Output: ([h + µa∗` −W0d0]3−η, [R]3−η, [c(R, R̂,W)]3−η)

Fig 3. (ζ, `)-KE-ind game for Dual-Trans(Γ).

B generates A and W by itself and computes the input P for A from them. When A queries OX̄, B
replies honestly as shown in Fig 3. When A queries OȲ, B replies honestly except that it sets

[d0]3−η =

[
X

(
tβ
0

)]
3−η

, [R]3−η = [(d0,Br1, . . . ,Brm1)]3−η.

Now since we can write tβ =
(

M̂
M

)
u1 + β

(
O

I`−1

)
u2, where u1 ← Zkp and u2 ← Z`−1

p , we have that d0

is uniformly distributed in span(B) if β = 0, and in span(B,b1, . . . ,b`−1) otherwise. Thus, the view of

A corresponds to G
(ζ,`)-KE-ind
0 if β = 0, and H1 otherwise. This concludes the proof.

Lemma 8. For all PPT adversaries A, there exists a PPT adversary B such that |Pr[〈A,H1〉 =

1]− Pr[〈A,H2〉 = 1]| ≤ Adv
(ζ,`−1)-KE-ind
B,Γ (λ) + 2−Ω(λ).

Proof. We show that the outputs of OȲ in H1 and H2 are computationally indistinguishable if the PES
Γ for Pκ satisfies (ζ, ` − 1)-KE-ind. We construct a PPT adversary B against (ζ, ` − 1)-KE-ind of Γ
that internally runs a PPT distinguisher A between H1 and H2. B behaves as follows.

1. B is given an input of (ζ, ` − 1)-KE-ind game for Γ , (G, [M]3−η, [N]η, {m∗i }i∈[`−1,ζ], {n∗i }i∈[`,ζ],

{[V>i M]3−η, [ViN]η}i∈[ω]). B implicitly defines that A = N, B = M, and Wi = V>i for i ∈ [ω].

2. B samples W0 ← Z(k+ζ)×(k+ζ)
p and gives P = (G, [A]η, [B]3−η, {a∗i }i∈[`,ζ], {b∗i }i∈[`+1,ζ], {[W>

i A]η,
[WiB]3−η}i∈[ω]+) to A.

3. For A’s query to OX̄ on x, B samples c0 ← Ker(a∗`+1, . . . ,a
∗
ζ) and queries its own oracle OY on

(x,W>
0 c0) to obtain ([T]η, [k(T, T̂,V)]η), where

T = (Nt0,Nt1, . . . ,Ntm1
) = (At0,At1, . . . ,Atm1

),

T̂ = (W>
0 c0 + βµ̂m∗`−1, t̂1, . . . , t̂m2

) = (W>
0 c0 + βµ̂b∗`−1, t̂1, . . . , t̂m2

),

V = (V1, . . . ,Vω) = (W>
1 , . . . ,W

>
ω).

23

Note that µ̂ is a random value in Zp chosen by OY. B implicitly defines that si = ti for i ∈ [m1]+,

ŝi = t̂i for i ∈ [m2], S = T, Ŝ = T̂, and W = V. B replies ([c0]η, [S]η, [k(S, Ŝ,W)]η) to A. Note that
span(A,a1, . . . ,a`) = Ker(a∗`+1, . . . ,a

∗
ζ).

4. For A’s query to OȲ with y and h, B queries its own oracle OX on y to obtain ([U]3−η, [c(U, Û,V)]3−η),
where

U = (o0,Mu1, . . . ,Mun1) = (o0,Bu1, . . . ,Bun1), Û = (û1, . . . , ûn2).

Note that o0 is randomly distributed in span(M,m1, . . . ,m`−1), which equals to span(B,b1, . . . ,b`−1).

B implicitly defines that ri = ui for i ∈ [n1], r̂i = ûi for i ∈ [n2], R = U, R̂ = Û, and d0 = o0. B

replies ([h−W0d0]3−η, [R]3−η, [c(R, R̂,W)]3−η) to A.
5. B outputs A’s output as it is.

At a glance, this simulation seems that the distribution of the reply from OX̄ is changed. However,

entire views of A correspond to H1 and H2. To see this, we redefine W0 as W0 = W̃0 − βµ̂

a∗
>
` c0

a∗`b
∗>
`−1

where W̃0 ← Z(k+ζ)×(k+ζ)
p . Clearly, this does not change the distribution of W0. This affects A’s view

as follows:

P : W>
0 A = W̃>

0 A, W0B = W̃0B.

OX̄ : W>
0 c0 + βµ̂b∗`−1 = W̃>

0 c0.

OȲ : h−W0d0 = h− W̃0d0 +
βµ̂b∗

>

`−1d0

a∗
>
` c0

a∗` = h− W̃0d0 + βµa∗` .

Because µ̂ is randomly distributed in Zp, we can set µ =
µ̂b∗
>
`−1d0

a∗
>
` c0

if b∗
>

`−1d0 6= 0 and a∗
>

` c0 6= 0. Since

c0 and d0 are randomly distributed in span(A,a1, . . . ,a`) and span(B,b1, . . . ,b`−1), respectively, this
is the case with an overwhelming probability. Thus, A’s view corresponds to H1 if β = 0 in the
(ζ, `)-KE-ind game of Γ , and it corresponds to H2 otherwise. This concludes the proof.

Lemma 9. For all PPT adversaries A, there exists a PPT adversary B such that |Pr[〈A,H2〉 =

1]− Pr[〈A,G(ζ,`)-KE-ind
1 〉 = 1]| ≤ AdvDk -MDDH

B (λ).

The proof of Lemma 9 is similar to Lemma 7, and hence we omit it here.

4.3 Key-Policy Augmentation

Definition 14 (Key-Policy Augmentation). A predicate family for key-policy Boolean formula
augmentation over a single predicate family Pκ : Xκ × Yκ → {0, 1}, denoted by KBF1[Pκ] : X̄κ ×
Ȳκ → {0, 1}, where X̄κ = Xκ and Ȳκ =

⋃
i∈N(Yiκ × Fi), where Fi consists of all monotone Boolean

formulae with input length i, is defined as follows. For x ∈ X̄κ and y = ((y1, . . . , yn), f) ∈ Ȳκ where
f : {0, 1}n → {0, 1}, we define

KBF1[Pκ](x, y) = f
(
Pκ(x, y1), . . . ,Pκ(x, yn)

)
.

We use KBF1OR[Pκ] (resp. KBF1AND[Pκ]) to denote a predicate family that is the same as KBF1[Pκ]
except that Fi in Ȳκ consists of monotone Boolean formulae whose all gates are OR (resp. AND)
gates. The “1” in KBF1 refers to the property that the augmentation is over one predicate family. An
augmentation over a set of predicate families follows analogously to [9], and we defer to §6 (and §6.2). In
dynamic compositions, f can be chosen freely (as opposed to static ones, where f is fixed). Unbounded
compositions mean n is unbounded.

PES for KBF1[Pκ]. Let Γ = (Param,EncCt,EncKey,Pair) be a PES for Pκ. We construct a PES for
KBF1[Pκ], denoted by KBF1-Trans(Γ) as follows. Let Sharep be the linear secret sharing algorithm on
polynomials defined in Fig 4.

24

Sharep(f, α,u)

Input: A monotone Boolean formula f = (n,w,m,G) with τ AND gates, a variable α, and τ variables u =
(u1, . . . , uτ).

1. Set a variable σout = α on the output wire.
2. Let φ : [m] → [τ] be a function such that φ(i) = |{j | j ≤ i ∧G1(j) = AND}|, where G1(j) denotes the first

element of G(j). For each AND gate g with incoming wires a, b and an outgoing wire c where a polynomial
σc is set on c, set new polynomials σa = σc − uφ(g) and σb = uφ(g) on a and b, respectively.

3. For each OR gate g with incoming wires a, b and an outgoing wire c where a vector σc is set on c, set new
polynomials σa = σc, σb = σc on a, b, respectively.

4. Output polynomials σ1, . . . , σn, which are set on the input wires 1, . . . , n.

Fig 4. Linear secret sharing scheme for Boolean formulae on polynomials.

– Param′(par) = Param(par) and EncCt′(x) = EncCt(x)

– EncKey′((y1, . . . , yn), f)→ (m′1,m
′
2,k
′(r′, r̂′,w)):

• For i ∈ [n], run EncKey(yi) to obtain n sets of polynomials k(1), . . . ,k(n), where k(i) = k(r(i), r̂(i),w).

• Let τ be a number of AND gates in f . Let αnew be a new special lone variable and u = (u1, . . . , uτ)
be new lone variables. Let σ1, . . . , σn be polynomials that are an output of Sharep(f, αnew,u).
A new set of polynomials k′(i) is defined the same as k(i) except that the variable α(i) in each
polynomial is replaced with σi.

• Define m′1 = nm1, m′2 = τ + nm2, and k′(r′, r̂′,w) = (k′(1), . . . ,k′(n)). Note that r′ =

(r(1), . . . , r(n)) and r̂′ = (αnew,u, r̂
(1)

−α(1) , . . . , r̂
(n)

−α(n)).

– Pair′(x, y)→ (E′,E
′
) and correctness:

• Let polynomials σ1, . . . , σn be an output of Sharep(f, αnew,u). It is not hard to see that, for all
b = (b1, . . . , bn) ∈ {0, 1}n such that f(b) = 1, there exists a set S ⊆ {i | bi = 1} such that∑
i∈S σi = αnew. Thus, if x and y = ((y1, . . . , yn), f) satisfy KBF1[Pκ](x, y) = 1, there exists

S ⊆ {i | Pκ(x, yi) = 1} such that
∑
i∈S σi = αnew.

• For i ∈ S, run Pair(x, yi)→ (E(i),E
(i)

), satisfying sE(i)k(i)> + cE
(i)

r(i)> = σis0. Then, we can
obtain

∑
i∈S σis0 = αnews0 by the linear combination.

Theorem 7 ((ζ, `)-KE-ind of KBF1-Trans(Γ)). Let B be the maximum depth of f chosen by A in the
(ζ, `)-KE-ind game for KBF1-Trans(Γ). If Γ satisfies (ζ, `)-KE-ind, then KBF1-Trans(Γ) satisfies (ζ, `)-
KE-ind as long as B = O(log λ). That is, for all PPT adversaries A, there exists a PPT adversary B

such that

Adv
(ζ,`)-KE-ind
A,KBF1-Trans(Γ)(λ) ≤ 29B+1Adv

(ζ,`)-KE-ind
B,Γ (λ).

We prove Theorem 7 by extending the techniques regarding pebbling arguments that Kowalczyk-
Wee [29] have introduced in proving adaptive security of their ABE schemes for formulae with multi-
use.

Proof. We utilize the piecewise guessing framework (Section 2.3) by Kowalczyk and Wee [29] to prove
Theorem 7. However, they use a secret sharing scheme that puts shares on all nodes of Boolean formula,
whereas our transformation puts shares on only input nodes Fig 4 and 5. Very recently, Tomida et
al. presented an improved technique that allows us to use the piecewise guessing framework with shares
on only input nodes [38]. Hence, we proceed the proof following their improved strategy.

Let G
(ζ,`)-KE-ind
0 and G

(ζ,`)-KE-ind
1 be the (ζ, `)-KE-ind games for KBF1-Trans(Γ). First, we define a

linear secret sharing algorithm Share on vectors as shown in Fig 5. Then, we have Lemma 10 for the
secret sharing scheme.

25

Share(f, z)

Input: A monotone Boolean formula f = (n,w,m,G) and a secret z ∈ Zγp , where γ is arbitrary natural number.

1. Set a vector σout = z on the output wire.
2. For each AND gate g with incoming wires a, b and an outgoing wire c where a vector σc is set on c, choose

ug ← Zγp and set σa = σc − ug and σb = ug on a and b, respectively.
3. For each OR gate g with incoming wires a, b and an outgoing wire c where a vector σc is set on c, set σa = σc

and σb = σc on a and b, respectively.
4. Output shares σ1, . . . ,σn, which are set on the input wires 1, . . . , n.

Fig 5. Linear secret sharing scheme for Boolean formulae.

Lemma 10. For all γ, n ∈ N, monotone Boolean formulae f = (n,w,m,G), h,a ∈ Zγp , and µ ∈ Zp,
we define the following distribution.

h1, . . . ,hn ← Share(f,h + µa), h′1, . . . ,h
′
n ← Share(f,h),

µ1, . . . , µn ← Share(f, µ).

Then, the two distributions are identical:

{h1, . . . ,hn} and {h′1 + µ1a, . . . ,h
′
n + µna}.

Proof. Let zi for i ∈ [w] be values set on a wire i in the execution of Share(f, z). From the procedure
of the scheme, we have zi = boutz +

∑
g∈S bgug for some subset S of all gates in f , bout ∈ {0, 1}, and

bg ∈ {−1, 1}. Note that S, bout, bg are determined by f and i.
Let hi, h′i, and µi for i ∈ [w] be values set on wire i in the execution of Share(f,h+µa), Share(f,h),

and Share(f, µ), respectively. Then, we have

hi = bout(h + µa) +
∑
g∈S

bgug, h′i = bouth +
∑
g∈S

bgu
′
g, µi = boutµ+

∑
g∈S

bgug,

for some randomly chosen ug, u′g, and ug. Defining ug = u′g+uga does not change the joint distribution

of all ug. In this case, we have hi = h′i + µia for i ∈ [w]. This concludes the proof.

We can describe G
(ζ,`)-KE-ind
β for β ∈ {0, 1} using the secret sharing algorithm Share as shown in

Fig 6. By applying Lemma 10, hi in OȲ can be replaced with h′i+µia
∗
1 where h′1, . . . ,h

′
n ← Share(f,h)

and µ1, . . . , µn ← Share(f, βµ). In what follows, we use the latter definition for OȲ.

Following the piecewise guessing framework, we define a series of selective hybrids Ĥh0 to ĤhL ,

where L = 8B , and two intermediate games G
(ζ,`)-KE-ind
M0 and G

(ζ,`)-KE-ind
M1 , which satisfy

– Ĝ
(ζ,`)-KE-ind
0 = Ĥh0 ≈c, . . . ,≈c ĤhL = Ĝ

(ζ,`)-KE-ind
M0

– G
(ζ,`)-KE-ind
M0 = G

(ζ,`)-KE-ind
M1 .

The function hι for ι ∈ [L] is defined as follows. Let z = (x, y) ∈ {0, 1}R on which A queries OX̄ and OȲ,
respectively. Let b ∈ {0, 1}n be a string computed from z following Definition 14. Note that f(b) = 0
because the game imposes the condition KBF1[Pκ](x, y) = 0 on A. Let R = (r1, . . . , rL) = PebRec(f, b)
be a pebbling record generated as shown in Lemma 2. Then, we define hι : {0, 1}R → {0, 1}3B as
hι(z) = rι. Note that h0 and hL are constant functions because they specify the pebbling configurations
where no pebbles on it and a pebble is placed on only the output gate, respectively.

The hybrids and intermediate games only differ in the part Share(f, βµ) in OȲ from G
(ζ,`)-KE-ind
β .

That is, Ĥhι is the same as Ĝ
(ζ,`)-KE-ind
0 except that Share(f, 0) is replaced with S̃hare(f, 0, hι(z)). The

description of algorithm S̃hare is presented in Fig 7. G
(ζ,`)-KE-ind
M0 is the same as HhL , and G

(ζ,`)-KE-ind
M1 is

the same as G
(ζ,`)-KE-ind
M0 except that S̃hare(f, 0, hL(z)) is replaced with S̃hare(f, µ, hL(z)). The behaviors

of OȲ in these hybrids are summarized in Fig 8.
We prove that

26

G
(ζ,`)-KE-ind
β

ω ← Param(par), G← GBG(1λ)

A,B← Z(k+ζ)×(k+ζ)
p , W = (W1, . . . ,Wω)← (Z(k+ζ)×(k+ζ)

p)ω

P = (G, [A]η, [B]3−η, {a∗i }i∈[`,ζ], {b∗i }i∈[`+1,ζ], {[W>
i A]η, [WiB]3−η}i∈[ω])

β′ ← AOX̄(·),OȲ(·,·)(P)

OX̄(·)
Input: x ∈ X̄κ
(n1, n2, c(s, ŝ,w))← EncCt(x)

c0 ← span(A,a1, . . . ,a`), s1, . . . , sn1 ← Zkp, ŝ1, . . . , ŝn2 ← Zk+ζ
p

S = (c0,As1, . . . ,Asn1), Ŝ = (ŝ1, . . . , ŝn2)

Output: ([S]η, [c(S, Ŝ,W)]η)

OȲ(·, ·)
Input: y = ((y1, . . . , yn), f) ∈ Ȳκ and h ∈ Zk+ζ

p

(m1,m2,k(r(i), r̂(i),w))← EncKey(yi)

µ← Zp, r
(i)
1 , . . . , r

(i)
m1 ← Zkp, r̂

(i)
1 , . . . , r̂

(i)
m2 ← Zk+ζ

p

h1, . . . ,hn ← Share(f,h + βµa∗`)︸ ︷︷ ︸
h′1,...,h

′
n←Share(f,h),

µ1,...,µn←Share(f, βµ)

hi=h′i+µia
∗
`

R(i) = (Br
(i)
1 , . . . ,Br

(i)
m1), R̂(i) = (hi, r̂

(i)
1 , . . . , r̂

(i)
m2)

Output: {([R(i)]3−η, [k(R(i), R̂(i),W)]3−η)}i∈[n]

Fig 6. (ζ, `)-KE-ind game for KBF1-Trans(Γ).

S̃hare(f, z, u)

Input: A monotone Boolean formula f = (n,w,m,G) with depth d ≤ B, z ∈ Zγp , and u ∈ {0, 1}3B .

1. Set a vector σout = z on the output wire.
2. Interpret u as a pebbling configuration on f .
3. For each gate g with a pebble that has incoming wires a, b and an outgoing wire c where a vector σc is set

on c, choose ug,1,ug,2 ← Zγp and set σa = ug,1 and σb = ug,2 on a and b, respectively.
4. For each AND gate g with no pebble that has incoming wires a, b and an outgoing wire c where a vector σc

is set on c, choose ug ← Zγp and set σa = σc − ug and σb = ug on a and b, respectively.
5. For each OR gate g with no pebble that has incoming wires a, b and an outgoing wire c where a vector σc is

set on c, set σa = σc and σb = σc on a and b, respectively.
6. For each input wire i with a pebble, replace σi with a random vector ui ← Zkp, i.e., σi = ui.
7. Output shares σ1, . . . ,σn, which are set on the input wires 1, . . . , n.

Fig 7. Description of S̃hare.

– G
(ζ,`)-KE-ind
0 ≈c G(ζ,`)-KE-ind

M0 ,

– G
(ζ,`)-KE-ind
M0 = G

(ζ,`)-KE-ind
M1 ,

– G
(ζ,`)-KE-ind
M1 ≈c G(ζ,`)-KE-ind

1 .

First, we prove item 2, then prove item 1. We omit the proof of item 3 because it is almost the same
as that of item 1. Then, we are done.

G
(ζ,`)-KE-ind
M0 = G

(ζ,`)-KE-ind
M1 . Recall that the difference between the two games lies in the input of S̃hare,

namely, (f, 0, hL(z)) or (f, µ, hL(z)). First, we note that u = hL(z) is a constant that specifies the
pebbling configuration on f where a pebble is placed on only the output gate. In this case, it is not

difficult to see that the output of S̃hare is independent of the second argument of the input. This is

27

G ∈
{
G

(ζ,`)-KE-ind
0 , Ĥhι , G

(ζ,`)-KE-ind
M0 ,

�� ��G
(ζ,`)-KE-ind
M1

}
OȲ(·, ·)
Input: y = ((y1, . . . , yn), f) ∈ Ȳκ and h ∈ Zk+ζ

p

(m1,m2,k(r(i), r̂(i),w))← EncKey(yi)

µ← Zp, r
(i)
1 , . . . , r

(i)
m1 ← Zkp, r̂

(i)
1 , . . . , r̂

(i)
m2 ← Zk+ζ

p , h′1, . . . ,h
′
n ← Share(f,h)

µ1, . . . , µn ← Share(f, 0), µ1, . . . , µn ← S̃hare(f, 0, hι(z))

µ1, . . . , µn ← S̃hare(f, 0, hL(z)) ,

�� ��µ1, . . . , µn ← S̃hare(f, µ, hL(z))

hi = h′i + µia
∗
`

R(i) = (Br
(i)
1 , . . . ,Br

(i)
m1), R̂(i) = (hi, r̂

(i)
1 , . . . , r̂

(i)
m2)

Output: {([R(i)]3−η, [k(R(i), R̂(i),W)]3−η)}i∈[n]

Fig 8. Description of OȲ in hybrids.

because the values set on the two incoming wires of the output gate are chosen independently of σout
when a pebble is placed on the output gate (see item 3 in Fig 7). Then, the values to be set on the
rest of wires are computed based on these values set on the incoming wires of the output gate. Thus,

the output of S̃hare is identically distributed in both games, and the claim holds.

G
(ζ,`)-KE-ind
0 ≈c G(ζ,`)-KE-ind

M0 . Following Lemma 1, we prove the two properties:

1. G
(ζ,`)-KE-ind
0 = Hh0 and HhL = G

(ζ,`)-KE-ind
M0 ,

2. Ĥ
hι−1

1 ≈c Ĥhι0 for ι ∈ [L].

where Ĥhiβ for β ∈ {0, 1} is defined in Section 2.3. For item 1, the latter holds because we defined

G
(ζ,`)-KE-ind
M0 in such a way. To show the former, we need to confirm that the output of Share(f, 0)

and S̃hare(f, 0, h0(z)) is identically distributed. Recall that h0 is a constant function that specifies the
pebbling configuration where no pebbles on it. In this case, no gates correspond to item 3 or 6 in Fig 7,
and the remaining procedures are exactly the same as Share(f, 0). Thus, the former also holds.

The remaining thing is to prove Ĥ
hι−1

1 ≈c Ĥhι0 . Formally, we prove Lemma 11, which allows us to
conclude the proof of Theorem 7 from the observation so far and Lemma 1.

Lemma 11. For all PPT adversaries A, there exists a PPT adversary B such that

|Pr[〈A, Ĥhι−1

1 〉 = 1]− Pr[〈A, Ĥhι0 〉 = 1]| ≤ Adv
(ζ,`)-KE-ind
B,Γ (λ).

Proof. We denote the pebbling configuration on f that is specified by a bit string u by C(f, u). Let u0

and u1 be the committed values by A, which correspond to hι−1(z) and hι(z) for z chosen by A. Then,
C(f, u0) and C(f, u1) are adjacent pebbling configurations for some input b ∈ {0, 1}n for f . In other
words, there exists b such that u0 and u1 correspond to rι−1 and rι where (r0, . . . , rL) = PebRec(f, b).
Thus, C(f, u0) can be changed to C(f, u1) in one step following the rule defined in Definition 6. Recall

that the difference between Ĥ
hι−1

1 and Ĥhι0 is the input of S̃hare. That is, the input is (f, 0, u0) in Ĥ
hι−1

1

and (f, 0, u1) in Ĥhι0 . Thus, in case of u0 = u1, Ĥ
hι−1

1 and Ĥhι0 are clearly identical. In the following, we
consider the case of u0 6= u1.

Let an object O be either a gate g∗ with incoming wires a, b and an outgoing c or an input wire i∗

in which the difference between C(f, u0) and C(f, u1) lies. In what follows, we only consider the case
where a pebble is placed on O when we move from C(f, u0) to C(f, u1). Note that we can similarly
analyze the opposite case, where a pebble is removed, by just considering the reverse of the former

case. When O is a gate g∗, S̃hare(f, 0, u0) and S̃hare(f, 0, u1) are identically distributed, and thus Ĥ
hι−1

1

and Ĥhι0 are identical. We explain the reason in the following.

28

Consider the case where g∗ is an AND gate with incoming wires a, b and an outgoing wire c, and
at least one of its incoming wires comes from a gate or input wire with a pebble, say O′. This follows
from the pebbling rule. Without loss of generality, we can assume that the wire a comes from O′. The

difference between S̃hare(f, 0, u0) and S̃hare(f, 0, u1) is whether σa = σc − σb or σa = u where u← Zp
is set on the wire a. The crucial fact is that the procedure for O′ is independent of σa. That is, if O′

is a gate g′ with a pebble, the values set to its incoming wires are independent of σa (see item 3 in
Fig 7). If O′ is an input wire i′ with a pebble, the value set to the input wire is independent of σa (see

item 6 in Fig 7). Thus, the outputs of S̃hare(f, 0, u0) and S̃hare(f, 0, u1) are identically distributed. We
can easily observe that similar argument holds if g∗ is an OR gate.

The remaining case is when O is an input wire i∗ ∈ [n]. In this case, we show that the outputs

of OȲ in Ĥ
hι−1

1 and Ĥhι0 are computationally indistinguishable if the PES Γ for Pκ satisfies (ζ, `)-

KE-ind. The difference between these games is that µi∗ is exactly one of the output of S̃hare(f, 0, u0)

in Ĥ
hι−1

1 , whereas µi∗ is a random elements in Zp in Ĥhι0 . This is because a pebble is not placed on
i∗ in the configuration C(f, u0) but is placed on i∗ in the configuration C(f, u1). Thus, the output of

S̃hare(f, 0, u1) is the same as that of S̃hare(f, 0, u0) except that µi∗ is replaced with a random element
(see item 6 in Fig 7).

We construct a PPT adversary B against (ζ, `)-KE-ind of Γ that internally runs a PPT distinguisher

A between Ĥ
hι−1

1 and Ĥhι0 . B behaves as follows.

1. A commits (u0, u1) to B.
2. B is given a parameter (G, [A]η, [B]3−η, {a∗i }i∈[`,ζ], {b∗i }i∈[`+1,ζ], {[W>

i A]η, [WiB]3−η}i∈[ω]) from
the (ζ, `)-KE-ind game for Γ and gives it to A as its input.

3. For A’s query to OX̄, B just relays the query to its own oracle OX and the reply to A.

4. For A’s query to OȲ on y = ((y1, . . . , yn), f) and h, B computes µ1, . . . , µn ← S̃hare(f, 0, u0)
and hi for all i ∈ [n] using a∗` as shown in Fig 8. Then, B queries its own oracle OY on yi∗

and hi∗ and obtains [R(i∗)]3−η and [k(R(i∗), R̂(i∗),W)]3−η. B also computes all terms in R(i) =

(Br
(i)
1 , . . . ,Br

(i)
m1) and R̂(i) = (hi, r̂

(i)
1 , . . . , r̂

(i)
m2) for all i ∈ [n]\i∗ and {[k(R(i), R̂(i),W)]3−η}i∈[n]\i∗

by itself. B replies {([R(i)]3−η, [k(R(i), R̂(i),W)]3−η)}i∈[n] to A.
5. B outputs A’s output as it is.

Observe that if β = 0 in the (ζ, `)-KE-ind game of Γ , the first element of R̂(i∗) is hi∗ , and thus A’s view

corresponds to Ĥ
hι−1

1 . On the other hand, if β = 1 in the (ζ, `)-KE-ind game of Γ , the first element of

R̂(i∗) is hi∗ + µ̂a∗` = h′i∗ + µi∗a
∗
` + µ̂a∗` , where µ̂ is a random element in Zp chosen by OY. It means

that µi∗ is randomized by µ̂, and A’s view corresponds to Ĥhι0 . This concludes the proof.

Ciphertext-Policy Augmentation. Analogously to [9], for a predicate family P, we define its CP
augmentation predicate—denoted as CBF1[P]—as the dual of KBF1[P′] where P′ is the dual of P.
Therefore, we can use the dual conversion—applying two times–sandwiching KBF1-Trans, to obtain a
PES conversion for CBF1[P].

Definition 15 (Ciphertext-Policy Augmentation). A predicate family for ciphertext-policy Boolean
formula augmentation of a predicate family Pκ : Xκ × Yκ → {0, 1}, denoted by CBF1[Pκ] : X̄κ × Ȳκ →
{0, 1}, is define as follows:

– X̄κ =
⋃
i∈N(Xiκ × Fi), where Fi consists of all monotone Boolean formulae with input length i.

– Ȳκ = Yκ.
– For x = ((x1, . . . , xn), f) ∈ X̄κ and y ∈ Ȳκ where f : {0, 1}n → {0, 1}, we define b = (b1, . . . , bn) ∈
{0, 1}n as bi = Pκ(xi, y). Then, CBF1[Pκ](x, y) = 1⇔ f(b) = 1.

Additionally, CBF1OR[Pκ] and CBF1AND[Pκ] are defined in the same way as KP augmentation.

29

PES for CBF1[Pκ]. Let Γ = (Param,EncCt,EncKey,Pair) be a PES for Pκ. It is not hard to see
that CBF1[Pκ] = Dual[KBF1[Dual[Pκ]]]. Therefore, we can obtain a PES for CBF1[Pκ], denoted by
CBF1-Trans(Γ) = (Param′,EncCt′,EncKey′,Pair′), from Dual-Trans and KBF1-Trans. That is,

CBF1-Trans(Γ) = Dual-Trans(KBF1-Trans(Dual-Trans(Γ))).

4.4 Conforming PES for ABE

We can apply our transformations, namely, direct sum, dual, and key-policy augmentation, to a pred-
icate family set Pκ multiple times to obtain a new predicate family Pκ. When we apply a PES to
construct an ABE scheme, (ζ ′, ζ ′)-KE-ind for some constant ζ ′ implies the adaptive security of the re-

sulting ABE scheme. The following theorem says that if we have predicate families Pκ = (P
(1)
κ1 , . . . ,P

(d)
κd)

that satisfy (ζ, `)-KE-ind for all constants `, ζ ∈ N, we can construct an ABE scheme for a predicate
family Pκ obtained by applying the above transformations to Pκ arbitrarily many times.

To state the theorem formally, we define a composed predicate set fc(Pκ) for a predicate family set

Pκ = (P
(1)
κ1 , . . . ,P

(d)
κd). Let P̄κ be a predicate family set that consists of all predicate families obtained

by applying one of transformations, (DS,Dual,KBF1), to Pκ. That is, P̄κ = (DS[Pκ], {Dual[P(i)
κi]}i∈[d],

{KBF1[P
(i)
κi]}i∈[d]) (we do not consider DS for a subset of Pκ, because it can be embedded into DS[Pκ]).

Let f be a deterministic procedure defined as f(Pκ) = Pκ∪ P̄κ. Denote f ◦ . . .◦f(Pκ) where f appears
c times by fc(Pκ). Then, we have the following theorem.

Theorem 8. For all constant c and predicate family sets Pκ = (P
(1)
κ1 , . . . ,P

(d)
κd), each of whose elements

has a corresponding PES with (ζ, `)-KE-ind for all constants ζ, ` ∈ N, there exists a constant ζ ′ such
that Pκ ∈ fc(Pκ) has a PES that satisfies (ζ ′, ζ ′)-KE-ind under the Dk -MDDH assumption.

Proof. Let Γ = (Γ1, . . . , Γd) be PESs for (P
(1)
κ1 , . . . ,P

(d)
κd), respectively. We can construct a PES Γ for

P by applying PES transformations in Sections 4.1 to 4.3 to Γ multiple times. Let δ be the maximum
number of Dual-Trans that is applied to each single PES Γi to obtain Γ . For instance, δ in the following
PES is 2 because the first Γ2 is transformed by Dual-Trans twice, and the others are transformed by
Dual-Trans less that twice.

KBF1-Trans (DS-Trans (Dual-Trans (DS-Trans (Γ1,Dual-Trans (Γ2))) , Γ2, Γ3)) .

Then, it is not hard to see that we can construct Γ with (ζ ′, ζ ′)-KE-ind for ζ ′ = δ + 1. This directly
follows from Theorems 5 to 7.

Corollary 2. Let Pκ = (P
(1)
κ1 , . . . ,P

(d)
κd) be predicate families that have a PES with single-variable

PMH. Then, we have a PES for Pκ ∈ fc(Pκ) with (ζ ′, ζ ′)-KE-ind for a constant ζ ′ under the Dk -

MDDH assumption, where ζ ′ − 1 is the maximum number of Dual applied to each single predicate P
(i)
κi

to obtain Pκ.

This corollary directly follows from Theorems 4 and 8.

5 ABE from PES

In this section, we present our ABE scheme. We can construct an ABE scheme for any predicate
family Pκ and a corresponding PES obtained in our framework if the PES satisfies (ζ, ζ)-KE-ind for
some constant ζ ∈ N.

Construction. Let Γ = (Param,EncCt,EncKey,Pair) be a PES with (ζ, ζ)-KE-ind for a predicate
family Pκ : Xκ × Yκ → {0, 1}. Then, we can construct an ABE scheme for predicate Pκ as follows.

30

Setup(1λ, κ): Parse par from κ. It outputs pk and msk as follows.

ω ← Param(par), G← GBG(1λ), A,B← Z(k+ζ)×(k+ζ)
p , h← Zk+ζ

p ,

W = (W1, . . . ,Wω)← (Z(k+ζ)×(k+ζ)
p)ω,

pk=(G, [A]1, [W
>
1 A]1, . . . , [W

>
ωA]1, [A

>h]T), msk=(B,h,W1, . . . ,Wω).

Enc(pk, x,M): It takes pk, x ∈ Xκ, and M ∈ GT as inputs, and outputs ctx by computing as follows.

(n1, n2, c(s, ŝ,w))← EncCt(x), s0, s1, . . . , sn1 ← Zkp, ŝ1, . . . , ŝn2 ← Zk+ζ
p

S = (As0,As1, . . . ,Asn1
), Ŝ = (ŝ1, . . . , ŝn2

)

ctx = (ct1, ct2, ct3) = ([S]1, [c(S, Ŝ,W)]1, [s
>
0 A>h]TM).

KeyGen(pk,msk, y): It takes pk, msk, and y ∈ Yκ as inputs, and outputs sky by computing as follows.

(m1,m2,k(r, r̂,w))← EncKey(y), r1, . . . , rm1
← Zkp, r̂1, . . . , r̂m2

← Zk+ζ
p

R = (Br1, . . . ,Brm1), R̂ = (h, r̂1, . . . , r̂m2)

sky = (sk1, sk2) = ([R]2, [k(R, R̂,W)]2).

Dec(pk, ctx, sky): It takes pk, ctx = (ct1, ct2, ct3), and sky = (sk1, sk2) such that Pκ(x, y) = 1. Let
(E,E)← Pair(x, y). It outputs M ′ = ct3/Ω where

Ω =
∏

i∈[n1+1]
j∈[m3]

e(ct1,i, sk2,j)
ei,j ·

∏
i∈[n3]
j∈[m1]

e(ct2,i, sk1,j)
ēi,j , (4)

and where cti,j and ski,j refer to the j-th element of cti and ski, respectively, and ei,j and ēi,j refer
to the (i, j)-th element of E and E, respectively.

Correctness. Let c = (c1, . . . , cn3
) and k = (k1, . . . , km3

) be the outputs of EncCt(x) and EncKey(y),
respectively, where

ci =
∑
z∈[n2]

θi,z ŝz +
∑

t∈[n1]+,f∈[ω]

θi,t,fwfst

kj = φjα+
∑

u∈[m2]

φj,ur̂u +
∑

v∈[m1],z∈[ω]

φj,v,zwzrv.

Then, we have

e(ct1,i, sk2,j)
ei,j =

ei,js>i−1A
>

φjh +
∑

u∈[m2]

φj,ur̂u +
∑

v∈[m1],z∈[ω]

φj,v,zWzBrv


T

e(ct2,i, sk1,j)
ēi,j =

ēi,j
 ∑
z∈[n2]

θi,z ŝ
>
z +

∑
t∈[n1]+,f∈[ω]

θi,t,fs
>
t A>Wf

Brj


T

.

From the correctness of the pair encoding scheme, we have∑
i∈[n1+1]
j∈[m3]

ei,jsi−1kj +
∑
i∈[n3]
j∈[m1]

ēi,jcirj = αs0.

This corresponds to the following equation:∏
i∈[n1+1]
j∈[m3]

e(ct1,i, sk2,j)
ei,j ·

∏
i∈[n3]
j∈[m1]

e(ct2,i, sk1,j)
ēi,j = [s>0 A>h]T.

Hence, we can see that M = M ′.

31

Theorem 9. Suppose Γ satisfies (ζ, ζ)-KE-ind.Then, our ABE scheme is adaptively secure under the
Dk -MDDH assumption. Let qsk be the maximum number of A’s queries to KeyGen. For any PPT
adversary A, there exist PPT adversaries B1 and B2 such that

AdvABEA (λ) ≤ AdvDk -MDDH
B1

(λ) + qskAdv
(ζ,ζ)-KE-ind
B2,Γ

(λ).

Proof. The proof follows the dual system methodology [39]. We consider a series of hybrids H1 and H2,j

for j ∈ [qsk]. To define each hybrid, we introduce a so-called semi-functional (SF) ciphertext and secret
key, which are generated differently from normal ones. Specifically, an SF-ciphertext is generated as

(n1, n2, c(s, ŝ,w))← EncCt(x), s1, . . . , sn1
← Zkp, c0 , ŝ1, . . . , ŝn2

← Zk+ζ
p ,

S = (c0 ,As1, . . . ,Asn1
), Ŝ = (ŝ1, . . . , ŝn2

),

ctx = (ct1, ct2, ct3) = ([S]1, [c(S, Ŝ,W)]1, [c>0 h]TM).

An SF-secret key is generated as

(m1,m2,k(r, r̂,w))← EncKey(y), r1, . . . , rm1 ← Zkp, r̂1, . . . , r̂m2 ← Zk+ζ
p ,

µ← Zp , R = (Br1, . . . ,Brm1
), R̂ = (h + µa∗ζ , r̂1, . . . , r̂m2

),

sky = (sk1, sk2) = ([R]2, [k(R, R̂,W)]2).

(5)

In the hybrids, the distribution of secret keys and the challenge ciphertext are modified as follows:

H1: Same as the original game G except that the challenge ciphertext is SF.
H2,j(j ∈ [qsk]): Same as H1 except that the first j secret keys given to A are SF.

We prove that G ≈c H1 ≈c H2,1 ≈c, . . . ,≈c H2,qsk and A’s advantage in H2,qsk is statistically close to 0.

We capture these as Lemmata 12 to 14. From these and the fact AdvABEA (λ) = |Pr[〈A,G〉 = β]− 1/2|,
we have that Theorem 9 holds.

Lemma 12. For all PPT adversaries A, there exists a PPT adversary B such that

|Pr[〈A,G〉 = β]− Pr[〈A,H1〉 = β]| ≤ AdvDk -MDDH
B (λ).

Proof. To show this, we describe B, which is given an instance of the Uk+ζ,k-MDDH problem (G, [A]1, [tβ]1).
Note that we can write t0 = As0 and t1 = c0 where s0 ← Zkp and c0 ← Zk+ζ

p .

1. B generates B, h, and W1, . . . ,Wω by itself.
2. B computes pk = (G, [A]1, [W

>
1 A]1, . . . , [W

>
ωA]1, [A

>h]T) and gives it to A.
3. For queries KeyGen(pk,msk, y), B computes sky honestly. This is possible because B generates all

elements in msk by itself.
4. For the challenge query with messages (M0,M1) and an attribute x∗, B flips the coin δ ← {0, 1}

and generates ctx∗ as

(n1, n2, c(s, ŝ,w))← EncCt(x), s1, . . . , sn1
← Zkp, ŝ1, . . . , ŝn2

← Zk+ζ
p

S = (tβ ,As1, . . . ,Asn1
), Ŝ = (ŝ1, . . . , ŝn2

)

ctx = (ct1, ct2, ct3) = ([S]1, [c(S, Ŝ,W)]1, [t
>
β h]TMδ).

5. B outputs true(δ = δ′), where δ′ is an output of A.

Clearly, the case β = 0 corresponds to G and the case β = 1 corresponds to H1.

32

Lemma 13. Let H2,0 = H1. For all PPT adversaries A and j ∈ [qsk], there exists a PPT adversary B

such that

|Pr[〈A,H2,j−1〉 = β]− Pr[〈A,H2,j〉 = β]| ≤ Adv
(ζ,ζ)-KE-ind
B,Γ (λ).

Proof. To show this, we describe B, which is given an input of (ζ, ζ)-KE-ind game for η = 1, (G, [A]1, [B]2,
a∗ζ , {[W

>
i A]1, [WiB]2}i∈[ω]).

1. B samples h← Zk+ζ
p and computes [A>h]T.

2. B gives pk = (G, [A]1, [W
>
1 A]1, . . . , [W

>
ωA]1, [A

>h]T) to A.
3. For the first j − 1 queries KeyGen(pk,msk, y), B computes a SF key sky as shown in Eq. (5) using

h, a∗ζ , [B]2, and {[WiB]2}i∈[ω].

4. For the j-th query KeyGen(pk,msk, y), B queries OY on y and h, and obtains ([R]2, [k(R, R̂,W)]2),

where the first element of R̂ is h + βµa∗ζ . B returns sky = ([R]2, [k(R, R̂,W)]2) to A.
5. For the rest of queries KeyGen(pk,msk, y), B computes a normal secret key sky using h, [B]2, and
{[WiB]2}i∈[ω].

6. For the challenge query with x∗ and (M0,M1), B flip the coin δ ← {0, 1} and queries OX on x∗. B

obtains the reply ([S]1, [c(S, Ŝ,W)]1) and gives ctx∗ = ([S]1, [c(S, Ŝ,W)]1, [c
>
0 h]TMδ), where c0 is

the first element of S.
7. B outputs true(δ = δ′), where δ′ is an output of A.

Observe that the j-th secret key is identically distributed to the normal key if β = 0 and the SF-key
otherwise. Thus, the case β = 0 corresponds to H2,j−1 and the case β = 1 corresponds to H2,j .

Lemma 14. For all PPT adversaries A, we have

|Pr[〈A,H2,qsk〉 = β]− 1/2| ≤ 2−Ω(λ).

Proof. Because (A∗||a∗1|| . . . ||a∗ζ) forms a basis of Zk+ζ
p , redefining h as h = A∗z +

∑
i∈[ζ] zia

∗
i where

z ← Zkp, zi ← Zp does not change its distribution. Recall that the information on h that A obtains

throughout the game is A>h in pk, h + µa∗ζ in sky, and c>0 h in ctx∗ . A>h does not contain the

information on zζ because A>a∗ζ = 0. Similarly, each h + µa∗ζ in secret keys also does not contain the

information on zζ because it is masked by the fresh randomness µ. Thus, c>0 h = c>0 (A∗z+
∑
i∈[ζ] zia

∗
i)

is randomly distributed in Zp for A unless c>0 a∗ζ = 0 because zζ is randomly distributed for A. Since

c0 is randomly chosen from Zk+ζ
p , c>0 a∗ζ = 0 with a probability 2−Ω(λ). If it is not the case, ctx∗ does

not have information on β because ct3 is randomly distributed in GT.

6 Extensions, Instantiations, and Applications

In this section, we provide extensions, instantiations, and applications of our framework. We first
provide an overview.

6.1 Overview

We obtain many applications in an analogous manner to the applications in [9].

Extended Framework. On the framework level, we obtain key-policy augmentation over a set of
predicate families, denoted KBF, which is more powerful than the augmentation over a single predicate
family (KBF1), as done in §4.3. This follows exactly the same modular approach as in [9]. That is, in
our context, we can show that KBF is implied by KBF1 together with the direct sum and CBF1OR.
We explain this in §6.2. Moreover, more applications such as nested-policy ABE can also be obtained
analogously to [9].

New Instantiations. On the instantiation level, we have showed the result overview in the intro-
duction. Here, we briefly describe how to obtain such instantiations. The full details follow from §6.3.

33

– Completely unbounded ABE for monotone Boolean formulae. Analogously to [9], we have that this
predicate (in the key-policy flavor) is exactly KBF1[PIBBE], where PIBBE is the predicate for ID-based
broadcast encryption. IBBE can then be augmented from IBE, of which we know a PMH-secure
PES from e.g., [7]. The CP flavor is obtained by the dual conversion.

– Completely unbounded ABE for non-monotone Boolean formulae (the OSW type). This is also
analogous to [9], where we consider two-mode IBBE (TIBBE), which can be then obtained by IBE
and its negated predicate.

– Non-monotone KP-ABE with constant-size ciphertexts. A monotone variant is obtained by simply
using the PMH-secure PES for IBBE with constant-size ciphertext encodings. Such a PES can be
extracted from the PES for doubly spatial predicate in [7]. Since our KBF1-Trans preserves ciphertext
encoding sizes, the converted scheme also obtains constant-size ciphertext encodings. For the non-
monotone case, such a PES for TIBBE can be obtained by the disjunction of IBBE and negated
IBBE (NIBBE). The latter can be viewed as a special case of negated doubly spatial predicate
in [7], of which PES with constant-size encodings was reported. In §6.7, we directly construct a new
TIBBE, which is two times efficient than the generic one from the disjunction.

– CP-ABE with constant-size ciphertexts. First note that we consider schemes with some bound on
the size of policies (Boolean formulae), which the same requirement as CP-ABE with constant-size
ciphertexts of [1, 9, 10]. We obtain this by two steps. First we show that, when considering small-
universe, KP-ABE implies CP-ABE (for Boolean formulae, with the bounded condition). We use
the depth-universal circuit [18] in this conversion. Second we show that CP-ABE with small universe
implies CP-ABE with large universe (again for Boolean formulae, with the bounded condition). To
the best of our knowledge, these conversions were not known and can be of an independent interest,
as they are applied to ABE in general (not necessarily to PES). Note that we cannot do that as
Attrapadung et al. [10] did, who considered similar implications in the case of more powerful span
programs.

– ABE with constant-size keys. CP/KP-ABE with constant-size keys is obtained by the dual of
KP/CP-ABE with constant-size ciphertexts, respectively.

As examples, we provide the descriptions of three concrete instantiations in §B.

New Applications. As a new application, we provide a new unified predicate related to non-
monotone ABE. Previously, there are two types of non-monotone ABE: the OSW type (Ostrovsky,
Sahai, and Waters [34]) and the OT type (Okamoto and Takashima [33]). In the OSW type, a sub-
predicate P (y,X) amounts to check if an attribute is not in a set, e.g., if y 6∈ X, while the OT type,
a label tag is also attached, but a sub-predicate P ′((tag, y), (tag, x)) only checks the inequality on the
same tag, e.g., if tag = tag ∧ y 6= x. Intuitively, the OSW type has a disadvantage in that the non-
membership test takes the complement over the whole universe and this may be too much for some
applications, where we would like to consider multiple sub-universe and confine the complement to only
in the related sub-universe. On the other hand, the OT type confines the non-membership to those with
the same tag, but the non-membership test is enabled only with the set of single element, e.g., {x}. We
unify both types to overcome both disadvantages; that is, a sub-predicate P ′((tag, y), (tag, X)) would
check if tag = tag ∧ y 6∈ X. We remark that when considering large-universe monotone ABE, there is
no benefit to consider multiple spaces, since Zp is already exponentially large, and we can just treat
a hashed value H(tag, y) as an attribute in Zp. In non-monotone ABE, we have to check the equality
(of tags) and the non-membership at once, and the approach by hashing does not work. We motivate
more on the unified non-monotone ABE, and provide definitions and constructions in §6.4.

6.2 Augmentation over Predicate Sets

Following the composition framework of [9], we can also analogously define key-policy Boolean formula
augmentations over a set of predicate families, rather than only a single predicate family, as done
in Definition 14.

34

Some Terminology. Throughout this subsection, let P = {P(1), . . . ,P(k)} be a set of predicate

families. Each family P(j) = {P(j)
κj }κj is indexed by κj = (N, parj). The domain for each predicate is

specified by P
(j)
κj : X

(j)
κj × Y

(j)
κj → {0, 1}. Unless specified otherwise, we define the combined index as

κ = (N, par) = (N, (par1, . . . , park)). Let Xκ :=
⋃
i∈[k]({i} × X

(i)
κi) and Yκ :=

⋃
i∈[k]({i} × Y

(i)
κi).

Definition 16 (Key-Policy Augmentation over Predicate Sets). Let P = {P(1), . . . ,P(k)} be a
set of predicate families. We define the predicate for key-policy Boolean formula augmentation over set
P as KBF[P] = {Pκ}κ where Pκ : X̄κ × Ȳκ → {0, 1} by letting

– X̄κ = 2Xκ .

– Ȳκ =
⋃
i∈N(Yiκ × Fi), where Fi consists of all monotone Boolean formulae with input length i.

– For X ∈ X̄κ and Y = (((j1, y1), . . . , (jn, yn)), f) ∈ Ȳκ where f : {0, 1}n → {0, 1}, we define
b = (b1, . . . , bn) ∈ {0, 1}n by setting

bi = 1 iff ∃(ji, x) ∈ X s.t. P(ji)
κji

(x, yi) = 1

We then define Pκ(X, y) = 1⇔ f(b) = 1.

Unbounded/Dynamic/Static. Similarly to [9], we consider (confined) variants of the predicate
KBF[P] as follows. Consider the domain of ((j1, . . . , jn), f), which specifies a policy over predicates.
We denote their full domain as D, which can be inferred from Definition 16. For a class C ⊆ D, the
predicate KBF[P] with the domain of ((j1, . . . , jn), f) being confined to C is denoted by KBFC [P] and
is also called dynamic Boolean formula composition with class C. It is called unbounded if C = D. It
is called static if |C| = 1. We will use a terminology P(1) ∨P(2) and P(1) ∧P(2) to naturally denote the
static OR and AND composition over {P(1),P(2)}, respectively.

We have the following lemma, which follows analogously to the case of span programs in [9].

Lemma 15. KBF[P] can be embedded into KBF1[CBF1OR[DS[P]]].

6.3 Basic Predicates

In the following subsections, we describe a modular approach similarly to [9] in obtaining our ABE
instantiations from simpler basic predicates. We first recapitulate the following basic predicates as
follows. For abbreviations, IBE is for ID-based encryption; NIBE is for negated IBE, IBBE is for
ID-based broadcast encryption [19]; IBR is for ID-based revocation [11]; and TIBBE is for two-mode
IBBE [42]. Let the universe in these predicates be U = Zp.

– PIBE : U× U→ {0, 1} defined as PIBE(x, y) = 1⇔ x = y.

– PNIBE : U× U→ {0, 1} defined as PNIBE(x, y) = 1⇔ x 6= y.

– PIBBE : 2U × U→ {0, 1} defined as PIBBE(X, y) = 1⇔ y ∈ X.

– PIBR : 2U × U→ {0, 1} defined as PIBR(X, y) = 1⇔ y 6∈ X.

– PTIBBE : 2U × ({1, 2} × U)→ {0, 1} defined as

PTIBBE(X, (i, y)) = 1⇔ (i = 1 ∧ y ∈ X) ∨ (i = 2 ∧ y 6∈ X).

It is straightforward to see that PIBBE can be embedded into CBF1OR[PIBE], while PIBR can be embedded
into CBF1AND[PNIBE], and PTIBBE can be embedded into CBF1OR[PIBBE � PIBR]. Now since we have a
PES instantiation for PIBE and PNIBE that is secure in the sense of perfect master-key hiding from [7]
and [6], respectively, we can instantiate ABE for these predicates via our transformations.

35

6.4 Completely Unbounded ABE for Monotone Formulae

We denote by PKP-MBF the predicate of key-policy ABE for monotone boolean formulae (MBF) where
all the parameters (the policy size, the attribute set size, the number of allowed multi-use of attributes
in one policy) are unbounded and the attribute universe U is super-polynomially large. Its precise
definition can be obtained modularly as

PKP-MBF := KBF1[PIBBE],

or equivalently, it is KBF[PIBE]. The ciphertext-policy flavor is its dual, namely, PCP-MBF := Dual[PKP-MBF].
Kowalczyk and Wee [29] recently proposed such an unbounded KP-ABE under the MDDH assump-

tion; however, the ciphertext-policy variant has remained as an open problem. By using our modular
transformation KBF1-Trans and Dual-Trans to the PES for PIBBE (which is obtained via transforma-
tions to the IBE of [7], respectively), we obtain the first such unbounded CP-ABE under the MDDH
assumption.

6.5 Completely Unbounded ABE for Non-Monotone Formulae

Due to De Morgan’s Law, any non-monotone boolean formula (NBF) can be expressed by another
formula where all the NOT gates are applied only at the input values. Using this fact, we can define
the predicate for the completely-unbounded (key-policy) ABE for non-monotone Boolean formulae,
denoted by PKP-NBF-OSW, as

PKP-NBF-OSW := KBF1[PTIBBE].

This type of ABE for NBF was defined by Ostrovsky, Sahai and Waters [34], and hence we call it the
OSW-type. It is crucial to note that, when we consider large-universe schemes, ABE for NBF is not
trivially implied from ABE for MBF. One trivial implementation (that does not work) prepares the
negative version of all attributes in the universe and requires any attribute set, say S, to include all
negative attributes, say x̄, if x is not in S; however, this is not possible due to the super-polynomial
size universe.

The Okamoto-Takashima type [33] of ABE for NBF was defined differently. Its modular definition
was captured in [9], and we recap it here. Let L = Zp be the “label” universe and U be the attribute
universe. First define

XOT = { {(a1, x1), . . . , (at, xt)} | ai ∈ L, xi ∈ U, t ∈ N, if i 6= j then ai 6= aj }.

We then define POT : XOT × ({1, 2} × L× U)→ {0, 1} by

POT
(
{(a1, x1), . . . , (at, xt)}, (i, `, y)

)
= 1 ⇔

(
i = 1 ∧ (∃j : aj = ` ∧ xj = y)

)
∨(

i = 2 ∧ (∃j : aj = ` ∧ xj 6= y)
)
.

The OT-type ABE for NBF can then be defined as

PKP-NBF-OT := KBF1[POT].

Disadvantages of the Previous Two Types of Non-monotonicity. Intuitively, we can consider
that there is one large space U as a ciphertext-attribute universe in PKP-NBF-OSW, whereas there are
multiple spaces U(1), . . . ,U(t) in PKP-NBF-OT. When we consider monotone ABE, there is no benefit
to consider multiple spaces because U is already exponentially large, which concequently yields large
universe ABE. However, the situation is different when we consider non-monotone ABE. That is, the
negation in PKP-NBF-OSW is for the entire attribute universe U, whereas that in PKP-NBF-OT is for only a
fraction of attribute universe, i.e., U(i).

36

This is a critical difference in practice as pointed out by Tomida et al. [38]. Considering an example
is the best way to describe the difference. Suppose that an attribute consists of a label and value, like
Year:1991-2000, where Year is a label and 1991-2000 is a value. This is quite natural because each
record in a typical relational database has this structure. Then, we consider the case where we handle
two labels Year and Category. The negation in PKP-NBF-OSW (OSW-negation) can be described as
(NOT Year:1991-2000) while negation in PKP-NBF-OT (OT-negation) is like (Year:NOT 1991-2000).
Semantically, the former implies that the policy is satisfied if attribute Year:1991-2000 does not exist
in a attribute set. On the other hand, the latter implies that the policy is satisfied if an attribute set
has an attribute on label Year and its attribute is not 1991-2000.

This semantical difference arises from the structural difference of attribute universes in PKP-NBF-OSW

and PKP-NBF-OT. In PKP-NBF-OSW, one needs to embed the information on both label and value into U.
On the other hand, in PKP-NBF-OT, one can associate the label with an index i ∈ L of the attribute
universe and embed only the information on a value into U(i).

For typical applications of ABE, the structure of the universe in OT-nagation is more desirable.
Consider the case to increase labels in ABE system that is in operation. If the system is based on OSW-
negation, some inconvenience arises. That is, a secret key whose policy is negation of an attribute whose
label is a new one that the system has not supported before can decrypt all ciphertexts generated so
far. Let one of the new labels be Artist. If an authority issues a key whose policy is (NOT Artist:The
Beatles), all previous ciphertexts are decrypted by the key even if the underlying content is by The
Beatles because they do not have an attribute on label Artist. On the other hand, OT-negation does
not cause this inconvenience because a key whose policy is (Artist:NOT The Beatles) is useless to
decrypt ciphertexts without an attribute on label Artist.

Nevertheless, OT-non-monotonicity is not still almighty. If we carefully look at the definition of
PKP-NBF-OT, we can see that each attribute sets can have at most one value for each label. That is, it
does not allow attributes such as Category:Rock, Blues, R&B. This is also inconvenient when we
consider labels that naturally takes multiple values per record or instance. This inconvenience motivate
us to consider the following new type of non-monotone ABE, which does not cause the above problems.

New Unified Type of ABE for Non-Monotone Boolean Formulae. We propose a new “hybrid”
type that combines and unifies both types (OSW,OT) above. First define

XOSWOT = { {(a1, X1), . . . , (at, Xt)} | ai ∈ L, Xi ⊆ U, t ∈ N, if i 6= j then ai 6= aj }.

We then define POSWOT : XOSWOT × ({1, 2} × L× U)→ {0, 1} by

POSWOT
(
{(a1, X1), . . . , (at, Xt)}, (i, `, y)

)
= 1 ⇔

(
i = 1 ∧ (∃j : aj = ` ∧ y ∈ Xj)

)
∨(

i = 2 ∧ (∃j : aj = ` ∧ y 6∈ Xj)
)
.

The unified type ABE for NBF can then be defined as

PKP-NBF-OSWOT := KBF1[POSWOT].

We can instantiate ABE for NBF (in all types). For this purpose, it is sufficient to instantiate PES
for POSWOT. Now, using the idea similar to [9], it is not difficult to see that the above POSWOT can be
embedded into

CBF1OR[CBF1OR[PIBE ∧ PIBBE]� CBF1OR[PIBE ∧ PIBR]].

6.6 Unified Definition for Bounded ABE for Boolean Formulae

Towards constructing ABE with constant-size ciphertexts or keys, we will set bounds on some param-
eters. In this subsection, we give the following unified definition that can deal with combinations of
bounds.

37

Definition 17 (Predicate variants of KP-ABE for MBF). The predicate family of KP-ABE for
MBF in the xx variant, denoted by PKP-MBF-xx

κ : Xκ × Yκ → {0, 1}, is define as follows. Each variant is
indexed by a sub-vector of κ = (U, T,N,M,D,ϕ) ∈ N6 (see more below). Denote the attribute universe
as U and let U = |U|.

– Xκ :=
(

U
≤T
)

= {X ∈ 2U : |X| ≤ T}.
– Yκ :=

⋃
n≤N (Vn,ϕ × Fn,M,D), where

• Vn,ϕ := {y ∈ Un |The same element can appear at most ϕ times in y.}.
• Fn,M,D consists of all monotone Boolean formulae with input length n, and size at most M ,

depth at most D.
– For X ∈ Xκ and Y = ((y1, . . . , yn, f) ∈ Yκ where f : {0, 1}n → {0, 1}, we set bj = 1 iff yj ∈ X.

Define PKP-MBF-xx
κ (X,Y) = 1⇔ f(b1, . . . , bn) = 1.

The index κ shows bounds regarding the domains Xκ,Yκ. For a predicate variant where some param-
eters are unbounded, we write - in κ; for example, a predicate with no bound T will be indexed by
(U, -, N,M,D,ϕ). Note that if U is unbounded, we set U as a super-polynomial-size space, in partic-
ular, U = Zp (such a variant is called “large-universe”). In this way, we can define a variant by the
combination of the bounds, hence obtain up to 64 variants (some might be subsumed by others). We
use xx ∈ {0, . . . , 63} to name each variant by using the position of 1 in (xx)2 to mean that there is a
bound in the corresponding position in κ. We will particularly consider the following variants.

– PKP-MBF-0: the completely-unbounded predicate (i.e., PKP-MBF).
– PKP-MBF-16, indexed by κ = (-, T, -, -, -, -), is a predicate with the bounded attribute set size t.
– PKP-MBF-31, indexed by κ = (-, T,N,M,D,ϕ), is a predicate with large universe.
– PKP-MBF-63: the completely-bounded predicate.

We can also analogously define the variants for NBF, PKP-NBF-T-xx, where T ∈ {OSW,OT,OSWOT} in
a natural manner (details are omitted).

6.7 KP-ABE with Constant-Size Ciphertexts

Monotone KP-ABE with Constant-Size Ciphertexts. We consider the bounded-attribute-set-
size predicate, more precisely, PKP-MBF-16. It can be interpreted as KBF1[PIBBE′], where we define the
predicate family PIBBE′ = {PIBBE′

T } indexed by T ∈ N by confining the domain 2U in PIBBE′ to
(

U
≤T
)
.

Since our KBF1-Trans preserves the ciphertext encoding size, to obtain a PES for PKP-MBF-16 with
constant-size ciphertext encodings, it suffices to construct such a PES for PIBBE′ . For a set X ⊆ Zp,
write

pX(z) =
∏
i∈X

(z − i) = a0 + a1z + · · ·+ aT z
T

and define vX := (a0, . . . , aT)> ∈ ZT+1
p and v′X = (1, a0, . . . , aT)> ∈ ZT+2

p . For an element y ∈ Zp,
define My ∈ Z(T+1)×T

p , M′
y ∈ Z(T+2)×(T+1)

p as

My :=

(
m>y
IT

)
:=

−y −y
2 ··· −yT

1
1

. . .
1

 , M′
y :=

(
1 0
0 My

)
.

It can be shown that y ∈ X iff pX(y) = 0 iff vX is in the column span of My. A PES for PIBBE′ is
constructed as follows.5

5 Note that this PES can be viewed as a special case extracted from the PES for doubly spatial encryption
predicate in [7].

38

– Param(T) = T + 2 = |w|.
– EncCt(X) = (0, 0, c) where c = sw>v′X , where the non-lone variable is s.
– EncKey(y) = (1, 0,k) where k = (α,0) + rw>M′

y, where the non-lone variable is r.

– Pair(X, y) = (e, ē) where e = −(1, a1, . . . , aT)> and ē = 1.

The correctness amounts to prove se>k> + cē r = αs, which can be shown as follows. From y ∈ X we
have pX(y) = 0 and hence, by inspection, we have M′

ye = −(1, a0, . . . , aT)> = −v′X , and this leads to
the claim.

Lemma 16. The above PES for PIBBE′ satisfies perfect master-key hiding.

Proof. Suppose PIBBE′(X, y) = 0, i.e., y 6∈ X. The encoding construction implies a system of equations
with unknown α,w: 1 r 0

0 0 rM>
y

0 s sv>X

(α
w

)
=

(
k>

c>

)

From y 6∈ X, we have vX 6∈ span(My). Hence (1, 0, . . . , 0) is not in the row span of the matrix on the
left-hand side. Therefore, α is completely hidden.

Non-Monotone KP-ABE with Constant-Size Ciphertexts. Here, we consider the predicate
PKP-NBF-OSW-16. Similarly as above, it is equivalent to KBF1[PTIBBE′], where PTIBBE′ is defined analo-

gously (confining to the attribute sets of size ≤ T). We define VX ∈ Z(T+3)×2
p , M(1)

y ∈ Z(T+3)×(T+1)
p ,

M(2)
y ∈ Z(T+3)×(T+2)

p as

VX :=

1 0
0 vX
0 1

 , M(1)
y :=

1 0
0 My

1 0

 , M(2)
y :=


1 0 0
1 m>y 0
0 IT 0
0 0 1

 .

A PES for PTIBBE′ is constructed as follows.

– Param(T) = T + 3 = |w|.
– EncCt(X) = (0, 0, c) where c = sw>VX , where the non-lone variable is s.

– EncKey(i, y) = (1, 0,k) where k = (α,0) + rw>M(i)
y , where the non-lone variable is r.

– Pair(X, (i, y)) = (e, ē), where we recall that we have the two following cases when PTIBBE′(X, (i, y)) =
1.
• If i = 1 and y ∈ X, we set e = (1, a1, . . . , aT)> and ē = (−1,−1)>.
• If i = 2 and y 6∈ X, we set e = (1, a1

δ , . . . ,
aT
δ ,

1
δ)> and ē = (−1,− 1

δ)>, where δ := pX(y) 6= 0.

The correctness amounts to prove se>k> + cē r = αs, which can be shown as follows.

– Suppose i = 1 and y ∈ X. Then, the above holds since

M(1)
y e = (1, a0, . . . , aT , 1)> VX ē = −(1, a0, . . . , aT , 1)>,

which implies M(1)
y e + VX ē = 0, and hence the claim.

– Suppose i = 2 and y 6∈ X. Then, the above holds since

M(2)
y e = (1, 1− a1y + · · · aT yt

δ
,
a1

δ
, . . . ,

aT
δ
,

1

δ
)>

VX ē = (−1,−a0

δ
, . . . ,−aT

δ
,−1

δ
)>,

which implies M(2)
y e + VX ē = 0, and hence the claim.

39

Lemma 17. The above PES for PTIBBE′ satisfies perfect master-key hiding.

Proof. Suppose PTIBBE′(X, (i, y)) = 0. We have two cases.

– Case i = 1 and y 6∈ X. The encoding construction implies a system of equations with unknown
α,w: 

1 r 0 r

0 0 rM>
y 0

0 s 0 0
0 0 sv>X s

(αw
)

=

(
k>

c>

)

From y 6∈ X, we have vX 6∈ span(My). Hence (1, 0, . . . , 0) is not in the row span of the matrix on
the left-hand side. Therefore, α is completely hidden.

– Case i = 2 and y ∈ X. The encoding construction implies a system of equations with unknown
α,w: 

1 r r 0 0
0 0 rmy rIt 0
0 0 0 0 r
0 s 0 0 0
0 0 sv>X,0 sv

>
X,1→T s


(
α
w

)
=

(
k>

c>

)
,

where we write v>X = v>X,0||v>X,1→T = a0||(a1 . . . , aT). By inspection, we have that (r, 0, . . . , 0)
is not in the row span of (rmy, rIT). Moreover, since y ∈ X, we have vX ∈ span(My). Hence,
(r, 0, . . . , 0) is also not in the row span of(

rM>
y

sv>X

)
=

(
rmy rIT
sv>X,0 sv

>
X,1→T

)
Hence (1, 0, . . . , 0) is not in the row span of the matrix on the left-hand side. Therefore, α is
completely hidden.

This concludes the proof.

6.8 CP-ABE with Constant-Size Ciphertexts

CP-ABE with Constant-Size Ciphertexts. We next construct a PES for the predicate PCP-MBF-31

(bounded formula sizes and attribute sets, but large-universe) with constant-size ciphertext encodings.6

We achieve this by the following two lemma.

Lemma 18. PCP-MBF-63 can be embedded into PKP-MBF-63.

We use the depth-universal circuit of Cook and Hoover [18], where we recapitulate in the following
proposition. It implies a universal circuit for NC1 (log-depth circuits), or equivalently Boolean formulae.

Proposition 1 ([18]). For any k,M,D there is a universal circuit Uk,M,D that can simulate any
circuit C having k inputs, of size at most M and depth at most D, and Uk,M,D has depth DD = O(D)
and size SM,D = O(M3D/ logM). The input to the circuit Uk,M,D consists of the regular input k bits
and CM = O(M2 logM) bits representing the description of the simulated circuit C.

6 Exactly the same bound requirements are analogously assumed for the previous CP-ABE schemes (for
monotone span programs) with constant-size ciphertexts [1, 10].

40

Proof (of Lemma 18). Consider PCP-MBF-63
κ : Yκ × Xκ → {0, 1} and PKP-MBF-63

κ′ : Xκ′ × Yκ′ → {0, 1}
(see Definition 17). We assume w.l.o.g. that U = [u]. We map κ = (U, T,N,M,D,ϕ) 7→ κ′ =
(U ′, T ′, N ′,M ′, D′, ϕ′) by setting U ′ = T ′ = N ′ = CM̃ , M ′ = SM̃,D̃, D′ = DD̃, ϕ′ = 1, where

M̃ = O(M + U), D̃ = O(D + logU + logϕ) are set as below.
Towards using the universal circuit, we first map the ciphertext attribute Y = (y, f) ∈ Yκ of CP-

ABE (which consists of the input label y ∈ Un and a boolean formula f : {0, 1}n → {0, 1}) to its
corresponding boolean formula gY : {0, 1}ϕU+1 → {0, 1} (now with globally-fixed input labels), and
map the key attribute X ∈ Xκ of CP-ABE to its corresponding bit string bX ∈ {0, 1}ϕU+1, so that
we will have

gY (bX) = PCP-ABE-63
κ (Y,X). (6)

This can be done as follows. Consider a new universe U′ = [U] × [ϕ] ∪ {dummy} and assume some
lexicographical order in U′.

– From y ∈ Un, we define y′ ∈ (U′)n by setting y′j = (yj , q) if yj is the q-th appearance of the same
attribute in y, i.e., q = |{ι ∈ [j]|yι = yj}|. We construct gY to be the same as f except with the
following modifications. First the input labels are modified from y to y′. Then we re-order the
input wires so that they are in a lexicographical order in U′. We next add an input wire labelled
dummy. Then for all b ∈ U′ where x does not appear in y′, we add an input wire labelled and take
an AND over them and the dummy input wire then take an OR over the output of this AND gate
and the output wire, and output it as a new output wire. We expand the AND gate into many
AND gates with fan-in 2 in depth O(logϕU). This completes the specification of gY , which always
have all input wires labelled fully by U′ (in the lexicographical order). By inspection, gY has depth
D̃ = O(D + logU + logϕ) and size M̃ = O(M + U).

– For X ∈ Xκ, we set bX = (bj)j∈U′ ∈ {0, 1}ϕU+1 (in the lexicographical order) as follows. Let
bdummy = 0. For each j ∈ U′ \ {dummy} we parse j = (ι, q) and for all q ∈ [ϕ] we set bj = 1 iff
ι ∈ X.

It is straightforward to see that Eq. (6) holds.
Now that we have the set of globally fixed input labels, we can use a depth-universal circuit

(Proposition 1) U := UϕU+1,M̃,D̃. For a boolean formula gY : {0, 1}ϕU+1 → {0, 1}, we write its

description as a bit string desc(gY) ∈ {0, 1}CM̃ where CM̃ = O(M̃2 log M̃) (by using the extended
encoding in [18]). The universal circuit U : {0, 1}CM̃ × {0, 1}ϕU+1 → {0, 1} has the following property:

U(desc(gY),bX) = gY (bX). (7)

We then view U(·,bX) as a boolean formula hX : {0, 1}CM̃ → {0, 1} with the input labels being
1, . . . ,CM̃ . This yields

hX(desc(gY)) = U(desc(gY),bX) (8)

We can finally map

Y 7→ AY = {ι ∈ [CM̃] |The ι-th element in desc(gY) is 1 } ∈ X′κ,

X 7→ BX = ([CM̃], hX) ∈ Y′κ,

where we consider the attribute universe [CM̃] in KP-ABE. From the definition of PKP-MBF-63
κ′ we have

PKP-MBF-63
κ′ (AY , BX) = hX(desc(gY)) (9)

From Eq. (6),Eq. (7),Eq. (8),Eq. (9), we thus have

PCP-MBF-63
κ (Y,X) = 1⇔ PKP-MBF-63

κ′ (AY , BX) = 1.

This concludes the lemma.

41

Lemma 19. PCP-MBF-31 can be embedded into PCP-MBF-63.

Proof. Consider PCP-MBF-31
κ : Yκ × Xκ → {0, 1} and PCP-MBF-63

κ′ : Y′κ′ × X′κ′ → {0, 1} and (cf. the key-
policy version of definition in Definition 17.). We map κ = (-, T,N,M,D,ϕ) 7→ κ′ = (U ′, T ′, N ′,M ′, D′,
ϕ′) as follows. In the large universe CP-ABE, the universe is Zp where λ = dlog pe is the security
parameter. We set U ′ = 2Tλ, T ′ = Tλ, N ′ = NTλ, M ′ = M + 2Tλ− 1, D′ = D + dlog T e+ dlog λe,
and ϕ′ = ϕ. We set a new universe as U′ = [T]× [λ]× {0, 1}. We map as follows.

– From Y = (y, f) ∈ Yκ, we construct Y ′ = (y′, f ′) ∈ Y′κ′ as follows. Parse y = (y1, . . . , yn). For each
yj in y, denote the bit decomposition of yj as (yj,1, . . . , yj,λ) ∈ {0, 1}λ. For k ∈ [T], j ∈ [n], define

yk,j := ((k, 1, yj,1), . . . , (k, λ, yj,λ)) ∈ (U′)λ.

We set the new input wires y′ as

y′ = y1,1|| · · · ||y1,i||y2,1|| · · · ||y2,i|| · · · ||yT,1|| · · · ||yT,i,

where || is the concatenation. Note that if the maximum repetition in y is ϕ, then the maximum
repetition in y′ is also ϕ (hence we set ϕ′ = ϕ). We construct f ′ to be exactly the same as f except
that for each input wire yj of f , we add the following (depth-2, large fan-in) sub-circuit:

T∨
k=1

λ∧
ι=1

(k, ι, yj,ι)

in such a way that its output wire connects to the wire yj . Note that now we have that the input
labels of f ′ are exactly y′. This sub-circuit can be then straightforwardly converted to an equivalent
fan-in-2 circuit with depth dlog T e+ dlog λe (by expanding the OR and the AND). As a result, f ′

is a Boolean formulae with depth D′ = D + dlog T e+ dlog λe, size M ′ = M + 2Tλ− 1, and input
length nTλ (recall that D,M is the depth and the size of f , respectively).

– From X ∈ Xκ, we construct X ′ ∈ X′κ′ as follows. Parse X = {x1, . . . , xt}. For each xj ∈ X, denote
the bit decomposition of x as (xj,1, . . . , xj,λ). We set

X ′ =

t⋃
j=1

{(j, 1, xj,1), . . . , (j, λ, xj,λ)}.

Note that we have X ′ ∈
(

U′

≤T ′
)
, where we let T ′ = Tλ. This is since t ≤ T .

We claim that

PCP-MBF-31
κ (Y,X) = PCP-MBF-63

κ′ (Y ′, X ′).

This holds since the functionality of the above sub-circuit is to compute the satisfiability for yj ∈ X.

Combining both lemmata, we obtain the following corollary.

Corollary 3. PCP-MBF-31 can be embedded into PKP-MBF-63.

We can inspect the efficiency of the resulting large-universe CP-ABE from the small-universe KP-
ABE by combining the parameter mappings in the proofs of both lemmata. That is, if we let κ
and κ′′ be the indexes of the large-universe CP-ABE and the small-universe KP-ABE, respectively,
then via the two lemmata we have the combined map that takes κ = (-, T,N,M,D,ϕ) 7→ κ′′ =
(U ′′, T ′′, N ′′,M ′′, D′′, ϕ′′) where ϕ′′ = 1 and

U ′′ = T ′′ = N ′′ = O((M + Tλ)2 log(M + Tλ)) = Õ((M + Tλ)2),

M ′′ = O((M + Tλ)3(D + log T + log λ+ logϕ)/ log(M + Tλ)),

D′′ = O(D + log T + log λ+ logϕ).

Applying the combined conversion in this sub section to the KP-ABE with constant-size ciphertexts
of the previous subsection (§6.7), we obtain the large-universe CP-ABE with constant-size ciphertexts.
The public key size is O(T ′′) = Õ((M +Tλ)2), while the secret key size is O(N ′′T ′′) = Õ((M +Tλ)4).

42

6.9 KP-ABE, CP-ABE with Constant-Size Keys

We apply the dual conversion to ABE with constant-size ciphertexts to obtain the following.

(Non-monotone) CP-ABE with Constant-Size Keys. This can be obtained by applying the
dual conversion to the (non-monotone) KP-ABE with constant-size ciphertexts of §6.7. The property
of constant-size ciphertexts in KP-ABE becomes the property of constant-size keys in CP-ABE since
the size of ciphertexts preserve to the size of keys (and vice versa) via the dual conversion.

KP-ABE with Constant-Size Keys. This can be obtained by applying the dual conversion to the
CP-ABE with constant-size ciphertexts of §6.8.

Acknowledgement. Nuttapong Attrapadung was partly supported by JST CREST Grant Number
JPMJCR19F6, and by JSPS KAKENHI Kiban-A Grant Number 19H01109.

References

1. S. Agrawal and M. Chase. A study of pair encodings: Predicate encryption in prime order groups. In
E. Kushilevitz and T. Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages 259–288.
Springer, Heidelberg, Jan. 2016.

2. S. Agrawal and M. Chase. FAME: Fast attribute-based message encryption. In B. M. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, editors, ACM CCS 2017, pages 665–682. ACM Press, Oct. / Nov. 2017.

3. S. Agrawal and M. Chase. Simplifying design and analysis of complex predicate encryption schemes. In
J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 627–656.
Springer, Heidelberg, Apr. / May 2017.

4. S. Agrawal, M. Maitra, and S. Yamada. Attribute based encryption (and more) for nondeterministic finite
automata from LWE. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part II, volume 11693
of LNCS, pages 765–797. Springer, Heidelberg, Aug. 2019.

5. S. Agrawal, M. Maitra, and S. Yamada. Attribute based encryption for deterministic finite automata from
DLIN. In D. Hofheinz and A. Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 91–117.
Springer, Heidelberg, Dec. 2019.

6. M. Ambrona, G. Barthe, and B. Schmidt. Generic transformations of predicate encodings: Constructions
and applications. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 36–66. Springer, Heidelberg, Aug. 2017.

7. N. Attrapadung. Dual system encryption via doubly selective security: Framework, fully secure functional
encryption for regular languages, and more. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 557–577. Springer, Heidelberg, May 2014.

8. N. Attrapadung. Dual system encryption framework in prime-order groups via computational pair encod-
ings. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages
591–623. Springer, Heidelberg, Dec. 2016.

9. N. Attrapadung. Unbounded dynamic predicate compositions in attribute-based encryption. In Y. Ishai and
V. Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 34–67. Springer, Heidelberg,
May 2019.

10. N. Attrapadung, G. Hanaoka, and S. Yamada. Conversions among several classes of predicate encryption
and applications to ABE with various compactness tradeoffs. In T. Iwata and J. H. Cheon, editors,
ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 575–601. Springer, Heidelberg, Nov. / Dec. 2015.

11. N. Attrapadung, B. Libert, and E. de Panafieu. Expressive key-policy attribute-based encryption with
constant-size ciphertexts. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors, PKC 2011,
volume 6571 of LNCS, pages 90–108. Springer, Heidelberg, Mar. 2011.

12. N. Attrapadung and S. Yamada. Duality in ABE: Converting attribute based encryption for dual predicate
and dual policy via computational encodings. In K. Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS,
pages 87–105. Springer, Heidelberg, Apr. 2015.

13. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In J. Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg, Aug. 2001.

14. D. Boneh and M. Hamburg. Generalized identity based and broadcast encryption schemes. In J. Pieprzyk,
editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 455–470. Springer, Heidelberg, Dec. 2008.

43

15. J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups via predicate encodings.
In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 595–624.
Springer, Heidelberg, Apr. 2015.

16. J. Chen, J. Gong, L. Kowalczyk, and H. Wee. Unbounded ABE via bilinear entropy expansion, revisited. In
J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 503–534.
Springer, Heidelberg, Apr. / May 2018.

17. J. Chen and H. Wee. Semi-adaptive attribute-based encryption and improved delegation for Boolean
formula. In M. Abdalla and R. D. Prisco, editors, SCN 14, volume 8642 of LNCS, pages 277–297. Springer,
Heidelberg, Sept. 2014.

18. S. Cook and H. Hoover. A depth-universal circuit. SIAM Journal on Computing, 14(4):833–839, 1985.

19. C. Delerablée. Identity-based broadcast encryption with constant size ciphertexts and private keys. In
K. Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 200–215. Springer, Heidelberg, Dec.
2007.

20. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. L. Villar. An algebraic framework for Diffie-Hellman
assumptions. Journal of Cryptology, 30(1):242–288, Jan. 2017.

21. J. Gong, X. Dong, J. Chen, and Z. Cao. Efficient IBE with tight reduction to standard assumption in the
multi-challenge setting. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part II, volume 10032
of LNCS, pages 624–654. Springer, Heidelberg, Dec. 2016.

22. J. Gong, B. Waters, and H. Wee. ABE for DFA from k-lin. In A. Boldyreva and D. Micciancio, editors,
CRYPTO 2019, Part II, volume 11693 of LNCS, pages 732–764. Springer, Heidelberg, Aug. 2019.

23. J. Gong and H. Wee. Adaptively secure ABE for DFA from k-lin and more. In A. Canteaut and Y. Ishai,
editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 278–308. Springer, Heidelberg, May
2020.

24. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for circuits. In D. Boneh,
T. Roughgarden, and J. Feigenbaum, editors, 45th ACM STOC, pages 545–554. ACM Press, June 2013.

25. R. Goyal, V. Koppula, and B. Waters. Semi-adaptive security and bundling functionalities made generic
and easy. In M. Hirt and A. D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 361–388.
Springer, Heidelberg, Oct. / Nov. 2016.

26. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control
of encrypted data. In A. Juels, R. N. Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006,
pages 89–98. ACM Press, Oct. / Nov. 2006. Available as Cryptology ePrint Archive Report 2006/309.

27. Z. Jafargholi, C. Kamath, K. Klein, I. Komargodski, K. Pietrzak, and D. Wichs. Be adaptive, avoid
overcommitting. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 133–163. Springer, Heidelberg, Aug. 2017.

28. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial equations,
and inner products. In N. P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 146–162.
Springer, Heidelberg, Apr. 2008.

29. L. Kowalczyk and H. Wee. Compact adaptively secure ABE for NC1 from k-lin. In Y. Ishai and V. Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 3–33. Springer, Heidelberg, May 2019.

30. A. B. Lewko and B. Waters. Unbounded HIBE and attribute-based encryption. In K. G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 547–567. Springer, Heidelberg, May 2011.

31. H. Lin and J. Luo. Compact adaptively secure ABE from k-lin: Beyond NC1 and towards NL. In A. Can-
teaut and Y. Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 247–277. Springer,
Heidelberg, May 2020.

32. T. Okamoto and K. Takashima. Fully secure functional encryption with general relations from the decisional
linear assumption. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 191–208. Springer,
Heidelberg, Aug. 2010.

33. T. Okamoto and K. Takashima. Fully secure unbounded inner-product and attribute-based encryption.
In X. Wang and K. Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 349–366. Springer,
Heidelberg, Dec. 2012.

34. R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-monotonic access structures.
In P. Ning, S. De Capitani di Vimercati, and P. F. Syverson, editors, ACM CCS 2007, pages 195–203.
ACM Press, Oct. 2007.

35. Y. Rouselakis and B. Waters. Practical constructions and new proof methods for large universe attribute-
based encryption. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 2013, pages 463–474.
ACM Press, Nov. 2013.

44

36. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In R. Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005.

37. K. Takashima. Expressive attribute-based encryption with constant-size ciphertexts from the decisional
linear assumption. In M. Abdalla and R. D. Prisco, editors, SCN 14, volume 8642 of LNCS, pages 298–317.
Springer, Heidelberg, Sept. 2014.

38. J. Tomida, Y. Kawahara, and R. Nishimaki. Fast, compact, and expressive attribute-based encryption. In
A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS,
pages 3–33. Springer, Heidelberg, May 2020.

39. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In
S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619–636. Springer, Heidelberg, Aug. 2009.

40. B. Waters. Functional encryption for regular languages. In R. Safavi-Naini and R. Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 218–235. Springer, Heidelberg, Aug. 2012.

41. H. Wee. Dual system encryption via predicate encodings. In Y. Lindell, editor, TCC 2014, volume 8349
of LNCS, pages 616–637. Springer, Heidelberg, Feb. 2014.

42. S. Yamada, N. Attrapadung, G. Hanaoka, and N. Kunihiro. A framework and compact constructions for
non-monotonic attribute-based encryption. In H. Krawczyk, editor, PKC 2014, volume 8383 of LNCS,
pages 275–292. Springer, Heidelberg, Mar. 2014.

A More Related Works

ABE for DFA and more. Many recent works proposed ABE for DFA (and beyond). We explore
them here in three aspects: Can we use some of our instantiations in their schemes? Can we use their
schemes as ABE components casted in our framework so as to combine with other ABE for other
predicates? and Can we generalize their techniques so as to have a new DFA composition framework
over basic predicates, based on k-Lin? Note that the only known DFA composition framework in ABE
is given by Attrapadung [9] based on the q-ratio assumption.

At TCC’19, Agrawal, Maitra, and Yamada [5] proposed a generic conversion from unbounded multi-
use KP-ABE and CP-ABE for monotone span programs (MSP) to ABE for DFA. Unfortunately,
our instantiations on unbounded multi-use KP-ABE/CP-ABE are for Boolean formulae, which are
less generic than MSP. Hence, we cannot use our instantiations in their conversions. Note that their
instantiations use selective∗ secure unbounded multi-use CP-ABE for MSP to obtain selective∗ secure
ABE for DFA, where selective∗ security is an intermediate notion between semi-adaptive and very
selective security. When extracting their ABE as a PES, it likely does not satisfy KE-ind since otherwise
their original ABE instantiation would be proved adaptive secure. Therefore, we cannot cast their
scheme into our framework to combine with other ABE. At Crypto’19, Gong, Waters, and Wee [22]
proposed selectively secure ABE for DFA from k-Lin. Again, the extracted PES from this likely does
not satisfy KE-ind. Finally, it also seems difficult to use techniques from these works [5,22] to obtain a
new DFA composition framework, since they do not achieve adaptive security in the first place. Note
that it may possible to consider compositions in weaker settings such as selectively secure ones, but
we do not pursue them here. At Crypto’19, Agrawal, Maitra, and Yamada [4] proposed ABE for NFA
from LWE, and hence is not compatible with our pairing-based framework.

Concurrently and very recently, at Eurocrypt’20, Gong and Wee [23] proposed adaptively secure
ABE for DFA from k-Lin, while Lin and Luo [31] proposed adaptively secure ABE for ABP, DFA, NFA,
L, NL from k-Lin (with the last two, L/NL, being in some relaxed settings). First, Gong and Wee [23]
constructed their scheme based on a similar design concept to the line of works on ABE for DFA from
pairings [7, 22, 40] (but of course with distinguished tricks to achieve adaptive security under k-Lin).
Hence, it can be captured, at least syntactically, by a PES. Therefore, it might be possible to take their
scheme into our framework. However, this needs careful analysis to confirm that the PES representing
their scheme satisfies KE-ind, which seems not a simple task at a first glance. Similarly, we consider
that using their technique to realize policy augmentations with DFA policies, as considered in [9], also
may be possible, while it may also require more analysis. We leave them as a future research direction.
Second, Lin and Luo [31] introduced a completely new method to construct adaptively secure ABE
schemes. Ciphertexts and secret keys of their schemes comprise those of an inner product functional

45

encryption scheme, and thus it seems not possible to capture them by the PES framework. Hence, we
consider that it might be difficult to apply their work to our framework.

On Combining ABE. As a related work regarding combining functionalities into one scheme, we can
view the “bundling functionalities” transformation of [25] as the direct sum of parametrized predicates
{Pn}n∈N of the same family. Syntactically, our direct sum offers more: bundling predicates of different
families. Moreover, our KP augmentation can provide dynamic policies (boolean formulae) among the
bundled predicates. In the aspect of applicability, their scheme is more general in the sense that their
transformation applies to any ABE or FE, while ours applies to ABE that can be casted as PES
(that satisfies KE-ind). One more difference is that [25] achieves semi-adaptive security, while ours is
adaptively secure.

More on Unbounded ABE. In the relation to other unbounded ABE in the literature, continued
from the discussion in Section 1.3, it is also worth remark that unbounded ABE by Okamoto and
Takashima has a large universe [33]. Thus, if we can apply the KW framework to their scheme, we would
also obtain an alternative completely unbounded ABE scheme, but it seems not so straightforward.

B Concrete Descriptions of Our Instantiations

For self-containment, as examples, we provide the concrete descriptions of three schemes that are
newly obtained by our framework, namely, completely unbounded KP/CP-ABE for monotone Boolean
formulae and KP-ABE with constant-size ciphertexts for monotone Boolean formulae.

B.1 Completely Unbounded KP-ABE for Monotone Formulae

A predicate for completely unbounded KP-ABE for monotone Boolean formulae, PKP-MBF : X × Y →
{0, 1}, is defined as follows:

– X = 2Zp .
– Y =

⋃
i∈N(Zip × Fi), where Fi consists of all monotone Boolean formulae with input length i.

– For X = {x1, . . . , xt} ∈ X and Y = ((y1, . . . , yn), f) ∈ Y where f : {0, 1}n → {0, 1}, we set bi = 1
iff yi ∈ X. Then, we define PKP-MBF(X,Y) = 1⇔ f(b1, . . . , bn) = 1.

In our framework, the predicate PKP-MBF can be embedded into

KBF1[PIBBE] = KBF1[Dual[KBF1OR[PIBE]]].

Thus, the corresponding PES ΓKP-MBF is described as follows:

– Param() = 3
– EncCt({x1, . . . , xt}) = (t, 0, c). Polynomials c = (c1, . . . , ct) are defined as follows:

ci = s0w1 − si(xiw2 + w3).

– EncKey((y1, . . . , yn), f) = (n, τ,k), where τ is the number of AND gates in f . Let Sharep be the
algorithm defined in Fig 4. Polynomials k = (k1,1, . . . , k1,n, k2,1, . . . , k2,n) are defined as follows:

σ1, . . . , σn ← Sharep(f, α, r̂−α = (r̂1, . . . , r̂τ)),

k1,i = σi − riw1, k2,i = ri(yiw2 + w3).

– Pair({x1, . . . , xt}, (y1, . . . , yn), f) = (E,E). Let S ⊆ {i | yi ∈ {x1, . . . , xt}} be the set such that∑
i∈S σi = α. E = (ei,j)i∈[t+1],j∈[2n] and E = (ēi,j)i∈[t],j∈[n] are defined as the following equation

holds:

sEk> + cEr> =
∑
i∈S

(s0k1,i + cφ(i)ri + sφ(i)k2,i),

where φ : S → [t] is a function such that yi = xφ(i).

46

Because ΓKP-MBF is obtained by applying the dual conversion once to a PES with single-variable
PMH, namely, Γ IBE, ΓKP-MBF satisfies (2, 2)-KE-ind. Thus, the concrete scheme is described as follows.

Setup(1λ): It takes a security parameter 1λ and outputs pk and msk as follows.

G← GBG(1λ), A,B← Z(k+2)×k
p , h← Zk+2

p , W1, . . . ,W3 ← Z(k+2)×(k+2)
p

pk = (G, [A]1, [W
>
1 A]1, . . . , [W

>
3 A]1, [A

>h]T)

msk = (B,h,W1, . . . ,W3).

Enc(pk, X,M): It takes pk, an attribute X = {x1, . . . , xt} ∈ X, and a message M ∈ GT and outputs
ctX as follows. Let Share be an algorithm defined in Fig 5.

s0, s1, . . . , st ← Zkp
ct1,i = [Asi]1, ct2,i = [W>

1 As0 − (xiW
>
2 + W>

3)Asi]1, ct3 = [s>0 A>h]TM

ctX = ({ct1,i}i∈[t]+ , {ct2,i}i∈[t], ct3).

KeyGen(pk,msk, Y): It takes pk, msk, and a set Y = ((y1, . . . , yn), f) ∈ Y and outputs skY as follows.

r1, . . . , rn ← Zkp, σ1, . . . ,σn ← Share(f,h)

sk1,i = [Bri]2, sk2,i = [σi −W1Bri]2, sk3,i = [(yiW2 + W3)Bri]2

skY = {sk1,i, sk2,i, sk3,i}i∈[n].

Dec(pk, ctX , skY): It takes pk, ctX = ({ct1,i}i∈[t]+ , {ct2,i}i∈[t], ct3), and skY = {sk1,i, sk2,i, sk3,i}i∈[n]

such that PKP-MBF(X,Y) = 1. Let S and φ be the same as those defined in Pair of ΓKP-MBF. It
outputs M ′ as follows.

M ′ = ct3

/∏
i∈S

e(ct1,0, sk2,i)e(ct2,φ(i), sk1,i)e(ct1,φ(i), sk3,i).

B.2 Completely Unbounded CP-ABE for Monotone Formulae

A predicate for completely unbounded CP-ABE for monotone Boolean formulae, PCP-MBF : X × Y →
{0, 1}, is defined as follows:

– X =
⋃
i∈N(Zip × Fi), where Fi consists of all monotone Boolean formulae with input length i.

– Y = 2Zp .
– For X = ((x1, . . . , xn), f) ∈ X and Y = {y1, . . . , yt} ∈ Y where f : {0, 1}n → {0, 1}, we set bi = 1

iff xi ∈ Y . Then, we define PCP-MBF(X,Y) = 1⇔ f(b1, . . . , bn) = 1.

In our framework, the predicate PCP-MBF can be embedded into

Dual[KBF1[PIBBE]] = Dual[KBF1[Dual[KBF1OR[PIBE]]]].

Thus, the corresponding PES ΓCP-MBF is described as follows:

– Param() = 4
– EncCt((x1, . . . , xn), f) = (n, τ, c), where τ is the number of AND gates in f . Let Sharep be the

algorithm defined in Fig 4. Polynomials c = (c1,1, . . . , c1,n, c2,1, . . . , c2,n) are defined as follows:

σ1, . . . , σn ← Sharep(f, s0w1, ŝ = (ŝ1, . . . , ŝτ)),

c1,i = σi − siw2, c2,i = si(xiw3 + w4).

47

– EncKey({y1, . . . , yt}) = (t+ 1, 0,k). Polynomials k = (k0, k1, . . . , kt) are defined as follows:

k0 = α− r0w1, ki = r0w2 − ri(yiw3 + w4).

– Pair((x1, . . . , xn), f, {y1, . . . , yt}) = (E,E). Let S ⊆ {i | xi ∈ {y1, . . . , yt}} be the set such that∑
i∈S σi = s0w1. E = (ei,j)i∈[n+1],j∈[t+1] and E = (ēi,j)i∈[2n],j∈[t+1] are defined as the following

equation holds:

sEk> + cEr> = s0k0 +
∑
i∈S

(sikφ(i) + c1,ir0 + c2,irφ(i)),

where φ : S → [t] is a function such that xi = yφ(i).

Because ΓCP-MBF is obtained by applying the dual conversion twice to a PES with single-variable
PMH, namely, Γ IBE, ΓCP-MBF satisfies (3, 3)-KE-ind. Thus, the concrete scheme is described as follows.

Setup(1λ): It takes a security parameter 1λ and outputs pk and msk as follows.

G← GBG(1λ), A,B← Z(k+3)×k
p , h← Zk+3

p , W1, . . . ,W4 ← Z(k+3)×(k+3)
p

pk = (G, [A]1, [W
>
1 A]1, . . . , [W

>
4 A]1, [A

>h]T)

msk = (B,h,W1, . . . ,W4).

Enc(pk, X,M): It takes pk, an attribute X = ((x1, . . . , xn), f) ∈ X, and a message M ∈ GT and
outputs ctX as follows. Let Share be an algorithm defined in Fig 5.

s0, s1, . . . , sn ← Zkp, σ1, . . . ,σn ← Share(f,W>
1 As0)

ct1,i = [Asi]1, ct2,i = [σi −W>
2 Asi]1, ct3,i = [(xiW

>
3 + W>

4)Asi]1

ct4 = [s>0 A>h]TM

ctX = ({ct1,i}i∈[n]+ , {ct2,i, ct3,i}i∈[n], ct4).

KeyGen(pk,msk, Y): It takes pk, msk, and a set Y = {y1, . . . , yt} ∈ Y and outputs skY as follows.

r0, r1, . . . , rt ← Zkp
sk1,i = [Bri]2, sk2 = [h−W1Br0]2, sk3,i = [W2Br0 − (yiW3 + W4)Bri]2

skY = ({sk1,i}i∈[t]+ , sk2, {sk3,i}i∈[t]).

Dec(pk, ctX , skY): It takes pk, ctX = ({ct1,i}i∈[n]+ , {ct2,i, ct3,i}i∈[n], ct4), and skY = ({sk1,i}i∈[t]+ , sk2,

{sk3,i}i∈[t]) such that PCP-MBF(X,Y) = 1. Let S and φ be the same as those defined in Pair of

ΓCP-MBF. It outputs M ′ as follows.

M ′ = ct4

/
e(ct1,0, sk2)

∏
i∈S

e(ct1,i, sk3,φ(i))e(ct2,i, sk1,0)e(ct3,i, sk1,φ(i)).

B.3 KP-ABE with Constant-Size Ciphertexts for Monotone Formulae

Following §6.7, we consider ABE for PKP-MBF-16 = KBF1[PIBBE′]. The corresponding PES ΓKP-MBF-16 is
described as follows:

– Param(T) = T + 2
– EncCt(X) = (0, 0, c) where c = sw>v′X , where the non-lone variable is s.

48

– EncKey((y1, . . . , yn), f) = (n, τ,k), where τ is the number of AND gates in f . Let Sharep be the
algorithm defined in Fig 4. Polynomials k = (k(1), . . . ,k(n)) are defined as follows:

σ1, . . . , σn ← Sharep(f, α, r̂ = (r̂1, . . . , r̂τ)),

k(i) = (σi,0) + riw
>M′

yi .

– Pair(X, (y1, . . . , yn), f) = (e, ē). Let S ⊆ {i | yi ∈ X} be the set such that
∑
i∈S σi = α. Then,

e = (e1, . . . , en(T+1)) and ē = (ē1, . . . , ēn) are defined as the following equation holds:

sek> + cer> =
∑
i∈S

(sk(i)v′′X − ric),

where v′′X = (1, a1, . . . , aT)>.

Note that ai, v′X , v′′X and M′
y is defined the same as those in §6.7, and we have M′

yv
′′
X = v′X iff y ∈ X.

Because ΓKP-MBF-16 is obtained without the dual conversion, ΓKP-MBF-16 satisfies (1, 1)-KE-ind. Thus,
the concrete scheme is described as follows.

Setup(1λ): It takes a security parameter 1λ and outputs pk and msk as follows.

G← GBG(1λ), A,B← Z(k+1)×k
p , h← Zk+1

p , W1, . . . ,WT+2 ← Z(k+1)×(k+1)
p

pk = (G, [A]1, [W
>
1 A]1, . . . , [W

>
T+2A]1, [A

>h]T)

msk = (B,h,W1, . . . ,WT+2).

Enc(pk, X,M): It takes pk, an attribute X ∈ Xκ, and a message M ∈ GT and outputs ctX as follows.

s← Zkp, ct1 = [As]1, ct2 =

 ∑
`∈[T+2]

v′X,`W`As


1

, ct3 = [s>A>h]TM

ctX = (ct1, ct2, ct3),

where v′X,` denotes the `-th element of v′X .
KeyGen(pk,msk, Y): It takes pk, msk, and a predicate Y = ((y1, . . . , yn), f) ∈ Yκ and outputs skY as

follows. Let Share be an algorithm defined in Fig 5.

r1, . . . , rn ← Zkp, σ1, . . . ,σn ← Share(f,h)

sk1,i = [Bri]2, sk2,i,j =

{
[σi +

∑
`∈[T+2]m

′
yi,`,j

W`Bri]2 j = 1

[
∑
`∈[T+2]m

′
yi,`,j

W`Bri]2 2 ≤ j ≤ T + 1

skY = ({sk1,i}i∈[n], {sk2,i,j}i∈[n],j∈[T+1]),

where m′y,`,j denotes the (`, j)-th element of M′
yi .

Dec(pk, ctX , skY): It takes pk, ctX = (ct1, ct2, ct3), and skY = ({sk1,i}i∈[n], {sk2,i,j}i∈[n],j∈[T+1]) such

that PKP-MBF-16(X,Y) = 1. Let S be the same as that defined in Pair of ΓKP-MBF-16. It outputs M ′

as follows.

M ′ = ct3

/∏
i∈S

 ∏
j∈[T+1]

e(ct1, sk2,i,j)
v′′X,j

 /e(ct2, sk1,i)

 ,

where v′′X,j is the j-th element of v′′X .

49

	Unbounded Dynamic Predicate Compositions in ABE from Standard Assumptions
	Introduction
	Our Contributions
	Technical Overview of Our Framework
	Technical Comparisons to Previous Unbounded ABE and More

	Preliminaries
	Basic Definitions and Tools
	Attribute-Based Encryption
	Piecewise Guessing Framework
	Pebbling Strategy for Boolean Formulae
	Embedding Lemma

	Pair Encoding Schemes
	Pair Encoding Scheme Definition
	Security Properties of PESs

	Predicate Transformations
	Direct Sum of Predicate Families
	Dual Predicates
	Key-Policy Augmentation
	Conforming PES for ABE

	ABE from PES
	Extensions, Instantiations, and Applications
	Overview
	Augmentation over Predicate Sets
	Basic Predicates
	Completely Unbounded ABE for Monotone Formulae
	Completely Unbounded ABE for Non-Monotone Formulae
	Unified Definition for Bounded ABE for Boolean Formulae
	KP-ABE with Constant-Size Ciphertexts
	CP-ABE with Constant-Size Ciphertexts
	KP-ABE, CP-ABE with Constant-Size Keys

	References
	More Related Works
	Concrete Descriptions of Our Instantiations
	Completely Unbounded KP-ABE for Monotone Formulae
	Completely Unbounded CP-ABE for Monotone Formulae
	KP-ABE with Constant-Size Ciphertexts for Monotone Formulae

